NASA Astrophysics Data System (ADS)
Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.
2015-05-01
The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.
Elliott, Grant P
2012-07-01
Given the widespread and often dramatic influence of climate change on terrestrial ecosystems, it is increasingly common for abrupt threshold changes to occur, yet explicitly testing for climate and ecological regime shifts is lacking in climatically sensitive upper treeline ecotones. In this study, quantitative evidence based on empirical data is provided to support the key role of extrinsic, climate-induced thresholds in governing the spatial and temporal patterns of tree establishment in these high-elevation environments. Dendroecological techniques were used to reconstruct a 420-year history of regeneration dynamics within upper treeline ecotones along a latitudinal gradient (approximately 44-35 degrees N) in the Rocky Mountains. Correlation analysis was used to assess the possible influence of minimum and maximum temperature indices and cool-season (November-April) precipitation on regional age-structure data. Regime-shift analysis was used to detect thresholds in tree establishment during the entire period of record (1580-2000), temperature variables significantly Correlated with establishment during the 20th century, and cool-season precipitation. Tree establishment was significantly correlated with minimum temperature during the spring (March-May) and cool season. Regime-shift analysis identified an abrupt increase in regional tree establishment in 1950 (1950-1954 age class). Coincident with this period was a shift toward reduced cool-season precipitation. The alignment of these climate conditions apparently triggered an abrupt increase in establishment that was unprecedented during the period of record. Two main findings emerge from this research that underscore the critical role of climate in governing regeneration dynamics within upper treeline ecotones. (1) Regional climate variability is capable of exceeding bioclimatic thresholds, thereby initiating synchronous and abrupt changes in the spatial and temporal patterns of tree establishment at broad regional scales. (2) The importance of climate parameters exceeding critical threshold values and triggering a regime shift in tree establishment appears to be contingent on the alignment of favorable temperature and moisture regimes. This research suggests that threshold changes in the climate system can fundamentally alter regeneration dynamics within upper treeline ecotones and, through the use of regime-shift analysis, reveals important climate-vegetation linkages.
Fire and vegetation shifts in the Americas at the vanguard of Paleoindian migration
Pinter, N.; Fiedel, S.; Keeley, J.E.
2011-01-01
Across North and South America, the final millennia of the Pleistocene saw dramatic changes in climate, vegetation, fauna, fire regime, and other local and regional paleo-environmental characteristics. Rapid climate shifts following the Last Glacial Maximum (LGM) exerted a first-order influence, but abrupt postglacial shifts in vegetation composition, vegetation structure, and fire regime also coincided with human arrival and transformative faunal extinctions in the Americas. We propose a model of post-glacial vegetation change in response to climatic drivers, punctuated by local fire regime shifts in response to megaherbivore-driven fuel changes and anthropogenic ignitions. The abrupt appearance of humans, disappearance of megaherbivores, and resulting changes in New World fire systems were transformative events that should not be dismissed in favor of climate-only interpretations of post-glacial paleo-environmental shifts in the Americas. Fire is a mechanism by which small human populations can have broad impacts, and growing evidence suggests that early anthropogenic influences on regional, even global, paleo-environments should be tested alongside other potential causal mechanisms.
Multiscale regime shifts and planetary boundaries.
Hughes, Terry P; Carpenter, Stephen; Rockström, Johan; Scheffer, Marten; Walker, Brian
2013-07-01
Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a tipping point. Whether human activities will trigger such a global event in the near future is uncertain, due to critical knowledge gaps. In particular, we lack understanding of how regime shifts propagate across scales, and whether local or regional tipping points can lead to global transitions. The ongoing disruption of ecosystems and climate, combined with unprecedented breakdown of isolation by human migration and trade, highlights the need to operate within safe planetary boundaries. Copyright © 2013 Elsevier Ltd. All rights reserved.
Regime Shift in an Exploited Fish Community Related to Natural Climate Oscillations.
Auber, Arnaud; Travers-Trolet, Morgane; Villanueva, Maria Ching; Ernande, Bruno
2015-01-01
Identifying the various drivers of marine ecosystem regime shifts and disentangling their respective influence are critical tasks for understanding biodiversity dynamics and properly managing exploited living resources such as marine fish communities. Unfortunately, the mechanisms and forcing factors underlying regime shifts in marine fish communities are still largely unknown although climate forcing and anthropogenic pressures such as fishing have been suggested as key determinants. Based on a 24-year-long time-series of scientific surveys monitoring 55 fish and cephalopods species, we report here a rapid and persistent structural change in the exploited fish community of the eastern English Channel from strong to moderate dominance of small-bodied forage fish species with low temperature preferendum that occurred in the mid-1990s. This shift was related to a concomitant warming of the North Atlantic Ocean as attested by a switch of the Atlantic Multidecadal Oscillation from a cold to a warm phase. Interestingly, observed changes in the fish community structure were opposite to those classically induced by exploitation as larger fish species of higher trophic level increased in abundance. Despite not playing a direct role in the regime shift, fishing still appeared as a forcing factor affecting community structure. Moreover, although related to climate, the regime shift may have been facilitated by strong historic exploitation that certainly primed the system by favoring the large dominance of small-bodied fish species that are particularly sensitive to climatic variations. These results emphasize that particular attention should be paid to multidecadal natural climate variability and its interactions with both fishing and climate warming when aiming at sustainable exploitation and ecosystem conservation.
Ecological forecasting in the presence of abrupt regime shifts
NASA Astrophysics Data System (ADS)
Dippner, Joachim W.; Kröncke, Ingrid
2015-10-01
Regime shifts may cause an intrinsic decrease in the potential predictability of marine ecosystems. In such cases, forecasts of biological variables fail. To improve prediction of long-term variability in environmental variables, we constructed a multivariate climate index and applied it to forecast ecological time series. The concept is demonstrated herein using climate and macrozoobenthos data from the southern North Sea. Special emphasis is given to the influence of selection of length of fitting period to the quality of forecast skill especially in the presence of regime shifts. Our results indicate that the performance of multivariate predictors in biological forecasts is much better than that of single large-scale climate indices, especially in the presence of regime shifts. The approach used to develop the index is generally applicable to all geographical regions in the world and to all areas of marine biology, from the species level up to biodiversity. Such forecasts are of vital interest for practical aspects of the sustainable management of marine ecosystems and the conservation of ecosystem goods and services.
The importance of within-system spatial variation in drivers of marine ecosystem regime shifts
Fisher, J. A. D.; Casini, M.; Frank, K. T.; Möllmann, C.; Leggett, W. C.; Daskalov, G.
2015-01-01
Comparative analyses of the dynamics of exploited marine ecosystems have led to differing hypotheses regarding the primary causes of observed regime shifts, while many ecosystems have apparently not undergone regime shifts. These varied responses may be partly explained by the decade-old recognition that within-system spatial heterogeneity in key climate and anthropogenic drivers may be important, as recent theoretical examinations have concluded that spatial heterogeneity in environmental characteristics may diminish the tendency for regime shifts. Here, we synthesize recent, empirical within-system spatio-temporal analyses of some temperate and subarctic large marine ecosystems in which regime shifts have (and have not) occurred. Examples from the Baltic Sea, Black Sea, Bengula Current, North Sea, Barents Sea and Eastern Scotian Shelf reveal the largely neglected importance of considering spatial variability in key biotic and abiotic influences and species movements in the context of evaluating and predicting regime shifts. We highlight both the importance of understanding the scale-dependent spatial dynamics of climate influences and key predator–prey interactions to unravel the dynamics of regime shifts, and the utility of spatial downscaling of proposed mechanisms (as evident in the North Sea and Barents Sea) as a means of evaluating hypotheses originally derived from among-system comparisons.
Predicting climate-driven regime shifts versus rebound potential in coral reefs.
Graham, Nicholas A J; Jennings, Simon; MacNeil, M Aaron; Mouillot, David; Wilson, Shaun K
2015-02-05
Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.
Fire and vegetation shifts in the Americas at the vanguard of Paleoindian migration
NASA Astrophysics Data System (ADS)
Pinter, Nicholas; Fiedel, Stuart; Keeley, Jon E.
2011-02-01
Across North and South America, the final millennia of the Pleistocene saw dramatic changes in climate, vegetation, fauna, fire regime, and other local and regional paleo-environmental characteristics. Rapid climate shifts following the Last Glacial Maximum (LGM) exerted a first-order influence, but abrupt post-glacial shifts in vegetation composition, vegetation structure, and fire regime also coincided with human arrival and transformative faunal extinctions in the Americas. We propose a model of post-glacial vegetation change in response to climatic drivers, punctuated by local fire regime shifts in response to megaherbivore-driven fuel changes and anthropogenic ignitions. The abrupt appearance of humans, disappearance of megaherbivores, and resulting changes in New World fire systems were transformative events that should not be dismissed in favor of climate-only interpretations of post-glacial paleo-environmental shifts in the Americas. Fire is a mechanism by which small human populations can have broad impacts, and growing evidence suggests that early anthropogenic influences on regional, even global, paleo-environments should be tested alongside other potential causal mechanisms.
Conversi, Alessandra; Fonda Umani, Serena; Peluso, Tiziana; Molinero, Juan Carlos; Santojanni, Alberto; Edwards, Martin
2010-05-19
Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems. Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work) Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts may provide the key for distinguishing local (i.e., basin) anthropogenic drivers, such as eutrophication or fishing, from larger scale (hemispheric) climate drivers.
NASA Astrophysics Data System (ADS)
Yatsu, A.; Aydin, K. Y.; King, J. R.; McFarlane, G. A.; Chiba, S.; Tadokoro, K.; Kaeriyama, M.; Watanabe, Y.
2008-05-01
In order to explore mechanistic linkages between low-frequency ocean/climate variability, and fish population responses, we undertook comparative studies of time-series of recruitment-related productivity and the biomass levels of fish stocks representing five life-history strategies in the northern North Pacific between the 1950s and the present. We selected seven species: Japanese sardine ( Sardinopus melanostictus) and California sardine ( Sardinopus sagax) (opportunistic strategists), walleye pollock ( Theragra chalcogramma, intermediate strategist), pink salmon ( Oncorhynchus gorbuscha, salmonic strategist), sablefish ( Anoplopoma fimbria) and Pacific halibut ( Hippoglossus stenolepis) (periodic strategists) and spiny dogfish ( Squalus acanthias, equilibrium strategist). The responses in terms of productivity of sardine, pink salmon, sablefish and halibut to climatic regime shifts were generally immediate, delayed, or no substantial responses depending on the particular regime shift year and fish stock (population). In walleye pollock, there were some periods of high productivity and low productivity, but not coincidental to climatic regime shifts, likely due to indirect climate forcing impacts on both bottom-up and top-down processes. Biomass of zooplankton and all fish stocks examined, except for spiny dogfish whose data were limited, indicated a decadal pattern with the most gradual changes in periodic strategists and most intensive and rapid changes in opportunistic strategists. Responses of sardine productivity to regime shifts were the most intense, probably due to the absence of density-dependent effects and the availability of refuges from predators when sardine biomass was extremely low. Spiny dogfish were least affected by environmental variability. Conversely, spiny dogfish are likely to withstand only modest harvest rates due to their very low intrinsic rate of increase. Thus, each life-history strategy type had a unique response to climatic forcing, owing to their inherent biological traits such as mode, frequency and intensity of reproduction, early life style, age of maturity and longevity. On the other hand, responses of different stocks within a species to climatic regime shifts were unique to each local region, because large-scale climatic forcings are modulated by local physical, chemical and biological processes. The observed response time or absence of response in recruitment-related fish productivity to climatic regime shifts may be influenced by (1) local environmental conditions (immediate, with a delay or no effects), (2) phenological shifts in zooplankton life-history (immediate or with a delay), and (3) stochastic episodic events in both top-down and bottom-up processes (immediate, with a delay or no effects).
Effects of climate change on ecological disturbances [Chapter 8
Danielle M. Malesky; Barbara J. Bentz; Gary R. Brown; Andrea R. Brunelle; John M. Buffington; Linda M. Chappell; R. Justin DeRose; John C. Guyon; Carl L. Jorgensen; Rachel A. Loehman; Laura L. Lowrey; Ann M. Lynch; Marek Matyjasik; Joel D. McMillin; Javier E. Mercado; Jesse L. Morris; Jose F. Negron; Wayne G. Padgett; Robert A. Progar; Carol B. Randall
2018-01-01
This chapter describes disturbance regimes in the Intermountain Adaptation Partnership (IAP) region, and potential shifts in these regimes as a consequence of observed and projected climate change. The term "disturbance regime" describes the general temporal and spatial characteristics of a disturbance agent (e.g., insects, disease, fire, weather, human...
Liu, Zhihua; Wimberly, Michael C
2016-01-15
We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.
Climate-driven regime shifts in Arctic marine benthos
Kortsch, Susanne; Primicerio, Raul; Beuchel, Frank; Renaud, Paul E.; Rodrigues, João; Lønne, Ole Jørgen; Gulliksen, Bjørn
2012-01-01
Climate warming can trigger abrupt ecosystem changes in the Arctic. Despite the considerable interest in characterizing and understanding the ecological impact of rapid climate warming in the Arctic, few long time series exist that allow addressing these research goals. During a 30-y period (1980–2010) of gradually increasing seawater temperature and decreasing sea ice cover in Svalbard, we document rapid and extensive structural changes in the rocky-bottom communities of two Arctic fjords. The most striking component of the benthic reorganization was an abrupt fivefold increase in macroalgal cover in 1995 in Kongsfjord and an eightfold increase in 2000 in Smeerenburgfjord. Simultaneous changes in the abundance of benthic invertebrates suggest that the macroalgae played a key structuring role in these communities. The abrupt, substantial, and persistent nature of the changes observed is indicative of a climate-driven ecological regime shift. The ecological processes thought to drive the observed regime shifts are likely to promote the borealization of these Arctic marine communities in the coming years. PMID:22891319
NASA Astrophysics Data System (ADS)
Oguz, Temel; Gilbert, Denis
2007-02-01
Functioning of the Black Sea ecosystem has profoundly changed since the early 1970s under cumulative effects of excessive nutrient enrichment, strong cooling/warming, over-exploitation of pelagic fish stocks, and population outbreak of gelatinous carnivores. Applying a set of criteria to the long-term (1960-2000) ecological time-series data, the present study demonstrates that the Black Sea ecosystem was reorganised during this transition phase in different forms of top-down controlled food web structure through successive regime-shifts of distinct ecological properties. The Secchi disc depth, oxic-anoxic interface zone, dissolved oxygen and hydrogen sulphide concentrations also exhibit abrupt transition between their alternate regimes, and indicate tight coupling between the lower trophic food web structure and the biogeochemical pump in terms of regime-shift events. The first shift, in 1973-1974, marks a switch from large predatory fish to small planktivore fish-controlled system, which persisted until 1989 in the form of increasing small pelagic and phytoplankton biomass and decreasing zooplankton biomass. The increase in phytoplankton biomass is further supported by a bottom-up contribution due to the cumulative response to high anthropogenic nutrient load and the concurrent shift of the physical system to the "cold climate regime" following its ˜20-year persistence in the "warm climate regime". The end of the 1980s signifies the depletion of small planktivores and the transition to a gelatinous carnivore-controlled system. By the end of the 1990s, small planktivore populations take over control of the system again. Concomitantly, their top-down pressure when combined with diminishing anthropogenic nutrient load and more limited nutrient supply into the surface waters due to stabilizing effects of relatively warm winter conditions switched the "high production" regime of phytoplankton to its background "low production" regime. The Black Sea regime-shifts appear to be sporadic events forced by strong transient decadal perturbations, and therefore differ from the multi-decadal scale cyclical events observed in pelagic ocean ecosystems under low-frequency climatic forcing. The Black Sea observations illustrate that eutrophication and extreme fishery exploitation can indeed induce hysteresis in large marine ecosystems, when they can exert sufficiently strong forcing onto the system. They further illustrate the link between the disruption of the top predators, proliferation of new predator stocks, and regime-shift events. Examples of these features have been reported for some aquatic ecosystems, but are extremely limited for large marine ecosystems.
Globalization, marine regime shifts and the Soviet Union
Österblom, Henrik; Folke, Carl
2015-01-01
Regime shifts have been observed in marine ecosystems around the world, with climate and fishing suggested as major drivers of such shifts. The global and regional dynamics of the climate system have been studied in this context, and efforts to develop an analogous understanding of fishing activities are developing. Here, we investigate the timing of pelagic marine regime shifts in relation to the emergence of regional and global fishing activities of the Soviet Union. Our investigation of official catch statistics reflects that the Soviet Union was a major fishing actor in all large marine ecosystems where regime shifts have been documented, including in ecosystems where overfishing has been established as a key driver of these changes (in the Baltic and Black Seas and the Scotian Shelf). Globalization of Soviet Union fishing activities pushed exploitation to radically new levels and triggered regional and global governance responses for improved management. Since then, exploitation levels have remained and increased with new actors involved. Based on our exploratory work, we propose that a deeper understanding of the role of global fishing actors is central for improved management of marine ecosystems.
Climate change and potential reversal of regime shifts in desrt ecosystems
USDA-ARS?s Scientific Manuscript database
Globally, regime shifts from grasslands to shrublands (i.e., desertification) in arid and semiarid ecosystems are thought to be irreversible, similar to state changes in other ecosystems. The consequences of desertification, including loss of soil and nutrients to wind and water erosion, reductions ...
Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean.
McMahon, Kelton W; McCarthy, Matthew D; Sherwood, Owen A; Larsen, Thomas; Guilderson, Thomas P
2015-12-18
Climate change is predicted to alter marine phytoplankton communities and affect productivity, biogeochemistry, and the efficacy of the biological pump. We reconstructed high-resolution records of changing plankton community composition in the North Pacific Ocean over the past millennium. Amino acid-specific δ(13)C records preserved in long-lived deep-sea corals revealed three major plankton regimes corresponding to Northern Hemisphere climate periods. Non-dinitrogen-fixing cyanobacteria dominated during the Medieval Climate Anomaly (950-1250 Common Era) before giving way to a new regime in which eukaryotic microalgae contributed nearly half of all export production during the Little Ice Age (~1400-1850 Common Era). The third regime, unprecedented in the past millennium, began in the industrial era and is characterized by increasing production by dinitrogen-fixing cyanobacteria. This picoplankton community shift may provide a negative feedback to rising atmospheric carbon dioxide concentrations. Copyright © 2015, American Association for the Advancement of Science.
Predicting regime shifts in flow of the Colorado River
Gangopadhyay, Subhrendu; McCabe, Gregory J.
2010-01-01
The effects of continued global warming on water resources are a concern for water managers and stake holders. In the western United States, where the combined climatic demand and consumptive use of water is equal to or greater than the natural supply of water for some locations, there is growing concern regarding the sustainability of future water supplies. In addition to the adverse effects of warming on water supply, another issue for water managers is accounting for, and managing, the effects of natural climatic variability, particularly persistently dry and wet periods. Analyses of paleo-reconstructions of Upper Colorado River basin (UCRB) flow demonstrate that severe sustained droughts, and persistent pluvial periods, are a recurring characteristic of hydroclimate in the Colorado River basin. Shifts between persistently dry and wet regimes (e.g., decadal to multi-decadal variability (D2M)) have important implications for water supply and water management. In this study paleo-reconstructions of UCRB flow are used to compute the risks of shifts between persistently wet and dry regimes given the length of time in a specific regime. Results indicate that low frequency variability of hydro-climatic conditions and the statistics that describe this low frequency variability can be useful to water managers by providing information about the risk of shifting from one hydrologic regime to another. To manage water resources in the future water managers will have to understand the joint hydrologic effects of natural climate variability and global warming. These joint effects may produce future hydrologic conditions that are unprecedented in both the instrumental and paleoclimatic records.
San Diego Declaration on Climate Change and Fire Management: Ramifications for fuels management
Brian P. Oswald
2007-01-01
Climate plays a central role in shaping fire regimes over long time scales and in generating short-term weather that drives fire events. Recent research suggests that the increasing numbers of large and severe wildfires, lengthened wildfire seasons, and increased area burned are, in part, related to shifts in climate. The historical fire regimes in many ecosystems have...
Climate-driven regime shift of a temperate marine ecosystem.
Wernberg, Thomas; Bennett, Scott; Babcock, Russell C; de Bettignies, Thibaut; Cure, Katherine; Depczynski, Martial; Dufois, Francois; Fromont, Jane; Fulton, Christopher J; Hovey, Renae K; Harvey, Euan S; Holmes, Thomas H; Kendrick, Gary A; Radford, Ben; Santana-Garcon, Julia; Saunders, Benjamin J; Smale, Dan A; Thomsen, Mads S; Tuckett, Chenae A; Tuya, Fernando; Vanderklift, Mathew A; Wilson, Shaun
2016-07-08
Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests. Copyright © 2016, American Association for the Advancement of Science.
Abrupt climate-independent fire regime changes
Pausas, Juli G.; Keeley, Jon E.
2014-01-01
Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.
Prolonged instability prior to a regime shift
Spanbauer, Trisha; Allen, Craig R.; Angeler, David G.; Eason, Tarsha; Fritz, Sherilyn C.; Garmestani, Ahjond S.; Nash, Kirsty L.; Stone, Jeffery R.
2014-01-01
Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia.
Climatic controls on hurricane patterns: a 1200-y near-annual record from Lighthouse Reef, Belize
NASA Astrophysics Data System (ADS)
Denommee, K. C.; Bentley, S. J.; Droxler, A. W.
2014-01-01
Tropical cyclones (TCs) are powerful agents of destruction, and understanding climatic controls on TC patterns is of great importance. Over timescales of seasons to several decades, relationships among TC track, frequency, intensity and basin-scale climate changes are well documented by instrumental records. Over centuries to millennia, climate-shift influence on TC regimes remains poorly constrained. To better understand these relationships, records from multiple locations of TC strikes spanning millennia with high temporal resolution are required, but such records are rare. Here we report on a highly detailed sedimentary proxy record of paleo-TC strikes from the Blue Hole of Lighthouse Reef, Belize. Our findings provide an important addition to other high-resolution records, which collectively demonstrate that shifts between active and inactive TC regimes have occurred contemporaneously with shifts hemispheric-scale oceanic and atmospheric circulation patterns such as MDR SSTs and NAO mode, rather than with changes in local climate phenomena as has previously been suggested.
Effect of climate-ocean changes on the abundance of Pacific saury.
Gong, Yeong; Suh, Young Sang
2013-01-01
Effects of ocean climate changes on the population structure and abundance of Pacific saury (Cololabis sira) were investigated on the basis of climate indices, sea surface temperature (SST) anomalies, catch and body size information from the Tsushima Warm Current (TWC) region (Yellow Sea, East China Sea and East/Japan Sea) during the period 1950-2010. It is suggested that oceanic regime shifts in the early 1970s, late 1980s and late 1990s occurred in the TWC region in winter, but the regime shifts in the mid-1970s and in the late 1980s were not evident in the spring SST anomaly series. The abundance and body size of Pacific saury fluctuated in association with the winter oceanic changes in the TWC region. The catch rates and abundance of large size saury were far bellow average during their northward migrations in the TWC region in the years with abnormally cool winters (e.g., 1963, 1970, 1977, 1981-1989 and 2006) and above average in the years with warm winters. These patterns demonstrate decadal-scale variations together with large inter-annual fluctuations in the structure and abundance of Pacific saury in association with the climatic-oceanic changes. These results, along with an alternation of dominant pelagic fish species, indicate the status of the saury population in the TWC region is in good condition, similar to that in the Kuroshio-Oyashio Current (KOC) region during the warm regime after the late 1980s climate regime shift.
NASA Astrophysics Data System (ADS)
Ichii, T.; Nishikawa, H.; Igarashi, H.; Okamura, H.; Mahapatra, K.; Sakai, M.; Wakabayashi, T.; Inagake, D.; Okada, Y.
2017-01-01
We investigated the impacts of extensive anthropogenic (high seas driftnet squid fishery) and natural (late 1990s major climate regime shift) events on dominant epipelagic fish, squid, and shark in the central North Pacific Transition Region based on a driftnet survey covering the years 1979-2006. Fishing was conducted by Japan, Korea and Taiwan to target neon flying squid in the period 1979-1992, resulting in a decline in stocks of the target species and non-target species (Pacific pomfret and juvenile blue shark), which were by-catch of this fishery. The catch was found to be at the maximum sustainable yield (MSY) level for neon flying squid, the underfished level for juvenile blue shark, but the overfished level for Pacific pomfret. The MSY of Pacific pomfret indicated that this species is more susceptible to exploitation than previously considered. In response to the late 1990s regime shift, neon flying squid and Pacific saury showed low stock levels in 1999-2002 and 1998-2002, respectively, as a result of reduced productivity in their nursery grounds (the Subtropical Frontal Zone and Kuroshio Extension Bifurcation Region, respectively). On the other hand, Pacific pomfret showed no decreasing trend in stock during the low- and intermediate-productivity regimes because of the high productivity of their main spawning/nursery ground (Transition Zone Chlorophyll Front), which was independent of the regime shifts. Thus, squid and saury appear to be more susceptible to the regime shift than pomfret. We discuss the implications for stock management of the species-specific responses to the fishery and the regime shift.
NASA Technical Reports Server (NTRS)
Chen, Junye; DelGenio, Anthony D.; Carlson, Barbara E.; Bosilovich, Michael G.
2007-01-01
The dominant interannual El Nino-Southern Oscillation phenomenon (ENSO) and the short length of climate observation records make it difficult to study long-term climate variations in the spatiotemporal domain. Based on the fact that the ENS0 signal spreads to remote regions and induces delayed climate variation through atmospheric teleconnections, we develop an ENSO-removal method through which the ENS0 signal can be approximately removed at the grid box level from the spatiotemporal field of a climate parameter. After this signal is removed, long-term climate variations, namely, the global warming trend (GW) and the Pacific pan-decadal variability (PDV), are isolated at middle and low latitudes in the climate parameter fields from observed and reanalyses datasets. In this study, we show that one of several PDV interdecadal regime shifts occurred during the 1990s. This significant change in the Pacific basin is comparable but opposite in phase to the 1976 climate regime shift, which results persisting warming in the central-eastern Pacific, and cooling in the North and South Pacific. The 1990s PDV regime shift is consistent with observed changes in ocean biosphere and ocean circulation. A comprehensive picture of PDV as manifested in the troposphere and at the surface is described. In general, the PDV spatial patterns in different parameter fields share some similarities with the patterns associated with ENSO, but important differences exist. First, the PDV atmospheric circulation pattern is shifted westward by about 20deg and its zonal extent is limited to approx.60deg compared to approx.110deg for ENS0 pattern. The westward shift of the PDV wave train produces a different, more west-east oriented, North American teleconnection pattern. The lack of a strong PDV surface temperature (ST) signal in the western equatorial Pacific and the relatively strong ST signal in the subtropical regions are consistent with an atmospheric overturning circulation response that differs from the one associated with ENSO.
A regime shift in the Sun-Climate connection with the end of the Medieval Climate Anomaly.
Smirnov, D A; Breitenbach, S F M; Feulner, G; Lechleitner, F A; Prufer, K M; Baldini, J U L; Marwan, N; Kurths, J
2017-09-11
Understanding the influence of changes in solar activity on Earth's climate and distinguishing it from other forcings, such as volcanic activity, remains a major challenge for palaeoclimatology. This problem is best approached by investigating how these variables influenced past climate conditions as recorded in high precision paleoclimate archives. In particular, determining if the climate system response to these forcings changes through time is critical. Here we use the Wiener-Granger causality approach along with well-established cross-correlation analysis to investigate the causal relationship between solar activity, volcanic forcing, and climate as reflected in well-established Intertropical Convergence Zone (ITCZ) rainfall proxy records from Yok Balum Cave, southern Belize. Our analysis reveals a consistent influence of volcanic activity on regional Central American climate over the last two millennia. However, the coupling between solar variability and local climate varied with time, with a regime shift around 1000-1300 CE after which the solar-climate coupling weakened considerably.
Policy and strategy considerations for assisted migration on USDA Forest Service lands
Randy Johnson; Sandy Boyce; Leslie Brandt; Vicky Erickson; Louis Iverson; Greg Kujawa; Borys Tkacz
2013-01-01
Due to increased temperatures and shifts in precipitation patterns associated with climate change, bioclimatic zones that provide habitat for many species are expected to expand, contract, disappear, shift poleward, or move towards higher elevations (WGA 2008). Species will respond to changing climate and disturbance regimes individually, with some species moving...
Robert Keane; Rachel Loehman
2010-01-01
Climate changes are projected to profoundly influence vegetation patterns and community compositions, either directly through increased species mortality and shifts in species distributions, or indirectly through disturbance dynamics such as increased wildfire activity and extent, shifting fire regimes, and pathogenesis. High-elevation landscapes have been shown to be...
Analog-based fire regime and vegetation shifts in mountainous regions of the western US
Sean A. Parks; Lisa M. Holsinger; Carol Miller; Marc-Andre Parisien
2017-01-01
Climate change is expected to result in substantial ecological impacts across the globe. These impacts are uncertain but there is strong consensus that they will almost certainly affect fire regimes and vegetation. In this study, we evaluated how climate change may influence fire frequency, fire severity, and broad classes of vegetation in mountainous ecoregions of the...
NASA Astrophysics Data System (ADS)
Schwarz, Anja; Turner, Falko; Lauterbach, Stefan; Plessen, Birgit; Krahn, Kim J.; Glodniok, Sven; Mischke, Steffen; Stebich, Martina; Witt, Roman; Mingram, Jens; Schwalb, Antje
2017-12-01
Arid Central Asia represents a key region for understanding climate variability and interactions in the Northern Hemisphere. Patterns and mechanisms of Holocene climate change in arid Central Asia are, however, only partially understood. Multi-proxy data combining diatom, ostracod, sedimentological, geochemical and stable isotope analyses from a ca. 6000-year-old lake sediment core from Son Kol (Central Kyrgyzstan) show distinct and repeated changes in species assemblages. Diatom- and ostracod-inferred conductivity shifts between meso-euhaline and freshwater conditions suggest water balance and regime shifts. Organism-derived data are corroborated by stable isotope, mineralogical and geochemical records, underlining that Son Kol was affected by strong lake level fluctuations of several meters. The δ13Ccarb/δ18Ocarb correlation shows repeated switchovers from a closed to an open lake system. From 6000 to 3800 and 3250 to 1950 cal. yr BP, Son Kol was a closed basin lake with higher conductivities, increased nutrient availability and a water level located below the modern outflow. Son Kol became again a hydrologically open lake at 3800 and 1950 cal. yr BP. Comparisons to other local and regional paleoclimate records indicate that these regime shifts were largely controlled by changing intensity and position of the Westerlies and the Siberian Anticyclone that triggered changes in the amount of winter precipitation. A strong influence of the Westerlies ca. 5000-4400, 3800-3250 and since 1950 cal. yr BP enhanced the amount of precipitation during spring, autumn and winter, whereas cold and dry winters prevailed during phases with a strong Siberian Anticyclone and southward shifted Westerlies at ca. 6000-5000, 4400-3800 and 3250-1950 cal. yr BP. Similarities between variations in winter precipitation at Son Kol and records of the predominant NAO-mode further suggest a teleconnection between wet (dry) winter climate in Central Asia and a positive (negative) NAO-mode. Thus, this study identifies climate fluctuations as the main driver for hydrological regime shifts in Son Kol controlling physicochemical conditions and consequently causing abrupt species assemblage changes. This emphasizes the importance of multi-proxy approaches to identify triggers, thresholds and cascades of aquatic ecosystem transformations.
Geoengineering: Direct Mitigation of Climate Warming
For Frank Princiotta’s book, Global Climate Change—The Technology Challenge With the concentrations of atmospheric greenhouse gases (GHGs) rising to levels unprecedented in the current glacial epoch, the earth’s climate system appears to be rapidly shifting into a warmer regime....
Rachel A. Loehman; Jason A. Clark; Robert E. Keane
2011-01-01
Climate change is projected to profoundly influence vegetation patterns and community compositions, either directly through increased species mortality and shifts in species distributions or indirectly through disturbance dynamics such as increased wildfire activity and extent, shifting fire regimes, and pathogenesis. Mountainous landscapes have been shown to be...
Zeigler, Sara; Catlin, Daniel H.; Bomberger Brown, M.; Fraser, J.D.; Dinan, Lauren R.; Hunt, Kelsi L.; Jorgensen, Joel G.; Karpanty, Sarah M.
2017-01-01
Humans have altered nearly every natural disturbance regime on the planet through climate and land-use change, and in many instances, these processes may have interacting effects. For example, projected shifts in temperature and precipitation will likely influence disturbance regimes already affected by anthropogenic fire suppression or river impoundments. Understanding how disturbance-dependent species respond to complex and interacting environmental changes is important for conservation efforts. Using field-based demographic and movement rates, we conducted a metapopulation viability analysis for piping plovers (Charadrius melodus), a threatened disturbance-dependent species, along the Missouri and Platte rivers in the Great Plains of North America. Our aim was to better understand current and projected future metapopulation dynamics given that natural disturbances (flooding or high-flow events) have been greatly reduced by river impoundments and that climate change could further alter the disturbance regime. Although metapopulation abundance has been substantially reduced under the current suppressed disturbance regime (high-flow return interval ~ 20 yr), it could grow if the frequency of high-flow events increases as predicted under likely climate change scenarios. We found that a four-year return interval would maximize metapopulation abundance, and all subpopulations in the metapopulation would act as sources at a return interval of 15 yr or less. Regardless of disturbance frequency, the presence of even a small, stable source subpopulation buffered the metapopulation and sustained a low metapopulation extinction risk. Therefore, climate change could have positive effects in ecosystems where disturbances have been anthropogenically suppressed when climatic shifts move disturbance regimes toward more historical patterns. Furthermore, stable source populations, even if unintentionally maintained through anthropogenic activities, may be critical for the persistence of metapopulations of early-successional species under both suppressed disturbance regimes and disturbance regimes where climate change has further altered disturbance frequency or scope.
Rachel A. Loehman; Allissa Corrow; Robert E. Keane
2011-01-01
Climate changes are projected to profoundly influence vegetation patterns and community compositions, either directly through increased species mortality and shifts in species distributions, or indirectly through disturbance dynamics such as increased wildfire activity and extent, shifting fire regimes, and pathogenesis. High-elevation landscapes have been shown to be...
Effects of climate change on ecological disturbance in the northern Rockies
Loehman, Rachel A.; Bentz, Barbara J.; DeNitto, Gregg A.; Keane, Robert E.; Manning, Mary E.; Duncan, Jacob P.; Egan, Joel M.; Jackson, Marcus B.; Kegley, Sandra; Lockman, I. Blakey; Pearson, Dean E.; Powell, James A.; Shelly, Steve; Steed, Brytten E.; Zambino, Paul J.; Halofsky, Jessica E.; Peterson, David L.
2018-01-01
Disturbances alter ecosystem, community, or population structure and change elements of the biological and/or physical environment. Climate changes can alter the timing, magnitude, frequency, and duration of disturbance events, as well as the interactions of disturbances on a landscape, and climate change may already be affecting disturbance events and regimes. Interactions among disturbance regimes, such as the cooccurrence in space and time of bark beetle outbreaks and wildfires, can result in highly visible, rapidly occurring, and persistent changes in landscape composition and structure. Understanding how altered disturbance patterns and multiple disturbance interactions might result in novel and emergent landscape behaviors is critical for addressing climate change impacts and for designing land management strategies that are appropriate for future climates This chapter describes the ecology of important disturbance regimes in the Northern Rockies region, and potential shifts in these regimes as a consequence of observed and projected climate change. We summarize five disturbance types present in the Northern Rockies that are sensitive to a changing climate--wildfires, bark beetles, white pine blister rust (Cronartium ribicola), other forest diseases, and nonnative plant invasions—and provide information that can help managers anticipate how, when, where, and why climate changes may alter the characteristics of disturbance regimes.
Body size distributions signal a regime shift in a lake ecosystem
Spanbauer, Trisha; Allen, Craig R.; Angeler, David G.; Eason, Tarsha; Fritz, Sherilyn C.; Garmestani, Ahjond S.; Nash, Kirsty L.; Stone, Jeffery R.; Stow, Craig A.; Sundstrom, Shana M.
2016-01-01
Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana, USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts.
Prolonged Instability Prior to a Regime Shift | Science ...
Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia. This manuscript explores various methods of assessing the transition between alternative states in an ecological system described by a long-term high-resolution paleoecological dataset.
NASA Astrophysics Data System (ADS)
Kicklighter, D. W.; Cai, Y.; Zhuang, Q.; Parfenova, E. I.; Paltsev, S.; Sokolov, A. P.; Melillo, J. M.; Reilly, J. M.; Tchebakova, N. M.; Lu, X.
2014-12-01
Climate change will alter ecosystem metabolism and may lead to a redistribution of vegetation and changes in fire regimes in Northern Eurasia over the 21st century. Land management decisions will interact with these climate-driven changes to reshape the region's landscape. Here we present an assessment of the potential consequences of climate change on land use and associated land carbon sink activity for Northern Eurasia in the context of climate-induced vegetation shifts. Under a 'business-as-usual' scenario, climate-induced vegetation shifts allow expansion of areas devoted to food crop production (15%) and pastures (39%) over the 21st century. Under a climate stabilization scenario, climate-induced vegetation shifts permit expansion of areas devoted to cellulosic biofuel production (25%) and pastures (21%), but reduce the expansion of areas devoted to food crop production by 10%. In both climate scenarios, vegetation shifts further reduce the areas devoted to timber production by 6-8% over this same time period. Fire associated with climate-induced vegetation shifts causes the region to become more of a carbon source than if no vegetation shifts occur. Consideration of the interactions between climate-induced vegetation shifts and human activities through a modeling framework has provided clues to how humans may be able to adapt to a changing world and identified the tradeoffs, including unintended consequences, associated with proposed climate/energy policies.
A holistic view of marine regime shifts
Conversi, Alessandra; Dakos, Vasilis; Gårdmark, Anna; Ling, Scott; Folke, Carl; Mumby, Peter J.; Greene, Charles; Edwards, Martin; Blenckner, Thorsten; Casini, Michele; Pershing, Andrew; Möllmann, Christian
2015-01-01
Understanding marine regime shifts is important not only for ecology but also for developing marine management that assures the provision of ecosystem services to humanity. While regime shift theory is well developed, there is still no common understanding on drivers, mechanisms and characteristic of abrupt changes in real marine ecosystems. Based on contributions to the present theme issue, we highlight some general issues that need to be overcome for developing a more comprehensive understanding of marine ecosystem regime shifts. We find a great divide between benthic reef and pelagic ocean systems in how regime shift theory is linked to observed abrupt changes. Furthermore, we suggest that the long-lasting discussion on the prevalence of top-down trophic or bottom-up physical drivers in inducing regime shifts may be overcome by taking into consideration the synergistic interactions of multiple stressors, and the special characteristics of different ecosystem types. We present a framework for the holistic investigation of marine regime shifts that considers multiple exogenous drivers that interact with endogenous mechanisms to cause abrupt, catastrophic change. This framework takes into account the time-delayed synergies of these stressors, which erode the resilience of the ecosystem and eventually enable the crossing of ecological thresholds. Finally, considering that increased pressures in the marine environment are predicted by the current climate change assessments, in order to avoid major losses of ecosystem services, we suggest that marine management approaches should incorporate knowledge on environmental thresholds and develop tools that consider regime shift dynamics and characteristics. This grand challenge can only be achieved through a holistic view of marine ecosystem dynamics as evidenced by this theme issue.
Forest disturbance regimes are beginning to show evidence of climate-mediated shifts associated with global climate change, and these patterns will likely continue due to continuing changes in environmental conditions. Tree growth is controlled by the physiological constraints o...
Effects of climate change on ecological disturbance in the Northern Rockies Region [Chapter 8
Loehman, Rachel A.; Bentz, Barbara J.; DeNitto, Gregg A.; Keane, Robert E.; Manning, Mary E.; Duncan, Jacob P.; Egan, Joel M.; Jackson, Marcus B.; Kegley, Sandra; Lockman, I. Blakey; Pearson, Dean E.; Powell, James A.; Shelly, Steve; Steed, Brytten E.; Zambino, Paul J.
2018-01-01
This chapter describes the ecology of important disturbance regimes in the Forest Service, U.S. Department of Agriculture (USFS) Northern Region and the Greater Yellowstone Area, hereafter called the Northern Rockies region, and potential shifts in these regimes as a consequence of observed and projected climate change. The term disturbance regime describes the general temporal and spatial characteristics of a disturbance agent - insect, disease, fire, weather, even human activity - and the effects of that agent on the landscape (table 8.1). More specifically, a disturbance regime is the cumulative effect of multiple disturbance events over space and time (Keane 2013). Disturbances disrupt an ecosystem, community, or population structure and change elements of the biological environment, physical environment, or both (White and Pickett 1985). The resulting shifting mosaic of diverse ecological patterns and structures in turn affects future patterns of disturbance, in a reciprocal, linked relationship that shapes the fundamental character of landscapes and ecosystems. Disturbance creates and maintains biological diversity in the form of shifting, heterogeneous mosaics of diverse communities and habitats across a landscape (McKinney and Drake 1998), and biodiversity is generally highest when disturbance is neither too rare nor too frequent on the landscape (Grime 1973).
Ecosystem regime shifts disrupt trophic structure.
Hempson, Tessa N; Graham, Nicholas A J; MacNeil, M Aaron; Hoey, Andrew S; Wilson, Shaun K
2018-01-01
Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological resilience and economic sustainability. © 2017 by the Ecological Society of America.
Shifts of regional hydro-climatic regimes in the warmer future
NASA Astrophysics Data System (ADS)
Kim, H.; Morishita, S.
2016-12-01
It is well known that the global climate is projected to be significantly warmer than pre-industrial period, and, in 2015, it was indicated as 1-degreen increase of global mean temperature that was unprecedented previously. Human-induced additional radiative forcing causes global and regional mean temperature increase and alters energy and water partitioning in the heterogeneous pathway. Budyko proposed a conceptual equation to estimate a climate-induced dryness relating available energy and precipitation, and it has been used broadly in hydrology communities to determine regional hydro-climatic characteristics. In this study, a diagnosis framework is proposed to traced how the regional hydro-climatic regimes are shifted under the warming condition with 4 °C increase of global mean temperature. A database for Policy Decision making for Future climate change (d4PDF) based on a super-ensemble AMIP-style experiment (11,400 model years, totally) with sea surface temperature patterns extracted from six CMIP5 models is used to estimate the probability distribution of the regime shifts maximizing signal-to-noise. It was found that the global future hydro-climate condition shifts slightly to more humid condition comparing to the historical condition, since the increase of precipitation is greater and the increate of net radiation, globally. Very humid regions including tropics and semi-arid regions tend to expand, and Semi-humid and arid-regions tend to shrink. Although the change of global mean state between historical and future climate is not considerable, temporal variability under the warming climate is amplified significantly, and it induces more frequent occurrence of once-in-a-century level drought over large terrestrial regions including Africa, South America, East and Central Asia, Australia, and United States. This analysis will be extended up to the availability (expected as October 2016) of a similar database being produced under the Half a degree Additional warming, Projections, Prognosis and Impacts (HAPPI) project following the Paris Agreement, 2015, to aim to limit the increase in global average temperature to 1.5°C above pre-industrial levels.
K. L. Shive; P. Z. Fule; C. H. Sieg; B. A. Strom; M. E. Hunter
2014-01-01
Climate change effects on forested ecosystems worldwide include increases in drought-related mortality, changes to disturbance regimes and shifts in species distributions. Such climate-induced changes will alter the outcomes of current management strategies, complicating the selection of appropriate strategies to promote forest resilience. We modelled forest growth in...
Litzow, Michael A; Mueter, Franz J; Hobday, Alistair J
2014-01-01
In areas of the North Pacific that are largely free of overfishing, climate regime shifts - abrupt changes in modes of low-frequency climate variability - are seen as the dominant drivers of decadal-scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific-North American Pattern (PNA), North Pacific Index (NPI), El Niño-Southern Oscillation (ENSO)] to explain decadal-scale (1965-2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1-2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1-2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1-2 satisfied assumptions of independent residuals and out-performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology PC1-2 suggest plausible mechanistic explanations for these modeling results. Our findings suggest that, even in the absence of overfishing and in areas strongly influenced by internal climate variability, climate regime shift effects can only be understood in the context of other ecosystem perturbations. © 2013 John Wiley & Sons Ltd.
Ecosystem thresholds in Lake Kälksjön, Sweden, in response to rapid climate cooling 8200 years ago
NASA Astrophysics Data System (ADS)
Randsalu Wendrup, Linda; Conley, Daniel J.; Hammarlund, Dan; Snowball, Ian; Carstensen, Jacob; Fritz, Sherilyn C.
2010-05-01
Commonly, ecosystems are thought to show a smooth response in relation to gradually changing conditions, shifting over long periods of time from one state to another, thus reflecting the continuum of change along environmental gradients for each set of conditions. The theoretical concept that ecosystems can experience regime shifts and shift abruptly from one state to another, producing changes in dominance of organisms and overall ecosystem behaviour has, however, existed for more than 30 years. The theory has been further developed and it has been demonstrated, in a number of different terrestrial, freshwater and marine systems, that ecosystems stressed by human or climate perturbations can undergo drastic changes, first reaching an ecological threshold and then switching abruptly to an alternative state. The study of regime shifts in lakes as a result of climate change is complicated because lake biota and processes depend not only on regional climate changes but also on changes in the lake catchment and processes within the lake. Many factors in a lake will respond simultaneously and differently to the effects of climate change, resulting in complex synergy within the aquatic environment. Nevertheless we want to bring together concepts generated in contemporary ecological studies to study and test hypotheses regarding sudden mode shifts and ecological reorganisations in lakes using paleoecological methods, using diatom and numerical analyses as the main analytical tools. We are investigating how lakes respond to climate, during periods of both cooling and warming, identifying thresholds at which regime shifts occur and trying to develop numerical methods to test for regime shifts in paleoecological data. Here we present the preliminary results from a study of the ecosystem response to the "8.2 ka cold event" in Lake Kälksjön in west central Sweden. The lake is annually laminated (varved) and a series of nine radiocarbon measurements obtained at increments of 50 years have been used to wiggle match the sediments to the tree-ring derived radiocarbon calibration curve (Snowball et al., in press). Snowball et al. (in press) used the wiggle matching, organic carbon measurements, mineral magnetic parameters and XRF data and reconstructed a distinct period of enhanced erosion in the catchment from 8066±25 to 7920±25 cal. yr BP. Their results suggest that an abrupt onset of winter precipitation in west-central Sweden started at least 50 years after the onset of the "8.2 kyr cold event" as defined by oxygen isotope data from Greenland. The lake has been sampled for diatom analysis at increments of 10 years over 500 years covering the 8.2 event. The wiggle matched chronology and presence of varves allows for a high resolution time constrained diatom analysis which we hope will reveal the response of the ecosystem to the rapid cooling and also allow us to work on developing and testing numerical methods for detecting and analysing regime shifts. A preliminary low resolution diatom study shows that the diatom flora displays a benthic response to the climate cooling. It also shows that the diatoms seem to react earlier than the previously measured parameters, suggesting that the diatoms and the lake ecosystem are affected by the rapid cooling rather immediately, for example due to changes in ice cover duration, while increased winter precipitation affects the ecosystem at a later stage.
MacDonald, Lauren A; Farquharson, Nicole; Merritt, Gillian; Fooks, Sam; Medeiros, Andrew S; Hall, Roland I; Wolfe, Brent B; Macrae, Merrin L; Sweetman, Jon N
2015-01-01
Shallow lakes are dominant features in subarctic and Arctic landscapes and are responsive to multiple stressors, which can lead to rapid changes in limnological regimes with consequences for aquatic resources. We address this theme in the coastal tundra region of Wapusk National Park, western Hudson Bay Lowlands (Canada), where climate has warmed during the past century and the Lesser Snow Goose (LSG; Chen caerulescens caerulescens) population has grown rapidly during the past ∽40 years. Integration of limnological and paleolimnological analyses documents profound responses of productivity, nutrient cycling, and aquatic habitat to warming at three ponds (“WAP 12”, “WAP 20”, and “WAP 21″), and to LSG disturbance at the two ponds located in an active nesting area (WAP 20, WAP 21). Based on multiparameter analysis of 210Pb-dated sediment records from all three ponds, a regime shift occurred between 1875 and 1900 CE marked by a transition from low productivity, turbid, and nutrient-poor conditions of the Little Ice Age to conditions of higher productivity, lower nitrogen availability, and the development of benthic biofilm habitat as a result of climate warming. Beginning in the mid-1970s, sediment records from WAP 20 and WAP 21 reveal a second regime shift characterized by accelerated productivity and increased nitrogen availability. Coupled with 3 years of limnological data, results suggest that increased productivity at WAP 20 and WAP 21 led to atmospheric CO2 invasion to meet algal photosynthetic demand. This limnological regime shift is attributed to an increase in the supply of catchment-derived nutrients from the arrival of LSG and their subsequent disturbance to the landscape. Collectively, findings discriminate the consequences of warming and LSG disturbance on tundra ponds from which we identify a suite of sensitive limnological and paleolimnological measures that can be utilized to inform aquatic ecosystem monitoring. PMID:25750718
MacDonald, Lauren A; Farquharson, Nicole; Merritt, Gillian; Fooks, Sam; Medeiros, Andrew S; Hall, Roland I; Wolfe, Brent B; Macrae, Merrin L; Sweetman, Jon N
2015-02-01
Shallow lakes are dominant features in subarctic and Arctic landscapes and are responsive to multiple stressors, which can lead to rapid changes in limnological regimes with consequences for aquatic resources. We address this theme in the coastal tundra region of Wapusk National Park, western Hudson Bay Lowlands (Canada), where climate has warmed during the past century and the Lesser Snow Goose (LSG; Chen caerulescens caerulescens) population has grown rapidly during the past ∽40 years. Integration of limnological and paleolimnological analyses documents profound responses of productivity, nutrient cycling, and aquatic habitat to warming at three ponds ("WAP 12", "WAP 20", and "WAP 21″), and to LSG disturbance at the two ponds located in an active nesting area (WAP 20, WAP 21). Based on multiparameter analysis of (210)Pb-dated sediment records from all three ponds, a regime shift occurred between 1875 and 1900 CE marked by a transition from low productivity, turbid, and nutrient-poor conditions of the Little Ice Age to conditions of higher productivity, lower nitrogen availability, and the development of benthic biofilm habitat as a result of climate warming. Beginning in the mid-1970s, sediment records from WAP 20 and WAP 21 reveal a second regime shift characterized by accelerated productivity and increased nitrogen availability. Coupled with 3 years of limnological data, results suggest that increased productivity at WAP 20 and WAP 21 led to atmospheric CO2 invasion to meet algal photosynthetic demand. This limnological regime shift is attributed to an increase in the supply of catchment-derived nutrients from the arrival of LSG and their subsequent disturbance to the landscape. Collectively, findings discriminate the consequences of warming and LSG disturbance on tundra ponds from which we identify a suite of sensitive limnological and paleolimnological measures that can be utilized to inform aquatic ecosystem monitoring.
Tributaries affect the thermal response of lakes to climate change
NASA Astrophysics Data System (ADS)
Råman Vinnå, Love; Wüest, Alfred; Zappa, Massimiliano; Fink, Gabriel; Bouffard, Damien
2018-01-01
Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC), lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.
Transformative environmental governance
Chaffin, Brian C.; Garmestani, Ahjond S.; Gunderson, Lance H.; Harm Benson, Melinda; Angeler, David G.; Arnold, Craig Anthony (Tony); Cosens, Barbara; Kundis Craig, Robin; Ruhl, J.B.; Allen, Craig R.
2016-01-01
Transformative governance is an approach to environmental governance that has the capacity to respond to, manage, and trigger regime shifts in coupled social-ecological systems (SESs) at multiple scales. The goal of transformative governance is to actively shift degraded SESs to alternative, more desirable, or more functional regimes by altering the structures and processes that define the system. Transformative governance is rooted in ecological theories to explain cross-scale dynamics in complex systems, as well as social theories of change, innovation, and technological transformation. Similar to adaptive governance, transformative governance involves a broad set of governance components, but requires additional capacity to foster new social-ecological regimes including increased risk tolerance, significant systemic investment, and restructured economies and power relations. Transformative governance has the potential to actively respond to regime shifts triggered by climate change, and thus future research should focus on identifying system drivers and leading indicators associated with social-ecological thresholds.
Divergence and diversification in North American Psoraleeae (Fabaceae) due to climate change
Egan, Ashley N; Crandall, Keith A
2008-01-01
Background Past studies in the legume family (Fabaceae) have uncovered several evolutionary trends including differential mutation and diversification rates across varying taxonomic levels. The legume tribe Psoraleeae is shown herein to exemplify these trends at the generic and species levels. This group includes a sizable diversification within North America dated at approximately 6.3 million years ago with skewed species distribution to the most recently derived genus, Pediomelum, suggesting a diversification rate shift. We estimate divergence dates of North American (NAm) Psoraleeae using Bayesian MCMC sampling in BEAST based on eight DNA regions (ITS, waxy, matK, trnD-trnT, trnL-trnF, trnK, trnS-trnG, and rpoB-trnC). We also test the hypothesis of a diversification rate shift within NAm Psoraleeae using topological and temporal methods. We investigate the impact of climate change on diversification in this group by (1) testing the hypothesis that a shift from mesic to xeric habitats acted as a key innovation and (2) investigating diversification rate shifts along geologic time, discussing the impact of Quaternary climate oscillations on diversification. Results NAm Psoraleeae represents a recent, rapid radiation with several genera originating during the Pleistocene, 1 to 2 million years ago. A shift in diversification rate is supported by both methods with a 2.67-fold increase suggested around 2 million years ago followed by a 8.73-fold decrease 440,000 years ago. The hypothesis that a climate regime shift from mesic to xeric habitats drove increased diversification in affected taxa was not supported. Timing of the diversification rate increase supports the hypothesis that glaciation-induced climate changes during the Quaternary influenced diversification of the group. Nonrandom spatial diversification also exists, with greater species richness in the American Southwest. Conclusion This study outlines NAm Psoraleeae as a model example of a recent, rapid radiation. Diversification rate shifts in NAm Psoraleeae are not due to current climate regimes as represented by habitat, but instead to past global climate change resulting from Quaternary glaciations. NAm Psoraleeae diversification is a good example of how earthly dynamics including global climate change and topography work together to shape biodiversity. PMID:19091055
Microclimate predicts within-season distribution dynamics of montane forest birds
Sarah J.K. Frey; Adam S. Hadley; Matthew G. Betts; Mark Robertson
2016-01-01
Aim: Climate changes are anticipated to have pervasive negative effects on biodiversity and are expected to necessitate widespread range shifts or contractions. Such projections are based upon the assumptions that (1) species respond primarily to broad-scale climatic regimes, or (2) that variation in climate at fine spatial scales is less relevant at coarse spatial...
Linking Wildfire and Climate as Drivers of Plant Species and Community-level Change
NASA Astrophysics Data System (ADS)
Newingham, B. A.; Hudak, A. T.; Bright, B. C.
2015-12-01
Plant species distributions and community shifts after fire are affected by burn severity, elevation, aspect, and climate. However, little empirical data exists on long-term (decadal) recovery after fire across these interacting factors, limiting understanding of fire regime characteristics and climate in post-fire community trajectories. We examined plant species and community responses a decade after fire across five fires in ponderosa pine, dry mixed coniferous, and moist mixed coniferous forests across the western USA. Using field data, we determined changes in plant communities one and ten years post-fire across gradients of burn severity, elevation, and aspect. Existing published work has shown that plant species distributions can be accurately predicted from physiologically relevant climate variables using non-parametric Random Forests models; such models have also been linked to projected climate profiles in 2030, 2060, and 2090 generated from three commonly used general circulation models (GCMs). We explore the possibility that fire and climate are coupled drivers affecting plant species distributions. Climate change may not manifest as a slow shift in plant species distributions, but as sudden, localized events tied to changing fire and other disturbance regimes.
Bonnie. J.E. Myers; C. Andrew Dolloff; Andrew L. Rypel
2014-01-01
Many Appalachian streams historically dominated by Brook Trout Salvelinus fontinalis have experienced shifts towards fish communities dominated by Rainbow Trout Onchorhynchus mykiss. We used empirical estimates of biomass and secondary production of trout conspecifics to evaluate species success under varied thermal regimes. Trout...
Al-Chokhachy, Robert K.; Sepulveda, Adam; Ray, Andrew M.; Thoma, David P.; Tercek, Michael T.
2017-01-01
Despite the importance of hydrologic regimes to the phenology, demography, and abundance of fishes such as salmonids, there have been surprisingly few syntheses that holistically assess regional, species-specific trends in hydrologic regimes within a framework of climate change. Here, we consider hydrologic regimes within the Greater Yellowstone Area in the Rocky Mountains of western North America to evaluate changes in hydrologic metrics anticipated to affect salmonids, a group of fishes with high regional ecological and socioeconomic value. Our analyses assessed trends across different sites and time periods (1930–, 1950–, and 1970–2015) as means to evaluate spatial and temporal shifts. Consistent patterns emerged from our analyses indicating substantial shifts to (1) earlier peak discharge events; (2) reductions of summer minimum streamflows; (3) declines in the duration of river ice; and (4) decreases in total volume of water. We found accelerated trends in hydrologic change for the 1970–2015 period, with an average peak discharge 7.5 days earlier, 27.5% decline in summer minimum streamflows, and a 15.6% decline in the annual total volume of water (1 October–September 30) across sites. We did observe considerable variability in magnitude of change across sites, suggesting different levels of vulnerability to a changing climate. Our analyses provide an iterative means for assessing climate predictions and an important step in identifying the climate resilience of landscapes.
NASA Astrophysics Data System (ADS)
Baker, Patrick; Mooney, Scott; Allen, Kathryn; Willersdorf, Timothy
2015-04-01
Fire is the dominant natural disturbance in southeastern Australia. For millennia it has been the driving force shaping terrestrial ecosystems in the region -- simultaneously killing vegetation and initiating regeneration across whole landscapes. Fire regimes across the region are driven by several factors including climate, vegetation, and ignition sources. Humans have been a significant contributing factor to past and present fire regimes. Prior to European settlement in the late 1700s, Aboriginal Australians used frequent, low-intensity fires to manage vegetation across much of the landscape. European settlement led to the displacement of Aboriginal communities and a shift to active fire suppression and control. This changing approach to fire management is widely believed to have initiated a fundamental shift towards extreme, high-intensity fire events as fuel loads increased. In addition, during the 20th Century prolonged periods of warm, dry conditions have occurred with greater frequency and intensity. The relative importance of climate and fire management practices on contemporary fire regimes is vigorously debated in Australia and is directly relevant to land management policies and their implementation. To put the current fire regime into historical context, we used a multi-proxy approach combining palaeo-charcoal and tree-ring analyses to assess how fire regimes have changed over the last 3000 years in the Snowy Mountains region of southeastern Australia. We found almost no evidence of high-intensity fires in the 3000 years that preceded the 20th Century. However, in the mid-20th Century there is a sudden and dramatic increase in the presence of charcoal and the pulsed establishment of trees across the landscape, suggesting a recent shift from low-intensity fires with minimal charcoal signatures to moderate- to high-intensity fires with substantial charcoal inputs. Importantly, the tree-ring data demonstrate that most of these fires were not stand-replacing and led to the establishment of multiple-age cohorts. While there is a clear shift in the fire regime in the 20th Century, the intensification of fire occurs nearly 150 years after European settlement in this area and has led to the establishment of complex, multi-aged forests across the landscape, suggesting an important interaction between fire management practices associated with European settlement and changing climatic conditions.
Evidence for Pacific Climate Regime Shifts as Preserved in a Southeast Alaska Ice Core
NASA Astrophysics Data System (ADS)
Porter, S. E.; Mosley-Thompson, E. S.; Thompson, L. G.
2012-12-01
Climate modes emanating from the Pacific sector have far-reaching effects across the globe. The El Niño/Southern Oscillation (ENSO) reflects anomalies in the sea surface temperature and pressure fields over the tropical Pacific, but climate implications from these anomalies extend to monsoon regions of Asia to North America and even Europe. The Pacific Decadal Oscillation (PDO) explains sea surface temperature anomalies in the North Pacific sector and influences the long-term behavior of the ENSO cycle as well as the storm track over North America expressed as the Pacific/North American Pattern (PNA). The impacts of both climate change and drastically reduced Arctic sea ice cover on these teleconnection patterns are poorly understood, and with little knowledge about their past behavior, predicting the changes in these climate modes is extremely difficult. An ice core from the col between Mt. Bona and Mt. Churchill in southeast Alaska provides an opportunity to examine the PDO prior to both the start of instrumental records and the more recent effects of anthropogenic climate change. The Bona-Churchill records of isotopic, dust, and chemical composition are compared to nearby meteorological station and 20th century reanalysis data to evaluate their strength as climate recorders. Climate indices such as the PDO and PNA, along with indices created to describe the strength and position of the Aleutian Low and Siberian High, are incorporated into the analysis to determine if proxy relationships are altered under different climate regimes. Satellite records of sea ice extent within the Sea of Okhotsk and the Bering Sea, when compared to the Bona-Churchill data, show a distinct change in behavior in the mid-1990s possibly in response to the temporary negative shift in the PDO. This behavioral shift is explored and placed into a broader climate context to determine whether similar events have occurred in the past or if this shift is unique to a rapidly warming Arctic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higuera, P E; Brubaker, L B; Anderson, P M
We examine direct and indirect impacts of millennial-scale climatic change on fire regimes in the southcentral Brooks Range, Alaska, using four lake-sediment records and existing paleoclimate interpretations. New techniques are introduced to identify charcoal peaks semi-objectively and detect statistical differences in fire regimes. Peaks in charcoal accumulation rates (CHARs) provide estimates of fire return intervals (FRIs) which are compared between vegetation zones described by fossil pollen and stomata. Climatic warming from ca 15-9 ka BP (calendar years before CE 1950) coincides with shifts in vegetation from herb tundra to shrub tundra to deciduous woodlands, all novel species assemblages relative tomore » modern vegetation. Two sites cover this period and show increased CHARs and decreased FRIs with the transition from herb to shrub tundra ca 13.3-14.3 ka BP. Short FRIs in the Betula-dominated shrub tundra (mean [m] FRI 144 yr; 95% CI 119-170) primarily reflect the effects of flammable, continuous fuels on the fire regime. FRIs increased significantly with the transition to Populus-dominated deciduous woodlands ca 10.5 ka BP (mFRI 251 yr [158-352]), despite evidence of warmer- and drier-than-present summers. We attribute reduced fire activity under these conditions to low flammability of deciduous fuels. Three sites record the mid to late Holocene, when cooler and moister conditions allowed Picea glauca forest-tundra and P. mariana boreal forests to establish ca 8 and 5.5 ka BP. Forest-tundra FRIs did not differ significantly from the previous period (mFRIs range from 131-238 yr), but FRIs decreased with the transition to boreal forest (mFRI 145 yr [129-163]). Overall, fire-regime shifts in the study area showed greater correspondence with vegetation characteristics than with inferred climate, and we conclude that vegetation mediated the impacts of millennial-scale climatic change on fire regimes by modifying landscape flammability. Our findings emphasize the importance of biological-physical feedbacks in determining the response of arctic and subarctic ecosystems to past, and by inference, future climatic change.« less
Water level changes affect carbon turnover and microbial community composition in lake sediments.
Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin
2016-05-01
Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. © FEMS 2016.
Water level changes affect carbon turnover and microbial community composition in lake sediments
Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; E. Kayler, Zachary; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin
2016-01-01
Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802
Cumming, Brian F.; Laird, Kathleen R.; Bennett, Joseph R.; Smol, John P.; Salomon, Anne K.
2002-01-01
Inferences of past climatic conditions from a sedimentary record from Big Lake, British Columbia, Canada, over the past 5,500 years show strong millennial-scale patterns, which oscillate between periods of wet and drier climatic conditions. Higher frequency decadal- to centennial-scale fluctuations also occur within the dominant millennial-scale patterns. These changes in climatic conditions are based on estimates of changes in lake depth and salinity inferred from diatom assemblages in a well dated sediment core. After periods of relative stability, abrupt shifts in diatom assemblages and inferred climatic conditions occur approximately every 1,220 years. The correspondence of these shifts to millennial-scale variations in records of glacial expansion/recession and ice-rafting events in the Atlantic suggest that abrupt millennial-scale shifts are important to understanding climatic variability in North America during the mid- to late Holocene. Unfortunately, the spatial patterns and mechanisms behind these large and abrupt swings are poorly understood. Similar abrupt and prolonged changes in climatic conditions today could pose major societal challenges for many regions. PMID:12461174
Cumming, Brian F; Laird, Kathleen R; Bennett, Joseph R; Smol, John P; Salomon, Anne K
2002-12-10
Inferences of past climatic conditions from a sedimentary record from Big Lake, British Columbia, Canada, over the past 5,500 years show strong millennial-scale patterns, which oscillate between periods of wet and drier climatic conditions. Higher frequency decadal- to centennial-scale fluctuations also occur within the dominant millennial-scale patterns. These changes in climatic conditions are based on estimates of changes in lake depth and salinity inferred from diatom assemblages in a well dated sediment core. After periods of relative stability, abrupt shifts in diatom assemblages and inferred climatic conditions occur approximately every 1,220 years. The correspondence of these shifts to millennial-scale variations in records of glacial expansionrecession and ice-rafting events in the Atlantic suggest that abrupt millennial-scale shifts are important to understanding climatic variability in North America during the mid- to late Holocene. Unfortunately, the spatial patterns and mechanisms behind these large and abrupt swings are poorly understood. Similar abrupt and prolonged changes in climatic conditions today could pose major societal challenges for many regions.
Climate and vegetational regime shifts in the late Paleozoic ice age earth.
DiMichele, W A; Montañez, I P; Poulsen, C J; Tabor, N J
2009-03-01
The late Paleozoic earth experienced alternation between glacial and non-glacial climates at multiple temporal scales, accompanied by atmospheric CO2 fluctuations and global warming intervals, often attended by significant vegetational changes in equatorial latitudes of Pangaea. We assess the nature of climate-vegetation interaction during two time intervals: middle-late Pennsylvanian transition and Pennsylvanian-Permian transition, each marked by tropical warming and drying. In case study 1, there is a catastrophic intra-biomic reorganization of dominance and diversity in wetland, evergreen vegetation growing under humid climates. This represents a threshold-type change, possibly a regime shift to an alternative stable state. Case study 2 is an inter-biome dominance change in western and central Pangaea from humid wetland and seasonally dry to semi-arid vegetation. Shifts between these vegetation types had been occurring in Euramerican portions of the equatorial region throughout the late middle and late Pennsylvanian, the drier vegetation reaching persistent dominance by Early Permian. The oscillatory transition between humid and seasonally dry vegetation appears to demonstrate a threshold-like behavior but probably not repeated transitions between alternative stable states. Rather, changes in dominance in lowland equatorial regions were driven by long-term, repetitive climatic oscillations, occurring with increasing intensity, within overall shift to seasonal dryness through time. In neither case study are there clear biotic or abiotic warning signs of looming changes in vegetational composition or geographic distribution, nor is it clear that there are specific, absolute values or rates of environmental change in temperature, rainfall distribution and amount, or atmospheric composition, approach to which might indicate proximity to a terrestrial biotic-change threshold.
Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes
Yongguang Zhang; M. Susan Moran; Mark A. Nearing; Guillermo E. Ponce Campos; Alfredo R. Huete; Anthony R. Buda; David D. Bosch; Stacey A. Gunter; Stanley G. Kitchen; W. Henry McNab; Jack A. Morgan; Mitchel P. McClaran; Diane S. Montoya; Debra P.C. Peters; Patrick J. Starks
2013-01-01
Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more heavy rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated the effects of these climatic conditions on aboveground net primary...
Spatiotemporal Trends in late-Holocene Fire Regimes in Arctic and Boreal Alaska
NASA Astrophysics Data System (ADS)
Hoecker, T. J.; Higuera, P. E.; Hu, F.; Kelly, R.
2015-12-01
Alaskan arctic and boreal ecosystems are of global importance owing to their sensitivity and feedbacks to directional climate change. Wildfires are a primary driver of boreal carbon balance, and altered fire regimes may significantly impact global climate through the release of stored carbon and changes to surface albedo. Paleoecological records provide a window to how these systems respond to change by revealing climatic and disturbance variability throughout the Holocene. These long-term records highlight the sensitivity of fire regimes to climate and vegetation change, including responses to the relatively warm Medieval Climate Anomaly (MCA), and the relatively cool Little Ice Age (LIA). Over millennial timescales, boreal forests and arctic tundra have been resilient to climate change, but continued directional climate change may result in novel vegetation compositions and fire regimes, with potentially significant implications for global climate. Here we present a spatiotemporal synthesis of 22 published sediment-charcoal records from three Alaskan ecoregions. We add to this network eight records collected in June 2015 from an additional ecoregion. Variability in fire return intervals (FRIs) was quantified within and among ecoregions and climatic periods spanning the past 2 millennia, based on a peak analysis representing local fire events. Preliminary results suggest that fire regimes were responsive to centennial-scale climatic shifts, including the MCA and LIA, but the degree of sensitivity varies by ecoregion. Over the past 2000 years, FRIs were shortest during the MCA, indicating the potential for climate warming to promote high rates of burning. FRIs in tundra regions of northwestern Alaska and in interior boreal forests were 20% shorter during the MCA than during the LIA, and 25% shorter in boreal forest in the south-central Brooks Range. Burning was likely promoted during the warmer, drier MCA through lower fuel moisture. Quantifying fire-regime response to climate forcing across multiple ecoregions helps reveal the mechanisms that connect fire and climate in Alaskan ecosystems.
Ecological Network Indicators of Ecosystem Status and Change in the Baltic Sea
Tomczak, Maciej T.; Heymans, Johanna J.; Yletyinen, Johanna; Niiranen, Susa; Otto, Saskia A.; Blenckner, Thorsten
2013-01-01
Several marine ecosystems under anthropogenic pressure have experienced shifts from one ecological state to another. In the central Baltic Sea, the regime shift of the 1980s has been associated with food-web reorganization and redirection of energy flow pathways. These long-term dynamics from 1974 to 2006 have been simulated here using a food-web model forced by climate and fishing. Ecological network analysis was performed to calculate indices of ecosystem change. The model replicated the regime shift. The analyses of indicators suggested that the system’s resilience was higher prior to 1988 and lower thereafter. The ecosystem topology also changed from a web-like structure to a linearized food-web. PMID:24116045
Long-term demographic trends in a fire-suppressed mixed-conifer forest
Carrie R. Levine; Flora Krivak-Tetley; Natalie S. van Doorn; Jolie-Anne S. Ansley; John J. Battles
2016-01-01
In the western United States, forests are experiencing novel environmental conditions related to a changing climate and a suppression of the historical fire regime. Mixed-conifer forests, considered resilient to disturbance due to their heterogeneity in structure and composition, appear to be shifting to a more homogeneous state, but the timescale of these shifts is...
Changing skewness: an early warning signal of regime shifts in ecosystems.
Guttal, Vishwesha; Jayaprakash, Ciriyam
2008-05-01
Empirical evidence for large-scale abrupt changes in ecosystems such as lakes and vegetation of semi-arid regions is growing. Such changes, called regime shifts, can lead to degradation of ecological services. We study simple ecological models that show a catastrophic transition as a control parameter is varied and propose a novel early warning signal that exploits two ubiquitous features of ecological systems: nonlinearity and large external fluctuations. Either reduced resilience or increased external fluctuations can tip ecosystems to an alternative stable state. It is shown that changes in asymmetry in the distribution of time series data, quantified by changing skewness, is a model-independent and reliable early warning signal for both routes to regime shifts. Furthermore, using model simulations that mimic field measurements and a simple analysis of real data from abrupt climate change in the Sahara, we study the feasibility of skewness calculations using data available from routine monitoring.
Tautenhahn, Susanne; Lichstein, Jeremy W; Jung, Martin; Kattge, Jens; Bohlman, Stephanie A; Heilmeier, Hermann; Prokushkin, Anatoly; Kahl, Anja; Wirth, Christian
2016-06-01
Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods. The likely fire-induced shift toward greater deciduous hardwood cover may affect climate-vegetation feedbacks via surface albedo, Bowen ratio, and carbon cycling. © 2015 John Wiley & Sons Ltd.
Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America.
Gennaretti, Fabio; Arseneault, Dominique; Nicault, Antoine; Perreault, Luc; Bégin, Yves
2014-07-15
Dated records of ice-cap growth from Arctic Canada recently suggested that a succession of strong volcanic eruptions forced an abrupt onset of the Little Ice Age between A.D. 1275 and 1300 [Miller GH, et al. (2012) Geophys Res Lett 39(2):L02708, 10.1029/2011GL050168]. Although this idea is supported by simulation experiments with general circulation models, additional support from field data are limited. In particular, the Northern Hemisphere network of temperature-sensitive millennial tree-ring chronologies, which principally comprises Eurasian sites, suggests that the strongest eruptions only caused cooling episodes lasting less than about 10 y. Here we present a new network of millennial tree-ring chronologies from the taiga of northeastern North America, which fills a wide gap in the network of the Northern Hemisphere's chronologies suitable for temperature reconstructions and supports the hypothesis that volcanoes triggered both the onset and the coldest episode of the Little Ice Age. Following the well-expressed Medieval Climate Anomaly (approximately A.D. 910-1257), which comprised the warmest decades of the last millennium, our tree-ring-based temperature reconstruction displays an abrupt regime shift toward lower average summer temperatures precisely coinciding with a series of 13th century eruptions centered around the 1257 Samalas event and closely preceding ice-cap expansion in Arctic Canada. Furthermore, the successive 1809 (unknown volcano) and 1815 (Tambora) eruptions triggered a subsequent shift to the coldest 40-y period of the last 1100 y. These results confirm that series of large eruptions may cause region-specific regime shifts in the climate system and that the climate of northeastern North America is especially sensitive to volcanic forcing.
Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America
Gennaretti, Fabio; Arseneault, Dominique; Nicault, Antoine; Perreault, Luc; Bégin, Yves
2014-01-01
Dated records of ice-cap growth from Arctic Canada recently suggested that a succession of strong volcanic eruptions forced an abrupt onset of the Little Ice Age between A.D. 1275 and 1300 [Miller GH, et al. (2012) Geophys Res Lett 39(2):L02708, 10.1029/2011GL050168]. Although this idea is supported by simulation experiments with general circulation models, additional support from field data are limited. In particular, the Northern Hemisphere network of temperature-sensitive millennial tree-ring chronologies, which principally comprises Eurasian sites, suggests that the strongest eruptions only caused cooling episodes lasting less than about 10 y. Here we present a new network of millennial tree-ring chronologies from the taiga of northeastern North America, which fills a wide gap in the network of the Northern Hemisphere's chronologies suitable for temperature reconstructions and supports the hypothesis that volcanoes triggered both the onset and the coldest episode of the Little Ice Age. Following the well-expressed Medieval Climate Anomaly (approximately A.D. 910–1257), which comprised the warmest decades of the last millennium, our tree-ring-based temperature reconstruction displays an abrupt regime shift toward lower average summer temperatures precisely coinciding with a series of 13th century eruptions centered around the 1257 Samalas event and closely preceding ice-cap expansion in Arctic Canada. Furthermore, the successive 1809 (unknown volcano) and 1815 (Tambora) eruptions triggered a subsequent shift to the coldest 40-y period of the last 1100 y. These results confirm that series of large eruptions may cause region-specific regime shifts in the climate system and that the climate of northeastern North America is especially sensitive to volcanic forcing. PMID:24982132
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saltzman, B.; Maasch, K.A.; Verbitsky, M.Ya.
1993-06-07
The authors look at the impact of an antropogenic step increase in atmospheric carbon dioxide content on a dynamic model designed to look at long-term variations in climate. The model is one developed by Saltzman and Maasch, and Saltzman and Verbitsky, where four slow responding variables are considered to carry the climatic change information over the past 5 My. One of these variables is the carbon dioxide concentration in the atmosphere. If this step increase is maintained over a long period of time, what impact does this have of the present unstable regime where climate oscillates through ice age periodsmore » Indications are that the climate shifts to a regime where the oscillations are much weaker than those which prevailed during the Pleistocene.« less
Gaseous mercury fluxes in peatlands and the potential influence of climate change
Kristine M. Haynes; Evan S. Kane; Lynette Potvin; Erik A. Lilleskov; Randall K. Kolka; Carl P.J. Mitchell
2017-01-01
Climate change has the potential to significantly impact the stability of large stocks of mercury (Hg) stored in peatland systems due to increasing temperatures, altered water table regimes and subsequent shifts in vascular plant communities. However, the Hg exchange dynamics between the atmosphere and peatlands are not well understood. At the PEATcosm Mesocosm...
NASA Astrophysics Data System (ADS)
Kawamura, Ryuichi; Aruga, Hiromitsu; Matsuura, Tomonori; Iizuka, Satoshi
Using the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data aided by a coupled ocean-atmosphere model, we investigated two different regimes of anomalous Walker circulation system over the Pacific and Indian Oceans before and after a climate shift, which occurred in the late 1970s. During the period before the climate shift, an upper-level velocity potential anomaly systematically moves eastward from the tropical Indian Ocean to the warm pool region of the western Pacific during the growth phase of El Niño-Southern Oscillation (ENSO). In the meantime, the activities of South Asian and Australian summer monsoon systems are directly affected by the evolution of the anomalous Walker circulation. During the period after the climate shift, in contrast, an upperlevel velocity potential anomaly in the vicinity of the Philippine Sea and maritime continent is observed to expand westward into the northern Indian Ocean and South Asia during the decay phase of ENSO. This feature is identified with a major precursory signal of an anomalous South Asian summer monsoon in the preceding spring. The model captures a systematic eastward propagation similar to that observed prior to the late 1970s, but fails to reproduce the westward extension of the velocity potential anomaly observed to prevail after the late 1970s. The model results suggest that the cross-basin connection between the two oceans is a prerequisite for the turnabout of ENSO prior to the climate shift, in terms of the occurrence of westerly wind bursts.
Seasonal changes in the human alteration of fire regimes beyond the climate forcing
NASA Astrophysics Data System (ADS)
Fréjaville, Thibaut; Curt, Thomas
2017-03-01
Human activities have altered fire regimes for millennia by suppressing or enhancing natural fire activity. However, whether these anthropogenic pressures on fire activity have exceeded and will surpass climate forcing still remains uncertain. We tested if, how and the extent to which seasonal fire activity in southern France has recently (1976-2009) deviated from climate-expected trends. The latter were simulated using an ensemble of detrended fire-climate models. We found both seasonal and regional contrasts in climatic effects through a mixture of drought-driven and fuel-limited fire regimes. Dry contemporary conditions chiefly drove fire frequency and burned area, although higher fire activity was related to wetter conditions in the last three years. Surprisingly, the relative importance of preceding wet conditions was higher in winter than in summer, illustrating the strong potential dependency of regional fire-climate relationships on the human use and control of fires. In the Mediterranean mountains, warm winters and springs favour extensive fires in the following dry summer. These results highlight that increasing dryness with climate change could have antagonistic effects on fire regime by leading to larger fires in summer (moisture-limited), but lower fire activity in winter (fuel-limited fire regime). Furthermore, fire trends have significantly diverged from climatic expectations, with a strong negative alteration in fire activity in the Mediterranean lowlands and the summer burned area in the mountains. In contrast, alteration of winter fire frequency in the Mediterranean and Temperate mountains has shifted from positive to negative (or null) trends during the mid-1990s, a period when fire suppression policy underwent major revisions. Our findings demonstrate that changes in land-use and fire suppression policy have probably exceeded the strength of climate change effects on changing fire regime in southern Europe, making regional predictions of future fires highly challenging.
NASA Astrophysics Data System (ADS)
Trouet, V.; Taylor, A. H.; Skinner, C. N.; Stephens, S.
2016-12-01
In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections. In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections.
Body size distributions signal a regime shift in a lake ...
Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana,USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts. Communities of organisms from mammals to microorganisms have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at discrete spatial and temporal scales within ecosystems. Here, a paleoecological record of diatom community change is use
Global impacts of the 1980s regime shift.
Reid, Philip C; Hari, Renata E; Beaugrand, Grégory; Livingstone, David M; Marty, Christoph; Straile, Dietmar; Barichivich, Jonathan; Goberville, Eric; Adrian, Rita; Aono, Yasuyuki; Brown, Ross; Foster, James; Groisman, Pavel; Hélaouët, Pierre; Hsu, Huang-Hsiung; Kirby, Richard; Knight, Jeff; Kraberg, Alexandra; Li, Jianping; Lo, Tzu-Ting; Myneni, Ranga B; North, Ryan P; Pounds, J Alan; Sparks, Tim; Stübi, René; Tian, Yongjun; Wiltshire, Karen H; Xiao, Dong; Zhu, Zaichun
2016-02-01
Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Arne Buechling; Patrick H. Martin; Charles D. Canham; Wayne D. Shepperd; Michael Battaglia
2016-01-01
The increases in seed output observed in this study may promote population fitness of P. engelmannii in the face of changing climate regimes and increasing frequencies of fire- and insect-related tree mortality in the Rocky Mountains. Since this species lacks a persistent seed bank, re-colonization of disturbed areas or dispersal to shifting habitats depends...
Linkages between Alaskan sockeye salmon abundance, growth at sea, and climate, 1955-2002
Ruggerone, G.T.; Nielsen, J.L.; Bumgarner, J.
2007-01-01
We tested the hypothesis that increased growth of salmon during early marine life contributed to greater survival and abundance of salmon following the 1976/1977 climate regime shift and that this, in turn, led to density-dependent reductions in growth during late marine stages. Annual measurements of Bristol Bay (Bering Sea) and Chignik (Gulf of Alaska) sockeye salmon scale growth from 1955 to 2002 were used as indices of body growth. During the first and second years at sea, growth of both stocks tended to be higher after the 1976-1977 climate shift, whereas growth during the third year and homeward migration was often below average. Multiple regression models indicated that return per spawner of Bristol Bay sockeye salmon and adult abundance of western and central Alaska sockeye salmon were positively correlated with growth during the first 2 years at sea and negatively correlated with growth during later life stages. After accounting for competition between Bristol Bay sockeye and Asian pink salmon, age-specific adult length of Bristol Bay salmon increased after the 1976-1977 regime shift, then decreased after the 1989 climate shift. Late marine growth and age-specific adult length of Bristol Bay salmon was exceptionally low after 1989, possibly reducing their reproductive potential. These findings support the hypothesis that greater marine growth during the first 2 years at sea contributed to greater salmon survival and abundance, which in turn led to density-dependent growth during later life stages when size-related mortality was likely lower. Our findings provide new evidence supporting the importance of bottom-up control in marine ecosystems and highlight the complex dynamics of species interactions that continually change as salmon grow and mature in the ocean. ?? 2007 Elsevier Ltd. All rights reserved.
Projections of Atmospheric Nutrient Deposition to the Chesapeake Bay Watershed
Atmospheric deposition remains one of the largest loadings of nutrients to the Chesapeake Bay watershed. The interplay between future land use, climate, and emission changes, however, will cause shifts in the future nutrient deposition regime (e.g., oxidized vs. reduced nitrogen...
Extreme precipitation patterns reduced terrestrial ecosystem production across biomass
USDA-ARS?s Scientific Manuscript database
Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more intense rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated ...
NASA Astrophysics Data System (ADS)
Tylmann, Wojciech; Hernández-Almeida, Iván; Grosjean, Martin; José Gómez Navarro, Juan; Larocque-Tobler, Isabelle; Bonk, Alicja; Enters, Dirk; Ustrzycka, Alicja; Piotrowska, Natalia; Przybylak, Rajmund; Wacnik, Agnieszka; Witak, Małgorzata
2016-04-01
Rapid ecosystem transitions and adverse effects on ecosystem services as responses to combined climate and human impacts are of major concern. Yet few quantitative observational data exist, particularly for ecosystems that have a long history of human intervention. Here, we combine quantitative summer and winter climate reconstructions, climate model simulations and proxies for three major environmental pressures (land use, nutrients and erosion) to explore the system dynamics, resilience, and the role of disturbance regimes in varved eutrophic Lake Żabińskie since AD 1000. Comparison between regional and global climate simulations and quantitative climate reconstructions indicate that proxy data capture noticeably natural forced climate variability, while internal variability appears as the dominant source of climate variability in the climate model simulations during most parts of the last millennium. Using different multivariate analyses and change point detection techniques, we identify ecosystem changes through time and shifts between rather stable states and highly variable ones, as expressed by the proxies for land-use, erosion and productivity in the lake. Prior to AD 1600, the lake ecosystem was characterized by a high stability and resilience against considerable observed natural climate variability. In contrast, lake-ecosystem conditions started to fluctuate at high frequency across a broad range of states after AD 1600. The period AD 1748-1868 represents the phase with the strongest human disturbance of the ecosystem. Analyses of the frequency of change points in the multi-proxy dataset suggests that the last 400 years were highly variable and flickering with increasing vulnerability of the ecosystem to the combined effects of climate variability and anthropogenic disturbances. This led to significant rapid ecosystem transformations.
NASA Astrophysics Data System (ADS)
Vannière, B.; Colombaroli, D.; Chapron, E.; Leroux, A.; Tinner, W.; Magny, M.
2008-06-01
A high-resolution sedimentary charcoal record from Lago dell'Accesa in southern Tuscany reveals numerous changes in fire regime over the last 11.6 kyr cal. BP and provides one of the longest gap-free series from Italy and the Mediterranean region. Charcoal analyses are coupled with gamma density measurements, organic-content analyses, and pollen counts to provide data about sedimentation and vegetation history. A comparison between fire frequency and lake-level reconstructions from the same site is used to address the centennial variability of fire regimes and its linkage to hydrological processes. Our data reveal strong relationships among climate, fire, vegetation, and land-use and attest to the paramount importance of fire in Mediterranean ecosystems. The mean fire interval (MFI) for the entire Holocene was estimated to be 150 yr, with a minimum around 80 yr and a maximum around 450 yr. Between 11.6 and 3.6 kyr cal. BP, up to eight high-frequency fire phases lasting 300-500 yr generally occurred during shifts towards low lake-level stands (ca 11,300, 10,700, 9500, 8700, 7600, 6200, 5300, 3400, 1800 and 1350 cal. yr BP). Therefore, we assume that most of these shifts were triggered by drier climatic conditions and especially a dry summer season that promoted ignition and biomass burning. At the beginning of the Holocene, high climate seasonality favoured fire expansion in this region, as in many other ecosystems of the northern and southern hemispheres. Human impact affected fire regimes and especially fire frequencies since the Neolithic (ca 8000-4000 cal. yr BP). Burning as a consequence of anthropogenic activities became more frequent after the onset of the Bronze Age (ca 3800-3600 cal. yr BP) and appear to be synchronous with the development of settlements in the region, slash-and-burn agriculture, animal husbandry, and mineral exploitation. The anthropogenic phases with maximum fire activity corresponded to greater sensitivity of the vegetation and triggered significant changes in vegetational communities (e.g. temporal declines of Quercus ilex forests and expansion of shrublands and macchia). The link between fire and climate persisted during the mid- and late Holocene, when human impact on vegetation and the fire regime was high. This finding suggests that climatic conditions were important for fire occurrence even under strongly humanised ecosystem conditions.
Changes in Dogger Bank macrofauna communities in the 20th century caused by fishing and climate
NASA Astrophysics Data System (ADS)
Kröncke, Ingrid
2011-09-01
The macrofauna communities on the Dogger Bank (North Sea) from the 1920s, the 1950s and the 1980s to the 2000s were compared and identified five communities with similar spatial distribution throughout the 20th century. The abundance of dominant species in the five communities varied with time. Most obvious in the 1950s was the loss of the extensive Spisula and Mactra patches, which covered most of the shallow parts of the Bank in the 1920s. Since the 1980s, they have been found only as juveniles. The biological regime shift in the late 1980s caused an increase in macrofauna abundance, species numbers, diversity and southern species in most of the communities. The climate regime shift in 2001 had opposite effects in which the abundance, species numbers, diversity and southern species decreased in most of the communities. The increase in interface-feeding species and the decrease in sand-licking amphipods in the 2000s especially in the shallow Bank Community give evidence for climate driven changes in water masses, currents, storms, turbidity and food availability via planktonic or benthic primary production. Both fishing impact and climate change are hypothesised as explaining the changes in the Dogger Bank macrofauna communities.
A palaeo-ecological assessment of the resilience of south-east Asian dry forests to monsoon extremes
NASA Astrophysics Data System (ADS)
Hamilton, R. J.; Penny, D.; Maxwell, A.
2014-12-01
Predictions that the frequency and intensity of monsoon extremes will rise in coming decades are being made with increasing confidence. There is concern that these climatic changes may drive tropical monsoon forests across critical thresholds, triggering ecological regime shifts. The global consequences of such shifts, coupled with knowledge gaps around the nature and intensity of drivers needed to instigate ecosystem reorganization, highlights the need for research that analyses the resilience of these seasonal forest to future climatic change. While work has indicated that these forests may be susceptible to reorganization to savanna under changing precipitation regimes, the interactions between climatic drivers and ecosystem response is still poorly understood, particularly in the seasonal forests outside of the neo- and afro-tropics. This study presents results on the threshold dynamics of the extensive south-east Asian seasonally dry tropical forest ecoregion (SASDTF) through analysis of plant microfossils and charcoal archived in sediment cores extracted from two tropical crater lakes in Cambodia. These data are compared with regional paleoclimatic reconstructions to gauge past forest response to monsoon extremes, and provide insight into the magnitude and duration of climatic events most likely to result in the breaching of critical thresholds. Our results suggest that, at a biome level, the SASDTF appears resilient to low-amplitude climatic variations over millennia, despite instrumental observations of strong precipitation-tree cover coupling in global dry forest resilience models.
Regime shifts and panarchies in regional scale social-ecological water systems
In this article we summarize histories of nonlinear, complex interactions among societal, legal, and ecosystem dynamics in six North American water basins, as they respond to changing climate. These case studies were chosen to explore the conditions for emergence of adaptive gove...
How are climate and marine biological outbreaks functionally linked?
Hayes, M.L.; Bonaventura, J.; Mitchell, T.P.; Prospero, J.M.; Shinn, E.A.; Van Dolah, F.; Barber, R.T.
2001-01-01
Since the mid-1970s, large-scale episodic events such as disease epidemics, mass mortalities, harmful algal blooms and other population explosions have been occurring in marine environments at an historically unprecedented rate. The variety of organisms involved (host, pathogens and other opportunists) and the absolute number of episodes have also increased during this period. Are these changes coincidental? Between 1972 and 1976, a global climate regime shift took place, and it is manifest most clearly by a change in strength of the North Pacific and North Atlantic pressure systems. Consequences of this regime shift are: (1) prolonged drought conditions in the Sahel region of Africa; (2) increased dust supply to the global atmosphere, by a factor of approximately four; (3) increased easterly trade winds across the Atlantic; (4) increased eolian transport of dust to the Atlantic and Caribbean basins; and (5) increased deposition of iron-rich eolian dust to typically iron-poor marine regions. On the basis of well-documented climate and dust observations and the widely accepted increase in marine outbreak rates, this paper proposes that the increased iron supply has altered the micronutrient factors limiting growth of opportunistic organisms and virulence of pathogenic microbes, particularly in macronutrient-rich coastal systems.
Recent trends of groundwater temperatures in Austria
NASA Astrophysics Data System (ADS)
Benz, Susanne A.; Bayer, Peter; Winkler, Gerfried; Blum, Philipp
2018-06-01
Climate change is one of if not the most pressing challenge modern society faces. Increasing temperatures are observed all over the planet and the impact of climate change on the hydrogeological cycle has long been shown. However, so far we have insufficient knowledge on the influence of atmospheric warming on shallow groundwater temperatures. While some studies analyse the implication climate change has for selected wells, large-scale studies are so far lacking. Here we focus on the combined impact of climate change in the atmosphere and local hydrogeological conditions on groundwater temperatures in 227 wells in Austria, which have in part been observed since 1964. A linear analysis finds a temperature change of +0.7 ± 0.8 K in the years from 1994 to 2013. In the same timeframe surface air temperatures in Austria increased by 0.5 ± 0.3 K, displaying a much smaller variety. However, most of the extreme changes in groundwater temperatures can be linked to local hydrogeological conditions. Correlation between groundwater temperatures and nearby surface air temperatures was additionally analysed. They vary greatly, with correlation coefficients of -0.3 in central Linz to 0.8 outside of Graz. In contrast, the correlation of nationwide groundwater temperatures and surface air temperatures is high, with a correlation coefficient of 0.83. All of these findings indicate that while atmospheric climate change can be observed in nationwide groundwater temperatures, individual wells are often primarily dominated by local hydrogeological conditions. In addition to the linear temperature trend, a step-wise model was also applied that identifies climate regime shifts, which were observed globally in the late 70s, 80s, and 90s. Hinting again at the influence of local conditions, at most 22 % of all wells show these climate regime shifts. However, we were able to identify an additional shift in 2007, which was observed by 37 % of all wells. Overall, the step-wise representation provides a slightly more accurate picture of observed temperatures than the linear trend.
NASA Astrophysics Data System (ADS)
Baraer, M.; Chesnokova, A.; Huh, K. I.; Laperriere-Robillard, T.
2017-12-01
Saint-Elias Mountains host numerous cryospheric systems such as glaciers, seasonal and perennial snow cover, permafrost, aufeis, and different forms of buried ice. Those systems are very sensitive to climate changes and exhibit ongoing reduction in extent and/or changes in formation/ablation times. Because they highly influence the hydrological regimes of rivers, cryospheric changes raise concerns about consequences for regional water resources and ecosystems. The present study combines historical data analysis and hydrological modeling in order to estimate how cryospheric changes impact hydrological regimes at eight watersheds of different glacier cover (0- 30%) in the southwest Yukon. Methods combine traditional hydrograph analysis techniques and more advance techniques such as Fast Fourier Transform filters used to isolate significant trends in discharge properties from noise or climatic oscillations. Measured trends in discharge variables are connected to cryospheric changes by using a water balance / peak water model (Baraer et al., 2012), here adapted to the main cryospheric systems that characterize the southwest Yukon.Results show three distinct hydrological regimes for (1) non glacierized, (2) glacierized, and (3) major lakes hosting catchments. The studied glacierized catchments have not passed the "peak water" yet and still exhibit increases in yearly and late summer discharges and a decrease in runoff variability. All watersheds show an increase in winter discharge and a snowmelt-driven shift of yearly peak discharge toward earlier in the season. The study suggests that, in a couple of decades, water resources and dependent ecosystems will face the combined effects of (A) a shift in the contribution trend from declining perennial cryospheric systems and (B) continuing alteration of the contribution from the seasonal cryospheric systems.
Directional climate change and potential reversal of desertification in arid and semiarid ecosystems
USDA-ARS?s Scientific Manuscript database
Our objective was to determine if long-term increases in precipitation can maintain grasslands susceptible to desertification, and initiate a reversal of historic regime shifts on desertified shrublands. Long-term trends in desertification were documented using vegetation maps beginning in 1858. The...
Emergent reorganization of an evolving experimental landscape under changing climatic forcing
NASA Astrophysics Data System (ADS)
Singh, A.; Tejedor, A.; Zaliapin, I. V.; Reinhardt, L.; Foufoula-Georgiou, E.
2014-12-01
Understanding landscape re-organization under changing climatic forcing is fundamental to advancing our understanding of geomorphic transport laws under transient conditions, developing predictive models of landscape response to external perturbations, and interpreting the stratigraphic record for past climates by incorporating possible regime shifts. Real landscape observations for long-term analysis are limited and to this end a high resolution controlled laboratory experiment was conducted at the St. Anthony Falls laboratory at the University of Minnesota. Elevation data were collected at temporal resolution of 5 mins and spatial resolution of 0.5 mm as the landscape approached steady state (for a constant uplift and precipitation rate) and in the transient state (under the same uplift and 5x precipitation). The results reveal rapid topographic re-organization under a five-fold precipitation increase with the fluvial regime expanding into previously debris dominated regime, accelerated erosion happening at hillslope scales, and rivers shifting from an erosion-limited to a transport-limited regime. By studying the space-time structure of the individual erosional and depositional events in terms of their size, location, clustering, and total volume we report complex space-time patterns of change which are scale-dependent and bounded by the river network topology. At the same time, the river network topology itself adjusts at smaller scales, with new channels added to accommodate increased hillslope erosional transport, further adjusting the landscape. Some new ideas related to landscape variability and entropy evolution at different scales during steady and transient states and the possibility of analyzing the self-organization with Optimal Mass Transport (OMT) metrics to infer possible underlying "optimality" principles governing the re-organization will also be presented.
Dynamic hydro-climatic networks in pristine and regulated rivers
NASA Astrophysics Data System (ADS)
Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.
2014-12-01
Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A < 103 km2) are usually mild enough to guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes involved in the river food web (e.g. biofilm and riparian vegetation dynamics), the study of rivers as dynamic networks provides important clues to water management strategies and freshwater ecosystem studies.
Clark, Jason A.; Loehman, Rachel A.; Keane, Robert E.
2017-01-01
We present landscape simulation results contrasting effects of changing climates on forest vegetation and fire regimes in Yellowstone National Park, USA, by mid-21st century. We simulated potential changes to fire dynamics and forest characteristics under three future climate projections representing a range of potential future conditions using the FireBGCv2 model. Under the future climate scenarios with moderate warming (>2°C) and moderate increases in precipitation (3–5%), model simulations resulted in 1.2–4.2 times more burned area, decreases in forest cover (10–44%), and reductions in basal area (14–60%). In these same scenarios, lodgepole pine (Pinus contorta) decreased in basal area (18–41%), while Douglas-fir (Pseudotsuga menziesii) basal area increased (21–58%). Conversely, mild warming (<2°C) coupled with greater increases in precipitation (12–13%) suggested an increase in forest cover and basal area by mid-century, with spruce and subalpine fir increasing in abundance. Overall, we found changes in forest tree species compositions were caused by the climate-mediated changes in fire regime (56–315% increase in annual area burned). Simulated changes in forest composition and fire regime under warming climates portray a landscape that shifts from lodgepole pine to Douglas-fir caused by the interaction between the magnitude and seasonality of future climate changes, by climate-induced changes in the frequency and intensity of wildfires, and by tree species response.
Continued warming could transform Greater Yellowstone fire regimes by mid-21st century
Westerling, Anthony L.; Turner, Monica G.; Smithwick, Erica A. H.; Romme, William H.; Ryan, Michael G.
2011-01-01
Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated by conifer forests and characterized by infrequent, high-severity fire. We developed a suite of statistical models that related monthly climate data (1972–1999) to the occurrence and size of fires >200 ha in the northern Rocky Mountains; these models were cross-validated and then used with downscaled (∼12 km × 12 km) climate projections from three global climate models to predict fire occurrence and area burned in the GYE through 2099. All models predicted substantial increases in fire by midcentury, with fire rotation (the time to burn an area equal to the landscape area) reduced to <30 y from the historical 100–300 y for most of the GYE. Years without large fires were common historically but are expected to become rare as annual area burned and the frequency of regionally synchronous fires increase. Our findings suggest a shift to novel fire–climate–vegetation relationships in Greater Yellowstone by midcentury because fire frequency and extent would be inconsistent with persistence of the current suite of conifer species. The predicted new fire regime would transform the flora, fauna, and ecosystem processes in this landscape and may indicate similar changes for other subalpine forests. PMID:21788495
Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.
2005-01-01
We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability of the river to assimilate wastewater treatment plant effluent. Our study illustrates the types of changes that river ecosystems might experience under future climates. Copyright ?? 2005 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Dierauer, J. R.; Allen, D. M.
2016-12-01
Climate change is expected to lead to an increase in extremes, including daily maximum temperatures, heat waves, and meteorological droughts, which will likely result in shifts in the hydrological drought regime (i.e. the frequency, timing, duration, and severity of drought events). While many studies have used hydrologic models to simulate climate change impacts on water resources, only a small portion of these studies have analyzed impacts on low flows and/or hydrological drought. This study is the first to use a fully coupled groundwater-surface water (gw-sw) model to study climate change impacts on hydrological drought. Generic catchment-scale gw-sw models were created for each of the six major eco-regions in British Columbia using the MIKE-SHE/MIKE-11 modelling code. Daily precipitation and temperature time series downscaled using bias-correction spatial disaggregation for the simulated period of 1950-2100 were obtained from the Pacific Climate Institute Consortium (PCIC). Streamflow and groundwater drought events were identified from the simulated time series for each catchment model using the moving window quantile threshold. The frequency, timing, duration, and severity of drought events were compared between the reference period (1961-2000) and two future time periods (2031-2060, 2071-2100). Results show how hydrological drought regimes across the different British Columbia eco-regions will be impacted by climate change.
Community reorganization in the Gulf of Alaska following ocean climate regime shift
Anderson, P.J.; Piatt, John F.
1999-01-01
A shift in ocean climate during the late 1970s triggered a reorganization of community structure in the Gulf of Alaska ecosystem, as evidenced in changing catch composition on long-term (1953 to 1997) small-mesh trawl surveys. Forage species such as pandalid shrimp and capelin declined because of recruitment failure and predation, and populations have not yet recovered. Total trawl catch biomass declined >50% and remained low through the 1980s. In contrast, recruitment of high trophic-level groundfish improved during the 1980s, yielding a >250% increase in catch biomass during the 1990s. This trophic reorganization apparently had negative effects on piscivorous sea birds and marine mammals.
A Holocene record of climate-driven shifts in coastal carbon sequestration
Mitra, Siddhartha; Zimmerman, A.R.; Hunsinger, G.B.; Willard, D.; Dunn, J.C.
2009-01-01
A sediment core collected in the mesohaline portion of Chesapeake Bay was found to contain periods of increased delivery of refractory black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs). The BC was most likely produced by biomass combustion during four centennialscale dry periods as indicated by the Palmer Drought Severity Index (PDSI), beginning in the late Medieval Warm Period of 1100 CE. In contrast, wetter periods were associated with increased non-BC organic matter influx into the bay, likely due to greater runoff and associated nutrient delivery. In addition, an overall increase in both BC and non-BC organic matter deposition during the past millennium may reflect a shift in climate regime. The finding that carbon sequestration in the coastal zone responds to climate fluctuations at both centennial and millennial scales through fire occurrence and nutrient delivery has implications for past and future climate predictions. Drought-induced fires may lead, on longer timescales, to greater carbon sequestration and, therefore, represent a negative climate feedback. Copyright 2009 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Kargel, Jeffrey
2013-04-01
It is virtually universally recognized among climate and cryospheric scientists that climate and greenhouse gas abundances are closely correlated. Disagreements mainly pertain to the fundamental triggers for large fluctuations in climate and greenhouse gases during the pre-industrial era, and exactly how coupling is achieved amongst the dynamic solid Earth, the Sun, orbital and rotational dynamics, greenhouse gas abundances, and climate. Also unsettled is the climate sensitivity defined as the absolute linkage between the magnitude of climate warming/cooling and greenhouse gas increase/decrease. Important questions concern lagging responses (either greenhouse gases lagging climate fluctuations, or vice versa) and the causes of the lags. In terms of glacier and ice sheet responses to climate change, there also exist several processes causing lagging responses to climate change inputs. The simplest parameterization giving a glacier's lagging response time, τ, is that given by Jóhanneson et al. (1989), modified slightly here as τ = b/h, where b is a measure of ablation rate and h is a measure of glacier thickness. The exact definitions of τ, b, and h are subject to some interpretive license, but for a back-of-the-envelope approximation, we may take b as the magnitude of the mean ablation rate over the whole ablation area, and h as the mean glacier thickness in the glacier ablation zone. τ remains a bit ambiguous but may be considered as an exponential time scale for a decreasing response of b to a climatic step change. For some climate changes, b and h can be taken as the values prior to the climate change, but for large climatic shifts, this parameterization must be iterated. The actual response of a glacier at any time is the sum of exponentially decreasing responses from past changes. (Several aspects of glacier dynamics cause various glacier responses to differ from this idealized glacier-response theory.) Some important details relating to the retreat (or advances) of glaciers due to historic and future anthropogenic and longer term climate change relate to a changing glacier hazard regime. Climate change is connected to changes in the geographic distribution and magnitudes of potentially hazardous glacier lakes, large rock and ice avalanches, ice-dammed rivers, and surges. I shall consider these changes in hazard environment in relation to response-time theory and dynamical divergences from idealized response-time theory. Case histories of certain hazard-prone regions, including developments in fast-response-type glaciers and slow-response glaciers and ice sheets will also be discussed. In short, there will be a strong tendency of the hazard regimes of glacierized regions to shift far more rapidly in the 21st century than they did in the 20th century. The magnitude of the shifts will be more dramatic than any simple linear scaling to climate warming would suggest; this is largely because, due to lagging responses, glaciers are still trying to catch up to a new equilibrium for 20th century climate, while climate change remains a moving target that will drive accelerating glacier responses (including responses in hazard environments) in most glacierized regions.
NASA Astrophysics Data System (ADS)
Tandon, Neil F.; Cane, Mark A.
2017-06-01
In a suite of idealized experiments with the Community Atmospheric Model version 3 coupled to a slab ocean, we show that the atmospheric circulation response to CO2 increase is sensitive to extratropical cloud feedback that is potentially nonlinear. Doubling CO2 produces a poleward shift of the Southern Hemisphere (SH) midlatitude jet that is driven primarily by cloud shortwave feedback and modulated by ice albedo feedback, in agreement with earlier studies. More surprisingly, for CO2 increases smaller than 25 %, the SH jet shifts equatorward. Nonlinearities are also apparent in the Northern Hemisphere, but with less zonal symmetry. Baroclinic instability theory and climate feedback analysis suggest that as the CO2 forcing amplitude is reduced, there is a transition from a regime in which cloud and circulation changes are largely decoupled to a regime in which they are highly coupled. In the dynamically coupled regime, there is an apparent cancellation between cloud feedback due to warming and cloud feedback due to the shifting jet, and this allows the ice albedo feedback to dominate in the high latitudes. The extent to which dynamical coupling effects exceed thermodynamic forcing effects is strongly influenced by cloud microphysics: an alternate model configuration with slightly increased cloud liquid (LIQ) produces poleward jet shifts regardless of the amplitude of CO2 forcing. Altering the cloud microphysics also produces substantial spread in the circulation response to CO2 doubling: the LIQ configuration produces a poleward SH jet shift approximately twice that produced under the default configuration. Analysis of large ensembles of the Canadian Earth System Model version 2 demonstrates that nonlinear, cloud-coupled jet shifts are also possible in comprehensive models. We still expect a poleward trend in SH jet latitude for timescales on which CO2 increases by more than 25 %. But on shorter timescales, our results give good reason to expect significant equatorward deviations. We also discuss the implications for understanding the circulation response to small external forcings from other sources, such as the solar cycle.
Long-Term Phenological Shifts in Raptor Migration and Climate
Jaffré, Mikaël; Beaugrand, Grégory; Goberville, Éric; Jiguet, Frédéric; Kjellén, Nils; Troost, Gerard; Dubois, Philippe J.; Leprêtre, Alain; Luczak, Christophe
2013-01-01
Climate change is having a discernible effect on many biological and ecological processes. Among observed changes, modifications in bird phenology have been widely documented. However, most studies have interpreted phenological shifts as gradual biological adjustments in response to the alteration of the thermal regime. Here we analysed a long-term dataset (1980-2010) of short-distance migratory raptors in five European regions. We revealed that the responses of these birds to climate-induced changes in autumn temperatures are abrupt and synchronous at a continental scale. We found that when the temperatures increased, birds delayed their mean passage date of autumn migration. Such delay, in addition to an earlier spring migration, suggests that a significant warming may induce an extension of the breeding-area residence time of migratory raptors, which may eventually lead to residency. PMID:24223888
Precipitation regime classification for the Mojave Desert: Implications for fire occurrence
Tagestad, Jerry; Brooks, Matthew L.; Cullinan, Valerie; Downs, Janelle; McKinley, Randy
2016-01-01
Long periods of drought or above-average precipitation affect Mojave Desert vegetation condition, biomass and susceptibility to fire. Changes in the seasonality of precipitation alter the likelihood of lightning, a key ignition source for fires. The objectives of this study were to characterize the relationship between recent, historic, and future precipitation patterns and fire. Classifying monthly precipitation data from 1971 to 2010 reveals four precipitation regimes: low winter/low summer, moderate winter/moderate summer, high winter/low summer and high winter/high summer. Two regimes with summer monsoonal precipitation covered only 40% of the Mojave Desert ecoregion but contain 88% of the area burned and 95% of the repeat burn area. Classifying historic precipitation for early-century (wet) and mid-century (drought) periods reveals distinct shifts in regime boundaries. Early-century results are similar to current, while the mid-century results show a sizeable reduction in area of regimes with a strong monsoonal component. Such a shift would suggest that fires during the mid-century period would be minimal and anecdotal records confirm this. Predicted precipitation patterns from downscaled global climate models indicate numerous epochs of high winter precipitation, inferring higher fire potential for many multi-decade periods during the next century.
Warming combined with more extreme precipitation regimes modifies the water sources used by trees.
Grossiord, Charlotte; Sevanto, Sanna; Dawson, Todd E; Adams, Henry D; Collins, Adam D; Dickman, Lee T; Newman, Brent D; Stockton, Elizabeth A; McDowell, Nate G
2017-01-01
The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. We analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously. Piñon and juniper exhibited different and opposite shifts in water uptake depth in response to experimental stress and background climate over 3 yr. During a dry summer, juniper responded to warming with a shift to shallow water sources, whereas piñon pine responded to precipitation reduction with a shift to deeper sources in autumn. In normal and wet summers, both species responded to precipitation reduction, but juniper increased deep water uptake and piñon increased shallow water uptake. Shifts in the utilization of water sources were associated with reduced stomatal conductance and photosynthesis, suggesting that belowground compensation in response to warming and water reduction did not alleviate stress impacts for gas exchange. We have demonstrated that predicted climate change could modify water sources of trees. Warming impairs juniper uptake of deep sources during extended dry periods. Precipitation reduction alters the uptake of shallow sources following extended droughts for piñon. Shifts in water sources may not compensate for climate change impacts on tree physiology. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Liang, Y.; Duveneck, M.; Gustafson, E. J.; Serra-Diaz, J. M.; Thompson, J. R.
2017-12-01
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically-based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually < 20 km) that required to track the velocity of temperature change (usually more than 110 km over 100 years) under a high emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species` recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts.
Liang, Yu; Duveneck, Matthew J; Gustafson, Eric J; Serra-Diaz, Josep M; Thompson, Jonathan R
2018-01-01
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high-emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually <20 km) that required to track the velocity of temperature change (usually more than 110 km over 100 years) under a high-emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species' recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts. © 2017 John Wiley & Sons Ltd.
Circumpolar dynamics of a marine top-predator track ocean warming rates.
Descamps, Sébastien; Anker-Nilssen, Tycho; Barrett, Robert T; Irons, David B; Merkel, Flemming; Robertson, Gregory J; Yoccoz, Nigel G; Mallory, Mark L; Montevecchi, William A; Boertmann, David; Artukhin, Yuri; Christensen-Dalsgaard, Signe; Erikstad, Kjell-Einar; Gilchrist, H Grant; Labansen, Aili L; Lorentsen, Svein-Håkon; Mosbech, Anders; Olsen, Bergur; Petersen, Aevar; Rail, Jean-Francois; Renner, Heather M; Strøm, Hallvard; Systad, Geir H; Wilhelm, Sabina I; Zelenskaya, Larisa
2017-09-01
Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long-lived, wide-ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black-legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea-surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large-scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom-up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large-scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself. © 2017 John Wiley & Sons Ltd.
Evidence of tree species' range shifts in a complex landscape.
Monleon, Vicente J; Lintz, Heather E
2015-01-01
Climate change is expected to change the distribution of species. For long-lived, sessile species such as trees, tracking the warming climate depends on seedling colonization of newly favorable areas. We compare the distribution of seedlings and mature trees for all but the rarest tree species in California, Oregon and Washington, United States of America, a large, environmentally diverse region. Across 46 species, the mean annual temperature of the range of seedlings was 0.120°C colder than that of the range of trees (95% confidence interval from 0.096 to 0.144°C). The extremes of the seedling distributions also shifted towards colder temperature than those of mature trees, but the change was less pronounced. Although the mean elevation and mean latitude of the range of seedlings was higher than and north of those of the range of mature trees, elevational and latitudinal shifts run in opposite directions for the majority of the species, reflecting the lack of a direct biological relationship between species' distributions and those variables. The broad scale, environmental diversity and variety of disturbance regimes and land uses of the study area, the large number and exhaustive sampling of tree species, and the direct causal relationship between the temperature response and a warming climate, provide strong evidence to attribute the observed shifts to climate change.
USDA-ARS?s Scientific Manuscript database
Background/Question/Methods: Ecosystem thresholds are often identified by observing or inducing slow changes in different driver variables and investigating changes in the asymptotic state of the system, such as the response of lakes to nutrient loading or biome responses to climate change. Yet ma...
Regional dry-season climate changes due to three decades of Amazonian deforestation
NASA Astrophysics Data System (ADS)
Khanna, Jaya; Medvigy, David; Fueglistaler, Stephan; Walko, Robert
2017-02-01
More than 20% of the Amazon rainforest has been cleared in the past three decades, triggering important hydroclimatic changes. Small-scale (a few kilometres) deforestation in the 1980s has caused thermally triggered atmospheric circulations that increase regional cloudiness and precipitation frequency. However, these circulations are predicted to diminish as deforestation increases. Here we use multi-decadal satellite records and numerical model simulations to show a regime shift in the regional hydroclimate accompanying increasing deforestation in Rondônia, Brazil. Compared with the 1980s, present-day deforested areas in downwind western Rondônia are found to be wetter than upwind eastern deforested areas during the local dry season. The resultant precipitation change in the two regions is approximately +/-25% of the deforested area mean. Meso-resolution simulations robustly reproduce this transition when forced with increasing deforestation alone, showing that large-scale climate variability plays a negligible role. Furthermore, deforestation-induced surface roughness reduction is found to play an essential role in the present-day dry-season hydroclimate. Our study illustrates the strong scale sensitivity of the climatic response to Amazonian deforestation and suggests that deforestation is sufficiently advanced to have caused a shift from a thermally to a dynamically driven hydroclimatic regime.
NASA Astrophysics Data System (ADS)
D'Andrea, W. J.; Hormes, A.; Bakke, J.; Nicolaisen, L.
2015-12-01
The northeastern North Atlantic Ocean, and the Norwegian and Greenland Seas are subject to large hydrographic changes. These variations can influence oceanic heat transport to the Arctic, meridional overturning circulation, and atmospheric circulation patterns and thereby impact global climate patterns. Marine records suggest that numerous large-scale changes in the hydrography of the northern North Atlantic took place during the middle to late Holocene. Here, we report a record of nitrogen and hydrogen isotope measurements from a lake sediment core from Bjørnøya, Svalbard (74.38°N, 19.02°E) that documents major regime shifts in the climate of the northern North Atlantic during the past 6,000 years. Bjørnøya is the nesting ground for one of the largest seabird populations in the North Atlantic. As top predators in the marine ecosystem, seabirds (and their guano) are enriched in 15N; during spring and summer months they deliver this isotopically enriched nitrogen to their nesting area. We developed a record of seabird population changes on Bjørnøya based on the bulk nitrogen isotope composition of sediments in a core collected from lake Ellasjøen. The record reveals multiple multicentennial scale changes in δ15N values (varying between ~8-12‰) that track past changes in the size of seabird populations. From the same sediment core, we also developed a record of δD of precipitation, by measuring δD values of sedimentary n-alkanes. Past intervals with the largest inferred bird populations correspond with the most enriched δD of precipitation, which we interpret to represent a more Atlantic climate. Periods with reduced seabird populations correspond with intervals having more negative δD of precipitation and representing a more Arctic climate. Together, the nitrogen and hydrogen isotope records signify regime shifts in the oceanography, marine ecosystem, and atmospheric circulation of the northern North Atlantic that are related to variations in the strength of the subpolar gyre.
NASA Astrophysics Data System (ADS)
D'Andrea, William J.; Hormes, Anne; Bakke, Jostein; Nicolaisen, Line
2016-04-01
The northeastern North Atlantic Ocean, and the Norwegian and Greenland Seas are subject to large hydrographic changes. These variations can influence oceanic heat transport to the Arctic, meridional overturning circulation, and atmospheric circulation patterns and thereby impact global climate patterns. Marine records suggest that numerous large-scale changes in the hydrography of the northern North Atlantic took place during the middle to late Holocene. We report a record of nitrogen and hydrogen isotope measurements from a lake sediment core from Bjørnøya, Svalbard (74.38°N, 19.02°E) that documents major regime shifts in the climate of the northern North Atlantic during the past 6,000 years. Bjørnøya is the nesting ground for one of the largest seabird populations in the North Atlantic. As top predators in the marine ecosystem, seabirds (and their guano) are enriched in 15N; during spring and summer months they deliver isotopically enriched nitrogen to nesting areas. We developed a record of seabird population changes on Bjørnøya based on the nitrogen isotope composition of sediments in a core collected from lake Ellasjøen. The record reveals multiple multicentennial scale changes in δ15N values (varying between ~8-12‰) that track past changes in the size of seabird populations. From the same sediment core, we also developed a record of δD of precipitation, using δD values of sedimentary n-alkanes. Past intervals with the largest inferred bird populations correspond with the most enriched δD of precipitation, which we interpret to represent a more Atlantic climate. Periods with reduced seabird populations correspond with intervals with more negative δD of precipitation and representing a more Arctic climate. Together, the nitrogen and hydrogen isotope records signify regime shifts in the oceanography, marine ecosystem, and atmospheric circulation of the northern North Atlantic that are related to variations in the strength of the subpolar gyre.
NASA Astrophysics Data System (ADS)
Huang, Wei; Feng, Song; Liu, Chang; Chen, Jie; Chen, Jianhui; Chen, Fahu
2018-01-01
This study examines the shifts in terrestrial climate regimes using the Köppen-Trewartha (K-T) climate classification by analyzing the Community Earth System Model Last Millennium Ensemble (CESM-LME) simulations for the period 850-2005 and CESM Medium Ensemble (CESM-ME), CESM Large Ensemble (CESM-LE) and CESM with fixed aerosols Medium Ensemble (CESM-LE_FixA) simulations for the period 1920-2080. We compare K-T climate types from the Medieval Climate Anomaly (MCA) (950-1250) with the Little Ice Age (LIA) (1550-1850), from present day (PD) (1971-2000) with the last millennium (LM) (850-1850), and from the future (2050-2080) with the LM in order to place anthropogenic changes in the context of changes due to natural forcings occurring during the last millennium. For CESM-LME, we focused on the simulations with all forcings, though the impacts of individual forcings (e.g., solar activities, volcanic eruptions, greenhouse gases, aerosols and land use changes) were also analyzed. We found that the climate types changed slightly between the MCA and the LIA due to weak changes in temperature and precipitation. The climate type changes in PD relative to the last millennium have been largely driven by greenhouse gas-induced warming, but anthropogenic aerosols have also played an important role on regional scales. At the end of the twenty-first century, the anthropogenic forcing has a much greater effect on climate types than the PD. Following the reduction of aerosol emissions, the impact of greenhouse gases will further promote global warming in the future. Compared to precipitation, changes in climate types are dominated by greenhouse gas-induced warming. The large shift in climate types by the end of this century suggests possible wide-spread redistribution of surface vegetation and a significant change in species distributions.
An integrated land change model for projecting future climate and land change scenarios
Wimberly, Michael; Sohl, Terry L.; Lamsal, Aashis; Liu, Zhihua; Hawbaker, Todd J.
2013-01-01
Climate change will have myriad effects on ecosystems worldwide, and natural and anthropogenic disturbances will be key drivers of these dynamics. In addition to climatic effects, continual expansion of human settlement into fire-prone forests will alter fire regimes, increase human vulnerability, and constrain future forest management options. There is a need for modeling tools to support the simulation and assessment of new management strategies over large regions in the context of changing climate, shifting development patterns, and an expanding wildland-urban interface. To address this need, we developed a prototype land change simulator that combines human-driven land use change (derived from the FORE-SCE model) with natural disturbances and vegetation dynamics (derived from the LADS model) and incorporates novel feedbacks between human land use and disturbance regimes. The prototype model was implemented in a test region encompassing the Denver metropolitan area along with its surrounding forested and agricultural landscapes. Initial results document the feasibility of integrated land change modeling at a regional scale but also highlighted conceptual and technical challenges for this type of model integration. Ongoing development will focus on improving climate sensitivities and modeling constraints imposed by climate change and human population growth on forest management activities.
Arctic climatechange and its impacts on the ecology of the North Atlantic.
Greene, Charles H; Pershing, Andrew J; Cronin, Thomas M; Ceci, Nicole
2008-11-01
Arctic climate change from the Paleocene epoch to the present is reconstructed with the objective of assessing its recent and future impacts on the ecology of the North Atlantic. A recurring theme in Earth's paleoclimate record is the importance of the Arctic atmosphere, ocean, and cryosphere in regulating global climate on a variety of spatial and temporal scales. A second recurring theme in this record is the importance of freshwater export from the Arctic in regulating global- to basin-scale ocean circulation patterns and climate. Since the 1970s, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. In addition, modal shifts in the atmosphere have altered Arctic Ocean circulation patterns and the export of freshwater into the North Atlantic. The combination of these processes has resulted in variable patterns of freshwater export from the Arctic Ocean and the emergence of salinity anomalies that have periodically freshened waters in the North Atlantic. Since the early 1990s, changes in Arctic Ocean circulation patterns and freshwater export have been associated with two types of ecological responses in the North Atlantic. The first of these responses has been an ongoing series of biogeographic range expansions by boreal plankton, including renewal of the trans-Arctic exchanges of Pacific species with the Atlantic. The second response was a dramatic regime shift in the shelf ecosystems of the Northwest Atlantic that occurred during the early 1990s. This regime shift resulted from freshening and stratification of the shelf waters, which in turn could be linked to changes in the abundances and seasonal cycles of phytoplankton, zooplankton, and higher trophic-level consumer populations. It is predicted that the recently observed ecological responses to Arctic climate change in the North Atlantic will continue into the near future if current trends in sea ice, freshwater export, and surface ocean salinity continue. It is more difficult to predict ecological responses to abrupt climate change in the more distant future as tipping points in the Earth's climate system are exceeded.
Hydrological regime modifications induced by climate change in Mediterranean area
NASA Astrophysics Data System (ADS)
Pumo, Dario; Caracciolo, Domenico; Viola, Francesco; Valerio Noto, Leonardo
2015-04-01
The knowledge of river flow regimes has a capital importance for a variety of practical applications, in water resource management, including optimal and sustainable use. Hydrological regime is highly dependent on climatic factors, among which the most important is surely the precipitation, in terms of frequency, seasonal distribution and intensity of rainfall events. The streamflow frequency regime of river basins are often summarized by flow duration curves (FDCs), that offer a simple and comprehensive graphical view of the overall historical variability associated with streamflow, and characterize the ability of the basin to provide flows of various magnitudes. Climate change is likely to lead shifts in the hydrological regime, and, consequently, in the FDCs. Staring from this premise, the primary objective of the present study is to explore the effects of potential climate changes on the hydrological regime of some small Mediterranean basins. To this aim it is here used a recent hydrological model, the ModABa model (MODel for Annual flow duration curves assessment in ephemeral small BAsins), for the probabilistic characterization of the daily streamflows in small catchments. The model has been calibrated and successively validated in a unique small catchment, where it has shown a satisfactory accuracy in reproducing the empirical FDC starting from easily derivable parameters arising from basic ecohydrological knowledge of the basin and commonly available climatic data such as daily precipitation and temperatures. Thus, this work also represents a first attempt to apply the ModABa to basins different from that used for its preliminary design in order to testing its generality. Different case studies are selected within the Sicily region; the model is first calibrated at the sites and then forced by future climatic scenarios, highlighting the principal differences emerging from the current scenario and future FDCs. The future climate scenarios are generated using a stochastic downscaling technique based on the weather generator, AWE-GEN. This methodology allows for the downscaling of an ensemble of climate model outputs deriving the frequency distribution functions of factors of change for several statistics of temperature and precipitation from outputs of General Circulation Models (GCMs). The stochastic downscaling is carried out using simulations of GCMs adopted in the IPCC 5AR, for the future periods of 2046-2065 and 2081-2100.
Disturbance regimes and the historical range of variation in terrestrial ecosystems [Chapter 389
Robert Keane
2013-01-01
Picture a tranquil landscape with undulating topography, idyllic streams, scenic glades, and verdant vegetation. Left to its own devices, this landscape would gradually become dominated by late successional communities that would slowly shift in response to climate changes over long time periods. This scene often forms the foundation and reference for most land...
Taylor, Alan H; Trouet, Valerie; Skinner, Carl N; Stephens, Scott
2016-11-29
Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire-climate relationships in the Sierra Nevada. We developed a 415-y record (1600-2015 CE) of fire activity by merging a tree-ring-based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation-following mission establishment (ca. 1775 CE)-reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire-climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire-climate models for addressing the increasing fire risk in California.
Taylor, Alan H.; Trouet, Valerie; Skinner, Carl N.; Stephens, Scott
2016-01-01
Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire–climate relationships in the Sierra Nevada. We developed a 415-y record (1600–2015 CE) of fire activity by merging a tree-ring–based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire–climate relationships were strongest after Native American depopulation—following mission establishment (ca. 1775 CE)—reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire–climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire–climate models for addressing the increasing fire risk in California. PMID:27849589
NASA Astrophysics Data System (ADS)
Galway, L. P.; Allen, D. M.
2013-12-01
Rising global temperatures and expected shifts in regional hydroclimatology in a changing climate are likely to influence the risk of infectious waterborne illness. This study examines the role of hydroclimatology as an underlying driver of the epidemiology of waterborne gastro-intestinal illness and contributes to our currently limited understanding of the possible ecosystem-mediated impacts of climate change on health. Using time-series regression analysis, we examine the associations between three hydroclimatic factors (monthly temperature, precipitation, and streamflow) and the monthly occurrence of AGI illness in two communities in the province of British Columbia, Canada. The two communities were selected as study sites to represent the dominant hydroclimatic regimes that characterize the province of BC: the rainfall-dominated hydroclimatic regime and snowmelt-dominated hydroclimatic regime Our results show that the number of monthly cases of AGI increased with increasing temperature, precipitation, and streamflow in the same month in the context of a rainfall-dominated regime and with increasing streamflow in the previous month in the context of a snowfall-dominated regime. These results suggest that hydroclimatic factors play a role in driving the occurrence and variability of AGI illness in this setting. Further, this study has highlighted that the nature and magnitude of the effects of hydroclimatic factors on waterborne illness vary across different hydroclimatic settings. We conclude that the watershed may be an appropriate context within which we can and should enhance our understanding of water-related climate change impacts on health. Examining the role of hydroclimatology as an underlying driver of the epidemiology of infectious disease is key to understanding of the possible ecosystem-mediated impacts of climate change on health and developing appropriate adaptation responses.
Turning back from the brink: Detecting an impending regime shift in time to avert it
Biggs, Reinette; Carpenter, Stephen R.; Brock, William A.
2009-01-01
Ecological regime shifts are large, abrupt, long-lasting changes in ecosystems that often have considerable impacts on human economies and societies. Avoiding unintentional regime shifts is widely regarded as desirable, but prediction of ecological regime shifts is notoriously difficult. Recent research indicates that changes in ecological time series (e.g., increased variability and autocorrelation) could potentially serve as early warning indicators of impending shifts. A critical question, however, is whether such indicators provide sufficient warning to adapt management to avert regime shifts. We examine this question using a fisheries model, with regime shifts driven by angling (amenable to rapid reduction) or shoreline development (only gradual restoration is possible). The model represents key features of a broad class of ecological regime shifts. We find that if drivers can only be manipulated gradually management action is needed substantially before a regime shift to avert it; if drivers can be rapidly altered aversive action may be delayed until a shift is underway. Large increases in the indicators only occur once a regime shift is initiated, often too late for management to avert a shift. To improve usefulness in averting regime shifts, we suggest that research focus on defining critical indicator levels rather than detecting change in the indicators. Ideally, critical indicator levels should be related to switches in ecosystem attractors; we present a new spectral density ratio indicator to this end. Averting ecological regime shifts is also dependent on developing policy processes that enable society to respond more rapidly to information about impending regime shifts. PMID:19124774
NASA Astrophysics Data System (ADS)
Fallah, Bijan; Sodoudi, Sahar; Cubasch, Ulrich
2016-05-01
This study tackles one of the most debated questions around the evolution of Central Asian climate: the "Puzzle" of moisture changes in Arid Central Asia (ACA) throughout the past millennium. A state-of-the-art Regional Climate Model (RCM) is subsequently employed to investigate four different 31-year time slices of extreme dry and wet spells, chosen according to changes in the driving data, in order to analyse the spatio-temporal evolution of the moisture variability in two different climatological epochs: Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). There is a clear regime behavior and bimodality in the westerly Jet phase space throughout the past millennium in ACA. The results indicate that the regime changes during LIA show a moist ACA and a dry East China. During the MCA, the Kazakhstan region shows a stronger response to the westerly jet equatorward shift than during the LIA. The out-of-phase pattern of moisture changes between India and ACA exists during both the LIA and the MCA. However, the pattern is more pronounced during the LIA.
Evidence of Tree Species’ Range Shifts in a Complex Landscape
Monleon, Vicente J.; Lintz, Heather E.
2015-01-01
Climate change is expected to change the distribution of species. For long-lived, sessile species such as trees, tracking the warming climate depends on seedling colonization of newly favorable areas. We compare the distribution of seedlings and mature trees for all but the rarest tree species in California, Oregon and Washington, United States of America, a large, environmentally diverse region. Across 46 species, the mean annual temperature of the range of seedlings was 0.120°C colder than that of the range of trees (95% confidence interval from 0.096 to 0.144°C). The extremes of the seedling distributions also shifted towards colder temperature than those of mature trees, but the change was less pronounced. Although the mean elevation and mean latitude of the range of seedlings was higher than and north of those of the range of mature trees, elevational and latitudinal shifts run in opposite directions for the majority of the species, reflecting the lack of a direct biological relationship between species’ distributions and those variables. The broad scale, environmental diversity and variety of disturbance regimes and land uses of the study area, the large number and exhaustive sampling of tree species, and the direct causal relationship between the temperature response and a warming climate, provide strong evidence to attribute the observed shifts to climate change. PMID:25634090
NASA Technical Reports Server (NTRS)
Lau, W. K.; Reale, O.; Kim, K.
2011-01-01
In this talk, we present observational evidence showing that the two major extremes events of the summer of 2010, i.e., the Russian heat wave and the Pakistan flood were physically connected. We find that the Pakistan flood was contributed by a series of unusually heavy rain events over the upper Indus River Basin in July-August. The rainfall regimes shifted from an episodic heavy rain regime in mid-to-late July to a steady heavy rain regime in August. An atmospheric Rossby wave associated with the development of the Russian heat wave was instrumental in spurring the episodic rain events , drawing moisture from the Bay of Bengal and the northern Arabian Sea. The steady rain regime was maintained primarily by monsoon moisture surges from the deep tropics. From experiments with the GEOS-5 forecast system, we assess the predictability of the heavy rain events associated with the Pakistan flood. Preliminary results indicate that there are significantly higher skills in the rainfall forecasts during the episodic heavy rain events in July, compared to the steady rain period in early to mid-August. The change in rainfall predictability may be related to scale interactions between the extratropics and the tropics resulting in a modulation of rainfall predictability by the circulation regimes.
Regeneration potential of Taxodium distichum swamps and climate change
Middleton, B.A.
2009-01-01
Seed bank densities respond to factors across local to landscape scales, and therefore, knowledge of these responses may be necessary in forecasting the effects of climate change on the regeneration of species. This study relates the seed bank densities of species of Taxodium distichum swamps to local water regime and regional climate factors at five latitudes across the Mississippi River Alluvial Valley from southern Illinois to Louisiana. In an outdoor nursery setting, the seed banks of twenty-five swamps were exposed to non-flooded (freely drained) or flooded treatments, and the number and species of seeds germinating were recorded from each swamp during one growing season. Based on ANOVA analysis, the majority of dominant species had a higher rate of germination in non-flooded versus flooded treatments. Similarly, an NMS comparison, which considered the local water regime and regional climate of the swamps, found that the species of seeds germinating, almost completely shifted under non-flooded versus flooded treatments. For example, in wetter northern swamps, seeds of Taxodium distichum germinated in non-flooded conditions, but did not germinate from the same seed banks in flooded conditions. In wetter southern swamps, seeds of Eleocharis cellulosa germinated in flooded conditions, but did not germinate in non-flooded conditions. The strong relationship of seed germination and density relationships with local water regime and regional climate variables suggests that the forecasting of climate change effects on swamps and other wetlands needs to consider a variety of interrelated variables to make adequate projections of the regeneration responses of species to climate change. Because regeneration is an important aspect of species maintenance and restoration, climate drying could influence the species distribution of these swamps in the future. ?? 2008 Springer Science+Business Media B.V.
Ye, Qing; Yang, Xiaoguang; Dai, Shuwei; ...
2015-06-05
Here, we discuss that rice is one of the main crops grown in southern China. Global climate change has significantly altered the local water availability and temperature regime for rice production. In this study, we explored the influence of climate change on suitable rice cropping areas, rice cropping systems and crop water requirements (CWRs) during the growing season for historical (from 1951 to 2010) and future (from 2011 to 2100) time periods. The results indicated that the land areas suitable for rice cropping systems shifted northward and westward from 1951 to 2100 but with different amplitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Qing; Yang, Xiaoguang; Dai, Shuwei
Here, we discuss that rice is one of the main crops grown in southern China. Global climate change has significantly altered the local water availability and temperature regime for rice production. In this study, we explored the influence of climate change on suitable rice cropping areas, rice cropping systems and crop water requirements (CWRs) during the growing season for historical (from 1951 to 2010) and future (from 2011 to 2100) time periods. The results indicated that the land areas suitable for rice cropping systems shifted northward and westward from 1951 to 2100 but with different amplitudes.
Early warning signals of regime shifts from cross-scale connectivity of land-cover patterns
Giovanni Zurlini; Kenneth Bruce Jones; Kurt Hans Riitters; Bai-Lian Li; Irene Petrosillo
2014-01-01
Increasing external pressures from human activities and climate change can lead to desertification, affecting the livelihood of more than 25% of the worldâs population. Thus, determining proximity to transition to desertification is particularly central for arid regions before they may convert into deserts, and recent research has focused on devising early warning...
Ayron M. Strauch; Richard A. MacKenzie; Ralph W. Tingley
2017-01-01
Climate change is expected to affect air temperature and watershed hydrology, but the degree to which these concurrent changes affect stream temperature is not well documented in the tropics. How stream temperature varies over time under changing hydrologic conditions is difficult to isolate from seasonal changes in air temperature. Groundwater and bank storage...
Evidence-based review of seeding in post-fire rehabilitation and native plant market feasibility
Donna L. Peppin
2009-01-01
A changing climate and fire regime shifts in the western United States have led to an increase in revegetation activities, in particular post-wildfire rehabilitation and the need for locally-adapted plant materials. Broadcast seeding is one of the most widely used post-wildfire emergency response treatments to minimize soil erosion, promote plant community recovery,...
James N. Long; John Shaw; Marcella Windmuller-Campione
2018-01-01
As forest communities continue to experience interactions between climate change and shifting disturbance regimes, there is anincreased need to link ecological understanding to applied management. Whitebark pine (Pinus albicaulis) and limber pine (P. flexilis) are important high-elevation five-needle pines in the...
Retrospective analysis of AYK Chinook salmon growth
Ruggerone, Gregory T.; Nielsen, Jennifer L.; Agler, B.A.
2007-01-01
Harvests of Yukon and Kuskokwim Chinook salmon declined significantly during 1998- 2002 in response to fewer returning salmon. Factors affecting the decline in Chinook salmon abundance are largely unknown. Growth of salmon in freshwater and the ocean is generally thought to influence salmon survival, therefore we examined historical Chinook salmon catch trends and developed growth indices of age-1.3 and age-1.4 Yukon and Kuskokwim Chinook salmon during each year and life stage in freshwater and the ocean, 1964-2004, using measurements of salmon scale growth. Availability of Yukon scales was greater than that of Kuskokwim scales during 1964-2004.Harvests of Yukon and Kuskokwim Chinook salmon rapidly increased in the mid-1970s, then rapidly declined in the late 1990s, apparently in response to the 1976/77 ocean regime shift and the 1997/98 El Nino event. Runs of Nushagak District Chinook salmon (Bristol Bay) also appeared to have been affected by these events in addition to the 1989 regime shift. The rapid responses of Chinook salmon abundance to climate change suggest late life stages were primarily affected, at least initially. Therefore, we searched for Chinook salmon growth patterns that might be related to changes in climate.
Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia
Drobyshev, Igor; Bergeron, Yves; Vernal, Anne de; Moberg, Anders; Ali, Adam A.; Niklasson, Mats
2016-01-01
Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone. PMID:26940995
Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia
NASA Astrophysics Data System (ADS)
Drobyshev, Igor; Bergeron, Yves; Vernal, Anne De; Moberg, Anders; Ali, Adam A.; Niklasson, Mats
2016-03-01
Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone.
Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia.
Drobyshev, Igor; Bergeron, Yves; Vernal, Anne de; Moberg, Anders; Ali, Adam A; Niklasson, Mats
2016-03-04
Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone.
Trophic amplification of climate warming
Kirby, Richard R.; Beaugrand, Gregory
2009-01-01
Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems. PMID:19740882
Cohn, Janet S; Lunt, Ian D; Bradstock, Ross A; Hua, Quan; McDonald, Simon
2013-01-01
Predicting species distributions with changing climate has often relied on climatic variables, but increasingly there is recognition that disturbance regimes should also be included in distribution models. We examined how changes in rainfall and disturbances along climatic gradients determined demographic patterns in a widespread and long-lived tree species, Callitris glaucophylla in SE Australia. We examined recruitment since 1950 in relation to annual (200–600 mm) and seasonal (summer, uniform, winter) rainfall gradients, edaphic factors (topography), and disturbance regimes (vertebrate grazing [tenure and species], fire). A switch from recruitment success to failure occurred at 405 mm mean annual rainfall, coincident with a change in grazing regime. Recruitment was lowest on farms with rabbits below 405 mm rainfall (mean = 0–0.89 cohorts) and highest on less-disturbed tenures with no rabbits above 405 mm rainfall (mean = 3.25 cohorts). Moderate levels of recruitment occurred where farms had no rabbits or less disturbed tenures had rabbits above and below 405 mm rainfall (mean = 1.71–1.77 cohorts). These results show that low annual rainfall and high levels of introduced grazing has led to aging, contracting populations, while higher annual rainfall with low levels of grazing has led to younger, expanding populations. This study demonstrates how demographic patterns vary with rainfall and spatial variations in disturbances, which are linked in complex ways to climatic gradients. Predicting changes in tree distribution with climate change requires knowledge of how rainfall and key disturbances (tenure, vertebrate grazing) will shift along climatic gradients. PMID:23919160
NASA Astrophysics Data System (ADS)
Polanco Martínez, Josue M.; Medina-Elizalde, Martin; Burns, Stephen J.; Jiang, Xiuyang; Shen, Chuan-Chou
2015-04-01
It has been widely accepted by the paleoclimate and archaeology communities that extreme climate events (especially droughts) and past climate change played an important role in the cultural changes that occurred in at least some parts of the Maya Lowlands, from the Pre-Classic (2000 BC to 250 AD) to Post-Classic periods (1000 to 1521 AD) [1, 2]. In particular, a large number of studies suggest that the decline of the Maya civilization in the Terminal Classic Period was greatly influenced by prolonged severe drought events that probably triggered significant societal disruptions [1, 3, 4, 5]. Going further on these issues, the aim of this work is to detect climate regime shifts in several paleoclimate time series from the Yucatán Peninsula (México) that have been used as rainfall proxies [3, 5, 6, 7]. In order to extract information from the paleoclimate data studied, we have used a change point method [8] as implemented in the R package strucchange, as well as the RAMFIT method [9]. The preliminary results show for all the records analysed a prominent regime shift between 400 to 200 BCE (from a noticeable increase to a remarkable fall in precipitation), which is strongest in the recently obtained stalagmite (Itzamna) delta18-O precipitation record [7]. References [1] Gunn, J. D., Matheny, R. T., Folan, W. J., 2002. Climate-change studies in the Maya area. Ancient Mesoamerica, 13(01), 79-84. [2] Yaeger, J., Hodell, D. A., 2008. The collapse of Maya civilization: assessing the interaction of culture, climate, and environment. El Niño, Catastrophism, and Culture Change in Ancient America, 197-251. [3] Hodell, D. A., Curtis, J. H., Brenner, M., 1995. Possible role of climate in the collapse of Classic Maya civilization. Nature, 375(6530), 391-394. [4] Aimers, J., Hodell, D., 2011. Societal collapse: Drought and the Maya. Nature 479(7371), 44-45 (2011). [5] Medina-Elizalde, M., Rohling, E. J., 2012. Collapse of Classic Maya civilization related to modest reduction in precipitation. Science, 335(6071), 956-959. [6] Medina-Elizalde, M., Burns, S. J., Lea, D. W., Asmerom, Y., von Gunten, L., Polyak, V., Vuille, M., Karmalkar, A., 2010. High resolution stalagmite climate record from the Yucatán Peninsula spanning the Maya terminal classic period. Earth and Planetary Science Letters, 298(1), 255-262. [7] Medina-Elizalde, M., Burns, S. J, Jiang, X., Shen, C. C., Lases-Hernandez, F., Polanco-Martinez, J.M., High-resolution stalagmite record from the Yucatan Peninsula spanning the Preclassic period, work in progress to be submitted to the Global Planetary Change (by invitation). [8] Zeileis, A., Leisch, F., Hornik, K., Kleiber, C., 2002. strucchange: An R Package for Testing for Structural Change in Linear Regression Models. Journal of statistical software, 7(2), 1-38. [9] Mudelsee, M. (2000). Ramp function regression: a tool for quantifying climate transitions. Computers & Geosciences, 26(3), 293-307.
Long-term resistance to simulated climate change in an infertile grassland.
Grime, J Philip; Fridley, Jason D; Askew, Andrew P; Thompson, Ken; Hodgson, John G; Bennett, Chris R
2008-07-22
Climate shifts over this century are widely expected to alter the structure and functioning of temperate plant communities. However, long-term climate experiments in natural vegetation are rare and largely confined to systems with the capacity for rapid compositional change. In unproductive, grazed grassland at Buxton in northern England (U.K.), one of the longest running experimental manipulations of temperature and rainfall reveals vegetation highly resistant to climate shifts maintained over 13 yr. Here we document this resistance in the form of: (i) constancy in the relative abundance of growth forms and maintained dominance by long-lived, slow-growing grasses, sedges, and small forbs; (ii) immediate but minor shifts in the abundance of several species that have remained stable over the course of the experiment; (iii) no change in productivity in response to climate treatments with the exception of reduction from chronic summer drought; and (iv) only minor species losses in response to drought and winter heating. Overall, compositional changes induced by 13-yr exposure to climate regime change were less than short-term fluctuations in species abundances driven by interannual climate fluctuations. The lack of progressive compositional change, coupled with the long-term historical persistence of unproductive grasslands in northern England, suggests the community at Buxton possesses a stabilizing capacity that leads to long-term persistence of dominant species. Unproductive ecosystems provide a refuge for many threatened plants and animals and perform a diversity of ecosystem services. Our results support the view that changing land use and overexploitation rather than climate change per se constitute the primary threats to these fragile ecosystems.
NASA Astrophysics Data System (ADS)
Montaldo, N.; Oren, R.
2017-12-01
Over the past century, climate change is affecting precipitation regimes across the world. In the Mediterranean regions there is a persistent trend of precipitation and runoff decreases, generating a desertification process. Given the past winter precipitation shifts, the impacts on evapotranspiration (ET) need to be carefully evaluated, and the compelling question is what will be the impact of future climate change scenarios (predicting changes of precipitation and vapor pressure deficit, VPD) on evapotranspiration and water yield? Looking for the key elements of the climate change that are impacting annual ET, we investigate main climate conditions (e.g. precipitation and VPD) and basin physiographic properties contributing to annual ET. We propose a simplified model for annual ET predictions that accounts for the strong meteo seasonality typical of Mediterranean climates, using the steady state assumption of the basin water balance at mean annual scale. We investigate the Sardinia case study because the position of the island of Sardinia in the center of the western Mediterranean Sea basin and its low urbanization and human activity make Sardinia a perfect reference laboratory for Mediterranean hydrologic studies. Sardinian runoff decreased drastically over the 1975-2010 period, with mean yearly runoff reduced by more than 40% compared to the previous 1922-1974 period, and most yearly runoff in the Sardinian basins (70% on average) is produced by winter precipitation due to the seasonality typical of the Mediterranean climate regime. The use of our proposed model allows to predict future ET and water yield using future climate scenarios. We use the future climate scenarios predicted by Global climate models (GCM) in the Fifth Assessment report of the Intergovernmental Panel on Climate Change (IPCC), and we select most reliable models testing the past GCM predictions with historical data. Contrasting shifts of precipitation (both positive and negative) are predicted in the future scenarios by GCMs but these changes will produce significant changes (level of significance > 90%) only in runoff and not in ET. Surprisingly, we show that ET is insensitive to intra-annual rainfall distribution changes, and is insensitive to VPD scenario changes.
NASA Astrophysics Data System (ADS)
Li, Z.; Liu, P.; Feng, M.; Zhang, J.
2017-12-01
Based on the modeling of the water supply, power generation and environment (WPE) nexus by Feng et al. (2016), a refined theoretical model of competitive water consumption between human society and environment has been presented in this study, examining the role of technology advancement and social environmental awareness growth-induced pollution mitigation to the environment as a mechanism for the establishment and maintenance of the coexistence of both higher social water consumption and improved environment condition. By coupling environmental and social dynamics, both of which are represented by water consumption quantity, this study shows the possibility of sustainable situation of the social-environmental system when the benefit of technology offsets the side effect (pollution) of social development to the environment. Additionally, regime shifts could be triggered by gradually increased pollution rate, climate change-induced natural resources reduction and breakdown of the social environmental awareness. Therefore, in order to foresee the pending abrupt regime shifts of the system, early warning signals, including increasing variance and autocorrelation, have been examined when the system is undergoing stochastic disturbance. ADDIN EN.REFLIST Feng, M. et al., 2016. Modeling the nexus across water supply, power generation and environment systems using the system dynamics approach: Hehuang Region, China. J. Hydrol., 543: 344-359.
2018-01-01
Like many other high elevation alpine tree species, Rocky Mountain bristlecone pine (Pinus aristata Engelm.) may be particularly vulnerable to climate change. To evaluate its potential vulnerability to shifts in climate, we defined the suitable climate space for each of four genetic lineages of bristlecone pine and for other subalpine tree species in close proximity to bristlecone pine forests. Measuring changes in the suitable climate space for lineage groups is an important step beyond models that assume species are genetically homogenous. The suitable climate space for bristlecone pine in the year 2090 is projected to decline by 74% and the proportional distribution of suitable climate space for genetic lineages shifts toward those associated with warmer and wetter conditions. The 2090 climate space for bristlecone pine exhibits a bimodal distribution along an elevation gradient, presumably due to the persistence of the climate space in the Southern Rocky Mountains and exclusion at mid-elevations by conditions that favor the climate space of other species. These shifts have implications for changes in fire regimes, vulnerability to pest and pathogens, and altered carbon dynamics across the southern Rockies, which may reduce the likelihood of bristlecone pine trees achieving exceptional longevity in the future. The persistence and expansion of climate space for southern bristlecone pine genetic lineage groups in 2090 suggests that these sources may be the least vulnerable in the future. While these lineages may be more likely to persist and therefore present opportunities for proactive management (e.g., assisted migration) to maintain subalpine forest ecosystem services in a warmer world, our findings also imply heighted conservation concern for vulnerable northern lineages facing range contractions. PMID:29554097
Climate change adaptation strategies for resource management and conservation planning.
Lawler, Joshua J
2009-04-01
Recent rapid changes in the Earth's climate have altered ecological systems around the globe. Global warming has been linked to changes in physiology, phenology, species distributions, interspecific interactions, and disturbance regimes. Projected future climate change will undoubtedly result in even more dramatic shifts in the states of many ecosystems. These shifts will provide one of the largest challenges to natural resource managers and conservation planners. Managing natural resources and ecosystems in the face of uncertain climate requires new approaches. Here, the many adaptation strategies that have been proposed for managing natural systems in a changing climate are reviewed. Most of the recommended approaches are general principles and many are tools that managers are already using. What is new is a turning toward a more agile management perspective. To address climate change, managers will need to act over different spatial and temporal scales. The focus of restoration will need to shift from historic species assemblages to potential future ecosystem services. Active adaptive management based on potential future climate impact scenarios will need to be a part of everyday operations. And triage will likely become a critical option. Although many concepts and tools for addressing climate change have been proposed, key pieces of information are still missing. To successfully manage for climate change, a better understanding will be needed of which species and systems will likely be most affected by climate change, how to preserve and enhance the evolutionary capacity of species, how to implement effective adaptive management in new systems, and perhaps most importantly, in which situations and systems will the general adaptation strategies that have been proposed work and how can they be effectively applied.
Conditional heteroscedasticity as a leading indicator of ecological regime shifts.
Seekell, David A; Carpenter, Stephen R; Pace, Michael L
2011-10-01
Regime shifts are massive, often irreversible, rearrangements of nonlinear ecological processes that occur when systems pass critical transition points. Ecological regime shifts sometimes have severe consequences for human well-being, including eutrophication in lakes, desertification, and species extinctions. Theoretical and laboratory evidence suggests that statistical anomalies may be detectable leading indicators of regime shifts in ecological time series, making it possible to foresee and potentially avert incipient regime shifts. Conditional heteroscedasticity is persistent variance characteristic of time series with clustered volatility. Here, we analyze conditional heteroscedasticity as a potential leading indicator of regime shifts in ecological time series. We evaluate conditional heteroscedasticity by using ecological models with and without four types of critical transition. On approaching transition points, all time series contain significant conditional heteroscedasticity. This signal is detected hundreds of time steps in advance of the regime shift. Time series without regime shifts do not have significant conditional heteroscedasticity. Because probability values are easily associated with tests for conditional heteroscedasticity, detection of false positives in time series without regime shifts is minimized. This property reduces the need for a reference system to compare with the perturbed system.
NASA Astrophysics Data System (ADS)
Hänninen, Jari; Vuorinen, Ilppo; Rajasilta, Marjut; Reid, Philip C.
2015-11-01
Selected Baltic Sea watershed River Runoff (BSRR) events during 1970-2000 were used as predictor in Generalised Linear Mixed Models (GLIMMIX) for evidence of simultaneous changes/chain of events (including possible time lags) in some chemical, physical and biological variables in the Baltic and North Sea ecosystems. Our aim was to explore for climatic-based explanation for ecological regime shifts that were documented semi-simultaneously in both ecosystems. Certain similarities were identified in the North Sea and the Baltic Sea salinity, oxygen concentration, temperature and phyto- and zooplankton parameters. These findings suggest that BSRR events which originate in the Baltic Sea catchment area modify and contribute to large scale ecosystem changes not only in the Baltic Sea, but also in the adjacent parts of the North Sea. However, the Baltic Sea inter-annual and inter-decadal variabilities of physical and biological parameters are driven by direct atmospheric forcing, typically with a relatively short lag. In contrast, such changes in the North Sea are influenced by both local and direct atmospheric forcing, typically with a longer lag than in the Baltic, and a more regional, indirect forcing from changes in the North Atlantic. We suggest that this interactive system partially is behind large scale ecosystem regime shifts found in both Seas. During our study period two such shifts have been identified independently from us in a study earlier in the Southern and Central Baltic in 1980s and 1990s and a later one in 2001/2002 in the North Sea. As a post hoc test we compared the 0+ year class strength of the North Sea herring with BSRR intensity, and found evidence for higher herring production in high BSRR periods, which further corroborates the idea of a remote effect from the large watershed area of the Baltic. Regime shifts as well as their semi-synchronous appearance in two neighbouring sea areas could be identified. GLIMMIX models provide opportunities for determining and understanding the mechanisms behind marine ecosystem long-term and large-scale changes. Many studies have shown the importance of climatic factors (identified by the air pressure index, North Atlantic Oscillation) to the physical and biological changes over the North Atlantic. Our study enlarges the areal and temporal scope of these observations, and provides further support and explanation for climate as the pacemaker for marine ecological changes.
NASA Astrophysics Data System (ADS)
Zulkafli, Z. D.; Buytaert, W.; Veliz, C.
2014-12-01
The potential impact of a changing climate on Andean-Amazonian hydrology is an important question for scientists and policymakers alike, because of its implications for local ecosystem services such as water resources availability, river flow regulation, and eco-hydrology. This study presents new projections of climate change impacts on the hydrological regime of the upper Amazon river in Peru, and the consequent effect on two vulnerable species of freshwater turtle populations Podocnemis expansa (Amazon turtle) and Podocnemis unilis (yellow-spotted side neck turtle), which nest on its banks. To do this, the global climate model outputs of radiation, temperature, precipitation, wind, and humidity data from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) are propagated through a hydrological model to simulate changes in river flow. The model consists of a land surface scheme called the Joint-UK Land Environment Simulator (JULES) that is coupled to a distributed river flow routing routine, which also accounts for floodplain attenuation of flood peaks. It is parameterized using a combination of remote sensing (TRMM, MODIS, an Landsat) and ground observational data to reproduce reliably the historical floodplain regime. The climate-induced shifts are inferred from a comparison between the RCP 4.5 and 8.5 projections against the historical scenario. Changes in the 10th and 95th percentile of flows, as well as the distributions in the length of the dry and wet seasons are analysed. These parameters are then used to construct probability models of biologically significant events (BSEs - extreme dry year, extreme wet year and repiquete), which are negative drivers of the turtle-egg ovipositioning, nesting and hatching. The results indicate that the projected increase in wet-season precipitation overcome the increase in evapotranspirative demand from an increase in temperature, resulting in more frequent and longer term flooding that causes a net loss of total turtle-egg counts. Additionally, changes in air and water temperature may alter the male / female ratio of the turtles.
NASA Astrophysics Data System (ADS)
Mann, M.; Moritz, M.; Batllori, E.; Waller, E.; Krawchuk, M.; Berck, P.
2014-12-01
The costly interactions between humans and natural fire regimes throughout California demonstrate the need to understand the uncertainties surrounding wildfire, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires. Models estimate an increase in fire occurrence between nine and fifty-three percent by the end of the century. Our goal is to assess the role of uncertainty in climate and anthropogenic influences on the state's fire regime from 2000-2050. We develop an empirical model that integrates novel information about the distribution and characteristics of future plant communities without assuming a particular distribution, and improve on previous efforts by integrating dynamic estimates of population density at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of the total fire count, and that further housing development will incite or suppress additional fires according to their intensity. We also find that the total area burned is likely to increase but at a slower than historical rate. Previous findings of substantially increased numbers of fires may be tied to the assumption of static fuel loadings, and the use of proxy variables not relevant to plant community distributions. We also find considerable agreement between GFDL and PCM model A2 runs, with decreasing fire counts expected only in areas of coastal influence below San Francisco and above Los Angeles. Due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid deserts of the inland south. The broad shifts of wildfire between California's climatic regions forecast in this study point to dramatic shifts in the pressures plant and human communities will face by midcentury. The information provided by this study reduces the level of uncertainty surrounding the influence that natural and anthropogenic systems have on wildfire.
McKenna, Owen; Mushet, David M.; Rosenberry, Donald O.; LaBaugh, James W.
2017-01-01
Changing magnitude, frequency, and timing of precipitation can influence aquatic-system hydrological, geochemical, and biological processes, in some cases resulting in system-wide shifts to an alternate state. Since the early 1990s, the southern Prairie Pothole Region has been subjected to an extended period of increased wetness resulting in marked changes to aquatic systems defining this region. We explored numerous lines of evidence to identify: (1) how the recent wet period compared to historical variability, (2) hydrological, geochemical, and biological responses, and (3) how these responses might represent a state shift in the region’s wetland ecosystems. We analyzed long-term climate records and compared how different hydrological variables responded in this wet period compared to decades before the observed shift. Additionally, we used multi-decadal records of waterfowl population and subsurface tile drain records to explore wildlife and human responses to a shifting climate. Since 1993, a novel precipitation regime corresponded with increased pond numbers, ponded-water depths, lake levels, stream flows, groundwater heights, soil-moisture, waterfowl populations, and installation of subsurface tile drains in agricultural fields. These observed changes reflect an alteration in water storage and movement across the landscape that in turn has altered solute sources and concentrations of prairie-pothole wetlands and has increased pond permanence. Combined, these changes represent significant evidence for a state shift in the ecohydrological functioning of the region’s wetland ecosystems, a shift that may require a significant refinement of the previously developed “wetland continuum” concept.
Precipitation Regime Shift Enhanced the Rain Pulse Effect on Soil Respiration in a Semi-Arid Steppe
Yan, Liming; Chen, Shiping; Xia, Jianyang; Luo, Yiqi
2014-01-01
The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m−2) and 39.6% (61.7 g C m−2) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r 2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953–2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953–2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change. PMID:25093573
Precipitation regime shift enhanced the rain pulse effect on soil respiration in a semi-arid steppe.
Yan, Liming; Chen, Shiping; Xia, Jianyang; Luo, Yiqi
2014-01-01
The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m(-2)) and 39.6% (61.7 g C m(-2)) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953-2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953-2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change.
NASA Astrophysics Data System (ADS)
Maycock, A.; Masukwedza, G.; Hitchcock, P.
2017-12-01
The winter North Atlantic eddy-driven jet (NAJ) has been shown to exhibit three preferred latitudinal positions. Here we examine, for the first time, the influence of major Sudden Stratospheric Warmings (SSWs) on the regime behaviour of the NAJ using an ensemble of climate model experiments with stratospheric conditions nudged towards a major SSW, but with each ensemble member having freely evolving tropospheric conditions. The SSW experiment is compared to a control ensemble in which stratospheric variability is absent. The experiments show that the SSW leads to an increased occupancy of the southerly NAJ state and reduced occupancy of the northerly state. This effect is distinct from the mean southward shift of the NAJ identified in many previous studies, and instead suggests changes to the characteristics of NAJ variability as a result of SSWs. These results may aid in understanding the mechanisms by which SSWs impact on Euro-Atlantic climate.
Fire in Australian savannas: from leaf to landscape
Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri
2015-01-01
Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. PMID:25044767
NASA Astrophysics Data System (ADS)
Vannière, Boris; Power, Mitch J.; Roberts, Neil; Tinner, Willy; Carrión, José; Magny, Michel; Bartlein, Patrick
2010-05-01
In this contribution I will present a synthesis of mid- to late-Holocene fire activity from the Mediterranean basin and explore the linkages among fire, climate variability and seasonality, and people through several climatic and ecological transitions. Regional fire histories were created from 36 radiocarbon-dated sedimentary charcoal records, available from the Global Charcoal Database. During the mid-Holocene "Thermal Maximum", charcoal records from the northern Mediterranean suggest the region was more fire prone while records from the southern Mediterranean indicate a decrease in fire activity associated with wetter-than-present summers. A North-South partition at 40-43°N is apparent in the central and western Mediterranean. In the context of orbitally-induced summer insolation decrease, South Mediterranean wet conditions could be linked to the Afro-Asian summer monsoon which weakened after ca. 8000-6000 cal yr BP. Relatively abrupt changes in fire regime observed at ca. 5500-5000 cal yr BP may be associated to a threshold in this weakening influence of the orbitally-driven Afro-Asian monsoon strength. Charcoal records of past fire activity appear sensitive to both orbitally-forced climate changes and shorter lived excursions which may be related to cold events apparent in the North Atlantic record of ice-rafted debris. These results contradict former notions of gradual aridification of the entire region due to climatic forcing and/or human activities. In contrast, they suggest: 1) Teleconnections between the Mediterranean area and other climatic regions, in particular the North Atlantic and the low-latitude monsoon areas, influenced past fire regimes; 2) Gradual forcing, such as changes in orbital parameters, may have triggered more abrupt shifts in fire regime, either directly or indirectly through these teleconnections.
Thom, Dominik; Rammer, Werner; Dirnböck, Thomas; Müller, Jörg; Kobler, Johannes; Katzensteiner, Klaus; Helm, Norbert; Seidl, Rupert
2017-02-01
1. The ongoing changes to climate challenge the conservation of forest biodiversity. Yet, in thermally limited systems, such as temperate forests, not all species groups might be affected negatively. Furthermore, simultaneous changes in the disturbance regime have the potential to mitigate climate-related impacts on forest species. Here, we (i) investigated the potential long-term effect of climate change on biodiversity in a mountain forest landscape, (ii) assessed the effects of different disturbance frequencies, severities and sizes and (iii) identified biodiversity hotspots at the landscape scale to facilitate conservation management. 2. We employed the model iLand to dynamically simulate the tree vegetation on 13 865 ha of the Kalkalpen National Park in Austria over 1000 years, and investigated 36 unique combinations of different disturbance and climate scenarios. We used simulated changes in tree cover and composition as well as projected temperature and precipitation to predict changes in the diversity of Araneae, Carabidae, ground vegetation, Hemiptera, Hymenoptera, Mollusca, saproxylic beetles, Symphyta and Syrphidae, using empirical response functions. 3. Our findings revealed widely varying responses of biodiversity indicators to climate change. Five indicators showed overall negative effects, with Carabidae, saproxylic beetles and tree species diversity projected to decrease by more than 33%. Six indicators responded positively to climate change, with Hymenoptera, Mollusca and Syrphidae diversity projected to increase more than twofold. 4. Disturbances were generally beneficial for the studied indicators of biodiversity. Our results indicated that increasing disturbance frequency and severity have a positive effect on biodiversity, while increasing disturbance size has a moderately negative effect. Spatial hotspots of biodiversity were currently found in low- to mid-elevation areas of the mountainous study landscape, but shifted to higher-elevation zones under changing climate conditions. 5. Synthesis and applications . Our results highlight that intensifying disturbance regimes may alleviate some of the impacts of climate change on forest biodiversity. However, the projected shift in biodiversity hotspots is a challenge for static conservation areas. In this regard, overlapping hotspots under current and expected future conditions highlight priority areas for robust conservation management.
Insights into low-latitude cloud feedbacks from high-resolution models.
Bretherton, Christopher S
2015-11-13
Cloud feedbacks are a leading source of uncertainty in the climate sensitivity simulated by global climate models (GCMs). Low-latitude boundary-layer and cumulus cloud regimes are particularly problematic, because they are sustained by tight interactions between clouds and unresolved turbulent circulations. Turbulence-resolving models better simulate such cloud regimes and support the GCM consensus that they contribute to positive global cloud feedbacks. Large-eddy simulations using sub-100 m grid spacings over small computational domains elucidate marine boundary-layer cloud response to greenhouse warming. Four observationally supported mechanisms contribute: 'thermodynamic' cloudiness reduction from warming of the atmosphere-ocean column, 'radiative' cloudiness reduction from CO2- and H2O-induced increase in atmospheric emissivity aloft, 'stability-induced' cloud increase from increased lower tropospheric stratification, and 'dynamical' cloudiness increase from reduced subsidence. The cloudiness reduction mechanisms typically dominate, giving positive shortwave cloud feedback. Cloud-resolving models with horizontal grid spacings of a few kilometres illuminate how cumulonimbus cloud systems affect climate feedbacks. Limited-area simulations and superparameterized GCMs show upward shift and slight reduction of cloud cover in a warmer climate, implying positive cloud feedbacks. A global cloud-resolving model suggests tropical cirrus increases in a warmer climate, producing positive longwave cloud feedback, but results are sensitive to subgrid turbulence and ice microphysics schemes. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Helmschrot, J.; Malherbe, J.; Chamunorwa, M.; Muthige, M.; Petitta, M.; Calmanti, S.; Cucchi, M.; Syroka, J.; Iyahen, E.; Engelbrecht, F.
2017-12-01
Climate services are a key component of National Adaptation Plan (NAP) processes, which require the analysis of current climate conditions, future climate change scenarios and the identification of adaptation strategies, including the capacity to finance and implement effective adaptation options. The Extreme Climate Facility (XCF) proposed by the African Risk Capacity (ARC) developed a climate index insurance scheme, which is based on the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events, thus indicating possible shifts to a new climate regime in various regions. The main hazards covered by ECI are extreme dry, wet and heat events, with the possibility of adding other region-specific risk events. The ECI is standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be compared. Initially developed by an Italian company specialized in Climate Services, research is now conducted at the CSIR and SASSCAL, to verify and further develop the ECI for application in southern African countries, through a project initiated by the World Food Programme (WFP) and ARC. The paper will present findings on the most appropriate definitions of extremely wet and dry conditions in Africa, in terms of their impact across a multitude of sub-regional climates of the African continent. Findings of a verification analysis of the ECI, as determined through vegetation monitoring data and the SASSCAL weather station network will be discussed. Changes in the ECI under climate change will subsequently be projected, using detailed regional projections generated by the CSIR and through the Coordinated Regional Downscaling Experiment (CORDEX). This work will be concluded by the development of a web-based climate service informing African Stakeholders on climate extremes.
Effects of climate change on forest vegetation in the Northern Rockies Region [Chapter 6
Keane, Robert E.; Mahalovich, Mary Frances; Bollenbacher, Barry L.; Manning, Mary E.; Loehman, Rachel A.; Jain, Terrie B.; Holsinger, Lisa M.; Larson, Andrew J.; Webster, Meredith M.
2018-01-01
The projected rapid changes in climate will affect the unique vegetation assemblages of the Northern Rockies region in myriad ways, both directly through shifts in vegetation growth, mortality, and regeneration, and indirectly through changes in disturbance regimes and interactions with changes in other ecosystem processes, such as hydrology, snow dynamics, and exotic invasions (Bonan 2008; Hansen and Phillips 2015; Hansen et al. 2001; Notaro et al. 2007). These impacts, taken collectively, could change the way vegetation is managed by public land agencies in this area. Some species may be in danger of rapid decreases in abundance, while others may undergo range expansion (Landhäusser et al. 2010). New vegetation communities may form, while historical vegetation complexes may simply shift to other areas of the landscape or become rare. Juxtaposed with climate change concerns are the consequences of other land management policies and past activities, such as fire exclusion, fuels treatments, and grazing. A thorough assessment of the responses of vegetation to projected climate change is needed, along with an evaluation of the vulnerability of important species, communities, and vegetation-related resources that may be influenced by the effects, both direct and indirect, of climate change. This assessment must also account for past management actions and current vegetation conditions and their interactions with future climates.
Miocene shift of European atmospheric circulation from trade wind to westerlies
Quan, Cheng; Liu, Yu-Sheng (Christopher); Tang, Hui; Utescher, Torsten
2014-01-01
The modern European climatic regime is peculiar, due to its unitary winter but diverse summer climates and a pronounced Mediterranean climate in the south. However, little is known on its evolution in the deep time. Here we reconstruct the European summer climate conditions in the Tortonian (11.62–7.246 Ma) using plant fossil assemblages from 75 well-dated sites across Europe. Our results clearly show that the Tortonian Europe mainly had humid to subhumid summers and no arid climate has been conclusively detected, indicating that the summer-dry Mediterranean-type climate has not yet been established along most of the Mediterranean coast at least by the Tortonian. More importantly, the reconstructed distribution pattern of summer precipitation reveals that the Tortonian European must have largely been controlled by westerlies, resulting in higher precipitation in the west and the lower in the east. The Tortonian westerly wind field appears to differ principally from the trade wind pattern of the preceding Serravallian (13.82–11.62 Ma), recently deduced from herpetofaunal fossils. Such a shift in atmospheric circulation, if ever occurred, might result from the development of ice caps and glaciers in the polar region during the Late Miocene global cooling, the then reorganization of oceanic circulation, and/or the Himalayan-Tibetan uplift. PMID:25012454
Global regime shift dynamics of catastrophic sea urchin overgrazing
Ling, S. D.; Scheibling, R. E.; Rassweiler, A.; Johnson, C. R.; Shears, N.; Connell, S. D.; Salomon, A. K.; Norderhaug, K. M.; Pérez-Matus, A.; Hernández, J. C.; Clemente, S.; Blamey, L. K.; Hereu, B.; Ballesteros, E.; Sala, E.; Garrabou, J.; Cebrian, E.; Zabala, M.; Fujita, D.; Johnson, L. E.
2015-01-01
A pronounced, widespread and persistent regime shift among marine ecosystems is observable on temperate rocky reefs as a result of sea urchin overgrazing. Here, we empirically define regime-shift dynamics for this grazing system which transitions between productive macroalgal beds and impoverished urchin barrens. Catastrophic in nature, urchin overgrazing in a well-studied Australian system demonstrates a discontinuous regime shift, which is of particular management concern as recovery of desirable macroalgal beds requires reducing grazers to well below the initial threshold of overgrazing. Generality of this regime-shift dynamic is explored across 13 rocky reef systems (spanning 11 different regions from both hemispheres) by compiling available survey data (totalling 10 901 quadrats surveyed in situ) plus experimental regime-shift responses (observed during a total of 57 in situ manipulations). The emergent and globally coherent pattern shows urchin grazing to cause a discontinuous ‘catastrophic’ regime shift, with hysteresis effect of approximately one order of magnitude in urchin biomass between critical thresholds of overgrazing and recovery. Different life-history traits appear to create asymmetry in the pace of overgrazing versus recovery. Once shifted, strong feedback mechanisms provide resilience for each alternative state thus defining the catastrophic nature of this regime shift. Importantly, human-derived stressors can act to erode resilience of desirable macroalgal beds while strengthening resilience of urchin barrens, thus exacerbating the risk, spatial extent and irreversibility of an unwanted regime shift for marine ecosystems.
Changes in forest productivity across Alaska consistent with biome shift.
Beck, Pieter S A; Juday, Glenn P; Alix, Claire; Barber, Valerie A; Winslow, Stephen E; Sousa, Emily E; Heiser, Patricia; Herriges, James D; Goetz, Scott J
2011-04-01
Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline. © 2011 Blackwell Publishing Ltd/CNRS.
Campbell, John L.; Shinneman, Douglas
2017-01-01
IntroductionClimate change is expected to impose significant tension on the geographic distribution of tree species. Yet, tree species range shifts may be delayed by their long life spans, capacity to withstand long periods of physiological stress, and dispersal limitations. Wildfire could theoretically break this biological inertia by killing forest canopies and facilitating species redistribution under changing climate. We investigated the capacity of wildfire to modulate climate-induced tree redistribution across a montane landscape in the central Rocky Mountains under three climate scenarios (contemporary and two warmer future climates) and three wildfire scenarios (representing historical, suppressed, and future fire regimes).MethodsDistributions of four common tree species were projected over 90 years by pairing a climate niche model with a forest landscape simulation model that simulates species dispersal, establishment, and mortality under alternative disturbance regimes and climate scenarios.ResultsThree species (Douglas-fir, lodgepole pine, subalpine fir) declined in abundance over time, due to climate-driven contraction in area suitable for establishment, while one species (ponderosa pine) was unable to exploit climate-driven expansion of area suitable for establishment. Increased fire frequency accelerated declines in area occupied by Douglas-fir, lodgepole pine, and subalpine fir, and it maintained local abundance but not range expansion of ponderosa pine.ConclusionsWildfire may play a larger role in eliminating these conifer species along trailing edges of their distributions than facilitating establishment along leading edges, in part due to dispersal limitations and interspecific competition, and future populations may increasingly depend on persistence in locations unfavorable for their establishment.
Patterns of interannual climate variability in large marine ecosystems
NASA Astrophysics Data System (ADS)
Soares, Helena Cachanhuk; Gherardi, Douglas Francisco Marcolino; Pezzi, Luciano Ponzi; Kayano, Mary Toshie; Paes, Eduardo Tavares
2014-06-01
The purpose of this study is to investigate the vulnerability of the Brazilian and western African Large Marine Ecosystems (LMEs) to local and remote forcing, including the Pacific Decadal Oscillation (PDO) regime shift. The analyses are based on the total and partial correlation between climate indices (Niño3, tropical South Atlantic (TSA), tropical North Atlantic (TNA) and Antarctic oscillation (AAO) and oceanic and atmospheric variables (sea surface temperature (SST), wind stress, Ekman transport, sea level pressure and outgoing longwave radiation). Differences in the correlation fields between the cold and warm PDO indicate that this mode exerts a significant impact on the thermodynamic balance of the ocean-atmosphere system on the South Atlantic ocean, mainly in the South Brazil and Benguela LMEs. The PDO regime shift also resulted in an increase in the spatial variability of SST and wind stress anomalies, mainly along the western African LMEs. Another important finding is the strong AAO influence on the SST anomalies (SSTA) in the South Brazil LME. It is also striking that TSA modulates the relation between El Niño-Southern Oscillation (ENSO) and SSTA, by reducing the influence of ENSO on SSTA during the warm PDO period in the North and East Brazil LMEs and in the Guinea Current LME. The relation between AAO and SSTA on the tropical area is also influenced by the TSA. The results shown here give a clear indication that future ecosystem-based management actions aimed at the conservation of marine resources under climate change need to consider the high complexity of basin-scale interactions between local and remote climate forcings, including their effects on the ocean-atmosphere system of the South Atlantic ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.
Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model -based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes,more » manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the forest over the long-term. The carbon loss from each hurricane event, in all scenarios, always recovered over sufficient time. Our results suggest that subtropical dry forests will remain resilient to hurricane disturbance. However carbon stocks will decrease if future climates increase hurricane frequency by 50% or more.« less
NASA Astrophysics Data System (ADS)
Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; Shugart, Herman H.
2017-02-01
Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model-based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes, manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the forest over the long-term. The carbon loss from each hurricane event, in all scenarios, always recovered over sufficient time. Our results suggest that subtropical dry forests will remain resilient to hurricane disturbance. However carbon stocks will decrease if future climates increase hurricane frequency by 50% or more.
Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; ...
2017-02-07
Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model -based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes,more » manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the forest over the long-term. The carbon loss from each hurricane event, in all scenarios, always recovered over sufficient time. Our results suggest that subtropical dry forests will remain resilient to hurricane disturbance. However carbon stocks will decrease if future climates increase hurricane frequency by 50% or more.« less
The climate space of fire regimes in north-western North America
Whitman, Ellen; Batllori, Enric; Parisien, Marc-André; Miller, Carol; Coop, Jonathan D.; Krawchuk, Meg A.; Chong, Geneva W.; Haire, Sandra L.
2015-01-01
Aim. Studies of fire activity along environmental gradients have been undertaken, but the results of such studies have yet to be integrated with fire-regime analysis. We characterize fire-regime components along climate gradients and a gradient of human influence. Location. We focus on a climatically diverse region of north-western North America extending from northern British Columbia, Canada, to northern Utah and Colorado, USA.Methods. We used a multivariate framework to collapse 12 climatic variables into two major climate gradients and binned them into 73 discrete climate domains. We examined variation in fire-regime components (frequency, size, severity, seasonality and cause) across climate domains. Fire-regime attributes were compiled from existing databases and Landsat imagery for 1897 large fires. Relationships among the fire-regime components, climate gradients and human influence were examined through bivariate regressions. The unique contribution of human influence was also assessed.Results. A primary climate gradient of temperature and summer precipitation and a secondary gradient of continentality and winter precipitation in the study area were identified. Fire occupied a distinct central region of such climate space, within which fire-regime components varied considerably. We identified significant interrelations between fire-regime components of fire size, frequency, burn severity and cause. The influence of humans was apparent in patterns of burn severity and ignition cause.Main conclusions. Wildfire activity is highest where thermal and moisture gradients converge to promote fuel production, flammability and ignitions. Having linked fire-regime components to large-scale climate gradients, we show that fire regimes – like the climate that controls them – are a part of a continuum, expanding on models of varying constraints on fire activity. The observed relationships between fire-regime components, together with the distinct role of climatic and human influences, generate variation in biotic communities. Thus, future changes to climate may lead to ecological changes through altered fire regimes.
Is a changing climate affecting the tropical cyclone behavior of Cape Verde?
NASA Astrophysics Data System (ADS)
Emmenegger, T. W.; Mann, M. E.; Evans, J. L.
2016-12-01
An existing dataset of synthetic tropical cyclone (TC) tracks derived from climate change simulations were used to explore TC variability within a 250 km radius of the Cape Verde Islands (16.5388N, 23.0418W). The synthetic sets were examined according to genesis point location, track projection, intensity, frequency, and seasonality within the observational era (1851 AD to present). These factors of TC variability have been shown to be strongly related to climate oscillations, thus the historical era was grouped by the increasing and decreasing regimes of sea surface temperature (SST) in the main development region (MDR) of the Atlantic Ocean. Numerous studies have examined Atlantic Basin activity throughout this era; the goal of this study is to investigate possible variations in TC behavior around Cape Verde, ultimately determining whether Cape Verde experiences similar fluctuations in activity as observed basin-wide. We find that several facets of TC variability such as intensity, seasonality, and genesis point location around Cape Verde are not significantly different to that of the entire basin, thus forecasts of the entire basin in these respects may also apply to our site. A long-term trend of increasing TC frequency can be identified basin-wide within the observed set, yet activity around Cape Verde does not display this same behavior observably or in any synthetic set. A relationship between the location of genesis points and the regimes of SST fluctuation is shown to be existent. We find both more observed and synthetic genesis points within the vicinity of Cape Verde during cool periods, and an eastward and equatorward shift in cyclogenesis is evident during warm regimes. This southeastern shift in genesis points attributes to the increased intensities of TCs seen during periods of warmer SST. Years of increased SST are additionally linked to an earlier seasonality in Cape Verde.
NASA Astrophysics Data System (ADS)
Ito, Shin-ichi; Rose, Kenneth A.; Megrey, Bernard A.; Schweigert, Jake; Hay, Douglas; Werner, Francisco E.; Aita, Maki Noguchi
2015-11-01
Pacific herring populations at eight North Pacific Rim locations were simulated to compare basin-wide geographic variations in age-specific growth due to environmental influences on marine productivity and population-specific responses to regime shifts. Temperature and zooplankton abundance from a three-dimensional lower-trophic ecosystem model (NEMURO: North Pacific Ecosystem Model for Understanding Regional Oceanography) simulation from 1948 to 2002 were used as inputs to a herring bioenergetics growth model. Herring populations from California, the west coast of Vancouver Island (WCVI), Prince William Sound (PWS), Togiak Alaska, the western Bering Sea (WBS), the Sea of Okhotsk (SO), Sakhalin, and Peter the Great Bay (PGB) were examined. The half-saturation coefficients of herring feeding were calibrated to climatological conditions at each of the eight locations to reproduce averaged size-at-age data. The depth of averaging used for water temperature and zooplankton, and the maximum consumption rate parameter, were made specific to each location. Using the calibrated half-saturation coefficients, the 1948-2002 period was then simulated using daily values of water temperature and zooplankton densities interpolated from monthly model output. To detect regime shifts in simulated temperatures, zooplankton and herring growth rates, we applied sequential t-test analyses on the 54 years of hindcast simulation values. The detected shifts of herring age-5 growth showed closest match (69%) to the regime shift years (1957/58, 1970/71, 1976/77, 1988/89, 1998/99). We explored relationships among locations using cluster and principal component analyses. The first principal component of water temperature showed good correspondence to the Pacific Decadal Oscillation and all zooplankton groups showed a pan-Pacific decrease after the 1976/77 regime shift. However, the first principal component of herring growth rate showed decreased growth at the SO, PWS, WCVI and California locations and increased growth at the Sakhalin, WBS and Togiak locations after 1977. The SO location belonged to the same cluster as the location in with the eastern North Pacific. The calibrated half-saturation coefficients affected the degree to which growth was sensitive to interannual variation in water temperature versus zooplankton. For example, the half-saturation values for the SO location resulted in very efficient feeding that shifted the sensitivity of herring growth from food to temperature. The model results demonstrate how geographic specificity of bioenergetics parameters, coupled with location-specific variation in temperature and food, can combine to determine local and regional responses of fish growth to climate forcing.
Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes
NASA Astrophysics Data System (ADS)
Fink, Gabriel; Wessels, Martin; Wüest, Alfred
2016-09-01
Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.
Deveautour, Coline; Donn, Suzanne; Power, Sally A; Bennett, Alison E; Powell, Jeff R
2018-04-01
Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterized arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem. © 2018 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkholder, Barbara K.; Grant, Gordon E.; Haggerty, Roy
2008-02-08
Understanding heat fluxes within rivers is increasingly important as anthropogenic influences and changing climate alter river thermal regimes, which can lead to shifts in aquatic species composition and changing rates of biogeochemical processes (Evans, et al., 1998: Pool and Berman, 2001). Numerous and inter-related physical mechanisms influence stream temperature, making it difficult to distinguish the magnitude of impact of individual drivers (johnson, 2004).
Managing fish habitat for flow and temperature extremes ...
Summer low flows and stream temperature maxima are key drivers affecting the sustainability of fish populations. Thus, it is critical to understand both the natural templates of spatiotemporal variability, how these are shifting due to anthropogenic influences of development and climate change, and how these impacts can be moderated by natural and constructed green infrastructure. Low flow statistics of New England streams have been characterized using a combination of regression equations to describe long-term averages as a function of indicators of hydrologic regime (rain- versus snow-dominated), precipitation, evapotranspiration or temperature, surface water storage, baseflow recession rates, and impervious cover. Difference equations have been constructed to describe interannual variation in low flow as a function of changing air temperature, precipitation, and ocean-atmospheric teleconnection indices. Spatial statistical network models have been applied to explore fine-scale variability of thermal regimes along stream networks in New England as a function of variables describing natural and altered energy inputs, groundwater contributions, and retention time. Low flows exacerbate temperature impacts by reducing thermal inertia of streams to energy inputs. Based on these models, we can construct scenarios of fish habitat suitability using current and projected future climate and the potential for preservation and restoration of historic habitat regimes th
The 3000-4000 cal. BP anthropogenic shift in fire regime in the French Pyrenees.
NASA Astrophysics Data System (ADS)
Rius, D.; Vannière, B.; Galop, D.; Richard, H.
2009-04-01
Fire is a key disturbing agent in a wide range of ecosystems: boreal biome (Pitkanen, 2000), Mediterranean area (Colombaroli et al., 2008) as well as temperate European mountain zones (Tinner et al., 1999). During the Holocene, climate may control fire regime by both ignition and fire spread-favouring conditions (i.e. composition, structure and moisture of biomass) whereas man may change charcoal accumulation patterns through type and intensity of agro-pastoral activities. In western and Mediterranean Europe, single sites charcoal analysis recorded the anthropogenic forcing over fire regime broadly between the mid and the late-Holocene. Turner et al (2008) showed that climate and fire had been disconnected since 1700 cal. BP in Turkey. In central Swiss, Mean Fire Interval decreased by two times 2000 years ago due to increasing human impact (Stahli et al., 2006). In Italy, climate and man have had a combined influence on fire-hazard since ca 4000 cal. BP (Vannière et al., 2008). In the Pyrenees Mountains, the linkage between agro-pastoral practices and fire could be dated back to ca 4000-3000 cal. BP with a clear succession of a clearance phase (high fire frequency) followed by a quite linear trend throughout Middle Ages and Modern times corresponding to a change in fire use (Vanniere et al., 2001; Galop et al., 2002, Rius et al., in press). The quantification of fire regimes parameters such as frequency with robust methodological tools (Inferred Fire Frequency, Mean Fire Interval) is needed to understand and characterise such shifts. Here we present two sequences from the Lourdes basin (col d'Ech peat bog) and from the occidental Pyrenees (Gabarn peat bog), which cover the last 9000 years with high temporal resolution. The main goals of this study were to (1) assess control factors of fire regime throughout the lateglacial and Holocene (climate and/or man) on the local scale, (2) evidence the local/regional significance of these control factors , (3) discuss the role of fire in landscape management during the last 3000 years. These fire records emphasizes a shift in fire regime between ca 4000 and 3000 cal BP with similar trends during the last 3000 years (i.e. Mean Fire Interval = 150 years), which appear to be human-driven. However, both Neolithic and Bronze Age periods have different charcoal accumulation patterns suggesting discrepancies between local fire histories and thus different land-use trends and intensity. References Colombaroli D., Vannière B., Chapron E., Magny M. & Tinner W., 2008. Fire-vegetation interactions during the Mesolithic-Neolithic at Lago dell'Accesa, Italy. The Holocene 18: 679-692. Galop, D., Vanniere, B., Fontugne, M., 2002. Human activities and fire history since 4500 BC on the northern slope of the Pyrenees: a record from Cuguron (Central Pyrenees, France). Proceedings of the Second International Meeting of Anthracology, Paris, September 2000, BAR International Series, 43-51. Pitkanen A., 2000. Fire frequency and forest structure at a dry site between Ad 400 and 1110 based on charcoal and pollen records from a laminated lake sediment in eastern Finland. The Holocene 10,2: 221-228. Rius D., Vanniere B. & Galop D., in press. Fire frequency and landscape management in the north-western Pyrenean piedmont (France) since early Neolithic (8000 cal. BP). The Holocene. Stähli, M., Finsinger, W., Tinner, W., Allgower, B., 2006. Wildfire history and fire ecology of the Swiss National Park (Central Alps): new evidence from charcoal, pollen and plant macrofossils. The Holocene 16, 805-817. Tinner, W., Hubschmid, P., Wehrli, M., Ammann, B., Conedera, M., 1999. Long-term forest fire ecology and dynamics in southern Switzerland. Journal of Ecology 87, 273-289. Turner R., Roberts N. & Jones M. D., 2008. Climatic pacing of Mediterranean fire histories from lake sedimentary microcharcoal. Global and Planetary Change 63: 317-324. Vanniere, B., Galop, D., Rendu, C., Davasse, B., 2001. Feu et pratiques agro-pastorales dans les Pyrénées-Orientales : le cas de la montagne d'Enveitg (Cerdagne, Pyrénées-Orientales, France). R.G.P.S.O.,11, 29-42. Vanniere, B., Colombaroli, D., Chapron, E., Leroux, A., Tinner, W., Magny, M., 2008. Climate versus human-driven fire regimes in Mediterranean landscapes : the Holocene record of Lago dell'Accesa (Tuscany, Italy). Quaternary Science Reviews 27, 1181- 1196.
Fire in Australian savannas: from leaf to landscape.
Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri
2015-01-01
Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Differential declines in Alaskan boreal forest vitality related to climate and competition.
Trugman, Anna T; Medvigy, David; Anderegg, William R L; Pacala, Stephen W
2018-03-01
Rapid warming and changes in water availability at high latitudes alter resource abundance, tree competition, and disturbance regimes. While these changes are expected to disrupt the functioning of boreal forests, their ultimate implications for forest composition are uncertain. In particular, recent site-level studies of the Alaskan boreal forest have reported both increases and decreases in productivity over the past few decades. Here, we test the idea that variations in Alaskan forest growth and mortality rates are contingent on species composition. Using forest inventory measurements and climate data from plots located throughout interior and south-central Alaska, we show significant growth and mortality responses associated with competition, midsummer vapor pressure deficit, and increased growing season length. The governing climate and competition processes differed substantially across species. Surprisingly, the most dramatic climate response occurred in the drought tolerant angiosperm species, trembling aspen, and linked high midsummer vapor pressure deficits to decreased growth and increased insect-related mortality. Given that species composition in the Alaskan and western Canadian boreal forests is projected to shift toward early-successional angiosperm species due to fire regime, these results underscore the potential for a reduction in boreal productivity stemming from increases in midsummer evaporative demand. © 2017 John Wiley & Sons Ltd.
Climate variations and changes in mass of three glaciers in western North America
Hodge, S.M.; Trabant, D.C.; Krimmel, R.M.; Heinrichs, T.A.; March, R.S.; Josberger, E.G.
1998-01-01
Time series of net and seasonal mass balances for three glaciers in western North America, one in the Pacific Northwest and two in Alaska, show various relationships to Pacific hemisphere climate indexes. During the winter season the two coastal, maritime-regime glaciers, over 2000 km apart, are affected almost identically, albeit inversely, by atmospheric and oceanic conditions in both the tropical and North Pacific. The two Alaska glaciers, only 350 km apart, have almost no coherence. Lag correlations show that in winter the maritime glaciers are influenced by concurrent conditions in the North Pacific, but by conditions in the tropical Pacific in August-September of the prior northern summer. The winter balance variations contain interannual El Nino-Southern Oscillation variability superimposed on North Pacific interdecadal variability; the interdecadal 1976-77 climate regime shift is clearly evident. The summer balances and the continental-regime glacier have a general lack of correlations, with no clear, strong, consistent patterns, probably a result of being influenced more by local processes or by circulation patterns outside the Pacific Ocean basin. The results show the Pacific Northwest is strongly influenced by conditions in the tropical Pacific, but that this teleconnection has broken down in recent years, starting in 1989. During the seven years since then (1989-95), all three glaciers have shown, for the first time, coherent signals, which were net mass loss at the highest rate in the entire record. The authors' results agree with those of other recent studies that suggest these recent years are unusual and may be a signature of climate warming.
NASA Astrophysics Data System (ADS)
Kasischke, Eric S.; Turetsky, Merritt R.
2006-05-01
We used historic records from 1959-99 to explore fire regime characteristics at ecozone scales across the entire North American boreal region (NABR). Shifts in the NABR fire regime between the 1960s/70s and the 1980s/90s were characterized by a doubling of annual burned area and more than a doubling of the frequency of larger fire years because of more large fire events (>1,000 km2). The proportion of total burned area from human-ignited fires decreased over this same time period, while the proportion of burning during the early and late- growing-seasons increased. Trends in increased burned area were consistent across the NABR ecozones, though the western ecozones experienced greater increases in larger fire years compared to the eastern ecozones. Seasonal patterns of burning differed among ecozones. Along with the climate warming, changes in the fire regime characteristics may be an important driver of future ecosystem processes in the NABR.
Blinova, Ilona; Chmielewski, Frank-Michael
2015-06-01
Anomalies in the timing of the thermal growing season have become obvious in the NE part of Fennoscandia since 2000. They are in accordance with climatic changes reported for Europe and Fennoscandia. The actual length of the growing season reached 120 days on average, onset on 30 May and ending on 27 September (1981-2010). Shifts in the timing of the growing season and its mean prolongation by 18.5 days/62a are demonstrated for Murmansk Region (1951-2012). In this period, the onset of the growing season advanced by 7.1 days/62a, while the end was extended by 11.4 days/62a. The delay in the end of the growing season is similar to the entire Fennoscandian pattern but it has not been detected in the rest of Europe. The regional pattern of climatic regimes in Murmansk Region remained stable in comparison with earlier climatic maps (1971). However, the actual shifts in the timing of the growing season were more pronounced in colder (oceanic and mountainous) parts. Recent climatic trends could influence the retreat of the tundra zone and changes in the forest line. Losses of tundra biodiversity and enrichment of the northern taiga by southern species could be expected from present climatic trends.
NASA Astrophysics Data System (ADS)
Henne, Paul D.; Hawbaker, Todd J.; Zhao, Feng; Huang, Chengquan; Berryman, Erin M.; Zhu, Zhiliang
2016-04-01
The Greater Yellowstone Ecosystem (GYE) provides unique opportunities to understand how changing climate, land use, and disturbance affect ecosystem carbon balance. The GYE is one of the largest, most intact ecosystems in the United States. However, distinct management histories on National Park, National Forest, and private lands, elevational climate gradients, and variable fire activity, have created a mosaic of stand ages and forest types. It is uncertain how greenhouse forcing may alter the carbon balance of the GYE. Whereas increasing temperatures may enhance productivity and perpetuate the GYE as a carbon sink, climate-driven increases in fire frequency may offset productivity gains by limiting biomass accumulation. We investigated how changes in fire frequency and size may affect vegetation dynamics and carbon sequestration potential in the GYE using the LANDIS-II dynamic landscape vegetation model. LANDIS-II provides sufficient spatial resolution to capture landscape-level variation in forest biomass and forest types (i.e. 90 × 90 m grid cells), but can integrate disturbance regimes and vegetation dynamics across the entire GYE (92,000 km2). We initiated our simulations with biomass and stand conditions that preceded the exceptional 1988 fire, when 16% of the GYE burned. We inferred the biomass, species abundances, and stand demographics of each model cell by combining satellite imagery with forest inventory data, and developed two fire regime scenarios from historical fire records. We developed a historic wildfire scenario with infrequent fires by excluding 1988 from our calibration of fire sizes and frequencies, and a future scenario with more frequent and larger fires by including 1988 in our calibrations. Fire frequency increased in all forest types in our future scenario, with a 152% increase in the annual forest area burned relative to observed area burned during recent decades. However, the changes in fire frequency varied among forest types, with the largest increases in lodgepole pine (Pinus contorta; 332% increase) and spruce/fir (Picea engelmannii, Abies lasiocarpa; 243% increase) stands. In model runs with the historic fire regime, average stand age and live biomass remained consistent with pre-1988 values during the 200-year simulation period; biomass increased significantly only in recently-logged areas. In contrast, a marked shift to younger stands with lower biomass occurred in the future fire scenario. Average stand age declined from 112 years to 31 years in lodgepole pine stands, and from 191 years to 65 years in spruce/fir stands, with consequent reductions in living biomass. A smaller shift in stand age was simulated for douglas-fir (Pseudotsuga menziesii) stands (i.e. 121 to 92 years). These fire-driven changes in stand age and biomass coincided with important shifts in species abundances. Specifically, lodgepole pine stands replaced large areas previously dominated by spruce and fir. Our results suggest that the potential for increasing the amount of fossil fuel emissions offset by carbon sequestration on public lands in the American West is limited by ongoing changes in disturbance regimes. Instead, land managers may need to consider strategies to adapt to climate change impacts.
Dieleman, Catherine M; Branfireun, Brian A; McLaughlin, James W; Lindo, Zoë
2015-01-01
The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. © 2014 John Wiley & Sons Ltd.
Reynolds, Lindsay; Shafroth, Patrick B.
2017-01-01
Droughts in dryland regions on all continents are expected to increase in severity and duration under future climate projections. In dryland regions, it is likely that minimum streamflow will decrease with some perennial streams shifting to intermittent flow under climate-driven changes in precipitation and runoff and increases in temperature. Decreasing base flow and shifting flow regimes from perennial to intermittent could have significant implications for stream-dependent biota, including riparian vegetation. In this study, we asked, how do riparian plant communities vary along wet-to-dry hydrologic gradients on small (first–third order) streams? We collected data on geomorphic, hydrologic, and plant community characteristics on 54 stream sites ranging in hydrology from intermittent to perennial flow across the Upper Colorado River Basin (284,898 km2). We found that plant communities varied along hydrologic gradients from high to low elevation between streams, and perennial to intermittent flow. We identified indicator species associated with different hydrologic conditions and suggest how plant communities may shift under warmer, drier conditions. Our results indicate that species richness and cover of total, perennial, wetland, and native plant groups will decrease while annual plants will increase under drying conditions. Understanding how plant communities respond to regional drivers such as hydroclimate requires broad-scale approaches such as sampling across whole river basins. With increasingly arid conditions in many regions of the globe, understanding plant community shifts is key to understanding the future of riparian ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond-Lamberty, Benjamin; Bunn, Andrew G.; Thomson, Allison M.
High-latitude northern ecosystems are experiencing rapid climate changes, and represent a large potential climate feedback because of their high soil carbon densities and shifting disturbance regimes. A significant carbon flow from these ecosystems is soil respiration (RS, the flow of carbon dioxide, generated by plant roots and soil fauna, from the soil surface to atmosphere), and any change in the high-latitude carbon cycle might thus be reflected in RS observed in the field. This study used two variants of a machine-learning algorithm and least squares regression to examine how remotely-sensed canopy greenness (NDVI), climate, and other variables are coupled tomore » annual RS based on 105 observations from 64 circumpolar sites in a global database. The addition of NDVI roughly doubled model performance, with the best-performing models explaining ~62% of observed RS variability« less
Regime shifts driven by dynamic correlations in gene expression noise
NASA Astrophysics Data System (ADS)
Sharma, Yogita; Dutta, Partha Sharathi
2017-08-01
Gene expression is a noisy process that leads to regime shifts between alternative steady states among individual living cells, inducing phenotypic variability. The effects of white noise on the regime shift in bistable systems have been well characterized, however little is known about such effects of colored noise (noise with nonzero correlation time). Here, we show that noise correlation time, by considering a genetic circuit of autoactivation, can have a significant effect on the regime shift between distinct phenotypic states in gene expression. We demonstrate this theoretically, using stochastic potential, stationary probability density function, and first-passage time based on the Fokker-Planck description, where the Ornstein-Uhlenbeck process is used to model colored noise. We find that an increase in noise correlation time in the degradation rate can induce a regime shift from a low to a high protein concentration state and enhance the bistable regime, while an increase in noise correlation time in the basal rate retains the bimodal distribution. We then show how cross-correlated colored noises in basal and degradation rates can induce regime shifts from a low to a high protein concentration state, but reduce the bistable regime. We also validate these results through direct numerical simulations of the stochastic differential equation. In gene expression understanding the causes of regime shift to a harmful phenotype could improve early therapeutic intervention in complex human diseases.
Petrovskii, Sergei; Sekerci, Yadigar; Venturino, Ezio
2017-07-07
It is estimated that more than a half of the total atmospheric oxygen is produced in the oceans due to the photosynthetic activity of phytoplankton. Any significant decrease in the net oxygen production by phytoplankton is therefore likely to result in the depletion of atmospheric oxygen and in a global mass mortality of animals and humans. In its turn, the rate of oxygen production is known to depend on water temperature and hence can be affected by the global warming. We address this problem theoretically by considering a model of a coupled plankton-oxygen dynamics where the rate of oxygen production slowly changes with time to account for the ocean warming. We show that, when the temperature rises sufficiently high, a regime shift happens: the sustainable oxygen production becomes impossible and the system's dynamics leads to fast oxygen depletion and plankton extinction. We also consider a scenario when, after a certain period of increase, the temperature is set on a new higher yet apparently safe value, i.e. before the oxygen depletion disaster happens. We show that in this case the system dynamics may exhibit a long-term quasi-sustainable dynamics that can still result in an ecological disaster (oxygen depletion and mass extinctions) but only after a considerable period of time. Finally, we discuss the early warning signals of the approaching regime shift resulting in the disaster. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rainfall changes affect the algae dominance in tank bromeliad ecosystems.
Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T H M
2017-01-01
Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors.
Rainfall changes affect the algae dominance in tank bromeliad ecosystems
Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.
2017-01-01
Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988
Detection and Assessment of Ecosystem Regime Shifts from Fisher Information
Ecosystem regime shifts, which are long-term system reorganizations, have profound implications for sustainability. There is a great need for indicators of regime shifts, particularly methods that are applicable to data from real systems. We have developed a form of Fisher info...
Experimental evidence of reorganizing landscape under changing climatic forcing
NASA Astrophysics Data System (ADS)
Singh, A.; Tejedor, A.; Zaliapin, I. V.; Reinhardt, L.; Foufoula-Georgiou, E.
2015-12-01
Quantification of the dynamics of landscape reorganization under changing climatic forcing is important to understand geomorphic transport laws under transient conditions, assess response of landscapes to external perturbations for future predictive modeling, and for interpreting past climate from stratigraphic record. For such an analysis, however, real landscape observations are limited. To this end, a series of controlled laboratory experiments on evolving landscape were conducted at the St. Anthony Falls laboratory at the University of Minnesota. High resolution elevation data at a temporal resolution of 5 mins and spatial resolution of 0.5 mm were collected as the landscape approached steady state (constant uplift and precipitation rate) and in the transient state (under the same uplift and 5 times precipitation rate). Our results reveal rapid topographic re-organization under a five-fold increase in precipitation with the fluvial regime encroaching into the previously debris dominated regime, widening and aggradation of channels and valleys, and accelerated erosion happening at hillslope scales. To better understand the initiation of the observed reorganization, we perform a connectivity and clustering analysis of the erosional and depositional events, showing strikingly different spatial patterns on landscape evolution under steady-state (SS) and transient-state (TS), even when the time under SS is renormalized to match the total volume of eroded and deposited sediment in TS. Our results suggest a regime shift in the behavior of transport processes on the landscape at the intermediate scales i.e., from supply-limited to transport-limited.
NASA Astrophysics Data System (ADS)
Mann, D. H.; Groves, P.; Grosse, G.; Gaglioti, B.; Kunz, M.
2011-12-01
During the last ice age, the now-vanished Mammoth Steppe stretched from the Yukon westward to Europe and supported a unique guild of megafauna grazers including mammoth, bison, saiga, wooly rhinoceros, caribou, muskox, and horse. The detailed vegetational composition of this extinct biome remains uncertain because of its large size and temporal complexity during multiple climatic shifts. Grasses and sedges were prominent, and Mammoth Steppe vegetation was probably more spatially variable than the tundra and taiga vegetation that replaced it. The environmental factors that maintained the Mammoth Steppe and dictated its variability over time and space are poorly understood. Here we present evidence for an expanded version of the "Schweger Hypothesis", the idea that large regions of the Mammoth Steppe were created and maintained by processes associated with aeolian sediment activity that was driven by enhanced pressure gradients in the full-glacial atmosphere and by increased continentality caused by lowered sea level. Increased seasonal swings in climate plus stronger winds interacted to promote the widespread occurrence of steppe-like vegetation that grew on relatively inactive and marginal dune and loess deposits. Subsequent periods of resumed aeolian deposition or reworking would have inhibited thick organic horizon development which are largely absent from full glacial mammoth steppe. New mapping of sand dune systems in Siberia and improved chronological control over dune fields in Alaska demonstrate the presence of large dune fields and loess belts in the regions occupied by the Mammoth Steppe during the Last Glacial Maximum. In regions of north Siberia, intense periglacial weathering and local transport of sediments also contributed to development and maintenance of the Mammoth Steppe. Local areas where aeolian sediment activity persists today such as active dune fields and loessal soils share several characteristics with the mammoth steppe such as the abundance grass and sedges, firm substrates, and unusual mixtures of steppe and tundra vegetation. What caused the demise of the Mammoth Steppe is unclear, however understanding what maintained it over space and time would greatly aid this discussion. The habitat shift began ca. 12,500 14C yr BP and continued for approximately 2000 years. It coincided with a shift from well-drained, mineral soils to poorly drained, organic-rich ones. This regime shift may have been more significant than changes during previous interglacial climatic shifts as most megafaunal species adapted to life in the Mammoth Steppe experienced radical range reductions and, in some cases, global extinction during this period.
Heteroskedasticity as a leading indicator of desertification in spatially explicit data.
Seekell, David A; Dakos, Vasilis
2015-06-01
Regime shifts are abrupt transitions between alternate ecosystem states including desertification in arid regions due to drought or overgrazing. Regime shifts may be preceded by statistical anomalies such as increased autocorrelation, indicating declining resilience and warning of an impending shift. Tests for conditional heteroskedasticity, a type of clustered variance, have proven powerful leading indicators for regime shifts in time series data, but an analogous indicator for spatial data has not been evaluated. A spatial analog for conditional heteroskedasticity might be especially useful in arid environments where spatial interactions are critical in structuring ecosystem pattern and process. We tested the efficacy of a test for spatial heteroskedasticity as a leading indicator of regime shifts with simulated data from spatially extended vegetation models with regular and scale-free patterning. These models simulate shifts from extensive vegetative cover to bare, desert-like conditions. The magnitude of spatial heteroskedasticity increased consistently as the modeled systems approached a regime shift from vegetated to desert state. Relative spatial autocorrelation, spatial heteroskedasticity increased earlier and more consistently. We conclude that tests for spatial heteroskedasticity can contribute to the growing toolbox of early warning indicators for regime shifts analyzed with spatially explicit data.
NASA Astrophysics Data System (ADS)
Bawden, A. J.; Burn, D. H.; Prowse, T. D.
2012-12-01
Climate variability and change can have profound impacts on the hydrologic regime of a watershed. These effects are likely to be especially severe in regions particularly sensitive to changes in climate, such as the Canadian north, or when there are other stresses on the hydrologic regime, such as may occur when there are large withdrawals from, or land-use changes within, a watershed. A recent report of the Intergovernmental Panel on Climate Change (IPCC) stressed that future climate is likely to accelerate the hydrologic cycle and hence may affect water security in certain locations. For some regions, this will mean enhanced access to water resources, but because the effects will not be spatially uniform, other regions will experience reduced access. Understanding these patterns is critical for water managers and government agencies in western Canada - an area of highly contrasting hydroclimatic regimes and overlapping water-use and jurisdictional borders - as adapting to climate change may require reconsideration of inter-regional transfers and revised allocation of water resources to competing industrial sectors, including agriculture, hydroelectric production, and oil and gas. This research involves the detection and examination of spatial and temporal streamflow trends in western Canadian rivers as a response to changing climatic factors, including temperature, precipitation, snowmelt, and the synoptic patterns controlling these drivers. The study area, known as the CROCWR region, extends from the Pacific coast of British Columbia as far east as the Saskatchewan-Manitoba border and from the Canada-United States international border through a large portion of the Northwest Territories. This analysis examines hydrologic trends in monthly and annual streamflow for a collection of 34 hydrometric gauging stations believed to adequately represent the overall effects of climate variability and change on flows in western Canada by means of the Mann-Kendall non-parametric trend test. Large-scale spatial patterns are determined through examination of trends and contrasts between upper and lower reaches of individual sub-basins, as well as via analysis of streamflow redistributions within the CROCWR region as an entirety (i.e. north, south, east and/or west-moving patterns). Results are used to predict future implications of hydroclimatic variability and change on western Canada's water resources and recommend measures to be taken by water managers in response to these changes. This research is part of a larger hydroclimatic study that includes an analysis of the climatic drivers contributing to shifting flow regimes in western Canada as well as a study of the controlling synoptic patterns and teleconnections associated with changes in these driving forces.
Laforge, Michel P; Michel, Nicole L; Brook, Ryan K
2017-11-09
Large-scale climatic fluctuations have caused species range shifts. Moose (Alces alces) have expanded their range southward into agricultural areas previously not considered moose habitat. We found that moose expansion into agro-ecosystems is mediated by broad-scale climatic factors and access to high-quality forage (i.e., crops). We used crop damage records to quantify moose presence across the Canadian Prairies. We regressed latitude of crop damage against North Atlantic Oscillation (NAO) and crop area to test the hypotheses that NAO-mediated wetland recharge and occurrence of more nutritious crop types would result in more frequent occurrences of crop damage by moose at southerly latitudes. We examined local-scale land use by generating a habitat selection model to test our hypothesis that moose selected for areas of high crop cover in agro-ecosystems. We found that crop damage by moose occurred farther south during dry winters and in years with greater coverage of oilseeds. The results of our analyses support our hypothesis that moose movement into cropland is mediated by high-protein crops, but not by thermoregulatory habitat at the scale examined. We conclude that broad-scale climate combined with changing land-use regimes are causal factors in species' range shifts and are important considerations when studying changing animal distributions.
Anticipating regime shifts in gene expression: The case of an autoactivating positive feedback loop
NASA Astrophysics Data System (ADS)
Sharma, Yogita; Dutta, Partha Sharathi; Gupta, A. K.
2016-03-01
Considerable evidence suggests that anticipating sudden shifts from one state to another in bistable dynamical systems is a challenging task; examples include ecosystems, financial markets, and complex diseases. In this paper, we investigate the effects of additive, multiplicative, and cross-correlated stochastic perturbations on determining the regime shifts in a bistable gene regulatory system, which gives rise to two distinct states of low and high concentrations of protein. We obtain the stationary probability density and mean first-passage time of the system. We show that increasing the additive (multiplicative) noise intensity induces a regime shift from a low (high) to a high (low) protein concentration state. However, an increase in the cross-correlation intensity always induces regime shifts from a high to a low protein concentration state. For both bifurcation-induced (often called the tipping point) and noise-induced (called stochastic switching) regime shifts, we further explore the robustness of recently developed critical-down-based early warning signal (EWS) indicators (e.g., rising variance and lag-1 autocorrelation) on our simulated time-series data. We identify that using EWS indicators, prediction of an impending bifurcation-induced regime shift is relatively easier than that of a noise-induced regime shift in the considered system. Moreover, the success of EWS indicators also strongly depends upon the nature of the noise.
Flint, Paul L.
2013-01-01
Broad-scale multi-species declines in populations of North American sea ducks for unknown reasons is cause for management concern. Oceanic regime shifts have been associated with rapid changes in ecosystem structure of the North Pacific and Bering Sea. However, relatively little is known about potential effects of these changes in oceanic conditions on marine bird populations at broad scales. I examined changes in North American breeding populations of sea ducks from 1957 to 2011 in relation to potential oceanic regime shifts in the North Pacific in 1977, 1989, and 1998. There was strong support for population-level effects of regime shifts in 1977 and 1989, but little support for an effect of the 1998 shift. The continental-level effects of these regime shifts differed across species groups and time. Based on patterns of sea duck population dynamics associated with regime shifts, it is unclear if the mechanism of change relates to survival or reproduction. Results of this analysis support the hypothesis that population size and trends of North American sea ducks are strongly influenced by oceanic conditions. The perceived population declines appear to have halted >20 years ago, and populations have been relatively stable or increasing since that time. Given these results, we should reasonably expect dramatic changes in sea duck population status and trends with future oceanic regime shifts.
Regime shifts and resilience in China's coastal ecosystems.
Zhang, Ke
2016-02-01
Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services.
Hayes, Daniel J.; McGuire, A. David; Kicklighter, David W.; Burnside , Todd J.; Melillo, Jerry M.
2010-01-01
Recent changes in climate, disturbance regimes and land use and management systems in Northern Eurasia have the potential to disrupt the terrestrial sink of atmospheric CO2 in a way that accelerates global climate change. To determine the recent trends in the carbon balance of the arctic and boreal ecosystems of this region, we performed a retrospective analysis of terrestrial carbon dynamics across northern Eurasia over a recent 10-year period using a terrestrial biogeochemical process model. The results of the simulations suggest a shift in direction of the net flux from the terrestrial sink of earlier decades to a net source on the order of 45 Tg C year−1between 1997 and 2006. The simulation framework and subsequent analyses presented in this study attribute this shift to a large loss of carbon from boreal forest ecosystems, which experienced a trend of decreasing precipitation and a large area burned during this time period.
AN INDEX TO DETECT EXTERNALLY-FORCED DYNAMIC REGIME SHIFTS IN ECOSYSTEMS
The concept of dynamic regimes, and nonlinear shifts between regimes, has gained acceptance and importance in ecosystem research. Regimes in ecosystems are identified as states with characteristic species abundances and abiotic conditions. Ecosystems are maintained in particular ...
Tundra Fires in the Noatak National Preserve, Northwestern Alaska, Since 6000 yr BP
NASA Astrophysics Data System (ADS)
Chipman, M. L.; Higuera, P. E.; Allen, J.; Rupp, S.; Hu, F. S.
2008-12-01
Over 1.7 million hectares of Alaskan tundra have burned over the past 50 years, including the record-setting Anaktuvuk River fire in 2007. Despite this evidence indicating the flammable nature of these ecosystems under warm and dry conditions, land managers and global change scientists lack critical information concerning long-term relationships among fire, climate and tundra vegetation. This knowledge gap limits the ability to assess the response of the tundra fire regime to ongoing and predicted climate warming and potential feedbacks with Earth systems. We utilize macroscopic charcoal from lake-sediment cores to characterize the frequency component of fire regimes in shrub-dominated and herb-dominated tundra ecosystems in northwestern Alaska over the past 6000 years. Here we present the first long-term records of tundra fire regimes from the Noatak National Preserve, a region encompassing some of the most flammable tundra in the state. Results from three lakes indicate that fire has been a consistent process in the region, with fire return intervals (FRIs) ranging from 70 to 800+ years since 6000 yr BP. FRIs were similar between herb- and shrub-dominated tundra sites before ~2000 yr BP, with a mean FRI of 167 yr (95% CI 145-195) Over the past ~2000 years, however, herb- dominated sites burned more frequently (mean FRI 112 yr [95% CI 80-151]) than shrub-dominated sites (mean FRI 247 yr [95% CI 141-377]). At millennial time scales, shifts in historic FRIs were likely related to regional climate changes and/or associated vegetation changes. These results provide a context for resource management and serve to refine the tundra component of an ecosystem model designed to aid land managers in assessing fuels and fire hazards in the context of climatic change.
System's flips in climate-related energy (CRE) systems
NASA Astrophysics Data System (ADS)
Ramos, Maria-Helena; Creutin, Jean-Dominique; Engeland, Kolbjørn; François, Baptiste; Renard, Benjamin
2014-05-01
Several modern environmental questions invite to explore the complex relationships between natural phenomena and human behaviour at a range of space and time scales. This usually involves a number of cause-effect (causal) relationships, linking actions and events. In lay terms, 'effect' can be defined as 'what happened' and 'cause', 'why something happened.' In a changing world or merely moving from one scale to another, shifts in perspective are expected, bringing some phenomena into the foreground and putting others to the background. Systems can thus flip from one set of causal structures to another in response to environmental perturbations and human innovations or behaviors, for instance, as space-time signatures are modified. The identification of these flips helps in better understanding and predicting how societies and stakeholders react to a shift in perspective. In this study, our motivation is to investigate possible consequences of the shift to a low carbon economy in terms of socio-technico systems' flips. The focus is on the regional production of Climate-Related Energy (CRE) (hydro-, wind- and solar-power). We search for information on historic shifts that may help defining the forcing conditions of abrupt changes and extreme situations. We identify and present a series of examples in which we try to distinguish the various tipping points, thresholds, breakpoints and regime shifts that are characteristic of complex systems in the CRE production domain. We expect that with these examples our comprehension of the question will be enriched, providing us the elements needed to better validate modeling attempts, to predict and manage flips of complex CRE production systems. The work presented is part of the FP7 project COMPLEX (Knowledge based climate mitigation systems for a low carbon economy; http://www.complex.ac.uk/).
Teasing apart the effects of natural and constructed green ...
Summer low flows and stream temperature maxima are key drivers affecting the sustainability of fish populations. Thus, it is critical to understand both the natural templates of spatiotemporal variability, how these are shifting due to anthropogenic influences of development and climate change, and how these impacts can be moderated by natural and constructed green infrastructure. Low flow statistics of New England streams have been characterized using a combination of regression equations to describe long-term averages as a function of indicators of hydrologic regime (rain- versus snow-dominated), precipitation, evapotranspiration or temperature, surface water storage, baseflow recession rates, and impervious cover. Difference equations have been constructed to describe interannual variation in low flow as a function of changing air temperature, precipitation, and ocean-atmospheric teleconnection indices. Spatial statistical network models have been applied to explore fine-scale variability of thermal regimes along stream networks in New England as a function of variables describing natural and altered energy inputs, groundwater contributions, and retention time. Low flows exacerbate temperature impacts by reducing thermal inertia of streams to energy inputs. Based on these models, we can construct scenarios of fish habitat suitability using current and projected future climate and the potential for preservation and restoration of historic habitat regimes th
Charney, Noah D; Babst, Flurin; Poulter, Benjamin; Record, Sydne; Trouet, Valerie M; Frank, David; Enquist, Brian J; Evans, Margaret E K
2016-09-01
Predicting long-term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree-ring observations spanning North America and a space-for-time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water-use efficiency (WUE) due to CO2 -fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high-latitude forests, leaving no evidence for continued 'boreal greening'; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change. © 2016 John Wiley & Sons Ltd/CNRS.
Retrospective analysis of Bering Sea bottom trawl surveys: regime shift and ecosystem reorganization
NASA Astrophysics Data System (ADS)
Conners, M. E.; Hollowed, A. B.; Brown, E.
2002-10-01
This paper compiles data from bottom trawl surveys using variations on a 400-mesh eastern trawl gear into a 38-year time series (1963-2000), using a robust index of median catch per unit effort (CPUE) as an indicator of regional abundance. Time series are presented for three index sites in the southeastern Bering Sea: the inner shelf in Bristol Bay, the middle shelf north of Unimak Island, and the outer shelf near the Pribilof Islands. All three sites show strong evidence of a shift in benthic biomass and community structure in the early to mid-1980s. During this period, all three sites showed substantial increases in the abundances of walleye pollock, Pacific cod, rock sole, flathead sole, cartilaginous fishes (skates) and non-crab benthic invertebrates. Species composition, especially of flatfish, differs at the three sites, but the trend for groundfish abundance to increase was consistent at all three sites. The similarity in trends both across the region and across both commercial and unexploited groups suggests to us that a complete reorganization of benthic and demersal food webs may have taken place. The timing of change in trawl catch weight is consistent with effects of the strong regime shift observed in climate indices in 1976-1977. There is little evidence of similar biological responses to subsequent, less pronounced changes in climate. Our data are also consistent with recently documented shifts in ecosystem dynamics resulting from changes in ice cover and thermal structure in the eastern Bering Sea. Our analysis indicates that there was a much higher biomass of groundfish at all three sites during 1980-2000 than in 1960-1980. This result provides evidence against the hypothesis that the overall productivity of the eastern Bering Sea has decreased. The precipitous decline of the endangered Steller sea lion in this region from 1975-1985 was concurrent with an overall increase in abundance of groundfish prey.
Projected Regime Shift in Arctic Cloud and Water Vapor Feedbacks
NASA Technical Reports Server (NTRS)
Chen, Yonghua; Miller, James R.; Francis, Jennifer; Russel, Gary L.
2011-01-01
The Arctic climate is changing faster than any other large-scale region on Earth. A variety of positive feedback mechanisms are responsible for the amplification, most of which are linked with changes in snow and ice cover, surface temperature (T(sub s)), atmospheric water vapor (WV), and cloud properties. As greenhouse gases continue to accumulate in the atmosphere, air temperature and water vapor content also increase, leading to a warmer surface and ice loss, which further enhance evaporation and WV. Many details of these interrelated feedbacks are poorly understood, yet are essential for understanding the pace and regional variations in future Arctic change. We use a global climate model (Goddard Institute for Space Studies, Atmosphere-Ocean Model) to examine several components of these feedbacks, how they vary by season, and how they are projected to change through the 21st century. One positive feedback begins with an increase in T(sub s) that produces an increase in WV, which in turn increases the downward longwave flux (DLF) and T(sub s), leading to further evaporation. Another associates the expected increases in cloud cover and optical thickness with increasing DLF and T(sub s). We examine the sensitivities between DLF and other climate variables in these feedbacks and find that they are strongest in the non-summer seasons, leading to the largest amplification in Ts during these months. Later in the 21st century, however, DLF becomes less sensitive to changes in WV and cloud optical thickness, as they cause the atmosphere to emit longwave radiation more nearly as a black body. This regime shift in sensitivity implies that the amplified pace of Arctic change relative to the northern hemisphere could relax in the future.
NASA Astrophysics Data System (ADS)
McMahon, K.; McCarthy, M. D.; Guilderson, T. P.; Sherwood, O.; Williams, B.; Larsen, T.; Glynn, D. S.
2017-12-01
Future climate change is predicted to alter ocean productivity, food web dynamics, biogeochemical cycling, and the efficacy of the biological pump. Proteinaceous deep-sea corals act as "living sediment traps," providing long-term, high-resolution records of exported surface ocean production and a window into past changes in ocean condition as a historical context for potential future changes. Here, we present recent work developing the application of compound-specific stable isotope analysis of individual amino acids to proteinaceous deep-sea corals to reconstruct past changes in phytoplankton community composition and biogeochemical cycling. We present new calibrations for molecular isotope comparisons between metabolically active coral polyp tissue and bioarchival proteinaceous skeleton. We then applied these techniques to deep-sea corals from the North Pacific Subtropical Gyre (NPSG) to reconstruct centennial to millennial time scale changes in phytoplankton community composition and biogeochemical cycling as a function of regional climate change. This work suggests that the NPSG has undergone multiple major phytoplankton regime shifts over the last millennium between prokaryotic and eukaryotic phytoplankton communities and associated sources of nitrogen fueling production. The most recent regime, which started around the end of the Little Ice Age and the onset of the Industrial era, is unprecedented in the last 1000 years and resulted in a 30-50% increase in diazotrophic cyanobacteria contribution to export production and an associated 17-27% increase in N2-fixation in the NPSG over last century. By offering the first direct phylogenetic context for long-term shifts in isotopic records of exported particulate organic matter, our data represent a major step forward in understanding the evolution of marine plankton community dynamics, food web architecture, biogeochemical cycling, and the climate feedback loops through the biological pump.
NASA Astrophysics Data System (ADS)
Kim, Yong Sun; Jang, Chan Joo; Yeh, Sang-Wook
2018-03-01
The Yellow and East China Seas (YECS) are widely believed to have experienced robust, basin-scale warming over the last few decades. However, the warming reached a peak in the late 1990s, followed by a significant cooling trend. In this study, we investigated the characteristics of this low-frequency sea surface temperature (SST) variance and its dynamic relationship with large-scale climate variability through cyclostationary orthogonal function analysis for the 1982-2014 period. Both regressed surface winds on the primary mode of the YECS SST and trends in air-sea heat fluxes demonstrate that the intensification of the northerly winds in winter contribute largely to the recent cooling trend by increasing heat loss to the atmosphere. As a localized oceanic response to these winds, the upwind flow seems to bring warm waters and partially counteracts the basin-scale cooling, thus contributing to a weakening of the cooling trend along the central trough of the Yellow Sea. In the context of the large-scale climate variabilities, a strong relationship between the YECS SST variability and Pacific Decadal Oscillation (PDO) became weak considerably during the recent cooling period after the late 1990s as the PDO signals appeared to be confined within the eastern basin of the North Pacific in association with the regime shift. In addition to this decoupling of the YECS SST from the PDO, the intensifying Siberian High pressure system likely caused the enhanced northerly winds, leading to the recent cooling trend. These findings highlight relative roles of the PDO and the Siberian High in shaping the YECS SST variance through the changes in the large-scale atmospheric circulation and attendant oceanic advection.
Papworth, Danny J.; Marini, Simone; Conversi, Alessandra
2016-01-01
Marine populations are controlled by a series of drivers, pertaining to both the physical environment and the biological environment (trophic predator-prey interactions). There is heated debate over drivers, especially when trying to understand the causes of major ecosystem events termed regime shifts. In this work, we have researched and developed a novel methodology based on Genetic Programming (GP) for distinguishing which drivers can influence species abundance. This methodology benefits of having no a priori assumptions either on the ecological parameters used or on the underlying mathematical relationships among them. We have validated this methodology applying it to the North Sea pelagic ecosystem. We use the target species Calanus finmarchicus, a key copepod in temperate and subarctic ecosystems, along with 86 biological, hydrographical and climatic time series, ranging from local water nutrients and fish predation, to large scale climate pressure patterns. The chosen study area is the central North Sea, from 1972 to 2011, during which period there was an ecological regime shift. The GP based analysis identified 3 likely drivers of C. finmarchicus abundance, which highlights the importance of considering both physical and trophic drivers: temperature, North Sea circulation (net flow into the North Atlantic), and predation (herring). No large scale climate patterns were selected, suggesting that when there is availability of both data types, local drivers are more important. The results produced by the GP based procedure are consistent with the literature published to date, and validate the use of GP for interpreting species dynamics. We propose that this methodology holds promises for the highly non-linear field of ecology. PMID:27366910
USING FISHER INFORMATION TO DETECT GRADUAL AND RAPID ECOSYSTEM REGIME SHIFTS
As ecosystems experience perturbations of varying regularity and intensity, they may either remain within the state space neighborhood of the current regime, or "flip" into the neighborhood of a regime with different characteristics. Although the possibility of such regime shifts...
Response of high-elevation forests in the Olympic Mountains to climatic change
Zolbrod, A.N.; Peterson, D.L.
1999-01-01
The gap model ZELIG was used to examine the effects of increased temperature (2°C) and altered precipitation on high-elevation ecosystems of the Olympic Mountains, Washington, U.S.A. Changes in tree species distribution and abundance, as well as stand biomass, were examined on north and south aspects in the dry northeast (NE) and wet southwest (SW) regions of the Olympics for (i) warmer, (ii) warmer and 20% wetter, and (iii) warmer and 20% drier climatic-change scenarios. Dominant tree species shift upwards 300-600 m in elevation in the SW, with subalpine meadows and Tsuga mertensiana (Bong.) Carr. forests being replaced by Abies amabilis (Dougl.) Forbes forests at higher elevations and A. amabilis forests being replaced by Tsuga heterophylla (Raf.) Sarg. forests at lower elevations. In the NE, drought-tolerant species become dominant approximately 200 m lower than present, with A. lasiocarpa dominating the north aspect and Pinus contorta Dougl. ex Loud. the south aspect. Biomass increases in the SW and generally decreases in the NE, depending on aspect and precipitation regime. This study suggests that species and site-specific responses at mesoscale (e.g., wet vs. dry climatic regime) and microscale (e.g., north vs. south aspect) resolutions must be characterized to quantify the variation in potential effects of climatic change on forest vegetation in mountainous regions.
The interactive effects of press/pulse intensity and duration on regime shifts at multiple scales
USDA-ARS?s Scientific Manuscript database
Regime shifts are difficult-to-reverse transitions that occur when an ecosystem reorganizes around a new set of self-reinforcing feedbacks. Regime shifts are predicted to occur when the intensity of some exogenous driver variable, such as temperature, annual harvest rate, or nutrient addition rate, ...
Reconstruction of fire history of the Yukon-Kuskokwim Delta, Alaska
NASA Astrophysics Data System (ADS)
Sae-lim, J.; Mann, P. J.; Russell, J. M.; Natali, S.; Vachula, R. S.; Schade, J. D.; Holmes, R. M.
2017-12-01
Wildfire is an important disturbance in Arctic ecosystems and can cause abrupt perturbations in global carbon cycling and atmospheric chemistry. Over the next few decades, arctic fire frequency, intensity and extent is projected to increase due to anthropogenic climate change, as regional air temperatures are increasing at more than twice the global average. In order to more accurately predict the anthropogenic impacts of climate change on tundra fire regimes, it is critical to have detailed knowledge of the natural frequency and extent of past wildfires. However, reliable historical records only extend back a few hundred years, whereas climatic shifts have affected fire regimes for thousands of years. In this work we analyzed a lake sediment core collected from the Yukon-Kuskokwim (YK) Delta, Alaska, a region that has recently experienced fire and is predicted to see increasing fire frequency in the near future. Our primary lake site is situated adjacent to recent burned areas, providing a `calibration' point and also attesting to the sensitivity of the sites. We used charcoal counts alongside geochemical measurements (C:N, 13C, 15N, 210Pb, X-ray fluorescence analyses of elemental chemistry) to reconstruct past fire history and ecosystem responses during the late Holocene. Average C (%C) and N concentrations (%N) in the core were 8.10 ±0.74% and 0.48 ±0.05%, resulting in C:N ratios of 16.80 ±0.74. The values are generally stable, with no obvious trend in C, N or C:N with depth; however, fluctuations in sediment composition in other nearby lake sediment cores possibly suggests shifts in lake conditions (oxic, anoxic) over time that might result from paleofires. This study provides a baseline for estimated fire return intervals in the YK Delta that will support more accurate projections of tundra fire frequencies under a changing climate.
NASA Astrophysics Data System (ADS)
Singh, Arvind; Tejedor, Alejandro; Zaliapin, Ilya; Reinhardt, Liam; Foufoula-Georgiou, Efi
2015-04-01
The aim of this study is to better understand the dynamic re-organization of an evolving landscape under a scenario of changing climatic forcing for improving our knowledge of geomorphic transport laws under transient conditions and developing predictive models of landscape response to external perturbations. Real landscape observations for long-term analysis are limited and to this end a high resolution controlled laboratory experiment was conducted at the St. Anthony Falls laboratory at the University of Minnesota. Elevation data were collected at temporal resolution of 5 mins and spatial resolution of 0.5 mm as the landscape approached steady state (constant uplift and precipitation rate) and in the transient state (under the same uplift and 5x precipitation). The results reveal rapid topographic re-organization under a five-fold precipitation increase with the fluvial regime expanding into the previously debris dominated regime, accelerated erosion happening at hillslope scales, and rivers shifting from an erosion-limited to a transport-limited regime. From a connectivity and clustering analysis of the erosional and depositional events, we demonstrate the strikingly different spatial patterns of landscape evolution under steady-state (SS) and transient-state (TS), even when the time under SS is "stretched" compared to that under TS such as to match the total volume and PDF of erosional and depositional amounts. We quantify the spatial coupling of hillslopes and channels and demonstrate that hillslopes lead and channels follow in re-organizing the whole landscape under such an amplified precipitation regime.
Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes
Shatwell, Tom; Adrian, Rita; Kirillin, Georgiy
2016-01-01
Water transparency affects the thermal structure of lakes, and within certain lake depth ranges, it can determine whether a lake mixes regularly (polymictic regime) or stratifies continuously (dimictic regime) from spring through summer. Phytoplankton biomass can influence transparency but the effect of its seasonal pattern on stratification is unknown. Therefore we analysed long term field data from two lakes of similar depth, transparency and climate but one polymictic and one dimictic, and simulated a conceptual lake with a hydrodynamic model. Transparency in the study lakes was typically low during spring and summer blooms and high in between during the clear water phase (CWP), caused when zooplankton graze the spring bloom. The effect of variability of transparency on thermal structure was stronger at intermediate transparency and stronger during a critical window in spring when the rate of lake warming is highest. Whereas the spring bloom strengthened stratification in spring, the CWP weakened it in summer. The presence or absence of the CWP influenced stratification duration and under some conditions determined the mixing regime. Therefore seasonal plankton dynamics, including biotic interactions that suppress the CWP, can influence lake temperatures, stratification duration, and potentially also the mixing regime. PMID:27074883
Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes.
Shatwell, Tom; Adrian, Rita; Kirillin, Georgiy
2016-04-14
Water transparency affects the thermal structure of lakes, and within certain lake depth ranges, it can determine whether a lake mixes regularly (polymictic regime) or stratifies continuously (dimictic regime) from spring through summer. Phytoplankton biomass can influence transparency but the effect of its seasonal pattern on stratification is unknown. Therefore we analysed long term field data from two lakes of similar depth, transparency and climate but one polymictic and one dimictic, and simulated a conceptual lake with a hydrodynamic model. Transparency in the study lakes was typically low during spring and summer blooms and high in between during the clear water phase (CWP), caused when zooplankton graze the spring bloom. The effect of variability of transparency on thermal structure was stronger at intermediate transparency and stronger during a critical window in spring when the rate of lake warming is highest. Whereas the spring bloom strengthened stratification in spring, the CWP weakened it in summer. The presence or absence of the CWP influenced stratification duration and under some conditions determined the mixing regime. Therefore seasonal plankton dynamics, including biotic interactions that suppress the CWP, can influence lake temperatures, stratification duration, and potentially also the mixing regime.
Humans as Agents in the Termination of the African Humid Period
NASA Astrophysics Data System (ADS)
Wright, David K.
2017-01-01
There is great uncertainty over the timing and magnitude of the termination of the African Humid Period (AHP). Spanning from the early to middle Holocene, the AHP was a period of enhanced moisture over most of northern and eastern Africa. However, beginning 8000 years ago the moisture balance shifted due to changing orbital precession and vegetation feedbacks. Some proxy records indicate a rapid transition from wet to dry conditions, while others indicate a more gradual changeover. Heretofore, humans have been viewed as passive agents in the termination of the AHP, responding to changing climatic conditions by adopting animal husbandry and spreading an agricultural lifestyle across the African continent. This paper explores scenarios whereby humans could be viewed as active agents in landscape denudation. During the period when agriculture was adopted in northern Africa, the regions where it was occurring were at the precipice of ecological regime shifts. Pastoralism, in particular, is argued to enhance devegetation and regime shifts in unbalanced ecosystems. Threshold crossing events were documented in the historical records of New Zealand and western North America due to the introduction of livestock. In looking at temporally correlated archaeological and paleoenvironmental records of northern Africa, similar landscape dynamics from the historical precedents are observed: reduction in net primary productivity, homogenization of the flora, transformation of the landscape into a shrub-dominated biozone and increasing xerophylic vegetation overall. Although human agents are not seen as the only forces inducing regime change during the termination of the AHP, their potential role in inducing large-scale landscape change must be properly contextualized against other global occurrences of neolithization.
NASA Astrophysics Data System (ADS)
Gall, Ryan D.
The early to middle Eocene Green River Formation consists of continental strata deposited in Laramide ponded basins in Utah, Colorado, and Wyoming. This study (1) documents fluvial and lacustrine strata from the Douglas Creek and Parachute Creek Members of the middle Green River Formation, southeastern Uinta Basin, Utah, and (2) uses new interpretations of the link between climate and fluvial sedimentary expression to interpret the terrestrial evolution of early Eocene climate. The stratigraphy was analyzed via outcrops along a 10 km transect in Main Canyon on the Tavaputs Plateau, and is divided into three distinct, stratigraphically separated depositional settings: (1) the lowermost Interval 1 is dominated by amalgamated sandstone channels that contain 70-100% upper flow regime sedimentary structures. The channels are interpreted to represent fluvial deposits controlled by a highly seasonal climate, where most deposition was limited to seasonal flooding events. (2) Interval 2 is dominated by alternating siliciclastic and carbonate lacustrine deposits, interpreted as local pulsed fluvial siliciclastic input into shallow Lake Uinta, and periods of fluvial quiescence represented by littoral carbonate deposition. (3) The uppermost Interval 3 is dominated by erosively-based, trough cross bedded sandstone channels interbedded with littoral lacustrine and deltaic deposits. The Interval 3 sandstone channels are interpreted as perennial fluvial deposits with relatively little variation in annual discharge, akin to modern humid-temperate fluvial systems. The stratigraphic transition from seasonally-controlled (Interval 1) to perennial (Interval 3) fluvial deposits is interpreted to represent a fundamental shift in Eocene climate, from the peak hyperthermal regime of the Early Eocene Climatic Optimum (EECO) to a more stable post-EECO climate.
Shifts in fisheries management: adapting to regime shifts
King, Jacquelynne R.; McFarlane, Gordon A.; Punt, André E.
2015-01-01
For many years, fisheries management was based on optimizing yield and maintaining a target biomass, with little regard given to low-frequency environmental forcing. However, this policy was often unsuccessful. In the last two to three decades, fisheries science and management have undergone a shift towards balancing sustainable yield with conservation, with the goal of including ecosystem considerations in decision-making frameworks. Scientific understanding of low-frequency climate–ocean variability, which is manifested as ecosystem regime shifts and states, has led to attempts to incorporate these shifts and states into fisheries assessment and management. To date, operationalizing these attempts to provide tactical advice has met with limited success. We review efforts to incorporate regime shifts and states into the assessment and management of fisheries resources, propose directions for future investigation and outline a potential framework to include regime shifts and changes in ecosystem states into fisheries management.
Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper
2012-11-09
The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.
Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO.
Albert, Andreas; Sareedenchai, Vipaporn; Heller, Werner; Seidlitz, Harald K; Zidorn, Christian
2009-05-01
Plants in alpine habitats are exposed to many environmental stresses, in particular temperature and radiation extremes. Recent field experiments on Arnica montana L. cv. ARBO indicated pronounced altitudinal variation in plant phenolics. Ortho-diphenolics increased with altitude compared to other phenolic compounds, resulting in an increase in antioxidative capacity of the tissues involved. Factors causing these variations were investigated by climate chamber (CC) experiments focusing on temperature and ultraviolet (UV)-B radiation. Plants of A. montana L. cv. ARBO were grown in CCs under realistic climatic and radiation regimes. Key factors temperature and UV-B radiation were altered between different groups of plants. Subsequently, flowering heads were analyzed by HPLC for their contents of flavonoids and caffeic acid derivatives. Surprisingly, increased UV-B radiation did not trigger any change in phenolic metabolites in Arnica. In contrast, a pronounced increase in the ratio of B-ring ortho-diphenolic (quercetin) compared to B-ring monophenolic (kaempferol) flavonols resulted from a decrease in temperature by 5 degrees C in the applied climate regime. In conclusion, enhanced UV-B radiation is probably not the key factor triggering shifts in the phenolic composition in Arnica grown at higher altitudes but rather temperature, which decreases with altitude.
How Resource Phenology Affects Consumer Population Dynamics.
Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F
2016-02-01
Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.
High Resolution Regional Climate Simulations over Alaska
NASA Astrophysics Data System (ADS)
Monaghan, A. J.; Clark, M. P.; Arnold, J.; Newman, A. J.; Musselman, K. N.; Barlage, M. J.; Xue, L.; Liu, C.; Gutmann, E. D.; Rasmussen, R.
2016-12-01
In order to appropriately plan future projects to build and maintain infrastructure (e.g., dams, dikes, highways, airports), a number of U.S. federal agencies seek to better understand how hydrologic regimes may shift across the country due to climate change. Building on the successful completion of a series of high-resolution WRF simulations over the Colorado River Headwaters and contiguous USA, our team is now extending these simulations over the challenging U.S. States of Alaska and Hawaii. In this presentation we summarize results from a newly completed 4-km resolution WRF simulation over Alaska spanning 2002-2016 at 4-km spatial resolution. Our aim is to gain insight into the thermodynamics that drive key precipitation processes, particularly the extremes that are most damaging to infrastructure.
Wenger, Seth J.; Isaak, Daniel J.; Luce, Charles H.; Neville, Helen M.; Fausch, Kurt D.; Dunham, Jason B.; Dauwalter, Daniel C.; Young, Michael K.; Elsner, Marketa M.; Rieman, Bruce E.; Hamlet, Alan F.; Williams, Jack E.
2011-01-01
Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species’ physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations. PMID:21844354
Wenger, S.J.; Isaak, D.J.; Luce, C.H.; Neville, H.M.; Fausch, K.D.; Dunham, J.B.; Dauwalter, D.C.; Young, M.K.; Elsner, M.M.; Rieman, B.E.; Hamlet, A.F.; Williams, J.E.
2011-01-01
Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species' physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations.
Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States
Liu, Zhihua; Wimberly, Michael C.
2015-01-01
An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959
Vegetation zones in changing climate
NASA Astrophysics Data System (ADS)
Belda, Michal; Holtanova, Eva; Halenka, Tomas; Kalvova, Jaroslava
2017-04-01
Climate patterns analysis can be performed for individual climate variables separately or the data can be aggregated using e.g. some kind of climate classification. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. Thus, the Köppen-Trewartha classification provides integrated assessment of temperature and precipitation together with their annual cycle as well. This way climate classifications also can be used as a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes. The Köppen-Trewartha classification is applied on full CMIP5 family of more than 40 GCM simulations and CRU dataset for comparison. This evaluation provides insight on the GCM performance and errors for simulations of the 20th century climate. Common regions are identified, such as Australia or Amazonia, where many state-of-the-art models perform inadequately. Moreover, the analysis of the CMIP5 ensemble for future under RCP 4.5 and RCP 8.5 is performed to assess the climate change for future. There are significant changes for some types in most models e.g. increase of savanna and decrease of tundra for the future climate. For some types significant shifts in latitude can be seen when studying their geographical location in selected continental areas, e.g. toward higher latitudes for boreal climate. Quite significant uncertainty can be seen for some types. For Europe, EuroCORDEX results for both 0.11 and 0.44 degree resolution are validated using Köppen-Trewartha types in comparison to E-OBS based classification. ERA-Interim driven simulations are compared to both present conditions of CMIP5 models as well as their downscaling by EuroCORDEX RCMs. Finally, the climate change signal assessment is provided using the individual climate types. In addition to the changes assessed similarly as for GCMs analysis in terms of the area of individual types, in the continental scale some shifts of boundaries between the selected types can be studied as well providing the information on climate change signal. The shift of the boundary between the boreal zone and continental temperate zone to the north is clearly seen in most simulations as well as eastern move of the boundary of the maritime and continental type of temperate zone. However, there can be quite clear problem with model biases in climate types association. When analysing climate types in Europe and their shifts under climate change using Köppen-Trewartha classification (KTC), for the temperate climate type there are subtypes defined following the continentality patterns, and we can see their generally meridionally located divide across Europe shifted to the east. There is a question whether this is realistic or rather due to the simplistic condition in KTC following the winter minimum temperature, while other continentality indices consider rather the amplitude of temperature during the year. This leads us to connect our analysis of climate change effects using climate classification to the more detailed analysis of continentality patterns development in Europe to provide better insight on the climate regimes and to verify the continentality conditions, their definitions and climate change effects on them. The comparison of several selected continentality indices is shown.
Managing Climate Change Refugia for Biodiversity ...
Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such efforts stake a claim for an adaptive, anticipatory planning response to the climate change threat. To be effective, approaches will need to address critical uncertainties in both the physical basis for projected landscape changes, as well as the biological responses of organisms. Recent efforts define future potential climate refugia based on air temperatures and associated microclimatic changes. These efforts reflect the relatively strong conceptual foundation for linkages between regional climate change and local responses and thermal dynamics. Yet important questions remain. Drawing on case studies, we illustrate some key uncertainties in the responses of species and their habitats to altered hydro-climatic regimes currently not well addressed by physical or ecological models. These uncertainties need not delay anticipatory planning, but rather highlight the need for identification and communication of actions with high probabilities of success, and targeted research within an adaptive management framework.In this workshop, we will showcase the latest science on climate refugia and participants will interact through small group discussions, relevant examples, and facilitated dialogue to i
Can future land use change be usefully predicted?
NASA Astrophysics Data System (ADS)
Ramankutty, N.; Coomes, O.
2011-12-01
There has been increasing recognition over the last decade that land use and land cover change is an important driver of global environmental change. Consequently, there have been growing efforts to understanding processes of land change from local-to-global scales, and to develop models to predict future changes in the land. However, we believe that such efforts are hampered by limited attention being paid to the critical points of land change. Here, we present a framework for understanding land use change by distinguishing within-regime land-use dynamics from land-use regime shifts. Illustrative historical examples reveal the significance of land-use regime shifts. We further argue that the land-use literature predominantly demonstrates a good understanding (with predictive power) of within-regime dynamics, while understanding of land-use regime shifts is limited to ex post facto explanations with limited predictive capability. The focus of land use change science needs to be redirected toward studying land-use regime shifts if we are to have any hope of making useful future projections. We present a preliminary framework for understanding land-use regime-shifts, using two case studies in Latin America as examples. We finally discuss the implications of our proposal for land change science.
NASA Astrophysics Data System (ADS)
Mercer, J.; Liefert, D. T.; Shuman, B. N.; Befus, K. M.; Williams, D. G.; Kraushaar, B.
2017-12-01
Alpine and subalpine lakes are important components of the hydrologic cycle in mountain ecosystems. These lakes are also highly sensitive to small shifts in temperature and precipitation. Mountain lake volumes and their contributions to mountain hydrology may change in response to even minor declines in snowpack or increases in temperature. However, it is still not clear to what degree non-climatic factors, such as geomorphic setting and lake geometry, play in shaping the sensitivity of high elevation lakes to climate change. We investigated the importance of lake geometry and groundwater connectivity to mountain lakes in the Snowy Range, Wyoming using a combination of hydrophysical and hydrochemical methods, including stable water isotopes, to better understand the role these factors play in controlling lake volume. Water isotope values in open lakes were less sensitive to evaporation compared to those in closed basin lakes. Lake geometry played an important role, with wider, shallower lakes being more sensitive to evaporation over time. Groundwater contributions appear to play only a minor role in buffering volumetric changes to lakes over the growing season. These results confirm that mountain lakes are sensitive to climate factors, but also highlight a significant amount of variability in that sensitivity. This research has implications for water resource managers concerned with downstream water quantity and quality from mountain ecosystems, biologists interested in maintaining aquatic biodiversity, and paleoclimatologists interested in using lake sedimentary information to infer past climate regimes.
Wang, Yafeng; Pederson, Neil; Ellison, Aaron M; Buckley, Hannah L; Case, Bradley S; Liang, Eryuan; Julio Camarero, J
2016-07-01
The most widespread response to global warming among alpine treeline ecotones is not an upward shift, but an increase in tree density. However, the impact of increasing density on interactions among trees at treeline is not well understood. Here, we test if treeline densification induced by climatic warming leads to increasing intraspecific competition. We mapped and measured the size and age of Smith fir trees growing in two treelines located in the southeastern Tibetan Plateau. We used spatial point-pattern and codispersion analyses to describe the spatial association and covariation among seedlings, juveniles, and adults grouped in 30-yr age classes from the 1860s to the present. Effects of competition on tree height and regeneration were inferred from bivariate mark-correlations. Since the 1950s, a rapid densification occurred at both sites in response to climatic warming. Competition between adults and juveniles or seedlings at small scales intensified as density increased. Encroachment negatively affected height growth and further reduced recruitment around mature trees. We infer that tree recruitment at the studied treelines was more cold-limited prior to 1950 and shifted to a less temperature-constrained regime in response to climatic warming. Therefore, the ongoing densification and encroachment of alpine treelines could alter the way climate drives their transitions toward subalpine forests. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Cooper, L. Annie; Ballantyne, Ashley P.; Holden, Zachary A.; Landguth, Erin L.
2017-04-01
Forest disturbances influence forest structure, composition, and function and may impact climate through changes in net radiation or through shifts in carbon exchange. Climate impacts vary depending on environmental variables and disturbance characteristics, yet few studies have investigated disturbance impacts over large, environmentally heterogeneous, regions. We used satellite data to objectively determine the impacts of fire, bark beetles, defoliators, and "unidentified disturbances" (UDs) on land surface temperature (LST) and gross primary productivity (GPP) across the western United States (U.S.). We investigated immediate disturbance impacts, the drivers of those impacts, and long-term postdisturbance LST and GPP recovery patterns. All disturbance types caused LST increases (°C; fire: 3.45 ± 3.02, bark beetles: 0.76 ± 3.04, defoliators: 0.49 ± 3.12, and UD: 0.76 ± 3.03). Fire and insects resulted in GPP declines (%; fire: -25.05 ± 21.67, bark beetles: -2.84 ± 21.06, defoliators: -0.23 ± 15.40), while UDs resulted in slightly enhanced GPP (1.89 ± 24.20%). Disturbance responses also varied between ecoregions. Severity and interannual changes in air temperature were the primary drivers of short-term disturbance responses, and severity also had a strong impact on long-term recovery patterns. These results suggest a potential climate feedback due to disturbance-induced biophysical changes that may strengthen as disturbance regimes shift due to climate change.
What is the Effect of Interannual Hydroclimatic Variability on Water Supply Reservoir Operations?
NASA Astrophysics Data System (ADS)
Galelli, S.; Turner, S. W. D.
2015-12-01
Rather than deriving from a single distribution and uniform persistence structure, hydroclimatic data exhibit significant trends and shifts in their mean, variance, and lagged correlation through time. Consequentially, observed and reconstructed streamflow records are often characterized by features of interannual variability, including long-term persistence and prolonged droughts. This study examines the effect of these features on the operating performance of water supply reservoirs. We develop a Stochastic Dynamic Programming (SDP) model that can incorporate a regime-shifting climate variable. We then compare the performance of operating policies—designed with and without climate variable—to quantify the contribution of interannual variability to standard policy sub-optimality. The approach uses a discrete-time Markov chain to partition the reservoir inflow time series into small number of 'hidden' climate states. Each state defines a distinct set of inflow transition probability matrices, which are used by the SDP model to condition the release decisions on the reservoir storage, current-period inflow and hidden climate state. The experimental analysis is carried out on 99 hypothetical water supply reservoirs fed from pristine catchments in Australia—all impacted by the Millennium drought. Results show that interannual hydroclimatic variability is a major cause of sub-optimal hedging decisions. The practical import is that conventional optimization methods may misguide operators, particularly in regions susceptible to multi-year droughts.
NASA Astrophysics Data System (ADS)
Goeckede, M.; Kwon, M. J.; Kittler, F.; Heimann, M.; Zimov, N.; Zimov, S. A.
2016-12-01
Climate change impacts in the Arctic will not only depend on future temperature trajectories in this region. In particular, potential shifts in hydrologic regimes, e.g. linked to altered precipitation patterns or changes in topography following permafrost degradation, can dramatically modify ecosystem feedbacks to warming. Here, we analyze how severe drainage affects both biogeochemical and biogeophysical processes within a formerly wet Arctic tundra, with a special focus on the interactions between hydrology and soil temperatures, and related effects on the fluxes of carbon and energy. Our findings are based on year-round observations from a decade-long drainage experiment conducted near Chersky, Northeast Siberia. Through our multi-disciplinary observations we can document that the drainage triggered a suite of secondary changes in ecosystem properties, including e.g. adaptation processes in the vegetation community structure, or shifts in snow cover regime. Most profoundly, a combination of low heat capacity and reduced heat conductivity in dry organic soils lead to warmer soil temperatures near the surface, while deeper soil layers remained colder. These changes in soil thermal regime reduced the contribution of deeper soil layers with older carbon pools to overall ecosystem respiration, as documented through radiocarbon signals. Regarding methane, the observed steeper temperature gradient along the vertical soil profile slowed down methane production in deep layers, while promoting CH4 oxidation near the surface. Taken together, both processes contributed to a reduction in CH4 emissions up to a factor of 20 following drainage. Concerning the energy budget, we observed an intensification of energy transfer to the lower atmosphere, particularly in form of sensible heat, but the reduced energy transfer into deeper soil layers also led to systematically shallower thaw depths. Summarizing, drainage may contribute to slow down decomposition of old carbon from deep soil layers, counterbalancing direct warming effects on permafrost carbon pools.
FISHER INFORMATION AND ECOSYSTEM REGIME CHANGES
Following Fisher’s work, we propose two different expressions for the Fisher Information along with Shannon Information as a means of detecting and assessing shifts between alternative ecosystem regimes. Regime shifts are a consequence of bifurcations in the dynamics of an ecosys...
Seasonality of Groundwater Recharge in the Basin and Range Province, Western North America
NASA Astrophysics Data System (ADS)
Neff, K. L.; Meixner, T.; Ajami, H.; De La Cruz, L.
2015-12-01
For water-scarce communities in the western U.S., it is critical to understand groundwater recharge regimes and how those regimes might shift in the face of climate change and impact groundwater resources. Watersheds in the Basin and Range Geological Province are characterized by a variable precipitation regime of wet winters and variable summer precipitation. The relative contributions to groundwater recharge by summer and winter precipitation vary throughout the province, with winter precipitation recharge dominant in the northern parts of the region, and recharge from summer monsoonal precipitation playing a more significant role in the south, where the North American Monsoon (NAM) extends its influence. Stable water isotope data of groundwater and seasonal precipitation from sites in Sonora, Mexico and the U.S. states of California, Nevada, Utah, Arizona, Colorado, New Mexico, and Texas were examined to estimate and compare groundwater recharge seasonality throughout the region. Contributions of winter precipitation to annual recharge vary from 69% ± 41% in the southernmost Río San Miguel Basin in Sonora, Mexico, to 100% ± 36% in the westernmost Mojave Desert of California. The Normalized Seasonal Wetness Index (NSWI), a simple water budget method for estimating recharge seasonality from climatic data, was shown to approximate recharge seasonality well in several winter precipitation-dominated systems, but less well in basins with significant summer precipitation.
William J. De Groot; Michael D. Flannigan; Brian J. Stocks
2013-01-01
Wildland fire regimes are primarily driven by climate/weather, fuels and people. All of these factors are dynamic and their variable interactions create a mosaic of fire regimes around the world. Climate change will have a substantial impact on future fire regimes in many global regions. Current research suggests a general increase in area burned and fire occurrence...
Understanding the major transitions in Quaternary climate dynamics
NASA Astrophysics Data System (ADS)
Willeit, Matteo; Ganopolski, Andrey
2017-04-01
Climate dynamics over the past 3 million years was characterized by strong variability associated with glacial cycles and several distinct regime changes. The Pliocene-Pleistocene Transition (PPT), which happened around 2.7 million years ago, was characterized by the appearance of the large continental ice sheets over Northern Eurasia and North America. For two million years after the PPT climate variability was dominated by relatively symmetric 40 kyr cycles. At around 1 million years ago the dominant mode of climate variability experienced a relatively rapid transition from 40 kyr to strongly asymmetric 100 kyr cycles of larger amplitude (Mid-Pleistocene Transition). Additionally, during the past 800 kyr there are clear differences between the earlier and the later glacial cycles with the last five cycles characterized by larger magnitude of variability (Mid-Brunhes Event). Here, we use the Earth system model of intermediate complexity CLIMBER-2 to explore possible mechanisms that could explain these regime shifts. CLIMBER-2 incorporates all major components of the Earth system - atmosphere, ocean, land surface, northern hemisphere ice sheets, terrestrial biota and soil carbon, marine biogeochemistry and aeolian dust. The model was optimally tuned to reproduce climate, ice volume and CO2 variability over the last 400,000 years. Using the same model version, we performed a large set of simulations covering the entire Quaternary (3 million years) starting from identical initial conditions and using a parallelization in time technique which consists of starting the model at different times (every 100,000 years) and running each simulation for 500,000 years. The Earth's orbital variations are the only prescribed radiative forcing. Several sets of the Northern Hemisphere orography and sediment thickness representing different stages of landscape evolution during the Quaternary are prescribed as boundary conditions for the ice sheet model and volcanic CO2 outgassing is used as the external forcing for the carbon cycle to allow for different background atmospheric CO2 concentrations. We show that by varying only these two model boundary conditions and volcanic forcing the model is able to reproduce the major regime changes of Quaternary long-term climate dynamics.
Mustonen, Kaisa-Riikka; Mykrä, Heikki; Marttila, Hannu; Sarremejane, Romain; Veijalainen, Noora; Sippel, Kalle; Muotka, Timo; Hawkins, Charles P
2018-06-01
Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070-2100) benthic macroinvertebrate assemblages at 239 near-pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species' distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate-induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present-day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high-flow seasonality because of their vulnerability to climate change. © 2018 John Wiley & Sons Ltd.
Late Holocene influence of societies on the fire regime in southern Québec temperate forests
NASA Astrophysics Data System (ADS)
Blarquez, Olivier; Talbot, Julie; Paillard, Jordan; Lapointe-Elmrabti, Lyna; Pelletier, Nicolas; Gates St-Pierre, Christian
2018-01-01
Climatic change that occurred during the Holocene is often recognized as the main factor for explaining fire dynamics, while the influence of human societies is less apparent. In eastern North America, human influence on fire regime before European settlement has been debated, mainly because of a paucity of sites and paleoecological techniques that can distinguish human influences unequivocally from climate. We applied a multiproxy analysis to a 12 000-year-old paleoecological sequence from a site in the vicinity of known settlement areas that were occupied over more than 7000 years. From this analysis, we were able detect the human influence on the fire regime before and after European colonization. Fire occurrence and fire return intervals (FRI) were based on analysis of sedimentary charcoals at a high temporal and spatial resolution. Fire occurrence was then compared to vegetation that was reconstructed from pollen analysis, from population densities deduced from archeological site dating, from demographic and technological models, and from climate reconstructed using general circulation models and ice-core isotopes. Holocene mean FRI was short (164 ± 134 years) and associated with small charcoal peaks that were likely indicative of surface fires affecting small areas. After 1500 BP, large vegetation changes and human demographic growth that was demonstrated through increased settlement evidence likely caused the observed FRI lengthening (301 ± 201 years), which occurred without significant changes in climate. Permanent settlement by Europeans in the area around 1800 AD was followed by a substantial demographic increase, leading to the establishment of Gatineau, Hull and Ottawa. This trend was accompanied by a shift in the charcoal record toward anthropogenic particles that were reflective of fossil fuel burning and an apparent absence of wood charcoal that would be indicative of complete fire suppression. An anthropogenic fire regime that was characterized by severe and large fires and long fire-return intervals occurred more than 1000 years ago, concomitant with the spread of native agriculture, which intensified with European colonization over the past two centuries.
Predicting fluctuations-caused regime shifts in a time delayed dynamics of an invading species
NASA Astrophysics Data System (ADS)
Xie, Qingshuang; Wang, Tonghuan; Zeng, Chunhua; Dong, Xiaohui; Guan, Lin
2018-03-01
In this paper, we investigate early warning signals (EWS) of regime shifts in a density-dependent invading population model with time delay, in which the population density is assumed to be disturbed by intrinsic and extrinsic fluctuations. It is shown that the time delay and noises can cause the regime shifts between low and high population density states. The regime shift time (RST) as a function of noise intensity exhibits a maximum, which identifies the signature of the noise-enhanced stability of the low density state, while the time delay weakens the stability of the low density state. Applying the Kramers time technique, we also discuss the intersection point of the RST between low and high population density states, i.e., a critical point in the RST is found. Therefore, the critical point may give an EWS of regime shifts from one alternative state to another one for the changes in the noise parameters and time delay.
Early signatures of regime shifts in gene expression dynamics
NASA Astrophysics Data System (ADS)
Pal, Mainak; Pal, Amit Kumar; Ghosh, Sayantari; Bose, Indrani
2013-06-01
Recently, a large number of studies have been carried out on the early signatures of sudden regime shifts in systems as diverse as ecosystems, financial markets, population biology and complex diseases. The signatures of regime shifts in gene expression dynamics are less systematically investigated. In this paper, we consider sudden regime shifts in the gene expression dynamics described by a fold-bifurcation model involving bistability and hysteresis. We consider two alternative models, models 1 and 2, of competence development in the bacterial population B. subtilis and determine some early signatures of the regime shifts between competence and noncompetence. We use both deterministic and stochastic formalisms for the purpose of our study. The early signatures studied include the critical slowing down as a transition point is approached, rising variance and the lag-1 autocorrelation function, skewness and a ratio of two mean first passage times. Some of the signatures could provide the experimental basis for distinguishing between bistability and excitability as the correct mechanism for the development of competence.
NASA Astrophysics Data System (ADS)
Bennett, K. E.; Schnorbus, M.; Werner, A. T.; Berland, A. J.
2010-12-01
The British Columbia Hydro Electric Corporation (BC Hydro) has a mandate to provide clean, renewable and reliable sources of hydro-electric power into the future, hence managing those resources in the context of climate change will be an important component of reservoir operational planning in British Columbia. The Pacific Climate Impacts Consortium (www.PacificClimate.org) has implemented the Variable Infiltration Capacity hydrologic model parameterized at 1/16th degree (~32 km2) to provide BC Hydro with future projections of changes to streamflow and snowpack to the 2050s. The headwaters of the Peace, Columbia, and Campbell River basins were selected for study; the Upper Peace River basin (101,000 km2) is a snowmelt-dominated watershed, and the Upper Columbia River Basin (104,000 km2) has a mixed snowmelt-glacier melt runoff regime, with glacier runoff contributing up to 15 to 20% of late summer discharge. The Upper Campbell River watershed (1,200 km2) has a mixed rainfall and snowmelt (hybrid) hydrologic regime. The model has been calibrated using historical streamflow observations and validated against these observations, as well as automated snow pillow measurements. Future streamflow changes are estimated based on eight Global Climate Models (GCMs) from the CMIP3 suite, downscaled using the Bias Correction Spatial Downscaling (BCSD) technique, run under three emissions scenarios (A2, A1B and B1; A1B is specifically reported on herein). Climate impacts by the 2050s in the three watersheds illustrate an increase in annual average temperature and precipitation ranging between +2.2°C to +2.8°C and +2% to +10% depending on basin, and an annual change in streamflow of -1% to +12% for the three watersheds. Changes are more profound on the seasonal time-scale and differ across basins. Summer streamflow in the Upper Campbell River watershed is projected to decline by -60%, where as the Upper Peace and Columbia systems are projected to decline by -25% and -22%, respectively. Streamflow is projected to increase during winter months for all basins, ranging from increases of +54% (Upper Campbell), +77% (Upper Peace) to +94% (Upper Columbia). These changes in streamflow illustrate a shift towards more rainfall dominated systems with lower snowpacks during the winter months, particularly in the Campbell system (shifting from 23% to 13% snow dominated by the 2050s), which is located at a relatively low elevation and proximal to the Pacific Ocean. Shifts in the distribution of water resources, and in particular snowpack reserves, may require BC Hydro to reconsider their operational planning framework for impacted systems.
NASA Astrophysics Data System (ADS)
Emanuel, R. E.; Singh, N.; Painter, J.; Sikes, J. A.; Vose, J. M.; Wear, D. N.; Martin, K. L.
2016-12-01
In the coming decades, the southeastern US will likely experience substantial shifts in land use due to population growth, food and energy production, and other factors. In the same period, climate change is expected to alter ecohydrological processes in terrestrial landscapes while contributing to further land use change. Increasingly, these changes will challenge the ability of the region's freshwater resources to support natural ecosystems and human communities. The impacts of land use and climate change on water are of particular concern to rural indigenous communities of the southeastern US. For these communities, the cultural significance of land and water, together with historical legacies of discrimination, marginalization and other factors, combine to create unique vulnerabilities to environmental change. Assessments of land use and climate impacts on water resources of the southeastern US tend to focus on quantity and quality concerns of large cities or on waters of special economic concern (e.g. estuaries and coastal fisheries). The potential impacts of land use and climate change on American Indian communities are largely overlooked or unknown. With this in mind, we used a semi-distributed hydrological model (SWAT) to assess impacts of climate and land use change on streamflow regimes in the Lumbee (aka Lumber) River, North Carolina (USA). This coastal plain blackwater river is a significant natural and cultural resource for indigenous people of the Lumbee Tribe, and its watershed, containing extensive riparian wetlands and agriculture-dominated uplands, is home to more than 30,000 tribal citizens. We ran SWAT with statistically downscaled output from four general circulation models (GCMs) for the mid-21st century (RCP8.5 scenario), together with a mid-century land use scenario from the US Forest Service's Southern Forest Futures Project. We used these inputs to simulate daily streamflows on the Lumbee River for the 2040-2060 period with uncertainty estimates derived from multiple GCMs and ensemble parameter sets. We compare simulated fluxes for the 2040-2060 period to a historical baseline of observed data and discuss implications of shifting flow regimes for the river, for its adjacent wetland and agricultural ecosystems, and for the related concerns of the Lumbee people.
Global desertification: Drivers and feedbacks
NASA Astrophysics Data System (ADS)
D'Odorico, Paolo; Bhattachan, Abinash; Davis, Kyle F.; Ravi, Sujith; Runyan, Christiane W.
2013-01-01
Desertification is a change in soil properties, vegetation or climate, which results in a persistent loss of ecosystem services that are fundamental to sustaining life. Desertification affects large dryland areas around the world and is a major cause of stress in human societies. Here we review recent research on the drivers, feedbacks, and impacts of desertification. A multidisciplinary approach to understanding the drivers and feedbacks of global desertification is motivated by our increasing need to improve global food production and to sustainably manage ecosystems in the context of climate change. Classic desertification theories look at this process as a transition between stable states in bistable ecosystem dynamics. Climate change (i.e., aridification) and land use dynamics are the major drivers of an ecosystem shift to a “desertified” (or “degraded”) state. This shift is typically sustained by positive feedbacks, which stabilize the system in the new state. Desertification feedbacks may involve land degradation processes (e.g., nutrient loss or salinization), changes in rainfall regime resulting from land-atmosphere interactions (e.g., precipitation recycling, dust emissions), or changes in plant community composition (e.g., shrub encroachment, decrease in vegetation cover). We analyze each of these feedback mechanisms and discuss their possible enhancement by interactions with socio-economic drivers. Large scale effects of desertification include the emigration of “environmental refugees” displaced from degraded areas, climatic changes, and the alteration of global biogeochemical cycles resulting from the emission and long-range transport of fine mineral dust. Recent research has identified some possible early warning signs of desertification, which can be used as indicators of resilience loss and imminent shift to desert-like conditions. We conclude with a brief discussion on some desertification control strategies implemented in different regions around the world.
Organic-matter loading determines regime shifts and alternative states in an aquatic ecosystem.
Sirota, Jennie; Baiser, Benjamin; Gotelli, Nicholas J; Ellison, Aaron M
2013-05-07
Slow changes in underlying state variables can lead to "tipping points," rapid transitions between alternative states ("regime shifts") in a wide range of complex systems. Tipping points and regime shifts routinely are documented retrospectively in long time series of observational data. Experimental induction of tipping points and regime shifts is rare, but could lead to new methods for detecting impending tipping points and forestalling regime shifts. By using controlled additions of detrital organic matter (dried, ground arthropod prey), we experimentally induced a shift from aerobic to anaerobic states in a miniature aquatic ecosystem: the self-contained pools that form in leaves of the carnivorous northern pitcher plant, Sarracenia purpurea. In unfed controls, the concentration of dissolved oxygen ([O2]) in all replicates exhibited regular diurnal cycles associated with daytime photosynthesis and nocturnal plant respiration. In low prey-addition treatments, the regular diurnal cycles of [O2] were disrupted, but a regime shift was not detected. In high prey-addition treatments, the variance of the [O2] time series increased until the system tipped from an aerobic to an anaerobic state. In these treatments, replicate [O2] time series predictably crossed a tipping point at ~45 h as [O2] was decoupled from diurnal cycles of photosynthesis and respiration. Increasing organic-matter loading led to predictable changes in [O2] dynamics, with high loading consistently driving the system past a well-defined tipping point. The Sarracenia microecosystem functions as a tractable experimental system in which to explore the forecasting and management of tipping points and alternative regimes.
Managing for resilience: early detection of regime shifts in complex systems
The goal of sustainability is to maintain a condition or regime of the Earth, which supports human existence from generation to generation. Hence, the ability to detect, characterize, and manage regime shifts, particularly catastrophic ones, is critical to maintaining human sust...
NASA Astrophysics Data System (ADS)
Lu, Cai; Jia, Yifei; Jing, Lei; Zeng, Qing; Lei, Jialin; Zhang, Shuanghu; Lei, Guangchun; Wen, Li
2018-04-01
Better understanding of the dynamics of hydrological connectivity between river and floodplain is essential for the ecological integrity of river systems. In this study, we proposed a regime-switch modelling (RSM) framework, which integrates change point analysis with dynamic linear regression, to detect and date change points in linear regression, and to quantify the relative importance of natural variations and anthropogenic disturbances. The approach was applied to the long-term hydrological time series to investigate the evolution of river-floodplain relation in Dongting Lake in the last five decades, during which the Yangtze River system experienced unprecedented anthropogenic manipulations. Our results suggested that 1) there were five distinct regimes during which the influence of inflows and local climate on lake water level changed significantly. The detected change points were well corresponding to the major events occurred upon the Yangtze; 2) although the importance of inflows from the Yangtze was greater than that of the tributaries flows over the five regimes, the relative contribution gradually decreased from regime 1 to regime 5. The weakening of hydrological forcing from the Yangtze was mainly attributed to the reduction in channel capacity resulting from sedimentation in the outfalls and water level dropping caused by river bed scour in the mainstream; 3) the effects of local climate was much smaller than these of inflows; and 4) since the operation of The Three Gorges Dam in 2006, the river-floodplain relationship entered a new equilibrium in that all investigated variables changed synchronously in terms of direction and magnitude. The results from this study reveal the mechanisms underlying the alternated inundation regime in Dongting Lake. The identified change points, some of which have not been previously reported, will allow a reappraisal of the current dam and reservoir operation strategies not only for flood/drought risk management but also for the maintenance and restoration of the regional ecological integrity.
ENSO and cholera: a nonstationary link related to climate change?
Rodo, Xavier; Pascual, Mercedes; Fuchs, George; Faruque, A S G
2002-10-01
We present here quantitative evidence for an increased role of interannual climate variability on the temporal dynamics of an infectious disease. The evidence is based on time-series analyses of the relationship between El Niño/Southern Oscillation (ENSO) and cholera prevalence in Bangladesh (formerly Bengal) during two different time periods. A strong and consistent signature of ENSO is apparent in the last two decades (1980-2001), while it is weaker and eventually uncorrelated during the first parts of the last century (1893-1920 and 1920-1940, respectively). Concomitant with these changes, the Southern Oscillation Index (SOI) undergoes shifts in its frequency spectrum. These changes include an intensification of the approximately 4-yr cycle during the recent interval as a response to the well documented Pacific basin regime shift of 1976. This change in remote ENSO modulation alone can only partially serve to substantiate the differences observed in cholera. Regional or basin-wide changes possibly linked to global warming must be invoked that seem to facilitate ENSO transmission. For the recent cholera series and during specific time intervals corresponding to local maxima in ENSO, this climate phenomenon accounts for over 70% of disease variance. This strong association is discontinuous in time and can only be captured with a technique designed to isolate transient couplings.
ENSO and cholera: A nonstationary link related to climate change?
Rodó, Xavier; Pascual, Mercedes; Fuchs, George; Faruque, A. S. G.
2002-01-01
We present here quantitative evidence for an increased role of interannual climate variability on the temporal dynamics of an infectious disease. The evidence is based on time-series analyses of the relationship between El Niño/Southern Oscillation (ENSO) and cholera prevalence in Bangladesh (formerly Bengal) during two different time periods. A strong and consistent signature of ENSO is apparent in the last two decades (1980–2001), while it is weaker and eventually uncorrelated during the first parts of the last century (1893–1920 and 1920–1940, respectively). Concomitant with these changes, the Southern Oscillation Index (SOI) undergoes shifts in its frequency spectrum. These changes include an intensification of the approximately 4-yr cycle during the recent interval as a response to the well documented Pacific basin regime shift of 1976. This change in remote ENSO modulation alone can only partially serve to substantiate the differences observed in cholera. Regional or basin-wide changes possibly linked to global warming must be invoked that seem to facilitate ENSO transmission. For the recent cholera series and during specific time intervals corresponding to local maxima in ENSO, this climate phenomenon accounts for over 70% of disease variance. This strong association is discontinuous in time and can only be captured with a technique designed to isolate transient couplings. PMID:12228724
Liu, Zun-lei; Yuan, Xing-wei; Yang, Lin-lin; Yan, Li-ping; Tian, Yong-jun; Chen, Jia-hua
2015-03-01
Data sets of 26 fisheries target species from the fishery-depen-dent and fishery-independent surveys in the overwintering ground of open waters of northern East China Sea (OW-NECS), combined sea surface temperature (SST), were used to examine the links between diversity index, pattern of common variability and climate changes based on the principal component analysis (PCA) and generalized additive model (GAM). The results showed that the shift from a cold regime to a warm regime was detected in SST during the 1970s-2011 with step changes around 1982/ 1983. SST increased during the cold regime and the warm regime before 1998 (warming trend period, 1972-1998), and decreased during the warm regime after 1998 (cooling trend period, 1999-2011). Shannon diversity index was largely dependent on the filefish, which contributed up to 50% of the total production as a single species, with low diversity in the waters of the OW-NECS, during the late 1980s and early 1990s. Excluding the filefish, the diversity index linearly increased and decreased during 1972-1998 and 1999-2011, respectively. The variation pattern generally corresponds with the trend in water temperature, strongly suggesting the effect of the SST on the diversity. The first two components (PC1 and PC2) of PCA for target species, which accounted for 32.43% of the total variance, showed evident decadal variation patterns with a step change during 1992-1999 and inter-annual variability with short-period fluctuation, respectively. It seems that PC1 was associated with large scale climatic change, while PC2 was related to inter-annual oceanographic variability such as ENSO events. Linear fitting results showed winEOF1 had significant effect on PC1, and GAM analysis for PC1 showed that winter EOF1 (winEOF1) and summer EOF2 (sumEOF2) can explain 88.9% of the total variance. Nonlinear effect was also found between PC2 and win EOF1, indicating that the fish community structure, which had predominantly decadal/inter-annual variation patterns, was influenced by inter-annual variations in oceanographic conditions.
Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years
Obreht, Igor; Zeeden, Christian; Hambach, Ulrich; Veres, Daniel; Marković, Slobodan B.; Bösken, Janina; Svirčev, Zorica; Bačević, Nikola; Gavrilov, Milivoj B.; Lehmkuhl, Frank
2016-01-01
Loess-palaeosol sequences are valuable archives of past environmental changes. Although regional palaeoclimatic trends and conditions in Southeastern Europe have been inferred from loess sequences, large scale forcing mechanisms responsible for their formation have yet to be determined. Southeastern Europe is a climatically sensitive region, existing under the strong influence of both Mediterranean and continental climates. Establishment of the spatial and temporal evolution and interaction of these climatic areas is essential to understand the mechanisms of loess formation. Here we present high-resolution grain-size, environmental magnetic, spectrophotometric and geochemical data from the Stalać section in the Central Balkans (Serbia) for the past ~350,000 years. The goal of this study is to determine the influence of the Mediterranean climate during this period. Data show that the Central Balkans were under different atmospheric circulation regimes, especially during Marine Isotope Stages 9 and 7, while continental climate prevailed further north. We observe a general weakening of the Mediterranean climate influence with time. Our data suggest that Marine Isotope Stage 5 was the first interglacial in the Central Balkans that had continental climate characteristics. This prominent shift in climatic conditions resulted in unexpectedly warm and humid conditions during the last glacial. PMID:27824102
The detection of impending regime shifts from Fisher Information(presentation)
Resilient systems typically exhibit periodic fluctuations yet are able to withstand perturbations while maintaining functionality. However, it is possible for a system to reach a dynamic threshold and shift to another set of system conditions. These regime shifts have been demon...
NASA Astrophysics Data System (ADS)
Henebry, G. M.; Wimberly, M. C.; Senay, G.; Wang, A.; Chang, J.; Wright, C. R.; Hansen, M. C.
2008-12-01
Land cover change across the Northern Great Plains of North America over the past three decades has been driven by changes in agricultural management (conservation tillage; irrigation), government incentives (Conservation Reserve Program; subsidies to grain-based ethanol), crop varieties (cold-hardy soybean), and market dynamics (increasing world demand). Climate change across the Northern Great Plains over the past three decades has been evident in trends toward earlier warmth in the spring and a longer frost-free season. Together these land and climate changes induce shifts in local and regional land surface phenologies (LSPs). Any significant shift in LSP may correspond to a significant shift in evapotranspiration, with consequences for regional hydrometeorology. We explored possible future scenarios involving land use and climate change in six steps. First, we defined the nominal draw areas of current and future biorefineries in North Dakota, South Dakota, Nebraska, Minnesota, and Iowa and masked those land cover types within the draw areas that were unlikely to change to agricultural use (open water, settlements, forests, etc.). Second, we estimated the proportion of corn and soybean remaining within the masked draw areas using MODIS-derived crop maps. Third, in each draw area, we modified LSPs to simulate crop changes for a control and two treatment scenarios. In the control, we used LSP profiles identified from MODIS Collection 5 NBAR data. In one treatment, we increased the proportion of tallgrass LSPs in the draw areas to represent widespread cultivation of a perennial cellulosic crop, like switchgrass. In a second treatment, we increased the proportion of corn LSPs in the draw areas to represent increased corn cultivation. Fourth, we characterized the seasonal progression of the thermal regime associated with the LSP profiles using MODIS Land Surface Temperature (LST) products. Fifth, we modeled the LSP profile as a quadratic function of accumulated growing degree-days based on the LST time series. Sixth, we used representative IPCC AR4 mid-century projections to force the quadratic models and produce possible future LSPs. The resulting shifts in potential peak vegetation to earlier dates indicate potential seasonal shifts in evapotranspiration.
NASA Astrophysics Data System (ADS)
Morse, R. E.; Friedland, K. D.; Tommasi, D.; Stock, C.; Nye, J.
2017-01-01
We investigated regime shifts in seasonal zooplankton communities of the Northeast continental shelf Large Marine Ecosystem (NES) and its subcomponent ecoregions over a multi-decadal period (1977-2013). Our cross ecoregion analysis shows that regime shifts in different ecoregions often exhibited very distinct characteristics, emphasizing more granular fluctuations in NES plankton communities relative to previous work. Shifts early in the time series generally reflected an increase in abundance levels. The response of zooplankton abundance within fall communities was more similar among ecoregions than for spring communities. The Gulf of Maine exhibited highly distinct patterns from other ecoregions, with regime shifts identified in the early 1980s, early 2000s, and mid-2000s for spring communities. Regime shifts were identified in the early to mid-1990s for the NES, Georges Bank, and the Mid-Atlantic Bight ecoregions, while the fall communities experienced shifts in the early 1990s and late 1980s for the NES and Georges Bank, but in the late 1990s in the Mid-Atlantic Bight. A constrained correspondence analysis of zooplankton community against local and basin-scale climatological indices suggests that water temperature, stratification, and the Atlantic multidecadal oscillation (AMO) were the predominant factors in driving the zooplankton community composition.
Gröger, Joachim P; Hinrichsen, Hans-Harald; Polte, Patrick
2014-01-01
Climate forcing in complex ecosystems can have profound implications for ecosystem sustainability and may thus challenge a precautionary ecosystem management. Climatic influences documented to affect various ecological functions on a global scale, may themselves be observed on quantitative or qualitative scales including regime shifts in complex marine ecosystems. This study investigates the potential climatic impact on the reproduction success of spring-spawning herring (Clupea harengus) in the Western Baltic Sea (WBSS herring). To test for climate effects on reproduction success, the regionally determined and scientifically well-documented spawning grounds of WBSS herring represent an ideal model system. Climate effects on herring reproduction were investigated using two global indices of atmospheric variability and sea surface temperature, represented by the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO), respectively, and the Baltic Sea Index (BSI) which is a regional-scale atmospheric index for the Baltic Sea. Moreover, we combined a traditional approach with modern time series analysis based on a recruitment model connecting parental population components with reproduction success. Generalized transfer functions (ARIMAX models) allowed evaluating the dynamic nature of exogenous climate processes interacting with the endogenous recruitment process. Using different model selection criteria our results reveal that in contrast to NAO and AMO, the BSI shows a significant positive but delayed signal on the annual dynamics of herring recruitment. The westward influence of the Siberian high is considered strongly suppressing the influence of the NAO in this area leading to a higher explanatory power of the BSI reflecting the atmospheric pressure regime on a North-South transect between Oslo, Norway and Szczecin, Poland. We suggest incorporating climate-induced effects into stock and risk assessments and management strategies as part of the EU ecosystem approach to support sustainable herring fisheries in the Western Baltic Sea.
Gröger, Joachim P.; Hinrichsen, Hans-Harald; Polte, Patrick
2014-01-01
Climate forcing in complex ecosystems can have profound implications for ecosystem sustainability and may thus challenge a precautionary ecosystem management. Climatic influences documented to affect various ecological functions on a global scale, may themselves be observed on quantitative or qualitative scales including regime shifts in complex marine ecosystems. This study investigates the potential climatic impact on the reproduction success of spring-spawning herring (Clupea harengus) in the Western Baltic Sea (WBSS herring). To test for climate effects on reproduction success, the regionally determined and scientifically well-documented spawning grounds of WBSS herring represent an ideal model system. Climate effects on herring reproduction were investigated using two global indices of atmospheric variability and sea surface temperature, represented by the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO), respectively, and the Baltic Sea Index (BSI) which is a regional-scale atmospheric index for the Baltic Sea. Moreover, we combined a traditional approach with modern time series analysis based on a recruitment model connecting parental population components with reproduction success. Generalized transfer functions (ARIMAX models) allowed evaluating the dynamic nature of exogenous climate processes interacting with the endogenous recruitment process. Using different model selection criteria our results reveal that in contrast to NAO and AMO, the BSI shows a significant positive but delayed signal on the annual dynamics of herring recruitment. The westward influence of the Siberian high is considered strongly suppressing the influence of the NAO in this area leading to a higher explanatory power of the BSI reflecting the atmospheric pressure regime on a North-South transect between Oslo, Norway and Szczecin, Poland. We suggest incorporating climate-induced effects into stock and risk assessments and management strategies as part of the EU ecosystem approach to support sustainable herring fisheries in the Western Baltic Sea. PMID:24586279
NASA Astrophysics Data System (ADS)
Whitlock, C.; Marlon, J.; Bartlein, P.
2006-12-01
Particulate charcoal preserved in lake sediments has become an important tool for examining the long-term role of fire as an ecosystem process. The record of microscopic charcoal (100 micron diameter or less) offers information on regional burning patterns, whereas macroscopic particles travel less far and are used to infer local fire history. Reconstruction of past fire activity is based on observations of modern charcoal production, transport, and deposition; modeling; and information on current fire regimes. Approaches and statistics used to interpret charcoal records generally focus on (1) quantifying charcoal content in contiguous samples, (2) determining an appropriate age model, (3) converting raw data to charcoal accumulation rates, and (4) extracting fire signal from noise. Detection of signal in charcoal time series is based on knowledge of recent fires provided by dendrochronological and documentary data. Additional paleofire information is obtained from stratigraphic changes in charcoal composition, pollen assemblages adapted to fire, and other paleoenvironmental proxy. Fire-history studies from western North and South America provide examples of Holocene fire-history reconstructions at spatial scales ranging from watershed to regional. Individual sites show dramatic shifts from crown to surface fire regimes associated with major changes in vegetation. Networks of records reveal regional variations in fire activity and vegetation that are attributed to insolation- driven shifts in atmospheric circulation and changes in short-term climate variability. A global database of paleofire records under development offers an opportunity to consider continental-scale fire patterns and their broad consequences for vegetation dynamics, biogeochemical cycling, and atmospheric chemistry.
Changes in precipitation regime in the Baltic countries in 1966-2015
NASA Astrophysics Data System (ADS)
Jaagus, Jaak; Briede, Agrita; Rimkus, Egidijus; Sepp, Mait
2018-01-01
The aim of the study was to analyse trends and regime shifts in time series of monthly, seasonal and annual precipitation in the eastern Baltic countries (Lithuania, Latvia, Estonia) during 1966-2015. Data from 54 stations with nearly homogeneous series were used. The Mann-Kendall test was used for trend analysis and the Rodionov test for the analysis of regime shifts. Rather few statistically significant trends ( p < 0.05) and regime shifts were determined. The highest increase (by approximately 10 mm per decade) was observed in winter precipitation when a significant trend was found at the large majority of stations. For monthly precipitation, increasing trends were detected at many stations in January, February and June. Weak negative trends revealed at few stations in April and September. Annual precipitation has generally increased, but the trend is mostly insignificant. The analysis of regime shifts revealed some significant abrupt changes, the most important of which were upward shifts in winter, in January and February precipitation at many stations since 1990 or in some other years (1989, 1995). A return shift in the time series of February precipitation occurred since 2003. The most significant increase in precipitation was determined in Latvia and the weakest increase in Lithuania.
The detection and assessment of impending regime shifts from Fisher Information
Resilient systems typically exhibit periodic fluctuations yet are able to withstand perturbations while maintaining functionality. However, it is possible for a system to reach a dynamic threshold and shift to another set of system conditions. These regime shifts have been demon...
Continued warming could transform Greater Yellowstone fire regimes by mid-21st century
Anthony L. Westerling; Monica G. Turner; Erica A. H. Smithwick; William H. Romme; Michael G. Ryan
2011-01-01
Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated...
Early detection of ecosystem regime shifts: a multiple method evaluation for management application.
Lindegren, Martin; Dakos, Vasilis; Gröger, Joachim P; Gårdmark, Anna; Kornilovs, Georgs; Otto, Saskia A; Möllmann, Christian
2012-01-01
Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited. Using real monitoring data of a key ecosystem component, we here apply multiple early-warning indicators in order to assess their ability to forewarn a major ecosystem regime shift in the Central Baltic Sea. We show that some indicators and methods can result in clear early-warning signals, while other methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face of ecosystem change.
Early Detection of Ecosystem Regime Shifts: A Multiple Method Evaluation for Management Application
Lindegren, Martin; Dakos, Vasilis; Gröger, Joachim P.; Gårdmark, Anna; Kornilovs, Georgs; Otto, Saskia A.; Möllmann, Christian
2012-01-01
Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited. Using real monitoring data of a key ecosystem component, we here apply multiple early-warning indicators in order to assess their ability to forewarn a major ecosystem regime shift in the Central Baltic Sea. We show that some indicators and methods can result in clear early-warning signals, while other methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face of ecosystem change. PMID:22808007
Global change and terrestrial plant community dynamics
Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; ...
2016-02-29
Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less
Global change and terrestrial plant community dynamics
Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.
2016-01-01
Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.
Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less
NASA Astrophysics Data System (ADS)
Krask, J. L.; Hein, C. J.; Galy, V.; FitzGerald, D.; Henrique de Fontoura Klein, A.
2017-12-01
Whereas millennial-scale variations in climate forcing drives changes in terrestrial processes, which are in turn directly linked to fluvial sediment loads (e.g., weathering and erosion), the impact of decadal- to centennial- scale climate fluctuations on downstream coastal sedimentation patterns and landscape evolution remains unclear. Specifically, the connection between long-term (decades or more) precipitation seasonality and sediment export from river systems has not been established. This study examines the manner in which sub-millennial-scale fluctuations in precipitation over river catchments may be recorded in coastal progradational sedimentary archives. The 5-km wide Tijucas Strandplain (southern Brazil) formed over the last 5800 years through the rapid reworking of sediment discharged from the Tijucas River in a regime of falling sea level. In an overall regime shift from sand- to mud- dominance (linked to a long-term reduction in wave energy caused by bay shoaling) are nearly 70 distinct transitions between shore-parallel sand- and mud- dominated facies. Bulk organic carbon and terrestrial plant-wax fatty acid stable hydrogen (δD) and carbon (δ13C) isotopic measurements from sediments from select sandy and muddy ridges across the plain reveal that these two sedimentological regimes are geochemically distinct. Specifically, waxes from sediments deposited during periods of sandy progradation had δD values, on average, >10 ‰ higher than those from mud-dominated periods, indicating that these sedimentary units reflect different hydroclimatic conditions within the river drainage basin at the time of deposition. Comparison of plant wax isotopic signatures of river, bay, and beach sediments during the current period of mud-dominated progradation reveals a close correlation with earlier periods of mud deposition within the Tijucas Strandplain. Thus, decadal- to centennial- scale sedimentologic transitions within the plain are interpreted to reflect climate-driven changes in mud export rates, as product of modifications in river basin vegetation and soil formation and erosional processes.
NASA Astrophysics Data System (ADS)
Miller, A. D.
2015-12-01
Many aspects of disturbance processes can have large impacts on the composition of plant communities, and associated changes in land cover type in turn have biogeochemical feedbacks to climate. In particular, changes to disturbance regimes can potentially change the number and stability of equilibrial states, and plant community states can differ dramatically in their carbon (C) dynamics, energy balance, and hydrology. Using the Klamath region of northern California as a model system, we present a theoretical analysis of how changes to climate and associated fire dynamics can disrupt high-carbon, long-lived conifer forests and replace them with shrub-chaparral communities that have much lower biomass and are more pyrogenic. Specifically, we develop a tractable model of plant community dynamics, structured by size class, life-history traits, lottery-type competition, and species-specific responses to disturbance. We assess the stability of different states in terms of disturbance frequency and intensity, and quantitatively partition long-term low-density population growth rates into mechanisms that influence critical transitions from stable to bistable behavior. Our findings show how different aspects of disturbance act and interact to control competitive outcomes and stable states, hence ecosystem-atmosphere C exchange. Forests tend to dominate in low frequency and intensity regimes, while shrubs dominate at high fire frequency and intensity. In other regimes, the system is bistable, and the fate of the system depends both on initial conditions and random chance. Importantly, the system can cross a critical threshold where hysteresis prevents easy return to the prior forested state. We conclude that changes in disturbance-recovery dynamics driven by projected climate change can shift this system away from forest dominated in the direction of shrub-dominated landscape. This will result in a large net C release from the landscape, and alter biophysical ecosystem-climate interactions.
Bird, Douglas W.; Codding, Brian F.
2016-01-01
While evidence mounts that indigenous burning has a significant role in shaping pyrodiversity, the processes explaining its variation across local and external biophysical systems remain limited. This is especially the case with studies of climate–fire interactions, which only recognize an effect of humans on the fire regime when they act independently of climate. In this paper, we test the hypothesis that an anthropogenic fire regime (fire incidence, size and extent) does not covary with climate. In the lightning regime, positive El Niño southern oscillation (ENSO) values increase lightning fire incidence, whereas La Niña (and associated increases in prior rainfall) increase fire size. ENSO has the opposite effect in the Martu regime, decreasing ignitions in El Niño conditions without affecting fire size. Anthropogenic ignition rates covary positively with high antecedent rainfall, whereas fire size varies only with high temperatures and unpredictable winds, which may reduce control over fire spread. However, total area burned is similarly predicted by antecedent rainfall in both regimes, but is driven by increases in fire size in the lightning regime, and fire number in the anthropogenic regime. We conclude that anthropogenic regimes covary with climatic variation, but detecting the human–climate–fire interaction requires multiple measures of both fire regime and climate. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216513
Isaac-Renton, Miriam G; Roberts, David R; Hamann, Andreas; Spiecker, Heinrich
2014-08-01
We evaluate genetic test plantations of North American Douglas-fir provenances in Europe to quantify how tree populations respond when subjected to climate regime shifts, and we examined whether bioclimate envelope models developed for North America to guide assisted migration under climate change can retrospectively predict the success of these provenance transfers to Europe. The meta-analysis is based on long-term growth data of 2800 provenances transferred to 120 European test sites. The model was generally well suited to predict the best performing provenances along north-south gradients in Western Europe, but failed to predict superior performance of coastal North American populations under continental climate conditions in Eastern Europe. However, model projections appear appropriate when considering additional information regarding adaptation of Douglas-fir provenances to withstand frost and drought, even though the model partially fails in a validation against growth traits alone. We conclude by applying the partially validated model to climate change scenarios for Europe, demonstrating that climate trends observed over the last three decades warrant changes to current use of Douglas-fir provenances in plantation forestry throughout Western and Central Europe. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Nguyen, Hung T. T.; Galelli, Stefano
2018-03-01
Catchment dynamics is not often modeled in streamflow reconstruction studies; yet, the streamflow generation process depends on both catchment state and climatic inputs. To explicitly account for this interaction, we contribute a linear dynamic model, in which streamflow is a function of both catchment state (i.e., wet/dry) and paleoclimatic proxies. The model is learned using a novel variant of the Expectation-Maximization algorithm, and it is used with a paleo drought record—the Monsoon Asia Drought Atlas—to reconstruct 406 years of streamflow for the Ping River (northern Thailand). Results for the instrumental period show that the dynamic model has higher accuracy than conventional linear regression; all performance scores improve by 45-497%. Furthermore, the reconstructed trajectory of the state variable provides valuable insights about the catchment history—e.g., regime-like behavior—thereby complementing the information contained in the reconstructed streamflow time series. The proposed technique can replace linear regression, since it only requires information on streamflow and climatic proxies (e.g., tree-rings, drought indices); furthermore, it is capable of readily generating stochastic streamflow replicates. With a marginal increase in computational requirements, the dynamic model brings more desirable features and value to streamflow reconstructions.
Multifarious anchovy and sardine regimes in the Humboldt Current System during the last 150 years.
Salvatteci, Renato; Field, David; Gutiérrez, Dimitri; Baumgartner, Tim; Ferreira, Vicente; Ortlieb, Luc; Sifeddine, Abdel; Grados, Daniel; Bertrand, Arnaud
2018-03-01
The Humboldt Current System (HCS) has the highest production of forage fish in the world, although it is highly variable and the future of the primary component, anchovy, is uncertain in the context of global warming. Paradigms based on late 20th century observations suggest that large-scale forcing controls decadal-scale fluctuations of anchovy and sardine across different boundary currents of the Pacific. We develop records of anchovy and sardine fluctuations since 1860 AD using fish scales from multiple sites containing laminated sediments and compare them with Pacific basin-scale and regional indices of ocean climate variability. Our records reveal two main anchovy and sardine phases with a timescale that is not consistent with previously proposed periodicities. Rather, the regime shifts in the HCS are related to 3D habitat changes driven by changes in upwelling intensity from both regional and large-scale forcing. Moreover, we show that a long-term increase in coastal upwelling translates via a bottom-up mechanism to top predators suggesting that the warming climate, at least up to the start of the 21st century, was favorable for fishery productivity in the HCS. © 2017 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Investigating the mechanisms responsible for ecological thresholds is essential to understanding processes leading to ecosystem regime shifts. Dryland ecosystems are especially prone to threshold behavior wherein stressor-mediated alteration of patterns and processes can shift systems to alternative...
Pansch, Christian; Scotti, Marco; Barboza, Francisco R; Al-Janabi, Balsam; Brakel, Janina; Briski, Elizabeta; Bucholz, Björn; Franz, Markus; Ito, Maysa; Paiva, Filipa; Saha, Mahasweta; Sawall, Yvonne; Weinberger, Florian; Wahl, Martin
2018-04-23
Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel "near-natural" outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community-level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems. © 2018 John Wiley & Sons Ltd.
Shive, Kristen L; Preisler, Haiganoush K; Welch, Kevin R; Safford, Hugh D; Butz, Ramona J; O'Hara, Kevin L; Stephens, Scott L
2018-05-29
Shifting disturbance regimes can have cascading effects on many ecosystems processes. This is particularly true when the scale of the disturbance no longer matches the regeneration strategy of the dominant vegetation. In the yellow pine and mixed conifer forests of California, over a century of fire exclusion and the warming climate are increasing the incidence and extent of stand-replacing wildfire; such changes in severity patterns are altering regeneration dynamics by dramatically increasing the distance from live tree seed sources. This has raised concerns about limitations to natural reforestation and the potential for conversion to non-forested vegetation types, which in turn has implications for shifts in many ecological processes and ecosystem services. We used a California region-wide dataset with 1,848 plots across 24 wildfires in yellow pine and mixed conifer forests to build a spatially-explicit habitat suitability model for forecasting postfire forest regeneration. To model the effect of seed availability, the critical initial biological filter for regeneration, we used a novel approach to predicting spatial patterns of seed availability by estimating annual seed production from existing basal area and burn severity maps. The probability of observing any conifer seedling in a 60m 2 area (the field plot scale) was highly dependent on 30-year average annual precipitation, burn severity and seed availability. We then used this model to predict regeneration probabilities across the entire extent of a "new' fire (the 2014 King Fire), which highlights the spatial variability inherent in postfire regeneration patterns. Such accurate forecasts of postfire regeneration patterns are of importance to land managers and conservationists interested in maintaining forest cover on the landscape. Our tool can also help anticipate shifts in ecosystem properties, supporting researchers interested in investigating questions surrounding alternative stable states, and the interaction of altered disturbance regimes and the changing climate. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Using Clustering to Establish Climate Regimes from PCM Output
NASA Technical Reports Server (NTRS)
Oglesby, Robert; Arnold, James E. (Technical Monitor); Hoffman, Forrest; Hargrove, W. W.; Erickson, D.
2002-01-01
A multivariate statistical clustering technique--based on the k-means algorithm of Hartigan has been used to extract patterns of climatological significance from 200 years of general circulation model (GCM) output. Originally developed and implemented on a Beowulf-style parallel computer constructed by Hoffman and Hargrove from surplus commodity desktop PCs, the high performance parallel clustering algorithm was previously applied to the derivation of ecoregions from map stacks of 9 and 25 geophysical conditions or variables for the conterminous U.S. at a resolution of 1 sq km. Now applied both across space and through time, the clustering technique yields temporally-varying climate regimes predicted by transient runs of the Parallel Climate Model (PCM). Using a business-as-usual (BAU) scenario and clustering four fields of significance to the global water cycle (surface temperature, precipitation, soil moisture, and snow depth) from 1871 through 2098, the authors' analysis shows an increase in spatial area occupied by the cluster or climate regime which typifies desert regions (i.e., an increase in desertification) and a decrease in the spatial area occupied by the climate regime typifying winter-time high latitude perma-frost regions. The patterns of cluster changes have been analyzed to understand the predicted variability in the water cycle on global and continental scales. In addition, representative climate regimes were determined by taking three 10-year averages of the fields 100 years apart for northern hemisphere winter (December, January, and February) and summer (June, July, and August). The result is global maps of typical seasonal climate regimes for 100 years in the past, for the present, and for 100 years into the future. Using three-dimensional data or phase space representations of these climate regimes (i.e., the cluster centroids), the authors demonstrate the portion of this phase space occupied by the land surface at all points in space and time. Any single spot on the globe will exist in one of these climate regimes at any single point in time. By incrementing time, that same spot will trace out a trajectory or orbit between and among these climate regimes (or atmospheric states) in phase (or state) space. When a geographic region enters a state it never previously visited, a climatic change is said to have occurred. Tracing out the entire trajectory of a single spot on the globe yields a 'manifold' in state space representing the shape of its predicted climate occupancy. This sort of analysis enables a researcher to more easily grasp the multivariate behavior of the climate system.
Effects of climate and snow depth on Bromus tectorum population dynamics at high elevation.
Griffith, Alden B; Loik, Michael E
2010-11-01
Invasive plants are thought to be especially capable of range shifts or expansion in response to climate change due to high dispersal and colonization abilities. Although highly invasive throughout the Intermountain West, the presence and impact of the grass Bromus tectorum has been limited at higher elevations in the eastern Sierra Nevada, potentially due to extreme wintertime conditions. However, climate models project an upward elevational shift of climate regimes in the Sierra Nevada that could favor B. tectorum expansion. This research specifically examined the effects of experimental snow depth manipulations and interannual climate variability over 5 years on B. tectorum populations at high elevation (2,175 m). Experimentally-increased snow depth had an effect on phenology and biomass, but no effect on individual fecundity. Instead an experimentally-increased snowpack inhibited population growth in 1 year by reducing seedling emergence and early survival. A similar negative effect of increased snow was observed 2 years later. However, a strong negative effect on B. tectorum was also associated with a naturally low-snow winter, when seedling emergence was reduced by 86%. Across 5 years, winters with greater snow cover and a slower accumulation of degree-days coincided with higher B. tectorum seedling density and population growth. Thus, we observed negative effects associated with both experimentally-increased and naturally-decreased snowpacks. It is likely that the effect of snow at high elevation is nonlinear and differs from lower elevations where wintertime germination can be favorable. Additionally, we observed a doubling of population size in 1 year, which is alarming at this elevation.
Optimal ranking regime analysis of U.S. climate variablility. Part II: Precipitation and streamflow
USDA-ARS?s Scientific Manuscript database
In a preceding companion paper the Optimal Ranking Regime (ORR) method was used to identify intra- to multi-decadal (IMD) regimes in U.S. climate division temperature data during 1896-2012. Here, the method is used to test for annual and seasonal precipitation regimes during that same period. In add...
Evidence for lower plasticity in CTMAX at warmer developmental temperatures.
Kellermann, Vanessa; Sgrò, Carla M
2018-06-07
Understanding the capacity for different species to reduce their susceptibility to climate change via phenotypic plasticity is essential for accurately predicting species extinction risk. The climatic variability hypothesis suggests that spatial and temporal variation in climatic variables should select for more plastic phenotypes. However, empirical support for this hypothesis is limited. Here, we examine the capacity for ten Drosophila species to increase their critical thermal maxima (CT MAX ) through developmental acclimation and/or adult heat hardening. Using four fluctuating developmental temperature regimes, ranging from 13 to 33 °C, we find that most species can increase their CT MAX via developmental acclimation and adult hardening, but found no relationship between climatic variables and absolute measures of plasticity. However, when plasticity was dissected across developmental temperatures, a positive association between plasticity and one measure of climatic variability (temperature seasonality) was found when development took place between 26 and 28 °C, whereas a negative relationship was found when development took place between 20 and 23 °C. In addition, a decline in CT MAX and egg-to-adult viability, a proxy for fitness, was observed in tropical species at the warmer developmental temperatures (26-28 °C); this suggests that tropical species may be at even greater risk from climate change than currently predicted. The combined effects of developmental acclimation and adult hardening on CT MAX were small, contributing to a <0.60 °C shift in CT MAX . Although small shifts in CT MAX may increase population persistence in the shorter term, the degree to which they can contribute to meaningful responses in the long term is unclear. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Miocene Soil Database: Global paleosol and climate maps of the Middle Miocene Thermal Maximum
NASA Astrophysics Data System (ADS)
Metzger, C. A.
2013-12-01
Paleosols, which record past climatic, biologic, and atmospheric conditions, can be used as a proxy to understand ancient terrestrial landscapes, paleoclimate, and paleoenvironment. In addition, the middle Miocene thermal maximum (~16 Ma) provides an ancient analog for understanding the effects of current and future climate change on soil and ecosystem regimes, as it contains records of shifts similar in magnitude to expected global climate change. The Miocene Soil Database (MSDB) combines new paleosol data from Australia and Argentina with existing and previously uncollated paleosol data from the literature and the Paleobiology Database. These data (n = 507) were then used to derive a paleogeographic map of climatically significant soil types zones during the Middle Miocene. The location of each diagnostic paleosol type (Aridisol, Alfisol, Mollisol, Histosol, Oxisol, and Ultisol) was plotted and compared with the extent of these soil types in the modern environment. The middle Miocene soil map highlights the extension of tropical soils (Oxisols, Ultisols), accompanied by thermophilic flora and fauna, into northern and southern mid-latitudes. Peats, lignites, and Histosols of wetlands were also more abundant at higher latitudes, especially in the northern hemisphere, during the middle Miocene. The paleosol changes reflect that the Middle Miocene was a peak of global soil productivity and carbon sequestration, with replacement of unproductive Aridisols and Gelisols with more productive Oxisols, Alfisols, Mollisols and Histosols. With expansion to include additional data such as soil texture, moisture, or vegetation type, the MSDB has the potential to provide an important dataset for computer models of Miocene climate shifts as well as future land use considerations of soils in times of global change.
Organic-matter loading determines regime shifts and alternative states in an aquatic ecosystem
Sirota, Jennie; Baiser, Benjamin; Gotelli, Nicholas J.; Ellison, Aaron M.
2013-01-01
Slow changes in underlying state variables can lead to “tipping points,” rapid transitions between alternative states (“regime shifts”) in a wide range of complex systems. Tipping points and regime shifts routinely are documented retrospectively in long time series of observational data. Experimental induction of tipping points and regime shifts is rare, but could lead to new methods for detecting impending tipping points and forestalling regime shifts. By using controlled additions of detrital organic matter (dried, ground arthropod prey), we experimentally induced a shift from aerobic to anaerobic states in a miniature aquatic ecosystem: the self-contained pools that form in leaves of the carnivorous northern pitcher plant, Sarracenia purpurea. In unfed controls, the concentration of dissolved oxygen ([O2]) in all replicates exhibited regular diurnal cycles associated with daytime photosynthesis and nocturnal plant respiration. In low prey-addition treatments, the regular diurnal cycles of [O2] were disrupted, but a regime shift was not detected. In high prey-addition treatments, the variance of the [O2] time series increased until the system tipped from an aerobic to an anaerobic state. In these treatments, replicate [O2] time series predictably crossed a tipping point at ∼45 h as [O2] was decoupled from diurnal cycles of photosynthesis and respiration. Increasing organic-matter loading led to predictable changes in [O2] dynamics, with high loading consistently driving the system past a well-defined tipping point. The Sarracenia microecosystem functions as a tractable experimental system in which to explore the forecasting and management of tipping points and alternative regimes. PMID:23613583
Impact of Climate Change and Human Intervention on River Flow Regimes
NASA Astrophysics Data System (ADS)
Singh, Rajendra; Mittal, Neha; Mishra, Ashok
2017-04-01
Climate change and human interventions like dam construction bring freshwater ecosystem under stress by changing flow regime. It is important to analyse their impact at a regional scale along with changes in the extremes of temperature and precipitation which further modify the flow regime components such as magnitude, timing, frequency, duration, and rate of change of flow. In this study, the Kangsabati river is chosen to analyse the hydrological alterations in its flow regime caused by dam, climate change and their combined impact using Soil and Water Assessment Tool (SWAT) and the Indicators of Hydrologic Alteration (IHA) program based on the Range of Variability Approach (RVA). Results show that flow variability is significantly reduced due to dam construction with high flows getting absorbed and pre-monsoon low flows being augmented by the reservoir. Climate change alone reduces the high peaks whereas a combination of dam and climate change significantly reduces variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. Analysis shows that in the Kangsabati basin, influence of dam is greater than that of the climate change, thereby emphasising the significance of direct human intervention. Keywords: Climate change, human impact, flow regime, Kangsabati river, SWAT, IHA, RVA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueppers, Lara; Faist, Akasha; Ferrenberg, Scott
Accurately predicting upslope shifts in subalpine tree ranges with warming requires understanding how future forest populations will be affected by climate change, as these are the seed sources for new tree line and alpine populations. Early life history stages are particularly sensitive to climate and are also influenced by genetic variation among populations. Here, we tested the climate sensitivity of germination and initial development for two widely distributed subalpine conifers, using controlled-environment growth chambers with one temperature regime from subalpine forest in the Colorado Rocky Mountains and one 5 °C warmer, and two soil moisture levels. We also tracked germinationmore » rate and timing, rate of seedling development, and seedling morphology for two seed provenances separated by ~300 m elevation. Warming advanced germination timing and initial seedling development by a total of ~2 weeks, advances comparable to mean differences between provenances. Advances were similar for both provenances and species; however, warming reduced the overall germination rate, as did low soil moisture, only for Picea engelmannii. A three-year field warming and watering experiment planted with the same species and provenances yielded responses qualitatively consistent with the lab trials. Altogether these experiments indicate that in a warmer, drier climate, P. engelmannii germination, and thus regeneration, could decline, which could lead to declining subalpine forest populations, while Pinus flexilis forest populations could remain robust as a seed source for upslope range shifts.« less
Inferring responses to climate dynamics from historical demography in neotropical forest lizards
Xue, Alexander T.; Brown, Jason L.; Alvarado-Serrano, Diego F.; Rodrigues, Miguel T.; Hickerson, Michael J.; Carnaval, Ana C.
2016-01-01
We apply a comparative framework to test for concerted demographic changes in response to climate shifts in the neotropical lowland forests, learning from the past to inform projections of the future. Using reduced genomic (SNP) data from three lizard species codistributed in Amazonia and the Atlantic Forest (Anolis punctatus, Anolis ortonii, and Polychrus marmoratus), we first reconstruct former population history and test for assemblage-level responses to cycles of moisture transport recently implicated in changes of forest distribution during the Late Quaternary. We find support for population shifts within the time frame of inferred precipitation fluctuations (the last 250,000 y) but detect idiosyncratic responses across species and uniformity of within-species responses across forest regions. These results are incongruent with expectations of concerted population expansion in response to increased rainfall and fail to detect out-of-phase demographic syndromes (expansions vs. contractions) across forest regions. Using reduced genomic data to infer species-specific demographical parameters, we then model the plausible spatial distribution of genetic diversity in the Atlantic Forest into future climates (2080) under a medium carbon emission trajectory. The models forecast very distinct trajectories for the lizard species, reflecting unique estimated population densities and dispersal abilities. Ecological and demographic constraints seemingly lead to distinct and asynchronous responses to climatic regimes in the tropics, even among similarly distributed taxa. Incorporating such constraints is key to improve modeling of the distribution of biodiversity in the past and future. PMID:27432951
Holocene dynamics of the Florida Everglades with respect to climate, dustfall, and tropical storms
Glaser, Paul H.; Hansen, Barbara C. S.; Donovan, Joe J.; Givnish, Thomas J.; Stricker, Craig A.; Volin, John C.
2013-01-01
Aeolian dust is rarely considered an important source for nutrients in large peatlands, which generally develop in moist regions far from the major centers of dust production. As a result, past studies assumed that the Everglades provides a classic example of an originally oligotrophic, P-limited wetland that was subsequently degraded by anthropogenic activities. However, a multiproxy sedimentary record indicates that changes in atmospheric circulation patterns produced an abrupt shift in the hydrology and dust deposition in the Everglades over the past 4,600 y. A wet climatic period with high loadings of aeolian dust prevailed before 2800 cal BP (calibrated years before present) when vegetation typical of a deep slough dominated the principal drainage outlet of the Everglades. This dust was apparently transported from distant source areas, such as the Sahara Desert, by tropical storms according to its elemental chemistry and mineralogy. A drier climatic regime with a steep decline in dustfall persisted after 2800 cal BP maintaining sawgrass vegetation at the coring site as tree islands developed nearby (and pine forests covered adjacent uplands). The marked decline in dustfall was related to corresponding declines in sedimentary phosphorus, organic nitrogen, and organic carbon, suggesting that a close relationship existed between dustfall, primary production, and possibly, vegetation patterning before the 20th century. The climatic change after 2800 cal BP was probably produced by a shift in the Bermuda High to the southeast, shunting tropical storms to the south of Florida into the Gulf of Mexico. PMID:24101489
Inferring responses to climate dynamics from historical demography in neotropical forest lizards.
Prates, Ivan; Xue, Alexander T; Brown, Jason L; Alvarado-Serrano, Diego F; Rodrigues, Miguel T; Hickerson, Michael J; Carnaval, Ana C
2016-07-19
We apply a comparative framework to test for concerted demographic changes in response to climate shifts in the neotropical lowland forests, learning from the past to inform projections of the future. Using reduced genomic (SNP) data from three lizard species codistributed in Amazonia and the Atlantic Forest (Anolis punctatus, Anolis ortonii, and Polychrus marmoratus), we first reconstruct former population history and test for assemblage-level responses to cycles of moisture transport recently implicated in changes of forest distribution during the Late Quaternary. We find support for population shifts within the time frame of inferred precipitation fluctuations (the last 250,000 y) but detect idiosyncratic responses across species and uniformity of within-species responses across forest regions. These results are incongruent with expectations of concerted population expansion in response to increased rainfall and fail to detect out-of-phase demographic syndromes (expansions vs. contractions) across forest regions. Using reduced genomic data to infer species-specific demographical parameters, we then model the plausible spatial distribution of genetic diversity in the Atlantic Forest into future climates (2080) under a medium carbon emission trajectory. The models forecast very distinct trajectories for the lizard species, reflecting unique estimated population densities and dispersal abilities. Ecological and demographic constraints seemingly lead to distinct and asynchronous responses to climatic regimes in the tropics, even among similarly distributed taxa. Incorporating such constraints is key to improve modeling of the distribution of biodiversity in the past and future.
Holocene dynamics of the Florida Everglades with respect to climate, dustfall, and tropical storms
Glaser, Paul H.; Hansen, Barbara C. S.; Donovan, Joseph J.; Givnish, Thomas J.; Stricker, Craig A.; Volin, John C.
2013-01-01
Aeolian dust is rarely considered an important source for nutrients in large peatlands, which generally develop in moist regions far from the major centers of dust production. As a result, past studies assumed that the Everglades provides a classic example of an originally oligotrophic, P-limited wetland that was subsequently degraded by anthropogenic activities. However, a multiproxy sedimentary record indicates that changes in atmospheric circulation patterns produced an abrupt shift in the hydrology and dust deposition in the Everglades over the past 4,600 y. A wet climatic period with high loadings of aeolian dust prevailed before 2800 cal BP (calibrated years before present) when vegetation typical of a deep slough dominated the principal drainage outlet of the Everglades. This dust was apparently transported from distant source areas, such as the Sahara Desert, by tropical storms according to its elemental chemistry and mineralogy. A drier climatic regime with a steep decline in dustfall persisted after 2800 cal BP maintaining sawgrass vegetation at the coring site as tree islands developed nearby (and pine forests covered adjacent uplands). The marked decline in dustfall was related to corresponding declines in sedimentary phosphorus, organic nitrogen, and organic carbon, suggesting that a close relationship existed between dustfall, primary production, and possibly, vegetation patterning before the 20th century. The climatic change after 2800 cal BP was probably produced by a shift in the Bermuda High to the southeast, shunting tropical storms to the south of Florida into the Gulf of Mexico.
Kueppers, Lara; Faist, Akasha; Ferrenberg, Scott; ...
2017-11-11
Accurately predicting upslope shifts in subalpine tree ranges with warming requires understanding how future forest populations will be affected by climate change, as these are the seed sources for new tree line and alpine populations. Early life history stages are particularly sensitive to climate and are also influenced by genetic variation among populations. Here, we tested the climate sensitivity of germination and initial development for two widely distributed subalpine conifers, using controlled-environment growth chambers with one temperature regime from subalpine forest in the Colorado Rocky Mountains and one 5 °C warmer, and two soil moisture levels. We also tracked germinationmore » rate and timing, rate of seedling development, and seedling morphology for two seed provenances separated by ~300 m elevation. Warming advanced germination timing and initial seedling development by a total of ~2 weeks, advances comparable to mean differences between provenances. Advances were similar for both provenances and species; however, warming reduced the overall germination rate, as did low soil moisture, only for Picea engelmannii. A three-year field warming and watering experiment planted with the same species and provenances yielded responses qualitatively consistent with the lab trials. Altogether these experiments indicate that in a warmer, drier climate, P. engelmannii germination, and thus regeneration, could decline, which could lead to declining subalpine forest populations, while Pinus flexilis forest populations could remain robust as a seed source for upslope range shifts.« less
Holocene dynamics of the Florida Everglades with respect to climate, dustfall, and tropical storms.
Glaser, Paul H; Hansen, Barbara C S; Donovan, Joe J; Givnish, Thomas J; Stricker, Craig A; Volin, John C
2013-10-22
Aeolian dust is rarely considered an important source for nutrients in large peatlands, which generally develop in moist regions far from the major centers of dust production. As a result, past studies assumed that the Everglades provides a classic example of an originally oligotrophic, P-limited wetland that was subsequently degraded by anthropogenic activities. However, a multiproxy sedimentary record indicates that changes in atmospheric circulation patterns produced an abrupt shift in the hydrology and dust deposition in the Everglades over the past 4,600 y. A wet climatic period with high loadings of aeolian dust prevailed before 2800 cal BP (calibrated years before present) when vegetation typical of a deep slough dominated the principal drainage outlet of the Everglades. This dust was apparently transported from distant source areas, such as the Sahara Desert, by tropical storms according to its elemental chemistry and mineralogy. A drier climatic regime with a steep decline in dustfall persisted after 2800 cal BP maintaining sawgrass vegetation at the coring site as tree islands developed nearby (and pine forests covered adjacent uplands). The marked decline in dustfall was related to corresponding declines in sedimentary phosphorus, organic nitrogen, and organic carbon, suggesting that a close relationship existed between dustfall, primary production, and possibly, vegetation patterning before the 20th century. The climatic change after 2800 cal BP was probably produced by a shift in the Bermuda High to the southeast, shunting tropical storms to the south of Florida into the Gulf of Mexico.
Biological invasions, ecological resilience and adaptive governance
Chaffin, Brian C.; Garmestani, Ahjond S.; Angeler, David G.; Herrmann, Dustin L.; Stow, Craig A.; Nystrom, Magnus; Sendzimir, Jan; Hopton, Matthew E.; Kolasa, Jurek; Allen, Craig R.
2016-01-01
In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services.
Biological invasions, ecological resilience and adaptive governance.
Chaffin, Brian C; Garmestani, Ahjond S; Angeler, David G; Herrmann, Dustin L; Stow, Craig A; Nyström, Magnus; Sendzimir, Jan; Hopton, Matthew E; Kolasa, Jurek; Allen, Craig R
2016-12-01
In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Campo, Julio
2016-09-01
The effect of precipitation regime on N and P cycles in tropical forests is poorly understood, despite global climate models project total precipitation reductions during the 21st Century. I investigated the influence of variation in annual precipitation (1240-642 mm yr-1) on N and P intra-system cycling along a precipitation regime gradient at Yucatan including 12 mature, tropical dry forests (TDFs) growing under otherwise similar conditions (similar annual temperature, rainfall seasonality and geological substrate). I analyzed N and P storage and turnover in the forest floor and mineral soil and explored the dependence of these processes and pools on precipitation level. The study findings indicate that with decreasing precipitation the litterfall decreases slightly (10%), while nutrient use efficiency increases by 20% for N, and by 40% for P. Decomposition rate and nutrient release was smallest in the dry extremity of precipitation regime. The difference between N and P turnover times in the forest floor and in organic matter indicates that different nutrients control the ecosystem function across the precipitation gradient. The data from this study reveals a pattern of limitation shifting from P towards N with decreasing annual precipitation. I suggest that the long-term consequences of the expected decrease in precipitation in many tropical dry regions would changes N and P supply could have long-term negative effects on primary productivity and future carbon storage in TDFs.
Brubaker, Linda B; Higuera, Philip E; Rupp, T Scott; Olson, Mark A; Anderson, Patricia M; Hu, Feng Sheng
2009-07-01
Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecologica model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a mid-Holocene fire-regime shift in boreal forests of the south-central Brooks Range, Alaska, U.S.A. Fire-return intervals (FRIs, number of years between fires) are estimated over the past 7000 calibrated 14C years (7-0 kyr BP [before present]) from short-term variations in charcoal accumulation rates (CHARs) at three lakes, and an index of area burned is inferred from long-term CHARs at these sites. ALFRESCO simulations of FRIs and annual area burned are based on prescribed vegetation and climate for 7-5 kyr BP and 5-0 kyr BP, inferred from pollen and stomata records and qualitative paleoclimate proxies. Two sets of experiments examine potential causes of increased burning between 7-5 and 5-0 kyr BP. (1) Static-vegetation scenarios: white spruce dominates with static mean temperature and total precipitation of the growing season for 7-0 kyr BP or with decreased temperature and/or increased precipitation for 5-0 kyr BP. (2) Changed-vegetation scenarios: black spruce dominates 5-0 kyr BP, with static temperature and precipitation or decreased temperature and/or increased precipitation. Median FRIs decreased between 7-5 and 5-0 kyr BP in empirical data and changed-vegetation scenarios but remained relatively constant in static-vegetation scenarios. Median empirical and simulated FRIs are not statistically different for 7-5 kyr BP and for two changed-vegetation scenarios (temperature decrease, precipitation increase) for 5-0 kyr BP. In these scenarios, cooler temperatures or increased precipitation dampened the effect of increased landscape flammability resulting from the increase in black spruce. CHAR records and all changed-vegetation scenarios indicate long-term increases in area burned between 7-5 and 5-0 kyr BP. The similarity of CHAR and ALFRESCO results demonstrates the compatibility of these independent data sets for investigating ecological mechanisms causing past fire-regime changes. The finding that vegetation flammability was a major driver of Holocene fire regimes is consistent with other investigations that suggest that landscape fuel characteristics will mediate the direct effects of future climate change on boreal fire regimes.
Regulation of snow-fed rivers affects flow regimes more than climate change.
Arheimer, B; Donnelly, C; Lindström, G
2017-07-05
River flow is mainly controlled by climate, physiography and regulations, but their relative importance over large landmasses is poorly understood. Here we show from computational modelling that hydropower regulation is a key driver of flow regime change in snow-dominated regions and is more important than future climate changes. This implies that climate adaptation needs to include regulation schemes. The natural river regime in snowy regions has low flow when snow is stored and a pronounced peak flow when snow is melting. Global warming and hydropower regulation change this temporal pattern similarly, causing less difference in river flow between seasons. We conclude that in snow-fed rivers globally, the future climate change impact on flow regime is minor compared to regulation downstream of large reservoirs, and of similar magnitude over large landmasses. Our study not only highlights the impact of hydropower production but also that river regulation could be turned into a measure for climate adaptation to maintain biodiversity on floodplains under climate change.Global warming and hydropower regulations are major threats to future fresh-water availability and biodiversity. Here, the authors show that their impact on flow regime over a large landmass result in similar changes, but hydropower is more critical locally and may have potential for climate adaptation in floodplains.
NASA Astrophysics Data System (ADS)
Vachula, R. S.; Longo, W. M.; Reinert, S. T.; Russell, J. M.; Huang, Y.
2016-12-01
The frequency and spatial extent of tundra fires have increased contemporaneously with anthropogenic climate change in the Arctic. These fires threaten the stability of permafrost carbon stores, subsistence resources, and ecosystem nutrient cycling and are thus important components of rapidly changing Arctic systems. Future projections of tundra fire rely upon reconstructions of fire regime and ecosystem response to climatic variations of the past. High resolution lake sediment records from Northern Alaska have facilitated important insights into the dynamic relationships between fire, climate, and vegetation throughout the Holocene. However, our understanding of how fire regimes in this region have responded to climate on glacial-interglacial timescales remains speculative. We present a 30,000 year fire history reconstruction from Lake E5, a small lake in the northern foothills of the Brooks Range. Our reconstruction, inferred from sedimentary charcoal particles, polycyclic aromatic hydrocarbons (PAHs), and bulk sediment Black Carbon (BC) content, offers unique insights into how Arctic terrestrial ecosystems of the past and present have interacted with climate on glacial-interglacial time scales via the mechanism of fire. This unique approach pairs traditional (charcoal) and novel (PAHs and BC) proxies and thereby (1) allows for a simultaneous interpretation of local and regional fire history (2) quantifies the abundance of all sizes of all byproducts of incomplete combustion and (3) gains insights into relative changes in combustion temperature, fire severity, and fuel type. While traditional methods would focus on a narrow range of the size spectrum of the physical and chemical byproducts of fire (charcoal particles >0.15 mm), the suite of methods used in this study facilitates a more holistic and comprehensive fire history reconstruction from the E5 sediment record. Results indicate that moisture and vegetation variations were likely the primary drivers of fire in this region over the last 30,000 years. Furthermore, sea level changes and related shifts in atmospheric circulation likely influenced fire regimes in this area prior to the Holocene.
Arctic tipping points: governance in turbulent times.
Young, Oran R
2012-02-01
Interacting forces of climate change and globalization are transforming the Arctic. Triggered by a non-linear shift in sea ice, this transformation has unleashed mounting interest in opportunities to exploit the region's natural resources as well as growing concern about environmental, economic, and political issues associated with such efforts. This article addresses the implications of this transformation for governance, identifies limitations of existing arrangements, and explores changes needed to meet new demands. It advocates the development of an Arctic regime complex featuring flexibility across issues and adaptability over time along with an enhanced role for the Arctic Council both in conducting policy-relevant assessments and in promoting synergy in interactions among the elements of the emerging Arctic regime complex. The emphasis throughout is on maximizing the fit between the socioecological features of the Arctic and the character of the governance arrangements needed to steer the Arctic toward a sustainable future.
Influence of Precipitation Regime on Microbial Decomposition Patterns in Semi-Arid Ecosystems
NASA Astrophysics Data System (ADS)
Feris, K. P.; Jilek, C.; Huber, D. P.; Reinhardt, K.; deGraaff, M.; Lohse, K.; Germino, M.
2011-12-01
In water-limited semi-arid sagebrush steppe ecosystems predicted changes in climate may manifest as a shift from historically winter/snow-dominated precipitation regimes to one dominated by spring rains. In these ecosystems soil microorganisms play a vital role in linking the effects of water availability and plant productivity to biogeochemical cycling. Patterns of soil microbial catalyzed organic matter decomposition patters (i.e. patterns of extracellular enzyme activity (EEA)) are thought to depend upon the quantity and quality of soil organic matter (SOM), pH, and mean annual precipitation (Sinsabaugh, 2008), and less on the timing and magnitude of precipitation. However, sagebrush-steppe plant communities respond strongly to changes in the timing and magnitude of precipitation, and preliminary findings by our group suggest that corresponding changes in SOM quantity, quality, N-cycle dynamics, and soil structure are occurring. Therefore, we hypothesized: 1) Shifts in the timing and magnitude of precipitation would indirectly affect soil microbial decomposition patterns via responses in the plant community structure; and 2) Changes in precipitation patterns can directly affect soil microbial community structure and function, in effect uncoupling the interaction between plant community structure and soil community structure. We tested our hypotheses by determining the influence of experimentally manipulated timing and magnitude of precipitation on soil microbial EEA using standard flourometric assays in soils sampled under plant canopies and plant interspaces. We assessed this response in a mature (18 + years) ecohydrologic field experiment in eastern Idaho that annually imitates three possible post climatic-shift precipitation regimes (Ambient (AMB): no additional precipitation, ~200mm annually; Summer (SUMM): 200mm provisioned at 50mm bi-weekly starting in June; and Fall/Spring (F/S): 200mm provisioned over 1-2 weeks in October or April) (n=3). Within plant interspaces Beta glucosaminide activity increased by 18% in treatments receiving additional F/S precipitation, whereas alpha glucopyranoside activity was lower in the F/S and SUMM plots. Conversely, underplant canopies alpha glucopyranoside activity increased by 15% in the SUMM and F/S precipitation treatments. Across treatments and sampling types (i.e. plant canopy vs. interspace), cellobioside activity levels are consistently elevated in response to additional precipitation compared to those of the control plots. When coupled with recent preliminary findings by our group regarding changes in plant and microbial community structure and SOM, C-storage, and soil structural responses, these preliminary findings suggest that 1) microbial community structure and function respond both directly and indirectly to changes in climate, and 2) thus provide a mechanism for changes in plant community structure to feed-forward to affect soil carbon decomposition patterns and ultimately soil carbon storage potential.
Sparks, Morgan M.; Falke, Jeffrey A.; Quinn, Thomas P.; Adkison, Milo D.; Schindler, Daniel E.; Bartz, Krista K.; Young, Daniel B.; Westley, Peter A. H.
2018-01-01
We applied an empirical model to predict hatching and emergence timing for 25 western Alaska sockeye salmon (Oncorhynchus nerka) populations in four lake-nursery systems to explore current patterns and potential responses of early life history phenology to warming water temperatures. Given experienced temperature regimes during development, we predicted hatching to occur in as few as 58 d to as many as 260 d depending on spawning timing and temperature. For a focal lake spawning population, our climate-lake temperature model predicted a water temperature increase of 0.7 to 1.4 °C from 2015 to 2099 during the incubation period, which translated to a 16 d to 30 d earlier hatching timing. The most extreme scenarios of warming advanced development by approximately a week earlier than historical minima and thus climatic warming may lead to only modest shifts in phenology during the early life history stage of this population. The marked variation in the predicted timing of hatching and emergence among populations in close proximity on the landscape may serve to buffer this metapopulation from climate change.
The complexity of millennial-scale variability in southwestern Europe during MIS 11
NASA Astrophysics Data System (ADS)
Oliveira, Dulce; Desprat, Stéphanie; Rodrigues, Teresa; Naughton, Filipa; Hodell, David; Trigo, Ricardo; Rufino, Marta; Lopes, Cristina; Abrantes, Fátima; Sánchez Goñi, Maria Fernanda
2016-11-01
Climatic variability of Marine Isotope Stage (MIS) 11 is examined using a new high-resolution direct land-sea comparison from the SW Iberian margin Site U1385. This study, based on pollen and biomarker analyses, documents regional vegetation, terrestrial climate and sea surface temperature (SST) variability. Suborbital climate variability is revealed by a series of forest decline events suggesting repeated cooling and drying episodes in SW Iberia throughout MIS 11. Only the most severe events on land are coeval with SST decreases, under larger ice volume conditions. Our study shows that the diverse expression (magnitude, character and duration) of the millennial-scale cooling events in SW Europe relies on atmospheric and oceanic processes whose predominant role likely depends on baseline climate states. Repeated atmospheric shifts recalling the positive North Atlantic Oscillation mode, inducing dryness in SW Iberia without systematical SST changes, would prevail during low ice volume conditions. In contrast, disruption of the Atlantic meridional overturning circulation (AMOC), related to iceberg discharges, colder SST and increased hydrological regime, would be responsible for the coldest and driest episodes of prolonged duration in SW Europe.
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
NASA Astrophysics Data System (ADS)
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-09-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.
NASA Astrophysics Data System (ADS)
Manners, R.; Wilcox, A. C.; Merritt, D. M.
2016-12-01
The ecogeomorphic response of riparian ecosystems to a change in hydrologic properties is difficult to predict because of the interactions and feedbacks among plants, water, and sediment. Most riparian models of community dynamics assume a static channel, yet geomorphic processes strongly control the establishment and survival of riparian vegetation. Using a combination of approaches that includes empirical relationships and hydrodynamic models, we model the coupled vegetation-topographic response of three cross-sections on the Yampa and Green Rivers in Dinosaur National Monument, to a shift in the flow regime. The locations represent the variable geomorphology and vegetation composition of these canyon-bound rivers. We account for the inundation and hydraulic properties of vegetation plots surveyed over three years within International River Interface Cooperative (iRIC) Fastmech, equipped with a vegetation module that accounts for flexible stems and plant reconfiguration. The presence of functional groupings of plants, or those plants that respond similarly to environmental factors such as water availability and disturbance are determined from flow response curves developed for the Yampa River. Using field measurements of vegetation morphology, distance from the channel centerline, and dominant particle size and modeled inundation properties we develop an empirical relationship between these variables and topographic change. We evaluate vegetation and channel form changes over decadal timescales, allowing for the integration of processes over time. From our analyses, we identify thresholds in the flow regime that alter the distribution of plants and reduce geomorphic complexity, predominately through side-channel and backwater infilling. Simplification of some processes (e.g., empirically-derived sedimentation) and detailed treatment of others (e.g., plant-flow interactions) allows us to model the coupled dynamics of riparian ecosystems and evaluate the impact of small to large shifts in the flow regime. This approach will be useful to river managers and scientists, as they try to understand the potential changes to riparian ecosystems with uncertain changes to hydrologic regimes as a result of a changing climate and human demands.
NASA Astrophysics Data System (ADS)
Van Tiel, Marit; Van Loon, Anne; Wanders, Niko; Vis, Marc; Teuling, Ryan; Stahl, Kerstin
2017-04-01
In glacierized catchments, snowpack and glaciers function as an important storage of water and hydrographs of highly glacierized catchments in mid- and high latitudes thus show a clear seasonality with low flows in winter and high flows in summer. Due to the ongoing climate change we expect this type of storage capacity to decrease with resultant consequences for the discharge regime. In this study we focus on streamflow droughts, here defined as below average water availability specifically in the high flow season, and which methods are most suitable to characterize future streamflow droughts as regimes change. Two glacierized catchments, Nigardsbreen (Norway) and Wolverine (Alaska), are used as case study and streamflow droughts are compared between two periods, 1975-2004 and 2071-2100. Streamflow is simulated with the HBV light model, calibrated on observed discharge and seasonal glacier mass balances, for two climate change scenarios (RCP 4.5 & RCP 8.5). In studies on future streamflow drought often the same variable threshold of the past has been applied to the future, but in regions where a regime shift is expected this method gives severe "droughts" in the historic high-flow period. We applied the new alternative transient variable threshold, a threshold that adapts to the changing hydrological regime and is thus better able to cope with this issue, but has never been thoroughly tested in glacierized catchments. As the glacier area representation in the hydrological modelling can also influence the modelled discharge and the derived streamflow droughts, we evaluated in this study both the difference between the historical variable threshold (HVT) and transient variable threshold (TVT) and two different glacier area conceptualisations (constant area (C) and dynamical area (D)), resulting in four scenarios: HVT-C, HVT-D, TVT-C and TVT-D. Results show a drastic decrease in the number of droughts in the HVT-C scenario due to increased glacier melt. The deficit volume is expected to be up to almost eight times larger in the future compared to the historical period (Wolverine, +674%) in the HVT-D scenario, caused by the regime shift. Using the TVT the drought characteristics between the C and D scenarios and between future and historic droughts are more similar. However, when using the TVT, causing factors of future droughts, anomalies in temperature and/or precipitation, can be analysed. This study highlights the different conclusions that may be drawn on future streamflow droughts in glacierized catchments depending on methodological choices. They could be used to answer different questions: the TVT for analysing drought processes in the future, the HVT to assess changes between historical and future periods, the constant area conceptualisation to analyse the effect of short term climate variability and the dynamical glacier area to model realistic future discharges in glacierized catchments.
NASA Astrophysics Data System (ADS)
Keeley, J. E.; Syphard, A. D.
2016-12-01
Global warming is expected to exacerbate fire impacts. Predicting how climates will impact future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned, however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models are needed that predict future seasonal temperature changes if we are to forecast future fire regimes in these forests. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited, and because they are closely juxtaposed with human habitations fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science, it is far more complicated than that. Climate change is not relevant on some landscapes, but where climate is relevant the relationship will change due to direct climate effects on vegetation trajectories, as well as by feedback processes of fire effects on vegetation distribution, plus policy changes in how we manage ecosystems.
Climate change and future fire regimes: Examples from California
Keeley, Jon E.; Syphard, Alexandra D.
2016-01-01
Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation trajectories, as well as by feedback processes of fire effects on vegetation distribution, plus policy changes in how we manage ecosystems.
Northern Peatland Shifts Under Changing Climate and Their Impact on Permafrost
NASA Astrophysics Data System (ADS)
Shur, Y.; Jorgenson, T.; Kanevskiy, M. Z.
2014-12-01
Formation of peatlands depends primarily on climate and its interactions with hydrology, soil thermal regimes, plant composition, and nutrients. A water balance with precipitation exceeding evaporation is necessary for their formation. The rate of peat accumulation also greatly depends on thermal resources. The prominent impact of the water balance and temperature on peatland formation is evident in the West Siberia Lowland. The rate of peat accumulation steadily increases from arctic tundra to moss tundra, to forest tundra, to northern taiga, and to southern taiga. This increase is a result in increase in air temperature and length of the growing season because all of these zones have water balance favorable for peat formation. Further to south, evaporation prevails over precipitation and peat formation occurs only in isolated areas. Climate change will redefine geographical distribution of climatic and vegetation zones. It is predicted that in arctic and subarctic regions the difference between precipitation and evaporation will increase and as a result these regions will remain favorable to peat accumulation. With increase of thermal resources, the rate of peat accumulation will also increase. The Alaska Arctic Coastal Plain is of a special interest because it has thousands of shallow lakes, which due to warming climate would shift from open waterbodies to peatlands through shoreline paludification and infilling. The accumulation of organic matter will likely turn open water into shore fens and bogs, and eventually to peat plateaus, as is occurring in many boreal landscapes. Expected impact on permafrost in arctic and subarctic regions will include rise of the permafrost table, thickening of the ice-rich intermediate layer with ataxitic (suspended) cryostructure, and replacement of frost boils with earth hummocks. In the contemporary continuous permafrost zone, permafrost formed as climate-driven will be transformed into climate-driven ecosystem protected. Sphagnum mosses, which grow better under warm climates, is a dominant factor in this transformation. Terrestrialization of numerous shallow lakes on the Arctic Coastal Plain of Alaska will lower permafrost temperatures beneath them and in surrounding areas.
Macroclimatic change expected to transform coastal wetland ecosystems this century
Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew; McCoy, Meagan L.; McLeod, Jennie L.
2017-01-01
Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.
The Regime Shift Associated with the 2004–2008 US Housing Market Bubble
Cheong, Siew Ann
2016-01-01
The Subprime Bubble preceding the Subprime Crisis of 2008 was fueled by risky lending practices, manifesting in the form of a large abrupt increase in the proportion of subprime mortgages issued in the US. This event also coincided with critical slowing down signals associated with instability, which served as evidence of a regime shift or phase transition in the US housing market. Here, we show that the US housing market underwent a regime shift between alternate stable states consistent with the observed critical slowing down signals. We modeled this regime shift on a universal transition path and validated the model by estimating when the bubble burst. Additionally, this model reveals loose monetary policy to be a plausible cause of the phase transition, implying that the bubble might have been deflatable by a timely tightening of monetary policy. PMID:27583633
Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio
2013-04-16
The increasing pressure of climatic change and anthropogenic activities is predicted to have major effects on ecosystems around the world. With their fragility and sensitivity to hydrologic shifts and land-use changes, wetlands are among the most vulnerable of such ecosystems. Focusing on the Everglades National Park, we here assess the impact of changes in the hydrologic regime, as well as habitat loss, on the spatial configuration of vegetation species. Because the current structuring of vegetation clusters in the Everglades exhibits power-law behavior and such behavior is often associated with self-organization and dynamics occurring near critical transition points, the quantification and prediction of the impact of those changes on the ecosystem is deemed of paramount importance. We implement a robust model able to identify the main hydrologic and local drivers of the vegetation species spatial structuring and apply it for quantitative assessment. We find that shifts in the hydropatterns will mostly affect the relative abundance of species that currently colonize specific hydroperiod niches. Habitat loss or disruption, however, would have a massive impact on all plant communities, which are found to exhibit clear threshold behaviors when a given percentage of habitable habitat is lost.
Londoño, Ana C; Williams, Patrick Ryan; Hart, Megan L
2017-11-01
Ancient agricultural terrace practices have survived for millennia, sustaining populations through extreme climatic shifts and political regime changes. In arid regions with abrupt relief such as Southern Peru, agricultural terracing is undergoing a resurgence, as has seen revitalization of once abandoned terrace and hydraulic systems. Wari terraces at Cerro Baul provide clues to past cultural practices. They also document sustainable farming practices by using resilient land management techniques which can help combat desertification and degradation of arable lands. Three abandoned Wari terrace systems were mapped using microtopographic methods, the erosion patterns examined, the states of preservation compared, and then the design contrasted with modern terracing practices in the Moquegua Valley. In order to negate the harmful effects of desertification, rehabilitation and reconstruction of these terraces using ancient knowledge and techniques may be necessary. Rehabilitation must be conducted with consideration for preservation of cultural patrimony that may be encountered within the terrace treads or riser structures. With future climatic shifts impacting vulnerable dryland areas more than others, the ability to resiliently respond to these changes may be found in the lessons learned from ancient farming techniques such as the Wari. Copyright © 2017 Elsevier Ltd. All rights reserved.
Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio
2013-01-01
The increasing pressure of climatic change and anthropogenic activities is predicted to have major effects on ecosystems around the world. With their fragility and sensitivity to hydrologic shifts and land-use changes, wetlands are among the most vulnerable of such ecosystems. Focusing on the Everglades National Park, we here assess the impact of changes in the hydrologic regime, as well as habitat loss, on the spatial configuration of vegetation species. Because the current structuring of vegetation clusters in the Everglades exhibits power-law behavior and such behavior is often associated with self-organization and dynamics occurring near critical transition points, the quantification and prediction of the impact of those changes on the ecosystem is deemed of paramount importance. We implement a robust model able to identify the main hydrologic and local drivers of the vegetation species spatial structuring and apply it for quantitative assessment. We find that shifts in the hydropatterns will mostly affect the relative abundance of species that currently colonize specific hydroperiod niches. Habitat loss or disruption, however, would have a massive impact on all plant communities, which are found to exhibit clear threshold behaviors when a given percentage of habitable habitat is lost. PMID:23576751
Rivaes, Rui P.; Rodríguez-González, Patricia M.; Ferreira, Maria Teresa; Pinheiro, António N.; Politti, Emilio; Egger, Gregory; García-Arias, Alicia; Francés, Felix
2014-01-01
Global circulation models forecasts indicate a future temperature and rainfall pattern modification worldwide. Such phenomena will become particularly evident in Europe where climate modifications could be more severe than the average change at the global level. As such, river flow regimes are expected to change, with resultant impacts on aquatic and riparian ecosystems. Riparian woodlands are among the most endangered ecosystems on earth and provide vital services to interconnected ecosystems and human societies. However, they have not been the object of many studies designed to spatially and temporally quantify how these ecosystems will react to climate change-induced flow regimes. Our goal was to assess the effects of climate-changed flow regimes on the existing riparian vegetation of three different European flow regimes. Cases studies were selected in the light of the most common watershed alimentation modes occurring across European regions, with the objective of appraising expected alterations in the riparian elements of fluvial systems due to climate change. Riparian vegetation modeling was performed using the CASiMiR-vegetation model, which bases its computation on the fluvial disturbance of the riparian patch mosaic. Modeling results show that riparian woodlands may undergo not only at least moderate changes for all flow regimes, but also some dramatic adjustments in specific areas of particular vegetation development stages. There are circumstances in which complete annihilation is feasible. Pluvial flow regimes, like the ones in southern European rivers, are those likely to experience more pronounced changes. Furthermore, regardless of the flow regime, younger and more water-dependent individuals are expected to be the most affected by climate change. PMID:25330151
Effects of lead structure in Bering Sea pack ice on the flight costs of wintering spectacled eiders
NASA Astrophysics Data System (ADS)
Bump, Joseph K.; Lovvorn, James R.
2004-10-01
In polar regions, sea ice is critical habitat for many marine birds and mammals. The quality of pack ice habitat depends on the duration and spacing of leads (openings in the ice), which determine access to water and air for diving endotherms, and how often and how far they must move as leads open and close. Recent warming trends have caused major changes in the extent and nature of sea ice at large scales used in climate models. However, no studies have analyzed lead structure in terms of habitat for ice-dependent endotherms, or effects of climate on ice habitat at scales relevant to their daily movements. Based on observations from an icebreaker and synthetic aperture radar (SAR) images, we developed methods to describe the dynamics and thermodynamics of lead structure relative to use by spectacled eiders ( Somateria fischeri) wintering in pack ice of the Bering Sea. By correlating lead structure with weather variables, we then used these methods to estimate changes in lead dynamics from 1945 to 2002, and effects of such changes on flight costs of the eiders. For 1991-1992, when images were available about every 3 days throughout winter, SAR images were divided among five weather regimes defined by wind speed, wind direction, and air temperature. Based on 12.5-m pixels, lead shape, compass orientation, and fetch across leads did not differ among the weather regimes. However, the five regimes differed in total area of open water, leads per unit area, and distance between leads. Lead duration was modeled based on air temperature, wind, and fetch. Estimates of mean daily flight time for eiders, based on lead duration and distance between neighboring leads, differed among regimes by 0 to 15 min. Resulting flight costs varied from 0 to 158 kJ day -1, or from 0% to 11% of estimated field metabolic rate. Over 57 winters (1945-2002), variation among years in mean daily flight time was most influenced by the north-south wind component, which determined pack divergence (lead opening) during northerly winds or pack convergence (lead closing) during southerly winds. Mean daily flight time and flight cost during winter did not differ among proposed periods of decadal-scale climate shifts in the North Pacific Ocean. Although leads in mobile pack ice constantly open and close with variations in wind, under most conditions in the Bering Sea there appeared to be a shifting-mosaic steady-state of lead availability. Long-term trends in the extent and timing of Bering Sea pack ice may have affected spectacled eiders more by altering foodweb processes than by changing flight costs relative to lead structure.
Kong, Xiangzhen; He, Wei; Qin, Ning; Liu, Wenxiu; Yang, Bin; Yang, Chen; Xu, Fuliu; Mooij, Wolf M; Koelmans, Albert A
2017-08-01
Shallow lakes can switch suddenly from a turbid situation with high concentrations of phytoplankton and other suspended solids to a vegetated state with clear water, and vice versa. These alternative stable states may have a substantial impact on the fate of hydrophobic organic compounds (HOCs). Models that are fit to simulate impacts from these complex interactions are scarce. We developed a contaminant fate model which is linked to an ecosystem model (PCLake) for shallow lakes. This integrated model was successful in simulating long-term dynamics (1953-2012) of representative polycyclic aromatic hydrocarbons (PAHs) in the main biotic and abiotic components in a large shallow lake (Chaohu in China), which has undergone regime shifts in this period. Historical records from sediment cores were used to evaluate the model. The model revealed that regime shifts in shallow lakes had a strong impact on the fate of less hydrophobic compounds due to the large storage capacity of macrophytes, which accumulated up to 55.6% of phenanthrene in the clear state. The abrupt disappearance of macrophytes after the regime shift resulted in a sudden change in phenanthrene distribution, as the sediment became the major sink. For more hydrophobic compounds such as benzo(a)pyrene, the modeled impact of the regime shift was negligible for the whole environment, yet large for biotic compartments. This study is the first to provide a full mechanistic analysis of the impact of regime shifts on the fate of PAHs in a real lake ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.
Driver detection of water availability changes in a large Alpine river basin
NASA Astrophysics Data System (ADS)
Mallucci, Stefano; Majone, Bruno; Bellin, Alberto
2017-04-01
The Alpine region is widely recognised as an area with a particularly sensitive environment, where climate change is expected to modify the river flow regime, which effects on freshwater ecosystems and water resources have not been explored at depth. In the middle of the last century the Alpine region has been characterised by an intensive exploitation of water resources for hydropower production and irrigated agriculture that, in combination with climate change, induced significant and spatially uneven alterations in the flow regime. Disentangling the effects of human activities from climate change is a difficult task, which only recently attracted the interest of scientists and stakeholders. In this study historical time series of hydro-climatic data (i.e. streamflow, precipitation and temperature) recorded since 1920 in the Adige river basin, located in the southeastern part of the Alps, were analysed in order to quantify alterations of the main hydrological fluxes due to climate change and water uses and separate their reciprocal contribution. Spatial and temporal patterns of change are identified by comparing the water budget performed in 4 representative sub-basins of the Adige river basin: Adige at Trento (9852 km2) and Bronzolo (6891 km2), Gadera at Mantana (394 km2) and Avisio at Soraga (207 km2). These sub-catchments are characterised by different climatic and water uses conditions. Disentangling the effects of water uses from climate change is difficult because none are known through measurements, such that the water balance equation contains two unknowns. We overcome this difficulty by calibrating a real evapotranspiration model in the period 1920-1950, when the effects of both climate change and water uses are deemed small to negligible. This model is then included into the water balance equation, to obtain water uses in the following period, under the usual hypothesis of no significant interannual accumulation. The effect of climate change is therefore included in the external drivers (precipitation and temperature) and manifests itself through changes in precipitation and evapotranspiration, besides possible changes in runoff due to seasonal shifts in the precipitation. The northern part of the catchment (Adige at Bronzolo) does not show significant alterations of the hydrological balance, due to water uses, whereas a significant reducing trend of streamflow volumes is found in the middle course of the Adige (at Trento) since the '70s, which can be attributed to the intense development of irrigation agriculture in the drainage area of the Noce river, one of the main tributaries of the middle course of the Adige river. Conversely, Gadera at Mantana shows a significant positive trend in streamflow as a result of the complex interplay between shifts in the seasonal distribution of precipitation and rise of the temperature. This study shows that climate change is the main driver only in headwater basins, while water uses overcome its effect in the lower part of the catchment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athanasiou, T.; Kartha, S.; Baer, P.
2006-11-15
This brief paper introduces a new approach to the global climate regime, one designed to recognize the urgency of the climate crisis, while at the same time embracing the fundamental right to human development. This 'Greenhouse Development Rights' approach is not primarily defended on ethical grounds. It's core justification, rather, is a realistic one - our claim is that this approach, or something like it, is needed if we're to break the global impasse over developmental equity in a climate constrained world. We put forward this new approach not because we believe that it will be readily adopted as themore » foundation of the post-2012 regime. Rather, we intend it as a standard of comparison, a reference framework that marks out the steps that must be part of an effective climate regime, while refusing to prejudge which of them will or will not ultimately be deemed politically acceptable. Against this reference framework, given regime proposals can be measured to determine how realistic they are, from the standpoint of genuinely addressing the North/South impasse and having a chance of preventing a climate catastrophe. The climate crisis, as most everyone in the climate community knows, is upon us. Still, the pace of our response has been profoundly inadequate, so this paper will begin with the blunt truth. The science now tells us that we're pushing beyond mere 'dangerous anthropogenic interference with the climate system', and are rather on the verge of committing to catastrophic interference.« less
NASA Astrophysics Data System (ADS)
Waddington, James; Kettridge, Nick; Sherwood, James; Granath, Gustaf
2015-04-01
Northern peatlands represent a globally significant carbon reservoir, composed largely of legacy carbon which is no longer part of the active carbon cycle. However, it is unclear whether this legacy carbon is vulnerable as a result of enhanced peat smouldering and combustion under the moderate drying conditions predicted for northern peatlands as a result of climate change and/or disturbance from forestry, mining, and associated transport development. A significant loss in legacy carbon as a result of wildfire has already been observed in smaller tropical peatlands where deep peat soils have been destabilized due to severe drainage and a shift in vegetation. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland several decades post drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition, previously observed within only severely disturbed tropical peatlands, when accompanied by wildfire. The combined impact of moderate drainage followed by wildfire resulted in a shift of the peat surface down the peat profile, exposing denser peat at the surface. In undisturbed northern peatlands where depth of burn is typically low, low-density near-surface peats help regulate water-table position and near-surface moisture availability post-fire, both of which are favourable to Sphagnum recolonization. As a result of drainage and fire at the study site, the self-regulating properties of the low-density Sphagnum surface were lost. We demonstrate that changes in peat hydrophysical properties increased hydrological limitations to Sphagnum recovery leading to the conversion to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy carbon stored in the peat.
Regime shifts in desert grasslands: patterns, mechanisms, and management
USDA-ARS?s Scientific Manuscript database
Transitions from semiarid grassland to shrubland states are among the most widely recognized examples of regime shifts in terrestrial ecosystems. Nonetheless, the processes causing grassland-shrubland transitions, and their consequences, are incompletely understood. We challenge several misconceptio...
Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew
2013-01-01
Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies. PMID:23658726
Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew
2013-01-01
Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies.
Variable Trends in High Peak Flow Generation Across the Swedish Sub-Arctic
NASA Astrophysics Data System (ADS)
Matti, B.; Dahlke, H. E.; Lyon, S. W.
2015-12-01
There is growing concern about increased frequency and severity of floods and droughts globally in recent years. Improving knowledge on the complexity of hydrological systems and their interactions with climate is essential to be able to determine drivers of these extreme events and to predict changes in these drivers under altered climate conditions. This is particularly true in cold regions such as the Swedish Sub-Arctic where independent shifts in both precipitation and temperature can have significant influence on extremes. This study explores changes in the magnitude and timing of the annual maximum daily flows in 18 Swedish sub-arctic catchments. The Mann-Kendall trend test was used to estimate changes in selected hydrological signatures. Further, a flood frequency analysis was conducted by fitting a Gumbel (Extreme Value type I) distribution whereby selected flood percentiles were tested for stationarity using a generalized least squares regression approach. Our results showed that hydrological systems in cold climates have complex, heterogeneous interactions with climate. Shifts from a snowmelt-dominated to a rainfall-dominated flow regime were evident with all significant trends pointing towards (1) lower flood magnitudes in the spring flood; (2) earlier flood occurrence; (3) earlier snowmelt onset; and (4) decreasing mean summer flows. Decreasing trends in flood magnitude and mean summer flows suggest permafrost thawing and are in agreement with the increasing trends in annual minimum flows. Trends in the selected flood percentiles showed an increase in extreme events over the entire period of record, while trends were variable under shorter periods. A thorough uncertainty analysis emphasized that the applied trend test is highly sensitive to the period of record considered. As such, no clear overall regional pattern could be determined suggesting that how catchments are responding to changes in climatic drivers is strongly influenced by their physical characteristics.
Facilitating adaptation in montane plants to changing precipitation along an elevation gradient
Hess, Steve; Leopold, Christina
2017-01-01
Montane plant communities throughout the world have responded to changes in precipitation and temperature regimes by shifting ranges upward in elevation. Continued warmer, drier climate conditions have been documented and are projected to increase in high-elevation areas in Hawai‘i, consistent with climate change effects reported in other environments throughout the world. Organisms that cannot disperse or adapt biologically to projected climate scenarios in situ may decrease in distributional range and abundance over time. Restoration efforts will need to accommodate future climate change and account for the interactive effects of existing invasive species to ensure long-term persistence. As part of a larger, ongoing restoration effort, we hypothesized that plants from a lower-elevation forest ecotype would have higher rates of survival and growth compared to high-elevation forest conspecifics when grown in common plots along an elevation gradient. We monitored climate conditions at planting sites to identify whether temperature or rainfall influenced survival and growth after 20 weeks. We found that origin significantly affected survival in only one of three native montane species, Dodonaea viscosa. Contrary to our hypothesis, 75.2% of seedlings from high-elevation origin survived in comparison to 58.7% of seedlings from low elevation across the entire elevation gradient. Origin also influenced survival in linearized mixed models that controlled for temperature, precipitation, and elevation in D. viscosa and Chenopodium oahuense. Only C. oahuense seedlings had similar predictors of growth and survival. There were no common patterns of growth or survival between species, indicating that responses to changing precipitation and emperature regimes varied between montane plant species. Results also suggest that locally sourced seed is important to ensure highest survival at restoration sites. Further experimentation on larger spatial and temporal scales is necessary to determine the empirical responses of species and communities to changing climate in the full context of highly degraded Hawaiian ecosystems.
Climate Modeling and Analysis with Decision Makers in Mind
NASA Astrophysics Data System (ADS)
Jones, A. D.; Jagannathan, K.; Calvin, K. V.; Lamarque, J. F.; Ullrich, P. A.
2016-12-01
There is a growing need for information about future climate conditions to support adaptation planning across a wide range of sectors and stakeholder communities. However, our principal tools for understanding future climate - global Earth system models - were not developed with these user needs in mind, nor have we developed transparent methods for evaluating and communicating the credibility of various climate information products with respect to the climate characteristics that matter most to decision-makers. Several recent community engagements have identified a need for "co-production" of knowledge among stakeholders and scientists. Here we highlight some of the barriers to communication and collaboration that must be overcome to improve the dialogue among researchers and climate adaptation practitioners in a meaningful way. Solutions to this challenge are two-fold: 1) new institutional arrangements and collaborative mechanisms designed to improve coordination and understanding among communities, and 2) a research agenda that explicitly incorporates stakeholder needs into model evaluation, development, and experimental design. We contrast the information content in global-scale model evaluation exercises with that required for in specific decision contexts, such as long-term agricultural management decisions. Finally, we present a vision for advancing the science of model evaluation in the context of predicting decision-relevant hydroclimate regime shifts in North America.
Liu, Zhihua
2016-11-18
Understanding the influence of climate variability and fire characteristics in shaping postfire vegetation recovery will help to predict future ecosystem trajectories in boreal forests. In this study, I asked: (1) which remotely-sensed vegetation index (VI) is a good proxy for vegetation recovery? and (2) what are the relative influences of climate and fire in controlling postfire vegetation recovery in a Siberian larch forest, a globally important but poorly understood ecosystem type? Analysis showed that the shortwave infrared (SWIR) VI is a good indicator of postfire vegetation recovery in boreal larch forests. A boosted regression tree analysis showed that postfire recovery was collectively controlled by processes that controlled seed availability, as well as by site conditions and climate variability. Fire severity and its spatial variability played a dominant role in determining vegetation recovery, indicating seed availability as the primary mechanism affecting postfire forest resilience. Environmental and immediate postfire climatic conditions appear to be less important, but interact strongly with fire severity to influence postfire recovery. If future warming and fire regimes manifest as expected in this region, seed limitation and climate-induced regeneration failure will become more prevalent and severe, which may cause forests to shift to alternative stable states.
Liu, Zhihua
2016-01-01
Understanding the influence of climate variability and fire characteristics in shaping postfire vegetation recovery will help to predict future ecosystem trajectories in boreal forests. In this study, I asked: (1) which remotely-sensed vegetation index (VI) is a good proxy for vegetation recovery? and (2) what are the relative influences of climate and fire in controlling postfire vegetation recovery in a Siberian larch forest, a globally important but poorly understood ecosystem type? Analysis showed that the shortwave infrared (SWIR) VI is a good indicator of postfire vegetation recovery in boreal larch forests. A boosted regression tree analysis showed that postfire recovery was collectively controlled by processes that controlled seed availability, as well as by site conditions and climate variability. Fire severity and its spatial variability played a dominant role in determining vegetation recovery, indicating seed availability as the primary mechanism affecting postfire forest resilience. Environmental and immediate postfire climatic conditions appear to be less important, but interact strongly with fire severity to influence postfire recovery. If future warming and fire regimes manifest as expected in this region, seed limitation and climate-induced regeneration failure will become more prevalent and severe, which may cause forests to shift to alternative stable states. PMID:27857204
Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago
Jouffray, Jean-Baptiste; Nyström, Magnus; Norström, Albert V.; Williams, Ivor D.; Wedding, Lisa M.; Kittinger, John N.; Williams, Gareth J.
2015-01-01
Loss of coral reef resilience can lead to dramatic changes in benthic structure, often called regime shifts, which significantly alter ecosystem processes and functioning. In the face of global change and increasing direct human impacts, there is an urgent need to anticipate and prevent undesirable regime shifts and, conversely, to reverse shifts in already degraded reef systems. Such challenges require a better understanding of the human and natural drivers that support or undermine different reef regimes. The Hawaiian archipelago extends across a wide gradient of natural and anthropogenic conditions and provides us a unique opportunity to investigate the relationships between multiple reef regimes, their dynamics and potential drivers. We applied a combination of exploratory ordination methods and inferential statistics to one of the most comprehensive coral reef datasets available in order to detect, visualize and define potential multiple ecosystem regimes. This study demonstrates the existence of three distinct reef regimes dominated by hard corals, turf algae or macroalgae. Results from boosted regression trees show nonlinear patterns among predictors that help to explain the occurrence of these regimes, and highlight herbivore biomass as the key driver in addition to effluent, latitude and depth.
Aubret, F; Shine, R
2010-01-15
Climate change will result in some areas becoming warmer and others cooler, and will amplify the magnitude of year-to-year thermal variation in many areas. How will such changes affect animals that rely on ambient thermal heterogeneity to behaviourally regulate their body temperatures? To explore this question, we raised 43 captive-born tiger snakes Notechis scutatus in enclosures that provided cold (19-22 degrees C), intermediate (19-26 degrees C) or hot (19-37 degrees C) thermal gradients. The snakes adjusted their diel timing of thermoregulatory behaviour so effectively that when tested 14 months later, body temperatures (mean and maximum), locomotor speeds and anti-predator behaviours did not differ among treatment groups. Thus, the young snakes modified their behaviour to compensate for restricted thermal opportunities. Then, we suddenly shifted ambient conditions to mimic year-to-year variation. In contrast to the earlier plasticity, snakes failed to adjust to this change, e.g. snakes raised at cooler treatments but then shifted to hot conditions showed a higher mean body temperature for at least two months after the onset of the new thermal regime. Hence, thermal conditions experienced early in life influenced subsequent thermoregulatory tactics; the mean selected temperature of a snake depended more upon its prior raising conditions than upon its current thermoregulatory opportunities. Behavioural plasticity thus allows snakes to adjust to suboptimal thermal conditions but this plasticity is limited. The major thermoregulatory challenge from global climate change may not be the shift in mean values (to which our young snakes adjusted) but the increased year-to-year variation (with which our snakes proved less able to deal).
On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models
Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.; ...
2016-03-04
Aerosol–cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity ( ω 500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strongmore » large-scale ascent ( ω 500 < −25 hPa day −1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day −1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less
Holocene moisture changes in western China, Central Asia, inferred from stalagmites
NASA Astrophysics Data System (ADS)
Cai, Yanjun; Chiang, John C. H.; Breitenbach, Sebastian F. M.; Tan, Liangcheng; Cheng, Hai; Edwards, R. Lawrence; An, Zhisheng
2017-02-01
Central Asia lies at the convergence between the Mediterranean and Asian monsoon climates, and there is a complex interaction between the westerlies with the monsoon to form the climate of that region and its variability. The region is highly vulnerable to changes in rainfall, highlighting the need to understand the underlying controls. We present a stalagmite-based δ18O record from Kesang Cave in western China, using MC-ICP-MS U-series dating and stable isotope analysis. Stalagmite calcite δ18O largely documents changes in the δ18O of precipitation. δ18O in stalagmites was low during the early and middle Holocene (10.0-3.0 ka BP), and shifted to higher values between 3.0 and 2.0 ka BP. After 2.0 ka BP, δ18O fluctuates with distinct centennial-scale variations. Drawing from results of state-of-the-art atmospheric general circulation model simulations for the preindustrial period and 9 ka BP, we propose that changes in moisture source regions and the wetter climate both contributed to the isotopic depletion of precipitation during the early and middle Holocene. Multiple records from surrounding regions indicate a generally wetter climate during the early and mid- Holocene, supporting our interpretation on the speleothem δ18O. Changes in precipitation seasonality do not appear to be a viable explanation for the observed changes, nor increased penetration of monsoonal moisture to the study site. We speculate that the climatic regime shifted around 3.0-2.0 ka BP towards a drier climate, resulting in temperature having dominant control on precipitation δ18O. The demise of three settlements around 500AD at the margin of Tarim Basin coincided with a period of decreased precipitation and increased temperature that likely affected local water resources, underscoring the potential impact of climate on human habitation in this region.
Tracking of climatic niche boundaries under recent climate change.
La Sorte, Frank A; Jetz, Walter
2012-07-01
1. Global climate has changed significantly during the past 30 years and especially in northern temperate regions which have experienced poleward shifts in temperature regimes. While there is evidence that some species have responded by moving their distributions to higher latitudes, the efficiency of this response in tracking species' climatic niche boundaries over time has yet to be addressed. 2. Here, we provide a continental assessment of the temporal structure of species responses to recent spatial shifts in climatic conditions. We examined geographic associations with minimum winter temperature for 59 species of winter avifauna at 476 Christmas Bird Count circles in North America from 1975 to 2009 under three sampling schemes that account for spatial and temporal sampling effects. 3. Minimum winter temperature associated with species occurrences showed an overall increase with a weakening trend after 1998. Species displayed highly variable responses that, on average and across sampling schemes, contained a strong lag effect that weakened in strength over time. In general, the conservation of minimum winter temperature was relevant when all species were considered together but only after an initial lag period (c. 35 years) was overcome. The delayed niche tracking observed at the combined species level was likely supported by the post1998 lull in the warming trend. 4. There are limited geographic and ecological explanations for the observed variability, suggesting that the efficiency of species' responses under climate change is likely to be highly idiosyncratic and difficult to predict. This outcome is likely to be even more pronounced and time lags more persistent for less vagile taxa, particularly during the periods of consistent or accelerating warming. Current modelling efforts and conservation strategies need to better appreciate the variation, strength and duration of lag effects and their association with climatic variability. Conservation strategies in particular will benefit through identifying and maintaining dispersal corridors that accommodate diverging dispersal strategies and timetables. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Numerical investigation of frequency spectrum in the Hasegawa-Wakatani model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Juhyung; Terry, P. W.
2013-10-15
The wavenumber-frequency spectrum of the two-dimensional Hasegawa-Wakatani model is investigated in the hydrodynamic, intermediate, and adiabatic regimes. A nonlinear frequency and a line width related to energy transfer properties provide a measure of the average frequency and spectral broadening, respectively. In the adiabatic regime, narrow spectra, typical of wave turbulence, are observed with a nonlinear frequency shift in the electron drift direction. In the hydrodynamic regime, broad spectra with almost zero nonlinear frequencies are observed. Nonlinear frequency shifts are shown to be related to nonlinear energy transfer by vorticity advection through the high frequency region of the spectrum. In themore » intermediate regime, the nonlinear frequency shift for density fluctuations is observed to be weaker than that of electrostatic potential fluctuations. The weaker frequency shift of the density fluctuations is due to nonlinear density advection, which favors energy transfer in the low frequency range. Both the nonlinear frequency and the spectral width increase with poloidal wavenumber k{sub y}. In addition, in the adiabatic regime where the nonlinear interactions manifest themselves in the nonlinear frequency shift, the cross-phase between the density and potential fluctuations is observed to match a linear relation, but only if the linear response of the linearly stable eigenmode branch is included. Implications of these numerical observations are discussed.« less
NASA Astrophysics Data System (ADS)
Dentith, Jennifer E.; Ivanovic, Ruza F.; Gregoire, Lauren J.; Tindall, Julia C.; Smith, Robin S.
2018-05-01
Low-resolution, complex general circulation models (GCMs) are valuable tools for studying the Earth system on multi-millennial timescales. However, slowly evolving salinity drifts can cause large shifts in climatic and oceanic regimes over thousands of years. We test two different schemes for neutralising unforced salinity drifts in the FAMOUS GCM: surface flux correction and volumetric flux correction. Although both methods successfully maintain a steady global mean salinity, local drifts and subsequent feedbacks promote cooling (≈ 4 °C over 6000 years) and freshening (≈ 2 psu over 6000 years) in the North Atlantic Ocean, and gradual warming (≈ 0.2 °C per millennium) and salinification (≈ 0.15 psu per millennium) in the North Pacific Ocean. Changes in the surface density in these regions affect the meridional overturning circulation (MOC), such that, after several millennia, the Atlantic MOC (AMOC) is in a collapsed state, and there is a strong, deep Pacific MOC (PMOC). Furthermore, the AMOC exhibits a period of metastability, which is only identifiable with run lengths in excess of 1500 years. We also compare simulations with two different land surface schemes, demonstrating that small biases in the surface climate may cause regional salinity drifts and significant shifts in the MOC (weakening of the AMOC and the initiation then invigoration of PMOC), even when the global hydrological cycle has been forcibly closed. Although there is no specific precursor to the simulated AMOC collapse, the northwest North Pacific and northeast North Atlantic are important areas that should be closely monitored for trends arising from such biases.
Modeled streamflow metrics on small, ungaged stream reaches in the Upper Colorado River Basin
Reynolds, Lindsay V.; Shafroth, Patrick B.
2016-01-20
Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow metrics and environmental variables. Flow metrics were then projected to ungaged reaches in the Upper Colorado River Basin using environmental variables for each stream, represented as raster cells, in the basin. Last, the projected random forest models of minimum flow coefficient of variation and specific mean daily flow were used to highlight streams that had greater than 61.84 percent minimum flow coefficient of variation and less than 0.096 specific mean daily flow and suggested that these streams will be most threatened to shift to intermittent flow regimes under drier climate conditions. Map projection products can help scientists, land managers, and policymakers understand current hydrology in the Upper Colorado River Basin and make informed decisions regarding water resources. With knowledge of which streams are likely to undergo significant drying in the future, managers and scientists can plan for stream-dependent ecosystems and human water users.
Natural enemies govern ecosystem resilience in the face of extreme droughts.
He, Qiang; Silliman, Brian R; Liu, Zezheng; Cui, Baoshan
2017-02-01
Severe droughts are on the rise in many regions. But thus far, attempts to predict when drought will cause a major regime shift or when ecosystems are resilient, often using plant drought tolerance models, have been frustrated. Here, we show that pressure from natural enemies regulates an ecosystem's resilience to severe droughts. Field experiments revealed that in protected salt marshes experiencing a severe drought, plant-eating grazers eliminated drought-stressed vegetation that could otherwise survive and recover from the climate extreme, transforming once lush marshes into persistent salt barrens. These results provide an explicit experimental demonstration for the obligatory role of natural enemies across the initiation, expansion and recovery stages of a natural ecosystem's collapse. Our study highlights that natural enemies can hasten an ecosystem's resilience to drought to much lower levels than currently predicted, calling for integration into climate change predictions and conservation strategies. © 2017 John Wiley & Sons Ltd/CNRS.
Increasing precipitation volatility in twenty-first-century California
NASA Astrophysics Data System (ADS)
Swain, Daniel L.; Langenbrunner, Baird; Neelin, J. David; Hall, Alex
2018-05-01
Mediterranean climate regimes are particularly susceptible to rapid shifts between drought and flood—of which, California's rapid transition from record multi-year dryness between 2012 and 2016 to extreme wetness during the 2016-2017 winter provides a dramatic example. Projected future changes in such dry-to-wet events, however, remain inadequately quantified, which we investigate here using the Community Earth System Model Large Ensemble of climate model simulations. Anthropogenic forcing is found to yield large twenty-first-century increases in the frequency of wet extremes, including a more than threefold increase in sub-seasonal events comparable to California's `Great Flood of 1862'. Smaller but statistically robust increases in dry extremes are also apparent. As a consequence, a 25% to 100% increase in extreme dry-to-wet precipitation events is projected, despite only modest changes in mean precipitation. Such hydrological cycle intensification would seriously challenge California's existing water storage, conveyance and flood control infrastructure.
NASA Astrophysics Data System (ADS)
Harpold, A. A.; Longley, P.; Weiss, S. G.; Kampf, S. K.; Flint, A. L.
2016-12-01
Mountain snowmelt is a critical water source for downstream human populations and local ecosystem health. Here we explore the relatively unknown hydrologic consequences of two observed trends in Western U.S. snowpack dynamics: 1) shifts from snow to rain and 2) earlier and slower snowmelt. We apply two modeling approaches to tease apart the hydrologic effects of altered winter water inputs: 1) highly resolved one-dimensional HYDRUS modeling based on the Richard's equation at intensively measured sites and 2) the distributed Basin Characterization Model (BCM) over the Southwestern U.S. with relatively simple subsurface processes. The HYDRUS model was trained using observations from ten Snow Telemetry (SNOTEL) sites to investigate drainage below the root zone under scenarios of rain only and slower snowmelt. We found that shifts to rain-only regimes and earlier snowmelt both resulted in greater fluxes below the root zone using the measured soil depths. However, drainage fluxes and differences among scenarios diminished precipitously when rooting depths were increased to account for uncertainty. Next using the BCM, we compared water partitioning during historical runs from 1940-2014 to a scenario with all precipitation as rain but identical climate. We found that ET generally increased from eliminating snowpack sublimation. Recharge and runoff exhibited diverging responses to shifting precipitation regimes; runoff typically decreased and recharge increased, with the exception of areas in western and southern California and central Arizona. The observed changes in annual runoff and recharge were primarily caused by changes in input intensity and not changes in input timing. Runoff was most sensitive in areas with wet winters and low soil water storage. Both modeling approaches corroborated the potential for diverging changes in mountain water budgets from altered winter water inputs that will be mediated precipitation regime (i.e. precipitation intensity and timing) and soil water storage. Efforts to link these results to water resources will be discussed.
Znachor, Petr; Nedoma, Jiří; Hejzlar, Josef; Seďa, Jaromír; Kopáček, Jiří; Boukal, David; Mrkvička, Tomáš
2018-05-15
Man-made reservoirs are common across the world and provide a wide range of ecological services. Environmental conditions in riverine reservoirs are affected by the changing climate, catchment-wide processes and manipulations with the water level, and water abstraction from the reservoir. Long-term trends of environmental conditions in reservoirs thus reflect a wider range of drivers in comparison to lakes, which makes the understanding of reservoir dynamics more challenging. We analysed a 32-year time series of 36 environmental variables characterising weather, land use in the catchment, reservoir hydrochemistry, hydrology and light availability in the small, canyon-shaped Římov Reservoir in the Czech Republic to detect underlying trends, trend reversals and regime shifts. To do so, we fitted linear and piecewise linear regression and a regime shift model to the time series of mean annual values of each variable and to principal components produced by Principal Component Analysis. Models were weighted and ranked using Akaike information criterion and the model selection approach. Most environmental variables exhibited temporal changes that included time-varying trends and trend reversals. For instance, dissolved organic carbon showed a linear increasing trend while nitrate concentration or conductivity exemplified trend reversal. All trend reversals and cessations of temporal trends in reservoir hydrochemistry (except total phosphorus concentrations) occurred in the late 1980s and during 1990s as a consequence of dramatic socioeconomic changes. After a series of heavy rains in the late 1990s, an administrative decision to increase the flood-retention volume of the reservoir resulted in a significant regime shift in reservoir hydraulic conditions in 1999. Our analyses also highlight the utility of the model selection framework, based on relatively simple extensions of linear regression, to describe temporal trends in reservoir characteristics. This approach can provide a solid basis for a better understanding of processes in freshwater reservoirs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, C.; Zhao, C.
2017-12-01
Paleolimonological records provide long-term dynamics information of past climate, environment, human activities and ecological variations and give evolutionary perspectives to understand responses process of ecological shift to internal or external trigger. In this study, a powerful biomarkers, n-alkanes, was used to reconstruct the past 5000 years organic matter sources and ecological evolution history of Beilianchi Lake in the southwestern of Loess Plateau after preliminary investigation of modern samples. Climate-environment change and human activities were also traced by total organic matter (TOC), magnetic susceptibility (MS) and relevant proxies. The results showed that the ecosystem related to organic matter composition in Beilianchi Lake might be mainly controlled by climate change before 1400 cal B.P., whereas after that, it was significantly influenced by soil erosion induced by increasing population and enhanced human activities. Lake ecosystem experienced periodical change from relatively stable stage with combination of allochthonous-autochthonous organic sources prior to 1400 cal B.P. to extremely instability and final return to steady state with allochthonous-dominant organic source since 300 cal B.P.. During the period of instability, organic matter composition during 1400-800 cal B.P. indicated a obvious bimodal distribution based on probability density distribution analysis, which reflected the lake ecosystem might stay at bistable state and switched repeatedly from more-macrophytes state (regime A with low ACL) towards less-macrophytes state (regime B with high ACL) controlled by disturbance of soil erosion. The flickering during this period could serve as the early warning signal of transition towards more-macrophytes state or less-macrophytes state in lake ecosystems.
NASA Astrophysics Data System (ADS)
Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.
2016-09-01
Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely offset temperature-related yield losses in irrigated maize.
The Extreme Climate Index: a novel and multi-hazard index for extreme weather events.
NASA Astrophysics Data System (ADS)
Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro
2017-04-01
In this presentation we introduce the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events in African countries, thus indicating that a shift to a new climate regime is underway in a particular area. This index has been developed in the context of XCF (eXtreme Climate Facilities) project lead by ARC (African Risk Capacity, specialised agency of the African Union), and will be used in the payouts triggering mechanism of an insurance programme against risks related to the increase of frequency and magnitude of extreme weather events due to climate regimes' changes. The main hazards covered by ECI will be extreme dry, wet and heat events, with the possibility of adding region-specific risk events such as tropical cyclones for the most vulnerable areas. It will be based on data coming from consistent, sufficiently long, high quality historical records and will be standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be comparable. The first step to construct such an index is to define single hazard indicators. In this first study we focused on extreme dry/wet and heat events, using for their description respectively the well-known SPI (Standardized Precipitation Index) and an index developed by us, called SHI (Standardized Heat-waves Index). The second step consists in the development of a computational strategy to combine these, and possibly other indices, so that the ECI can describe, by means of a single indicator, different types of climatic extremes. According to the methodology proposed in this paper, the ECI is defined by two statistical components: the ECI intensity, which indicates whether an event is extreme or not; the angular component, which represent the contribution of each hazard to the overall intensity of the index. The ECI can thus be used to identify "extremes" after defining a suitable threshold above which the events can be held as extremes. In this presentation, after describing the methodology we used for the construction of the ECI, we present results obtained on different African regions, using NCEP Reanalysis dataset for air temperature at sig995 level and CHIRP dataset for precipitations. Particular attention will be devoted to 2015/2016 Malawi drought, which received some media attention due to the failure of the risk assessment model used to trigger due payouts: it will be shown how, on the contrary, combination of hydrological and temperature data used in ECI succeed in evaluating the extremeness of this event.
Regime shifts and panarchies in regional scale social-ecological water systems
Gunderson, Lance; Cosens, Barbara A.; Chaffin, Brian C.; (Tom) Arnold, Craig A.; Fremier, Alexander K.; Garmestani, Ahjond S.; Craig, Robin Kundis; Gosnell, Hannah; Birge, Hannah E.; Allen, Craig R.; Benson, Melinda H.; Morrison, Ryan R.; Stone, Mark C.; Hamm, Joseph A.; Nemec, Kristine; Schlager, Edella; Llewellyn, Dagmar
2018-01-01
In this article we summarize histories of nonlinear, complex interactions among societal, legal, and ecosystem dynamics in six North American water basins, as they respond to changing climate. These case studies were chosen to explore the conditions for emergence of adaptive governance in heavily regulated and developed social-ecological systems nested within a hierarchical governmental system. We summarize resilience assessments conducted in each system to provide a synthesis and reference by the other articles in this special feature. We also present a general framework used to evaluate the interactions between society and ecosystem regimes and the governance regimes chosen to mediate those interactions. The case studies show different ways that adaptive governance may be triggered, facilitated, or constrained by ecological and/or legal processes. The resilience assessments indicate that complex interactions among the governance and ecosystem components of these systems can produce different trajectories, which include patterns of (a) development and stabilization, (b) cycles of crisis and recovery, which includes lurches in adaptation and learning, and (3) periods of innovation, novelty, and transformation. Exploration of cross scale (Panarchy) interactions among levels and sectors of government and society illustrate that they may constrain development trajectories, but may also provide stability during crisis or innovation at smaller scales; create crises, but may also facilitate recovery; and constrain system transformation, but may also provide windows of opportunity in which transformation, and the resources to accomplish it, may occur. The framework is the starting point for our exploration of how law might play a role in enhancing the capacity of social-ecological systems to adapt to climate change. PMID:29780427
Regime shifts and panarchies in regional scale social-ecological water systems.
Gunderson, Lance; Cosens, Barbara A; Chaffin, Brian C; Tom Arnold, Craig A; Fremier, Alexander K; Garmestani, Ahjond S; Craig, Robin Kundis; Gosnell, Hannah; Birge, Hannah E; Allen, Craig R; Benson, Melinda H; Morrison, Ryan R; Stone, Mark C; Hamm, Joseph A; Nemec, Kristine; Schlager, Edella; Llewellyn, Dagmar
2017-03-17
In this article we summarize histories of nonlinear, complex interactions among societal, legal, and ecosystem dynamics in six North American water basins, as they respond to changing climate. These case studies were chosen to explore the conditions for emergence of adaptive governance in heavily regulated and developed social-ecological systems nested within a hierarchical governmental system. We summarize resilience assessments conducted in each system to provide a synthesis and reference by the other articles in this special feature. We also present a general framework used to evaluate the interactions between society and ecosystem regimes and the governance regimes chosen to mediate those interactions. The case studies show different ways that adaptive governance may be triggered, facilitated, or constrained by ecological and/or legal processes. The resilience assessments indicate that complex interactions among the governance and ecosystem components of these systems can produce different trajectories, which include patterns of (a) development and stabilization, (b) cycles of crisis and recovery, which includes lurches in adaptation and learning, and (3) periods of innovation, novelty, and transformation. Exploration of cross scale (Panarchy) interactions among levels and sectors of government and society illustrate that they may constrain development trajectories, but may also provide stability during crisis or innovation at smaller scales; create crises, but may also facilitate recovery; and constrain system transformation, but may also provide windows of opportunity in which transformation, and the resources to accomplish it, may occur. The framework is the starting point for our exploration of how law might play a role in enhancing the capacity of social-ecological systems to adapt to climate change.
NASA Astrophysics Data System (ADS)
Macklin, Mark G.; Toonen, Willem H. J.; Woodward, Jamie C.; Williams, Martin A. J.; Flaux, Clément; Marriner, Nick; Nicoll, Kathleen; Verstraeten, Gert; Spencer, Neal; Welsby, Derek
2015-12-01
In the Nile catchment, a growing number of site- and reach-based studies employ radiocarbon and, more recently, OSL dating to reconstruct Holocene river histories, but there has been no attempt to critically evaluate and synthesise these data at the catchment scale. We present the first meta-analysis of published and publically available radiocarbon and OSL dated Holocene fluvial units in the Nile catchment, including the delta region, and relate this to changing climate and river dynamics. Dated fluvial units are separated both geographically (into the Nile Delta and White, Blue, and Desert Nile sub-regions) and into depositional environment (floodplain and palaeochannel fills). Cumulative probability density frequency (CPDF) plots of floodplain and palaeochannel units show a striking inverse relationship during the Holocene, reflecting abrupt (<100 years) climate-related changes in flooding regime. The CPDF plot of dated floodplain units is interpreted as a record of over-bank river flows, whilst the CPDF plot of palaeochannel units reflect periods of major flooding associated with channel abandonment and contraction, as well as transitions to multi-centennial length episodes of greater aridity and low river flow. This analysis has identified major changes in river flow and dynamics in the Nile catchment with phases of channel and floodplain contraction at c. 6150-5750, 4400-4150, 3700-3450, 2700-2250, 1350-900, 800-550 cal. BC and cal. AD 1600, timeframes that mark shifts to new hydrological and geomorphological regimes. We discuss the impacts of these changing hydromorphological regimes upon riverine civilizations in the Nile Valley.
Regime shifts and panarchies in regional scale social-ecological water systems
Gunderson, Lance; Cosens, Barbara; Chaffin, Brian C.; Arnold, Craig Anthony (Tony); Fremier, Alexander K.; Garmestani, Ahjond S.; Kundis Craig, Robin; Gosnell, Hannah; Birge, Hannah E.; Allen, Craig R.; Benson, Melinda H.; Morrison, Ryan R.; Stone, Mark; Hamm, Joseph A.; Nemec, Kristine T.; Schlager, Edella; Llewellyn, Dagmar
2017-01-01
In this article we summarize histories of nonlinear, complex interactions among societal, legal, and ecosystem dynamics in six North American water basins, as they respond to changing climate. These case studies were chosen to explore the conditions for emergence of adaptive governance in heavily regulated and developed social-ecological systems nested within a hierarchical governmental system. We summarize resilience assessments conducted in each system to provide a synthesis and reference by the other articles in this special feature. We also present a general framework used to evaluate the interactions between society and ecosystem regimes and the governance regimes chosen to mediate those interactions. The case studies show different ways that adaptive governance may be triggered, facilitated, or constrained by ecological and/or legal processes. The resilience assessments indicate that complex interactions among the governance and ecosystem components of these systems can produce different trajectories, which include patterns of (a) development and stabilization, (b) cycles of crisis and recovery, which includes lurches in adaptation and learning, and (3) periods of innovation, novelty, and transformation. Exploration of cross scale (Panarchy) interactions among levels and sectors of government and society illustrate that they may constrain development trajectories, but may also provide stability during crisis or innovation at smaller scales; create crises, but may also facilitate recovery; and constrain system transformation, but may also provide windows of opportunity in which transformation, and the resources to accomplish it, may occur. The framework is the starting point for our exploration of how law might play a role in enhancing the capacity of social-ecological systems to adapt to climate change.
NASA Astrophysics Data System (ADS)
Stoll, Elena; Oesterle, Felix; Hanzer, Florian; Nemec, Johanna; Berlin, Stefan; Schöber, Johannes; Huttenlau, Matthias; Strasser, Ulrich; Achleitner, Stefan; Förster, Kristian
2017-04-01
Fluctuations of glacier and snow runoff play a key role in water management of alpine catchments. Consequently, the catchment water balance is strongly influenced by the variability of the seasonal snow cover and the glacier melt. The huge water storages enable a shift of the hydrological response of glaciers across time scales, leading to response times in the range of decades. In the future, an initial increase of water availability connected to higher temperatures and respective melt rates is expected to turn into a decrease as the glaciers dwindle. One key question is to predict the "moment of peak discharge" when water availability will start to decrease as a consequence of the reduction of glacierized areas. To assess the influence of a warming climate on runoff regimes of glaciated catchments, we couple a simple glacier evolution model (GEM), based on a statistical approach, with a semi-distributed hydrological model (HQsim). Climate scenarios are taken from downscaled EURO-CORDEX data for the scenarios RCP2.6, RCP4.5, and RCP8.5, respectively. The results indicate that the impact of the glaciers on runoff regimes will very likely change towards the second half of the 21st century. Given the scenarios in which most glaciers will attain their minimum extent and sustain only at high elevation levels, the resulting runoff regime is dominated by precipitation and seasonal snow cover, since the "moment of peak discharge" is assumed to occur in the first half of the 21st century.
NASA Astrophysics Data System (ADS)
Dannenberg, M. P.; Wise, E.
2017-12-01
Much of the precipitation delivered to western North America arrives during the October to March cool season via midlatitude Pacific storm tracks, which may shift in the future due to climate change. Using historical climate, tree-ring, and remote sensing data, we assessed the sensitivity of western North American hydroclimate and ecosystems to the position and intensity of cool-season Pacific storm tracks. From 1980-2014, mean annual cool-season storm tracks entered western North America between approximately 41°N to 53°N, with substantial interannual variability in both the position and intensity of the storm tracks. We examined relationships between storm tracks and two hydroclimatic variables: the cool-season standardized precipitation-evapotranspiration index and April snow water equivalent. We also assessed how historical storm track variability affected ecosystems using forest growth estimates from a large tree-ring network as well as land surface phenology and wildfire estimates from AVHRR and Landsat, respectively. Cool-season moisture supply and snowpack responded strongly to storm track position, with positive correlations to storm track latitude in eastern Alaska and northwestern Canada but negative correlations in the northwestern U.S. These hydroclimatic impacts were largely driven by the latitudinal position of storm tracks during the "shoulder" seasons (i.e., autumn and early spring). Ecosystems of the western U.S. tended to be greener and more productive following winters with south-shifted storm tracks, while Canadian ecosystems were greener in years when the cool-season storm track was shifted to the north. On average, larger areas of the northwestern U.S. were burned by moderate to high severity wildfires when storm tracks were displaced north, and the average burn area per fire also tended to be higher in years with north-shifted storm tracks. Assuming that these historical relationships continue to hold under future climate scenarios, our results suggest that projected long-term shifts of Pacific storm tracks over the 21st century would likely alter hydroclimatic and ecological regimes in western North America, particularly in the northwestern U.S., where moisture supply and ecosystem processes are highly sensitive to the position of cool-season storm tracks.
NASA Astrophysics Data System (ADS)
Weiss, S. B.
2017-12-01
Impacts of climate change in the Great Basin will manifest through changes in the hydrologic cycle. Downscaled climate data and projections run through the Basin Characterization Model (BCM) produce time series of hydrologic response - recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) - that directly affect water resources and vegetation. More than 50 climate projections from CMIP5 were screened using a cluster analysis of end-century (2077-2099) seasonal precipitation and annual temperature to produce a reduced subset of 12 climate futures that cover a wide range of macroclimate response. Importantly, variations among GCMs in summer precipitation produced by the SW monsoon are captured. Data were averaged within 84 HUC8 watersheds with widley varying climate, topography, and geology. Resultant time series allow for multivariate analysis of hydrologic response, especially partitioning between snowpack, recharge, runoff, and actual evapotranspiration. Because the bulk of snowpack accumulation is restricted to small areas of isolated mountain ranges, losses of snowpack can be extreme as snowline moves up the mountains with warming. Loss of snowpack also affects recharge and runoff rates, and importantly, the recharge/runoff ratio - as snowpacks fade, recharge tends to increase relative to runoff. Thresholds for regime shifts can be identified, but the unique topography and geology of each basin must be considered in assessing hydrologic response.
Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change.
Boulton, Chris A; Lenton, Timothy M
2015-09-15
Marine ecosystems are sensitive to stochastic environmental variability, with higher-amplitude, lower-frequency--i.e., "redder"--variability posing a greater threat of triggering large ecosystem changes. Here we show that fluctuations in the Pacific Decadal Oscillation (PDO) index have slowed down markedly over the observational record (1900-present), as indicated by a robust increase in autocorrelation. This "reddening" of the spectrum of climate variability is also found in regionally averaged North Pacific sea surface temperatures (SSTs), and can be at least partly explained by observed deepening of the ocean mixed layer. The progressive reddening of North Pacific climate variability has important implications for marine ecosystems. Ecosystem variables that respond linearly to climate forcing will have become prone to much larger variations over the observational record, whereas ecosystem variables that respond nonlinearly to climate forcing will have become prone to more frequent "regime shifts." Thus, slowing down of North Pacific climate variability can help explain the large magnitude and potentially the quick succession of well-known abrupt changes in North Pacific ecosystems in 1977 and 1989. When looking ahead, despite model limitations in simulating mixed layer depth (MLD) in the North Pacific, global warming is robustly expected to decrease MLD. This could potentially reverse the observed trend of slowing down of North Pacific climate variability and its effects on marine ecosystems.
Response of the European ecosystems to climate change: a modelling approach for the 21st century.
NASA Astrophysics Data System (ADS)
Dury, Marie; Warnant, Pierre; François, Louis; Henrot, Alexandra; Favre, Eric; Hambuckers, Alain
2010-05-01
According to projections, over the 21st century, significant climatic changes appear and will be strengthened all over the world with the continuing increase of the atmospheric CO2 level. Climate will be generally warmer with notably changes in the seasonality and in the precipitation regime. These changes will have major impacts on the environment and on the biodiversity of natural ecosystems. Geographic distribution of ecosystems may be modified since species will be driven to migrate towards more suitable areas (e. g., shifting of the arctic tree lines). The CARAIB dynamic vegetation model (Carbon Assimilation in the Biosphere) forced with 21st century climate scenarios of the IPCC (ARPEGE-Climat model) is used to illustrate and analyse the potential impacts of climate change on tree species distribution and productivity over Europe. Changes in hydrological budget (e. g., runoff) and fire effects on forests will also be shown. Transient runs (1975-2100) with a new dynamic module introduced in CARAIB are performed to follow the future evolutions. In the new module, the processes of species establishment, competition and mortality due to stresses and disturbances have been improved. Among others, increased atmospheric CO2 and warmer climate increase tree productivity while drier conditions decrease it. Regions with more severe droughts will also be affected by an increase of wildfire frequency, which may have large impacts on vegetation density and distribution.
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-01-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees. PMID:26330162
The legacy of large regime shifts in shallow lakes.
Ramstack Hobbs, Joy M; Hobbs, William O; Edlund, Mark B; Zimmer, Kyle D; Theissen, Kevin M; Hoidal, Natalie; Domine, Leah M; Hanson, Mark A; Herwig, Brian R; Cotner, James B
2016-12-01
Ecological shifts in shallow lakes from clear-water macrophyte-dominated to turbid-water phytoplankton-dominated are generally thought of as rapid short-term transitions. Diatom remains in sediment records from shallow lakes in the Prairie Pothole Region of North America provide new evidence that the long-term ecological stability of these lakes is defined by the legacy of large regime shifts. We examine the modern and historical stability of 11 shallow lakes. Currently, four of the lakes are in a clear-water state, three are consistently turbid-water, and four have been observed to change state from year to year (transitional). Lake sediment records spanning the past 150-200 yr suggest that (1) the diatom assemblage is characteristic of either clear or turbid lakes, (2) prior to significant landscape alteration, all of the lakes existed in a regime of a stable clear-water state, (3) lakes that are currently classified as turbid or transitional have experienced one strong regime shift over the past 150-200 yr and have since remained in a regime where turbid-water predominates, and (4) top-down impacts to the lake food-web from fish introductions appear to be the dominant driver of strong regime shifts and not increased nutrient availability. Based on our findings we demonstrate a method that could be used by lake managers to identify lakes that have an ecological history close to the clear-turbid regime threshold; such lakes might more easily be returned to a clear-water state through biomanipulation. The unfortunate reality is that many of these lakes are now part of a managed landscape and will likely require continued intervention. © 2016 by the Ecological Society of America.
Ocean currents modify the coupling between climate change and biogeographical shifts.
García Molinos, J; Burrows, M T; Poloczanska, E S
2017-05-02
Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.
Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts.
Daskalov, Georgi M; Grishin, Alexander N; Rodionov, Sergei; Mihneva, Vesselina
2007-06-19
Large-scale transitions between alternative states in ecosystems are known as regime shifts. Once described as healthy and dominated by various marine predators, the Black Sea ecosystem by the late 20th century had experienced anthropogenic impacts such as heavy fishing, cultural eutrophication, and invasions by alien species. We studied changes related to these "natural experiments" to reveal the mechanisms of regime shifts. Two major shifts were detected, the first related to a depletion of marine predators and the second to an outburst of the alien comb jelly Mnemiopsis leidyi; both shifts were triggered by intense fishing resulting in system-wide trophic cascades. The complex nature of ecosystem responses to human activities calls for more elaborate approaches than currently provided by traditional environmental and fisheries management. This implies challenging existing practices and implementing explanatory models of ecosystem interactions that can better reconcile conservation and ecosystem management ideals.
Cline, Timothy J.; Schindler, Daniel E.; Hilborn, Ray
2017-01-01
Abrupt shifts in natural resources and their markets are a ubiquitous challenge to human communities. Building resilient social-ecological systems requires approaches that are robust to uncertainty and to regime shifts. Harvesting diverse portfolios of natural resources and adapting portfolios in response to change could stabilize economies reliant on natural resources and their markets, both of which are prone to unpredictable shifts. Here we use fisheries catch and revenue data from Alaskan fishing communities over 34 years to test whether diversification and turnover in the composition of fishing opportunities increased economic stability during major ocean and market regime shifts in 1989. More than 85% of communities show reduced fishing revenues following these regime shifts. However, communities with the highest portfolio diversity and those that could opportunistically shift the composition of resources they harvest, experienced negligible or even positive changes in revenue. Maintaining diversity in economic opportunities and enabling turnover facilitates sustainability of communities reliant on renewable resources facing uncertain futures. PMID:28091534
Daskalov, Georgi M; Boicenco, Laura; Grishin, Alexandre N; Lazar, Luminita; Mihneva, Vesselina; Shlyakhov, Vladislav A; Zengin, Mustafa
2017-04-01
By the late 20th century, a series of events or 'natural experiments', for example the depletion of apex predators, extreme eutrophication and blooms of invasive species, had suggested that the Black Sea could be considered as a large ecosystem 'laboratory'. The events resulted in regime shifts cascading through all trophic levels, disturbing ecosystem functioning and damaging the water environment. Causal pathways by which the external (hydroclimate, overfishing) and internal (food web interactions) drivers provoke regime shifts are investigated. Statistical data analyses supported by an interpretative framework based on hierarchical ecosystem theory revealed mechanisms of hierarchical incorporation of environmental factors into the ecosystem. Evidence links Atlantic teleconnections to Black Sea hydroclimate, which together with fishing shapes variability in fish stocks. The hydroclimatic signal is conveyed through the food web via changes in productivity at all levels, to planktivorous fish. Fluctuating fish abundance is believed to induce a lagged change in competitor jelly plankton that cascades down to phytoplankton and influences water quality. Deprived of the stabilising role of apex predators, the Black Sea's hierarchical ecosystem organisation is susceptible to both environmental and anthropogenic stresses, and increased fishing makes fish stock collapses highly probable. When declining stocks are confronted with burgeoning fishing effort associated with the inability of fishery managers and decision-makers to adapt rapidly to changes in fish abundance, there is overfishing and stock collapse. Management procedures are ineffective at handling complex phenomena such as ecosystem regime shifts because of the shortage of suitable explanatory models. The proposed concepts and models reported here relate the hydroclimate, overfishing and invasive species to shifts in ecosystem functioning and water quality, unravelling issues such as the causality of ecosystem interactions and mechanisms and offering potential for finding ways to reverse regime shifts. We advocate a management approach aiming at restoring ecosystem hierarchy that might mitigate the costly consequences of regime shifts. © 2016 John Wiley & Sons Ltd.
Gutiérrez, Alvaro G.; Armesto, Juan J.; Díaz, M. Francisca; Huth, Andreas
2014-01-01
Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests. PMID:25068869
Gutiérrez, Alvaro G; Armesto, Juan J; Díaz, M Francisca; Huth, Andreas
2014-01-01
Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.
Agricultural modifications of hydrological flows create ecological surprises.
Gordon, Line J; Peterson, Garry D; Bennett, Elena M
2008-04-01
Agricultural expansion and intensification have altered the quantity and quality of global water flows. Research suggests that these changes have increased the risk of catastrophic ecosystem regime shifts. We identify and review evidence for agriculture-related regime shifts in three parts of the hydrological cycle: interactions between agriculture and aquatic systems, agriculture and soil, and agriculture and the atmosphere. We describe the processes that shape these regime shifts and the scales at which they operate. As global demands for agriculture and water continue to grow, it is increasingly urgent for ecologists to develop new ways of anticipating, analyzing and managing nonlinear changes across scales in human-dominated landscapes.
Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska
Arp, Christopher D.; Jones, Benjamin M.; Lu, Zong; Whitman, Matthew S.
2012-01-01
The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003–2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.
Arias, Mauricio E; Cochrane, Thomas A; Piman, Thanapon; Kummu, Matti; Caruso, Brian S; Killeen, Timothy J
2012-12-15
The economic value of the Tonle Sap Lake Floodplain to Cambodia is arguably among the highest provided to a nation by a single ecosystem around the world. Nonetheless, the Mekong River Basin is changing rapidly due to accelerating water infrastructure development (hydropower, irrigation, flood control, and water supply) and climate change, bringing considerable modifications to the flood pulse of the Tonle Sap Lake in the foreseeable future. This paper presents research conducted to determine how the historical flooding regime, together with human action, influenced landscape patterns of habitats in the Tonle Sap Lake, and how these habitats might shift as a result of hydrological changes. Maps of water depth, annual flood duration, and flood frequency were created for recent historical hydrological conditions and for simulated future scenarios of water infrastructure development and climate change. Relationships were then established between the historical flood maps and land cover, and these were subsequently applied to assess potential changes to habitat cover in future decades. Five habitat groups were clearly distinguishable based on flood regime, physiognomic patterns, and human activity: (1) Open water, flooded for 12 months in an average hydrological year; (2) Gallery forest, with flood duration of 9 months annually; (3) Seasonally flooded habitats, flooded 5-8 months and dominated by shrublands and grasslands; (4) transitional habitats, flooded 1-5 months and dominated by abandoned agricultural fields, receding rice/floating rice, and lowland grasslands; and (5) Rainfed habitats, flooded up to 1 month and consisting mainly of wet season rice fields and village crops. It was found that water infrastructure development could increase the area of open water (+18 to +21%) and the area of rainfed habitats (+10 to +14%), while reducing the area covered with seasonally flooded habitats (-13 to -22%) and gallery forest (-75 to -83%). Habitat cover shifts as a result of climate change include a net increase of open water (2-21%), as well as a reduction of rainfed habitats by 2-5% and seasonally flooded habitats by 5-11%. Findings from this study will help guide on-going and future conservation and restoration efforts throughout this unique and critical ecosystem. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sottile, G. D.; Echeverria, M. E.; Mancini, M. V.; Bianchi, M. M.; Marcos, M. A.; Bamonte, F. P.
2015-06-01
The Southern Hemisphere Westerly Winds (SWW) constitute an important zonal circulation system that dominates the dynamics of Southern Hemisphere mid-latitude climate. Little is known about climatic changes in the Southern South America in comparison to the Northern Hemisphere due to the low density of proxy records, and adequate chronology and sampling resolution to address environmental changes of the last 2000 years. Since 2009, new pollen and charcoal records from bog and lakes in northern and southern Patagonia at the east side of the Andes have been published with an adequate calibration of pollen assemblages related to modern vegetation and ecological behaviour. In this work we improve the chronological control of some eastern Andean previously published sequences and integrate pollen and charcoal dataset available east of the Andes to interpret possible environmental and SWW variability at centennial time scales. Through the analysis of modern and past hydric balance dynamics we compare these scenarios with other western Andean SWW sensitive proxy records for the last 2000 years. Due to the distinct precipitation regimes that exist between Northern (40-45° S) and Southern Patagonia (48-52° S) pollen sites locations, shifts on latitudinal and strength of the SWW results in large changes on hydric availability on forest and steppe communities. Therefore, we can interpret fossil pollen dataset as changes on paleohydric balance at every single site by the construction of paleohydric indices and comparison to charcoal records during the last 2000 cal yrs BP. Our composite pollen-based Northern and Southern Patagonia indices can be interpreted as changes in latitudinal variation and intensity of the SWW respectively. Dataset integration suggest poleward SWW between 2000 and 750 cal yrs BP and northward-weaker SWW during the Little Ice Age (750-200 cal yrs BP). These SWW variations are synchronous to Patagonian fire activity major shifts. We found an in phase fire regime (in terms of timing of biomass burning) between northern Patagonia Monte shrubland and Southern Patagonia steppe environments. Conversely, there is an antiphase fire regime between Northern and Southern Patagonia forest and forest-steppe ecotone environments. SWW variability may be associated to ENSO variability especially during the last millennia. For the last 200 cal yrs BP we can concluded that the SWW belt were more intense and poleward than the previous interval. Our composite pollen-based SWW indices show the potential of pollen dataset integration to improve the understanding of paleohydric variability especially for the last 2000 millennial in Patagonia.
The impact of shift work and organizational work climate on health outcomes in nurses.
von Treuer, Kathryn; Fuller-Tyszkiewicz, Matthew; Little, Glenn
2014-10-01
Shift workers have a higher rate of negative health outcomes than day shift workers. Few studies however, have examined the role of difference in workplace environment between shifts itself on such health measures. This study investigated variation in organizational climate across different types of shift work and health outcomes in nurses. Participants (n = 142) were nursing staff from a metropolitan Melbourne hospital. Demographic items elicited the type of shift worked, while the Work Environment Scale and the General Health Questionnaire measured organizational climate and health respectively. Analysis supported the hypotheses that different organizational climates occurred across different shifts, and that different organizational climate factors predicted poor health outcomes. Shift work alone was not found to predict health outcomes. Specifically, permanent night shift workers had significantly lower coworker cohesion scores compared with rotating day and evening shift workers and significantly higher managerial control scores compared with day shift workers. Further, coworker cohesion and involvement were found to be significant predictors of somatic problems. These findings suggest that differences in organizational climate between shifts accounts for the variation in health outcomes associated with shift work. Therefore, increased workplace cohesion and involvement, and decreased work pressure, may mitigate the negative health outcomes of shift workers. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Critical slowing down associated with regime shifts in the US housing market
NASA Astrophysics Data System (ADS)
Tan, James Peng Lung; Cheong, Siew Siew Ann
2014-02-01
Complex systems are described by a large number of variables with strong and nonlinear interactions. Such systems frequently undergo regime shifts. Combining insights from bifurcation theory in nonlinear dynamics and the theory of critical transitions in statistical physics, we know that critical slowing down and critical fluctuations occur close to such regime shifts. In this paper, we show how universal precursors expected from such critical transitions can be used to forecast regime shifts in the US housing market. In the housing permit, volume of homes sold and percentage of homes sold for gain data, we detected strong early warning signals associated with a sequence of coupled regime shifts, starting from a Subprime Mortgage Loans transition in 2003-2004 and ending with the Subprime Crisis in 2007-2008. Weaker signals of critical slowing down were also detected in the US housing market data during the 1997-1998 Asian Financial Crisis and the 2000-2001 Technology Bubble Crisis. Backed by various macroeconomic data, we propose a scenario whereby hot money flowing back into the US during the Asian Financial Crisis fueled the Technology Bubble. When the Technology Bubble collapsed in 2000-2001, the hot money then flowed into the US housing market, triggering the Subprime Mortgage Loans transition in 2003-2004 and an ensuing sequence of transitions. We showed how this sequence of couple transitions unfolded in space and in time over the whole of US.
Effects of Intensified 21st Century Drought on the Boreal Forest of Alaska
NASA Astrophysics Data System (ADS)
Juday, G. P.; Alix, C. M.; Jess, R.; Grant, T. A., III
2014-12-01
A long term perspective on several quasi-decadal cycles of intensifying drought stress across boreal Alaska has been synthesized from monitoring of forest reference stands at Bonanza Creek LTER, Interior Alaska Research Natural Areas, and tree ring sampling across Alaska. The Alaska boreal forest is largely made up of tree populations with two growth responses to temperature increases. Negative responders are more common, and found across the warm, dry Interior. Positive responders are largely in western Alaska, a maritime climate region near the Bering Sea, and at high elevation of the Brooks and Alaska Ranges. Following the North Pacific climate regime shift in 1976-77, negative responder Interior white and black spruce, aspen, and birch all experienced major growth reductions, particularly in warm drought years. Elevated summer temperatures and low annual precipitation of recent decades at low elevations of the Tanana and central Yukon Valleys were outside the values which previously defined the species distributions limits, Long term survival prospects are questionable. Simultaneously, recent elevated temperatures were associated with growth increases of positive responders. On fertile floodplain sites of the lower Yukon and Kuskokwim Rivers, the growth rate of positive responding white spruce is now greater than negative responders for the first time in centuries. NDVI trends in recent decades confirm these opposite growth trends in their respective regions. During peak warm/dry anomalies, forest disturbance, an important process for tree regeneration over the long term, intensified in boreal Alaska. Several insect outbreaks of wood-boring and defoliating species associated with warm temperature/drought stress anomalies appeared, many of them severe, and some not previously known to outbreak. Significant tree injury (e.g. top dieback) and mortality resulted. Wildfire extent and severity increased and reached record levels. The overall pattern has been described as biome shift. Future research is needed on the distribution of boreal forest refuge habitats in the Interior, drought effects on natural tree regeneration and growth/health of young tree populations, carbon accumulation profiles under the modern drought regime compared to earlier, and the genetic disruption of biome shift.
Albedo feedbacks to future climate via climate change impacts on dryland biocrusts.
Rutherford, William A; Painter, Thomas H; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S; Flagg, Cody; Reed, Sasha C
2017-03-10
Drylands represent the planet's largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness-changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.
Albedo feedbacks to future climate via climate change impacts on dryland biocrusts
NASA Astrophysics Data System (ADS)
Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody; Reed, Sasha C.
2017-03-01
Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.
Albedo feedbacks to future climate via climate change impacts on dryland biocrusts
Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody B.; Reed, Sasha C.
2017-01-01
Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.
He, Ji X.; Bence, James R.; Roseman, Edward F.; Fielder, David G.; Ebener, Mark P.
2015-01-01
We evaluated the ecosystem regime shift in the main basin of Lake Huron that was indicated by the 2003 collapse of alewives, and dramatic declines in Chinook salmon abundance thereafter. We found that the period of 1995-2002 should be considered as the early phase of the final regime shift. We developed two Bayesian hierarchical models to describe time-varying growth based on the von Bertalanffy growth function and the length-mass relationship. We used asymptotic length as an index of growth potential, and predicted body mass at a given length as an index of body condition. Modeling fits to length and body mass at age of lake trout, Chinook salmon, and walleye were excellent. Based on posterior distributions, we evaluated the shifts in among-year geometric means of the growth potential and body condition. For a given top piscivore, one of the two indices responded to the regime shift much earlier than the 2003 collapse of alewives, the other corresponded to the 2003 changes, and which index provided the early signal differed among the three top piscivores.
Prolonged Instability Prior to a Regime Shift
Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of th...
NASA Astrophysics Data System (ADS)
Kun Jung, Hae; Rahman, SM Mustafizur; Kang, Chang-Keun; Park, Se-Young; Heon Lee, Sang; Je Park, Hyun; Kim, Hyun-Woo; Il Lee, Chung
2017-09-01
Step changes to seawater temperature (SWT) in the East Asian marginal seas (EAMS) are associated with three recent climate regime shifts (CRS) occurring in the mid-1970s, late 1980s, and late 1990s, but the responses of the ocean conditions and marine ecosystems had regional differences. A step change in SWT in the East China Sea (ECS) was detected after the CRS of the 1970s as were step changes in the North Pacific Index (NPI), Pacific Decadal Oscillation Index (PDOI), and East Asian Winter Monsoon Index (EAWMI). SWT in the ECS decreased with decreasing warm water volume transport into the EAMS and a strong monsoon, but step changes in SWT in other regions were not detected as clearly. After the CRS of the 1980s, SWT in all EAMS increased rapidly with step changes detected in all five climate indices examined. These changes were associated with a weak winter monsoon, increasing surface air temperature (SAT), and increasing warm water volume transport into the EAMS. However, after the CRS of the 1990s, a decrease in SWT around the EAMS was detected in the northern part of East China Sea (NECS), and the ECS with step changes also in the EAWMI and the Arctic Oscillation Index (AOI). In contrast, SWT in the East Sea/Sea of Japan (EJS) and the Yellow Sea (YS) continuously increased during this time. Long-term changes in zooplankton biomass were affected by regional differences in the responses of atmospheric and oceanic variability to CRSs. Specifically, long-term changes in the timing of peaks in zooplankton abundances exhibited differences. During warm periods (e.g. after the 1980s CRS) in the EJS, the amount of zooplankton biomass in October increased, while in February it decreased. On the contrary, in the YS and the NECS, the peaks of October and June in zooplankton biomass occurred during cold periods (after the 1970s and 1990s CRS). Major fisheries resources also responded to the three CRSs, although warm and cold water species responded differently to changes in oceanographic conditions in regional spawning grounds.
The Role of Disturbance in Arctic Ecosystem Response to a Changing Climate
NASA Astrophysics Data System (ADS)
Hinzman, L. D.
2014-12-01
Wildfires in the tundra regions and the boreal forest project an immediate effect upon the surface energy and water budget by drastically altering the surface albedo, roughness, infiltration rates, and moisture absorption capacity in organic soils. Although fires create a sudden and drastic change to the landcover, it is only the beginning of a long process of recovery and perhaps a shift to a different successional pathway. In permafrost regions, these effects become part of a process of long-term (20-50 years) cumulative impacts. Burn severity may largely determine immediate impacts and long-term disturbance trajectories. As transpiration decreases or ceases, soil moisture increases markedly, remaining quite wet throughout the year. Because the insulating quality of the organic layer is removed during fires, permafrost begins to thaw near the surface and warm to greater depths. Within a few years, it may thaw to the point where it can no longer completely refreeze every winter, creating a permanently thawed layer in the soil called a talik. After formation of a talik, soils can drain internally throughout the year. At this point, soils may become quite dry, as the total precipitation received annually in the Arctic is quite low. The local ecological community must continuously adapt to the changing soil thermal and moisture regimes. The wet soils found over shallow permafrost favor black spruce forests. After a fire creates a deeper permafrost table (thicker active layer) the invading tree species tend to be birch or alder. The hydrologic and thermal regime of the soil is the primary factor controlling these vegetation trajectories and the subsequent changes in surface mass and energy fluxes. The complexities of a changing climate accentuate these processes of change and complicate predictions of the resulting vegetation trajectories. Understanding these shifts in vegetative communities and quantifying the consequences of thawing permafrost can only be accomplished through complementary analyses of field research data and numerical simulations. The permafrost dramatically controls other landscape features and its dynamic response to thermal influences yield consequent effects on the surficial ecology, water and energy balances and regional climate.
Mid-latitude shrub steppe plant communities: Climate change consequences for soil water resources
Palmquist, Kyle A.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, Willliam K.
2016-01-01
In the coming century, climate change is projected to impact precipitation and temperature regimes worldwide, with especially large effects in drylands. We use big sagebrush ecosystems as a model dryland ecosystem to explore the impacts of altered climate on ecohydrology and the implications of those changes for big sagebrush plant communities using output from 10 Global Circulation Models (GCMs) for two representative concentration pathways (RCPs). We ask: 1) What is the magnitude of variability in future temperature and precipitation regimes among GCMs and RCPs for big sagebrush ecosystems and 2) How will altered climate and uncertainty in climate forecasts influence key aspects of big sagebrush water balance? We explored these questions across 1980-2010, 2030-2060, and 2070-2100 to determine how changes in water balance might develop through the 21st century. We assessed ecohydrological variables at 898 sagebrush sites across the western US using a process-based soil water model, SOILWAT to model all components of daily water balance using site-specific vegetation parameters and site-specific soil properties for multiple soil layers. Our modeling approach allowed for changes in vegetation based on climate. Temperature increased across all GCMs and RCPs, while changes in precipitation were more variable across GCMs. Winter and spring precipitation was predicted to increase in the future (7% by 2030-2060, 12% by 2070-2100), resulting in slight increases in soil water potential (SWP) in winter. Despite wetter winter soil conditions, SWP decreased in late spring and summer due to increased evapotranspiration (6% by 2030-2060, 10% by 2070-2100) and groundwater recharge (26% and 30% increase by 2030-2060 and 2070-2100). Thus, despite increased precipitation in the cold season, soils may dry out earlier in the year, resulting in potentially longer drier summer conditions. If winter precipitation cannot offset drier summer conditions in the future, we expect big sagebrush regeneration and survival will be negatively impacted, potentially resulting in shifts in the relative abundance of big sagebrush plant functional groups. Our results also highlight the importance of assessing multiple GCMs to understand the range of climate change outcomes on ecohydrology, which was contingent on the GCM chosen.
Millon, Alexandre; Petty, Steve J; Little, Brian; Gimenez, Olivier; Cornulier, Thomas; Lambin, Xavier
2014-06-01
Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent-scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole-eating predators remains unknown. To quantify this impact, we used a 27-year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high- to a low-amplitude fluctuation regime in the mid-1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First-year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other vole-eating predators are likely to be threatened by dampening vole cycles throughout Europe. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Babushkina, Elena A.; Belokopytova, Liliana V.; Shah, Santosh K.; Zhirnova, Dina F.
2018-05-01
Interrelations of the yield variability of the main crops (wheat, barley, and oats) with hydrothermal regime and growth of conifer trees ( Pinus sylvestris and Larix sibirica) in forest-steppes were investigated in Khakassia, South Siberia. An attempt has been made to understand the role and mechanisms of climatic impact on plants productivity. It was found that amongst variables describing moisture supply, wetness index had maximum impact. Strength of climatic response and correlations with tree growth are different for rain-fed and irrigated crops yield. Separated high-frequency variability components of yield and tree-ring width have more pronounced relationships between each other and with climatic variables than their chronologies per se. Corresponding low-frequency variability components are strongly correlated with maxima observed after 1- to 5-year time shift of tree-ring width. Results of analysis allowed us to develop original approach of crops yield dynamics reconstruction on the base of high-frequency variability component of the growth of pine and low-frequency one of larch.
Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests
Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís
2014-01-01
Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire–succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000–2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18–22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change. PMID:24727853
Using unplanned fires to help suppressing future large fires in Mediterranean forests.
Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís
2014-01-01
Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change.
NASA Astrophysics Data System (ADS)
Irimia, Liviu Mihai; Patriche, Cristian Valeriu; Quenol, Hervé; Sfîcă, Lucian; Foss, Chris
2018-02-01
Climate change is causing important shifts in the suitability of regions for wine production. Fine scale mapping of these shifts helps us to understand the evolution of vineyard climates, and to find solutions through viticultural adaptation. The aim of this study is to identify and map the structural and spatial shifts that occurred in the climatic suitability for wine production of the Cotnari wine growing region (Romania) between 1961 and 2013. Discontinuities in trends of temperature were identified, and the averages and trends of 13 climatic parameters for the 1961 to 1980 and 1981 to 2013 time periods were analysed. Using the averages of these climatic parameters, climate suitability for wine production was calculated at a resolution of 30 m and mapped for each time period, and the changes analysed. The results indicate shifts in the area's historic climatic profile, due to an increase of heliothermal resources and precipitation constancy. The area's climate suitability for wine production was modified by the loss of climate suitability for white table wines, sparkling wines and wine for distillates; shifts in suitability to higher altitudes by about 67 m, and a 48.6% decrease in the area suitable for quality white wines; and the occurrence of suitable climates for red wines at lower altitudes. The study showed that climate suitability for wine production has a multi-level spatial structure, with classes requiring a cooler climate being located at a higher altitude than those requiring a warmer climate. Climate change has therefore resulted in the shift of climate suitability classes for wine production to higher altitudes.
How will climate change affect wildland fire severity in the western US?
Sean A. Parks; Carol Miller; John T. Abatzoglou; Lisa M. Holsinger; Marc-Andre Parisien; Solomon Z. Dobrowski
2016-01-01
Fire regime characteristics in North America are expected to change over the next several decades as a result of anthropogenic climate change. Although some fire regime characteristics (e.g., area burned and fire season length) are relatively well-studied in the context of a changing climate, fire severity has received less attention. In this study, we used...
McKenzie, Don; Allen, Craig D.
2007-01-01
Warming temperatures across western North America, coupled with increased drought, are expected to exacerbate disturbance regimes, particularly wildfires, insect outbreaks, and invasions of exotic species. Many ecologists and resource managers expect ecosystems to change more rapidly from disturbance effects than from the effects of a changing climate by itself. A particular challenge is to understand the interactions among disturbance regimes; for example, how will massive outbreaks of bark beetles, which kill drought-stressed trees by feeding on cambial tissues, increase the potential for large severe wildfires in a warming climate?Researchers in climatology, ecosystem science, fire and insect ecology, and landscape modeling from across western North America convened in Tucson, Ariz., for a 2 and a half day intensive workshop to identify new research directions in climate change and disturbance ecology. Four work groups focused on different aspects of the response of disturbance regimes to climate change: (1) extreme events and climatic variability (2) the effects of changing disturbance regimes on ecosystems, (3) disturbance interactions and cumulative effects, and (4) developing new landscape disturbance models. The workshop was structured with the analytic hierarchy process, a decision support method for achieving consensus from diverse groups of experts without sacrificing individual contributions.
Changes in future fire regimes under climate change
NASA Astrophysics Data System (ADS)
Thonicke, Kirsten; von Bloh, Werner; Lutz, Julia; Knorr, Wolfgang; Wu, Minchao; Arneth, Almut
2013-04-01
Fires are expected to change under future climate change, climatic fire is is increasing due to increase in droughts and heat waves affecting vegetation productivity and ecosystem function. Vegetation productivity influences fuel production, but can also limit fire spread. Vegetation-fire models allow investigating the interaction between wildfires and vegetation dynamics, thus non-linear effects between changes in fuel composition and production on fire as well as changes in fire regimes on fire-related plant mortality and fuel combustion. Here we present results from simulation experiments, where the vegetation-fire models LPJmL-SPITFIRE and LPJ-GUESS are applied to future climate change scenarios from regional climate models in Europe and Northern Africa. Climate change impacts on fire regimes, vegetation dynamics and carbon fluxes are quantified and presented. New fire-prone regions are mapped and changes in fire regimes of ecosystems with a long-fire history are analyzed. Fuel limitation is likely to increase in Mediterranean-type ecosystems, indicating non-linear connection between increasing fire risk and fuel production. Increased warming in temperate ecosystems in Eastern Europe and continued fuel production leads to increases not only in climatic fire risk, but also area burnt and biomass burnt. This has implications for fire management, where adaptive capacity to this new vulnerability might be limited.
Coexistence of Trees and Grass: Importance of climate and fire within the tropics
NASA Astrophysics Data System (ADS)
Shuman, J. K.; Fisher, R.; Koven, C.; Knox, R. G.; Andre, B.; Kluzek, E. B.
2017-12-01
Tropical forests are characterized by transition zones where dominance shifts between trees and grasses with some areas exhibiting bistability of the two. The cause of this transition and bistability has been linked to the interacting effects of climate, vegetation structure and fire behavior. Utilizing the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model, and the CESM ESM, we explore the coexistence of trees and grass across the tropics with an active fire regime. FATES has been updated to use a fire module based on Spitfire. FATES-Spitfire tracks fire ignition, spread and impact based on fuel state and combustion. Fire occurs within the model with variable intensity that kills trees according to the combined effects of cambial damage and crown scorch due to flame height and fire intensity. As a size-structured model, FATES allows for variable mortality based on the size of tree cohorts, where larger trees experience lower morality compared to small trees. Results for simulation scenarios where vegetation is represented by all trees, all grass, or a combination of competing trees and grass are compared to assess changes in biomass, fire regime and tree-grass coexistence. Within the forest-grass transition area there is a critical time during which grass fuels fire spread and prevents the establishment of trees. If trees are able to escape mortality a tree-grass bistable area is successful. The ability to simulate the bistability and transition of trees and grass throughout the tropics is critical to representing vegetation dynamics in response to changing climate and CO2.
Near-term acceleration of hydroclimatic change in the western U.S.
NASA Astrophysics Data System (ADS)
Ashfaq, Moetasim; Ghosh, Subimal; Kao, Shih-Chieh; Bowling, Laura C.; Mote, Philip; Touma, Danielle; Rauscher, Sara A.; Diffenbaugh, Noah S.
2013-10-01
Given its large population, vigorous and water-intensive agricultural industry, and important ecological resources, the western United States presents a valuable case study for examining potential near-term changes in regional hydroclimate. Using a high-resolution, hierarchical, five-member ensemble modeling experiment that includes a global climate model (Community Climate System Model), a regional climate model (RegCM), and a hydrological model (Variable Infiltration Capacity model), we find that increases in greenhouse forcing over the next three decades result in an acceleration of decreases in spring snowpack and a transition to a substantially more liquid-dominated water resources regime. These hydroclimatic changes are associated with increases in cold-season days above freezing and decreases in the cold-season snow-to-precipitation ratio. The changes in the temperature and precipitation regime in turn result in shifts toward earlier snowmelt, base flow, and runoff dates throughout the region, as well as reduced annual and warm-season snowmelt and runoff. The simulated hydrologic response is dominated by changes in temperature, with the ensemble members exhibiting varying trends in cold-season precipitation over the next three decades but consistent negative trends in cold-season freeze days, cold-season snow-to-precipitation ratio, and 1 April snow water equivalent. Given the observed impacts of recent trends in snowpack and snowmelt runoff, the projected acceleration of hydroclimatic change in the western U.S. has important implications for the availability of water for agriculture, hydropower, and human consumption, as well as for the risk of wildfire, forest die-off, and loss of riparian habitat.
NASA Astrophysics Data System (ADS)
Semenov, Mikhail; Zhuravleva, Anna; Semenov, Vyacheslav; Yevdokimov, Ilya; Larionova, Alla
2017-04-01
Recent climate scenarios predict not only continued global warming but also an increased frequency and intensity of extreme climatic events such as strong changes in temperature and precipitation regimes. Microorganisms are well known to be more sensitive to changes in environmental conditions than to other soil chemical and physical parameters. In this study, we determined the shifts in soil microbial community structure as well as indicative taxa in soils under three moisture regimes using high-throughput Illumina sequencing and range of bioinformatics approaches for the assessment of sequence data. Incubation experiments were performed in soil-filled (Greyic Phaeozems Albic) rhizoboxes with maize and without plants. Three contrasting moisture regimes were being simulated: 1) optimal wetting (OW), a watering 2-3 times per week to maintain soil moisture of 20-25% by weight; 2) periodic wetting (PW), with alternating periods of wetting and drought; and 3) constant insufficient wetting (IW), while soil moisture of 12% by weight was permanently maintained. Sampled fresh soils were homogenized, and the total DNA of three replicates was extracted using the FastDNA® SPIN kit for Soil. DNA replicates were combined in a pooled sample and the DNA was used for PCR with specific primers for the 16S V3 and V4 regions. In order to compare variability between different samples and replicates within a single sample, some DNA replicates treated separately. The products were purified and submitted to Illumina MiSeq sequencing. Sequence data were evaluated by alpha-diversity (Chao1 and Shannon H' diversity indexes), beta-diversity (UniFrac and Bray-Curtis dissimilarity), heatmap, tagcloud, and plot-bar analyses using the MiSeq Reporter Metagenomics Workflow and R packages (phyloseq, vegan, tagcloud). Shannon index varied in a rather narrow range (4.4-4.9) with the lowest values for microbial communities under PW treatment. Chao1 index varied from 385 to 480, being a more flexible indicator than Shannon index. Chao1 had similar values for OW and IW communities, but alpha-diversity of microbial communities has sharply decreased under PW treatment. There was no visible difference in beta-diversity depending on sampling date and wetting regime, however, it could be possible to distinguish microbial communities in soils with maize and without plants. The presence of maize was acting as scattering agent, making microbial communities more distinguished. In all studied samples, the most dominant phyla were Proteobacteria, Firmicutes, Verrucomicrobia, Actinobacteria, and Acidobacteria. Chthoniobacter, Bacillus, Alicyclobacillus, Rhodoplanes, Cohnella, Kaistobacter, and Solibacter were the most abundant genera. Moreover, these genera were found as the most reactive and variable taxa in microbial community. Thus, DNA high-throughput sequencing revealed no dramatic shifts in bacterial community structure in soils under different moisture regimes. However, this technique allowed us to determine the effect of wetting regime and the presence of plants on soil microbial community which were adaptable to insufficient wetting, but lost diversity under periodic wetting. Furthermore, we detected the indicative taxa which dominate in microbial communities and at the same time strongly react to environmental changes.
Oldest Evidence of Toolmaking Hominins in a Grassland-Dominated Ecosystem
Plummer, Thomas W.; Ditchfield, Peter W.; Bishop, Laura C.; Kingston, John D.; Ferraro, Joseph V.; Braun, David R.; Hertel, Fritz; Potts, Richard
2009-01-01
Background Major biological and cultural innovations in late Pliocene hominin evolution are frequently linked to the spread or fluctuating presence of C4 grass in African ecosystems. Whereas the deep sea record of global climatic change provides indirect evidence for an increase in C4 vegetation with a shift towards a cooler, drier and more variable global climatic regime beginning approximately 3 million years ago (Ma), evidence for grassland-dominated ecosystems in continental Africa and hominin activities within such ecosystems have been lacking. Methodology/Principal Findings We report stable isotopic analyses of pedogenic carbonates and ungulate enamel, as well as faunal data from ∼2.0 Ma archeological occurrences at Kanjera South, Kenya. These document repeated hominin activities within a grassland-dominated ecosystem. Conclusions/Significance These data demonstrate what hitherto had been speculated based on indirect evidence: that grassland-dominated ecosystems did in fact exist during the Plio-Pleistocene, and that early Homo was active in open settings. Comparison with other Oldowan occurrences indicates that by 2.0 Ma hominins, almost certainly of the genus Homo, used a broad spectrum of habitats in East Africa, from open grassland to riparian forest. This strongly contrasts with the habitat usage of Australopithecus, and may signal an important shift in hominin landscape usage. PMID:19844568
West, Amanda M; Kumar, Sunil; Wakie, Tewodros; Brown, Cynthia S; Stohlgren, Thomas J; Laituri, Melinda; Bromberg, Jim
2015-01-01
National Parks are hallmarks of ecosystem preservation in the United States. The introduction of alien invasive plant species threatens protection of these areas. Bromus tectorum L. (commonly called downy brome or cheatgrass), which is found in Rocky Mountain National Park (hereafter, the Park), Colorado, USA, has been implicated in early spring competition with native grasses, decreased soil nitrogen, altered nutrient and hydrologic regimes, and increased fire intensity. We estimated the potential distribution of B. tectorum in the Park based on occurrence records (n = 211), current and future climate, and distance to roads and trails. An ensemble of six future climate scenarios indicated the habitable area of B. tectorum may increase from approximately 5.5% currently to 20.4% of the Park by the year 2050. Using ordination methods we evaluated the climatic space occupied by B. tectorum in the Park and how this space may shift given future climate change. Modeling climate change at a small extent (1,076 km2) and at a fine spatial resolution (90 m) is a novel approach in species distribution modeling, and may provide inference for microclimates not captured in coarse-scale models. Maps from our models serve as high-resolution hypotheses that can be improved over time by land managers to set priorities for surveys and removal of invasive species such as B. tectorum.
West, Amanda M.; Kumar, Sunil; Wakie, Tewodros; Brown, Cynthia S.; Stohlgren, Thomas J.; Laituri, Melinda; Bromberg, Jim
2015-01-01
National Parks are hallmarks of ecosystem preservation in the United States. The introduction of alien invasive plant species threatens protection of these areas. Bromus tectorum L. (commonly called downy brome or cheatgrass), which is found in Rocky Mountain National Park (hereafter, the Park), Colorado, USA, has been implicated in early spring competition with native grasses, decreased soil nitrogen, altered nutrient and hydrologic regimes, and increased fire intensity. We estimated the potential distribution of B. tectorum in the Park based on occurrence records (n = 211), current and future climate, and distance to roads and trails. An ensemble of six future climate scenarios indicated the habitable area of B. tectorum may increase from approximately 5.5% currently to 20.4% of the Park by the year 2050. Using ordination methods we evaluated the climatic space occupied by B. tectorum in the Park and how this space may shift given future climate change. Modeling climate change at a small extent (1,076 km2) and at a fine spatial resolution (90 m) is a novel approach in species distribution modeling, and may provide inference for microclimates not captured in coarse-scale models. Maps from our models serve as high-resolution hypotheses that can be improved over time by land managers to set priorities for surveys and removal of invasive species such as B. tectorum. PMID:25695255
The changing role of fire in conifer-dominated temperate rainforest through the last 14,000 years
NASA Astrophysics Data System (ADS)
Fletcher, M.-S.; Bowman, D. M. J. S.; Whitlock, C.; Mariani, M.; Stahle, L.
2018-02-01
Climate, fire and vegetation dynamics are often tightly coupled through time. Here, we use a 14 kyr sedimentary charcoal and pollen record from Lake Osborne, Tasmania, Australia, to explore how this relationship changes under varying climatic regimes within a temperate rainforest ecosystem. Superposed epoch analysis reveals a significant relationship between fire and vegetation change throughout the Holocene at our site. Our data indicates an initial resilience of the rainforest system to fire under a stable cool and humid climate regime between ca. 12-6 ka. In contrast, fires that occurred after 6 ka, under an increasingly variable climate regime wrought by the onset of the El Niño-Southern Oscillation (ENSO), resulted in a series of changes within the local rainforest vegetation that culminated in the replacement of rainforest by fire-promoted Eucalypt forest. We suggest that an increasingly variable ENSO-influenced climate regime inhibited rainforest recovery from fire because of slower growth, reduced fecundity and increased fire frequency, thus contributing to the eventual collapse of the rainforest system.
The response of the southwest Western Australian wave climate to Indian Ocean climate variability
NASA Astrophysics Data System (ADS)
Wandres, Moritz; Pattiaratchi, Charitha; Hetzel, Yasha; Wijeratne, E. M. S.
2018-03-01
Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994-2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.; Wang, Minghuai; Ghan, Steven J.
Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascendmore » (ω500 < -25 hPa/d) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. 42" It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm/d) contributes the most to the total aerosol indirect forcing (from 64% to nearly 100%). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less
NASA Astrophysics Data System (ADS)
Renner, M.; Bernhofer, C.
2011-01-01
The timing of the seasons strongly effects ecosystems and human activities. Recently, there is increasing evidence of changes in the timing of the seasons, such as earlier spring seasons detected in phenological records, advanced seasonal timing of surface temperature, earlier snow melt or streamflow timing. For water resources management there is a need to quantitatively describe the variability in the timing of hydrological regimes and to understand how climatic changes control the seasonal water budget of river basins on the regional scale. In this study, changes of the annual cycle of hydrological variables are analysed for 27 river basins in Saxony/Germany. Thereby monthly series of basin runoff ratios, the ratio of runoff and basin precipitation are investigated for changes and variability of their annual periodicity over the period 1930-2009. Approximating the annual cycle by the means of harmonic functions gave acceptable results, while only two parameters, phase and amplitude, are required. It has been found that the annual phase of runoff ratio, representing the timing of the hydrological regime, is subject to considerable year-to-year variability, being concurrent with basins in similar hydro-climatic conditions. Two distinct basin classes have been identified, whereby basin elevation has been found to be the delimiting factor. An increasing importance of snow on the basin water balance with elevation is apparent and mainly governs the temporal variability of the annual timing of hydrological regimes. Further there is evidence of coincident changes in trend direction (change points in 1971 and 1988) in snow melt influenced basins. In these basins the timing of the runoff ratio is significantly correlated with the timing of temperature, and effects on runoff by temperature phase changes are even amplified. Interestingly, temperature effects may explain the low frequent variability of the second change point until today. However, the first change point can not be explained by temperature alone and other causes have to be considered.
Quirk, Joe; McDowell, Nate G; Leake, Jonathan R; Hudson, Patrick J; Beerling, David J
2013-03-01
Climate-induced forest retreat has profound ecological and biogeochemical impacts, but the physiological mechanisms underlying past tree mortality are poorly understood, limiting prediction of vegetation shifts with climate variation. Climate, drought, fire, and grazing represent agents of tree mortality during the late Cenozoic, but the interaction between drought and declining atmospheric carbon dioxide ([CO2]a) from high to near-starvation levels ∼34 million years (Ma) ago has been overlooked. Here, this interaction frames our investigation of sapling mortality through the interdependence of hydraulic function, carbon limitation, and defense metabolism. • We recreated a changing Cenozoic [CO2]a regime by growing Sequoia sempervirens trees within climate-controlled growth chambers at 1500, 500, or 200 ppm [CO2]a, capturing the decline toward minimum concentrations from 34 Ma. After 7 months, we imposed drought conditions and measured key physiological components linking carbon utilization, hydraulics, and defense metabolism as hypothesized interdependent mechanisms of tree mortality. • Catastrophic failure of hydraulic conductivity, carbohydrate starvation, and tree death occurred at 200 ppm, but not 500 or 1500 ppm [CO2]a. Furthermore, declining [CO2]a reduced investment in carbon-rich foliar defense compounds that would diminish resistance to biotic attack, likely exacerbating mortality. • Low-[CO2]a-driven tree mortality under drought is consistent with Pleistocene pollen records charting repeated Californian Sequoia forest contraction during glacial periods (180-200 ppm [CO2]a) and may even have contributed to forest retreat as grasslands expanded on multiple continents under low [CO2]a over the past 10 Ma. In this way, geologic intervals of low [CO2]a coupled with drought could impose a demographic bottleneck in tree recruitment, driving vegetation shifts through forest mortality.
Influence of Forest Disturbance on Hydrologic Extremes in the Colorado River Basin
NASA Astrophysics Data System (ADS)
Bennett, K. E.; Middleton, R. S.; McDowell, N. G.; Xu, C.; Wilson, C. J.
2015-12-01
The Colorado River is one of the most important freshwater rivers in the United States: it provides water supply to more than 30 million people, irrigation to 5.7 million acres of cropland, and produces over 8 billion kilowatt hours of hydroelectric power each year. Our study focuses on changes to hydrological extremes and threshold responses across the Colorado River basin due to forest fires, infestations, and stress-induced tree mortality using a scenario-based approach to estimate forest cover disturbance. Scenarios include static vegetation reductions and dynamic reductions in forest compositions based on three CMIP5 global climate models and one emission scenario (1950-2099). For headwater systems, large intra-year variability exists, indicating the influence of climate on these snowmelt driven basins. Strong seasonality in flow responses are also noted; in the Piedra River higher runoff occurs during freshet under a no-forest condition, with the greatest changes observed for maximum streamflow. Conversely, during the recessional period, flows are lower in scenarios with reduced forest compositions. Low-flows appear to be affected in some basins but not others; for example small headwater systems demonstrate higher low-flows with increased disturbance. Global Climate Model scenarios indicate a range of responses in these basins, characterized by lower peak streamflow but with higher winter flows. This response is influenced by shifts in water, and energy balances associated with a combined response of changing climate and forest cover compositions. Results also clearly show how changes in extreme events are forced by shifts in major water balance parameters (runoff, evapotranspiration, snow water equivalent, and soil moisture) from headwater basins spanning a range of hydrological regimes and ecological environments across the Colorado.
NASA Astrophysics Data System (ADS)
Little, S.; Wood, P. J.; Elliott, M.
2017-11-01
Coastal and estuarine systems worldwide are under threat from global climate change, with potential consequences including an increase in salinities and incursion of saltwater into areas currently subject to tidal and non-tidal freshwater regimes. It is commonly assumed that climate-driven increases in estuarine salinities and saline incursion will be directly reflected in an upstream shift in species distributions and patterns of community composition based on salinity tolerance. This study examined the responses of benthos to medium-term salinity changes in two macrotidal river-estuary systems in SE England to test whether these responses may be representative of climate-induced salinity changes over the long-term. The study reinforced the effect of salinity, related to tidal incursion, as the primary environmental driver of benthic species distribution and community composition. Salinity, however, acted within a hierarchy of factors followed by substratum type, with biotic competition and predator-prey relationships superimposed on these. The assumption that increasing salinities will be directly reflected in a shift in species distributions and patterns of community composition upstream over the long-term was shown to be over simplistic and not representative of a complex and highly variable system. Relative Sea Level Rise (RSLR) projections were predicted to increase estuarine salinities and saline incursion in the study estuaries, which together with projected reductions in river flow will have important consequences for estuarine structure and function, particularly in tidal limnetic zones, despite estuarine communities being pre-adapted to cope with fluctuating salinities. The study identified, however, that limnic-derived fauna inhabiting these zones may demonstrate greater tolerance to salinity change than is currently recognised, and may persist where salinity increases are gradual and zones unbounded.
M.P. North; K.M. van de Water; S.L. Stephens; B.M. Collins
2009-01-01
There have been few fire history studies of eastern Sierra Nevada forests in California, USA, where a steep elevation gradient, rain shadow conditions, and forest stand isolation may produce different fire regimes than those found on the rangeâs western slope. We investigated historic fire regimes and potential climate influences on four forest types ranging in...
Effective Climate Refugia for Cold-water Fishes
NASA Astrophysics Data System (ADS)
Ebersole, J. L.; Morelli, T. L.; Torgersen, C.; Isaak, D.; Keenan, D.; Labiosa, R.; Fullerton, A.; Massie, J.
2015-12-01
Climate change threatens to create fundamental shifts in in the distributions and abundances of endothermic organisms such as cold-water salmon and trout species (salmonids). Recently published projected declines in mid-latitude salmonid distributions under future climates range from modest to severe, depending on modeling approaches, assumptions, and spatial context of analyses. Given these projected losses, increased emphasis on management for ecosystem resilience to help buffer cold-water fish populations and their habitats against climate change is emerging. Using terms such as "climate-proofing", "climate-ready", and "climate refugia", such efforts stake a claim for an adaptive, anticipatory planning response to the climate change threat. To be effective, such approaches will need to address critical uncertainties in both the physical basis for projected landscape changes in water temperature and streamflow, as well as the biological responses of organisms. Recent efforts define future potential climate refugia based on projected streamflows, air temperatures, and associated water temperature changes. These efforts reflect the relatively strong conceptual foundation for linkages between regional climate change and local hydrological responses and thermal dynamics. Yet important questions remain. Drawing on case studies throughout the Pacific Northwest, we illustrate some key uncertainties in the responses of salmonids and their habitats to altered hydro-climatic regimes currently not well addressed by physical or ecological models. Key uncertainties include biotic interactions, organismal adaptive capacity, local climate decoupling due to groundwater-surface water interactions, the influence of human engineering responses, and synergies between climatic and other stressors. These uncertainties need not delay anticipatory planning, but rather highlight the need for identification and communication of actions with high probabilities of success, and targeted research within an adaptive management framework.
ERIC Educational Resources Information Center
Hamaker, E. L.; Grasman, R. P. P. P.
2012-01-01
Many psychological processes are characterized by recurrent shifts between distinct regimes or states. Examples that are considered in this paper are the switches between different states associated with premenstrual syndrome, hourly fluctuations in affect during a major depressive episode, and shifts between a "hot hand" and a…
NASA Astrophysics Data System (ADS)
Ravindranath, A.; Devineni, N.
2017-12-01
Studies have shown that streamflow behavior and dynamics have a significant link with climate and climate variability. Patterns of persistent regime behavior from extended streamflow records in many watersheds justify investigating large-scale climate mechanisms as potential drivers of hydrologic regime behavior and streamflow variability. Understanding such streamflow-climate relationships is crucial to forecasting/simulation systems and the planning and management of water resources. In this study, hidden Markov models are used with reconstructed streamflow to detect regime-like behaviors - the hidden states - and state transition phenomena. Individual extreme events and their spatial variability across the basin are then verified with the identified states. Wavelet analysis is performed to examine the signals over time in the streamflow records. Joint analyses of the climatic data in the 20th century and the identified states are undertaken to better understand the hydroclimatic connections within the basin as well as important teleconnections that influence water supply. Compositing techniques are used to identify atmospheric circulation patterns associated with identified states of streamflow. The grouping of such synoptic patterns and their frequency are then examined. Sliding time-window correlation analysis and cross-wavelet spectral analysis are performed to establish the synchronicity of basin flows to the identified synoptic and teleconnection patterns. The Missouri River Basin (MRB) is examined in this study, both as a means of better understanding the synoptic climate controls in this important watershed and as a case study for the techniques developed here. Initial wavelet analyses of reconstructed streamflow at major gauges in the MRB show multidecadal cycles in regime behavior.
NASA Astrophysics Data System (ADS)
Van Tiel, Marit; Teuling, Adriaan J.; Wanders, Niko; Vis, Marc J. P.; Stahl, Kerstin; Van Loon, Anne F.
2018-01-01
Glaciers are essential hydrological reservoirs, storing and releasing water at various timescales. Short-term variability in glacier melt is one of the causes of streamflow droughts, here defined as deficiencies from the flow regime. Streamflow droughts in glacierised catchments have a wide range of interlinked causing factors related to precipitation and temperature on short and long timescales. Climate change affects glacier storage capacity, with resulting consequences for discharge regimes and streamflow drought. Future projections of streamflow drought in glacierised basins can, however, strongly depend on the modelling strategies and analysis approaches applied. Here, we examine the effect of different approaches, concerning the glacier modelling and the drought threshold, on the characterisation of streamflow droughts in glacierised catchments. Streamflow is simulated with the Hydrologiska Byråns Vattenbalansavdelning (HBV-light) model for two case study catchments, the Nigardsbreen catchment in Norway and the Wolverine catchment in Alaska, and two future climate change scenarios (RCP4.5 and RCP8.5). Two types of glacier modelling are applied, a constant and dynamic glacier area conceptualisation. Streamflow droughts are identified with the variable threshold level method and their characteristics are compared between two periods, a historical (1975-2004) and future (2071-2100) period. Two existing threshold approaches to define future droughts are employed: (1) the threshold from the historical period; (2) a transient threshold approach, whereby the threshold adapts every year in the future to the changing regimes. Results show that drought characteristics differ among the combinations of glacier area modelling and thresholds. The historical threshold combined with a dynamic glacier area projects extreme increases in drought severity in the future, caused by the regime shift due to a reduction in glacier area. The historical threshold combined with a constant glacier area results in a drastic decrease of the number of droughts. The drought characteristics between future and historical periods are more similar when the transient threshold is used, for both glacier area conceptualisations. With the transient threshold, factors causing future droughts can be analysed. This study revealed the different effects of methodological choices on future streamflow drought projections and it highlights how the options can be used to analyse different aspects of future droughts: the transient threshold for analysing future drought processes, the historical threshold to assess changes between periods, the constant glacier area to analyse the effect of short-term climate variability on droughts and the dynamic glacier area to model more realistic future discharges under climate change.
NASA Astrophysics Data System (ADS)
Wang, Yujing; Li, Huabing; Xing, Peng; Wu, Qinglong
2017-03-01
Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings: macrophyte-dominated and phytoplankton-dominated water regimes. An ecosystem regime shift from macrophytes to phytoplankton blooming typically reduces the number of species of invertebrates and fishes and results in the homogenization of communities in freshwater lakes. We investigated how microbial biodiversity has responded to a shift of the ecosystem regime in Dianchi Lake, which was previously fully covered with submerged macrophytes but currently harbors both ecological states. We observed marked divergence in the diversity and community composition of bacterioplankton between the two regimes. Although species richness, estimated as the number of operational taxonomic units and phylogenetic diversity (PD), was higher in the phytoplankton dominated ecosystem after this shift, the dissimilarity of bacterioplankton community across space decreased. This decrease in beta diversity was accompanied by loss of planktonic bacteria unique to the macrophyte-dominated ecosystem. Mantel tests between bacterioplankton community distances and Euclidian distance of environmental parameters indicated that this reduced bacterial community differentiation primarily reflected the loss of environmental niches, particularly in the macrophyte regime. The loss of this small-scale heterogeneity in bacterial communities should be considered when assessing long-term biodiversity changes in response to ecosystem regime conversions in freshwater lakes.
Roles of safety climate and shift work on perceived injury risk: a multi-level analysis.
Huang, Yueng-Hsiang; Chen, Jiu-Chiuan; DeArmond, Sarah; Cigularov, Konstantin; Chen, Peter Y
2007-11-01
This study evaluated the relationship between employees' work shift (i.e., day shift versus night shift) and perceptions of injury risk, and how the relationship is affected by company level safety climate and injury frequency. The results showed that night shift workers perceived a higher level of injury risk compared to day shift workers. Both company level safety climate and injury frequency played critical roles in predicting individual perceived work injury risk. Perception of injury risk of night shift workers was significantly lower when they perceived high-level rather than low-level safety climate. However, this pattern was not noticeable for day shift workers. These findings highlighted the importance of considering company level factors when attempting to understand the differences between day shift and night shift work on an individual's perception of injury risk.
Early warning signals of regime shifts in coupled human–environment systems
Bauch, Chris T.; Sigdel, Ram; Pharaon, Joe; Anand, Madhur
2016-01-01
In complex systems, a critical transition is a shift in a system’s dynamical regime from its current state to a strongly contrasting state as external conditions move beyond a tipping point. These transitions are often preceded by characteristic early warning signals such as increased system variability. However, early warning signals in complex, coupled human–environment systems (HESs) remain little studied. Here, we compare critical transitions and their early warning signals in a coupled HES model to an equivalent environment model uncoupled from the human system. We parameterize the HES model, using social and ecological data from old-growth forests in Oregon. We find that the coupled HES exhibits a richer variety of dynamics and regime shifts than the uncoupled environment system. Moreover, the early warning signals in the coupled HES can be ambiguous, heralding either an era of ecosystem conservationism or collapse of both forest ecosystems and conservationism. The presence of human feedback in the coupled HES can also mitigate the early warning signal, making it more difficult to detect the oncoming regime shift. We furthermore show how the coupled HES can be “doomed to criticality”: Strategic human interactions cause the system to remain perpetually in the vicinity of a collapse threshold, as humans become complacent when the resource seems protected but respond rapidly when it is under immediate threat. We conclude that the opportunities, benefits, and challenges of modeling regime shifts and early warning signals in coupled HESs merit further research. PMID:27815533
NASA Astrophysics Data System (ADS)
Jucker Riva, Matteo; Schwilch, Gudrun; Liniger, Hanspeter
2015-04-01
Regime shifts, defined as a radical and persistent reconfiguration of an ecosystem following a disturbance, have been acknowledged by scientists as a very important aspect of the dynamic of ecosystems. However, their consideration in land management planning remains marginal and limited to specific processes and systems. Current research focuses on mathematical modeling and statistical analysis of spatio-temporal data for specific environmental variables. These methods do not fulfill the needs of land managers, who are confronted with a multitude of processes and pressure types and require clear and simple strategies to prevent regime shift or to increase the resilience of their environment. The EU-FP7 CASCADE project is looking at regime shifts of dryland ecosystems in southern Europe and specifically focuses on rangeland and forest systems which are prone to various land degradation threats. One of the aims of the project is to evaluate the impact of different management practices on the dynamic of the environment in a participatory manner, including a multi-stakeholder evaluation of the state of the environment and of the management potential. To achieve this objective we have organized several stakeholder meetings and we have compiled a review of management practices using the WOCAT methodology, which enables merging scientific and land users knowledge. We highlight here the main challenges we have encountered in applying the notion of regime shift to real world socio-ecological systems and in translating related concepts such as tipping points, stable states, hysteresis and resilience to land managers, using concrete examples from CASCADE study sites. Secondly, we explore the advantages of including land users' knowledge in the scientific understanding of regime shifts. Moreover, we discuss useful alternative concepts and lessons learnt that will allow us to build a participatory method for the assessment of resilient management practices in specific socio-ecological systems and to foster adaptive dryland management.
Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Tian; Voisin, Nathalie; Leng, Guoyong
Water management activities or flow regulations modify water fluxes at the land surface and affect water resources in space and time. We hypothesize that flow regulations change the sensitivity of river flow to climate change with respect to unmanaged water resources. Quantifying these changes in sensitivity could help elucidate the impacts of water management at different spatiotemporal scales and inform climate adaptation decisions. In this study, we compared the emergence of significant changes in natural and regulated river flow regimes across the Western United States from simulations driven by multiple climate models and scenarios. We find that significant climate change-inducedmore » alterations in natural flow do not cascade linearly through water management activities. At the annual time scale, 50% of the Hydrologic Unit Code 4 (HUC4) sub-basins over the Western U.S. regions tend to have regulated flow regime more sensitive to the climate change than natural flow regime. Seasonality analyses show that the sensitivity varies remarkably across the seasons. We also find that the sensitivity is related to the level of water management. For 35% of the HUC4 sub-basins with the highest level of water management, the summer and winter flows tend to show a heightened sensitivity to climate change due to the complexity of joint reservoir operations. We further demonstrate that the impacts of considering water management in models are comparable to those that arises from uncertainties across climate models and emission scenarios. This prompts further climate adaptation studies research about nonlinearity effects of climate change through water management activities.« less
Smith, G.I.
1984-01-01
Nine distinct paleohydrologic regimes in the southwestern Great Basin over the last 3.2 my are recorded by the lacustrine deposits in KM-3, a 930-m core from Searles Lake, California. These are characterized as being "wet," "intermediate," or "dry" (like today). Excepting the present incomplete regime, each lasted 0.12 to 0.76 my. Major regime changes 0.01, 0.13, 0.6, and 2.5 my ago appear to coincide with recognized changes in global ice-sheet histories as represented by 18O and other records from marine sediments, but comparable changes 0.3, 1.0, 1.3, and 2.0 my ago do not appear to coincide closely with comparable perturbations in ice-sheet histories. However, all regime boundaries (during the last 1.75 my) coincide closely in time with changes in sea-surface temperatures in the tropical Atlantic, and many coincide with other deep-sea and continental paleoclimatic boundaries.The average duration of these paleohydrologic regimes was about 0.4 my (standard deviation, 0.2 my or less, depending on assumptions), and it is suggested that the regime boundaries reflect times of change in global(?) sea-surface temperatures, possibly controlled in part by the Earth's 413,000-yr orbital eccentricity cycle. During the wettest and driest regimes in the Searles Lake area, lake levels were not sufficiently affected by the 23,000-, to 42,000-, or 100,000-yr climate cycles related to high-latitude ice-sheet fluctuations to produce changes in the lacustrine sediment character. During intermediate regimes, however, when lacustrine sedimentation in this area was more sensitive to climate, the sediments, in KM-3, record lake fluctuations with average frequencies near those of the ice sheets. This seems to indicate that the high-latitude ice-sheet fluctuations caused local climatic perturbations but did not dominate the hydrologic component of climate in this area. Other lacustrine deposits in the southwestern Great Basin of California and Nevada have ages comparable in part to those of the wet to intermediate regimes indicated by KM-3, and they may all be products of finite periods when lake expansion, alluvial fan growth, increased spring discharge, and fluvial deposition were promoted in this area by widespread wet climates. Glacier expansion in the Sierra Nevada may also have been primarily an expression of, and in phase with, these wet regimes. ?? 1984.
Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H
2015-12-29
The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals.
NASA Astrophysics Data System (ADS)
Coopersmith, Evan Joseph
The techniques and information employed for decision-making vary with the spatial and temporal scope of the assessment required. In modern agriculture, the farm owner or manager makes decisions on a day-to-day or even hour-to-hour basis for dozens of fields scattered over as much as a fifty-mile radius from some central location. Following precipitation events, land begins to dry. Land-owners and managers often trace serpentine paths of 150+ miles every morning to inspect the conditions of their various parcels. His or her objective lies in appropriate resource usage -- is a given tract of land dry enough to be workable at this moment or would he or she be better served waiting patiently? Longer-term, these owners and managers decide upon which seeds will grow most effectively and which crops will make their operations profitable. At even longer temporal scales, decisions are made regarding which fields must be acquired and sold and what types of equipment will be necessary in future operations. This work develops and validates algorithms for these shorter-term decisions, along with models of national climate patterns and climate changes to enable longer-term operational planning. A test site at the University of Illinois South Farms (Urbana, IL, USA) served as the primary location to validate machine learning algorithms, employing public sources of precipitation and potential evapotranspiration to model the wetting/drying process. In expanding such local decision support tools to locations on a national scale, one must recognize the heterogeneity of hydroclimatic and soil characteristics throughout the United States. Machine learning algorithms modeling the wetting/drying process must address this variability, and yet it is wholly impractical to construct a separate algorithm for every conceivable location. For this reason, a national hydrological classification system is presented, allowing clusters of hydroclimatic similarity to emerge naturally from annual regime curve data and facilitate the development of cluster-specific algorithms. Given the desire to enable intelligent decision-making at any location, this classification system is developed in a manner that will allow for classification anywhere in the U.S., even in an ungauged basin. Daily time series data from 428 catchments in the MOPEX database are analyzed to produce an empirical classification tree, partitioning the United States into regions of hydroclimatic similarity. In constructing a classification tree based upon 55 years of data, it is important to recognize the non-stationary nature of climate data. The shifts in climatic regimes will cause certain locations to shift their ultimate position within the classification tree, requiring decision-makers to alter land usage, farming practices, and equipment needs, and algorithms to adjust accordingly. This work adapts the classification model to address the issue of regime shifts over larger temporal scales and suggests how land-usage and farming protocol may vary from hydroclimatic shifts in decades to come. Finally, the generalizability of the hydroclimatic classification system is tested with a physically-based soil moisture model calibrated at several locations throughout the continental United States. The soil moisture model is calibrated at a given site and then applied with the same parameters at other sites within and outside the same hydroclimatic class. The model's performance deteriorates minimally if the calibration and validation location are within the same hydroclimatic class, but deteriorates significantly if the calibration and validates sites are located in different hydroclimatic classes. These soil moisture estimates at the field scale are then further refined by the introduction of LiDAR elevation data, distinguishing faster-drying peaks and ridges from slower-drying valleys. The inclusion of LiDAR enabled multiple locations within the same field to be predicted accurately despite non-identical topography. This cross-application of parametric calibrations and LiDAR-driven disaggregation facilitates decision-support at locations without proximally-located soil moisture sensors.
Ruiz-Navarro, Ana; Gillingham, Phillipa K; Britton, J Robert
2016-09-01
Predictions of species responses to climate change often focus on distribution shifts, although responses can also include shifts in body sizes and population demographics. Here, shifts in the distributional ranges ('climate space'), body sizes (as maximum theoretical body sizes, L∞) and growth rates (as rate at which L∞ is reached, K) were predicted for five fishes of the Cyprinidae family in a temperate region over eight climate change projections. Great Britain was the model area, and the model species were Rutilus rutilus, Leuciscus leuciscus, Squalius cephalus, Gobio gobio and Abramis brama. Ensemble models predicted that the species' climate spaces would shift in all modelled projections, with the most drastic changes occurring under high emissions; all range centroids shifted in a north-westerly direction. Predicted climate space expanded for R. rutilus and A. brama, contracted for S. cephalus, and for L. leuciscus and G. gobio, expanded under low-emission scenarios but contracted under high emissions, suggesting the presence of some climate-distribution thresholds. For R. rutilus, A. brama, S. cephalus and G. gobio, shifts in their climate space were coupled with predicted shifts to significantly smaller maximum body sizes and/or faster growth rates, aligning strongly to aspects of temperature-body size theory. These predicted shifts in L∞ and K had considerable consequences for size-at-age per species, suggesting substantial alterations in population age structures and abundances. Thus, when predicting climate change outcomes for species, outputs that couple shifts in climate space with altered body sizes and growth rates provide considerable insights into the population and community consequences, especially for species that cannot easily track their thermal niches. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Angert, Amy L; Sheth, Seema N; Paul, John R
2011-11-01
Determining how species' geographic ranges are governed by current climates and how they will respond to rapid climatic change poses a major biological challenge. Geographic ranges are often spatially fragmented and composed of genetically differentiated populations that are locally adapted to different thermal regimes. Tradeoffs between different aspects of thermal performance, such as between tolerance to high temperature and tolerance to low temperature or between maximal performance and breadth of performance, suggest that the performance of a given population will be a subset of that of the species. Therefore, species-level projections of distribution might overestimate the species' ability to persist at any given location. However, current approaches to modeling distributions often do not consider variation among populations. Here, we estimated genetically-based differences in thermal performance curves for growth among 12 populations of the scarlet monkeyflower, Mimulus cardinalis, a perennial herb of western North America. We inferred the maximum relative growth rate (RGR(max)), temperature optimum (T(opt)), and temperature breadth (T(breadth)) for each population. We used these data to test for tradeoffs in thermal performance, generate mechanistic population-level projections of distribution under current and future climates, and examine how variation in aspects of thermal performance influences forecasts of range shifts. Populations differed significantly in RGR(max) and had variable, but overlapping, estimates of T(opt) and T(breadth). T(opt) declined with latitude and increased with temperature of origin, consistent with tradeoffs between performances at low temperatures versus those at high temperatures. Further, T(breadth) was negatively related to RGR(max), as expected for a specialist-generalist tradeoff. Parameters of the thermal performance curve influenced properties of projected distributions. For both current and future climates, T(opt) was negatively related to latitudinal position, while T(breadth) was positively related to projected range size. The magnitude and direction of range shifts also varied with T(opt) and T(breadth), but sometimes in unexpected ways. For example, the fraction of habitat remaining suitable increased with T(opt) but decreased with T(breadth). Northern limits of all populations were projected to shift north, but the magnitude of shift decreased with T(opt) and increased with T(breadth). Median latitude was projected to shift north for populations with high T(breadth) and low T(opt), but south for populations with low T(breadth) and high T(opt). Distributions inferred by integrating population-level projections did not differ from a species-level projection that ignored variation among populations. However, the species-level approach masked the potential array of divergent responses by populations that might lead to genotypic sorting within the species' range. Thermal performance tradeoffs among populations within the species' range had important, but sometimes counterintuitive, effects on projected responses to climatic change. © The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Y.; Kurkute, S.; Chen, L.
2017-12-01
Results from the General Circulation Models (GCMs) suggest more frequent and more severe extreme rain events in a climate warmer than the present. However, current GCMs cannot accurately simulate extreme rainfall events of short duration due to their coarse model resolutions and parameterizations. This limitation makes it difficult to provide the detailed quantitative information for the development of regional adaptation and mitigation strategies. Dynamical downscaling using nested Regional Climate Models (RCMs) are able to capture key regional and local climate processes with an affordable computational cost. Recent studies have demonstrated that the downscaling of GCM results with weather-permitting mesoscale models, such as the pseudo-global warming (PGW) technique, could be a viable and economical approach of obtaining valuable climate change information on regional scales. We have conducted a regional climate 4-km Weather Research and Forecast Model (WRF) simulation with one domain covering the whole western Canada, for a historic run (2000-2015) and a 15-year future run to 2100 and beyond with the PGW forcing. The 4-km resolution allows direct use of microphysics and resolves the convection explicitly, thus providing very convincing spatial detail. With this high-resolution simulation, we are able to study the convective mechanisms, specifically the control of convections over the Prairies, the projected changes of rainfall regimes, and the shift of the convective mechanisms in a warming climate, which has never been examined before numerically at such large scale with such high resolution.
Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.
2017-01-01
Climate warming is expected to increase stream temperatures in mountainous regions of western North America, yet the degree to which future climate change may influence seasonal patterns of stream temperature is uncertain. In this study, a spatially explicit statistical model framework was integrated with empirical stream temperature data (approximately four million bi-hourly recordings) and high-resolution climate and land surface data to estimate monthly stream temperatures and potential change under future climate scenarios in the Crown of the Continent Ecosystem, USA and Canada (72,000 km2). Moderate and extreme warming scenarios forecast increasing stream temperatures during spring, summer, and fall, with the largest increases predicted during summer (July, August, and September). Additionally, thermal regimes characteristic of current August temperatures, the warmest month of the year, may be exceeded during July and September, suggesting an earlier and extended duration of warm summer stream temperatures. Models estimate that the largest magnitude of temperature warming relative to current conditions may be observed during the shoulder months of winter (April and November). Summer stream temperature warming is likely to be most pronounced in glacial-fed streams where models predict the largest magnitude (> 50%) of change due to the loss of alpine glaciers. We provide the first broad-scale analysis of seasonal climate effects on spatiotemporal patterns of stream temperature in the Crown of the Continent Ecosystem for better understanding climate change impacts on freshwater habitats and guiding conservation and climate adaptation strategies.
Using ISCCP Weather States to Decompose Cloud Radiative Effects
NASA Technical Reports Server (NTRS)
Oreopoulos, L.; Rossow, W. B.
2012-01-01
The presentation will examine the shortwave (SW) and longwave (LW) cloud radiative effect CRE (aka "cloud radiative forcing") at the top-of-the-atmosphere and surface of ISCCP weather states (aka "cloud regimes") in three distinct geographical zones, one tropical and two mid-latitude. Our goal is to understand and quantify the contribution of the different cloud regimes to the planetary radiation budget. In the tropics we find that the three most convectively active states are the ones with largest SW, LW and net TOA CRE contributions to the overall daytime tropical CRE budget. They account for 59%, 71% and 55% of the total CRE, respectively. The boundary layer-dominated weather states account for only 34% of the total SW CRE and 41% of the total net CRE, so to focus only on them in cloud feedback studies may be imprudent. We also find that in both the northern and southern midlatitude zones only two weather states, the first and third most convectively active with large amounts of nimbostratus-type clouds, contribute ",40% to both the SW and net TOA CRE budgets, highlighting the fact that cloud regimes associated with frontal systems are not only important for weather (precipitation) but also for climate (radiation budget). While all cloud regimes in all geographical zones have a slightly larger SFC than TOA SW CRE, implying cooling of the surface and slight warming of the atmosphere, their LW radiative effects are more subtle: in the tropics the weather states with plentiful high clouds warm the atmosphere while those with copious amounts of low clouds cool the atmosphere. In both midlatitude zones only the weather states with peak cloud fractions at levels above 440 mbar warm the atmosphere while all the rest cool it. These results make the connection of the contrasting CRE effects to the atmospheric dynamics more explicit - "storms" tend to warm the atmosphere whereas fair weather clouds cool it, suggesting a positive feedback of clouds on weather systems. The breakdown of CRE by cloud regime are however not entirely similar between the two midlatitude zones. Despite the existence of an additional state in the nort!lern midlatitudes, only four weather states have net daytime CREs with absolute values above 100 Watts per square meter compared to six in the south. This reminds us that the environment where clouds occur also has a crucial role in determining their radiative effects. All the above make evident that reproducing grand averages of current CRE by climate models in only part of the challenge. If existing cloud regimes and shifts in their distributions and frequency of occurrence in a changed climate are not properly simulated, the radiative role of clouds will not be adequately predicted.
Yang, Jian; Weisberg, Peter J.; Shinneman, Douglas; Dilts, Thomas E.; Earnst, Susan L.; Scheller, Robert M
2015-01-01
Content Changing aspen distribution in response to climate change and fire is a major focus of biodiversity conservation, yet little is known about the potential response of aspen to these two driving forces along topoclimatic gradients. Objective This study is set to evaluate how aspen distribution might shift in response to different climate-fire scenarios in a semi-arid montane landscape, and quantify the influence of fire regime along topoclimatic gradients. Methods We used a novel integration of a forest landscape succession and disturbance model (LANDIS-II) with a fine-scale climatic water deficit approach to simulate dynamics of aspen and associated conifer and shrub species over the next 150 years under various climate-fire scenarios. Results Simulations suggest that many aspen stands could persist without fire for centuries under current climate conditions. However, a simulated 2–5 °C increase in temperature caused a substantial reduction of aspen coverage at lower elevations and a modest increase at upper elevations, leading to an overall reduction of aspen range at the landscape level. Increasing fire activity may favor aspen increase at its upper elevation limits adjacent to coniferous forest, but may also favor reduction of aspen at lower elevation limits adjacent to xeric shrubland. Conclusions Our study highlights the importance of incorporating fine-scale terrain effects on climatic water deficit and ecohydrology when modeling species distribution response to climate change. This modeling study suggests that climate mitigation and adaptation strategies that use fire would benefit from consideration of spatial context at landscape scales.
Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth
NASA Astrophysics Data System (ADS)
Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda
2017-04-01
Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.
Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance
Robert J. Warren; Lacy Chick
2013-01-01
Rapid climate change may prompt species distribution shifts upward and poleward, but species movement in itself is not sufficient to establish climate causation. Other dynamics, such as disturbance history, may prompt species distribution shifts resembling those expected from rapid climate change. Links between species distributions, regional climate trends and...
Fire regime: history and definition of a key concept in disturbance ecology.
Krebs, Patrik; Pezzatti, Gianni B; Mazzoleni, Stefano; Talbot, Lee M; Conedera, Marco
2010-06-01
"Fire regime" has become, in recent decades, a key concept in many scientific domains. In spite of its wide spread use, the concept still lacks a clear and wide established definition. Many believe that it was first discussed in a famous report on national park management in the United States, and that it may be simply defined as a selection of a few measurable parameters that summarize the fire occurrence patterns in an area. This view has been uncritically perpetuated in the scientific community in the last decades. In this paper we attempt a historical reconstruction of the origin, the evolution and the current meaning of "fire regime" as a concept. Its roots go back to the 19th century in France and to the first half of the 20th century in French African colonies. The "fire regime" concept took time to evolve and pass from French into English usage and thus to the whole scientific community. This coincided with a paradigm shift in the early 1960s in the United States, where a favourable cultural, social and scientific climate led to the natural role of fires as a major disturbance in ecosystem dynamics becoming fully acknowledged. Today the concept of "fire regime" refers to a collection of several fire-related parameters that may be organized, assembled and used in different ways according to the needs of the users. A structure for the most relevant categories of parameters is proposed, aiming to contribute to a unified concept of "fire regime" that can reconcile the physical nature of fire with the socio-ecological context within which it occurs.
Tracking lags in historical plant species' shifts in relation to regional climate change.
Ash, Jeremy D; Givnish, Thomas J; Waller, Donald M
2017-03-01
Can species shift their distributions fast enough to track changes in climate? We used abundance data from the 1950s and the 2000s in Wisconsin to measure shifts in the distribution and abundance of 78 forest-understory plant species over the last half-century and compare these shifts to changes in climate. We estimated temporal shifts in the geographic distribution of each species using vectors to connect abundance-weighted centroids from the 1950s and 2000s. These shifts in distribution reflect colonization, extirpation, and changes in abundance within sites, separately quantified here. We then applied climate analog analyses to compute vectors representing the climate change that each species experienced. Species shifted mostly to the northwest (mean: 49 ± 29 km) primarily reflecting processes of colonization and changes in local abundance. Analog climates for these species shifted even further to the northwest, however, exceeding species' shifts by an average of 90 ± 40 km. Most species thus failed to match recent rates of climate change. These lags decline in species that have colonized more sites and those with broader site occupancy, larger seed mass, and higher habitat fidelity. Thus, species' traits appear to affect their responses to climate change, but relationships are weak. As climate change accelerates, these lags will likely increase, potentially threatening the persistence of species lacking the capacity to disperse to new sites or locally adapt. However, species with greater lags have not yet declined more in abundance. The extent of these threats will likely depend on how other drivers of ecological change and interactions among species affect their responses to climate change. © 2016 John Wiley & Sons Ltd.
The pace of shifting climate in marine and terrestrial ecosystems.
Burrows, Michael T; Schoeman, David S; Buckley, Lauren B; Moore, Pippa; Poloczanska, Elvira S; Brander, Keith M; Brown, Chris; Bruno, John F; Duarte, Carlos M; Halpern, Benjamin S; Holding, Johnna; Kappel, Carrie V; Kiessling, Wolfgang; O'Connor, Mary I; Pandolfi, John M; Parmesan, Camille; Schwing, Franklin B; Sydeman, William J; Richardson, Anthony J
2011-11-04
Climate change challenges organisms to adapt or move to track changes in environments in space and time. We used two measures of thermal shifts from analyses of global temperatures over the past 50 years to describe the pace of climate change that species should track: the velocity of climate change (geographic shifts of isotherms over time) and the shift in seasonal timing of temperatures. Both measures are higher in the ocean than on land at some latitudes, despite slower ocean warming. These indices give a complex mosaic of predicted range shifts and phenology changes that deviate from simple poleward migration and earlier springs or later falls. They also emphasize potential conservation concerns, because areas of high marine biodiversity often have greater velocities of climate change and seasonal shifts.
A quantitative comparison of Soil Development in four climatic regimes
Harden, J.W.; Taylor, E.M.
1983-01-01
A new quantitative Soil Development Index based on field data has been applied to chronosequences formed under different climatic regimes. The four soil chronosequences, developed primarily on sandy deposits, have some numeric age control and are located in xeric-inland (Merced, Calif.), xeric-coastal (Ventura, Calif.), aridic (Las Cruces, N. Mex.), and udic (Susquehanna Valley, Pa.) soil-moisture regimes. To quantify field properties, points are assigned for developmental increases in soil properties in comparison to the parent material. Currently ten soil-field properties are quantified and normalized for each horizon in a given chronosequence, including two new properties for carbonate-rich soils in addition to the eight properties previously defined. When individual properties or the combined indexes are plotted as a function of numeric age, rates of soil development can be compared in different climates. The results demonstrate that (1) the Soil Development Index can be applied to very different soil types, (2) many field properties develop systematically in different climatic regimes, (3) certain properties appear to have similar rates of development in different climates, and (4) the Profile Index that combines different field properties increases significantly with age and appears to develop at similar rates in different climates. The Soil Development Index can serve as a preliminary guide to soil age where other age control is lacking and can be used to correlate deposits of different geographical and climatic regions. ?? 1983.
Crystal L. Raymond; Donald McKenzie
2012-01-01
During the 21st century, climate-driven changes in fire regimes will be a key agent of change in forests of the U.S. Pacific Northwest (PNW). Understanding the response of forest carbon (C) dynamics to increases in fire will help quantify limits on the contribution of forest C storage to climate change mitigation and prioritize forest types for...
Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries
2013-02-01
Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change.
Ruhi, Albert; Dong, Xiaoli; McDaniel, Courtney H; Batzer, Darold P; Sabo, John L
2018-04-17
Novel flow regimes resulting from dam operations and overallocation of freshwater resources are an emerging consequence of global change. Yet, anticipating how freshwater biodiversity will respond to surging flow regime alteration requires overcoming two challenges in environmental flow science: shifting from local to riverscape-level understanding of biodiversity dynamics, and from static to time-varying characterizations of the flow regime. Here, we used time-series methods (wavelets and multivariate autoregressive models) to quantify flow-regime alteration and to link time-varying flow regimes to the dynamics of multiple local communities potentially connected by dispersal (i.e., a metacommunity). We studied the Chattahoochee River below Buford dam (Georgia, U.S.A.), and asked how flow regime alteration by a large hydropower dam may control the long-term functional trajectory of the downstream invertebrate metacommunity. We found that seasonal variation in hydropeaking synchronized temporal fluctuations in trait abundance among the flow-altered sites. Three biological trait states describing adaptation to fast flows benefitted from flow management for hydropower, but did not compensate for declines in 16 "loser" traits. Accordingly, metacommunity-wide functional diversity responded negatively to hydropeaking intensity, and stochastic simulations showed that the risk of functional diversity collapse within the next 4 years would decrease by 17% if hydropeaking was ameliorated, or by 9% if it was applied every other season. Finally, an analysis of 97 reference and 23 dam-affected river sites across the U.S. Southeast suggested that flow variation at extraneous, human-relevant scales (12-hr, 24-hr, 1-week) is relatively common in rivers affected by hydropower dams. This study advances the notion that novel flow regimes are widespread, and simplify the functional structure of riverine communities by filtering out taxa with nonadaptive traits and by spatially synchronizing their dynamics. This is relevant in the light of ongoing and future hydrologic alteration due to climate non-stationarity and the new wave of dams planned globally. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Bradford, J. B.; Schlaepfer, D.; Palmquist, K. A.; Lauenroth, W.
2017-12-01
Climate projections for western North America suggest temperature increases that are relatively consistent across climate models. However, precipitation projections are less consistent, especially in the Southwest, promoting uncertainty about the future of soil moisture and drought. We utilized a daily time-step ecosystem water balance model to characterize soil temperature and moisture patterns at a 10-km resolution across western North America for historical (1980-2010), mid-century (2020-2050), and late century (2070-2100). We simulated soil moisture and temperature under two representative concentration pathways and eleven climate models (selected strategically to represent the range of variability in projections among the full set of models in the CMIP5 database and perform well in hind-cast comparisons for the region), and we use the results to identify areas with robust projections, e.g. areas where the large majority of models agree in the direction of change in long-term average soil moisture or temperature. Rising air temperatures will increase average soil temperatures across western North America and expand the area of mesic and thermic soil temperature regimes while decreasing the area of cryic and frigid regimes. Future soil moisture conditions are relatively consistent across climate models for much of the region, including many areas with variable precipitation trajectories. Consistent projections for drier soils are expected in most of Arizona and New Mexico, similar to previous studies. Other regions with projections for declining soil moisture include the central and southern U.S. Great Plains and large parts of southern British Columbia. By contrast, areas with robust projections for increasing soil moisture include northeastern Montana, southern Alberta and Saskatchewan, and many areas in the intermountain west dominated by big sagebrush. In addition, seasonal moisture patterns in much of the western US drylands are expected to shift toward cool-season water availability, with potentially important consequences for ecosystem structure and function. These results provide a framework for coping with variability in climate projections and assessing climate change impacts on dryland ecosystems.
Stochastic Parametrisations and Regime Behaviour of Atmospheric Models
NASA Astrophysics Data System (ADS)
Arnold, Hannah; Moroz, Irene; Palmer, Tim
2013-04-01
The presence of regimes is a characteristic of non-linear, chaotic systems (Lorenz, 2006). In the atmosphere, regimes emerge as familiar circulation patterns such as the El-Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and Scandinavian Blocking events. In recent years there has been much interest in the problem of identifying and studying atmospheric regimes (Solomon et al, 2007). In particular, how do these regimes respond to an external forcing such as anthropogenic greenhouse gas emissions? The importance of regimes in observed trends over the past 50-100 years indicates that in order to predict anthropogenic climate change, our climate models must be able to represent accurately natural circulation regimes, their statistics and variability. It is well established that representing model uncertainty as well as initial condition uncertainty is important for reliable weather forecasts (Palmer, 2001). In particular, stochastic parametrisation schemes have been shown to improve the skill of weather forecast models (e.g. Berner et al., 2009; Frenkel et al., 2012; Palmer et al., 2009). It is possible that including stochastic physics as a representation of model uncertainty could also be beneficial in climate modelling, enabling the simulator to explore larger regions of the climate attractor including other flow regimes. An alternative representation of model uncertainty is a perturbed parameter scheme, whereby physical parameters in subgrid parametrisation schemes are perturbed about their optimal value. Perturbing parameters gives a greater control over the ensemble than multi-model or multiparametrisation ensembles, and has been used as a representation of model uncertainty in climate prediction (Stainforth et al., 2005; Rougier et al., 2009). We investigate the effect of including representations of model uncertainty on the regime behaviour of a simulator. A simple chaotic model of the atmosphere, the Lorenz '96 system, is used to study the predictability of regime changes (Lorenz 1996, 2006). Three types of models are considered: a deterministic parametrisation scheme, stochastic parametrisation schemes with additive or multiplicative noise, and a perturbed parameter ensemble. Each forecasting scheme was tested on its ability to reproduce the attractor of the full system, defined in a reduced space based on EOF decomposition. None of the forecast models accurately capture the less common regime, though a significant improvement is observed over the deterministic parametrisation when a temporally correlated stochastic parametrisation is used. The attractor for the perturbed parameter ensemble improves on that forecast by the deterministic or white additive schemes, showing a distinct peak in the attractor corresponding to the less common regime. However, the 40 constituent members of the perturbed parameter ensemble each differ greatly from the true attractor, with many only showing one dominant regime with very rare transitions. These results indicate that perturbed parameter ensembles must be carefully analysed as individual members may have very different characteristics to the ensemble mean and to the true system being modelled. On the other hand, the stochastic parametrisation schemes tested performed well, improving the simulated climate, and motivating the development of a stochastic earth-system simulator for use in climate prediction. J. Berner, G. J. Shutts, M. Leutbecher, and T. N. Palmer. A spectral stochastic kinetic energy backscatter scheme and its impact on flow dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66(3):603-626, 2009. Y. Frenkel, A. J. Majda, and B. Khouider. Using the stochastic multicloud model to improve tropical convective parametrisation: A paradigm example. J. Atmos. Sci., 69(3):1080-1105, 2012. E. N. Lorenz. Predictability: a problem partly solved. In Proceedings, Seminar on Predictability, 4-8 September 1995, volume 1, pages 1-18, Shinfield Park, Reading, 1996. ECMWF. E. N. Lorenz. Regimes in simple systems. J. Atmos. Sci., 63(8):2056-2073, 2006. T. N Palmer. A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrisation in weather and climate prediction models. Q. J. Roy. Meteor. Soc., 127(572):279-304, 2001. T. N. Palmer, R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer. Stochastic parametrization and model uncertainty. Technical Report 598, European Centre for Medium-Range Weather Forecasts, 2009. J. Rougier, D. M. H. Sexton, J. M. Murphy, and D. Stainforth. Analyzing the climate sensitivity of the HadSM3 climate model using ensembles from different but related experiments. J. Climate, 22:3540-3557, 2009. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, Tignor M., and H. L. Miller. Climate models and their evaluation. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, 2007. Cambridge University Press. D. A Stainforth, T. Aina, C. Christensen, M. Collins, N. Faull, D. J. Frame, J. A. Kettleborough, S. Knight, A. Martin, J. M. Murphy, C. Piani, D. Sexton, L. A. Smith, R. A Spicer, A. J. Thorpe, and M. R Allen. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433(7024):403-406, 2005.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.
Aerosol–cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity ( ω 500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strongmore » large-scale ascent ( ω 500 < −25 hPa day −1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day −1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less
Density and spin modes in imbalanced normal Fermi gases from collisionless to hydrodynamic regime
NASA Astrophysics Data System (ADS)
Narushima, Masato; Watabe, Shohei; Nikuni, Tetsuro
2018-03-01
We study the mass- and population-imbalance effect on density (in-phase) and spin (out-of-phase) collective modes in a two-component normal Fermi gas. By calculating the eigenmodes of the linearized Boltzmann equation as well as the density/spin dynamic structure factor, we show that mass- and population-imbalance effects offer a variety of collective mode crossover behaviors from collisionless to hydrodynamic regimes. The mass-imbalance effect shifts the crossover regime to the higher-temperature, and a significant peak of the spin dynamic structure factor emerges only in the collisionless regime. This is in contrast to the case of mass- and population-balanced normal Fermi gases, where the spin dynamic response is always absent. Although the population-imbalance effect does not shift the crossover regime, the spin dynamic structure factor survives both in the collisionless and hydrodynamic regimes.
A post-Kyoto partner: Considering the stratospheric ozone regime as a tool to manage nitrous oxide
Kanter, David; Mauzerall, Denise L.; Ravishankara, A. R.; Daniel, John S.; Portmann, Robert W.; Grabiel, Peter M.; Moomaw, William R.; Galloway, James N.
2013-01-01
Nitrous oxide (N2O) is the largest known remaining anthropogenic threat to the stratospheric ozone layer. However, it is currently only regulated under the 1997 Kyoto Protocol because of its simultaneous ability to warm the climate. The threat N2O poses to the stratospheric ozone layer, coupled with the uncertain future of the international climate regime, motivates our exploration of issues that could be relevant to the Parties to the ozone regime (the 1985 Vienna Convention and its 1987 Montreal Protocol) should they decide to take measures to manage N2O in the future. There are clear legal avenues to regulate N2O under the ozone regime as well as several ways to share authority with the existing and future international climate treaties. N2O mitigation strategies exist to address the most significant anthropogenic sources, including agriculture, where behavioral practices and new technologies could contribute significantly to reducing emissions. Existing policies managing N2O and other forms of reactive nitrogen could be harnessed and built on by the ozone regime to implement N2O controls. There are several challenges and potential cobenefits to N2O control which we discuss here: food security, equity, and implications of the nitrogen cascade. The possible inclusion of N2O in the ozone regime need not be viewed as a sign of failure of the United Nations Framework Convention on Climate Change to adequately deal with climate change. Rather, it could represent an additional valuable tool in sustainable development diplomacy. PMID:23440192
A post-Kyoto partner: considering the stratospheric ozone regime as a tool to manage nitrous oxide.
Kanter, David; Mauzerall, Denise L; Ravishankara, A R; Daniel, John S; Portmann, Robert W; Grabiel, Peter M; Moomaw, William R; Galloway, James N
2013-03-19
Nitrous oxide (N2O) is the largest known remaining anthropogenic threat to the stratospheric ozone layer. However, it is currently only regulated under the 1997 Kyoto Protocol because of its simultaneous ability to warm the climate. The threat N2O poses to the stratospheric ozone layer, coupled with the uncertain future of the international climate regime, motivates our exploration of issues that could be relevant to the Parties to the ozone regime (the 1985 Vienna Convention and its 1987 Montreal Protocol) should they decide to take measures to manage N2O in the future. There are clear legal avenues to regulate N2O under the ozone regime as well as several ways to share authority with the existing and future international climate treaties. N2O mitigation strategies exist to address the most significant anthropogenic sources, including agriculture, where behavioral practices and new technologies could contribute significantly to reducing emissions. Existing policies managing N2O and other forms of reactive nitrogen could be harnessed and built on by the ozone regime to implement N2O controls. There are several challenges and potential cobenefits to N2O control which we discuss here: food security, equity, and implications of the nitrogen cascade. The possible inclusion of N2O in the ozone regime need not be viewed as a sign of failure of the United Nations Framework Convention on Climate Change to adequately deal with climate change. Rather, it could represent an additional valuable tool in sustainable development diplomacy.
Interactions of changing climate and shifts in forest composition on stand carbon balance
Chiang Jyh-Min; Louis Iverson; Anantha Prasad; Kim Brown
2006-01-01
Given that climate influences forest biogeographic distribution, many researchers have created models predicting shifts in tree species range with future climate change scenarios. The objective of this study is to investigate the forest carbon consequences of shifts in stand species composition with current and future climate scenarios using such a model.
NASA Astrophysics Data System (ADS)
Hall, Stephen A.; Peterson, John A.
2013-04-01
The Rio Grande is one of the larger rivers in North America, and the development of its floodplain is related to Holocene climate and climate change. The late Pleistocene through early Holocene channel is characterized by a meander or braided system with lateral cutting and backfilling, resulting in the valley-wide deposition of massive to cross-bedded, fine-to-medium textured sand. The late Pleistocene-early Holocene floodplain is also the sand source for the adjacent Bolson sand sheet. The sand sheet stopped accumulating new sand 5000 yrs ago, an event directly related to the shutting off of the sand supply caused by the deposition of overbank muds that covered and sealed the floodplain surface. During the middle Holocene, the river may have dried intermittently with the floodplain becoming deflated and local sand dunes forming on the floodplain. After 5000 yrs the climate was less arid and the river shifted to a regime of increased flooding and overbank deposition of silt and clay. By 2500 yrs, a late Holocene period of wet climate resulted in further overbank deposition and the formation of a cumulic Mollisol across the floodplain, the Socorro paleosol. The period of wet climate corresponds to the Audubon Neoglacial and active rock glaciers in the southern Rocky Mountains, speleothem growth in nearby caves, and other evidence for wet-cool conditions in the region. After 1000 yrs, the climate became drier, and the deposition and accumulation of overbank muds by the flooding Rio Grande came to a halt. Even though the river has flooded often in historic times, and presumably during late prehistoric times as well, there is little evidence for deposition of overbank sediments on the floodplain since A.D. 1000. Accordingly, the present-day surface of the Lower Valley is ten centuries old. Three channels occur on the US side of the Lower Valley floodplain, and during the past 2500 yrs stream flow has shifted from one to the other by the avulsion process of channel reoccupation, although most flow has been in the Rio Grande channel, the largest of the three.
NASA Astrophysics Data System (ADS)
José Pérez-Palazón, María; Pimentel, Rafael; Sáenz de Rodrigáñez, Marta; Gulliver, Zacarias; José Polo, María
2017-04-01
Climate services provide water resource managements and users with science-based information on the likely impacts associated to the future climate scenarios. Mountainous areas are especially vulnerable to climate variations due to the expected changes in the snow regime, among others; in Mediterranean regions, this shift involves significant effects on the river flow regime and water resource availability and management. The Guadalfeo River Basin is a 1345 km2 mountainous, coastal catchment in southern Spain, ranging from the Mediterranean Sea coastline to the Sierra Nevada mountains to the north (up to 3450 m a.s.l.) within a 40-km distance. The climate variability adds complexity to this abrupt topography and heterogeneous area. The uncertainty associated to snow occurrence and persistence for the next decades poses a challenge for the current and future water resource uses in the area. The development of easy-to-use local climate indicators and derived decision-making variables is key to assess and face the economic impact of the potential changes. The SWICCA (Service for Water Indicators in Climate Change Adaptation) Platform (http://swicca.climate.copernicus.eu/) has been developed under the Copernicus Climate Change Service (C3S) and provides global climate and hydrology indicators on a Pan-European scale. Different case studies are included to assess the platform development and contents, and analyse the indicators' performance from a proof-of-concept approach that includes end-users feedbacks. The Guadalfeo River Basin is one of these case studies. This work presents the work developed so far to analyse and use the SWICCA Climate Impact Indicators (CIIs) related to river flow in this mountainous area, and the first set of local indicators specifically designed to assess selected end-users on the potential impact associated to different climate scenarios. Different CIIs were extracted from the SWICCA interface and tested against the local information available in the case study. The Essential Climate Variables used were precipitation and flow daily values, obtained at different spatial scales. The analysis led to the use of SWICCA-river flow on a catchment scale as the most suitable global CIIs in this area. Further treatment included local downscaling by means of transfer functions and a final relative anomaly correction. Three final end-users (clients) were identified within the water resource management framework: 1) mini hydropower facilities at the head areas, 2) urban supply at the southern area, and 3) water management decision makers (reservoir operation). From the corrected CIIs, local indicators were defined from the interaction with each client, to tailor water services easily and readily usable. Knowledge brokering from this interaction resulted in a first identification of a set of 4, 3 and 4 indicators for hydropower generation, urban users and water resource decision-makers, respectively, with different time scales. The projections of three future climate scenarios were assessed for each indicator and presented to each client. Local indicators are an efficient tool to assess the potential range of water allocation possibilities in this area on an annual and decadal basis, and get a deeper insight of the seasonal future potential regime of water resource availability. The results are good examples of key information for decision making in the future, and show how to derive local indicators with impact in the short and medium term planning in heterogeneous catchments in this region.
Young, J F; Sipe, J E; van Driel, H M
1983-08-01
We present experimental evidence showing that the period of the rippled surface structure induced on germanium by 1.06-microm laser pulses undergoes a discontinuous shift above a certain threshold intensity. The measured shift, as a angle of incidence of the damaging beam, is quantitatively interpreted as a transition between a regime of inhomogeneous melting controlled by radiation-remnant field structures and a regime of ripple formation surface plasmons in an optically thick layer of liquid, metallic germanium formed at the surface.
Do GCM's predict the climate.... Or the low frequency weather?
NASA Astrophysics Data System (ADS)
Lovejoy, S.; Schertzer, D.; Varon, D.
2012-04-01
Over twenty-five years ago, a three-regime scaling model was proposed describing the statistical variability of the atmosphere over time scales ranging from weather scales out to ≈ 100 kyrs. Using modern in situ data reanalyses, monthly surface series (at 5ox5o), 8 "multiproxy" (yearly) series of the Northern hemisphere from 1500 - 1980, and GRIP and Vostok paleotemperatures at 5.2 and ≈ 100 year resolutions (over the past 91-420 kyrs), we refine the model and show how it can be understood with the help of new developments in nonlinear dynamics, especially multifractals and cascades. In a scaling range, mean fluctuations in state variables such as temperature ΔT vary in power law manners ≈ Δt**H the where Δt is the duration. At small (weather) scales the fluctuation exponents are generally H>0; they grow with scale (Δt). At longer scales Δt >τw (≈ 10 days) H changes sign, the fluctuations decrease with scale; this is the low variability, "low frequency weather" regime. In this regime, the spectrum is a relatively flat "plateau", it's variability is low, stable, corresponding to our usual idea of "long term weather statistics". Finally for longer times, Δt>τc ≈ 10 - 100 years, once again H>0, so that the variability increases with scale: the true climate regime. These scaling regimes allow us to objectively define the weather as fluctuations over periods <τw, to define "climate states" as fluctuations at scale τc and then "climate change" as the fluctuations at longer periods (Δt>τc). We show that the intermediate low frequency weather regime is the result of the weather regime undergoing a "dimensional transition": at temporal scales longer than the typical lifetime of planetary structures (τw), the spatial degrees of freedom are rapidly quenched so that only the temporal degrees of freedom are important. This low frequency weather regime has statistical properties well reproduced not only by stochastic cascade models of weather, but also by control runs (i.e. without climate forcing) of GCM based climate forecasting systems including those of the Institut Pierre Simon Laplace (Paris) and the Earth Forecasting System (Hamburg). In order for these systems to go beyond simply predicting low frequency weather i.e. in order for them to predict the climate, they need appropriate climate forcings and/ or new internal mechanisms of variability. Using statistical scaling techniques we examine the scale dependence of fluctuations from forced and unforced GCM outputs, including from the ECHO-G and EFS simulations in the Millenium climate reconstruction project and compare this with data, multiproxies and paleo data. Our general conclusion is that the models systematically underestimate the multidecadal, multicentennial scale variability.
Defining pyromes and global syndromes of fire regimes.
Archibald, Sally; Lehmann, Caroline E R; Gómez-Dans, Jose L; Bradstock, Ross A
2013-04-16
Fire is a ubiquitous component of the Earth system that is poorly understood. To date, a global-scale understanding of fire is largely limited to the annual extent of burning as detected by satellites. This is problematic because fire is multidimensional, and focus on a single metric belies its complexity and importance within the Earth system. To address this, we identified five key characteristics of fire regimes--size, frequency, intensity, season, and extent--and combined new and existing global datasets to represent each. We assessed how these global fire regime characteristics are related to patterns of climate, vegetation (biomes), and human activity. Cross-correlations demonstrate that only certain combinations of fire characteristics are possible, reflecting fundamental constraints in the types of fire regimes that can exist. A Bayesian clustering algorithm identified five global syndromes of fire regimes, or pyromes. Four pyromes represent distinctions between crown, litter, and grass-fueled fires, and the relationship of these to biomes and climate are not deterministic. Pyromes were partially discriminated on the basis of available moisture and rainfall seasonality. Human impacts also affected pyromes and are globally apparent as the driver of a fifth and unique pyrome that represents human-engineered modifications to fire characteristics. Differing biomes and climates may be represented within the same pyrome, implying that pathways of change in future fire regimes in response to changes in climate and human activity may be difficult to predict.
NASA Astrophysics Data System (ADS)
Zhao, Haikun; Wang, Chunzai
2018-02-01
The present paper uses the satellite era data from 1979 to 2015 to examine the relationship between El Niño-Southern Oscillation (ENSO) and tropical cyclones (TCs) in the western North Pacific (WNP) during the boreal summer from June to August. It is found that WNP TC variability is characterized by two major feature changes: (1) a significant reduction of the TC number since 1998 and (2) a stronger interannual relationship between ENSO and TCs since 1998. Results suggested that such changes are largely due to the synergy effects of a shifting ENSO and the Pacific climate regime shift. Since 1998 with a cool Pacific decadal oscillation phase switching from a warm phase, more La Niña and central Pacific (CP) El Niño events occur. The decreased low-level relative vorticity and increased vertical wind shear during 1998-2015 compared to 1979-1997 are responsible for the TC reduction. The stronger interannual relationship between ENSO and TCs since 1998 is closely associated the change of CP sea surface temperature. It enhances the associations of environmental factors including vertical wind shear and mid-level relative humidity with TCs and thus increases the interannual relationship between ENSO and TCs. These two feature changes also manifest in the mean TC genesis location, with a northwestward shift of the TC genesis location during 1998-2015 and an increased relation to El Niño Modoki index since 1998. This study has an important implication for TC outlooks in the WNP based on climate predictions and projections.
NASA Astrophysics Data System (ADS)
Koch, P. L.; Newsome, S. D.; Gifford-Gonzalez, D.
2001-12-01
The coast of California presented Holocene humans with a diverse set of ecosystems and geomorphic features, from large islands off a semi-desert mainland in the south, to a mix of sandy and rocky beaches abutting grassland and oak forest in central California, to a rocky coast hugged by dense coniferous forest in the north. Theories explaining trends in human resource use, settlement patterns, and demography are equally diverse, but can be categorized as 1) driven by diffusion of technological innovations from outside the region, 2) driven by population growth leading to more intensive extraction of resources, or 3) driven by climatic factors that affect the resource base. With respect to climatic shifts, attention has focused on a possible regime shift ca. 5500 BP, following peak Holocene warming, and on evidence for massive droughts and a drop in marine productivity ca. 1000 BP. While evidence for a coincidence between climatic, cultural, and ecological change is present, albeit complex, in southern California, similar data are largely lacking from central and northern California. We are using isotopic and archaeofaunal analysis to test ideas for ecological and cultural change in central California. Three features of the archaeological record are relevant. First, overall use of marine resources by coastal communities declined after 1000 BP. Second, northern fur seals, which are common in earlier sites, drop in abundance relative to remaining marine animals. We have previously established that Holocene humans in central California were hunting gregariously-breeding northern fur seals from mainland rookeries. These seals breed exclusively on offshore islands today, typically at high latitudes. Their restriction to these isolated sites today may be a response to human overexploitation of their mainland rookeries prehistorically. Finally, collection of oxygen and carbon isotope data from mussels at the archaeological sites, while still in a preliminary phase, has uncovered no evidence for a conspicuous change in near shore marine temperature or productivity coincident with the loss of fur seals and the shift to use of terrestrial resources.
Directionality of recent bird distribution shifts and climate change in Great Britain.
Gillings, Simon; Balmer, Dawn E; Fuller, Robert J
2015-06-01
There is good evidence that species' distributions are shifting poleward in response to climate change and wide interest in the magnitude of such responses for scientific and conservation purposes. It has been suggested from the directions of climatic changes that species' distribution shifts may not be simply poleward, but this has been rarely tested with observed data. Here, we apply a novel approach to measuring range shifts on axes ranging through 360°, to recent data on the distributions of 122 species of British breeding birds during 1988-1991 and 2008-2011. Although previously documented poleward range shifts have continued, with an average 13.5 km shift northward, our analysis indicates this is an underestimate because it ignores common and larger shifts that occurred along axes oriented to the north-west and north-east. Trailing edges contracted from a broad range of southerly directions. Importantly, these results are derived from systematically collected data so confounding observer-effort biases can be discounted. Analyses of climate for the same period show that whilst temperature trends should drive species along a north-north-westerly trajectory, directional responses to precipitation will depend on both the time of year that is important for determining a species' distribution, and the location of the range margin. Directions of species' range centroid shift were not correlated with spatial trends in any single climate variable. We conclude that range shifts of British birds are multidirectional, individualistic and probably determined by species-specific interactions of multiple climate factors. Climate change is predicted to lead to changes in community composition through variation in the rates that species' ranges shift; our results suggest communities could change further owing to constituent species shifting along different trajectories. We recommend more studies consider directionality in climate and range dynamics to produce more appropriate measures of observed and expected responses to climate change. © 2014 John Wiley & Sons Ltd.
Chow, Sy-Miin; Ou, Lu; Ciptadi, Arridhana; Prince, Emily B; You, Dongjun; Hunter, Michael D; Rehg, James M; Rozga, Agata; Messinger, Daniel S
2018-06-01
A growing number of social scientists have turned to differential equations as a tool for capturing the dynamic interdependence among a system of variables. Current tools for fitting differential equation models do not provide a straightforward mechanism for diagnosing evidence for qualitative shifts in dynamics, nor do they provide ways of identifying the timing and possible determinants of such shifts. In this paper, we discuss regime-switching differential equation models, a novel modeling framework for representing abrupt changes in a system of differential equation models. Estimation was performed by combining the Kim filter (Kim and Nelson State-space models with regime switching: classical and Gibbs-sampling approaches with applications, MIT Press, Cambridge, 1999) and a numerical differential equation solver that can handle both ordinary and stochastic differential equations. The proposed approach was motivated by the need to represent discrete shifts in the movement dynamics of [Formula: see text] mother-infant dyads during the Strange Situation Procedure (SSP), a behavioral assessment where the infant is separated from and reunited with the mother twice. We illustrate the utility of a novel regime-switching differential equation model in representing children's tendency to exhibit shifts between the goal of staying close to their mothers and intermittent interest in moving away from their mothers to explore the room during the SSP. Results from empirical model fitting were supplemented with a Monte Carlo simulation study to evaluate the use of information criterion measures to diagnose sudden shifts in dynamics.
NASA Astrophysics Data System (ADS)
Ortega, Cristina; Vargas, Gabriel; Rutllant, José A.; Jackson, Donald; Méndez, César
2012-11-01
Water availability in the semiarid western coast of Chile (30-32°S) is conditioned by high interannual precipitation variability, reflecting the transition between arid subtropical and moist mid-latitude climates in the Southeastern Pacific Ocean. A paleoclimate reconstruction based on the latest Pleistocene-Holocene geological record from the Quebrada Santa Julia archeological site in Chile (31°50'S) and on modern meteorological mechanisms producing alluvial episodes in this region indicates a major change in the rainfall regime shortly after 8600 cal yr BP. This, together with other paleoclimate proxies along the west coast of South America (34°-14°S), suggests La Niña-like conditions 13,000-8600 cal yr BP. Based on sedimentological and geomorphologic evidence, we hypothesized that the absence of heavy rainfall events in northern Chile and the new hydrological regime that prevailed ca. 8600-5700 cal yr BP in north-central Chile resulted from an increase in the large-scale westerly flow over central Chile, as expected in near-neutral ENSO conditions. This atmospheric circulation anomaly is compatible with an equatorward shift of the influence of the Southeast Pacific Subtropical Anticyclone relative to the early Holocene, prior to the onset of modern ENSO variability.
Regime shifts and panarchies in regional scale social ...
In this article we summarize histories of nonlinear, complex interactions among societal, legal, and ecosystem dynamics in six North American water basins, as they respond to changing climate. These case studies were chosen to explore the conditions for emergence of adaptive governance in heavily regulated and developed social-ecological systems nested within a hierarchical governmental system. We summarize resilience assessments conducted in each system to provide a synthesis and reference by the other articles in this special feature. We also present a general framework used to evaluate the interactions between society and ecosystem regimes and the governance regimes chosen to mediate those interactions. The case studies show different ways that adaptive governance may be triggered, facilitated, or constrained by ecological and/or legal processes. The resilience assessments indicate that complex interactions among the governance and ecosystem components of these systems can produce different trajectories, which include patterns of (a) development and stabilization, (b) cycles of crisis and recovery, which includes lurches in adaptation and learning, and (3) periods of innovation, novelty, and transformation. Exploration of cross scale (Panarchy) interactions among levels and sectors of government and society illustrate that they may constrain development trajectories, but may also provide stability during crisis or innovation at smaller scales; create crises,
Sensitivity of the Colorado Plateau to change: Climate, ecosystems, and society
Schwinning, S.; Belnap, J.; Bowling, David R.; Ehleringer, J.R.
2008-01-01
The Colorado Plateau is located in the interior, dry end of two moisture trajectories coming from opposite directions, which have made this region a target for unusual climate fluctuations. A multidecadal drought event some 850 years ago may have eliminated maize cultivation by the first human settlers of the Colorado Plateau, the Fremont and Anasazi people, and contributed to the abandonment of their settlements. Even today, ranching and farming are vulnerable to drought and struggle to persist. The recent use of the Colorado Plateau primarily as rangeland has made this region less tolerant to drought due to unprecedented levels of surface disturbances that destroy biological crusts, reduce soil carbon and nitrogen stocks, and increase rates of soil erosion. The most recent drought of 2002 demonstrated the vulnerability of the Colorado Plateau in its currently depleted state and the associated costs to the local economies. New climate predictions for the southwestern United States include the possibility of a long-term shift to warmer, more arid conditions, punctuated by megadroughts not seen since medieval times. It remains to be seen whether the present-day extractive industries, aided by external subsidies, can persist in a climate regime that apparently exceeded the adaptive capacities of the Colorado Plateau's prehistoric agriculturalists.
NASA Astrophysics Data System (ADS)
Lyons, Robert P.; Scholz, Christopher A.; Cohen, Andrew S.; King, John W.; Brown, Erik T.; Ivory, Sarah J.; Johnson, Thomas C.; Deino, Alan L.; Reinthal, Peter N.; McGlue, Michael M.; Blome, Margaret W.
2015-12-01
The transport of moisture in the tropics is a critical process for the global energy budget and on geologic timescales, has markedly influenced continental landscapes, migratory pathways, and biological evolution. Here we present a continuous, first-of-its-kind 1.3-My record of continental hydroclimate and lake-level variability derived from drill core data from Lake Malawi, East Africa (9-15° S). Over the Quaternary, we observe dramatic shifts in effective moisture, resulting in large-scale changes in one of the world's largest lakes and most diverse freshwater ecosystems. Results show evidence for 24 lake level drops of more than 200 m during the Late Quaternary, including 15 lowstands when water levels were more than 400 m lower than modern. A dramatic shift is observed at the Mid-Pleistocene Transition (MPT), consistent with far-field climate forcing, which separates vastly different hydroclimate regimes before and after ∼800,000 years ago. Before 800 ka, lake levels were lower, indicating a climate drier than today, and water levels changed frequently. Following the MPT high-amplitude lake level variations dominate the record. From 800 to 100 ka, a deep, often overfilled lake occupied the basin, indicating a wetter climate, but these highstands were interrupted by prolonged intervals of extreme drought. Periods of high lake level are observed during times of high eccentricity. The extreme hydroclimate variability exerted a profound influence on the Lake Malawi endemic cichlid fish species flock; the geographically extensive habitat reconfiguration provided novel ecological opportunities, enabling new populations to differentiate rapidly to distinct species.
Lyons, Robert P.; Scholz, Christopher A.; Cohen, Andrew S.; King, John W.; Brown, Erik T.; Ivory, Sarah J.; Johnson, Thomas C.; Deino, Alan L.; Reinthal, Peter N.; McGlue, Michael M.; Blome, Margaret W.
2015-01-01
The transport of moisture in the tropics is a critical process for the global energy budget and on geologic timescales, has markedly influenced continental landscapes, migratory pathways, and biological evolution. Here we present a continuous, first-of-its-kind 1.3-My record of continental hydroclimate and lake-level variability derived from drill core data from Lake Malawi, East Africa (9–15° S). Over the Quaternary, we observe dramatic shifts in effective moisture, resulting in large-scale changes in one of the world’s largest lakes and most diverse freshwater ecosystems. Results show evidence for 24 lake level drops of more than 200 m during the Late Quaternary, including 15 lowstands when water levels were more than 400 m lower than modern. A dramatic shift is observed at the Mid-Pleistocene Transition (MPT), consistent with far-field climate forcing, which separates vastly different hydroclimate regimes before and after ∼800,000 years ago. Before 800 ka, lake levels were lower, indicating a climate drier than today, and water levels changed frequently. Following the MPT high-amplitude lake level variations dominate the record. From 800 to 100 ka, a deep, often overfilled lake occupied the basin, indicating a wetter climate, but these highstands were interrupted by prolonged intervals of extreme drought. Periods of high lake level are observed during times of high eccentricity. The extreme hydroclimate variability exerted a profound influence on the Lake Malawi endemic cichlid fish species flock; the geographically extensive habitat reconfiguration provided novel ecological opportunities, enabling new populations to differentiate rapidly to distinct species. PMID:26644580
Lyons, Robert P; Scholz, Christopher A; Cohen, Andrew S; King, John W; Brown, Erik T; Ivory, Sarah J; Johnson, Thomas C; Deino, Alan L; Reinthal, Peter N; McGlue, Michael M; Blome, Margaret W
2015-12-22
The transport of moisture in the tropics is a critical process for the global energy budget and on geologic timescales, has markedly influenced continental landscapes, migratory pathways, and biological evolution. Here we present a continuous, first-of-its-kind 1.3-My record of continental hydroclimate and lake-level variability derived from drill core data from Lake Malawi, East Africa (9-15° S). Over the Quaternary, we observe dramatic shifts in effective moisture, resulting in large-scale changes in one of the world's largest lakes and most diverse freshwater ecosystems. Results show evidence for 24 lake level drops of more than 200 m during the Late Quaternary, including 15 lowstands when water levels were more than 400 m lower than modern. A dramatic shift is observed at the Mid-Pleistocene Transition (MPT), consistent with far-field climate forcing, which separates vastly different hydroclimate regimes before and after ∼800,000 years ago. Before 800 ka, lake levels were lower, indicating a climate drier than today, and water levels changed frequently. Following the MPT high-amplitude lake level variations dominate the record. From 800 to 100 ka, a deep, often overfilled lake occupied the basin, indicating a wetter climate, but these highstands were interrupted by prolonged intervals of extreme drought. Periods of high lake level are observed during times of high eccentricity. The extreme hydroclimate variability exerted a profound influence on the Lake Malawi endemic cichlid fish species flock; the geographically extensive habitat reconfiguration provided novel ecological opportunities, enabling new populations to differentiate rapidly to distinct species.
Analysis of shifts in the spatial distribution of vegetation due to climate change
NASA Astrophysics Data System (ADS)
del Jesus, Manuel; Díez-Sierra, Javier; Rinaldo, Andrea; Rodríguez-Iturbe, Ignacio
2017-04-01
Climate change will modify the statistical regime of most climatological variables, inducing changes on average values and in the natural variability of environmental variables. These environmental variables may be used to explain the spatial distribution of functional types of vegetation in arid and semiarid watersheds through the use of plant optimization theories. Therefore, plant optimization theories may be used to approximate the response of the spatial distribution of vegetation to a changing climate. Predicting changes in these spatial distributions is important to understand how climate change may affect vegetated ecosystems, but it is also important for hydrological engineering applications where climate change effects on water availability are assessed. In this work, Maximum Entropy Production (MEP) is used as the plant optimization theory that describes the spatial distribution of functional types of vegetation. Current climatological conditions are obtained from direct observations from meteorological stations. Climate change effects are evaluated for different temporal horizons and different climate change scenarios using numerical model outputs from the CMIP5. Rainfall estimates are downscaled by means of a stochastic point process used to model rainfall. The study is carried out for the Rio Salado watershed, located within the Sevilleta LTER site, in New Mexico (USA). Results show the expected changes in the spatial distribution of vegetation and allow to evaluate the expected variability of the changes. The updated spatial distributions allow to evaluate the vegetated ecosystem health and its updated resilience. These results can then be used to inform the hydrological modeling part of climate change assessments analyzing water availability in arid and semiarid watersheds.
Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years.
Kelly, Ryan; Chipman, Melissa L; Higuera, Philip E; Stefanova, Ivanka; Brubaker, Linda B; Hu, Feng Sheng
2013-08-06
Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000-3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000-500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate-fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming.
How will biotic interactions influence climate change-induced range shifts?
HilleRisLambers, Janneke; Harsch, Melanie A; Ettinger, Ailene K; Ford, Kevin R; Theobald, Elinore J
2013-09-01
Biotic interactions present a challenge in determining whether species distributions will track climate change. Interactions with competitors, consumers, mutualists, and facilitators can strongly influence local species distributions, but few studies assess how and whether these interactions will impede or accelerate climate change-induced range shifts. In this paper, we explore how ecologists might move forward on this question. We first outline the conditions under which biotic interactions can result in range shifts that proceed faster or slower than climate velocity and result in ecological surprises. Next, we use our own work to demonstrate that experimental studies documenting the strength of biotic interactions across large environmental gradients are a critical first step for understanding whether they will influence climate change-induced range shifts. Further progress could be made by integrating results from these studies into modeling frameworks to predict how or generalize when biotic interactions mediate how changing climates influence range shifts. Finally, we argue that many more case studies like those described here are needed to explore the importance of biotic interactions during climate change-induced range shifts. © 2013 New York Academy of Sciences.
Evidence for a regime shift in nitrogen export from a forested watershed
J. R. Webster; Jennifer Knoepp; Wayne Swank; Chelcy Miniat
2016-01-01
In this study, we document a functional regime shift in stream inorganic nitrogen (N) processing indicated by a major change in N export from a forested watershed. Evidence from 36Â years of data following experimental clearcut logging at Coweeta Hydrologic Laboratory, NC, suggests that forest disturbance in this area can cause elevation of dissolved inorganic...
Goring, Simon J; Williams, John W
2017-04-01
Contemporary forest inventory data are widely used to understand environmental controls on tree species distributions and to construct models to project forest responses to climate change, but the stability and representativeness of contemporary tree-climate relationships are poorly understood. We show that tree-climate relationships for 15 tree genera in the upper Midwestern US have significantly altered over the last two centuries due to historical land-use and climate change. Realised niches have shifted towards higher minimum temperatures and higher rainfall. A new attribution method implicates both historical climate change and land-use in these shifts, with the relative importance varying among genera and climate variables. Most climate/land-use interactions are compounding, in which historical land-use reinforces shifts in species-climate relationships toward wetter distributions, or confounding, in which land-use complicates shifts towards warmer distributions. Compounding interactions imply that contemporary-based models of species distributions may underestimate species resilience to climate change. © 2017 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Huang, Q.; Sauer, J.; Dubayah, R.
2015-12-01
Species distribution shift (or referred to as "fingerprint of climate change") as a primary mechanism to adapt climate change has been of great interest to ecologists and conservation practitioners. Recent meta-analyses have concluded that a wide range of animal and plant species are already shifting their distribution. However majority of the literature has focused on analyzing recent poleward and elevationally upward shift of species distribution. However if measured only in poleward shifts, the fingerprint of climate change will be underestimated significantly. In this study, we demonstrate a centroid model for range-wide analysis of distribution shifts using the North American Breeding Bird Survey. The centroid model is based on a hierarchical Bayesian framework which models population change within physiographic strata while accounting for several factors affecting species detectability. We used the centroid approach to examine large number of species permanent resident species in North America and evaluated the dreiction and magnitude of their shifting distribution. To examine the inferential ability of mean temperature and precipitation, we test a hypothesis based on climate velocity theory that species would be more likely to shift their distribution or would shift with greater magnitude in in regions with high climate change velocity. For species with significant shifts of distribution, we establish a precipitation model and a temperature model to explain their change of abundance at the strata level. Two models which are composed of mean and extreme climate indices respectively are also established to test the influences of changes in gradual and extreme climate trends.
Jezkova, Tereza; Jaeger, Jef R.; Oláh-Hemmings, Viktória; Jones, K. Bruce; Lara-Resendiz, Rafael A.; Mulcahy, Daniel G.; Riddle, Brett R.
2015-01-01
During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions – niches – to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard (Phrynosoma platyrhinos), a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post-LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change. PMID:27231410
Jezkova, Tereza; Jaeger, Jef R; Oláh-Hemmings, Viktória; Jones, K Bruce; Lara-Resendiz, Rafael A; Mulcahy, Daniel G; Riddle, Brett R
2016-05-01
During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions - niches - to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard ( Phrynosoma platyrhinos ), a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post-LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change.
NASA Astrophysics Data System (ADS)
Kennedy, R. S.
2010-12-01
Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.
Catastrophic Regime Shift in Water Reservoirs and São Paulo Water Supply Crisis.
Coutinho, Renato M; Kraenkel, Roberto A; Prado, Paulo I
2015-01-01
The relation between rainfall and water accumulated in reservoirs comprises nonlinear feedbacks. Here we show that they may generate alternative equilibrium regimes, one of high water-volume, the other of low water-volume. Reservoirs can be seen as socio-environmental systems at risk of regime shifts, characteristic of tipping point transitions. We analyze data from stored water, rainfall, and water inflow and outflow in the main reservoir serving the metropolitan area of São Paulo, Brazil, by means of indicators of critical regime shifts, and find a strong signal of a transition. We furthermore build a mathematical model that gives a mechanistic view of the dynamics and demonstrates that alternative stable states are an expected property of water reservoirs. We also build a stochastic version of this model that fits well to the data. These results highlight the broader aspect that reservoir management must account for their intrinsic bistability, and should benefit from dynamical systems theory. Our case study illustrates the catastrophic consequences of failing to do so.
Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.
Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G
2014-01-01
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.
Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic
Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.
2014-01-01
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.
Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries
2013-01-01
Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change. PMID:23467649
Assessing changes in failure probability of dams in a changing climate
NASA Astrophysics Data System (ADS)
Mallakpour, I.; AghaKouchak, A.; Moftakhari, H.; Ragno, E.
2017-12-01
Dams are crucial infrastructures and provide resilience against hydrometeorological extremes (e.g., droughts and floods). In 2017, California experienced series of flooding events terminating a 5-year drought, and leading to incidents such as structural failure of Oroville Dam's spillway. Because of large socioeconomic repercussions of such incidents, it is of paramount importance to evaluate dam failure risks associated with projected shifts in the streamflow regime. This becomes even more important as the current procedures for design of hydraulic structures (e.g., dams, bridges, spillways) are based on the so-called stationary assumption. Yet, changes in climate are anticipated to result in changes in statistics of river flow (e.g., more extreme floods) and possibly increasing the failure probability of already aging dams. Here, we examine changes in discharge under two representative concentration pathways (RCPs): RCP4.5 and RCP8.5. In this study, we used routed daily streamflow data from ten global climate models (GCMs) in order to investigate possible climate-induced changes in streamflow in northern California. Our results show that while the average flow does not show a significant change, extreme floods are projected to increase in the future. Using the extreme value theory, we estimate changes in the return periods of 50-year and 100-year floods in the current and future climates. Finally, we use the historical and future return periods to quantify changes in failure probability of dams in a warming climate.
USDA-ARS?s Scientific Manuscript database
The Optimal Ranking Regime (ORR) method was used to identify intra- to multi-decadal (IMD) time windows containing significant ranking sequences in U.S. climate division temperature data. The simplicity of the ORR procedure’s output – a time series’ most significant non-overlapping periods of high o...
Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie
2016-01-01
Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change. PMID:27621443
Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie
2016-09-27
Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change.
Control of the multimillennial wildfire size in boreal North America by spring climatic conditions
Ali, Adam A.; Blarquez, Olivier; Girardin, Martin P.; Hély, Christelle; Tinquaut, Fabien; El Guellab, Ahmed; Valsecchi, Verushka; Terrier, Aurélie; Bremond, Laurent; Genries, Aurélie; Gauthier, Sylvie; Bergeron, Yves
2012-01-01
Wildfire activity in North American boreal forests increased during the last decades of the 20th century, partly owing to ongoing human-caused climatic changes. How these changes affect regional fire regimes (annual area burned, seasonality, and number, size, and severity of fires) remains uncertain as data available to explore fire–climate–vegetation interactions have limited temporal depth. Here we present a Holocene reconstruction of fire regime, combining lacustrine charcoal analyses with past drought and fire-season length simulations to elucidate the mechanisms linking long-term fire regime and climatic changes. We decomposed fire regime into fire frequency (FF) and biomass burned (BB) and recombined these into a new index to assess fire size (FS) fluctuations. Results indicated that an earlier termination of the fire season, due to decreasing summer radiative insolation and increasing precipitation over the last 7.0 ky, induced a sharp decrease in FF and BB ca. 3.0 kyBP toward the present. In contrast, a progressive increase of FS was recorded, which is most likely related to a gradual increase in temperatures during the spring fire season. Continuing climatic warming could lead to a change in the fire regime toward larger spring wildfires in eastern boreal North America. PMID:23213207
Huang, Qiongyu; Sauer, John R; Dubayah, Ralph O
2017-09-01
Shifts in species distributions are major fingerprint of climate change. Examining changes in species abundance structures at a continental scale enables robust evaluation of climate change influences, but few studies have conducted these evaluations due to limited data and methodological constraints. In this study, we estimate temporal changes in abundance from North American Breeding Bird Survey data at the scale of physiographic strata to examine the relative influence of different components of climatic factors and evaluate the hypothesis that shifting species distributions are multidirectional in resident bird species in North America. We quantify the direction and velocity of the abundance shifts of 57 permanent resident birds over 44 years using a centroid analysis. For species with significant abundance shifts in the centroid analysis, we conduct a more intensive correlative analysis to identify climate components most strongly associated with composite change of abundance within strata. Our analysis focus on two contrasts: the relative importance of climate extremes vs. averages, and of temperature vs. precipitation in strength of association with abundance change. Our study shows that 36 species had significant abundance shifts over the study period. The average velocity of the centroid is 5.89 km·yr -1 . The shifted distance on average covers 259 km, 9% of range extent. Our results strongly suggest that the climate change fingerprint in studied avian distributions is multidirectional. Among 6 directions with significant abundance shifts, the northwestward shift was observed in the largest number of species (n = 13). The temperature/average climate model consistently has greater predictive ability than the precipitation/extreme climate model in explaining strata-level abundance change. Our study shows heterogeneous avian responses to recent environmental changes. It highlights needs for more species-specific approaches to examine contributing factors to recent distributional changes and for comprehensive conservation planning for climate change adaptation. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Evaluating rainfall errors in global climate models through cloud regimes
NASA Astrophysics Data System (ADS)
Tan, Jackson; Oreopoulos, Lazaros; Jakob, Christian; Jin, Daeho
2017-07-01
Global climate models suffer from a persistent shortcoming in their simulation of rainfall by producing too much drizzle and too little intense rain. This erroneous distribution of rainfall is a result of deficiencies in the representation of underlying processes of rainfall formation. In the real world, clouds are precursors to rainfall and the distribution of clouds is intimately linked to the rainfall over the area. This study examines the model representation of tropical rainfall using the cloud regime concept. In observations, these cloud regimes are derived from cluster analysis of joint-histograms of cloud properties retrieved from passive satellite measurements. With the implementation of satellite simulators, comparable cloud regimes can be defined in models. This enables us to contrast the rainfall distributions of cloud regimes in 11 CMIP5 models to observations and decompose the rainfall errors by cloud regimes. Many models underestimate the rainfall from the organized convective cloud regime, which in observation provides half of the total rain in the tropics. Furthermore, these rainfall errors are relatively independent of the model's accuracy in representing this cloud regime. Error decomposition reveals that the biases are compensated in some models by a more frequent occurrence of the cloud regime and most models exhibit substantial cancellation of rainfall errors from different regimes and regions. Therefore, underlying relatively accurate total rainfall in models are significant cancellation of rainfall errors from different cloud types and regions. The fact that a good representation of clouds does not lead to appreciable improvement in rainfall suggests a certain disconnect in the cloud-precipitation processes of global climate models.
Pace of shifts in climate regions increases with global temperature
NASA Astrophysics Data System (ADS)
Mahlstein, Irina; Daniel, John S.; Solomon, Susan
2013-08-01
Human-induced climate change causes significant changes in local climates, which in turn lead to changes in regional climate zones. Large shifts in the world distribution of Köppen-Geiger climate classifications by the end of this century have been projected. However, only a few studies have analysed the pace of these shifts in climate zones, and none has analysed whether the pace itself changes with increasing global mean temperature. In this study, pace refers to the rate at which climate zones change as a function of amount of global warming. Here we show that present climate projections suggest that the pace of shifting climate zones increases approximately linearly with increasing global temperature. Using the RCP8.5 emissions pathway, the pace nearly doubles by the end of this century and about 20% of all land area undergoes a change in its original climate. This implies that species will have increasingly less time to adapt to Köppen zone changes in the future, which is expected to increase the risk of extinction.
Species biogeography predicts drought responses in a seasonally dry tropical forest
NASA Astrophysics Data System (ADS)
Schwartz, N.; Powers, J. S.; Vargas, G.; Xu, X.; Smith, C. M.; Brodribb, T.; Werden, L. K.; Becknell, J.; Medvigy, D.
2017-12-01
The timing, distribution, and amount of rainfall in the seasonal tropics have shifted in recent years, with consequences for seasonally dry tropical forests (SDTF). SDTF are sensitive to changing rainfall regimes and drought conditions, but sensitivity to drought varies substantially across species. One potential explanation of species differences is that species that experience dry conditions more frequently throughout their range will be better able to cope with drought than species from wetter climates, because species from drier climates will be better adapted to drought. An El-Niño induced drought in 2015 presented an opportunity to assess species-level differences in mortality in SDTF, and to ask whether the ranges of rainfall conditions species experience and the average rainfall regimes in species' ranges predict differences in mortality rates in Costa Rican SDTF. We used field plot data from northwest Costa Rica to determine species' level mortality rates. Mortality rates ranged substantially across species, with some species having no dead individuals to as high as 50% mortality. To quantify rainfall conditions across species' ranges, we used species occurrence data from the Global Biodiversity Information Facility, and rainfall data from the Chelsa climate dataset. We found that while the average and range of mean annual rainfall across species ranges did not predict drought-induced mortality in the field plots, across-range averages of the seasonality index, a measure of rainfall seasonality, was strongly correlated with species-level drought mortality (r = -0.62, p < 0.05), with species from more strongly seasonal climates experiencing less severe drought mortality. Furthermore, we found that the seasonality index was a stronger predictor of mortality than any individual functional trait we considered. This result shows that species' biogeography may be an important factor for how species will respond to future drought, and may be a more integrative predictor than individual functional traits.
NASA Astrophysics Data System (ADS)
José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María
2016-04-01
In the current context of global change, mountainous areas constitute singular locations in which these changes can be traced. Early detection of significant shifts of snow state variables in semiarid regions can help assess climate variability impacts and future snow dynamics in northern latitudes. The Sierra Nevada mountain range, in southern Spain, is a representative example of snow areas in Mediterranean-climate regions and both monitoring and modelling efforts have been performed to assess this variability and its significant scales. This work presents a decadal trend analysis throughout the 50-yr period 1960-2010 performed on some snow-related variables over Sierra Nevada, in Spain, which is included in the global climate change observatories network around the world. The study area comprises 4583 km2 distributed throughout the five head basins influenced by these mountains, with altitude values ranging from 140 to 3479 m.a.s.l., just 40 km from the Mediterranean coastline. Meteorological variables obtained from 44 weather stations from the National Meteorological Agency were studied and further used as input to the distributed hydrological model WiMMed (Polo et al., 2010), operational at the study area, to obtain selected snow variables. Decadal trends were obtained, together with their statistical significance, over the following variables, averaged over the whole study area: (1) annual precipitation; (2) annual snowfall; annual (3) mean, (4) maximum and (5) minimum daily temperature; annual (6) mean and (7) maximum daily fraction of snow covered areas; (8) annual number of days with snow cover; (9) mean and (10) maximum daily snow water equivalent; (11) annual number of extreme precipitation events; and (12) mean intensity of the annual extreme precipitation events. These variables were also studied over each of the five regions associated to each basin in the range. Globally decreasing decadal trends were obtained for all the meteorological variables, with the exception of the average annual mean and maximum daily temperature. In the case of the snow-related variables, no significant trends are observed at this time scale; nonetheless, a global decreasing rate is predominant in most of the variables. The torrential events are more frequent in the last decades of the study period, with an apparently increasing associated dispersion. This study constitutes a first sound analysis of the long-term observed trends of the snow regime in this area under the context of increasing temperature and decreasing precipitation regimes. The results highlight the complexity of non-linearity in environmental processes in Mediterranean regions, and point out to a significant shift in the precipitation and temperature regime, and thus on the snow-affected hydrological variables in the study area.
NASA Astrophysics Data System (ADS)
Wason, J. W., III; Dovciak, M.; Bevilacqua, E.
2015-12-01
Climate change in the northeastern United States is expected to shift climatic (temperature) envelopes for spruce-fir forests upslope and northward decreasing their area in the region by 2100. Coarse scale landscape models however, may not incorporate heterogeneity in climatic conditions in mountains that can create climatic refugia for species in high-elevation spruce-fir forests. To determine spatial and temporal trends in climate of mountain spruce-fir forests we measured microclimate at 98 forest plots in 2012 and 2013 on 12 mountains in New York, Vermont, New Hampshire, and Maine. By linking regional climate trends with our spatial climate data we calculated elevational shifts in temperature envelopes during the last 50 years. Additionally we linked our spatial dataset to a range of future climate conditions for 2100 based on Representative Concentration Pathways (1 to 5°C warming). We hypothesized that climates have already changed to an extent that spruce-fir forests should begin to respond and that future climate conditions may shift suitable habitat for spruce-fir forests beyond their current range. We found that regional climate change over the last 50 years has resulted in warming of 0.66 and 1.62°C for average annual daily maximum (Tmax) and minimum (Tmin) temperatures in the region. When linked to our spatial microclimate model, this warming results in a 100 (Tmax) and 312m (Tmin) upslope shift in temperature envelopes. Future climate projections suggest that by 2100 Tmax may shift upslope between 152 and 758m for the 1 and 5°C scenarios respectively, while Tmin may shift upslope between 192 and 962m. Spruce-fir forests typically occupy an elevation range of ~500m suggesting that the climate experienced in these forests 50 years ago may not be found within their elevation range by 2100. These results are discussed in the context of responses of tree populations and growth rates observed along the elevation gradients of northeastern United States.
Euskirchen, E.S.; McGuire, A. David; Rupp, T.S.; Chapin, F. S.; Walsh, J.E.
2009-01-01
In high latitudes, changes in climate impact fire regimes and snow cover duration, altering the surface albedo and the heating of the regional atmosphere. In the western Arctic, under four scenarios of future climate change and future fire regimes (2003–2100), we examined changes in surface albedo and the related changes in regional atmospheric heating due to: (1) vegetation changes following a changing fire regime, and (2) changes in snow cover duration. We used a spatially explicit dynamic vegetation model (Alaskan Frame-based Ecosystem Code) to simulate changes in successional dynamics associated with fire under the future climate scenarios, and the Terrestrial Ecosystem Model to simulate changes in snow cover. Changes in summer heating due to the changes in the forest stand age distributions under future fire regimes showed a slight cooling effect due to increases in summer albedo (mean across climates of −0.9 W m−2 decade−1). Over this same time period, decreases in snow cover (mean reduction in the snow season of 4.5 d decade−1) caused a reduction in albedo, and a heating effect (mean across climates of 4.3 W m−2 decade−1). Adding both the summer negative change in atmospheric heating due to changes in fire regimes to the positive changes in atmospheric heating due to changes in the length of the snow season resulted in a 3.4 W m−2 decade−1 increase in atmospheric heating. These findings highlight the importance of gaining a better understanding of the influences of changes in surface albedo on atmospheric heating due to both changes in the fire regime and changes in snow cover duration.
Interdisciplinary knowledge exchange across scales in a globally changing marine environment.
McDonald, Karlie S; Hobday, Alistair J; Fulton, Elizabeth A; Thompson, Peter A
2018-07-01
The effects of anthropogenic global environmental change on biotic and abiotic processes have been reported in aquatic systems across the world. Complex synergies between concurrent environmental stressors and the resilience of the system to regime shifts, which vary in space and time, determine the capacity for marine systems to maintain structure and function with global environmental change. Consequently, an interdisciplinary approach that facilitates the development of new methods for the exchange of knowledge between scientists across multiple scales is required to effectively understand, quantify and predict climate impacts on marine ecosystem services. We use a literature review to assess the limitations and assumptions of current pathways to exchange interdisciplinary knowledge and the transferability of research findings across spatial and temporal scales and levels of biological organization to advance scientific understanding of global environmental change in marine systems. We found that species-specific regional scale climate change research is most commonly published, and "supporting" is the ecosystem service most commonly referred to in publications. In addition, our paper outlines a trajectory for the future development of integrated climate change science for sustaining marine ecosystem services such as investment in interdisciplinary education and connectivity between disciplines. © 2018 John Wiley & Sons Ltd.
Hydroclimatic changes of Lake Bosten in Northwest China during the last decades.
Yao, Junqiang; Chen, Yaning; Zhao, Yong; Yu, Xiaojing
2018-06-14
Bosten Lake, the largest inland freshwater lake in China, has experienced drastic change over the past five decades. Based on the lake water balance model and climate elasticity method, we identify annual changes in the lake's water components during 1961-2016 and investigate its water balance. We find a complex pattern in the lake's water: a decrease (1961-1987), a rapid increase (1988-2002), a drastic decrease (2003-2012), and a recent drastic increase (2013-2016). We also estimated the lake's water balance, finding that the drastic changes are caused by a climate-driven regime shift coupled with human disturbance. The changes in the lake accelerated after 1987, which may have been driven by regional climate wetting. During 2003 to 2012, implementation of the ecological water conveyance project (EWCP) significantly increased the lake's outflow, while a decreased precipitation led to an increased drought frequency. The glacier retreating trend accelerated by warming, and caused large variations in the observed lake's changes in recent years. Furthermore, wastewater emissions may give rise to water degradation, human activity is completely changing the natural water cycle system in the Bosten Lake. Indeed, the future of Bosten Lake is largely dependent on mankind.
Climate Velocity Can Inform Conservation in a Warming World.
Brito-Morales, Isaac; García Molinos, Jorge; Schoeman, David S; Burrows, Michael T; Poloczanska, Elvira S; Brown, Christopher J; Ferrier, Simon; Harwood, Tom D; Klein, Carissa J; McDonald-Madden, Eve; Moore, Pippa J; Pandolfi, John M; Watson, James E M; Wenger, Amelia S; Richardson, Anthony J
2018-06-01
Climate change is shifting the ranges of species. Simple predictive metrics of range shifts such as climate velocity, that do not require extensive knowledge or data on individual species, could help to guide conservation. We review research on climate velocity, describing the theory underpinning the concept and its assumptions. We highlight how climate velocity has already been applied in conservation-related research, including climate residence time, climate refugia, endemism, historic and projected range shifts, exposure to climate change, and climate connectivity. Finally, we discuss ways to enhance the use of climate velocity in conservation through tailoring it to be more biologically meaningful, informing design of protected areas, conserving ocean biodiversity in 3D, and informing conservation actions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Climate, orography and scale controls on flood frequency in Triveneto (Italy)
NASA Astrophysics Data System (ADS)
Persiano, Simone; Castellarin, Attilio; Salinas, Jose Luis; Domeneghetti, Alessio; Brath, Armando
2016-05-01
The growing concern about the possible effects of climate change on flood frequency regime is leading Authorities to review previously proposed reference procedures for design-flood estimation, such as national flood frequency models. Our study focuses on Triveneto, a broad geographical region in North-eastern Italy. A reference procedure for design flood estimation in Triveneto is available from the Italian NCR research project "VA.PI.", which considered Triveneto as a single homogeneous region and developed a regional model using annual maximum series (AMS) of peak discharges that were collected up to the 1980s by the former Italian Hydrometeorological Service. We consider a very detailed AMS database that we recently compiled for 76 catchments located in Triveneto. All 76 study catchments are characterized in terms of several geomorphologic and climatic descriptors. The objective of our study is threefold: (1) to inspect climatic and scale controls on flood frequency regime; (2) to verify the possible presence of changes in flood frequency regime by looking at changes in time of regional L-moments of annual maximum floods; (3) to develop an updated reference procedure for design flood estimation in Triveneto by using a focused-pooling approach (i.e. Region of Influence, RoI). Our study leads to the following conclusions: (1) climatic and scale controls on flood frequency regime in Triveneto are similar to the controls that were recently found in Europe; (2) a single year characterized by extreme floods can have a remarkable influence on regional flood frequency models and analyses for detecting possible changes in flood frequency regime; (3) no significant change was detected in the flood frequency regime, yet an update of the existing reference procedure for design flood estimation is highly recommended and we propose the RoI approach for properly representing climate and scale controls on flood frequency in Triveneto, which cannot be regarded as a single homogeneous region.
NASA Astrophysics Data System (ADS)
Doi, T.; Behera, S. K.; Yamagata, T.
2014-12-01
The global warming and the Interdecadal Pacific Oscillation (IPO) started influencing the coastal ocean off Western Australia, leading to a dramatic change in the regional climate predictability. The warmed ocean started driving rainfall regionally there after the late 1990s. Because of this, rainfall predictability off Western Australia on a seasonal time scale was drastically enhanced in the late 1990s; it is significantly predictable 5 months ahead after the late 1990s. The high prediction skill of the rainfall in recent decades encourages development of an early warning system of Ningaloo Niño/Niña events to mitigate possible societal as well as agricultural impacts in the granary.
IDENTIFICATION OF REGIME SHIFTS IN TIME SERIES USING NEIGHBORHOOD STATISTICS
The identification of alternative dynamic regimes in ecological systems requires several lines of evidence. Previous work on time series analysis of dynamic regimes includes mainly model-fitting methods. We introduce two methods that do not use models. These approaches use state-...
Changing disturbance regimes, ecological memory, and forest resilience
Johnstone, Jill F.; Allen, Craig D.; Franklin, Jerry F.; Frelich, Lee E.; Harvey, Brian J.; Higuera, Philip E.; Mack, Michelle C.; Meentemeyer, Ross K.; Metz, Margaret R.; Perry, George LW; Schoennagel, Tania; Turner, Monica G.
2016-01-01
Ecological memory is central to how ecosystems respond to disturbance and is maintained by two types of legacies – information and material. Species life-history traits represent an adaptive response to disturbance and are an information legacy; in contrast, the abiotic and biotic structures (such as seeds or nutrients) produced by single disturbance events are material legacies. Disturbance characteristics that support or maintain these legacies enhance ecological resilience and maintain a “safe operating space” for ecosystem recovery. However, legacies can be lost or diminished as disturbance regimes and environmental conditions change, generating a “resilience debt” that manifests only after the system is disturbed. Strong effects of ecological memory on post-disturbance dynamics imply that contingencies (effects that cannot be predicted with certainty) of individual disturbances, interactions among disturbances, and climate variability combine to affect ecosystem resilience. We illustrate these concepts and introduce a novel ecosystem resilience framework with examples of forest disturbances, primarily from North America. Identifying legacies that support resilience in a particular ecosystem can help scientists and resource managers anticipate when disturbances may trigger abrupt shifts in forest ecosystems, and when forests are likely to be resilient.
NASA Astrophysics Data System (ADS)
Prein, A. F.; Ikeda, K.; Liu, C.; Bullock, R.; Rasmussen, R.
2016-12-01
Convective storms are causing extremes such as flooding, landslides, and wind gusts and are related to the development of tornadoes and hail. Convective storms are also the dominant source of summer precipitation in most regions of the Contiguous United States. So far little is known about how convective storms might change due to global warming. This is mainly because of the coarse grid spacing of state-of-the-art climate models that are not able to resolve deep convection explicitly. Instead, coarse resolution models rely on convective parameterization schemes that are a major source of errors and uncertainties in climate change projections. Convection-permitting climate simulations, with grid-spacings smaller than 4 km, show significant improvements in the simulation of convective storms by representing deep convection explicitly. Here we use a pair of 13-year long current and future convection-permitting climate simulations that cover large parts of North America. We use the Method for Object-Based Diagnostic Evaluation (MODE) that incorporates the time dimension (MODE-TD) to analyze the model performance in reproducing storm features in the current climate and to investigate their potential future changes. We show that the model is able to accurately reproduce the main characteristics of convective storms in the present climate. The comparison with the future climate simulation shows that convective storms significantly increase in frequency, intensity, and size. Furthermore, they are projected to move slower which could result in a substantial increase in convective storm-related hazards such as flash floods, debris flows, and landslides. Some regions, such as the North Atlantic, might experience a regime shift that leads to significantly stronger storms that are unrepresented in the current climate.
Climatic controls on Pennsylvanian sequences, United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cecil, C.B.; Dulong, F.T.; Edgar, N.T.
1996-08-01
Temporal and spatial paleoclimate changes were primary controls on changes in sediment supply, both siliciclastic and chemical, in Pennsylvanian deposystems of the United States. Tectonic and eustatic processes, as well as climatically induced changes in sediment supply, controlled accommodation space and sequence stratigraphy within these deposystems. Interbasinal correlations of lithologies sensitive to climate, such as coeval paleosols, provide continental-scale records of climatic and eustatic conditions. Pennsylvanian bio- and lithostratigraphy are indicative of climate change at time scales that range from long-term (tens of millions of years) as Pangea formed and North America moved northward through the paleoequator, to intermediate-term hundredmore » thousand year cycles controlled by orbital forcing, to very short-term events perhaps analogous to El Nino. Because of proximity to the humid tropics, the long-term climate of eastern basins of the United States was generally wetter than western basins. In the east, pluvial parts of climate cycles occur during low-stand events and are recorded by intense chemical weathering, high terrestrial organic productivity, restricted erosion, and siliciclastic sediment starvation. These conditions resulted in highly leached mineral paleosols (Ultisols) and coal beds (Histosols) of interbasinal extent. Drier parts of climate cycles in the east occurred during highstands of sea level when erosion and siliciclastic transport were maximum. In the western basins pluvial periods are generally indicated by shifts from eolian to fluvial and lacustrine sedimentary regimes in continental environments and from evaporate and carbonate to siliciclastic deposition, including black shale petroleum source rocks, in marine environments. Tectonics controlled basin development and glacial eustasy controlled sea level cycles. Climate, however, was the primary control on sediment supply and lithostratigraphy.« less
Mid-latitude shrub steppe plant communities: climate change consequences for soil water resources.
Palmquist, Kyle A; Schlaepfer, Daniel R; Bradford, John B; Lauenroth, William K
2016-09-01
In the coming century, climate change is projected to impact precipitation and temperature regimes worldwide, with especially large effects in drylands. We use big sagebrush ecosystems as a model dryland ecosystem to explore the impacts of altered climate on ecohydrology and the implications of those changes for big sagebrush plant communities using output from 10 Global Circulation Models (GCMs) for two representative concentration pathways (RCPs). We ask: (1) What is the magnitude of variability in future temperature and precipitation regimes among GCMs and RCPs for big sagebrush ecosystems, and (2) How will altered climate and uncertainty in climate forecasts influence key aspects of big sagebrush water balance? We explored these questions across 1980-2010, 2030-2060, and 2070-2100 to determine how changes in water balance might develop through the 21st century. We assessed ecohydrological variables at 898 sagebrush sites across the western US using a process-based soil water model, SOILWAT, to model all components of daily water balance using site-specific vegetation parameters and site-specific soil properties for multiple soil layers. Our modeling approach allowed for changes in vegetation based on climate. Temperature increased across all GCMs and RCPs, whereas changes in precipitation were more variable across GCMs. Winter and spring precipitation was predicted to increase in the future (7% by 2030-2060, 12% by 2070-2100), resulting in slight increases in soil water potential (SWP) in winter. Despite wetter winter soil conditions, SWP decreased in late spring and summer due to increased evapotranspiration (6% by 2030-2060, 10% by 2070-2100) and groundwater recharge (26% and 30% increase by 2030-2060 and 2070-2100). Thus, despite increased precipitation in the cold season, soils may dry out earlier in the year, resulting in potentially longer, drier summer conditions. If winter precipitation cannot offset drier summer conditions in the future, we expect big sagebrush regeneration and survival will be negatively impacted, potentially resulting in shifts in the relative abundance of big sagebrush plant functional groups. Our results also highlight the importance of assessing multiple GCMs to understand the range of climate change outcomes on ecohydrology, which was contingent on the GCM chosen. © 2016 by the Ecological Society of America.
Do GCM's Predict the Climate.... Or the Low Frequency Weather?
NASA Astrophysics Data System (ADS)
Lovejoy, S.; Varon, D.; Schertzer, D. J.
2011-12-01
Over twenty-five years ago, a three-regime scaling model was proposed describing the statistical variability of the atmosphere over time scales ranging from weather scales out to ≈ 100 kyrs. Using modern in situ data reanalyses, monthly surface series (at 5ox5o), 8 "multiproxy" (yearly) series of the Northern hemisphere from 1500- 1980, and GRIP and Vostok paleotemperatures at 5.2 and ≈ 100 year resolutions (over the past 91-420 kyrs), we refine the model and show how it can be understood with the help of new developments in nonlinear dynamics, especially multifractals and cascades. In a scaling range, mean fluctuations in state variables such as temperature ΔT ≈ ΔtH the where Δt is the duration. At small (weather) scales the fluctuation exponents are generally H>0; they grow with scale. At longer scales Δt >τw (≈ 10 days) they change sign, the fluctuations decrease with scale; this is the low variability, "low frequency weather" regime the spectrum is a relatively flat "plateau", it's variability is that of the usual idea of "long term weather statistics". Finally for longer times, Δt>τc ≈ 10 - 100 years, again H>0, the variability again increases with scale. This is the true climate regime. These scaling regimes allow us to objectively define the weather as fluctuations over periods <τw, "climate states", as fluctuations at scale τc and "climate change" as the fluctuations at longer periods >τc). We show that the intermediate regime is the result of the weather regime undergoing a "dimensional transition": at temporal scales longer than the typical lifetime of planetary structures (τw), the spatial degrees of freedom are rapidly quenched, only the temporal degrees of freedom are important. This low frequency weather regime has statistical properties well reproduced not only by weather cascade models, but also by control runs (i.e. without climate forcing) of GCM's (including IPSL and ECHAM GCM's). In order for GCM's to go beyond simply predicting this low frequency weather so as to predict the climate, they need appropriate climate forcings and/ or new internal mechanisms of variability. We examine this using wavelet analyses of forced and unforced GCM outputs, including the ECHO-G simulation used in the Millenium project. For example, we find that climate scenarios with large CO2 increases do give rise to a climate regime but that Hc>1 i.e. much larger than that of natural variability which for temperatures has Hc≈0.4. In comparison, the (largely volcanic) forcing of the ECHO-G Millenium simulation is fairly realistic (Hc≈0.4), although it is not clear that this mechanism can explain the even lower frequency variability found in the paleotemperature series, nor is it clear that this is compatible with low frequency solar or orbital forcings.
Holocene Climate Reconstructions from Lake Water Oxygen Isotopes in NW and SW Greenland
NASA Astrophysics Data System (ADS)
Lasher, G. E.; Axford, Y.; McFarlin, J. M.; Kelly, M. A.; Osterberg, E. C.; Berkelhammer, M. B.; Berman, K.; Kotecki, P.; Gawin, B.
2016-12-01
Reconstructions of stable isotopes of precipitation (SIP) from currently unglaciated parts of Greenland can help elucidate spatial patterns of past climate shifts in this climatically important and complex region. We have developed a 7700-year record of lake water δ18O from a small non-glacial lake in NW Greenland (near Thule Air Base), inferred from the δ18O of subfossil chironomid (insect) head capsules and aquatic mosses. Lake water δ18O remains constant from 8 ka until 4 ka and then declines by 2.5 ‰ to the present, representing a +2.5 to 5.5 °C Holocene Thermal Maximum temperature anomaly for this region. For comparison, two new sediment records from hydrologically connected lakes south of Nuuk in SW Greenland record 8500 years of lake water δ18O, also inferred from δ18O of chironomids. At the time cores were collected during the summer in 2014 and 2015, all lakes reflected SIP and exhibited minimal evaporation influence. Historical monitoring of stable isotopes of precipitation from Thule Air Base and Grønnedal in south Greenland suggest the controls on SIP differ greatly between our two study sites, as would be predicted based upon the strongly Arctic (in the NW) versus North Atlantic (in the SW) atmospheric and marine influences at the two sites. Interpretation of Holocene climate from these two contrasting sites will be discussed. These climate records from the same proxy allow us to compare millennial scale Holocene climate responses to northern hemisphere solar insolation trends in two different climate regimes of Greenland.
NASA Astrophysics Data System (ADS)
Yang, J.; Weisberg, P.; Dilts, T.
2016-12-01
Climate warming can lead to large-scale drought-induced tree mortality events and greatly affect forest landscape resilience. Climatic water deficit (CWD) and its physiographic variations provide a key mechanism in driving landscape dynamics in response to climate change. Although CWD has been successfully applied in niche-based species distribution models, its application in process-based forest landscape models is still scarce. Here we present a framework incorporating fine-scale influence of terrain on ecohydrology in modeling forest landscape dynamics. We integrated CWD with a forest landscape succession and disturbance model (LANDIS-II) to evaluate how tree species distribution might shift in response to different climate-fire scenarios across an elevation-aspect gradient in a semi-arid montane landscape of northeastern Nevada, USA. Our simulations indicated that drought-intolerant tree species such as quaking aspen could experience greatly reduced distributions in the more arid portions of their existing ranges due to water stress limitations under future climate warming scenarios. However, even at the most xeric portions of its range, aspen is likely to persist in certain environmental settings due to unique and often fine-scale combinations of resource availability, species interactions and disturbance regime. The modeling approach presented here allowed identification of these refugia. In addition, this approach helped quantify how the direction and magnitude of fire influences on species distribution would vary across topoclimatic gradients, as well as furthers our understanding on the role of environmental conditions, fire, and inter-specific competition in shaping potential responses of landscape resilience to climate change.
Assessing the sensitivity of avian species abundance to land cover and climate
Jaymi J. LeBrun; Wayne E. Thogmartin; Frank R. Thompson; William D. Dijak; Joshua J. Millspaugh
2016-01-01
Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and...
Climate change in the Hawaiian Islands
Christian Giardina; Frank Hays; Jim Jacobi; Randall Kosaki; Loyal Mehrhoff; Stephen Miller
2008-01-01
In Hawaiâi, the seasonal and geographic distribution of rainfall and temperature has combined with steep, mountainous terrain to produce a wide array of island-scale climate regimes. These varying regimes in turn have supported the diversification of Hawaiâi native plants and animals. Increasing amounts of anthropogenic greenhouse gases will likely alter the...
Simulating dynamic and mixed-severity fire regimes: a process-based fire extension for LANDIS-II
Brian R. Sturtevant; Robert M. Scheller; Brian R. Miranda; Douglas Shinneman; Alexandra Syphard
2009-01-01
Fire regimes result from reciprocal interactions between vegetation and fire that may be further affected by other disturbances, including climate, landform, and terrain. In this paper, we describe fire and fuel extensions for the forest landscape simulation model, LANDIS-II, that allow dynamic interactions among fire, vegetation, climate, and landscape structure, and...
Geographic overview: Climate, phenology, and disturbance regimes in steppe and desert communities
B. J. Weddell
1996-01-01
In midwestern steppes, precipitation peaks in summer, whereas west of the Rocky Mountains, steppes are characterized by summer drought. In western deserts, the amount of precipitation is highly variable. These different climatic regimes result in differences in prevalence of and resilience to disturbances such as herbivory, and differences in susceptibility to invasion...
2016-08-01
climates . Second, the paper found that additional reforms after those introduced in mid-1969 by then Deputy Secretary of Defense David Packard did...Entered EMD during a Bust Funding Climate Acquisition Regime Period (FY) Average APUC Growth* McNamara-Clifford 1964–1969 90% (16) Defense...Funding Climates Acquisition Regime Period (FY) Average APUC Growth* ≥ X̅ + S McNamara-Clifford 1964–1969 90% (16) 3 DSARC 1970–1980 36% (49) 0
Qualitative assessment of climate-driven ecological shifts in the Caspian Sea
Beyraghdar Kashkooli, Omid; Gröger, Joachim; Núñez-Riboni, Ismael
2017-01-01
The worldwide occurrence of complex climate-induced ecological shifts in marine systems is one of the major challenges in sustainable bio-resources management. The occurrence of ecological environment-driven shifts was studied in the Southern Caspian Sea using the “shiftogram” method on available fisheries-related (i.e. commercially important bentho-pelagic fish stocks) ecological and climatic variables. As indicators of potential environmentally driven shift patterns we used indices for the North Atlantic Oscillation, the Southern Oscillation, the Siberian High, the East Atlantic-West Russia pattern, as well as Sea Surface Temperature and surface chlorophyll-a concentration. Given the explorative findings from the serial shift analyses, the cascading and serial order of multiple shift events in climatic-ecologic conditions of the southern Caspian Sea suggested a linkage between external forces and dynamics of ecosystem components and structures in the following order: global-scale climate forces lead to local environmental processes, which in turn lead to biological components dynamics. For the first time, this study indicates that ecological shifts are an integral component of bentho-pelagic subsystem regulatory processes and dynamics. Qualitative correspondence of biological responses of bentho-pelagic stocks to climatic events is one of the supporting evidences that overall Caspian ecosystem structures and functioning might have–at least partially–been impacted by global-scale climatic or local environmental shifts. These findings may help to foster a regional Ecosystem-based Approach to Management (EAM) as an integral part of bentho-pelagic fisheries management plans. PMID:28475609
Are fish outside their usual ranges early indicators of climate-driven range shifts?
Fogarty, Hannah E; Burrows, Michael T; Pecl, Gretta T; Robinson, Lucy M; Poloczanska, Elvira S
2017-05-01
Shifts in species ranges are a global phenomenon, well known to occur in response to a changing climate. New species arriving in an area may become pest species, modify ecosystem structure, or represent challenges or opportunities for fisheries and recreation. Early detection of range shifts and prompt implementation of any appropriate management strategies is therefore crucial. This study investigates whether 'first sightings' of marine species outside their normal ranges could provide an early warning of impending climate-driven range shifts. We examine the relationships between first sightings and marine regions defined by patterns of local climate velocities (calculated on a 50-year timescale), while also considering the distribution of observational effort (i.e. number of sampling days recorded with biological observations in global databases). The marine trajectory regions include climate 'source' regions (areas lacking connections to warmer areas), 'corridor' regions (areas where moving isotherms converge), and 'sink' regions (areas where isotherms locally disappear). Additionally, we investigate the latitudinal band in which first sightings were recorded, and species' thermal affiliations. We found that first sightings are more likely to occur in climate sink and 'divergent' regions (areas where many rapid and diverging climate trajectories pass through) indicating a role of temperature in driving changes in marine species distributions. The majority of our fish first sightings appear to be tropical and subtropical species moving towards high latitudes, as would be expected in climate warming. Our results indicate that first sightings are likely related to longer-term climatic processes, and therefore have potential use to indicate likely climate-driven range shifts. The development of an approach to detect impending range shifts at an early stage will allow resource managers and researchers to better manage opportunities resulting from range-shifting species before they potentially colonize. © 2017 John Wiley & Sons Ltd.
Littell, Jeremy
2015-01-01
Time-varying fire-climate relationships may represent an important component of fire-regime variability, relevant for understanding the controls of fire and projecting fire activity under global-change scenarios. We used time-varying statistical models to evaluate if and how fire-climate relationships varied from 1902-2008, in one of the most flammable forested regions of the western U.S.A. Fire-danger and water-balance metrics yielded the best combination of calibration accuracy and predictive skill in modeling annual area burned. The strength of fire-climate relationships varied markedly at multi-decadal scales, with models explaining < 40% to 88% of the variation in annual area burned. The early 20th century (1902-1942) and the most recent two decades (1985-2008) exhibited strong fire-climate relationships, with weaker relationships for much of the mid 20th century (1943-1984), coincident with diminished burning, less fire-conducive climate, and the initiation of modern fire fighting. Area burned and the strength of fire-climate relationships increased sharply in the mid 1980s, associated with increased temperatures and longer potential fire seasons. Unlike decades with high burning in the early 20th century, models developed using fire-climate relationships from recent decades overpredicted area burned when applied to earlier periods. This amplified response of fire to climate is a signature of altered fire-climate-relationships, and it implicates non-climatic factors in this recent shift. Changes in fuel structure and availability following 40+ yr of unusually low fire activity, and possibly land use, may have resulted in increased fire vulnerability beyond expectations from climatic factors alone. Our results highlight the potential for non-climatic factors to alter fire-climate relationships, and the need to account for such dynamics, through adaptable statistical or processes-based models, for accurately predicting future fire activity.
Higuera, Philip E.; Abatzoglou, John T.; Littell, Jeremy S.; Morgan, Penelope
2015-01-01
Time-varying fire-climate relationships may represent an important component of fire-regime variability, relevant for understanding the controls of fire and projecting fire activity under global-change scenarios. We used time-varying statistical models to evaluate if and how fire-climate relationships varied from 1902-2008, in one of the most flammable forested regions of the western U.S.A. Fire-danger and water-balance metrics yielded the best combination of calibration accuracy and predictive skill in modeling annual area burned. The strength of fire-climate relationships varied markedly at multi-decadal scales, with models explaining < 40% to 88% of the variation in annual area burned. The early 20th century (1902-1942) and the most recent two decades (1985-2008) exhibited strong fire-climate relationships, with weaker relationships for much of the mid 20th century (1943-1984), coincident with diminished burning, less fire-conducive climate, and the initiation of modern fire fighting. Area burned and the strength of fire-climate relationships increased sharply in the mid 1980s, associated with increased temperatures and longer potential fire seasons. Unlike decades with high burning in the early 20th century, models developed using fire-climate relationships from recent decades overpredicted area burned when applied to earlier periods. This amplified response of fire to climate is a signature of altered fire-climate-relationships, and it implicates non-climatic factors in this recent shift. Changes in fuel structure and availability following 40+ yr of unusually low fire activity, and possibly land use, may have resulted in increased fire vulnerability beyond expectations from climatic factors alone. Our results highlight the potential for non-climatic factors to alter fire-climate relationships, and the need to account for such dynamics, through adaptable statistical or processes-based models, for accurately predicting future fire activity. PMID:26114580
Higuera, Philip E; Abatzoglou, John T; Littell, Jeremy S; Morgan, Penelope
2015-01-01
Time-varying fire-climate relationships may represent an important component of fire-regime variability, relevant for understanding the controls of fire and projecting fire activity under global-change scenarios. We used time-varying statistical models to evaluate if and how fire-climate relationships varied from 1902-2008, in one of the most flammable forested regions of the western U.S.A. Fire-danger and water-balance metrics yielded the best combination of calibration accuracy and predictive skill in modeling annual area burned. The strength of fire-climate relationships varied markedly at multi-decadal scales, with models explaining < 40% to 88% of the variation in annual area burned. The early 20th century (1902-1942) and the most recent two decades (1985-2008) exhibited strong fire-climate relationships, with weaker relationships for much of the mid 20th century (1943-1984), coincident with diminished burning, less fire-conducive climate, and the initiation of modern fire fighting. Area burned and the strength of fire-climate relationships increased sharply in the mid 1980s, associated with increased temperatures and longer potential fire seasons. Unlike decades with high burning in the early 20th century, models developed using fire-climate relationships from recent decades overpredicted area burned when applied to earlier periods. This amplified response of fire to climate is a signature of altered fire-climate-relationships, and it implicates non-climatic factors in this recent shift. Changes in fuel structure and availability following 40+ yr of unusually low fire activity, and possibly land use, may have resulted in increased fire vulnerability beyond expectations from climatic factors alone. Our results highlight the potential for non-climatic factors to alter fire-climate relationships, and the need to account for such dynamics, through adaptable statistical or processes-based models, for accurately predicting future fire activity.
NASA Astrophysics Data System (ADS)
Stella, John C.; Riddle, Jess; Piégay, Hervé; Gagnage, Matthieu; Trémélo, Marie-Laure
2013-11-01
Dynamic fluvial processes strongly influence ecological communities and ecosystem health in riverine and riparian ecosystems, particularly in drought-prone regions. In these systems, there is a need to develop tools to measure impacts from local and regional hydrogeomorphic changes on the key biological and physical processes that sustain riparian ecosystem health and potential recovery. We used dendrochronology of Populus nigra, a riparian tree that is vulnerable to changes in local hydrology, to analyze ecosystem response following channel incision due to gravel mining along the Drôme River, a Mediterranean Basin stream in southern France. We cored 55 trees at seven floodplain sites, measured ring widths, and calculated basal area growth to compare the severity and timing of local growth decline along the river. Current basal area increment (BAI) growth per tree ranged almost 10-fold among sites (7.7 ± 1.3 to 63.9 ± 15.2 cm2 year- 1, mean ± SE) and these differences were significant. Mean BAI was correlated positively with the proportion of healthy trees at a site, and negatively with proportion of dead canopy area. Regime shift analysis of the tree-ring series indicates that tree growth declined significantly at four sites since 1978, coincident with documented channel incision. In addition, patterns of low growth and crown dieback are consistent with stress due to reduced water supply. The most impaired sites were not directly adjacent to local mining pits visible on aerial photographs, nor did the sequence of growth regime shifts suggest a pattern of channel incision progressing from these areas. The initiation of site growth declines was most typically associated with drought years, and the most impaired sites were spatially distributed to suggest the influence of local bedrock controls on soil depth. Climate in the Drôme basin and in the Mediterranean region is trending significantly toward hotter growing seasons with a decrease in summer river discharge, and this will increase both chronic and acute water shortage for riparian trees. This study shows that drought-prone riparian forests are vulnerable to hydrogeomorphological changes, but the severity of impacts is conditioned by interactions between drivers at different scales, including regional climate variability, reach-based geomorphic alteration, and local lithological controls.
NASA Astrophysics Data System (ADS)
Chang, A.; Pedersen, T. F.
2009-04-01
A 115-year record of annually laminated sediments from Effingham Inlet, a small anoxic fjord on the west coast of Vancouver Island, British Columbia (49˚N, 125˚W), was analyzed for diatoms (species and abundances) and geochemistry (C and N isotopes, organic C and trace elements Ag, Cd, Re and Mo) from a piston core. The sediments were radiocarbon dated at approx. 4200-4400 years before present (yr BP) and show diatom enriched varves in the lower 70 years, with a sudden transition to diatom impoverished varves above. In the lower section, varves are thick (2-5 mm) and consist of well-defined Thalassiosira-Skeletonema-Chaetoceros spring bloom successions. Diatom concentrations average at 787 ± 733 million valves/g of dry sediment, del 15N at 7.0 ± 0.5 per mil, and organic C at 5.2 ± 0.5 wt. %. In the upper section, the varves are thinner (1-2 mm), do not clearly show the seasonal diatom succession, and contain increased terrigenous detritus. Diatom concentrations average at 388 ± 202 million valves/g with an increased relative abundance of benthic and freshwater taxa, del 15N at 7.3 ± 0.6 per mil and organic C at 5.7 ± 0.5 wt. %. Values of del 13C for both sections are similar, averaging at -24.0 ± 0.5 per mil. The trace element concentrations are quite variable throughout the section. However, several thin (<1 cm) nonlaminated intervals show decreased diatom abundances with concomitant increases in trace element concentrations, suggesting short-lived changes in surface productivity, upwelling and nutrient delivery, and/or anoxic conditions. The abrupt transition from diatom-rich to diatom-poor varves could reflect a shift in dominance of the North Pacific High and Aleutian Low atmospheric pressure systems over the northeast Pacific Ocean, not unlike the well-documented 1976/1977 climate regime shift which showed a change in upwelling and nutrient delivery. A transition between warm and sunny climates to cooler and wetter regimes at around 4000 yr BP has been noted in previous paleoenvironmental studies from British Columbia and the northern hemisphere in general. The Effingham Inlet sediment record data will also be compared with modern sediment trap data from the inlet.
Nutrient loading and consumers: Agents of change in open-coast macrophyte assemblages
Nielsen, Karina J.
2003-01-01
Human activities are significantly altering nutrient regimes and the abundance of consumers in coastal ecosystems. A field experiment in an open-coast, upwelling ecosystem showed that small increases in nutrients increased the biomass and evenness of tide pool macrophytes where consumer abundance and nutrient loading rates were low. Consumers, when abundant, had negative effects on the diversity and biomass of macrophytes. Nutrient loading increases and consumers are less abundant and efficient as wave exposure increases along open coastlines. Experimentally reversing the natural state of nutrient supply and consumer pressure at a wave-protected site to match wave-exposed sites caused the structure of the macrophyte assemblage to converge on that found naturally in wave-exposed pools. The increases in evenness and abundance were driven by increases in structurally complex functional groups. In contrast, increased nutrient loading in semienclosed marine or estuarine ecosystems is typically associated with declines in macrophyte diversity because of increases in structurally simple and opportunistic functional groups. If nutrient concentration of upwelled waters changes with climatic warming or increasing frequency of El Niños, as predicted by some climate models, these results suggest that macrophyte abundance and evenness along wave-swept open-coasts will also change. Macrophytes represent a significant fraction of continental shelf production and provide important habitat for many marine species. The combined effects of shifting nutrient regimes and overexploitation of consumers may have unexpected consequences for the structure and functioning of open-coast communities. PMID:12796509
Nutrient loading and consumers: agents of change in open-coast macrophyte assemblages.
Nielsen, Karina J
2003-06-24
Human activities are significantly altering nutrient regimes and the abundance of consumers in coastal ecosystems. A field experiment in an open-coast, upwelling ecosystem showed that small increases in nutrients increased the biomass and evenness of tide pool macrophytes where consumer abundance and nutrient loading rates were low. Consumers, when abundant, had negative effects on the diversity and biomass of macrophytes. Nutrient loading increases and consumers are less abundant and efficient as wave exposure increases along open coastlines. Experimentally reversing the natural state of nutrient supply and consumer pressure at a wave-protected site to match wave-exposed sites caused the structure of the macrophyte assemblage to converge on that found naturally in wave-exposed pools. The increases in evenness and abundance were driven by increases in structurally complex functional groups. In contrast, increased nutrient loading in semienclosed marine or estuarine ecosystems is typically associated with declines in macrophyte diversity because of increases in structurally simple and opportunistic functional groups. If nutrient concentration of upwelled waters changes with climatic warming or increasing frequency of El Niños, as predicted by some climate models, these results suggest that macrophyte abundance and evenness along wave-swept open-coasts will also change. Macrophytes represent a significant fraction of continental shelf production and provide important habitat for many marine species. The combined effects of shifting nutrient regimes and overexploitation of consumers may have unexpected consequences for the structure and functioning of open-coast communities.
Fristoe, Trevor S.; Burger, Joseph R.; Balk, Meghan A.; Khaliq, Imran; Hof, Christian; Brown, James H.
2015-01-01
The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander–Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals. PMID:26668359
Gu, Lianhong; Pallardy, Stephen G.; Hosman, Kevin P.; ...
2015-12-11
Variations in precipitation regimes can shift ecosystem structure and function by altering frequency, severity and timing of plant water stress. There is a need for predictively understanding impacts of precipitation regimes on plant water stress in relation to species water use strategies. Here we first formulated two complementary, physiologically-linked measures of precipitation variability (PV) - Precipitation Variability Index (PVI) and Average Recurrence Interval of Effective Precipitation (ARIEP). We then used nine-year continuous measurements of Predawn Leaf Water Potential Integral (PLWPI) in a central US forest to relate PVI and ARIEP to actual plant water availability and comparative water stress responsesmore » of six species with different capacities to regulate their internal water status. We found that PVI and ARIEP explained nearly all inter-annual variations in PLWPI for all species as well as for the community scaled from species measurements. The six species investigated showed differential sensitivities to variations in precipitation regimes. Their sensitivities were reflected more in the responses to PVI and ARIEP than to the mean precipitation rate. Further, they exhibited tradeoffs between responses to low and high PV. Finally, PVI and ARIEP were closely correlated with temporal integrals of positive temperature anomalies and vapor pressure deficit. We suggest that the comparative responses of plant species to PV are part of species-specific water use strategies in a plant community facing the uncertainty of fluctuating precipitation regimes. In conclusion, PVI and ARIEP should be adopted as key indices to quantify physiological drought and the ecological impacts of precipitation regimes in a changing climate.« less
NASA Astrophysics Data System (ADS)
Caves Rugenstein, J. K.; Bayshashov, B. U.; Zhamangara, A.; Ritch, A. J.; Ibarra, D. E.; Sjostrom, D. J.; Mix, H.; Winnick, M.; Chamberlain, C. P.
2017-12-01
The timing of high surface topography and the corresponding climatic impacts of the many high ranges north of the Tibetan Plateau, such as the Altai and Tian Shan, remain poorly constrained. Most Neogene reconstructions of Central Asia climate come from interior China, where the influences of Altai and Tian Shan uplift are difficult to deconvolve from effects due to Tibetan Plateau uplift and changes in global climate. We present a new pedogenic carbonate oxygen and carbon isotope record from terrestrial Neogene sediments of the Zaysan Basin in eastern Kazakhstan, which lies upwind of the Altai and Tian Shan, in contrast to the numerous paleoclimate records from interior China. The δ18O values of pedogenic carbonate exhibit a robust 4‰ decrease in the late Neogene—a trend that sharply contrasts with nearly all downwind records of δ18O from Central Asia. We attribute this decrease to the establishment of the modern seasonal precipitation regime whereby Kazakhstan receives the majority of its moisture in the spring and fall, which lowers the δ18O of pedogenic carbonates. The dominance of spring and fall precipitation in Kazakhstan results from the interaction of the mid-latitude jet with the high topography of the Altai and Tian Shan during its movement northward in spring and southward in fall. The late Miocene interaction of the jet with these actively uplifting northern Central Asia ranges reorganized Central Asia climate, establishing starkly different seasonal precipitation regimes, further drying interior China, and increasing the incidence of the lee cyclones that deposit dust on the Loess Plateau. To the south of the Zaysan Basin, earlier shifts in δ18O hint at early Neogene changes in climate attributable to a late Oligocene/early Miocene phase of uplift in the Tian Shan. We conclude that paleoclimatic changes in Central Asia in the Neogene are more tightly controlled by the interaction of the mid-latitude westerlies with the bounding ranges of northern Central Asia than by changes in the height or extent of the Tibetan Plateau.
Evaluating trophic cascades as drivers of regime shifts in different ocean ecosystems
Pershing, Andrew J.; Mills, Katherine E.; Record, Nicholas R.; Stamieszkin, Karen; Wurtzell, Katharine V.; Byron, Carrie J.; Fitzpatrick, Dominic; Golet, Walter J.; Koob, Elise
2015-01-01
In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.
NASA Astrophysics Data System (ADS)
Matter, Margaret A.; Garcia, Luis A.; Fontane, Darrell G.; Bledsoe, Brian
2010-01-01
SummaryMountain snowpack is the main source of water in the semi-arid Colorado River Basin (CRB), and while the demands for water are increasing, competing and often conflicting, the supply is limited and has become increasingly variable over the 20th Century. Greater variability is believed to contribute to lower accuracy in water supply forecasts, plus greater variability violates the assumption of stationarity, a fundamental assumption of many methods used in water resources engineering planning, design and management. Thus, it is essential to understand the underpinnings of hydroclimatic variability in order to accurately predict effects of climate changes and effectively meet future water supply challenges. A new methodology was applied to characterized time series of temperature, precipitation, and streamflow (i.e., historic and reconstructed undepleted flows) according to the three climate regimes that occurred in CRB during the 20th Century. Results for two tributaries in the Upper CRB show that hydroclimatic variability is more deterministic than previously thought because it entails complementary temperature and precipitation patterns associated with wetter or drier conditions on climate regime and annual scales. Complementary temperature and precipitation patterns characterize climate regime type (e.g., cool/wet and warm/dry), and the patterns entail increasing or decreasing temperatures and changes in magnitude and timing of precipitation according to the climate regime type. Accompanying each climate regime on annual scales are complementary temperature ( T) and precipitation ( P) patterns that are associated with upcoming precipitation and annual basin yield (i.e., total annual flow volume at a streamflow gauge). Annual complementary T and P patterns establish by fall, are detectable as early as September, persist to early spring, are related to the relative magnitude of upcoming precipitation and annual basin yield, are unique to climate regime type, and are specific to each river basin. Thus, while most of the water supply in the Upper CRB originates from winter snowpack, statistically significant indictors of relative magnitude of upcoming precipitation and runoff are evident in the fall, well before appreciable snow accumulation. Results of this study suggest strategies that may integrated into existing forecast methods to potentially improve forecast accuracy and advance lead time by as much as six months (i.e., from April 1 to October 1 of the previous year). These techniques also have applications in downscaling climate models and in river restoration and management.
Sundt-Hansen, L E; Hedger, R D; Ugedal, O; Diserud, O H; Finstad, A G; Sauterleute, J F; Tøfte, L; Alfredsen, K; Forseth, T
2018-08-01
Climate change is expected to alter future temperature and discharge regimes of rivers. These regimes have a strong influence on the life history of most aquatic river species, and are key variables controlling the growth and survival of Atlantic salmon. This study explores how the future abundance of Atlantic salmon may be influenced by climate-induced changes in water temperature and discharge in a regulated river, and investigates how negative impacts in the future can be mitigated by applying different regulated discharge regimes during critical periods for salmon survival. A spatially explicit individual-based model was used to predict juvenile Atlantic salmon population abundance in a regulated river under a range of future water temperature and discharge scenarios (derived from climate data predicted by the Hadley Centre's Global Climate Model (GCM) HadAm3H and the Max Plank Institute's GCM ECHAM4), which were then compared with populations predicted under control scenarios representing past conditions. Parr abundance decreased in all future scenarios compared to the control scenarios due to reduced wetted areas (with the effect depending on climate scenario, GCM, and GCM spatial domain). To examine the potential for mitigation of climate change-induced reductions in wetted area, simulations were run with specific minimum discharge regimes. An increase in abundance of both parr and smolt occurred with an increase in the limit of minimum permitted discharge for three of the four GCM/GCM spatial domains examined. This study shows that, in regulated rivers with upstream storage capacity, negative effects of climate change on Atlantic salmon populations can potentially be mitigated by release of water from reservoirs during critical periods for juvenile salmon. Copyright © 2018. Published by Elsevier B.V.
Soil carbon in Australian fire-prone forests determined by climate more than fire regimes.
Sawyer, Robert; Bradstock, Ross; Bedward, Michael; Morrison, R John
2018-10-15
Knowledge of global C cycle implications from changes to fire regime and climate are of growing importance. Studies on the role of the fire regime in combination with climate change on soil C pools are lacking. We used Bayesian modelling to estimate the soil % total C (% C Tot ) and % recalcitrant pyrogenic C (% RPC) from field samples collected using a stratified sampling approach. These observations were derived from the following scenarios: 1. Three fire frequencies across three distinctive climate regions in a homogeneous dry sclerophyll forest in south-eastern Australia over four decades. 2. The effects of different fire intensity combinations from successive wildfires. We found climate had a stronger effect than fire frequency on the size of the estimated mineral soil C pool. The largest soil C pool was estimated to occur under a wet and cold (WC) climate, via presumed effects of high precipitation, an adequate growing season temperature (i.e. resulting in relatively high NPP) and winter conditions sufficiently cold to retard seasonal soil respiration rates. The smallest soil C pool was estimated in forests with lower precipitation but warmer mean annual temperature (MAT). The lower precipitation and higher temperature was likely to have retarded NPP and litter decomposition rates but may have had little effect on relative soil respiration. Small effects associated with fire frequency were found, but both their magnitude and direction were climate dependent. There was an increase in soil C associated with a low intensity fire being followed by a high intensity fire. For both fire frequency and intensity the response of % RPC mirrored that of % C Tot : i.e. it was effectively a constant across all combinations of climate and fire regimes sampled. Copyright © 2018. Published by Elsevier B.V.