Sample records for climate research projects

  1. Research Summary: Projecting Vegetation and Wildfire Response to Changing Climate and Fire Management in Interior Alaska

    DTIC Science & Technology

    2016-08-21

    USER GUIDE Research Summary: Projecting Vegetation and Wildfire Response to Changing Climate and Fire Management in Interior Alaska SERDP Project...Summary: Projecting Vegetation and Wildfire Response to Changing Climate and Fire Management in Interior Alaska 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...forecast landscape change in response to projected changes in climate , fire regime, and fire management. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF

  2. Using narratives to motivate climate science

    NASA Astrophysics Data System (ADS)

    Stiller-Reeve, Mathew; Bremer, Scott; Blanchard, Anne

    2015-04-01

    This paper presents the lessons learnt by the climate scientists within an interdisciplinary research project called 'TRACKS': Transforming climate knowledge with and for society. The project uses the climate narratives of local people in northeast Bangladesh as a basis for mobilizing high quality climate knowledge for adaptation. To ensure this high quality climate information, the project demands an interdisciplinary approach. This project is therefore a broad, but tight collaboration between climate science and perspectives from social science and the humanities. For the climate scientists involved, the aim was to do research that would provide local people with climate information that would hopefully aid adaptation. The climate research design had to consider the perceptions of the local people in northeast Bangladesh, and what aspects of the local climate that they thought were important. For the climate scientists to gain an appropriate understanding, they were fully integrated into the whole narrative research process. The different disciplines cooperate fully in all aspects of the TRACKS project. The climate scientists were involved in planning the narrative interview survey about weather and how it impacts the lives of local people in northeast Bangladesh. The climate scientists participated in a workshop with social science colleagues from Bangladesh and Norway, to design the research questions, the interview framework, and the data management plan. The climate scientists then travelled to Bangladesh with social scientist colleagues to observe and discuss ten pilot interviews with local people, and to take part in two 'stakeholder-mapping' workshops. On the basis of these interviews and workshops, the climate scientists arranged an interdisciplinary workshop where all the project's researchers designed the climate science research questions together. The climate research questions have therefore been built around a first-hand interdisciplinary experience of the situation in northeast Bangladesh. At no point did we decide on the pertinent climatic issues independently of the local people. The success of this interdisciplinary approach so far has depended on time, patience, and humility. In this presentation, we present the narrative approach we have initiated in TRACKS. We will look at some of local climate narratives from the full-scale survey, as well as the challenges and the research questions that resulted from the process. We will also discuss future perspectives of how we re-integrate the new climate science into the dialogue with the local people.

  3. Teachers Learning to Research Climate: Development of hybrid teacher professional development to support climate inquiry and research in the classroom

    NASA Astrophysics Data System (ADS)

    Odell, M. R.; Charlevoix, D. J.; Kennedy, T.

    2011-12-01

    The GLOBE Program is an international science and education focused on connecting scientists, teachers and students around relevant, local environmental issues. GLOBE's focus during the next two years in on climate, global change and understanding climate from a scientific perspective. The GLOBE Student Climate Research Campaign (SCRFC) will engage youth from around the world in understanding and researching climate through investigations of local climate challenges. GLOBE teachers are trained in implementation of inquiry in the classroom and the use of scientific data collection protocols to develop inquiry and research projects of the Earth System. In preparation for the SCRC, GLOBE teachers will need additional training in climate science, global change and communicating climate science in the classroom. GLOBE's reach to 111 countries around the world requires development of scalable models for training teachers. In June GLOBE held the first teacher professional development workshop (Learning to Research Summer Institute) in a hybrid format with two-thirds of the teachers participating face-to-face and the remaining teachers participating virtually using Adobe Connect. The week long workshop prepared teachers to integrate climate science inquiry and research projects in the classrooms in the 2011-12 academic year. GLOBE scientists and other climate science experts will work with teachers and their students throughout the year in designing and executing a climate science research project. Final projects and research results will be presented in May 2012 through a virtual conference. This presentation will provide the framework for hybrid teacher professional development in climate science research and inquiry projects as well as summarize the findings from this inaugural session. The GLOBE Program office, headquartered in Boulder, is funded through cooperative agreements with NASA and NOAA with additional support from NSF and the U.S. Department of State. GLOBE is supported in countries around the world through bi-lateral agreements between U.S. Department of state and national governments.

  4. 'Changing climate, changing health, changing stories' profile: using an EcoHealth approach to explore impacts of climate change on inuit health.

    PubMed

    Harper, S L; Edge, V L; Cunsolo Willox, A

    2012-03-01

    Global climate change and its impact on public health exemplify the challenge of managing complexity and uncertainty in health research. The Canadian North is currently experiencing dramatic shifts in climate, resulting in environmental changes which impact Inuit livelihoods, cultural practices, and health. For researchers investigating potential climate change impacts on Inuit health, it has become clear that comprehensive and meaningful research outcomes depend on taking a systemic and transdisciplinary approach that engages local citizens in project design, data collection, and analysis. While it is increasingly recognised that using approaches that embrace complexity is a necessity in public health, mobilizing such approaches from theory into practice can be challenging. In 2009, the Rigolet Inuit Community Government in Rigolet, Nunatsiavut, Canada partnered with a transdisciplinary team of researchers, health practitioners, and community storytelling facilitators to create the Changing Climate, Changing Health, Changing Stories project, aimed at developing a multi-media participatory, community-run methodological strategy to gather locally appropriate and meaningful data to explore climate-health relationships. The goal of this profile paper is to describe how an EcoHealth approach guided by principles of transdisciplinarity, community participation, and social equity was used to plan and implement this climate-health research project. An overview of the project, including project development, research methods, project outcomes to date, and challenges encountered, is presented. Though introduced in this one case study, the processes, methods, and lessons learned are broadly applicable to researchers and communities interested in implementing EcoHealth approaches in community-based research.

  5. Climate Change, Human Health, and Biomedical Research: Analysis of the National Institutes of Health Research Portfolio

    PubMed Central

    Balbus, John M.; Christian, Carole; Haque, Ehsanul; Howe, Sally E.; Newton, Sheila A.; Reid, Britt C.; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P.

    2013-01-01

    Background: According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. Objectives: In this commentary we present a systematic review and categorization of the fiscal year (FY) 2008 NIH climate and health research portfolio. Methods: A list of candidate climate and health projects funded from FY 2008 budget appropriations were identified and characterized based on their relevance to climate change and health and based on climate pathway, health impact, study type, and objective. Results: This analysis identified seven FY 2008 projects focused on climate change, 85 climate-related projects, and 706 projects that focused on disease areas associated with climate change but did not study those associations. Of the nearly 53,000 awards that NIH made in 2008, approximately 0.17% focused on or were related to climate. Conclusions: Given the nature and scale of the potential effects of climate change on human health and the degree of uncertainty that we have about these effects, we think that it is helpful for the NIH to engage in open discussions with science and policy communities about government-wide needs and opportunities in climate and health, and about how NIH’s strengths in human health research can contribute to understanding the health implications of global climate change. This internal review has been used to inform more recent initiatives by the NIH in climate and health. PMID:23552460

  6. Climate change, human health, and biomedical research: analysis of the National Institutes of Health research portfolio.

    PubMed

    Jessup, Christine M; Balbus, John M; Christian, Carole; Haque, Ehsanul; Howe, Sally E; Newton, Sheila A; Reid, Britt C; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P

    2013-04-01

    According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. In this commentary we present a systematic review and categorization of the fiscal year (FY) 2008 NIH climate and health research portfolio. A list of candidate climate and health projects funded from FY 2008 budget appropriations were identified and characterized based on their relevance to climate change and health and based on climate pathway, health impact, study type, and objective. This analysis identified seven FY 2008 projects focused on climate change, 85 climate-related projects, and 706 projects that focused on disease areas associated with climate change but did not study those associations. Of the nearly 53,000 awards that NIH made in 2008, approximately 0.17% focused on or were related to climate. Given the nature and scale of the potential effects of climate change on human health and the degree of uncertainty that we have about these effects, we think that it is helpful for the NIH to engage in open discussions with science and policy communities about government-wide needs and opportunities in climate and health, and about how NIH's strengths in human health research can contribute to understanding the health implications of global climate change. This internal review has been used to inform more recent initiatives by the NIH in climate and health.

  7. Deriving user-informed climate information from climate model ensemble results

    NASA Astrophysics Data System (ADS)

    Huebener, Heike; Hoffmann, Peter; Keuler, Klaus; Pfeifer, Susanne; Ramthun, Hans; Spekat, Arne; Steger, Christian; Warrach-Sagi, Kirsten

    2017-07-01

    Communication between providers and users of climate model simulation results still needs to be improved. In the German regional climate modeling project ReKliEs-De a midterm user workshop was conducted to allow the intended users of the project results to assess the preliminary results and to streamline the final project results to their needs. The user feedback highlighted, in particular, the still considerable gap between climate research output and user-tailored input for climate impact research. Two major requests from the user community addressed the selection of sub-ensembles and some condensed, easy to understand information on the strengths and weaknesses of the climate models involved in the project.

  8. Projecting Future Heat-Related Mortality under Climate Change Scenarios: A Systematic Review

    PubMed Central

    Barnett, Adrian Gerard; Wang, Xiaoming; Vaneckova, Pavla; FitzGerald, Gerard; Tong, Shilu

    2011-01-01

    Background: Heat-related mortality is a matter of great public health concern, especially in the light of climate change. Although many studies have found associations between high temperatures and mortality, more research is needed to project the future impacts of climate change on heat-related mortality. Objectives: We conducted a systematic review of research and methods for projecting future heat-related mortality under climate change scenarios. Data sources and extraction: A literature search was conducted in August 2010, using the electronic databases PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 through July 2010. Data synthesis: Fourteen studies fulfilled the inclusion criteria. Most projections showed that climate change would result in a substantial increase in heat-related mortality. Projecting heat-related mortality requires understanding historical temperature–mortality relationships and considering the future changes in climate, population, and acclimatization. Further research is needed to provide a stronger theoretical framework for projections, including a better understanding of socioeconomic development, adaptation strategies, land-use patterns, air pollution, and mortality displacement. Conclusions: Scenario-based projection research will meaningfully contribute to assessing and managing the potential impacts of climate change on heat-related mortality. PMID:21816703

  9. Climate Research by K-12 Students: Can They Do It? Will Anybody Care?

    NASA Astrophysics Data System (ADS)

    Brooks, D. R.

    2011-12-01

    Starting from the premise that engaging students in authentic science research is an activity that benefits science education in general, it is first necessary to consider whether students, in collaboration with teachers and climate scientists, can do climate-related research that actually has scientific value. A workshop held in November 2010, co-sponsored by NSF and NOAA, addressed this question. It took as its starting point this "scientific interest" test: "If students conduct a climate-related research project according to protocols designed in collaboration with climate scientists, when they get done, will any of those scientists care whether they did it or not?" If the answer to this question is "yes," then the project may constitute authentic research, but if the answer is "no," then the project may have educational value, but it is not research. This test is important because only when climate scientists (and other stakeholders interested in climate and climate change) are invested in the outcomes of student research will meaningful student research programs with sustainable support be forthcoming. The absence of climate-related projects in high-level student science fair competitions indicates that, currently, the investment and infrastructure required to support student climate research is lacking. As a result, climate science is losing the battle for the "hearts and minds" of today's best students. The critical task for student climate research is to define projects that are theoretically and practically accessible. This excludes the "big questions" of climate science, such as "Is Earth getting warmer?", but includes many observationally based projects that can help to refine our understanding of climate and climate change. The characteristics of collaborative climate research with students include: 1. carefully drawn distinctions between inquiry-based "learning about" activities and actual research; 2. an identified audience of potential stakeholders who will care about the results of the research; 3. clearly defined expectations, logistics, and outcomes for all participants. Some examples of appropriate data-based research topics include: 1. monitoring black carbon, atmospheric aerosols, and water vapor; 2. pyranometry at sufficiently high temporal resolution to study cloud patterns; 3. urban heat island and other microclimate effects; 4. monitoring benthic habitats and seafloor temperatures; 5. monitoring free-floating ocean buoys to help in the establishment of mobile marine sanctuaries; 6. monitoring surface reflectivity to generate highly localized normalized difference vegetation indices; 7. tracking habitats for vector-borne disease carriers in developing countries. Both education and science communities need to work harder to support student climate research. Educational institutions must build authentic student research into their mission statements. Scientists need to be more aware of the constraints under which teachers and their students must operate on a day-to-day basis. But, students can participate in authentic climate research if educators and scientists expect them to do real research, are honest with them about what is required to do real research, and are willing to provide persistent ongoing support.

  10. Regional climate projection of the Maritime Continent using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    IM, E. S.; Eltahir, E. A. B.

    2014-12-01

    Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  11. NASA Earth Exchange (NEX) Supporting Analyses for National Climate Assessments

    NASA Astrophysics Data System (ADS)

    Nemani, R. R.; Thrasher, B. L.; Wang, W.; Lee, T. J.; Melton, F. S.; Dungan, J. L.; Michaelis, A.

    2015-12-01

    The NASA Earth Exchange (NEX) is a collaborative computing platform that has been developed with the objective of bringing scientists together with the software tools, massive global datasets, and supercomputing resources necessary to accelerate research in Earth systems science and global change. NEX supports several research projects that are closely related with the National Climate Assessment including the generation of high-resolution climate projections, identification of trends and extremes in climate variables and the evaluation of their impacts on regional carbon/water cycles and biodiversity, the development of land-use management and adaptation strategies for climate-change scenarios, and even the exploration of climate mitigation through geo-engineering. Scientists also use the large collection of satellite data on NEX to conduct research on quantifying spatial and temporal changes in land surface processes in response to climate and land-cover-land-use changes. Researchers, leveraging NEX's massive compute/storage resources, have used statistical techniques to downscale the coarse-resolution CMIP5 projections to fulfill the demands of the community for a wide range of climate change impact analyses. The DCP-30 (Downscaled Climate Projections at 30 arcsecond) for the conterminous US at monthly, ~1km resolution and the GDDP (Global Daily Downscaled Projections) for the entire world at daily, 25km resolution are now widely used in climate research and applications, as well as for communicating climate change. In order to serve a broader community, the NEX team in collaboration with Amazon, Inc, created the OpenNEX platform. OpenNEX provides ready access to NEX data holdings, including the NEX-DCP30 and GDDP datasets along with a number of pertinent analysis tools and workflows on the AWS infrastructure in the form of publicly available, self contained, fully functional Amazon Machine Images (AMI's) for anyone interested in global climate change.

  12. Short-term climate change impacts on Mara basin hydrology

    NASA Astrophysics Data System (ADS)

    Demaria, E. M.; Roy, T.; Valdés, J. B.; Lyon, B.; Valdés-Pineda, R.; Serrat-Capdevila, A.; Durcik, M.; Gupta, H.

    2017-12-01

    The predictability of climate diminishes significantly at shorter time scales (e.g. decadal). Both natural variability as well as sampling variability of climate can obscure or enhance climate change signals in these shorter scales. Therefore, in order to assess the impacts of climate change on basin hydrology, it is important to design climate projections with exhaustive climate scenarios. In this study, we first create seasonal climate scenarios by combining (1) synthetic precipitation projections generated from a Vector Auto-Regressive (VAR) model using the University of East Anglia Climate Research Unit (UEA-CRU) data with (2) seasonal trends calculated from 31 models in the Coupled Model Intercomparison Project Phase 5 (CMIP). The seasonal climate projections are then disaggregated to daily level using the Agricultural Modern-Era Retrospective Analysis for Research and Applications (AgMERRA) data. The daily climate data are then bias-corrected and used as forcings to the land-surface model, Variable Infiltration Capacity (VIC), to generate different hydrological projections for the Mara River basin in East Africa, which are then evaluated to study the hydrologic changes in the basin in the next three decades (2020-2050).

  13. The Impact of Project-Based Climate Change Learning Experiences on Students' Broad Climate Literacy

    NASA Astrophysics Data System (ADS)

    DeWaters, J.; Powers, S. E.; Dhaniyala, S.

    2014-12-01

    Evidence-based pedagogical approaches such as project- and inquiry-based techniques have been shown to promote effective learning in science and engineering. The impact of project-based learning experiences on middle school (MS), high school (HS), and undergraduate (UG) students' climate literacy was investigated as part of a NASA Innovations in Climate Education (NICE) project. Project-based modules were developed and taught by MS and HS teachers who participated in climate change education workshops. UG students enrolled in a climate science course completed independent research projects that provided the basis for several of the HS/MS modules. All modules required students to acquire and analyze historical temperature data and future climate predictions, and apply their analysis to the solution of a societal or environmental problem related to our changing climate. Three versions of a quantitative survey were developed and used in a pre-test/post-test research design to help evaluate the project's impact on MS, HS, and UG students' climate literacy, which includes broad climate knowledge as well as affective and behavioral aspects. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. All three groups of students made modest but statistically significant cognitive (p<<0.001) and affective (p<0.01) gains; UG students also showed an increase in behavior scores (p=0.001). Results of an ANCOVA showed significant differences in students' cognitive (p<0.001), behavioral (p=0.005) and self-efficacy (p=0.012) outcomes among the 9 participating MS and HS classrooms, where both teacher and module content varied. The presentation will include a description of some key aspects of the project-based curricula developed and used in this research, the development and content of the climate literacy survey, and the interpretation of specific pre/post changes in participating students relative to the content of and approach used in the project-based modules.

  14. Evaluation of Authentic Science Projects on Climate Change in Secondary Schools: A Focus on Gender Differences

    ERIC Educational Resources Information Center

    Dijkstra, Elma; Goedhart, Martin

    2011-01-01

    Background and purpose: This study examines secondary-school students' opinions on participating in authentic science projects which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects, in which students work with and learn from…

  15. The foundation for climate services in Belgium: CORDEX.be

    NASA Astrophysics Data System (ADS)

    Van Schaeybroeck, Bert; Termonia, Piet; De Ridder, Koen; Fettweis, Xavier; Gobin, Anne; Luyten, Patrick; Marbaix, Philippe; Pottiaux, Eric; Stavrakou, Trissevgeni; Van Lipzig, Nicole; van Ypersele, Jean-Pascal; Willems, Patrick

    2017-04-01

    According to the Global Framework for Climate Services (GFCS) there are four pillars required to build climate services. As the first step towards the realization of a climate center in Belgium, the national project CORDEX.be focused on one pillar: research modelling and projection. By bringing together the Belgian climate and impact modeling research of nine groups a data-driven capacity development and community building in Belgium based on interactions with users. The project is based on the international CORDEX ("COordinated Regional Climate Downscaling Experiment") project where ".be" indicates it will go beyond for Belgium. Our national effort links to the regional climate initiatives through the contribution of multiple high-resolution climate simulations over Europe following the EURO-CORDEX guidelines. Additionally the same climate simulations were repeated at convection-permitting resolutions over Belgium (3 to 5 km). These were used to drive different local impact models to investigate the impact of climate change on urban effects, storm surges and waves, crop production and changes in emissions from vegetation. Akin to international frameworks such as CMIP and CORDEX a multi-model approach is adopted allowing for uncertainty estimation, a crucial aspect of climate projections for policy-making purposes. However, due to the lack of a large set of high resolution model runs, a combination of all available climate information is supplemented with the statistical downscaling approach. The organization of the project, together with its main results will be outlined. The proposed coordination framework could serve as a demonstration case for regions or countries where the climate-research capacity is present but a structure is required to assemble it coherently. Based on interactions and feedback with stakeholders different applications are planned, demonstrating the use of the climate data.

  16. 76 FR 31638 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Global Climate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Global Climate and Energy Project Notice is hereby given that, on April 8, 2011... seq. (``the Act''), Global Climate and Energy Project (``GCEP'') has filed written notifications...

  17. 77 FR 17095 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Global Climate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Global Climate and Energy Project Notice is hereby given that, on February 17, 2012... seq. (``the Act''), Global Climate and Energy Project (``GCEP'') has filed written notifications...

  18. EPA Region 10 Climate Change and TMDL Pilot Project - South Fork Nooksack River, Washington

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Region 10 and EPA’s Office of Research and Development (ORD) and Office of Water (OW) have launched a pilot research project to consider how projected climate change impacts could be incorporated into a TMDL and influence restoration...

  19. Development of the virtual research environment for analysis, evaluation and prediction of global climate change impacts on the regional environment

    NASA Astrophysics Data System (ADS)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Fazliev, Alexander

    2017-04-01

    Description and the first results of the Russian Science Foundation project "Virtual computational information environment for analysis, evaluation and prediction of the impacts of global climate change on the environment and climate of a selected region" is presented. The project is aimed at development of an Internet-accessible computation and information environment providing unskilled in numerical modelling and software design specialists, decision-makers and stakeholders with reliable and easy-used tools for in-depth statistical analysis of climatic characteristics, and instruments for detailed analysis, assessment and prediction of impacts of global climate change on the environment and climate of the targeted region. In the framework of the project, approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platform of the Russian leading institution involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research laboratory focused on interdisciplinary environmental studies. VRE under development will comprise best features and functionality of earlier developed information and computing system CLIMATE (http://climate.scert.ru/), which is widely used in Northern Eurasia environment studies. The Project includes several major directions of research listed below. 1. Preparation of geo-referenced data sets, describing the dynamics of the current and possible future climate and environmental changes in detail. 2. Improvement of methods of analysis of climate change. 3. Enhancing the functionality of the VRE prototype in order to create a convenient and reliable tool for the study of regional social, economic and political consequences of climate change. 4. Using the output of the first three tasks, compilation of the VRE prototype, its validation, preparation of applicable detailed description of climate change in Western Siberia, and dissemination of the Project results. Results of the first stage of the Project implementation are presented. This work is supported by the Russian Science Foundation grant No16-19-10257.

  20. Development of Distributed Research Center for analysis of regional climatic and environmental changes

    NASA Astrophysics Data System (ADS)

    Gordov, E.; Shiklomanov, A.; Okladnikov, I.; Prusevich, A.; Titov, A.

    2016-11-01

    We present an approach and first results of a collaborative project being carried out by a joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center UNH, USA. Its main objective is development of a hardware and software platform prototype of a Distributed Research Center (DRC) for monitoring and projecting of regional climatic and environmental changes in the Northern extratropical areas. The DRC should provide the specialists working in climate related sciences and decision-makers with accurate and detailed climatic characteristics for the selected area and reliable and affordable tools for their in-depth statistical analysis and studies of the effects of climate change. Within the framework of the project, new approaches to cloud processing and analysis of large geospatial datasets (big geospatial data) inherent to climate change studies are developed and deployed on technical platforms of both institutions. We discuss here the state of the art in this domain, describe web based information-computational systems developed by the partners, justify the methods chosen to reach the project goal, and briefly list the results obtained so far.

  1. The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.; Todd, J. F.

    2015-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.

  2. Children of an Earth to Come: Speculative Fiction, Geophilosophy and Climate Change Education Research

    ERIC Educational Resources Information Center

    Rousell, David; Cutter-Mackenzie, Amy; Foster, Jasmyne

    2017-01-01

    Over the last 3 years, the "Climate Change and Me" project has mapped children and young people's affective, creative, and ontological relationships with climate change through an emergent and child-framed research methodology. The project has involved working with 135 children and young people from across Northern NSW, Australia, as…

  3. Collaborative Research for Water Resource Management under Climate Change Conditions

    NASA Astrophysics Data System (ADS)

    Brundiers, K.; Garfin, G. M.; Gober, P.; Basile, G.; Bark, R. H.

    2010-12-01

    We present an ongoing project to co-produce science and policy called Collaborative Planning for Climate Change: An Integrated Approach to Water-Planning, Climate Downscaling, and Robust Decision-Making. The project responds to motivations related to dealing with sustainability challenges in research and practice: (a) state and municipal water managers seek research that addresses their planning needs; (b) the scientific literature and funding agencies call for more meaningful engagement between science and policy communities, in ways that address user needs, while advancing basic research; and (c) empirical research contributes to methods for the design and implementation of collaborative projects. To understand how climate change might impact water resources and management in the Southwest US, our project convenes local, state, and federal water management practitioners with climate-, hydrology-, policy-, and decision scientists. Three areas of research inform this collaboration: (a) the role of paleo-hydrology in water resources scenario construction; (b) the types of uncertainties that impact decision-making beyond climate and modeling uncertainty; and (c) basin-scale statistical and dynamical downscaling of climate models to generate hydrologic projections for regional water resources planning. The project engages all participants in the research process, from research design to workshops that build capacity for understanding data generation and sources of uncertainty to the discussion of water management decision contexts. A team of “science-practice translators” facilitates the collaboration between academic and professional communities. In this presentation we contextualize the challenges and opportunities of use-inspired science-policy research collaborations by contrasting the initial project design with the process of implementation. We draw from two sources to derive lessons learned: literature on collaborative research, and evaluations provided by participating scientists and water managers throughout the process. Lessons learned include: RESULTS: The research process needs to generate academic (peer-reviewed publications, grant proposals) and applied (usable dataset, communication support) products. Additionally, the project also strives for intangible products, e.g., the research currently continues to support efforts to predict future regional hydroclimatology, whereas management requires a paradigm shift toward anticipation of needs for adapting to multiple possible futures. APPROACH: Collaborative research is not a one-off event or consultation, but a process of mutual engagement that needs to allow for adaptive evolution of the project and its organization. TOPICS: With the acceptance of hydroclimatic non-stationarity, the focus of water managers shifts from reducing scientific uncertainty to enhancing their ability to present academically and politically defensible scenarios to their constituencies. This requires addressing the related need for exploring how to deal with political and institutional uncertainties in decision-making.

  4. The Swedish Regional Climate Modelling Programme, SWECLIM: a review.

    PubMed

    Rummukainen, Markku; Bergström, Sten; Persson, Gunn; Rodhe, Johan; Tjernström, Michael

    2004-06-01

    The Swedish Regional Climate Modelling Programme, SWECLIM, was a 6.5-year national research network for regional climate modeling, regional climate change projections and hydrological impact assessment and information to a wide range of stakeholders. Most of the program activities focussed on the regional climate system of Northern Europe. This led to the establishment of an advanced, coupled atmosphere-ocean-hydrology regional climate model system, a suite of regional climate change projections and progress on relevant data and process studies. These were, in turn, used for information and educational purposes, as a starting point for impact analyses on different societal sectors and provided contributions also to international climate research.

  5. Collaborating on Climate: The Signs of the Land Camp as a Model for Meaningful Learning Between Indigenous Communities and Western Climate Scientists

    NASA Astrophysics Data System (ADS)

    Chase, M.; Brunacini, J.; Sparrow, E. B.

    2016-12-01

    As interest in Indigenous Knowledge (IK) grows, how can researchers ensure that collaboration is meaningful, relevant, and valuable for those involved? The Signs of the Land: Reaching Arctic Communities Facing Climate Change Camp is a collaborative project developed by the Association for Interior Native Educators (AINE), the International Arctic Research Center (IARC), and the PoLAR Partnership. Modeled on AINE's Elder Academy and supported by a grant from the National Science Foundation, the camp facilitates in-depth dialogue about climate change and explores causes, impacts, and solutions through the cultural lens of Alaska Native communities. The project integrates local observations, IK, and western climate science. Participants engage with Alaska Native Elders, local climate researchers, and learn about climate communication tools and resources for responding. Following camps in 2014 and 2016, project partners identified a variety of questions about the challenges and opportunities of the collaboration that will be discussed in this presentation. For instance, what does it mean to equitably integrate IK, and in what ways are Native communities able to participate in research project design, delivery, and evaluation? How are decisions made and consensus built within cultural practices, project goals, and funding expectations? How do opportunities available to Indigenous communities to engage with western climate science broaden understanding and response? And, how does the ability to connect with and learn from Alaska Native Elders affect motivation, engagement, and community action? Finally, what is the effect of learning about climate change in a cultural camp setting?

  6. Integrated Research on the Development of Global Climate Risk Management Strategies - Framework and Initial Results of the Research Project ICA-RUS

    NASA Astrophysics Data System (ADS)

    Emori, Seita; Takahashi, Kiyoshi; Yamagata, Yoshiki; Oki, Taikan; Mori, Shunsuke; Fujigaki, Yuko

    2013-04-01

    With the aim of proposing strategies of global climate risk management, we have launched a five-year research project called ICA-RUS (Integrated Climate Assessment - Risks, Uncertainties and Society). In this project with the phrase "risk management" in its title, we aspire for a comprehensive assessment of climate change risks, explicit consideration of uncertainties, utilization of best available information, and consideration of every possible conditions and options. We also regard the problem as one of decision-making at the human level, which involves social value judgments and adapts to future changes in circumstances. The ICA-RUS project consists of the following five themes: 1) Synthesis of global climate risk management strategies, 2) Optimization of land, water and ecosystem uses for climate risk management, 3) Identification and analysis of critical climate risks, 4) Evaluation of climate risk management options under technological, social and economic uncertainties and 5) Interactions between scientific and social rationalities in climate risk management (see also: http://www.nies.go.jp/ica-rus/en/). For the integration of quantitative knowledge of climate change risks and responses, we apply a tool named AIM/Impact [Policy], which consists of an energy-economic model, a simplified climate model and impact projection modules. At the same time, in order to make use of qualitative knowledge as well, we hold monthly project meetings for the discussion of risk management strategies and publish annual reports based on the quantitative and qualitative information. To enhance the comprehensiveness of the analyses, we maintain an inventory of risks and risk management options. The inventory is revised iteratively through interactive meetings with stakeholders such as policymakers, government officials and industrial representatives.

  7. Development of Distributed Research Center for monitoring and projecting regional climatic and environmental changes: first results

    NASA Astrophysics Data System (ADS)

    Gordov, Evgeny; Shiklomanov, Alexander; Okladinikov, Igor; Prusevich, Alex; Titov, Alexander

    2016-04-01

    Description and first results of the cooperative project "Development of Distributed Research Center for monitoring and projecting of regional climatic and environmental changes" recently started by SCERT IMCES and ESRC UNH are reported. The project is aimed at development of hardware and software platform prototype of Distributed Research Center (DRC) for monitoring and projecting regional climatic and environmental changes over the areas of mutual interest and demonstration the benefits of such collaboration that complements skills and regional knowledge across the northern extratropics. In the framework of the project, innovative approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platforms of two U.S. and Russian leading institutions involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research centers focused on interdisciplinary environmental studies by international research teams. DRC under development will comprise best features and functionality of earlier developed by the cooperating teams' information-computational systems RIMS (http://rims.unh.edu) and CLIMATE(http://climate.scert.ru/), which are widely used in Northern Eurasia environment studies. The project includes several major directions of research (Tasks) listed below. 1. Development of architecture and defining major hardware and software components of DRC for monitoring and projecting of regional environmental changes. 2. Development of an information database and computing software suite for distributed processing and analysis of large geospatial data hosted at ESRC and IMCES SB RAS. 3. Development of geoportal, thematic web client and web services providing international research teams with an access to "cloud" computing resources at DRC; two options will be executed: access through a basic graphical web browser and using geographic information systems - (GIS). 4. Using the output of the first three tasks, compilation of the DRC prototype, its validation, and testing the DRC feasibility for analyses of the recent regional environmental changes over Northern Eurasia and North America. Results of the first stage of the Project implementation are presented. This work is supported by the Ministry of Education and Science of the Russian Federation, Agreement № 14.613.21.0037.

  8. Climate program "stone soup": Assessing climate change vulnerabilities in the Aleutian and Bering Sea Islands of Alaska

    NASA Astrophysics Data System (ADS)

    Littell, J. S.; Poe, A.; van Pelt, T.

    2015-12-01

    Climate change is already affecting the Bering Sea and Aleutian Island region of Alaska. Past and present marine research across a broad spectrum of disciplines is shedding light on what sectors of the ecosystem and the human dimension will be most impacted. In a grassroots approach to extend existing research efforts, leveraging recently completed downscaled climate projections for the Bering Sea and Aleutian Islands region, we convened a team of 30 researchers-- with expertise ranging from anthropology to zooplankton to marine mammals-- to assess climate projections in the context of their expertise. This Aleutian-Bering Climate Vulnerability Assessment (ABCVA) began with researchers working in five teams to evaluate the vulnerabilities of key species and ecosystem services relative to projected changes in climate. Each team identified initial vulnerabilities for their focal species or services, and made recommendations for further research and information needs that would help managers and communities better understand the implications of the changing climate in this region. Those draft recommendations were shared during two focused, public sessions held within two hub communities for the Bering and Aleutian region: Unalaska and St. Paul. Qualitative insights about local concerns and observations relative to climate change were collected during these sessions, to be compared to the recommendations being made by the ABCVA team of researchers. Finally, we used a Structured Decision Making process to prioritize the recommendations of participating scientists, and integrate the insights shared during our community sessions. This work brought together residents, stakeholders, scientists, and natural resource managers to collaboratively identify priorities for addressing current and expected future impacts of climate change. Recommendations from this project will be incorporated into future research efforts of the Aleutian and Bering Sea Islands Landscape Conservation Cooperative (ABSI LCC), the Alaska Ocean Observing System (AOOS), and the Alaska Climate Science Center.

  9. Final Technical Report for Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models, DE-FG02-07ER64429

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smyth, Padhraic

    2013-07-22

    This is the final report for a DOE-funded research project describing the outcome of research on non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. The main results consist of extensive development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies ofmore » climate variability in terms of the dynamics of atmospheric flow regimes.« less

  10. DOE Contribution to the 2015 US CLIVAR Project Office Budget

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeWeaver, Eric; Patterson, Michael

    The primary goal of the US Climate Variability and Predictability (CLIVAR) Project Office is to enable science community planning and implementation of research to understand and predict climate variability and change on intraseasonal-to-centennial timescales, through observations and modeling with emphasis on the role of the ocean and its interaction with other elements of the Earth system, and to serve the climate community and society through the coordination and facilitation of research on outstanding climate questions.

  11. The Geographic Climate Information System Project (GEOCLIMA): Overview and preliminary results

    NASA Astrophysics Data System (ADS)

    Feidas, H.; Zanis, P.; Melas, D.; Vaitis, M.; Anadranistakis, E.; Symeonidis, P.; Pantelopoulos, S.

    2012-04-01

    The project GEOCLIMA aims at developing an integrated Geographic Information System (GIS) allowing the user to manage, analyze and visualize the information which is directly or indirectly related to climate and its future projections in Greece. The main components of the project are: a) collection and homogenization of climate and environmental related information, b) estimation of future climate change based on existing regional climate model (RCM) simulations as well as a supplementary high resolution (10 km x 10 km) simulation over the period 1961-2100 using RegCM3, c) compilation of an integrated uniform geographic database, and d) mapping of climate data, creation of digital thematic maps, and development of the integrated web GIS application. This paper provides an overview of the ongoing research efforts and preliminary results of the project. First, the trends in the annual and seasonal time series of precipitation and air temperature observations for all available stations in Greece are assessed. Then the set-up of the high resolution RCM simulation (10 km x 10 km) is discussed with respect to the selected convective scheme. Finally, the relationship of climatic variables with geophysical features over Greece such as altitude, location, distance from the sea, slope, aspect, distance from climatic barriers, land cover etc) is investigated, to support climate mapping. The research has been co-financed by the European Union (European Regional Development Fund) and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the National Strategic Reference Framework (NSRF) - Research Funding Program COOPERATION 2009.

  12. eSACP - a new Nordic initiative towards developing statistical climate services

    NASA Astrophysics Data System (ADS)

    Thorarinsdottir, Thordis; Thejll, Peter; Drews, Martin; Guttorp, Peter; Venälainen, Ari; Uotila, Petteri; Benestad, Rasmus; Mesquita, Michel d. S.; Madsen, Henrik; Fox Maule, Cathrine

    2015-04-01

    The Nordic research council NordForsk has recently announced its support for a new 3-year research initiative on "statistical analysis of climate projections" (eSACP). eSACP will focus on developing e-science tools and services based on statistical analysis of climate projections for the purpose of helping decision-makers and planners in the face of expected future challenges in regional climate change. The motivation behind the project is the growing recognition in our society that forecasts of future climate change is associated with various sources of uncertainty, and that any long-term planning and decision-making dependent on a changing climate must account for this. At the same time there is an obvious gap between scientists from different fields and between practitioners in terms of understanding how climate information relates to different parts of the "uncertainty cascade". In eSACP we will develop generic e-science tools and statistical climate services to facilitate the use of climate projections by decision-makers and scientists from all fields for climate impact analyses and for the development of robust adaptation strategies, which properly (in a statistical sense) account for the inherent uncertainty. The new tool will be publically available and include functionality to utilize the extensive and dynamically growing repositories of data and use state-of-the-art statistical techniques to quantify the uncertainty and innovative approaches to visualize the results. Such a tool will not only be valuable for future assessments and underpin the development of dedicated climate services, but will also assist the scientific community in making more clearly its case on the consequences of our changing climate to policy makers and the general public. The eSACP project is led by Thordis Thorarinsdottir, Norwegian Computing Center, and also includes the Finnish Meteorological Institute, the Norwegian Meteorological Institute, the Technical University of Denmark and the Bjerknes Centre for Climate Research, Norway. This poster will present details of focus areas in the project and show some examples of the expected analysis tools.

  13. Scientific Results of the Nasa-sponsored Study Project on Mars: Evolution of Its Climate and Atmosphere

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.; Greeley, Ronald; Haberle, Robert M.

    1988-01-01

    The scientific highlights of the Mars: Evolution of its Climate and Atmosphere (MECA) study project are reviewed and some of the important issues in Martian climate research that remain unresolved are discussed.

  14. The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements in Understanding AMOC

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.

    2016-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). This poster will present the recently funded CVP projects on improving the understanding Atlantic Meridional Overturning Circulation (AMOC), its impact on decadal predictability, and its relationship with the overall climate system.

  15. Climate Risk Management and Decision Support Tools for the Agriculture Sector in Lao PDR, Bangladesh, and Indonesia

    NASA Astrophysics Data System (ADS)

    Allis, E. C.; Greene, A. M.; Cousin, R.

    2014-12-01

    We describe a comprehensive project for developing climate information and decision support / climate risk management tools in Lao PDR, Bangladesh and Indonesia. Mechanisms are developed for bringing the benefits of these tools to both policy makers and poor rural farmers, with the goal of enabling better management, at the farm level, of the risks associated with climate variability and change. The project comprises several interwoven threads, differentially applied in the different study regions. These include data management and quality control, development of seasonal forecast capabilities, use of dynamic cropping calendars and climate advisories, the development of longer-term climate information for both past and future and a weather index insurance component. Stakeholder engagement and capacity building served as reinforcing and complementary elements to all components. In this talk we will provide a project overview, show how the various components fit together and describe some lessons learned in this attempt to promote the uptake of actionable climate information from farmer to policy level. The applied research project was led by the International Research Institute for Climate and Society (IRI) at Columbia University with funding from the International Fund for Agriculture Development (IFAD) and in close collaboration with our regional partners at the Centre for Climate Risk and Opportunity Management in Southeast Asia Pacific (at Bogor Agricultural University in Indonesia), Indonesia's National Agency for Meteorology, Climatology and Geophysics (BMKG), Lao PDR's National Agriculture and Forestry Research Institute (NAFRI), Laotian Department of Meteorology and Hydrology (DMH), WorldFish Center, Bangladesh Meteorology Department (BMD), and CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

  16. Canadian Federal Support for Climate Change and Health Research Compared With the Risks Posed

    PubMed Central

    Smith, Tanya R.; Berrang-Ford, Lea

    2011-01-01

    For emerging public health risks such as climate change, the Canadian federal government has a mandate to provide information and resources to protect citizens' health. Research is a key component of this mandate and is essential if Canada is to moderate the health effects of a changing climate. We assessed whether federal support for climate change and health research is consistent with the risks posed. We audited projects receiving federal support between 1999 and 2009, representing an investment of Can$16 million in 105 projects. Although funding has increased in recent years, it remains inadequate, with negligible focus on vulnerable populations, limited research on adaptation, and volatility in funding allocations. A federal strategy to guide research support is overdue. PMID:21490335

  17. OVERVIEW OF THE CLIMATE IMPACT ON REGIONAL AIR QUALITY (CIRAQ) PROJECT

    EPA Science Inventory

    The Climate Impacts on Regional Air Quality (CIRAQ) project will develop model-estimated impacts of global climate changes on ozone and particulate matter (PM) in direct support of the USEPA Global Change Research Program's (GCRP) national air quality assessment. EPA's urban/reg...

  18. Adventure Learning @ Greenland

    NASA Astrophysics Data System (ADS)

    Miller, B. G.; Cox, C. J.; Hougham, J.; Walden, V. P.; Eitel, K.; Albano, A.

    2013-12-01

    Teaching the general public and K-12 communities about scientific research has taken on greater importance as climate change increasingly impacts the world we live in. Science researchers and the educational community have a widening responsibility to produce and deliver curriculum and content that is timely, scientifically sound and engaging. To address this challenge, in the summer of 2012 the Adventure Learning @ Greenland (AL@GL) project, a United States' National Science Foundation (NSF) funded initiative, used hands-on and web-based climate science experiences for high school students to promote climate and science literacy. This presentation will report on an innovative approach to education and outreach for environmental science research known as Adventure Learning (AL). The purpose of AL@GL was to engage high school students in the US, and in Greenland, in atmospheric research that is being conducted in the Arctic to enhance climate and science literacy. Climate and science literacy was explored via three fundamental concepts: radiation, the greenhouse effect, and climate vs. weather. Over the course of the project, students in each location engaged in activities and conducted experiments through the use of scientific instrumentation. Students were taught science research principles associated with an atmospheric observatory at Summit Station, Greenland with the objective of connecting climate science in the Arctic to student's local environments. Summit Station is located on the Greenland Ice Sheet [72°N, 38°W, 3200 m] and was the primary location of interest. Approximately 35 students at multiple locations in Idaho, USA, and Greenland participated in the hybrid learning environments as part of this project. The AL@GL project engaged students in an inquiry-based curriculum with content that highlighted a cutting-edge geophysical research initiative at Summit: the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit (ICECAPS) project (Shupe et al. 2012; http://www.esrl.noaa.gov/psd/arctic/observatories/summit/). ICECAPS is an atmospheric observatory focused on obtaining high temporal resolution measurements of clouds from ground-based remote sensors including radar, lidar, infrared spectra and others. ICECAPS also launches radiosondes twice daily. This large suite of complementary observations are providing an important baseline understanding of cloud and atmospheric conditions over the central Greenland ice sheet and are supporting Arctic climate research on cloud processes and climate model validation. ICECAPS measures parameters that are associated with those identified in student misconceptions, for example, different types of atmospheric radiation, the effect of greenhouse gases, and climate versus weather (see also Haller et al., 2011). Thus, ICECAPS research and the AL@GL project combined to create a learning environment and educational activities that sought to increase climate literacy in high school students as well as communicate important atmospheric research to a broader audience.

  19. Climate and Cryosphere (CliC) Project and its Interest in Arctic Hydrology Research

    NASA Astrophysics Data System (ADS)

    Yang, D.; Prowse, T. D.; Steffen, K.; Ryabinin, V.

    2009-12-01

    The cryosphere is an important and dynamic component of the global climate system. The global cryosphere is changing rapidly, with changes in the Polar Regions receiving particular attention during the International Polar Year 2007-2008. The Climate and Cryosphere (CliC) Project is a core project of the World Climate Research Programme (WCRP) and is co-sponsored by WCRP, SCAR (Scientific Committee for Antarctic Research) and IASC (International Committee for Antarctic Research). The principal goal of CliC is to assess and quantify the impacts that climatic variability and change have on components of the cryosphere and the consequences of these impacts for the climate system. To achieve its objectives, CliC coordinates international and regional projects, partners with other organizations in joint initiatives, and organizes panels and working groups to lead and coordinate advanced research aimed at closing identified gaps in scientific knowledge about climate and cryosphere. The terrestrial cryosphere includes land areas where snow cover, lake- and river-ice, glaciers and ice caps, permafrost and seasonally frozen ground and solid precipitation occur. The main task of this theme is to improve estimates and quantify the uncertainty of water balance and related energy flux components in cold climate regions. This includes precipitation (both solid and liquid) distribution, properties of snow, snow melt, evapotranspiration, sublimation, water movement through frozen and unfrozen ground, water storage in watersheds, river- and lake-ice properties and processes, and river runoff. The focus of this theme includes two specific issues: the role of permafrost and frozen ground in the carbon balance, and precipitation in cold climates. Hydrological studies of cold regions will provide a key contribution to the new theme crosscut, which focuses on the cryospheric input to the freshwater balance of the Arctic. This presentation will provide an overview and update of recent developments of cold region hydrometeorology research activities and future challenges in arctic hydrology and climate change investigations.

  20. Agricultural Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Tam, A.; Jain, M.

    2016-12-01

    This research includes two projects pertaining to agricultural systems' adaption to climate change. The first research project focuses on the wheat yielding regions of India. Wheat is a major staple crop and many rural households and smallholder farmers rely on crop yields for survival. We examine the impacts of weather variability and groundwater depletion on agricultural systems, using geospatial analysis and satellite-based analysis and household-based and census data sets. We use these methods to estimate the crop yields and identify what factors are associated with low versus high yielding regions. This can help identify strategies that should be further promoted to increase crop yields. The second research project is a literature review. We conduct a meta-analysis and synthetic review on literature about agricultural adaptation to climate change. We sort through numerous articles to identify and examine articles that associate socio-economic, biophysical, and perceptional factors to farmers' adaption to climate change. Our preliminary results show that researchers tend to associate few factors to a farmers' vulnerability and adaptive capacity, and most of the research conducted is concentrated in North America, whereas tropical regions that are highly vulnerable to weather variability are underrepresented by literature. There are no conclusive results in both research projects as of so far.

  1. Report from the International Permafrost Association: carbon pools in permafrost regions

    Treesearch

    Peter Kuhry; Chien-Lu Ping; Edward A.G. Schuur; Charles Tarnocai; Sergey Zimov

    2009-01-01

    The IPA Carbon Pools in Permafrost Regions (CAPP) Project started in 2005, with endorsement of the Earth System Science Partnership (EESP) Global Carbon Project and the World Climate Research Programme (WCRP) Climate and Cryosphere Project. CAPP is also a project of the IPY. The project was launched because there is considerable concern and increased awareness both...

  2. Navigating a Transdisciplinary Research Project with a Non-Traditional Academic Background: Climate Change, Soil Health and Sustainability

    NASA Astrophysics Data System (ADS)

    Basche, A.

    2014-12-01

    The Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP) is a collaboration of 150+ team members spanning a range of scientific disciplinary backgrounds. The project goal is to produce collaborative research, education and extension aimed at mitigating and adapting Midwest cropping systems to climate variability and change. My PhD work in Agronomy and Sustainable Agriculture is a part of the CSCAP although my prior academic background was in applied climate science and biology, thus proposing a potential challenge to the new academic landscape. Further, graduate students within CSCAP are a part of a natural experiment in how the next generation of scientists operates in a transdisciplinary environment. As part of my leadership in the CSCAP, I helped to develop a "roadmap" document outlining the learning opportunities available to students. This document was meant to underscore the skills and experiences that will aid us in future collaborative research projects. Through these leadership experiences, I believe that the underpinning of any successful collaborative research project requires time: to develop relationships, earn trust and develop shared understandings and respect for different academic backgrounds.

  3. Considerations in Starting Climate Change Research

    NASA Astrophysics Data System (ADS)

    Long, J. C. S.; Morgan, G.; Hamburg, S.; Winickoff, D. E.

    2014-12-01

    Many have called for climate engineering research because the growing risks of climate change and the geopolitical and national security risks of climate remediation technologies are real. As the topic of climate engineering remains highly controversial, national funding agencies should evaluate even modest outdoor climate engineering research proposals with respect to societal, legal, and risk considerations in making a decision to fund or not to fund. These concerns will be extremely difficult to coordinate internationally if they are not first considered successfully on a national basis. Assessment of a suite of proposed research projects with respect to these considerations indicates we would learn valuable lessons about how to govern research by initiating a few exemplar projects. The first time an issue arrives it can be very helpful if it there are specific cases, not a broad class of projects. A good first case should be defensible and understandable, fit within the general mandate of existing research programs, have negligible physical risk, small physical scale and short duration. By focusing on a specific case, the discussion can be held with limits and help to establish some track record in dealing with a controversial subject and developing a process for assigning appropriate scrutiny and outreach. Even at an early stage, with low risk, small-scale experiments, obtaining broad-based advice will aid in dealing with the controversies. An independent advisory body can provide guidance about a wide spectrum of physical and social risks of funding the experiment compared to societal benefit of gaining understanding. Clearly identifying the research as climate engineering research avoids sending research down a path that might violate public trust and provide an important opportunity to grow governance and public engagement at an early stage. Climate engineering research should be seen in the context of all approaches to dealing with the climate problem. Much of climate-engineering research will inspire investigators to address significant and difficult problems in climate science. US research programs should use this fact for societal benefit. Agencies should assess the early research and use the assessment to make decisions about how to, or not to, proceed.

  4. Fuel Sources | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    Fuel Sources Fuel Sources Research campuses can reduce carbon emissions and meet climate action describe how examining fuel sources may fit into your climate action plans. Considerations Sample Project are making this switch as part of their climate action plans. Another important point is the wide

  5. Climate Change Media Forum - for Enhanced Communication between Journalists and Climate Scientists in Japan

    NASA Astrophysics Data System (ADS)

    Goto-Maeda, Y.; Emori, S.; Takahashi, K.; Aoyagi-Usui, M.; Fukushi, K.; Tanaka, Y.; Fukuda, H.; Matsumoto, Y.; Asakura, A.; Hiramatsu, A.; Sumi, A.

    2011-12-01

    For researchers, being reported by mass media is an effective way to share their studies with others, although some have concerns that scientific results are often exaggerated by highlighting sensational parts and ignoring essential results by the media. Obviously, journalists have their own criteria of effective science reporting for their newspapers or magazines which do not necessarily conform to how researchers report their results. Climate Change Media Forum was started in 2009 by researchers specializing in climate science and communication to fill such gaps and enhance communication between climate scientists and journalists as part of a climate change research project funded by the Ministry of Environment of Japan. Since its start, forum events have been held once a year to exchange ideas on reporting of climate change science through mass media. At the first event in March, 2009, we started with learning about what actually the journalists and researchers think about media reports on climate change sciences. Using onsite questionnaire surveys, the participants (39 journalists and 31 researchers) discussed their problems on reporting climate change and what they would like to tell to the public. Some of the survey results suggested that researchers are willing to emphasize more about the conditions and assumptions of studies, while journalists would like to know more about current and short-term impacts. From the second year, two journalists joined the committee to make the events more meaningful for journalists. For the event in March, 2010, three months after COP15 in Copenhagen, the 2 degrees temperature target, which was the only written number on the Copenhagen Accord, was selected as a timely topic. Although researchers understand that a specific target is necessary for setting a concrete pathway, many of them also feel uncomfortable about selecting one single value from the temperature range with uncertainty. After two lectures on the history of the target and possible impacts by the temperature rise, the participants discussed reporting of target selected from data with uncertainty. The third forum event was held in February, 2011, on climate change projections by numerical models. After the lecture on the ongoing projects of climate change prediction for AR5 in Japan, one of the presenters at the press conference on climate change projections for AR4 in 2007 shared his own thoughts on the media reports based on the press conference. In the following session, the researchers and journalists actively discussed how the climate change projection should be reported based on their own "mission" which is conducting reliable research for scientists and writing informative articles for journalists. Through the previous three events, we have obtained sincere comments and suggestions from the participants to improve the communication between journalists and researchers. In the presentation, more comments from the discussions and the survey results of the forum events will be shared.

  6. Building Partnerships and Research Collaborations to Address the Impacts of Arctic Change: The North Atlantic Climate Change Collaboration (NAC3)

    NASA Astrophysics Data System (ADS)

    Polk, J.; North, L. A.; Strenecky, B.

    2015-12-01

    Changes in Arctic warming influence the various atmospheric and oceanic patterns that drive Caribbean and mid-latitude climate events, including extreme events like drought, tornadoes, and flooding in Kentucky and the surrounding region. Recently, the establishment of the North Atlantic Climate Change Collaboration (NAC3) project at Western Kentucky University (WKU) in partnership with the University of Akureyri (UNAK), Iceland Arctic Cooperation Network (IACN), and Caribbean Community Climate Change Centre (CCCCC) provides a foundation from which to engage students in applied research from the local to global levels and more clearly understand the many tenets of climate change impacts in the Arctic within both a global and local community context. The NAC3 project encompasses many facets, including joint international courses, student internships, economic development, service learning, and applied research. In its first phase, the project has generated myriad outcomes and opportunities for bridging STEM disciplines with other fields to holistically and collaboratively address specific human-environmental issues falling under the broad umbrella of climate change. WKU and UNAK students desire interaction and exposure to other cultures and regions that are threatened by climate change and Iceland presents a unique opportunity to study influences such as oceanic processes, island economies, sustainable harvest of fisheries, and Arctic influences on climate change. The project aims to develop a model to bring partners together to conduct applied research on the complex subject of global environmental change, particularly in the Arctic, while simultaneously focusing on changing how we learn, develop community, and engage internationally to understand the impacts and find solutions.

  7. Climates of U.S. cities in the 21st century

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. S.; Georgescu, M.; Moustaoui, M.

    2017-12-01

    Urban climates are projected to warm over the 21st century due to global climate change and urban development. To assess this projected warming, Weather Research and Forecasting (WRF) model simulations are performed at 20 km resolution over the contiguous U.S. for three 10-year periods: contemporary (2000-2009), mid-century (2050-2059), and end-of-century (2090-2099). Urban land use projections are derived from the EPA's ICLUS data set, and future climate projections are based on two global climate models and two greenhouse gas emissions scenarios. The potential for design implementations such as `green' roofs and high albedo roofs to offset the projected warming is considered. Effects of urban expansion, urban densification and infrastructure adaptation on urban climate are compared over the century. Assessment considers impacts at both seasonal and diurnal scales, isolates fair weather impacts, and considers multiple climate variables: air temperature, precipitation, humidity, wind speed, and surface energy budget partitioning.

  8. EVALUATING SHORT-TERM CLIMATE VARIABILITY IN THE LATE HOLOCENE OF THE NORTHERN GREAT PLAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph H. Hartman

    1999-09-01

    This literature study investigated methods and areas to deduce climate change and climate patterns, looking for short-term cycle phenomena and the means to interpret them. Many groups are actively engaged in intensive climate-related research. Ongoing research might be (overly) simplified into three categories: (1) historic data on weather that can be used for trend analysis and modeling; (2) detailed geological, biological (subfossil), and analytical (geochemical, radiocarbon, etc.) studies covering the last 10,000 years (about since last glaciation); and (3) geological, paleontological, and analytical (geochemical, radiometric, etc.) studies over millions of years. Of importance is our ultimate ability to join thesemore » various lines of inquiry into an effective means of interpretation. At this point, the process of integration is fraught with methodological troubles and misconceptions about what each group can contribute. This project has met its goals to the extent that it provided an opportunity to study resource materials and consider options for future effort toward the goal of understanding the natural climate variation that has shaped our current civilization. A further outcome of this project is a proposed methodology based on ''climate sections'' that provides spatial and temporal correlation within a region. The method would integrate cultural and climate data to establish the climate history of a region with increasing accuracy with progressive study and scientific advancement (e. g., better integration of regional and global models). The goal of this project is to better understand natural climatic variations in the recent past (last 5000 years). The information generated by this work is intended to provide better context within which to examine global climate change. The ongoing project will help to establish a basis upon which to interpret late Holocene short-term climate variability as evidenced in various studies in the northern Great Plains, northern hemisphere, and elsewhere. Finally these data can be integrated into a history of climate change and predictive climate models. This is not a small undertaking. The goals of researchers and the methods used vary considerably. The primary task of this project was literature research to (1) evaluate existing methodologies used in geologic climate change studies and evidence for short-term cycles produced by these methodologies and (2) evaluate late Holocene climate patterns and their interpretations.« less

  9. Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owczarski, E.L.

    At the start of FY 1990, the atmospheric sciences and carbon dioxide research programs within the Office of Health and Environmental Research (OHER) were gathered into the new Atmospheric and Climate Research Division (ACRD). One of the central missions of this new division is to provide the Department of Energy with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and implementation of a sound national energy strategy. Because much of the work done at PNL during FY 1990 falls under the umbrella ofmore » the new ACRD, we are including in this volume the progress and status reports for all OHER atmospheric and climate research projects at PNL. The description of ongoing atmospheric and climate research at PNL is organized along two broad research areas; atmospheric research and climate research. This report describes the progress in FY 1990 in each of these areas. A divider page summarizes the goals of each area and lists projects that support research activities.« less

  10. The impact of SciDAC on US climate change research and the IPCCAR4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehner, Michael

    2005-07-08

    SciDAC has invested heavily in climate change research. We offer a candid opinion as to the impact of the DOE laboratories' SciDAC projects on the upcoming Fourth Assessment Report of the Intergovernmental Panel on Climate Change. As a result of the direct importance of climate change to society, climate change research is highly coordinated at the international level. The Intergovernmental Panel on Climate Change (IPCC) is charged with providing regular reports on the state of climate change research to government policymakers. These reports are the product of thousands of scientists efforts. A series of reviews involving both scientists and policymakersmore » make them among the most reviewed documents produced in any scientific field. The high profile of these reports acts a driver to many researchers in the climate sciences. The Fourth Assessment Report (AR4) is scheduled to be released in 2007. SciDAC sponsored research has enabled the United States climate modeling community to make significant contributions to this report. Two large multi-Laboratory SciDAC projects are directly relevant to the activities of the IPCC. The first, entitled ''Collaborative Design and Development of the Community Climate System Model for Terascale Computers'', has made important software contributions to the recently released third version of the Community Climate System Model (CCSM3.0) developed at the National Center for Atmospheric Research. This is a multi-institutional project involving Los Alamos National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The original principal investigators were Robert Malone and John B. Drake. The current principal investigators are Phil Jones and John B. Drake. The second project, entitled ''Earth System Grid II: Turning Climate Datasets into Community Resources'' aims to facilitate the distribution of the copious amounts of data produced by coupled climate model integrations to the general scientific community. This is also a multi-institutional project involving Argonne National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The principal investigators are Ian Foster, Don Middleton and Dean Williams. Perhaps most significant among the activities of the ''Collaborative Design'', project was the development of an efficient multi-processor coupling package. CCSM3.0 is an extraordinarily complicated physics code. The fully coupled model consists of separate submodels of the atmosphere, ocean, sea ice and land. In addition, comprehensive biogeochemistry and atmospheric chemistry submodels are under intensive current development. Each of these submodels is a large and sophisticated program in its own right. Furthermore, in the coupled model, each of the submodels, including the coupler, is a separate multiprocessor executable program. The coupler package must efficiently coordinate the communication as well as interpolate or aggregate information between these programs. This regridding function is necessary because each major subsystem (air, water or surface) is allowed to have its own independent grid.« less

  11. Distributed Research Center for Analysis of Regional Climatic Changes and Their Impacts on Environment

    NASA Astrophysics Data System (ADS)

    Shiklomanov, A. I.; Okladnikov, I.; Gordov, E. P.; Proussevitch, A. A.; Titov, A. G.

    2016-12-01

    Presented is a collaborative project carrying out by joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center, University of New Hampshire, USA. Its main objective is development of a hardware and software prototype of Distributed Research Center (DRC) for monitoring and projecting of regional climatic and and their impacts on the environment over the Northern extratropical areas. In the framework of the project new approaches to "cloud" processing and analysis of large geospatial datasets (big geospatial data) are being developed. It will be deployed on technical platforms of both institutions and applied in research of climate change and its consequences. Datasets available at NCEI and IMCES include multidimensional arrays of climatic, environmental, demographic, and socio-economic characteristics. The project is aimed at solving several major research and engineering tasks: 1) structure analysis of huge heterogeneous climate and environmental geospatial datasets used in the project, their preprocessing and unification; 2) development of a new distributed storage and processing model based on a "shared nothing" paradigm; 3) development of a dedicated database of metadata describing geospatial datasets used in the project; 4) development of a dedicated geoportal and a high-end graphical frontend providing intuitive user interface, internet-accessible online tools for analysis of geospatial data and web services for interoperability with other geoprocessing software packages. DRC will operate as a single access point to distributed archives of spatial data and online tools for their processing. Flexible modular computational engine running verified data processing routines will provide solid results of geospatial data analysis. "Cloud" data analysis and visualization approach will guarantee access to the DRC online tools and data from all over the world. Additionally, exporting of data processing results through WMS and WFS services will be used to provide their interoperability. Financial support of this activity by the RF Ministry of Education and Science under Agreement 14.613.21.0037 (RFMEFI61315X0037) and by the Iola Hubbard Climate Change Endowment is acknowledged.

  12. National Climate Change and Wildlife Science Center project accomplishments: highlights

    USGS Publications Warehouse

    Holl, Sally

    2011-01-01

    The National Climate Change and Wildlife Science Center (NCCWSC) has invested more than $20M since 2008 to put cutting-edge climate science research in the hands of resource managers across the Nation. With NCCWSC support, more than 25 cooperative research initiatives led by U.S. Geological Survey (USGS) researchers and technical staff are advancing our understanding of habitats and species to provide guidance to managers in the face of a changing climate. Projects focus on quantifying and predicting interactions between climate, habitats, species, and other natural resources such as water. Spatial scales of the projects range from the continent of North America, to a regional scale such as the Pacific Northwest United States, to a landscape scale such as the Florida Everglades. Time scales range from the outset of the 20th century to the end of the 21st century. Projects often lead to workshops, presentations, publications and the creation of new websites, computer models, and data visualization tools. Partnership-building is also a key focus of the NCCWSC-supported projects. New and on-going cooperative partnerships have been forged and strengthened with resource managers and scientists at Federal, tribal, state, local, academic, and non-governmental organizations. USGS scientists work closely with resource managers to produce timely and relevant results that can assist managers and policy makers in current resource management decisions. This fact sheet highlights accomplishments of five NCCWSC projects.

  13. The Use of Climate Projections in the Modelling of Bud Burst

    NASA Astrophysics Data System (ADS)

    O'Neill, Bridget F.; Caffara, Amelia; Gleeson, Emily; Semmler, Tido; McGrath, Ray; Donnelly, Alison

    2010-05-01

    Recent changes in global climate, such as increasing temperature, have had notable effects on the phenology (timing of biological events) of plants. The effects are variable across habitats and between species, but increasing temperatures have been shown to advance certain key phenophases of trees, such as bud burst (beginning of leaf unfolding). This project considered climate change impacts on phenology of plants at a local scale in Ireland. The output from the ENSEMBLES climate simulations were down-scaled to Ireland and utilised by a phenological model to project changes over the next 50-100 years. This project helps to showcase the potential use of climate simulations in phenological research.

  14. Using Climate Change for Teaching Experimental Sciences in Teacher Education through Research Projects on Recycling at the University of Lleida (Western Catalonia)

    NASA Astrophysics Data System (ADS)

    Sebastia, M. T.; Verdú, N.

    2016-12-01

    Although climate change is one of the most pressing challenges faced by humankind, climate change illiteracy is frequent among primary school teacher college students reaching the second school year at the University of Lleida (UdL). Climate change was chosen to structure the course on Experimental Sciences of the bilingual group because this topic involves all sciences, and because of the importance of the subject for future educators. In the bilingual group of the Education Faculty, Experimental Sciences is taught in English, and there are usually 1-2 international students in addition to around 20 local students. To increase the awareness about climate change and make this topic closer to the students' daily experience, a research project on recycling at the University of Lleida was assigned per groups of 4 students. The assignment was semi-structured, the students received a reduced set of instructions and large freedom to focus their particular projects. Additional instructions were provided along the way. We present results from the comparisons among faculties at UdL, and among the different users: students, professors and researchers, and administration staff. We also discuss the impact that this project had in the learning ability of the students and their awareness about climate change.

  15. Climate Literacy: Supporting Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Haddad, N.; Ledley, T. S.; Dunlap, C.; Bardar, E.; Youngman, B.; Ellins, K. K.; McNeal, K. S.; Libarkin, J.

    2012-12-01

    Confronting the Challenges of Climate Literacy (CCCL) is an NSF-funded (DRK-12) project that includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at high school teachers and students. The project's evaluation efforts inform and guide all major components of the project. The research effort addresses the question of what interventions are most effective in helping high school students grasp the complexities of the Earth system and climate processes, which occur over a range of spatial and temporal scales. The curriculum unit includes three distinct but related modules: Climate and the Cryosphere; Climate, Weather, and the Biosphere; and Climate and the Carbon Cycle. Climate-related themes that cut across all three modules include the Earth system, with the complexities of its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. The professional development component of the project includes online science resources to support the teaching of the curriculum modules, summer workshops for high school teachers, and a support system for developing the teacher leaders who plan and implement those summer workshops. When completed, the project will provide a model high school curriculum with online support for implementing teachers and a cadre of leaders who can continue to introduce new teachers to the resource. This presentation will introduce the curriculum and the university partnerships that are key to the project's success, and describe how the project addresses the challenge of helping teachers develop their understanding of climate science and their ability to convey climate-related concepts articulated in the Next Generation Science Standards to their students. We will also describe the professional development and support system to develop teacher leaders and explain some of the challenges that accompany this approach of developing teacher leaders in the area of climate literacy.

  16. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other countries were conducted and mooring buoy observations were also carried out. The data retrieved during these observations was accumulated in the "Arctic Data archive System (ADS)" (https://ads.nipr.ac.jp/) and served with interfaces for analysis. In addition, modeling studies have been promoted from fundamental process model to general circulation model. The successor of the project, ArCS (Arctic Challenge for Sustainability), which lays delivering emphasis 
on robust scientific information to stakeholders for decision making and solving problems, was started in FY2015. Within this project, a cooperative observation of black carbon are planned to be started at Cape Baranova Station (AARI, Rusia), Severnaya Zemlya, and new activities including emphasizing aerological observations are also planned to be started for contributing to "Year of Polar Prediction (YOPP)" of Polar Prediction Project (PPP/ WMO). It will be desirable to have a future collaboration with IASOA.

  17. Climate, Water and Energy in the Nordic Countries

    NASA Astrophysics Data System (ADS)

    Snorrason, A.; Jonsdottir, J. F.

    2003-04-01

    In light of the recent IPCC Climate Change Assessment and recent progress made in meteorological and hydrological modelling, the directors of the Nordic hydrological institutes (CHIN) initiated a research project "Climate, Water and Energy" (CWE) with funding from the Nordic Energy Research and the Nordic Council of Ministers focusing on climatic impact assessment in the energy sector. Climatic variability and change affect the hydrological systems, which in turn affect the energy sector, this will increase the risk associated with the development and use of water resources in the Nordic countries. Within the CWE project four thematic groups work on this issue of climatic change and how changes in precipitation and temperature will have direct influences on runoff. A primary aim of the CWE climate group is to derive a common scenario or a "best-guess" estimate of climate change in northern Europe and Greenland, based on recent regional climate change experiments and representing the change from 1990 to 2050 under the IPCC SRES B2 emission scenario. A data set, along with the most important information for using the scenario is available at the project web site. The glacier group has chosen 8 glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. The long time series group has reported on the status of time series analysis in the Nordic countries. The group will select and quality control time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. The hydrological modelling group has reported on "Climate change impacts on water resources in the Nordic countries - State of the art and discussion of principles". The group will compare different hydrological models and discuss uncertainties in models and climate scenarios, while production of new results based on the composite scenario from the CWE-climate group depends on other projects. The product of the project will be an in-depth analysis of the present status of research and know-how in the sphere of climatic and hydrological research in the Nordic countries. It will be a synthesis and integration of present research with focus on the needs of the energy sector. It will also identify and prioritise key future research areas that are of benefit to the energy sector.

  18. MIDWESTERN REGIONAL CENTER OF THE DOE NATIONAL INSTITUTE FOR CLIMATIC CHANGE RESEARCH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, Andrew J.

    2014-02-28

    The goal of NICCR (National Institute for Climatic Change Research) was to mobilize university researchers, from all regions of the country, in support of the climatic change research objectives of DOE/BER. The NICCR Midwestern Regional Center (MRC) supported work in the following states: North Dakota, South Dakota, Nebraska, Kansas, Oklahoma, Minnesota, Iowa, Missouri, Wisconsin, Illinois, Michigan, Indiana, and Ohio. The MRC of NICCR was able to support nearly $8 million in climatic change research, including $6,671,303 for twenty projects solicited and selected by the MRC over five requests for proposals (RFPs) and $1,051,666 for the final year of ten projectsmore » from the discontinued DOE NIGEC (National Institute for Global Environmental Change) program. The projects selected and funded by the MRC resulted in 135 peer-reviewed publications and supported the training of 25 PhD students and 23 Masters students. Another 36 publications were generated by the final year of continuing NIGEC projects supported by the MRC. The projects funded by the MRC used a variety of approaches to answer questions relevant to the DOE’s climate change research program. These included experiments that manipulated temperature, moisture and other global change factors; studies that sought to understand how the distribution of species and ecosystems might change under future climates; studies that used measurements and modeling to examine current ecosystem fluxes of energy and mass and those that would exist under future conditions; and studies that synthesized existing data sets to improve our understanding of the effects of climatic change on terrestrial ecosystems. In all of these efforts, the MRC specifically sought to identify and quantify responses of terrestrial ecosystems that were not well understood or not well modeled by current efforts. The MRC also sought to better understand and model important feedbacks between terrestrial ecosystems, atmospheric chemistry, and regional and global climate systems. The broad variety of projects the MRC has supported gave us a unique opportunity to greatly improve our ability to predict the future health, composition and function of important agricultural and natural terrestrial ecosystems within the Midwestern Region.« less

  19. SEA Semester Undergraduates Research the Ocean's Role in Climate Systems in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Meyer, A. W.; Becker, M. K.; Grabb, K. C.

    2014-12-01

    Sea Education Association (SEA)'s fully accredited Oceans & Climate SEA Semester program provides upper-level science undergraduates a unique opportunity to explore the ocean's role in the global climate system as they conduct real-world oceanographic research and gain first-hand understanding of and appreciation for the collaborative nature of the scientific research process. Oceans & Climate is an interdisciplinary science and policy semester in which students also explore public policy perspectives to learn how scientific knowledge is used in making climate-related policy. Working first at SEA's shore campus, students collaborate with SEA faculty and other researchers in the local Woods Hole scientific community to design and develop an original research project to be completed at sea. Students then participate as full, working members of the scientific team and sailing crew aboard the 134-foot brigantine SSV Robert C. Seamans; they conduct extensive oceanographic sampling, manage shipboard operations, and complete and present the independent research project they designed onshore. Oceans & Climate SEA Semester Cruise S-250 sailed from San Diego to Tahiti on a 7-week, >4000nm voyage last fall (November-December 2013). This remote open-ocean cruise track traversed subtropical and equatorial regions of the Pacific particularly well suited for a diverse range of climate-focused studies. Furthermore, as SEA has regularly collected scientific data along similar Pacific cruise tracks for more than a decade, students often undertake projects that require time-series analyses. 18 undergraduates from 15 different colleges and universities participated in the S-250 program. Two examples of the many projects completed by S-250 students include a study of the possible relationship between tropical cyclone intensification, driven by warm sea surface temperatures, and the presence of barrier layers; and a study of nutrient cycling in the eastern Pacific, focusing on primary nitrite maximum changes in various oceanographic regions with differing levels of stratification and accompanying localization of microbial communities. These studies, as well as additional scientific and policy projects conducted by other Oceans & Climate students, will be highlighted in this poster presentation.

  20. The New England Climate Adaptation Project: Enhancing Local Readiness to Adapt to Climate Change through Role-Play Simulations

    NASA Astrophysics Data System (ADS)

    Rumore, D.; Kirshen, P. H.; Susskind, L.

    2014-12-01

    Despite scientific consensus that the climate is changing, local efforts to prepare for and manage climate change risks remain limited. How we can raise concern about climate change risks and enhance local readiness to adapt to climate change's effects? In this presentation, we will share the lessons learned from the New England Climate Adaptation Project (NECAP), a participatory action research project that tested science-based role-play simulations as a tool for educating the public about climate change risks and simulating collective risk management efforts. NECAP was a 2-year effort involving the Massachusetts Institute of Technology, the Consensus Building Institute, the National Estuarine Research Reserve System, and four coastal New England municipalities. During 2012-2013, the NECAP team produced downscaled climate change projections, a summary risk assessment, and a stakeholder assessment for each partner community. Working with local partners, we used these assessments to create a tailored, science-based role-play simulation for each site. Through a series of workshops in 2013, NECAP engaged between 115-170 diverse stakeholders and members of the public in each partner municipality in playing the simulation and a follow up conversation about local climate change risks and possible adaptation strategies. Data were collected through before-and-after surveys administered to all workshop participants, follow-up interviews with 25 percent of workshop participants, public opinion polls conducted before and after our intervention, and meetings with public officials. This presentation will report our research findings and explain how science-based role-play simulations can be used to help communicate local climate change risks and enhance local readiness to adapt.

  1. Mainstreaming Climate Change: Recent and Ongoing Efforts to Understand, Improve, and Expand Consideration of Climate Change in Federal Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; McGuire, M.; Broman, D.; Gangopadhyay, S.

    2017-12-01

    The Bureau of Reclamation is a Federal agency tasked with developing and managing water supply and hydropower projects in the Western U.S. Climate and hydrologic variability and change significantly impact management actions and outcomes across Reclamation's programs and initiatives, including water resource planning and operations, infrastructure design and maintenance, hydropower generation, and ecosystem restoration, among others. Planning, design, and implementation of these programs therefore requires consideration of future climate and hydrologic conditions will impact program objectives. Over the past decade, Reclamation and other Federal agencies have adopted new guidelines, directives, and mandates that require consideration of climate change in water resources planning and decision making. Meanwhile, the scientific community has developed a large number of climate projections, along with an array of models, methods, and tools to facilitate consideration of climate projections in planning and decision making. However, water resources engineers, planners, and decision makers continue to face challenges regarding how best to use the available data and tools to support major decisions, including decisions regarding infrastructure investments and long-term operating criteria. This presentation will discuss recent and ongoing research towards understanding, improving, and expanding consideration of climate projections and related uncertainties in Federal water resources planning and decision making. These research efforts address a variety of challenges, including: How to choose between available climate projection datasets and related methods, models, and tools—many of which are considered experimental or research tools? How to select an appropriate decision framework when design or operating alternatives may differ between climate scenarios? How to effectively communicate results of a climate impacts analysis to decision makers? And, how to improve robustness and resilience of water resources systems in the face of significant uncertainty? Discussion will focus on the intersection between technical challenges and decision making paradigms and the need for improved scientist-decision maker engagement through the lens of this Federal water management agency.

  2. Application of the new scenario framework for climate change research: Future social vulnerability in large urban areas

    NASA Astrophysics Data System (ADS)

    Rohat, Guillaume; Flacke, Johannes; Dao, Hy

    2016-04-01

    It is by now widely acknowledged that future social vulnerability to climate change depends on both future climate state and future socio-economic conditions. Nevertheless, while most of the vulnerability assessments are using climate projections, the integration of socio-economic projections into the assessment of vulnerabilities has been very limited. Up to now, the vast majority of vulnerability assessments has been using current socio-economic conditions, hence has failed to consider the influence of socio-economic developments in the construction of vulnerability. To enhance the use of socio-economic projections into climate change impacts, adaptation and vulnerability assessments, the climate change research community has been recently involved in the development of a new model for creating scenarios that integrate future changes in climate as well as in society, known under the name of the new scenario framework for climate change research. This theoretical framework is made of a set of alternative futures of socio-economic developments (known as shared socio-economic pathways - SSPs), a set of hypothesis about future climate policies (known as shared policy assumptions - SPAs) and a set of greenhouse gas concentration trajectories (known as representative concentration pathways - RCPs), which are all combined into a scenario matrix architecture (SMA) whose aim is to facilitate the use of this framework. Despite calls by the climate change research community for the use of this conceptual framework in impacts, adaptation and vulnerability research, its use and its assessment has been very limited. Focusing on case-studies (i.e. specific cities as well as specific climate impacts and their associated human exposures and vulnerabilities), the study presented here will attempt to operationalize this theoretical framework for the assessment of future social vulnerability in large urban areas. A particular attention will be paid to less advanced and more vulnerable countries in the global south. We will discuss how this framework can be implemented for large urban agglomerations. To do so, we will examine: (i) by what means globally-developed SSPs can be extended into sector-specific and location-specific socio-economic development scenarios, (ii) in what manner the quantification of key socio-economic indicators (in accordance with the different SSPs), coupled with regional climate projections under different RCPs, can lead to a quantitative and reliable assessment of the evolution of future social vulnerability, and (iii) to which extent the SMA, i.e. the combination of extended SSPs, regional climate projections (under different RCPs) and various locally-developed SPAs, can answer some of the key questions regarding climate change adaptation policies, from a vulnerability perspective.

  3. Regional Climate Change across North America in 2030 Projected from RCP6.0

    NASA Astrophysics Data System (ADS)

    Otte, T.; Nolte, C. G.; Faluvegi, G.; Shindell, D. T.

    2012-12-01

    Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. In this research, downscaling techniques that we developed with historical data are now applied to GCM fields. Results from downscaling NASA/GISS ModelE2 simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model has been used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 over North America and illustrate potential changes in regional climate that are projected by ModelE2 and WRF under RCP6.0. The analysis focuses on regional climate fields that most strongly influence the interactions between climate change and air quality. In particular, an analysis of extreme temperature and precipitation events will be presented.

  4. The Climate Impacts Research Consortium: Lessons Learned from the Evaluation of Co-production projects

    NASA Astrophysics Data System (ADS)

    Sokolovska, I.; Andrepont, J. A.; Lach, D.

    2017-12-01

    The Pacific Northwest Climate Impacts Research Consortium (CIRC) is a climate-science-to-climate-action team funded by the National Oceanic and Atmospheric Administration (NOAA), member of NOAA's Regional Integrated Sciences and Assessments (RISA) program. The internal evaluation of the last 6 years of CIRC's work focused on the co-production of knowledge process. The evaluation was based on CIRC's Reflection and Logic model and used a mixed methods design. During regular monthly meetings in 2014/15, all CIRC PIs reflected on the co-production process and presented their evaluation of the projects they worked on. Additionally, we conducted semi-structured interviews with CIRC participants, purposefully targeting key informants. The Climate Impacts Research Consortium teams also administered surveys to assess participants' experiences of the coproduction process as they were engaging in it. Identifying and cultivating an informant from the local stakeholder group with deep, accessible roots within the target community can lead to better coproduction results than having to build those relationships from naught. Across projects, most participants agreed that the project increased their understanding of their area's hazards and by the end of the project most participants were confident the project would produce useful results for themselves. Finally, most participants intended to share what they had learned from this experience with their colleagues and we found that co-production built capacities necessary for communities to incorporate climate change in discussions even after the end of CIRC's participation. During the projects, the involvement of non-traditional participants along with experts was critical to success and a lot of work and preparation needs to be put into the planning of any co-production meeting to overcome various barriers to communication and build trust.

  5. Final Technical Report for DOE Award SC0006616

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Andrew

    2015-08-01

    This report summarizes research carried out by the project "Collaborative Research, Type 1: Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoonal Asia. This collaborative project brought together climate dynamicists (UCLA, IRI), dendroclimatologists (LDEO Tree Ring Laboratory), computer scientists (UCI), and hydrologists (Columbia Water Center, CWC), together with applied scientists in climate risk management (IRI) to create new scientific approaches to quantify and exploit the role of climate variability and change in the growing water crisis across southern and eastern Asia. This project developed new tree-ring based streamflow reconstructions for rivers in monsoonal Asia; improved understanding of hydrologic spatio-temporal modesmore » of variability over monsoonal Asia on interannual-to-centennial time scales; assessed decadal predictability of hydrologic spatio-temporal modes; developed stochastic simulation tools for creating downscaled future climate scenarios based on historical/proxy data and GCM climate change; and developed stochastic reservoir simulation and optimization for scheduling hydropower, irrigation and navigation releases.« less

  6. 76 FR 46756 - Strategic Environmental Research and Development Program (SERDP), Scientific Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... research and development projects related to the Munitions Response and Resource Conservation and Climate Change program areas. These projects are requesting Strategic Environmental Research and Development...

  7. Enabling Research Tools for Sustained Climate Assessment

    NASA Technical Reports Server (NTRS)

    Leidner, Allison K.; Bosilovich, Michael G.; Jasinski, Michael F.; Nemani, Ramakrishna R.; Waliser, Duane Edward; Lee, Tsengdar J.

    2016-01-01

    The U.S. Global Change Research Program Sustained Assessment process benefits from long-term investments in Earth science research that enable the scientific community to conduct assessment-relevant science. To this end, NASA initiated several research programs over the past five years to support the Earth observation community in developing indicators, datasets, research products, and tools to support ongoing and future National Climate Assessments. These activities complement NASA's ongoing Earth science research programs. One aspect of the assessment portfolio funds four "enabling tools" projects at NASA research centers. Each tool leverages existing capacity within the center, but has developed tailored applications and products for National Climate Assessments. The four projects build on the capabilities of a global atmospheric reanalysis (MERRA-2), a continental U.S. land surface reanalysis (NCA-LDAS), the NASA Earth Exchange (NEX), and a Regional Climate Model Evaluation System (RCMES). Here, we provide a brief overview of each enabling tool, highlighting the ways in which it has advanced assessment science to date. We also discuss how the assessment community can access and utilize these tools for National Climate Assessments and other sustained assessment activities.

  8. Projected wetland densities under climate change: Habitat loss but little geographic shift in conservation strategy

    USGS Publications Warehouse

    Sofaer, Helen R.; Skagen, Susan K.; Barsugli, Joseph J.; Rashford, Benjamin S.; Reese, Gordon C.; Hoeting, Jennifer A.; Wood, Andrew W.; Noon, Barry R.

    2016-01-01

    Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species’ vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential for a trade-off in the value of conservation investments under current and future climatic conditions and consider the joint effects of climate and land use. We use an integrated set of hydrological and climatological projections that provide physically based measures of water balance under historical and projected future climatic conditions. In addition, we use historical projections derived from ten general circulation models (GCMs) as a baseline from which to assess climate change impacts, rather than historical climate data. This method isolates the impact of greenhouse gas emissions and ensures that modeling errors are incorporated into the baseline rather than attributed to climate change. Our work shows that, on average, densities of wetlands (here defined as wetland basins holding water) are projected to decline across the U.S. Prairie Pothole Region, but that GCMs differ in both the magnitude and the direction of projected impacts. However, we found little evidence for a shift in the locations expected to provide the highest wetland densities under current vs. projected climatic conditions. This result was robust to the inclusion of projected changes in land use under climate change. We suggest that targeting conservation towards wetland complexes containing both small and relatively large wetland basins, which is an ongoing conservation strategy, may also act to hedge against uncertainty in the effects of climate change.

  9. The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB V1.0) Contribution to CMIP6

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Teichmann, Claas; Arnell, Nigel W.; Carter, Timothy R.; Ebi, Kristie L.; Frieler, Katja; Goodess, Clare M.; Hewitson, Bruce; Horton, Radley; Kovats, R. Sari; hide

    2016-01-01

    This paper describes the motivation for the creation of the Vulnerability, Impacts, Adaptation and Climate Services (VIACS) Advisory Board for the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), its initial activities, and its plans to serve as a bridge between climate change applications experts and climate modelers. The climate change application community comprises researchers and other specialists who use climate information (alongside socioeconomic and other environmental information) to analyze vulnerability, impacts, and adaptation of natural systems and society in relation to past, ongoing, and projected future climate change. Much of this activity is directed toward the co-development of information needed by decisionmakers for managing projected risks. CMIP6 provides a unique opportunity to facilitate a two-way dialog between climate modelers and VIACS experts who are looking to apply CMIP6 results for a wide array of research and climate services objectives. The VIACS Advisory Board convenes leaders of major impact sectors, international programs, and climate services to solicit community feedback that increases the applications relevance of the CMIP6-Endorsed Model Intercomparison Projects (MIPs). As an illustration of its potential, the VIACS community provided CMIP6 leadership with a list of prioritized climate model variables and MIP experiments of the greatest interest to the climate model applications community, indicating the applicability and societal relevance of climate model simulation outputs. The VIACS Advisory Board also recommended an impacts version of Obs4MIPs (observational datasets) and indicated user needs for the gridding and processing of model output.

  10. The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6

    NASA Astrophysics Data System (ADS)

    Ruane, Alex C.; Teichmann, Claas; Arnell, Nigel W.; Carter, Timothy R.; Ebi, Kristie L.; Frieler, Katja; Goodess, Clare M.; Hewitson, Bruce; Horton, Radley; Sari Kovats, R.; Lotze, Heike K.; Mearns, Linda O.; Navarra, Antonio; Ojima, Dennis S.; Riahi, Keywan; Rosenzweig, Cynthia; Themessl, Matthias; Vincent, Katharine

    2016-09-01

    This paper describes the motivation for the creation of the Vulnerability, Impacts, Adaptation and Climate Services (VIACS) Advisory Board for the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), its initial activities, and its plans to serve as a bridge between climate change applications experts and climate modelers. The climate change application community comprises researchers and other specialists who use climate information (alongside socioeconomic and other environmental information) to analyze vulnerability, impacts, and adaptation of natural systems and society in relation to past, ongoing, and projected future climate change. Much of this activity is directed toward the co-development of information needed by decision-makers for managing projected risks. CMIP6 provides a unique opportunity to facilitate a two-way dialog between climate modelers and VIACS experts who are looking to apply CMIP6 results for a wide array of research and climate services objectives. The VIACS Advisory Board convenes leaders of major impact sectors, international programs, and climate services to solicit community feedback that increases the applications relevance of the CMIP6-Endorsed Model Intercomparison Projects (MIPs). As an illustration of its potential, the VIACS community provided CMIP6 leadership with a list of prioritized climate model variables and MIP experiments of the greatest interest to the climate model applications community, indicating the applicability and societal relevance of climate model simulation outputs. The VIACS Advisory Board also recommended an impacts version of Obs4MIPs and indicated user needs for the gridding and processing of model output.

  11. Air, Climate, and Energy Strategic Research Action Plan, 2016 – 2019

    EPA Pesticide Factsheets

    ACE research projects are organized into 5 topics: Climate Impacts, Vulnerability, and Adaptation; Emissions and Measurements; Atmospheric and Integrated Modeling Systems; Protecting Environmental Public Health; and Sustainable Energy and Mitigation

  12. Challenges to the Transdisciplinarity of Climate Services: A Coffee Farming Case from Jamaica's Blue Mountains

    NASA Astrophysics Data System (ADS)

    Guido, Z.

    2017-12-01

    Climate information is heralded as helping to build adaptive capacity, improve resource management, and contribute to more effective risk management. However, decision makers often find it challenging to use climate information for reasons attributed to a disconnect between technical experts who produce the information and end users. Consequently, many climate service projects are now applying an end-to-end approach that links information users and producers in the design, development, and delivery of services. This collaboration confronts obstacles that can undermine the objectives of the project. Despite this, few studies in the burgeoning field of climate services have assessed the challenges. To address this gap, I provide a reflective account and analysis of the collaborative challenges experienced in an ongoing, complex four-year project developing climate services for small-scale coffee producers in Jamaica. The project has involved diverse activities, including social data collection, research and development of information tools, periodic engagement with coffee sector representatives, and community-based trainings. Contributions to the project were made routinely by 18 individuals who represent 9 institutions located in three countries. These individuals work for academic and governmental organizations and bring expertise in anthropology, plant pathology, and climatology, among others. In spanning diverse disciplines, large geographic distances, and different cultures, the project team has navigated challenges in communication, problem framing, organizational agendas, disciplinary integration, and project management. I contextualize these experiences within research on transdisciplinary and team science, and share some perspectives on strategies to lessen their impact.

  13. The BGC Feedbacks Scientific Focus Area 2016 Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Forrest M.; Riley, William J.; Randerson, James T.

    2016-06-01

    The BGC Feedbacks Project will identify and quantify the feedbacks between biogeochemical cycles and the climate system, and quantify and reduce the uncertainties in Earth System Models (ESMs) associated with those feedbacks. The BGC Feedbacks Project will contribute to the integration of the experimental and modeling science communities, providing researchers with new tools to compare measurements and models, thereby enabling DOE to contribute more effectively to future climate assessments by the U.S. Global Change Research Program (USGCRP) and the Intergovernmental Panel on Climate Change (IPCC).

  14. Comparative study on Climate Change Policies in the EU and China

    NASA Astrophysics Data System (ADS)

    Bray, M.; Han, D.

    2012-04-01

    Both the EU and China are among the largest CO2 emitters in the world; their climate actions and policies have profound impacts on global climate change and may influence the activities in other countries. Evidence of climate change has been observed across Europe and China. Despite the many differences between the two regions, the European Commission and Chinese government support climate change actions. The EU has three priority areas in climate change: 1) understanding, monitoring and predicting climate change and its impact; 2) providing tools to analyse the effectiveness, cost and benefits of different policy options for mitigating climate change and adapting to its impacts; 3) improving, demonstrating and deploying existing climate friendly technologies and developing the technologies of the future. China is very vulnerable to climate change, because of its vast population, fast economic development, and fragile ecological environment. The priority policies in China are: 1) Carbon Trading Policy; 2) Financing Loan Policy (Special Funds for Renewable Energy Development); 3) Energy Efficiency Labelling Policy; 4) Subsidy Policy. In addition, China has formulated the "Energy Conservation Law", "Renewable Energy Law", "Cleaner Production Promotion Law" and "Circular Economy Promotion Law". Under the present EU Framework Programme FP7 there is a large number of funded research activities linked to climate change research. Current climate change research projects concentrate on the carbon cycle, water quality and availability, climate change predictors, predicting future climate and understanding past climates. Climate change-related scientific and technological projects in China are mostly carried out through national scientific and technological research programs. Areas under investigation include projections and impact of global climate change, the future trends of living environment change in China, countermeasures and supporting technologies of global environment change, formation mechanism and prediction theory of major climate and weather disasters in China, technologies of efficient use of clean energy, energy conservation and improvement of energy efficiency, development and utilisation technology of renewable energy and new energy. The EU recognises that developing countries, such as China and India, need to strengthen their economies through industrialisation. However this needs to be achieved at the same time as protecting the environment and sustainable use of energy. The EU has committed itself to assisting developing countries to achieve their goals in four priority areas: 1) raising the policy profile of climate change; 2) support for adaption to climate change; 3) support for mitigation of climate change; and 4) capacity development. This comparative study is part of the EU funded SPRING project which seeks to understand and assess Chinese and European competencies, with the aim of facilitating greater cooperation in future climate and environment research.

  15. The NextData Project: a national Italian system for the retrieval, storage, access and diffusion of environmental and climate data from mountain and marine areas

    NASA Astrophysics Data System (ADS)

    Provenzale, Antonello

    2013-04-01

    Mountains are sentinels of climate and environmental change and many marine regions provide information on past climate variations. The Project of Interest NextData will favour the implementation of measurement networks in remote mountain and marine areas and will develop efficient web portals to access meteoclimatic and atmospheric composition data, past climate information from ice and sediment cores, biodiversity and ecosystem data, measurements of the hydrological cycle, marine reanalyses and climate projections at global and regional scale. New data on the present and past climatic variability and future climate projections in the Alps, the Himalaya-Karakoram, the Mediterranean region and other areas of interest will be obtained and made available. The pilot studies conducted during the project will allow for obtaining new estimates on the availability of water resources and on the effects of atmospheric aerosols on high-altitude environments, as well as new assessments of the impact of climate change on ecosystems, health and societies in mountain regions. The system of archives and the scientific results produced by the NextData project will provide a unique data base for research, for environmental management and for the estimate of climate change impacts, allowing for the development of knowledge-based environmental and climate adaptation policies.

  16. Innovating Science Teaching by Participatory Action Research--Reflections from an Interdisciplinary Project of Curriculum Innovation on Teaching about Climate Change

    ERIC Educational Resources Information Center

    Feierabend, Timo; Eilks, Ingo

    2011-01-01

    This paper describes a three-year curriculum innovation project on teaching about climate change. The innovation for this study focused on a socio-critical approach towards teaching climate change in four different teaching domains (biology, chemistry, physics and politics). The teaching itself explicitly aimed at general educational objectives,…

  17. CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium

    NASA Astrophysics Data System (ADS)

    Termonia, P.

    2015-12-01

    The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond", is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups 8 Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.

  18. CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium

    NASA Astrophysics Data System (ADS)

    Termonia, Piet; Van Schaeybroeck, Bert; De Ridder, Koen; Fettweis, Xavier; Gobin, Anne; Luyten, Patrick; Marbaix, Philippe; Pottiaux, Eric; Stavrakou, Trissevgeni; Van Lipzig, Nicole; van Ypersele, Jean-Pascal; Willems, Patrick

    2016-04-01

    The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond" is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups eight Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.

  19. AMOC decadal variability in Earth system models: Mechanisms and climate impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Alexey

    This is the final report for the project titled "AMOC decadal variability in Earth system models: Mechanisms and climate impacts". The central goal of this one-year research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) within a hierarchy of climate models ranging from realistic ocean GCMs to Earth system models. The AMOC is a key element of ocean circulation responsible for oceanic transport of heat from low to high latitudes and controlling, to a large extent, climate variations in the North Atlantic. The questions of the AMOC stability, variability andmore » predictability, directly relevant to the questions of climate predictability, were at the center of the research work.« less

  20. Comparing Planning Hydrologic Ensembles associated with Paleoclimate, Projected Climate, and blended Climate Information Sets

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Prairie, J.; Pruitt, T.; Rajagopalan, B.; Woodhouse, C.

    2008-12-01

    Water resources adaptation planning under climate change involves making assumptions about probabilistic water supply conditions, which are linked to a given climate context (e.g., instrument records, paleoclimate indicators, projected climate data, or blend of these). Methods have been demonstrated to associate water supply assumptions with any of these climate information types. Additionally, demonstrations have been offered that represent these information types in a scenario-rich (ensemble) planning framework, either via ensembles (e.g., survey of many climate projections) or stochastic modeling (e.g., based on instrument records or paleoclimate indicators). If the planning goal involves using a hydrologic ensemble that jointly reflects paleoclimate (e.g., lower- frequency variations) and projected climate information (e.g., monthly to annual trends), methods are required to guide how these information types might be translated into water supply assumptions. However, even if such a method exists, there is lack of understanding on how such a hydrologic ensemble might differ from ensembles developed relative to paleoclimate or projected climate information alone. This research explores two questions: (1) how might paleoclimate and projected climate information be blended into an planning hydrologic ensemble, and (2) how does a planning hydrologic ensemble differ when associated with the individual climate information types (i.e. instrumental records, paleoclimate, projected climate, or blend of the latter two). Case study basins include the Gunnison River Basin in Colorado and the Missouri River Basin above Toston in Montana. Presentation will highlight ensemble development methods by information type, and comparison of ensemble results.

  1. Increasing Diversity in Global Climate Change Research for Undergraduates

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Marchese, P.; Carlson, B. E.; Howard, A. M.; Peteet, D. M.; Rosenzweig, C.; Druyan, L. M.; Fulakeza, M.; Gaffin, S.; Austin, S. A.; Cheung, T. D.; Damas, M. C.; Boxe, C.; Prince, T.; Ng, C.; Frost, J.

    2014-12-01

    Global Climate Change and the ability to predict the effects of forcings and feedback mechanisms on global and local climate are critical to the survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies towards advanced degrees and pursue careers related to climate change. This is best accomplished by involving undergraduates in global climate change research. This Research Experience for Undergraduates (REU) initiative is based at the City University of New York (CUNY) and the Goddard Institute for Space Studies (GISS), and is supported by NASA and NSF. Mentors for the primarily summer research experiences include CUNY faculty and GISS scientists. Research topics include the Wetland Carbon Project, The Cooling Power Of Urban Vegetation, Internal Ocean Mixing, El Niño Southern Oscillation, Pollution Transport and Tropospheric Ozone. Students are recruited from CUNY colleges and other colleges and universities. The program maintains an emphasis on under-represented minorities and females. Approximately sixty percent of the undergraduate students are under-represented minorities and forty percent are female. The project is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research.

  2. US Climate Variability and Predictability Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Mike

    The US CLIVAR Project Office administers the US CLIVAR Program with its mission to advance understanding and prediction of climate variability and change across timescales with an emphasis on the role of the ocean and its interaction with other elements of the Earth system. The Project Office promotes and facilitates scientific collaboration within the US and international climate and Earth science communities, addressing priority topics from subseasonal to centennial climate variability and change; the global energy imbalance; the ocean’s role in climate, water, and carbon cycles; climate and weather extremes; and polar climate changes. This project provides essential one-year supportmore » of the Project Office, enabling the participation of US scientists in the meetings of the US CLIVAR bodies that guide scientific planning and implementation, including the scientific steering committee that establishes program goals and evaluates progress of activities to address them, the science team of funded investigators studying the ocean overturning circulation in the Atlantic, and two working groups tackling the priority research topics of Arctic change influence on midlatitude climate and weather extremes and the decadal-scale widening of the tropical belt.« less

  3. US Climate Variability and Predictability (CLIVAR) Project- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Mike

    The US CLIVAR Project Office administers the US CLIVAR Program with its mission to advance understanding and prediction of climate variability and change across timescales with an emphasis on the role of the ocean and its interaction with other elements of the Earth system. The Project Office promotes and facilitates scientific collaboration within the US and international climate and Earth science communities, addressing priority topics from subseasonal to centennial climate variability and change; the global energy imbalance; the ocean’s role in climate, water, and carbon cycles; climate and weather extremes; and polar climate changes. This project provides essential one-year supportmore » of the Project Office, enabling the participation of US scientists in the meetings of the US CLIVAR bodies that guide scientific planning and implementation, including the scientific steering committee that establishes program goals and evaluates progress of activities to address them, the science team of funded investigators studying the ocean overturning circulation in the Atlantic, and two working groups tackling the priority research topics of Arctic change influence on midlatitude climate and weather extremes and the decadal-scale widening of the tropical belt.« less

  4. Connecting today's climates to future climate analogs to facilitate movement of species under climate change.

    PubMed

    Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos

    2017-12-01

    Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.

  5. Linking climate change and karst hydrology to evaluate species vulnerability: The Edwards and Madison aquifers (Invited)

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Long, A. J.; Stamm, J. F.; Poteet, M.; Symstad, A.

    2013-12-01

    Karst aquifers present an extreme case of flow along structurally variable pathways, making them highly dynamic systems and therefore likely to respond rapidly to climate change. In turn, many biological communities and ecosystems associated with karst are sensitive to hydrologic changes. We explored how three sites in the Edwards aquifer (Texas) and two sites in the Madison aquifer (South Dakota) might respond to projected climate change from 2011 to 2050. Ecosystems associated with these karst aquifers support federally listed endangered and threatened species and state-listed species of concern, including amphibians, birds, insects, and plants. The vulnerability of selected species associated with projected climate change was assessed. The Advanced Research Weather and Research Forecasting (WRF) model was used to simulate projected climate at a 36-km grid spacing for three weather stations near the study sites, using boundary and initial conditions from the global climate model Community Climate System Model (CCSM3) and an A2 emissions scenario. Daily temperature and precipitation projections from the WRF model were used as input for the hydrologic Rainfall-Response Aquifer and Watershed Flow (RRAWFLOW) model and the Climate Change Vulnerability Index (CCVI) model. RRAWFLOW is a lumped-parameter model that simulates hydrologic response at a single site, combining the responses of quick and slow flow that commonly characterize karst aquifers. CCVI uses historical and projected climate and hydrologic metrics to determine the vulnerability of selected species on the basis of species exposure to climate change, sensitivity to factors associated with climate change, and capacity to adapt to climate change. An upward trend in temperature was projected for 2011-2050 at all three weather stations; there was a trend (downward) in annual precipitation only for the weather station in Texas. A downward trend in mean annual spring flow or groundwater level was projected for all of the Edwards sites, but there was no significant trend for the Madison sites. Of 16 Edwards aquifer species evaluated (four amphibians, six arthropods, one fish, one mollusk, and four plants), 12 were scored as highly or moderately vulnerable under the projected climate change scenario. In contrast, all of the 8 Madison aquifer species evaluated (two mammals, one bird, one mollusk, and four plants) were scored as moderately vulnerable, stable, or intermediate between the two. The inclusion of hydrologic projections in the vulnerability assessment was essential for interpreting the effects of climate change on aquatic species of conservations concern, such as endemic salamanders. The linkage of climate, hydrologic, and vulnerability models provided a bridge to project the effects of global climate change on local karst aquifer and stream systems and selected species.

  6. The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation research activity for historical period model intercomparison and future climate change conditions with participation of multiple crop and agricultural economic model groups around the...

  7. The PAGES 2k Network, Phase 3: Themes and Call for Participation

    NASA Astrophysics Data System (ADS)

    von Gunten, L.; Mcgregor, H. V.; Martrat, B.; St George, S.; Neukom, R.; Bothe, O.; Linderholm, H. W.; Phipps, S. J.; Abram, N.

    2017-12-01

    The past 2000 years (the "2k" interval) provides critical context for understanding recent anthropogenic forcing of the climate and provides baseline information about the characteristics of natural climate variability. It also presents opportunities to improve the interpretation of proxy observations and to evaluate the climate models used to make future projections. Phases 1 and 2 of the PAGES 2k Network focussed on building regional and global surface temperature reconstructions for terrestrial regions and the oceans, and comparing these with model simulations to identify mechanisms of climate variation on interannual to bicentennial time scales. Phase 3 was launched in May 2017 and aims to address major questions around past hydroclimate, climate processes and proxy uncertainties. Its scientific themes are: Theme 1: "Climate Variability, Modes and Mechanisms"Further understand the mechanisms driving regional climate variability and change on interannual to centennial time scales; Theme 2: "Methods and Uncertainties"Reduce uncertainties in the interpretation of observations imprinted in paleoclimatic archives by environmental sensors; Theme 3: "Proxy and Model Understanding"Identify and analyse the extent of agreement between reconstructions and climate model simulations. Research is organized as a linked network of well-defined projects, identified and led by 2k community members. The 2k projects focus on specific scientific questions aligned with Phase 3 themes, rather than being defined along regional boundaries. New 2k projects can be proposed at any time at http://www.pastglobalchanges.org/ini/wg/2k-network/projects An enduring element of PAGES 2k is a culture of collegiality, transparency, and reciprocity. Phase 3 seeks to stimulate community based projects and facilitate collaboration between researchers from different regions and career stages, drawing on the breadth and depth of the global PAGES 2k community. All PAGES 2k projects also promote best practises in data stewardship for the research community. The network is open to anyone who is interested. If you would like to participate in PAGES 2k or receive updates, please join our mailing list or speak to a coordinating committee member.

  8. Collaborations for Building Tribal Resiliency to Climate Change

    NASA Astrophysics Data System (ADS)

    Bamzai, A.; Taylor, A.; Winton, K.

    2015-12-01

    Sixty-eight tribes are located in the U.S. Department of the Interior's South Central Climate Science Center (SCCSC) region. The SCCSC made it a priority to include the tribes as partners from its inception and both the Chickasaw Nation and the Choctaw Nation of Oklahoma participate in the center's activities as consortium members. Under this arrangement, the SCCSC employs a full-time tribal liaison to facilitate relations with the tribes, develop partnerships for climate-relevant projects, build tribal stakeholder capacity, and organize tribal youth programs. In 2014, the SCCSC published its Tribal Engagement Strategy (USGS Circular 1396) to outline its approach for developing tribal relationships. The conceptual plan covers each step in the multi-year process from initial introductory meetings and outreach to demonstrate commitment and interest in working with tribal staff, building tribal capacity in climate related areas while also building researcher capacity in ethical research, and facilitating the co-production of climate-relevant research projects. As the tribes begin to develop their internal capacity and find novel ways to integrate their interests, the plan ultimately leads to tribes developing their own independent research projects and integrating climate science into their various vulnerability assessments and adaptation plans. This presentation will outline the multiple steps in the SCCSC's Tribal Engagement Strategy and provide examples of our ongoing work in support of each step.

  9. Undergraduate Research Collaborations with Government Agencies Involving the Effects of Climate Change

    NASA Astrophysics Data System (ADS)

    Gurtler, G.

    2017-12-01

    We discuss the challenges and achievements that a small HSI college had integrating undergraduate research experiences into an existing natural sciences program. Like most introductory college science courses, our natural science courses used textbooks, PowerPoint presentations, and lectures to illustrate basic scientific concepts. Though a collective decision was made by our science faculty to incorporate undergraduate research projects into various STEM courses, our greatest challenge was incorporating mandatory research courses into the degree plans of our Natural Science program. We found that students made considerable progress in understanding natural science by critically evaluating primary research articles and undertaking small research projects. Many of these student projects were conducted in cooperation with the Albuquerque District of the US Army Corps of Engineers, United States Geological Survey in Denver, and the National Ice Core Laboratory. These projects illustrated the effects of climate change on the water quality, sediment buildup, and biodiversity at local reservoirs. Other projects involved the analysis of ice core samples from Greenland and Antarctica. Students presented research posters at various research venues, including Community College Undergraduate Research Initiative colloquiums.

  10. Building Interdisciplinary Research and Communication Skills in the Agricultural and Climate Sciences

    NASA Astrophysics Data System (ADS)

    Johnson-Maynard, J.; Borrelli, K.; Wolf, K.; Bernacchi, L.; Eigenbrode, S.; Daley Laursen, D.

    2015-12-01

    Preparing scientists and educators to create and promote practical science-based agricultural approaches to climate change adaptation and mitigation is a main focus of the Regional Approaches to Climate Change (REACCH) project. Social, political and environmental complexities and interactions require that future scientists work across disciplines rather than having isolated knowledge of one specific subject area. Additionally, it is important for graduate students earning M.S. or Ph.D. degrees in agriculture and climate sciences to be able to communicate scientific findings effectively to non-scientific audiences. Unfortunately, university graduate curricula rarely adequately prepare students with these important skills. REACCH recognizes the need for graduate students to have thorough exposure to other disciplines and to be able to communicate information for outreach and education purposes. These priorities have been incorporated into graduate training within the REACCH project. The interdisciplinary nature of the project and its sophisticated digital infrastructure provide graduate students multiple opportunities to gain these experiences. The project includes over 30 graduate students from 20 different disciplines and research foci including agronomy, biogeochemistry, soil quality, conservation tillage, hydrology, pest and beneficial organisms, economics, modeling, remote sensing, science education and climate science. Professional develop workshops were developed and held during annual project meetings to enhance student training. The "Toolbox" survey (http://www.cals.uidaho.edu/toolbox/) was used to achieve effective interdisciplinary communication. Interdisciplinary extension and education projects were required to allow students to gain experience with collaboration and working with stakeholder groups. Results of student surveys and rubrics developed to gauge success in interdisciplinary research and communication may provide a helpful starting point for future projects involving graduate student training.

  11. Earth System Grid II, Turning Climate Datasets into Community Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects,more » we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.« less

  12. Climate Change driven evolution of hazards to Europe's transport infrastructure throughout the twenty-first century

    NASA Astrophysics Data System (ADS)

    Matulla, Christoph; Hollósi, Brigitta; Andre, Konrad; Gringinger, Julia; Chimani, Barbara; Namyslo, Joachim; Fuchs, Tobias; Auerbach, Markus; Herrmann, Carina; Sladek, Brigitte; Berghold, Heimo; Gschier, Roland; Eichinger-Vill, Eva

    2017-06-01

    Road authorities, freight, and logistic industries face a multitude of challenges in a world changing at an ever growing pace. While globalization, changes in technology, demography, and traffic, for instance, have received much attention over the bygone decades, climate change has not been treated with equal care until recently. However, since it has been recognized that climate change jeopardizes many business areas in transport, freight, and logistics, research programs investigating future threats have been initiated. One of these programs is the Conference of European Directors of Roads' (CEDR) Transnational Research Programme (TRP), which emerged about a decade ago from a cooperation between European National Road Authorities and the EU. This paper presents findings of a CEDR project called CliPDaR, which has been designed to answer questions from road authorities concerning climate-driven future threats to transport infrastructure. Pertaining results are based on two potential future socio-economic pathways of mankind (one strongly economically oriented "A2" and one more balanced scenario "A1B"), which are used to drive global climate models (GCMs) producing global and continental scale climate change projections. In order to achieve climate change projections, which are valid on regional scales, GCM projections are downscaled by regional climate models. Results shown here originate from research questions raised by European Road Authorities. They refer to future occurrence frequencies of severely cold winter seasons in Fennoscandia, to particularly hot summer seasons in the Iberian Peninsula and to changes in extreme weather phenomena triggering landslides and rutting in Central Europe. Future occurrence frequencies of extreme winter and summer conditions are investigated by empirical orthogonal function analyses of GCM projections driven with by A2 and A1B pathways. The analysis of future weather phenomena triggering landslides and rutting events requires downscaled climate change projections. Hence, corresponding results are based on an ensemble of RCM projections, which was available for the A1B scenario. All analyzed risks to transport infrastructure are found to increase over the decades ahead with accelerating pace towards the end of this century. Mean Fennoscandian winter temperatures by the end of this century may match conditions of rather warm winter season experienced in the past and particularly warm future winter temperatures have not been observed so far. This applies in an even more pronounced manner to summer seasons in the Iberian Peninsula. Occurrence frequencies of extreme climate phenomena triggering landslides and rutting events in Central Europe are also projected to rise. Results show spatially differentiated patterns and indicate accelerated rates of increases.

  13. Conflict in a changing climate

    NASA Astrophysics Data System (ADS)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  14. Climate Change Communicators: The C3E3 Project

    NASA Astrophysics Data System (ADS)

    Sharif, H. O.; Joseph, J.

    2013-12-01

    The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. More than 60 students participated in guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Several departments are involved in the educational program.

  15. High-resolution projections of 21st century climate over the Athabasca River Basin through an integrated evaluation-classification-downscaling-based climate projection framework

    NASA Astrophysics Data System (ADS)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Zhu, Jinxin; Zhou, Xiong; Yao, Y.

    2017-03-01

    An evaluation-classification-downscaling-based climate projection (ECDoCP) framework is developed to fill a methodological gap of general circulation models (GCMs)-driven statistical-downscaling-based climate projections. ECDoCP includes four interconnected modules: GCM evaluation, climate classification, statistical downscaling, and climate projection. Monthly averages of daily minimum (Tmin) and maximum (Tmax) temperature and daily cumulative precipitation (Prec) over the Athabasca River Basin (ARB) at a 10 km resolution in the 21st century under four Representative Concentration Pathways (RCPs) are projected through ECDoCP. At the octodecadal scale, temperature and precipitation would increase; after bias correction, temperature would increase with a decreased increment, while precipitation would increase only under RCP 8.5. Interannual variability of climate anomalies would increase from RCPs 4.5, 2.6, 6.0 to 8.5 for temperature and from RCPs 2.6, 4.5, 6.0 to 8.5 for precipitation. Bidecadal averaged climate anomalies would decrease from December-January-February (DJF), March-April-May (MAM), September-October-November (SON) to June-July-August (JJA) for Tmin, from DJF, SON, MAM to JJA for Tmax, and from JJA, MAM, SON to DJF for Prec. Climate projection uncertainties would decrease in May to September for temperature and in November to April for precipitation. Spatial climatic variability would not obviously change with RCPs; climatic anomalies are highly correlated with climate-variable magnitudes. Climate anomalies would decrease from upstream to downstream for temperature, and precipitation would follow an opposite pattern. The north end and the other zones would have colder and warmer days, respectively; precipitation would decrease in the upstream and increase in the remaining region. Climate changes might lead to issues, e.g., accelerated glacier/snow melting, deserving attentions of researchers and the public.

  16. Projected wetland densities under climate change: habitat loss but little geographic shift in conservation strategy.

    PubMed

    Sofaer, Helen R; Skagen, Susan K; Barsugli, Joseph J; Rashford, Benjamin S; Reese, Gordon C; Hoeting, Jennifer A; Wood, Andrew W; Noon, Barry R

    2016-09-01

    Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species' vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential for a trade-off in the value of conservation investments under current and future climatic conditions and consider the joint effects of climate and land use. We use an integrated set of hydrological and climatological projections that provide physically based measures of water balance under historical and projected future climatic conditions. In addition, we use historical projections derived from ten general circulation models (GCMs) as a baseline from which to assess climate change impacts, rather than historical climate data. This method isolates the impact of greenhouse gas emissions and ensures that modeling errors are incorporated into the baseline rather than attributed to climate change. Our work shows that, on average, densities of wetlands (here defined as wetland basins holding water) are projected to decline across the U.S. Prairie Pothole Region, but that GCMs differ in both the magnitude and the direction of projected impacts. However, we found little evidence for a shift in the locations expected to provide the highest wetland densities under current vs. projected climatic conditions. This result was robust to the inclusion of projected changes in land use under climate change. We suggest that targeting conservation towards wetland complexes containing both small and relatively large wetland basins, which is an ongoing conservation strategy, may also act to hedge against uncertainty in the effects of climate change. © 2016 by the Ecological Society of America.

  17. Project Summary (2012-2015) – Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkle, Ross; Benscoter, Brian; Comas, Xavier

    2015-04-07

    Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change The objectives of this project are to: 1) quantify above- and below-ground carbon stocks of terrestrial ecosystems along a seasonal hydrologic gradient in the headwaters region of the Greater Everglades watershed; 2) develop budgets of ecosystem gaseous carbon exchange (carbon dioxide and methane) across the seasonal hydrologic gradient; 3) assess the impact of climate drivers on ecosystem carbon exchange in the Greater Everglades headwater region; and 4) integrate research findings with climate-driven terrestrial ecosystem carbon models to examine the potential influence of projected future climate change on regionalmore » carbon cycling. Note: this project receives a one-year extension past the original performance period - David Sumner (USGS) is not included in this extension.« less

  18. Climatic Changes and Evaluation of Their Effects on Agriculture in Asian Monsoon Region- A project of GRENE-ei programs in Japan

    NASA Astrophysics Data System (ADS)

    Mizoguchi, M.; Matsumoto, J.; Takahashi, H. G.; Tanaka, K.; Kuwagata, T.

    2015-12-01

    It is important to predict climate change correctly in regional scale and to build adaptation measures and mitigation measures in the Asian monsoon region where more than 60 % of the world's population are living. The reliability of climate change prediction model is evaluated by the reproducibility of past climate in general. However, because there are many developing countries in the Asian monsoon region, adequate documentations of past climate which are needed to evaluate the climate reproducibility have not been prepared. In addition, at present it is difficult to get information on wide-area agricultural meteorological data which affect the growth of agricultural crops when considering the impact on agriculture of climate. Therefore, we have started a research project entitled "Climatic changes and evaluation of their effects on agriculture in Asian monsoon region (CAAM)" under the research framework of the Green Network of Excellence (GRENE) for the Japanese fiscal years from 2011 to 2015 supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT). This project aims to improve the reliability of future climate prediction and to develop the information platform which will be useful to design adaptation and mitigation strategies in agriculture against the predicted climatic changes in Asian monsoon regions. What is GRENE?Based on the new growth strategy which was approved by the Cabinet of Japan in June 2010, Green Network of Excellence program (GRENE) has started under MEXT from FY 2011. The objectives of this program are that the domestic leading universities work together strategically and promote a comprehensive human resource development and research of the highest level in the world while sharing research resources and research goals. In the field of environmental information, it is required that universities and research institutions, which are working on issues such as adaptation to climate change, cooperate to promote the utilization of environmental information and to develop human resources while using DIAS (Data Integration and Analysis System) which has been built by MEXT.

  19. Evolution of extreme temperature events in short term climate projection for Iberian Peninsula.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Alfredo; Tarquis, Ana M.; Sanchez, Enrique; Dosio, Alessandro; Ruiz-Ramos, Margarita

    2014-05-01

    Extreme events of maximum and minimum temperatures are a main hazard for agricultural production in Iberian Peninsula. For this purpose, in this study we analyze projections of their evolution that could be valid for the next decade, represented in this study by the 30-year period 2004-2034 (target period). For this purpose two kinds of data were used in this study: 1) observations from the station network of AEMET (Spanish National Meteorological Agency) for five Spanish locations, and 2) simulated data at a resolution of 50 ×50 km horizontal grid derived from the outputs of twelve Regional Climate Models (RCMs) taken from project ENSEMBLES (van der Linden and Mitchell, 2009), with a bias correction (Dosio and Paruolo, 2011; Dosio et al., 2012) regarding the observational dataset Spain02 (Herrera et al., 2012). To validate the simulated climate, the available period of observations was compared to a baseline period (1964-1994) of simulated climate for all locations. Then, to analyze the changes for the present/very next future, probability of extreme temperature events for 2004-2034 were compared to that of the baseline period. Although only minor changes are expected, small variations in variability may have a significant impact in crop performance. The objective of the work is to evaluate the utility of these short term projections for potential users, as for instance insurance companies. References Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, VOL. 116,D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research,Volume 117, D17, doi: 0.1029/2012JD017968 Herrera et. al. (2012) Development and Analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain02). International Journal of Climatology 32:74-85 DOI: 10.1002/joc.2256. van der Linden, P., and J. F. B. Mitchell (Eds.) (2009), ENSEMBLES: Climate Change and Its Impacts: Summary of Research and Results From the ENSEMBLES Project, Met Off. Hadley Cent, Exeter, U. K.

  20. A Geographic Mosaic of Climate Change Impacts on Terrestrial Vegetation: Which Areas Are Most at Risk?

    PubMed Central

    Ackerly, David D.; Cornwell, William K.; Weiss, Stuart B.; Flint, Lorraine E.; Flint, Alan L.

    2015-01-01

    Changes in climate projected for the 21st century are expected to trigger widespread and pervasive biotic impacts. Forecasting these changes and their implications for ecosystem services is a major research goal. Much of the research on biotic responses to climate change has focused on either projected shifts in individual species distributions or broad-scale changes in biome distributions. Here, we introduce a novel application of multinomial logistic regression as a powerful approach to model vegetation distributions and potential responses to 21st century climate change. We modeled the distribution of 22 major vegetation types, most defined by a single dominant woody species, across the San Francisco Bay Area. Predictor variables included climate and topographic variables. The novel aspect of our model is the output: a vector of relative probabilities for each vegetation type in each location within the study domain. The model was then projected for 54 future climate scenarios, spanning a representative range of temperature and precipitation projections from the CMIP3 and CMIP5 ensembles. We found that sensitivity of vegetation to climate change is highly heterogeneous across the region. Surprisingly, sensitivity to climate change is higher closer to the coast, on lower insolation, north-facing slopes and in areas of higher precipitation. While such sites may provide refugia for mesic and cool-adapted vegetation in the face of a warming climate, the model suggests they will still be highly dynamic and relatively sensitive to climate-driven vegetation transitions. The greater sensitivity of moist and low insolation sites is an unexpected outcome that challenges views on the location and stability of climate refugia. Projections provide a foundation for conservation planning and land management, and highlight the need for a greater understanding of the mechanisms and time scales of potential climate-driven vegetation transitions. PMID:26115485

  1. Coastline Mapping and Cultural Review to Predict Sea Level Rise Impact on Hawaiian Archeological Sites

    NASA Astrophysics Data System (ADS)

    Clinton, J.

    2017-12-01

    Much of Hawaii's history is recorded in archeological sites. Researchers and cultural practitioners have been studying and reconstructing significant archeological sites for generations. Climate change, and more specifically, sea level rise may threaten these sites. Our research records current sea levels and then projects possible consequences to these cultural monuments due to sea level rise. In this mixed methods study, research scientists, cultural practitioners, and secondary students use plane-table mapping techniques to create maps of coastlines and historic sites. Students compare historical records to these maps, analyze current sea level rise trends, and calculate future sea levels. They also gather data through interviews with community experts and kupuna (elders). If climate change continues at projected rates, some historic sites will be in danger of negative impact due to sea level rise. Knowing projected sea levels at specific sites allows for preventative action and contributes to raised awareness of the impacts of climate change to the Hawaiian Islands. Students will share results with the community and governmental agencies in hopes of inspiring action to minimize climate change. It will take collaboration between scientists and cultural communities to inspire future action on climate change.

  2. The Social Climate Scales: An Annotated Bibliography. April, 1977.

    ERIC Educational Resources Information Center

    Moos, Rudolf, Comp.; Max, Wendy, Comp.

    The Social Climate Scales were designed to assess the dimensions of four types of environments: treatment, total institutions, school, and community settings. This report provides abstracts of recent research projects in which the scales have been used. The projects involved use of the Ward Atmosphere Scale, Community-Oriented Programs Environment…

  3. The Climate Variability & Predictability (CVP) Program at NOAA - Observing and Understanding Processes Affecting the Propagation of Intraseasonal Oscillations in the Maritime Continent Region

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.

    2017-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). In 2017, the CVP Program had a call for proposals focused on observing and understanding processes affecting the propagation of intraseasonal oscillations in the Maritime Continent region. This poster will present the recently funded CVP projects, the expected scientific outcomes, the geographic areas of their work in the Maritime Continent region, and the collaborations with the Office of Naval Research, Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and other partners.

  4. Carbon Offsets | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    offsets may fit into climate action plans for your research campus. Options Considerations Sample Project United States. Instead, several organizations offer certification, so the buyer must carefully research a seller's claims for carbon reduction. Today, carbon offsets are widely available. For example, the Chicago

  5. Impacts of climate change on water quantity and quality in Rhineland-Palatinate/Germany

    NASA Astrophysics Data System (ADS)

    Casper, M. C.; Grigoryan, G. V.

    2009-04-01

    The Ministry of the Environment of Rhineland-Palatinate, Germany, launched an interdisciplinary research project dealing with "climate and land use change in Rhineland-Palatinate" (KlimLandRP). The aim of KlimLandRP is to specify adaptation strategies and to find current research gaps. The University of Trier/Germany undertakes the task of quantifying the impact of climate change on hydrological cycle and on water quality. In the first phase of the project (2008/2009) the models STOFFBILANZ and WaSiM-ETH are applied. WETTREG projections (2050/2100) and newly high resolution CCLM (2015-2024) projections for Rhineland-Palatinate are used to indicate the spectrum of climate change. Possible land use scenarios for agricultural regions are furthermore adopted. Using STOFFBILANZ it is possible to get approximate spatial information about present and future distribution of water, nitrate and phosphor balance in Rhineland-Palatinate and to identify sensitive regions. Based on achieved results, regions which are vulnerable to water economy are identified and adaptations proposed. With the application of WaSiM-ETH the impact of climate change on water balance of forest sites is quantified. The relation between climate parameters and tree growth indices is applied in forest management planning, particularly for forest site mapping. In the future, also the rainfall-runoff model LARSIM will be applied to quantify the impacts of climate change on the hydrological cycle of mesoscale catchment basins.

  6. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures.

    PubMed

    Xie, Gisselle Yang; Olson, Deanna H; Blaustein, Andrew R

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.

  7. Seasonal Prediction of Hydro-Climatic Extremes in the Greater Horn of Africa Under Evolving Climate Conditions to Support Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Tadesse, T.; Zaitchik, B. F.; Habib, S.; Funk, C. C.; Senay, G. B.; Dinku, T.; Policelli, F. S.; Block, P.; Baigorria, G. A.; Beyene, S.; Wardlow, B.; Hayes, M. J.

    2014-12-01

    The development of effective strategies to adapt to changes in the character of droughts and floods in Africa will rely on improved seasonal prediction systems that are robust to an evolving climate baseline and can be integrated into disaster preparedness and response. Many efforts have been made to build models to improve seasonal forecasts in the Greater Horn of Africa region (GHA) using satellite and climate data, but these efforts and models must be improved and translated into future conditions under evolving climate conditions. This has considerable social significance, but is challenged by the nature of climate predictability and the adaptability of coupled natural and human systems facing exposure to climate extremes. To address these issues, work is in progress under a project funded by NASA. The objectives of the project include: 1) Characterize and explain large-scale drivers in the ocean-atmosphere-land system associated with years of extreme flood or drought in the GHA. 2) Evaluate the performance of state-of-the-art seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes. 3) Apply seasonal forecast systems to prediction of socially relevant impacts on crops, flood risk, and economic outcomes, and assess the value of these predictions to decision makers. 4) Evaluate the robustness of seasonal prediction systems to evolving climate conditions. The National Drought Mitigation Center (University of Nebraska-Lincoln, USA) is leading this project in collaboration with the USGS, Johns Hopkins University, University of Wisconsin-Madison, the International Research Institute for Climate and Society, NASA, and GHA local experts. The project is also designed to have active engagement of end users in various sectors, university researchers, and extension agents in GHA through workshops and/or webinars. This project is expected improve and implement new and existing climate- and remote sensing-based agricultural, meteorological, and hydrologic drought and flood monitoring products (or indicators) that can enhance the preparedness for extreme climate events and climate change adaptation and mitigation strategies in the GHA. Even though this project is in its first year, the preliminary results and future plans to carry out the objectives will be presented.

  8. Walk the Talk: Teachers as Leaders in Climate Change Education

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Bartholow, S.; Larson, A.

    2014-12-01

    The notion of teachers as leaders and communicators is not new but rather it has been limited in scope. Teachers have long served as team leaders, department chairs, and curriculum developers. But what happens when you go beyond these typical roles in professional development? Can teachers become lead communicators beyond the classroom? Can they become leaders of change on important topics like the climate? For nearly a decade, PolarTREC (Teachers and Researchers Exploring and Collaborating), funded by the National Science Foundation, has been teaming teachers with research projects in all fields of polar science. Teachers participate in hands-on field research experiences in the polar regions which focus heavily on climate change and climate science. Administrated by the Arctic Research Consortium of the United States, the goal of PolarTREC is to invigorate polar science education and understanding by bringing K-12 educators and polar researchers together. The program fosters a teacher and researcher network, which accelerates the cross-pollination of knowledge in science practices, findings, and classroom implementation throughout disciplines. Evaluation data exposes a crucial dynamic that increases the potential for a successful climate change science campaign. Data indicates that teachers can tackle challenges such as reframing climate change science to better address the need for a particular campaign, as well as garnering the science project the necessary support through effective, authentic, and tangible communication efforts to policymakers, funders, students, and the public. Researchers reported the value of explaining their science, in-situ, allowed them to reframe and rework the objectives of the science project to attain meaningful outcomes. More than half of the researchers specifically noted that one of the strengths of the PolarTREC project is its benefit to the scientific process. The researchers also viewed PolarTREC as an essential outreach activity and improved the public perception of their scientific endeavors. This presentation will speak to the PolarTREC program's best practice and findings on improved polar science communications as well as how the teachers have become the lead communicators in this time of rapid global change across all disciplines.

  9. Extreme Events and Energy Providers: Science and Innovation

    NASA Astrophysics Data System (ADS)

    Yiou, P.; Vautard, R.

    2012-04-01

    Most socio-economic regulations related to the resilience to climate extremes, from infrastructure or network design to insurance premiums, are based on a present-day climate with an assumption of stationarity. Climate extremes (heat waves, cold spells, droughts, storms and wind stilling) affect in particular energy production, supply, demand and security in several ways. While national, European or international projects have generated vast amounts of climate projections for the 21st century, their practical use in long-term planning remains limited. Estimating probabilistic diagnostics of energy user relevant variables from those multi-model projections will help the energy sector to elaborate medium to long-term plans, and will allow the assessment of climate risks associated to those plans. The project "Extreme Events for Energy Providers" (E3P) aims at filling a gap between climate science and its practical use in the energy sector and creating in turn favourable conditions for new business opportunities. The value chain ranges from addressing research questions directly related to energy-significant climate extremes to providing innovative tools of information and decision making (including methodologies, best practices and software) and climate science training for the energy sector, with a focus on extreme events. Those tools will integrate the scientific knowledge that is developed by scientific communities, and translate it into a usable probabilistic framework. The project will deliver projection tools assessing the probabilities of future energy-relevant climate extremes at a range of spatial scales varying from pan-European to local scales. The E3P project is funded by the Knowledge and Innovation Community (KIC Climate). We will present the mechanisms of interactions between academic partners, SMEs and industrial partners for this project. Those mechanisms are elementary bricks of a climate service.

  10. Investigating the Human Dimension of Unprecedented Global Climate Change in northeastern Siberia, Russia: Understandings, Perceptions and Responses

    NASA Astrophysics Data System (ADS)

    Crate, S.

    2009-12-01

    An urgent challenge of the 21st century is to investigate understandings, perceptions and responses of populations confronting the local effects of global climate change. This paper describes the most recent results of one such project working with rural native Viliui Sakha communities, Turkic-speaking horse & cattle breeders in northeastern Siberia, Russia. The research questions are: 1) What local effects of global climate change are Viliui Sakha communities observing, how are Viliui Sakha perceiving these changes and how are the changes affecting both their subsistence survival and their cultural orientations? 2) What local knowledge exists about past climate perturbations and how does that knowledge influence contemporary adaptation to global climate change? 3) How can anecdotal (local) knowledge and regional scientific knowledge about the local effects of global climate change be integrated to enhance both local adaptive responses and policy efforts? The four-village, three-year study is a collaborative effort involving the active participation of the targeted communities, field assistants, native specialists, an in-country research team and an international collaborator. The project is founded on the PI’s 20 years of ongoing research and work with rural Viliui Sakha communities and on her fluency in both the Sakha and Russian languages. A central focus of this project is the integration of local and scientific knowledges. We are documenting local knowledge on the community, elder and archival levels. We are collaborating with scientists in Yakutsk for regional scientific data. Our project team has just returned from the second summer of field work and this presentation will cover the project results to date. Hayfields are inundated with water.

  11. The NASA Global Climate Change Education Project: An Integrated Effort to Improve the Teaching and Learning about Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Pippin, M. R.; Welch, S.; Spruill, K.; Matthews, M. J.; Person, C.

    2010-12-01

    The NASA Global Climate Change Education (GCCE) Project, initiated in 2008, seeks to: - improve the teaching and learning about global climate change in elementary and secondary schools, on college campuses, and through lifelong learning; - increase the number of people, particularly high school and undergraduate students, using NASA Earth observation data, Earth system models, and/or simulations to investigate and analyze global climate change issues; - increase the number of undergraduate students prepared for employment and/or to enter graduate school in technical fields relevant to global climate change. Through an annual solicitation, proposals are requested for projects that address these goals using a variety of approaches. These include using NASA Earth system data, interactive models and/or simulations; providing research experiences for undergraduate or community college students, or for pre- or in-service teachers; or creating long-term teacher professional development experiences. To date, 57 projects have been funded to pursue these goals (22 in 2008, 18 in 2009, and 17 in 2010), each for a 2-3 year period. The vast majority of awards address either teacher professional development, or use of data, models, or simulations; only 7 awards have been made for research experiences. NASA, with assistance from the Virginia Space Grant Consortium, is working to develop these awardees into a synergistic community that works together to maximize its impact. This paper will present examples of collaborations that are evolving within this developing community. It will also introduce the opportunities available in fiscal year 2011, when a change in emphasis is expected for the project as it moves within the NASA Office of Education Minority University Research and Education Program (MUREP).

  12. Designing the Bridge: Perceptions and Use of Downscaled Climate Data by Climate Modelers and Resource Managers in Hawaii

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Brewington, L.; Jaspers, K.

    2016-12-01

    To build an effective bridge from the climate modeling community to natural resource managers, we assessed the existing landscape to see where different groups diverge in their perceptions of climate data and needs. An understanding of a given community's shared knowledge and differences can help design more actionable science. Resource managers in Hawaii are eager to have future climate projections at spatial scales relevant to the islands. National initiatives to downscale climate data often exclude US insular regions, so researchers in Hawaii have generated regional dynamically and statistically downscaled projections. Projections of precipitation diverge, however, leading to difficulties in communication and use. Recently, a two day workshop was held with scientists and managers to evaluate available models and determine a set of best practices for moving forward with decision-relevant downscaling in Hawaii. To seed the discussion, the Pacific Regional Integrated Sciences and Assessments (RISA) program conducted a pre-workshop survey (N=65) of climate modelers and freshwater, ecosystem, and wildfire managers working in Hawaii. Scientists reported spending less than half of their time on operational research, although the majority was eager to partner with managers on specific projects. Resource managers had varying levels of familiarity with downscaled climate projections, but reported needing more information about uncertainty for decision making, and were less interested in the technical model details. There were large differences between groups of managers, with 41.7% of freshwater managers reporting that they used climate projections regularly, while a majority of ecosystem and wildfire managers reported having "no familiarity". Scientists and managers rated which spatial and temporal scales were most relevant to decision making. Finally, when asked to compare how confident they were in projections of specific climate variables between the dynamical and statistical data, 80-90% of managers responded that they had no opinion. Workshop attendees were very interested in the survey results, adding to evidence of a need for sustained engagement between modeler and user groups, as well as different strategies for working with different types of resource managers.

  13. Effects of climatic variability and change

    Treesearch

    Michael G. Ryan; James M. Vose

    2012-01-01

    Climate profoundly shapes forests. Forest species composition, productivity, availability of goods and services, disturbance regimes, and location on the landscape are all regulated by climate. Much research attention has focused on the problem of projecting the response of forests to changing climate, elevated atmospheric carbon dioxide (CO2)...

  14. Climate change and natural disasters: integrating science and practice to protect health.

    PubMed

    Sauerborn, Rainer; Ebi, Kristie

    2012-12-17

    Hydro-meteorological disasters are the focus of this paper. The authors examine, to which extent climate change increases their frequency and intensity. Review of IPCC-projections of climate-change related extreme weather events and related literature on health effects. Projections show that climate change is likely to increase the frequency, intensity, duration, and spatial distribution of a range of extreme weather events over coming decades. There is a need for strengthened collaboration between climate scientists, the health researchers and policy-makers as well as the disaster community to jointly develop adaptation strategies to protect human.

  15. The Climate Variability & Predictability (CVP) Program at NOAA - DYNAMO Recent Project Advancements

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.; Todd, J. F.; Higgins, W.

    2013-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International Geosphere-Biosphere Programme (IGBP), and the U.S. Global Change Research Program (USGCRP). The CVP program sits within the Earth System Science (ESS) Division at NOAA's Climate Program Office. Dynamics of the Madden-Julian Oscillation (DYNAMO): The Indian Ocean is one of Earth's most sensitive regions because the interactions between ocean and atmosphere there have a discernable effect on global climate patterns. The tropical weather that brews in that region can move eastward along the equator and reverberate around the globe, shaping weather and climate in far-off places. The vehicle for this variability is a phenomenon called the Madden-Julian Oscillation, or MJO. The MJO, which originates over the Indian Ocean roughly every 30 to 90 days, is known to influence the Asian and Australian monsoons. It can also enhance hurricane activity in the northeast Pacific and Gulf of Mexico, trigger torrential rainfall along the west coast of North America, and affect the onset of El Niño. CVP-funded scientists participated in the DYNAMO field campaign in 2011-12. Results from this international campaign are expected to improve researcher's insights into this influential phenomenon. A better understanding of the processes governing MJO is an essential step toward improving their representations in numerical models and improving MJO simulation and prediction. Recent results from CVP-funded projects will be summarized in this poster.

  16. What and How Are We Evaluating? Meta-Evaluation Study of the NASA Innovations in Climate Education (NICE) Portfolio

    NASA Astrophysics Data System (ADS)

    Martin, A. M.; Barnes, M. H.; Chambers, L. H.; Pippin, M. R.

    2011-12-01

    As part of NASA's Minority University Research and Education Program (MUREP), the NASA Innovations in Climate Education (NICE) project at Langley Research Center has funded 71 climate education initiatives since 2008. The funded initiatives span across the nation and contribute to the development of a climate-literate public and the preparation of a climate-related STEM workforce through research experiences, professional development opportunities, development of data access and modeling tools, and educational opportunities in both K-12 and higher education. Each of the funded projects proposes and carries out its own evaluation plan, in collaboration with external or internal evaluation experts. Using this portfolio as an exemplar case, NICE has undertaken a systematic meta-evaluation of these plans, focused primarily on evaluation questions, approaches, and methods. This meta-evaluation study seeks to understand the range of evaluations represented in the NICE portfolio, including descriptive information (what evaluations, questions, designs, approaches, and methods are applied?) and questions of value (do these evaluations meet the needs of projects and their staff, and of NASA/NICE?). In the current climate, as federal funders of climate change and STEM education projects seek to better understand and incorporate evaluation into their decisions, evaluators and project leaders are also seeking to build robust understanding of program effectiveness. Meta-evaluations like this provide some baseline understanding of the current status quo and the kinds of evaluations carried out within such funding portfolios. These explorations are needed to understand the common ground between evaluative best practices, limited resources, and agencies' desires, capacity, and requirements. When NASA asks for evaluation of funded projects, what happens? Which questions are asked and answered, using which tools? To what extent do the evaluations meet the needs of projects and program officers? How do they contribute to best practices in climate science education? These questions are important to ask about STEM and climate literacy work more generally; the NICE portfolio provides a broad test case for thinking strategically, critically, and progressively about evaluation in our community. Our findings can inform the STEM education, communication, and public outreach communities, and prompt us to consider a broad range of informative evaluation options. During this presentation, we will consider the breadth, depth and utility of evaluations conducted through a NASA climate education funding opportunity. We will examine the relationship between what we want to know about education programs, what we want to achieve with our interventions, and what we ask in our evaluations.

  17. What and How Are We Evaluating? Meta-Evaluation Study of the NASA Innovations in Climate Education (NICE) Portfolio

    NASA Astrophysics Data System (ADS)

    Martin, A. M.; Barnes, M. H.; Chambers, L. H.; Pippin, M. R.

    2013-12-01

    As part of NASA's Minority University Research and Education Program (MUREP), the NASA Innovations in Climate Education (NICE) project at Langley Research Center has funded 71 climate education initiatives since 2008. The funded initiatives span across the nation and contribute to the development of a climate-literate public and the preparation of a climate-related STEM workforce through research experiences, professional development opportunities, development of data access and modeling tools, and educational opportunities in both K-12 and higher education. Each of the funded projects proposes and carries out its own evaluation plan, in collaboration with external or internal evaluation experts. Using this portfolio as an exemplar case, NICE has undertaken a systematic meta-evaluation of these plans, focused primarily on evaluation questions, approaches, and methods. This meta-evaluation study seeks to understand the range of evaluations represented in the NICE portfolio, including descriptive information (what evaluations, questions, designs, approaches, and methods are applied?) and questions of value (do these evaluations meet the needs of projects and their staff, and of NASA/NICE?). In the current climate, as federal funders of climate change and STEM education projects seek to better understand and incorporate evaluation into their decisions, evaluators and project leaders are also seeking to build robust understanding of program effectiveness. Meta-evaluations like this provide some baseline understanding of the current status quo and the kinds of evaluations carried out within such funding portfolios. These explorations are needed to understand the common ground between evaluative best practices, limited resources, and agencies' desires, capacity, and requirements. When NASA asks for evaluation of funded projects, what happens? Which questions are asked and answered, using which tools? To what extent do the evaluations meet the needs of projects and program officers? How do they contribute to best practices in climate science education? These questions are important to ask about STEM and climate literacy work more generally; the NICE portfolio provides a broad test case for thinking strategically, critically, and progressively about evaluation in our community. Our findings can inform the STEM education, communication, and public outreach communities, and prompt us to consider a broad range of informative evaluation options. During this presentation, we will consider the breadth, depth and utility of evaluations conducted through a NASA climate education funding opportunity. We will examine the relationship between what we want to know about education programs, what we want to achieve with our interventions, and what we ask in our evaluations.

  18. Climate Change Impacts, Vulnerabilities and Adaption Measures for Egypt's Nile Delta

    NASA Astrophysics Data System (ADS)

    Abutaleb, Khaled Abubakr Ali; Mohammed, Asmaa Hassan El-Sayed; Ahmed, Mahmoud H. Mohamed

    2018-04-01

    During the last few decades there has been growing concern about the impacts of climate change. A significant number of institutions, research centers, universities and governments have funded projects in addition to work done by independent scholars and assessors studying this phenomenon, in particular, to identify vulnerability, mitigation and adaptation against associated risks. Egypt is among the international community which took part in numerous studies, research activities, conferences, seminars and meetings attempting to address climate change and its associated risks. Egypt is particularly concerned with the threat to the Nile Delta as it is considered a low-lying land at high risk. The aim of this paper is to review current and previous projects, technical reports and pilot studies, concerning risk assessments, mitigation, and adaptation strategies for climate change in Egypt. This, in turn, will aid in decision making regarding future funding and establishing of research related to climate change in Egypt. This paper will also highlight the weaknesses and strengths of policymakers solely relying on one or more of these studies.

  19. Deep Water Cooling | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    the Cornell website. Additional examples of research campus geothermal cooling projects include Deep Water Cooling Deep Water Cooling Research campuses that are located near a deep lake or deep plan for your research campus. Considerations Sample Project Related Links Deep water cooling involves

  20. High-Resolution Climate Data Visualization through GIS- and Web-based Data Portals

    NASA Astrophysics Data System (ADS)

    WANG, X.; Huang, G.

    2017-12-01

    Sound decisions on climate change adaptation rely on an in-depth assessment of potential climate change impacts at regional and local scales, which usually requires finer resolution climate projections at both spatial and temporal scales. However, effective downscaling of global climate projections is practically difficult due to the lack of computational resources and/or long-term reference data. Although a large volume of downscaled climate data has been make available to the public, how to understand and interpret the large-volume climate data and how to make use of the data to drive impact assessment and adaptation studies are still challenging for both impact researchers and decision makers. Such difficulties have become major barriers preventing informed climate change adaptation planning at regional scales. Therefore, this research will explore new GIS- and web-based technologies to help visualize the large-volume regional climate data with high spatiotemporal resolutions. A user-friendly public data portal, named Climate Change Data Portal (CCDP, http://ccdp.network), will be established to allow intuitive and open access to high-resolution regional climate projections at local scales. The CCDP offers functions of visual representation through geospatial maps and data downloading for a variety of climate variables (e.g., temperature, precipitation, relative humidity, solar radiation, and wind) at multiple spatial resolutions (i.e., 25 - 50 km) and temporal resolutions (i.e., annual, seasonal, monthly, daily, and hourly). The vast amount of information the CCDP encompasses can provide a crucial basis for assessing impacts of climate change on local communities and ecosystems and for supporting better decision making under a changing climate.

  1. Joint Knowledge Generation Between Climate Science and Infrastructure Engineering

    NASA Astrophysics Data System (ADS)

    Stoner, A. M. K.; Hayhoe, K.; Jacobs, J. M.

    2015-12-01

    Over the past decade the engineering community has become increasingly aware of the need to incorporate climate projections into the planning and design of sensitive infrastructure. However, this is a task that is easier said than done. This presentation will discuss some of the successes and hurdles experiences through the past year, from a climate scientist's perspective, working with engineers in infrastructure research and applied engineering through the Infrastructure & Climate Network (ICNet). Engineers rely on strict building codes and ordinances, and can be the subject of lawsuits if those codes are not followed. Matters are further complicated by the uncertainty inherent to climate projections, which include short-term natural variability, as well as the influence of scientific uncertainty and even human behavior on the rate and magnitude of change. Climate scientists typically address uncertainty by creating projections based on multiple models following different future scenarios. This uncertainty is difficult to incorporate into engineering projects, however, due to the fact that they cannot build two different bridges, one allowing for a lower amount of change, and another for a higher. More often than not there is a considerable difference between the costs of building two such bridges, which means that available funds often are the deciding factor. Discussions of climate science are often well received with engineers who work in the research area of infrastructure; going a step further, however, and implementing it in applied engineering projects can be challenging. This presentation will discuss some of the challenges and opportunities inherent to collaborations between climate scientists and transportation engineers, drawing from a range of studies including truck weight restrictions on roads during the spring thaw, and bridge deck performance due to environmental forcings.

  2. Why Study Paleoclimate?

    USGS Publications Warehouse

    Robinson, Marci; Dowsett, Harry

    2010-01-01

    U.S. Geological Survey (USGS) researchers are at the forefront of paleoclimate research, the study of past climates. With their unique skills and perspective, only geologists have the tools necessary to delve into the distant past (long before instrumental records were collected) in order to better understand global environmental conditions that were very different from today's conditions. Paleoclimatologists are geologists who study past climates to answer questions about what the Earth was like in the past and to enable projections, plans, and preparations for the future. The Intergovernmental Panel on Climate Change (IPCC) has projected a future warmer climate that has the potential to affect every person on Earth. Extreme weather events, rising sea level, and migrating ecosystems and resources could result in worldwide socio-economic stresses if not met with prudent and proactive action plans based on quality scientific research. Still, the most dangerous aspect of our changing climate is the uncertainty in the exact nature and rate of projected climate change. To reduce the uncertainties, USGS paleoclimatologists are studying a possible analog to a future warmer climate. The middle part of the Piacenzian Stage of the Pliocene Epoch, about 3.3 to 3.0 million years ago, is the most recent period in Earth's history in which global warmth reached and remained at temperatures similar to those projected for the end of this century, about 2 degrees C to 3 degrees C warmer on average than today over the entire globe. This past warmer time interval preceded the ice ages but was recent enough, geologically, to be very similar to today in terms of ocean circulation and the position of the continents. Also, the populations of plants and animals were much like those of today, and so geologists can use their fossils to estimate past environmental conditions such as temperature and sea level.

  3. A Way Forward: Cooperative Solutions to Our Climate Challenges

    NASA Astrophysics Data System (ADS)

    Little, L. J.; Byrne, J. M.

    2014-12-01

    Solving the global climate crisis is a multidisciplinary challenge. The world is seeking solutions to climate change. The climate research and education community must move beyond the realm of debating the science - we MUST provide the solutions. The research community understands the science and many of the solutions very well. This project will address the specifics of solutions involving social, political and science disciplines. The content is targeted to multidisciplinary education at the senior undergraduate and graduate levels in universities and colleges. Humanity has already changed the climate and current greenhouse gas emission (GHG) projections indicate our world will warm 2-6° C within a young person's lifetime. We must coordinate societal mitigation and adaptation policies, programs and technology transformations. There is now a dramatic need for many, many highly trained multidisciplinary climate change solutions professionals that understand the complexities of the challenges and can work through the social, political and science tribulations needed to sustain communities around the world. This proposed education project: Provides an introduction to the social, political, technical, health and well-being challenges of climate change; Defines and describes the unprecedented changes to personal and community lifestyle, and consumption of energy and other resources; Examines ways and means for rapid transition of energy systems from fossil fuels to clean renewable technologies. Evaluates redevelopment of our infrastructure to withstand increasing weather extremes; Inventories possible abandonment and/or protection of infrastructure that cannot be redeveloped or reworked, particularly with respect to coastal zones where substantial populations currently live. We propose an online living textbook project. Chapter contributions will be invited from outstanding solutions research professionals from around the world. The online presence is the best means to facilitate a multimedia presentation of the core content of the proposed text.

  4. What we know, do not know, and need to know about climate change vulnerability in the western Canadian Arctic: a systematic literature review

    NASA Astrophysics Data System (ADS)

    Ford, James D.; Pearce, Tristan

    2010-01-01

    This letter systematically reviews and synthesizes scientific and gray literature publications (n = 420) to identify and characterize the nature of climate change vulnerability in the Inuvialuit Settlement Region of the western Canadian Arctic and identify gaps in understanding. The literature documents widespread evidence of climate change, with implications for human and biophysical systems. Adaptations are being employed to manage changing conditions and are indicative of a high adaptive capacity. However, barriers to adaptation are evident and are expected to constrain adaptive capacity to future climate change. Continued climate change is predicted for the region, with differential exposure sensitivity for communities, groups and sectors: a function of social-economic-biophysical characteristics and projected future climatic conditions. Existing climate risks are expected to increase in magnitude and frequency, although the interaction between projected changes and socio-economic-demographic trends has not been assessed. The capacity for adapting to future climate change has also not been studied. The review identifies the importance of targeted vulnerability research that works closely with community members and other stakeholders to address research needs. Importantly, the fully categorized list of reviewed references accompanying this letter will be a valuable resource for those working or planning to work in the region, capturing climate change research published since 1990. At a broader level, the systematic review methodology offers a promising tool for climate/environmental change studies in general where there is a large and emerging body of research but limited understanding of research gaps and needs.

  5. Improving Agricultural Productivity in Tonga through Ensuring Data Availability and Enhancing Agro-meteorological Services

    NASA Astrophysics Data System (ADS)

    Kim, K. H.

    2015-12-01

    The project was first conceived in the Global Framework for Climate Services Regional Consultation in the Cook Islands in March 2014. In this meeting, key officials from the Ministry of Agriculture and Food, Forests, and Fisheries and the Tonga Meteorological Services had a meeting with the APEC Climate Center scientists with the idea to collaborate on a joint project. The project evolved to include the following components: assessment of users' needs and capacities, development of an agricultural database, research on the core relationships between agriculture and climate through modeling and field trials, and the development and delivery of agro-meteorological services. Envisioned outputs include a 2-7 day warning for pests and diseases, a suite of tools supporting decisions on planting dates and crop varieties, and other advisory services derived from seasonal climate forecasts. As one of the climate adaptation projects under its Pacific Island portfolio, the project will deliver urgent information services for Tongan agricultural growers and exporters. The project comes into greater importance and urgency, as the 2014 drought event resulted in the destruction of 80% of squash in Tonga, a main export crop from which the country derives foreign exchange earnings. Since 2014, some of the project achievements include the first agro-met data collection in Tonga, the development of an agricultural DB management system that houses archived agriculture data, and key meetings with stakeholders to ensure alignment of the project objectives and design with the interests of the Tongan government and other stakeholders. In addition, rigorous scientific research through modeling and field trials has been conducted to address the twin goals of supporting Tonga's economy as well as food security. Based on the findings from the research, tools will be developed to translate the science into knowledge that supports decisions on the farm scale.

  6. Supporting UK adaptation: building services for the next set of UK climate projections

    NASA Astrophysics Data System (ADS)

    Fung, Fai; Lowe, Jason

    2016-04-01

    As part of the Climate Change Act 2008, the UK Government sets out a national adaptation programme to address the risks and opportunities identified in a national climate change risk assessment (CCRA) every five years. The last risk assessment in 2012 was based on the probabilistic projections for the UK published in 2009 (UKCP09). The second risk assessment will also use information from UKCP09 alongside other evidence on climate projections. However, developments in the science of climate projeciton, and evolving user needs (based partly on what has been learnt about the diverse user requirements of the UK adaptation community from the seven years of delivering and managing UKCP09 products, market research and the peer-reviewed literature) suggest now is an appropriate time to update the projections and how they are delivered. A new set of UK climate projections are now being produced to upgrade UKCP09 to reflect the latest developments in climate science, the first phase of which will be delivered in 2018 to support the third CCRA. A major component of the work is the building of a tailored service to support users of the new projections during their development and to involve users in key decisions so that the projections are of most use. We will set out the plan for the new climate projections that seek to address the evolving user need. We will also present a framework which aims to (i) facilitate the dialogue between users, boundary organisations and producers, reflecting their different decision-making roles (ii) produce scientifically robust, user-relevant climate information (iii) provide the building blocks for developing further climate services to support adaptation activities in the UK.

  7. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies

    NASA Technical Reports Server (NTRS)

    Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.; hide

    2012-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with rising temperatures. Wheat model simulations with midcentury climate scenarios project a slight decline in absolute yields that is more sensitive to selection of crop model than to global climate model, emissions scenario, or climate scenario downscaling method. A comparison of regional and national-scale economic simulations finds a large sensitivity of projected yield changes to the simulations' resolved scales. Finally, a global economic model intercomparison example demonstrates that improvements in the understanding of agriculture futures arise from integration of the range of uncertainty in crop, climate, and economic modeling results in multi-model assessments.

  8. Exploring recent and projected climate change in a steep monsoonal catchment in the middle Himalaya through innovative synthesis of local observations, gridded datasets and community engagement

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Pritchard, Davis; Tiwari, Prakash; Fowler, Hayley; Kumaun, Bhagwati

    2016-04-01

    Under the auspices of an "Innovation Partnerships" programme research exchange grant jointly funded by the India Department of Science and Technology and the British Council, Kumaun University and Newcastle University have been collaboratively exploring the recorded historical and projected future climate change implications for a case study catchment, the Ramgad river, in the Kumaon Lesser Himalaya (Uttarakhand state, India). This work weaves together diverse research strands with the aim of producing a coherent thorough characterisation of the impacts of recent/on-going and likely climate evolution on local communities. Participatory research activities in multiple villages in the case study catchment have yielded a consistent narrative of changes posed by the increasingly erratic monsoonal rainfall as well as upward displacement and replacement crops in their historical elevation ranges due to temperature change. Multi-decadal climate records from both local observations and global meteorological records reveal a more complex picture with strong seasonal asymmetry of changes in both temperature and precipitation: a) trend analysis shows mild weakening of the early phase (May, July) but strengthen in the later stages (August, September); b) temperature trends show much stronger warming in late winter and early spring (February to April) than the rest of the year with additional asymmetry in both sign and magnitude of change between individual components (Tmax, Tmin) of the diurnal temperature cycle. On-going research seeks to associate this asymmetry with causal mechanisms (cloud radiative effect, atmospheric circulation). Analysis of historical records will provide the basis for validation and assessment of individual regional climate model projections from the CORDEX South Asia domain ensemble. For the terraced agricultural communities of the Kumaon Himalaya, the most directly consequential effects of climate variability and change are impacts on crop yields which impact both livelihoods (household revenue) and food security. Thus another research strand focuses use of remote sensing vegetation data products (MODIS MOD13Q1 and Landsat NDVI) to derive both locally relevant land cover classes differentiating natural vegetation from cropped areas as well as assessing vegetation response to climate anomalies (precipitation, temperature). These responses, characterised from observations over the past decade, will be considered in terms of both historical climate records and projected climate change. The ultimate aim of this collaborative project is to report all of these findings to the local communities through appropriate media and in comprehensible terms in order to enable participatory exploration of potential adaptation pathways to improve local resilience and sustainability.

  9. EPA Region 10 Climate Change and TMDL Pilot - Project Research Plan

    EPA Science Inventory

    Global climate change affects the fundamental drivers of the hydrological cycle. Evidence is growing that climate change will have significant ramifications for the nation’s freshwater ecosystems, as deviations in atmospheric temperature and precipitation patterns are more ...

  10. Building partnerships to produce actionable science to support climate-informed management decisions: North Central Climate Science Center example

    NASA Astrophysics Data System (ADS)

    Lackett, J.; Ojima, D. S.; McNeeley, S.

    2017-12-01

    As climate change impacts become more apparent in our environment, action is needed to enhance the social-ecological system resilience. Incorporating principles which lead to actionable research and project co-development, when appropriate, will facilitate building linkages between the research and the natural resource management communities. In order to develop strategies to manage for climatic and ecosystem changes, collaborative actions are needed between researchers and resource managers to apply appropriate knowledge of the ecosystem and management environments to enable feasible solutions and management actions to respond to climate change. Our team has been involved in developing and establishing a research and engagement center, the North Central Climate Science Center (NC CSC), for the US Department of Interior, to support the development and translation of pertinent climate science information to natural resource managers in the north central portion of the United States. The NC CSC has implemented a platform to support the Resource for Vulnerability Assessment, Adaptation, and Mitigation Projects (ReVAMP) with research, engagement, and training activities to support resource managers and researchers. These activities are aimed at the co-production of appropriate response strategies to climate change in the region, in particular to drought-related responses. Through this platform we, with other partners in the region, including the Department of Interior and the Department of Agriculture, are bringing various training tools, climate information, and management planning tools to resource managers. The implementation of ReVAMP has led to development of planning efforts which include a more explicit representation of climate change as a driver of drought events in our region. Scenario planning provides a process which integrates management goals with possible outcomes derived from observations and simulations of ecological impacts of climate change. Co-development of management options under these various scenarios have allowed for guidance about further research needed, observations needed to better monitor ecological conditions under climate changes, and adaptive management practices to increase resilience.

  11. Climate Literacy Ambassadors

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Mooney, M. E.

    2011-12-01

    The Climate Literacy Ambassadors program is a collaborative effort to advance climate literacy led by the Cooperative Institute of Meteorological Satellite Studies (CIMSS) at the University of Wisconsin-Madison. With support from NASA, CIMSS is coordinating a three-tiered program to train G6-12 teachers to be Ambassadors of Climate Literacy in their schools and communities. The complete training involves participation at a teacher workshop combined with web-based professional development content around Global and Regional Climate Change. The on-line course utilizes e-learning technology to clarify graphs and concepts from the 2007 Intergovernmental Panel on Climate Change Summary for Policy Makers with content intricately linked to the Climate Literacy: The Essential Principles of Climate Science. Educators who take the course for credit can develop lesson plans or opt for a project of their choosing. This session will showcase select lesson plans and projects, ranging from a district-wide action plan that engaged dozens of teachers to Ambassadors volunteering at the Aldo Leopold Climate Change Nature Center to a teacher who tested a GLOBE Student Climate Research Campaign (SCRC) learning project with plans to participate in the SCRC program. Along with sharing successes from the CIMSS Climate Literacy Ambassadors project, we will share lessons learned related to the challenges of sustaining on-line virtual educator communities.

  12. Development of a database system for near-future climate change projections under the Japanese National Project SI-CAT

    NASA Astrophysics Data System (ADS)

    Nakagawa, Y.; Kawahara, S.; Araki, F.; Matsuoka, D.; Ishikawa, Y.; Fujita, M.; Sugimoto, S.; Okada, Y.; Kawazoe, S.; Watanabe, S.; Ishii, M.; Mizuta, R.; Murata, A.; Kawase, H.

    2017-12-01

    Analyses of large ensemble data are quite useful in order to produce probabilistic effect projection of climate change. Ensemble data of "+2K future climate simulations" are currently produced by Japanese national project "Social Implementation Program on Climate Change Adaptation Technology (SI-CAT)" as a part of a database for Policy Decision making for Future climate change (d4PDF; Mizuta et al. 2016) produced by Program for Risk Information on Climate Change. Those data consist of global warming simulations and regional downscaling simulations. Considering that those data volumes are too large (a few petabyte) to download to a local computer of users, a user-friendly system is required to search and download data which satisfy requests of the users. We develop "a database system for near-future climate change projections" for providing functions to find necessary data for the users under SI-CAT. The database system for near-future climate change projections mainly consists of a relational database, a data download function and user interface. The relational database using PostgreSQL is a key function among them. Temporally and spatially compressed data are registered on the relational database. As a first step, we develop the relational database for precipitation, temperature and track data of typhoon according to requests by SI-CAT members. The data download function using Open-source Project for a Network Data Access Protocol (OPeNDAP) provides a function to download temporally and spatially extracted data based on search results obtained by the relational database. We also develop the web-based user interface for using the relational database and the data download function. A prototype of the database system for near-future climate change projections are currently in operational test on our local server. The database system for near-future climate change projections will be released on Data Integration and Analysis System Program (DIAS) in fiscal year 2017. Techniques of the database system for near-future climate change projections might be quite useful for simulation and observational data in other research fields. We report current status of development and some case studies of the database system for near-future climate change projections.

  13. Development of regional climate scenarios in the Netherlands - involvement of users

    NASA Astrophysics Data System (ADS)

    Bessembinder, Janette; Overbeek, Bernadet

    2013-04-01

    Climate scenarios are consistent and plausible pictures of possible future climates. They are intended for use in studies exploring the impacts of climate change, and to formulate possible adaptation strategies. To ensure that the developed climate scenarios are relevant to the intended users, interaction with the users is needed. As part of the research programmes "Climate changes Spatial Planning" and "Knowledge for Climate" several projects on climate services, tailoring of climate information and communication were conducted. Some of the important lessons learned about user interaction are: *) To be able to deliver relevant climate information in the right format, proper knowledge is required on who will be using the climate information and data, how it will be used and why they use it; *) Users' requirements can be very diverse and requirements may change over time. Therefore, sustained (personal) contact with users is required; *) Organising meetings with climate researchers and users of climate information together, and working together in projects results in mutual understanding on the requirements of users and the limitations to deliver certain types of climate information, which facilitates the communication and results in more widely accepted products; *) Information and communication should be adapted to the type of users (e.g. impact researchers or policy makers) and to the type of problem (unstructured problems require much more contact with the users). In 2001 KNMI developed climate scenarios for the National Commission on Water management in the 21st century (WB21 scenarios). In 2006 these were replaced by a the KNMI'06 scenarios, intended for a broader group of users. The above lessons are now taken into account during the development of the next generation of climate scenarios for the Netherlands, expected at the end of 2013, after the publication of the IPCC WG1 report: *) users' requirements are taken into account explicitly in the whole process of the development of the climate scenarios; *) users are involved already in the early phases of the development of new scenarios, among others in the following way: **) workshops on users' requirements to check whether they have changed and to get more information; **) feedback group of users to get more detailed feedback on the modes of communication; **) newsletter with information on the progress and procedures to be followed and separate workshops for researchers and policy makers with different levels of detail; **) projects together with impact researchers: tailoring of data and in order to be able to present impact information consistent with the climate scenarios much earlier. During the presentation more detailed information will be given on the interaction with users.

  14. Experimental Forests and climate change: views of long-term employees on ecological change and the role of Experimental Forests and Ranges in understanding and adapting to climate change

    Treesearch

    Laurie Yung; Mason Bradbury; Daniel R. Williams

    2012-01-01

    In this project, we examined the views of 21 long-term employees on climate change in 14 Rocky Mountain Research Station Experimental Forests and Ranges (EFRs). EFRs were described by employees as uniquely positioned to advance knowledge of climate change impacts and adaptation strategies due to the research integrity they provide for long-term studies, the ability to...

  15. Projecting future air pollution-related mortality under a changing climate: progress, uncertainties and research needs.

    PubMed

    Madaniyazi, Lina; Guo, Yuming; Yu, Weiwei; Tong, Shilu

    2015-02-01

    Climate change may affect mortality associated with air pollutants, especially for fine particulate matter (PM2.5) and ozone (O3). Projection studies of such kind involve complicated modelling approaches with uncertainties. We conducted a systematic review of researches and methods for projecting future PM2.5-/O3-related mortality to identify the uncertainties and optimal approaches for handling uncertainty. A literature search was conducted in October 2013, using the electronic databases: PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 to September 2013. Fifteen studies fulfilled the inclusion criteria. Most studies reported that an increase of climate change-induced PM2.5 and O3 may result in an increase in mortality. However, little research has been conducted in developing countries with high emissions and dense populations. Additionally, health effects induced by PM2.5 may dominate compared to those caused by O3, but projection studies of PM2.5-related mortality are fewer than those of O3-related mortality. There is a considerable variation in approaches of scenario-based projection researches, which makes it difficult to compare results. Multiple scenarios, models and downscaling methods have been used to reduce uncertainties. However, few studies have discussed what the main source of uncertainties is and which uncertainty could be most effectively reduced. Projecting air pollution-related mortality requires a systematic consideration of assumptions and uncertainties, which will significantly aid policymakers in efforts to manage potential impacts of PM2.5 and O3 on mortality in the context of climate change. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  16. From Communicate to Educate - how a project structure and philosophy leads to engagement that influences organisational behaviours and decision making

    NASA Astrophysics Data System (ADS)

    Gaynor, Suzie; Corney, Stuart; Ling, Fiona; Bindoff, Nathan

    2010-05-01

    Climate Futures for Tasmania is an interdisciplinary and inter-institutional collaboration of twelve core participating partners (both national and state organisations) who are contributing more than 7.5 million in cash and in-kind over the three-year life of the project. The project is led by the Antarctic Climate and Ecosystems Cooperative Research Centre at the University of Tasmania, with significant contributions by CSIRO, Australia's national research organisation, Tasmania's major power generation company, Hydro Tasmania and the Tasmanian State government, through the Department of Primary Industries, Parks, Water and the Environment. The coordination, community interaction and management of the project are unique within the university environment. The project has required multiple levels of engagement to achieve end-user driven research that delivers highly practical and usable outcomes to stakeholders who are relatively new to climate change concepts. The project is generating new information on climate change in the 21st century for local communities in Tasmania, by dynamically downscaling global climate models. It focuses on the information interests of Tasmanian communities, businesses, industries and governments through analysis of general climate, agriculture, water and catchments, and extreme events. We are engaging with more than 50 end user organisations and to date have been involved in more than 700 engagement activities. The governance structure provides purpose to our stakeholders and given us opportunity to communicate and educate. From this opportunity has come invites and introductions to take our science further into the stakeholders' organisations and to new organisations. From these invites and introductions has come new partnerships and more opportunity to educate and influence organisational behaviour. Our approach to engagement and communication fosters a learning environment that encompasses adult education principles. We have structured our formal and informal engagement activities to encourage active involvement, thus learning. We are providing early preliminary results and tailored products for our end-users to ‘trial' and learn along the way. As we have struggled with difficult climate change science decisions, we have asked our stakeholders to be involved and develop the solution with us. We have actively avoided the traditional information transfer approach of one-size fits all with regards to activities and products. We sit with our stakeholders, listen to what their information needs are, understand how their organisation works and functions, and involve them. Our stakeholders inform, guide and drive our research and the engagement activities. We go to their board rooms, their offices, their paddocks. Our engagement activities are as much about us learning from them, as it is us ‘teaching' them about climate science. It has been highly effective to start an educational journey with them from the beginning of our research, rather than deliver challenging concepts and conclusions at the end. The key element of our communication and education strategy has been continual engagement with relevant state and national government departments, and other major stakeholders. This ongoing engagement introduces critical and often hard-to-understand climate science concepts to stakeholders early in the project, thus allowing such concepts to become familiar over the length of the project. This strategy ensures that in the conclusive reporting stage, our stakeholders are well-versed in the language and concepts necessary to engage with the conclusions, and consequently change behaviours. Our stakeholders have become advocates for our research and climate change science. Early engagement has encouraged a sense of ownership and familiarity of the climate science. This is crucial in the climate change space, where results can be controversial, difficult to appreciate and often ignored. What has been clearly important and successful has been providing the right information, at the right time, to the right people.

  17. Climate Science Service Learning: Learning In Deed

    NASA Astrophysics Data System (ADS)

    Glass, D. S.

    2012-12-01

    Many schools require community service yet students work at a food bank or stream clean-up without understanding causes or solutions for the issues they encounter. Since students learn best when they make connections between scientific concepts and real-world issues that interest them, integrated science service learning is an effective and engaging way to teach. My fifth grade students at National Presbyterian School in Washington, DC learned about climate change through a service learning project to help the environment on campus. The curriculum was aligned with science and climate literacy frameworks, "Benchmarks for Science Literacy," from the American Academy for the Advancement of Science (AAAS) and "The Essential Principles of Climate Sciences," from the U.S. Global Change Research Program / U.S. Climate Change Science Program, and was supported through partnership with NOAA's Climate Stewards Education Program. The service learning project was implemented according to seven best practices of service learning: the students initiated the project, researched the issue, developed a plan, worked with the community, shared their results, reflected on the project, and celebrated their accomplishment. My class of 28 fifth-graders researched and experimented with several environmental variables affecting our campus. They brainstormed service projects they could do to help the environment and decided to focus on reducing idling in the school carpool lane. Students researched how automobile exhaust contributes to climate change, causes acid rain, and harms human health. Students designed a system to measure and eventually minimize the exhaust released by cars idling in the carpool line. They crafted a tally sheet to record the number and size of cars and their idling times. They measured temperature and CO2 data, although they did not find that the number of idling cars affected these variables. Students concluded that over an average week with pleasant weather, 35 of 165 cars (22%) which arrived early for carpool idled for a total of 509 minutes, putting out 75 kg of the greenhouse gas, CO2, other pollution, and costing the drivers $34.00 in fuel. Students used this research to develop an anti-idling campaign, which they presented to the whole student body and posted on the school website and e-newsletter. After the campaign, students again evaluated idling in the carpool lane and discovered that there was a slight decrease in the number of idling cars, 20%, down from 22%. Students hoped for greater improvement, but this second survey took place during a hot week when more people may have wanted to air condition their cars. Students also noted that many of the idlers were nannies who may not have heard the anti-idling campaign. On an assessment of climate science knowledge adapted for elementary students from the Yale Project on Climate change, students showed significant improvement. They also became more confident in their knowledge, moving from an average 3 before the project to an average 8.5 afterwards on a 10-point Likert scale. In sum, this project attests that science service learning can make science more concrete and relatable, teaching students not only about the concepts and techniques of science, but its role as a tool for the public good.

  18. Enhancing STEM coursework at MSIs through the AMS Climate Studies Diversity Project

    NASA Astrophysics Data System (ADS)

    Abshire, W. E.; Mills, E. W.; Slough, S. W.; Brey, J. A.; Geer, I. W.; Nugnes, K. A.

    2017-12-01

    The AMS Education Program celebrates a successful completion to its AMS Climate Studies Diversity Project. The project was funded for 6 years (2011-2017) through the National Science Foundation (NSF). It introduced and enhanced geoscience and/or sustainability-focused course components at minority-serving institutions (MSIs) across the U.S., many of which are signatories to the President's Climate Leadership Commitments, administered by Second Nature, and/or members of the Louis Stokes Alliances for Minority Participation. The Project introduced AMS Climate Studies curriculum to approximately 130 faculty representing 113 MSIs. Each year a cohort of, on average, 25 faculty attended a course implementation workshop where they were immersed in the course materials, received presentations from high-level speakers, and trained as change agents for their local institutions. This workshop was held in the Washington, DC area in collaboration with Second Nature, NOAA, NASA Goddard Space Flight Center, Howard University, and other local climate educational and research institutions. Following, faculty introduced and enhanced geoscience curricula on their local campuses with AMS Climate Studies course materials, thereby bringing change from within. Faculty were then invited to the following AMS Annual Meeting to report on their AMS Climate Studies course implementation progress, reconnect with their colleagues, and learn new science presented at the meeting. A longitudinal survey was administered to all Climate Diversity Project faculty participants who attended the course implementation workshops. The survey goals were to assess the effectiveness of the Project in helping faculty implement/enhance their institutional climate science offering, share best practices in offering AMS Climate Studies, and analyze the usefulness of course materials. Results will be presented during this presentation. The AMS Climate Studies Diversity Project builds on highly successful, NSF-supported diversity projects for the AMS Weather and Ocean Studies courses conducted from 2001-2008. As a whole, AMS Climate, Weather, and Ocean Studies courses have activated more than 400 institutional licenses from MSIs and impacted more than 25,000 students.

  19. Standardized research protocols enable transdisciplinary research of climate variation impacts in corn production systems

    USDA-ARS?s Scientific Manuscript database

    The important questions about agriculture, climate, and sustainability have become increasingly complex and require a coordinated, multi-faceted approach for developing new knowledge and understanding. A multi-state, transdisciplinary project was begun in 2011 to study the potential for both mitigat...

  20. Introducing a New Concept Inventory on Climate Change to Support Undergraduate Instruction, Teacher Education, Education Research, and Project Evaluation (Invited)

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Monsaas, J.; Katzenberger, J.; Afolabi, C. Y.

    2013-12-01

    The Concept Inventory on Climate Change (CICC) is a new research-based, multiple-choice 'test' that provides a powerful new assessment tool for undergraduate instructors, teacher educators, education researchers, and project evaluators. This presentation will describe the features and the development process of the (CICC). This includes insights about how the development team (co-authors) integrated and augmented their multi-disciplinary expertise. The CICC has been developed in the context of a popular introductory undergraduate weather and climate course at a southeastern research university (N~400-500 per semester). The CICC is not a test for a grade, but is intended to be a useful measure of how well a given teaching and learning experience has succeeded in improving understanding about climate change and related climate concepts. The science content addressed by the CICC is rooted in the national consensus document, 'Climate Literacy: The Essential Principles of Climate Science'. The CICC has been designed to support undergraduate instruction, and may be valuable in comparable contexts that teach about climate change. CICC results can help to inform decisions about the effectiveness of teaching strategies by 1) flagging conceptual issues (PRE-instruction); and 2) detecting conceptual change (POST-instruction). Specific CICC items and their answer choices are informed by the research literature on common misunderstandings about climate and climate change. Each CICC item is rated on a 3-tier scale of the cognitive sophistication the item is calling for, and there is a balance among all three tiers across the full instrument. The CICC development process has involved data-driven changes to successive versions. Data sources have included item statistics from the administration of progressively evolved versions of the CICC in the weather and climate course, group interviews with students, and expert review by climate scientists, educators, and project evaluators based primarily in the US and Canada. The development team provided an exceptionally well integrated, multi-disciplinary expertise in climate science, climate education, education research, and psychometrics. The valuable integration of the team's expertise was driven by: 1) the prior interdisciplinary inclinations of key team members, which made it natural to openly inquire and learn across boundaries of expertise; and 2) the willingness of key team members to become respectful teachers of essential knowledge to other team members. These qualities, in combination with reviewer contributions, have brought the leading edges of natural and social science research together to produce the CICC. This work has been partially supported by a NASA award to the Georgia State University Research Foundation (NNX09AL69G).

  1. Climate@Home: Crowdsourcing Climate Change Research

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate scientists configure computer model parameters through the portal user interface. After model configuration, scientists then launch the computing task. Next, data is atomized and distributed to computing engines that are running on citizen participants' computers. Scientists will receive notifications on the completion of computing tasks, and examine modeling results via visualization modules of the portal. Computing tasks, computing resources, and participants are managed by project managers via portal tools. A portal prototype has been built for proof of concept. Three forums have been setup for different groups of users to share information on science aspect, technology aspect, and educational outreach aspect. A facebook account has been setup to distribute messages via the most popular social networking platform. New treads are synchronized from the forums to facebook. A mapping tool displays geographic locations of the participants and the status of tasks on each client node. A group of users have been invited to test functions such as forums, blogs, and computing resource monitoring.

  2. Climate change and natural disasters – integrating science and practice to protect health

    PubMed Central

    Sauerborn, Rainer; Ebi, Kristie

    2012-01-01

    Background Hydro-meteorological disasters are the focus of this paper. The authors examine, to which extent climate change increases their frequency and intensity. Methods Review of IPCC-projections of climate-change related extreme weather events and related literature on health effects. Results Projections show that climate change is likely to increase the frequency, intensity, duration, and spatial distribution of a range of extreme weather events over coming decades. Conclusions There is a need for strengthened collaboration between climate scientists, the health researchers and policy-makers as well as the disaster community to jointly develop adaptation strategies to protect human. PMID:23273248

  3. Limits to global and Australian temperature change this century based on expert judgment of climate sensitivity

    NASA Astrophysics Data System (ADS)

    Grose, Michael R.; Colman, Robert; Bhend, Jonas; Moise, Aurel F.

    2017-05-01

    The projected warming of surface air temperature at the global and regional scale by the end of the century is directly related to emissions and Earth's climate sensitivity. Projections are typically produced using an ensemble of climate models such as CMIP5, however the range of climate sensitivity in models doesn't cover the entire range considered plausible by expert judgment. Of particular interest from a risk-management perspective is the lower impact outcome associated with low climate sensitivity and the low-probability, high-impact outcomes associated with the top of the range. Here we scale climate model output to the limits of expert judgment of climate sensitivity to explore these limits. This scaling indicates an expanded range of projected change for each emissions pathway, including a much higher upper bound for both the globe and Australia. We find the possibility of exceeding a warming of 2 °C since pre-industrial is projected under high emissions for every model even scaled to the lowest estimate of sensitivity, and is possible under low emissions under most estimates of sensitivity. Although these are not quantitative projections, the results may be useful to inform thinking about the limits to change until the sensitivity can be more reliably constrained, or this expanded range of possibilities can be explored in a more formal way. When viewing climate projections, accounting for these low-probability but high-impact outcomes in a risk management approach can complement the focus on the likely range of projections. They can also highlight the scale of the potential reduction in range of projections, should tight constraints on climate sensitivity be established by future research.

  4. Revolving Loan Funds | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    sometimes interest-free) loan used as capital for research campus projects expected to yield a certain State University's $3 million energy sustainability loan fund issues interest-free loans for campuses as interest-free loans to departments for sustainability projects. Within five years, a project repays its

  5. Direct and indirect effects of climate change on projected future fire regimes in the western United States.

    PubMed

    Liu, Zhihua; Wimberly, Michael C

    2016-01-15

    We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Regional Climate Change across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations

    NASA Astrophysics Data System (ADS)

    Otte, T. L.; Nolte, C. G.; Otte, M. J.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.

    2011-12-01

    Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. Preliminary results from downscaling NASA/GISS ModelE simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model will be used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0.

  7. The Program for climate Model diagnosis and Intercomparison: 20-th anniversary Symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Gerald L; Bader, David C; Riches, Michael

    Twenty years ago, W. Lawrence (Larry) Gates approached the U.S. Department of Energy (DOE) Office of Energy Research (now the Office of Science) with a plan to coordinate the comparison and documentation of climate model differences. This effort would help improve our understanding of climate change through a systematic approach to model intercomparison. Early attempts at comparing results showed a surprisingly large range in control climate from such parameters as cloud cover, precipitation, and even atmospheric temperature. The DOE agreed to fund the effort at the Lawrence Livermore National Laboratory (LLNL), in part because of the existing computing environment andmore » because of a preexisting atmospheric science group that contained a wide variety of expertise. The project was named the Program for Climate Model Diagnosis and Intercomparison (PCMDI), and it has changed the international landscape of climate modeling over the past 20 years. In spring 2009 the DOE hosted a 1-day symposium to celebrate the twentieth anniversary of PCMDI and to honor its founder, Larry Gates. Through their personal experiences, the morning presenters painted an image of climate science in the 1970s and 1980s, that generated early support from the international community for model intercomparison, thereby bringing PCMDI into existence. Four talks covered Gates's early contributions to climate research at the University of California, Los Angeles (UCLA), the RAND Corporation, and Oregon State University through the founding of PCMDI to coordinate the Atmospheric Model Intercomparison Project (AMIP). The speakers were, in order of presentation, Warren Washington [National Center for Atmospheric Research (NCAR)], Kelly Redmond (Western Regional Climate Center), George Boer (Canadian Centre for Climate Modelling and Analysis), and Lennart Bengtsson [University of Reading, former director of the European Centre for Medium-Range Weather Forecasts (ECMWF)]. The afternoon session emphasized the scientific ideas that are the basis of PCMDI's success, summarizing their evolution and impact. Four speakers followed the various PCMDI-supported climate model intercomparison projects, beginning with early work on cloud representations in models, presented by Robert D. Cess (Distinguished Professor Emeritus, Stony Brook University), and then the latest Cloud Feedback Model Intercomparison Projects (CFMIPs) led by Sandrine Bony (Laboratoire de M'©t'©orologie Dynamique). Benjamin Santer (LLNL) presented a review of the climate change detection and attribution (D & A) work pioneered at PCMDI, and Gerald A. Meehl (NCAR) ended the day with a look toward the future of climate change research.« less

  8. Ice_Sheets_CCI: Essential Climate Variables for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Sørensen, L. S.; Khan, A.; Aas, C.; Evansberget, D.; Adalsteinsdottir, G.; Mottram, R.; Andersen, S. B.; Ahlstrøm, A.; Dall, J.; Kusk, A.; Merryman, J.; Hvidberg, C.; Khvorostovsky, K.; Nagler, T.; Rott, H.; Scharrer, M.; Shepard, A.; Ticconi, F.; Engdahl, M.

    2012-04-01

    As part of the ESA Climate Change Initiative (www.esa-cci.org) a long-term project "ice_sheets_cci" started January 1, 2012, in addition to the existing 11 projects already generating Essential Climate Variables (ECV) for the Global Climate Observing System (GCOS). The "ice_sheets_cci" goal is to generate a consistent, long-term and timely set of key climate parameters for the Greenland ice sheet, to maximize the impact of European satellite data on climate research, from missions such as ERS, Envisat and the future Sentinel satellites. The climate parameters to be provided, at first in a research context, and in the longer perspective by a routine production system, would be grids of Greenland ice sheet elevation changes from radar altimetry, ice velocity from repeat-pass SAR data, as well as time series of marine-terminating glacier calving front locations and grounding lines for floating-front glaciers. The ice_sheets_cci project will involve a broad interaction of the relevant cryosphere and climate communities, first through user consultations and specifications, and later in 2012 optional participation in "best" algorithm selection activities, where prototype climate parameter variables for selected regions and time frames will be produced and validated using an objective set of criteria ("Round-Robin intercomparison"). This comparative algorithm selection activity will be completely open, and we invite all interested scientific groups with relevant experience to participate. The results of the "Round Robin" exercise will form the algorithmic basis for the future ECV production system. First prototype results will be generated and validated by early 2014. The poster will show the planned outline of the project and some early prototype results.

  9. The CSAICLAWPS project: a multi-scalar, multi-data source approach to providing climate services for both modelling of climate change impacts on crop yields and development of community-level adaptive capacity for sustainable food security

    NASA Astrophysics Data System (ADS)

    Forsythe, N. D.; Fowler, H. J.

    2017-12-01

    The "Climate-smart agriculture implementation through community-focused pursuit of land and water productivity in South Asia" (CSAICLAWPS) project is a research initiative funded by the (UK) Royal Society through its Challenge Grants programme which is part of the broader UK Global Challenges Research Fund (GCRF). CSAICLAWPS has three objectives: a) development of "added-value" - bias assessed, statistically down-scaled - climate projections for selected case study sites across South Asia; b) investigation of crop failure modes under both present (observed) and future (projected) conditions; and c) facilitation of developing local adaptive capacity and resilience through stakeholder engagement. At AGU we will be presenting both next steps and progress to date toward these three objectives: [A] We have carried out bias assessments of a substantial multi-model RCM ensemble (MME) from the CORDEX South Asia (CORDEXdomain for case studies in three countries - Pakistan, India and Sri Lanka - and (stochastically) produced synthetic time-series for these sites from local observations using a Python-based implementation of the principles underlying the Climate Research Unit Weather Generator (CRU-WG) in order to enable probabilistic simulation of current crop yields. [B] We have characterised present response of local crop yields to climate variability in key case study sites using AquaCrop simulations parameterised based on input (agronomic practices, soil conditions, etc) from smallholder farmers. [C] We have implemented community-based hydro-climatological monitoring in several case study "revenue villages" (panchayats) in the Nainital District of Uttarakhand. The purpose of this is not only to increase availability of meteorological data, but also has the aspiration of, over time, leading to enhanced quantitative awareness of present climate variability and potential future conditions (as projected by RCMs). Next steps in our work will include: 1) future crop yield simulations driven by "perturbation" of synthetic time-series using "change factors from the CORDEX-SA MME; 2) stakeholder dialogues critically evaluating potential strategies at the grassroots (implementation) level to mitigate impacts of climate variability and change on crop yields.

  10. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures

    PubMed Central

    Olson, Deanna H.; Blaustein, Andrew R.

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats. PMID:27513565

  11. Patterns and variability of projected bioclimatic habitat for Pinus albicaulis in the Greater Yellowstone Area.

    PubMed

    Chang, Tony; Hansen, Andrew J; Piekielek, Nathan

    2014-01-01

    Projected climate change at a regional level is expected to shift vegetation habitat distributions over the next century. For the sub-alpine species whitebark pine (Pinus albicaulis), warming temperatures may indirectly result in loss of suitable bioclimatic habitat, reducing its distribution within its historic range. This research focuses on understanding the patterns of spatiotemporal variability for future projected P.albicaulis suitable habitat in the Greater Yellowstone Area (GYA) through a bioclimatic envelope approach. Since intermodel variability from General Circulation Models (GCMs) lead to differing predictions regarding the magnitude and direction of modeled suitable habitat area, nine bias-corrected statistically down-scaled GCMs were utilized to understand the uncertainty associated with modeled projections. P.albicaulis was modeled using a Random Forests algorithm for the 1980-2010 climate period and showed strong presence/absence separations by summer maximum temperatures and springtime snowpack. Patterns of projected habitat change by the end of the century suggested a constant decrease in suitable climate area from the 2010 baseline for both Representative Concentration Pathways (RCPs) 8.5 and 4.5 climate forcing scenarios. Percent suitable climate area estimates ranged from 2-29% and 0.04-10% by 2099 for RCP 8.5 and 4.5 respectively. Habitat projections between GCMs displayed a decrease of variability over the 2010-2099 time period related to consistent warming above the 1910-2010 temperature normal after 2070 for all GCMs. A decreasing pattern of projected P.albicaulis suitable habitat area change was consistent across GCMs, despite strong differences in magnitude. Future ecological research in species distribution modeling should consider a full suite of GCM projections in the analysis to reduce extreme range contractions/expansions predictions. The results suggest that restoration strageties such as planting of seedlings and controlling competing vegetation may be necessary to maintain P.albicaulis in the GYA under the more extreme future climate scenarios.

  12. Patterns and Variability of Projected Bioclimatic Habitat for Pinus albicaulis in the Greater Yellowstone Area

    PubMed Central

    Chang, Tony; Hansen, Andrew J.; Piekielek, Nathan

    2014-01-01

    Projected climate change at a regional level is expected to shift vegetation habitat distributions over the next century. For the sub-alpine species whitebark pine (Pinus albicaulis), warming temperatures may indirectly result in loss of suitable bioclimatic habitat, reducing its distribution within its historic range. This research focuses on understanding the patterns of spatiotemporal variability for future projected P.albicaulis suitable habitat in the Greater Yellowstone Area (GYA) through a bioclimatic envelope approach. Since intermodel variability from General Circulation Models (GCMs) lead to differing predictions regarding the magnitude and direction of modeled suitable habitat area, nine bias-corrected statistically down-scaled GCMs were utilized to understand the uncertainty associated with modeled projections. P.albicaulis was modeled using a Random Forests algorithm for the 1980–2010 climate period and showed strong presence/absence separations by summer maximum temperatures and springtime snowpack. Patterns of projected habitat change by the end of the century suggested a constant decrease in suitable climate area from the 2010 baseline for both Representative Concentration Pathways (RCPs) 8.5 and 4.5 climate forcing scenarios. Percent suitable climate area estimates ranged from 2–29% and 0.04–10% by 2099 for RCP 8.5 and 4.5 respectively. Habitat projections between GCMs displayed a decrease of variability over the 2010–2099 time period related to consistent warming above the 1910–2010 temperature normal after 2070 for all GCMs. A decreasing pattern of projected P.albicaulis suitable habitat area change was consistent across GCMs, despite strong differences in magnitude. Future ecological research in species distribution modeling should consider a full suite of GCM projections in the analysis to reduce extreme range contractions/expansions predictions. The results suggest that restoration strageties such as planting of seedlings and controlling competing vegetation may be necessary to maintain P.albicaulis in the GYA under the more extreme future climate scenarios. PMID:25372719

  13. The IAHR project CCHE-Climate Change impact on the Hydrological cycle, water management and Engineering: an overview and preliminary results

    NASA Astrophysics Data System (ADS)

    Ranzi, Roberto; Kojiri, T.; Mynett, A.; Barontini, S.; van de Giesen, N.; Kolokytha, E.; Ngo, L. A.; Oreamuno, R.; Renard, B.; Sighomnou, D.; Vizina, A.

    2010-05-01

    IAHR, the International Association for Hydro-Environment Engineering and Research launched a research Project called Climate Change impact on the Hydrological cycle, water management and Engineering (IAHR CCHE Project). It was motivated by the fact that, although it is now well accepted that, in the light of the recent IPCC reports the vast majority of members of the scientific community are convinced that the climate is changing or at least will experience a significant fluctuation already during the current century, it is perceived that some hydrologists, water experts and hydraulic engineers are not yet ready to incorporate climate change scenarios in their designs for such projects as: - flood protection and river training, - dam rehabilitation, - water resources management under water scarcity and changes in the hydrological regimes. The objective of the project is to encourage a close co-operation between the scientific and engineering communities in taking appropriate and timely action in response to the impact of climate change on the hydrological regime and on water resource projects. The project aims at reporting on (a) the current state of knowledge as regards the impact of projected climate change on the hydrological regime in different regions of the world, where these regions are defined not just in geographic terms but also on the basis of their level of economic and water resources development; (b) the extent to which these impacts are recognized and taken into account by national water authorities, engineering organizations and other regulating bodies in setting their standard practices and procedures for the planning, design and operation of water works. These adaptation measures will include both "hard" responses, such as the construction or enlargement of engineering structures, and "soft" responses, such as changes in legislation or the operating rules of existing structures. An overview of the project and preliminary results extracted from of an Inventory of existing studies and projects considering observed and projected trends in the hydrological regimes of riverbasins and adaptation measures of the structural and non-structural type in Europe, Africa, America, Asia and Oceania and are presented.

  14. Regionalisation of statistical model outputs creating gridded data sets for Germany

    NASA Astrophysics Data System (ADS)

    Höpp, Simona Andrea; Rauthe, Monika; Deutschländer, Thomas

    2016-04-01

    The goal of the German research program ReKliEs-De (regional climate projection ensembles for Germany, http://.reklies.hlug.de) is to distribute robust information about the range and the extremes of future climate for Germany and its neighbouring river catchment areas. This joint research project is supported by the German Federal Ministry of Education and Research (BMBF) and was initiated by the German Federal States. The Project results are meant to support the development of adaptation strategies to mitigate the impacts of future climate change. The aim of our part of the project is to adapt and transfer the regionalisation methods of the gridded hydrological data set (HYRAS) from daily station data to the station based statistical regional climate model output of WETTREG (regionalisation method based on weather patterns). The WETTREG model output covers the period of 1951 to 2100 with a daily temporal resolution. For this, we generate a gridded data set of the WETTREG output for precipitation, air temperature and relative humidity with a spatial resolution of 12.5 km x 12.5 km, which is common for regional climate models. Thus, this regionalisation allows comparing statistical to dynamical climate model outputs. The HYRAS data set was developed by the German Meteorological Service within the German research program KLIWAS (www.kliwas.de) and consists of daily gridded data for Germany and its neighbouring river catchment areas. It has a spatial resolution of 5 km x 5 km for the entire domain for the hydro-meteorological elements precipitation, air temperature and relative humidity and covers the period of 1951 to 2006. After conservative remapping the HYRAS data set is also convenient for the validation of climate models. The presentation will consist of two parts to present the actual state of the adaptation of the HYRAS regionalisation methods to the statistical regional climate model WETTREG: First, an overview of the HYRAS data set and the regionalisation methods for precipitation (REGNIE method based on a combination of multiple linear regression with 5 predictors and inverse distance weighting), air temperature and relative humidity (optimal interpolation) will be given. Finally, results of the regionalisation of WETTREG model output will be shown.

  15. Developing an approach to effectively use super ensemble experiments for the projection of hydrological extremes under climate change

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Kim, H.; Utsumi, N.

    2017-12-01

    This study aims to develop a new approach which projects hydrology under climate change using super ensemble experiments. The use of multiple ensemble is essential for the estimation of extreme, which is a major issue in the impact assessment of climate change. Hence, the super ensemble experiments are recently conducted by some research programs. While it is necessary to use multiple ensemble, the multiple calculations of hydrological simulation for each output of ensemble simulations needs considerable calculation costs. To effectively use the super ensemble experiments, we adopt a strategy to use runoff projected by climate models directly. The general approach of hydrological projection is to conduct hydrological model simulations which include land-surface and river routing process using atmospheric boundary conditions projected by climate models as inputs. This study, on the other hand, simulates only river routing model using runoff projected by climate models. In general, the climate model output is systematically biased so that a preprocessing which corrects such bias is necessary for impact assessments. Various bias correction methods have been proposed, but, to the best of our knowledge, no method has proposed for variables other than surface meteorology. Here, we newly propose a method for utilizing the projected future runoff directly. The developed method estimates and corrects the bias based on the pseudo-observation which is a result of retrospective offline simulation. We show an application of this approach to the super ensemble experiments conducted under the program of Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI). More than 400 ensemble experiments from multiple climate models are available. The results of the validation using historical simulations by HAPPI indicates that the output of this approach can effectively reproduce retrospective runoff variability. Likewise, the bias of runoff from super ensemble climate projections is corrected, and the impact of climate change on hydrologic extremes is assessed in a cost-efficient way.

  16. Climate Velocity Can Inform Conservation in a Warming World.

    PubMed

    Brito-Morales, Isaac; García Molinos, Jorge; Schoeman, David S; Burrows, Michael T; Poloczanska, Elvira S; Brown, Christopher J; Ferrier, Simon; Harwood, Tom D; Klein, Carissa J; McDonald-Madden, Eve; Moore, Pippa J; Pandolfi, John M; Watson, James E M; Wenger, Amelia S; Richardson, Anthony J

    2018-06-01

    Climate change is shifting the ranges of species. Simple predictive metrics of range shifts such as climate velocity, that do not require extensive knowledge or data on individual species, could help to guide conservation. We review research on climate velocity, describing the theory underpinning the concept and its assumptions. We highlight how climate velocity has already been applied in conservation-related research, including climate residence time, climate refugia, endemism, historic and projected range shifts, exposure to climate change, and climate connectivity. Finally, we discuss ways to enhance the use of climate velocity in conservation through tailoring it to be more biologically meaningful, informing design of protected areas, conserving ocean biodiversity in 3D, and informing conservation actions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. ISMIP6: Ice Sheet Model Intercomparison Project for CMIP6

    NASA Technical Reports Server (NTRS)

    Nowicki, S.

    2015-01-01

    ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6) targets the Cryosphere in a Changing Climate and the Future Sea Level Grand Challenges of the WCRP (World Climate Research Program). Primary goal is to provide future sea level contribution from the Greenland and Antarctic ice sheets, along with associated uncertainty. Secondary goal is to investigate feedback due to dynamic ice sheet models. Experiment design uses and augment the existing CMIP6 (Coupled Model Intercomparison Project Phase 6) DECK (Diagnosis, Evaluation, and Characterization of Klima) experiments. Additonal MIP (Model Intercomparison Project)- specific experiments will be designed for ISM (Ice Sheet Model). Effort builds on the Ice2sea, SeaRISE (Sea-level Response to Ice Sheet Evolution) and COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) efforts.

  18. Recent advances in research on climate and human conflict

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.

    2014-12-01

    A rapidly growing body of empirical, quantitative research examines whether rates of human conflict can be systematically altered by climatic changes. We discuss recent advances in this field, including Bayesian meta-analyses of the effect of temperature and rainfall on current and future large-scale conflicts, the impact of climate variables on gang violence and suicides in Mexico, and probabilistic projections of personal violence and property crime in the United States under RCP scenarios. Criticisms of this research field will also be explained and addressed.

  19. Generating and Visualizing Climate Indices using Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Guentchev, G.; Rood, R. B.

    2017-12-01

    Climate change is expected to have largest impacts on regional and local scales. Relevant and credible climate information is needed to support the planning and adaptation efforts in our communities. The volume of climate projections of temperature and precipitation is steadily increasing, as datasets are being generated on finer spatial and temporal grids with an increasing number of ensembles to characterize uncertainty. Despite advancements in tools for querying and retrieving subsets of these large, multi-dimensional datasets, ease of access remains a barrier for many existing and potential users who want to derive useful information from these data, particularly for those outside of the climate modelling research community. Climate indices, that can be derived from daily temperature and precipitation data, such as annual number of frost days or growing season length, can provide useful information to practitioners and stakeholders. For this work the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset was loaded into Google Earth Engine, a cloud-based geospatial processing platform. Algorithms that use the Earth Engine API to generate several climate indices were written. The indices were chosen from the set developed by the joint CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI). Simple user interfaces were created that allow users to query, produce maps and graphs of the indices, as well as download results for additional analyses. These browser-based interfaces could allow users in low-bandwidth environments to access climate information. This research shows that calculating climate indices from global downscaled climate projection datasets and sharing them widely using cloud computing technologies is feasible. Further development will focus on exposing the climate indices to existing applications via the Earth Engine API, and building custom user interfaces for presenting climate indices to a diverse set of user groups.

  20. Ensemble of regional climate model projections for Ireland

    NASA Astrophysics Data System (ADS)

    Nolan, Paul; McGrath, Ray

    2016-04-01

    The method of Regional Climate Modelling (RCM) was employed to assess the impacts of a warming climate on the mid-21st-century climate of Ireland. The RCM simulations were run at high spatial resolution, up to 4 km, thus allowing a better evaluation of the local effects of climate change. Simulations were run for a reference period 1981-2000 and future period 2041-2060. Differences between the two periods provide a measure of climate change. To address the issue of uncertainty, a multi-model ensemble approach was employed. Specifically, the future climate of Ireland was simulated using three different RCMs, driven by four Global Climate Models (GCMs). To account for the uncertainty in future emissions, a number of SRES (B1, A1B, A2) and RCP (4.5, 8.5) emission scenarios were used to simulate the future climate. Through the ensemble approach, the uncertainty in the RCM projections can be partially quantified, thus providing a measure of confidence in the predictions. In addition, likelihood values can be assigned to the projections. The RCMs used in this work are the COnsortium for Small-scale MOdeling-Climate Limited-area Modelling (COSMO-CLM, versions 3 and 4) model and the Weather Research and Forecasting (WRF) model. The GCMs used are the Max Planck Institute's ECHAM5, the UK Met Office's HadGEM2-ES, the CGCM3.1 model from the Canadian Centre for Climate Modelling and the EC-Earth consortium GCM. The projections for mid-century indicate an increase of 1-1.6°C in mean annual temperatures, with the largest increases seen in the east of the country. Warming is enhanced for the extremes (i.e. hot or cold days), with the warmest 5% of daily maximum summer temperatures projected to increase by 0.7-2.6°C. The coldest 5% of night-time temperatures in winter are projected to rise by 1.1-3.1°C. Averaged over the whole country, the number of frost days is projected to decrease by over 50%. The projections indicate an average increase in the length of the growing season of over 35 days per year. Results show significant projected decreases in mean annual, spring and summer precipitation amounts by mid-century. The projected decreases are largest for summer, with "likely" reductions ranging from 0% to 20%. The frequencies of heavy precipitation events show notable increases (approximately 20%) during the winter and autumn months. The number of extended dry periods is projected to increase substantially during autumn and summer. Regional variations of projected precipitation change remain statistically elusive. The energy content of the wind is projected to significantly decrease for the future spring, summer and autumn months. Projected increases for winter were found to be statistically insignificant. The projected decreases were largest for summer, with "likely" values ranging from 3% to 15%. Results suggest that the tracks of intense storms are projected to extend further south over Ireland relative to those in the reference simulation. As extreme storm events are rare, the storm-tracking research needs to be extended. Future work will focus on analysing a larger ensemble, thus allowing a robust statistical analysis of extreme storm track projections.

  1. Hydropower | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    how hydropower may fit into your climate action plans. Campus Options Considerations Sample Project action plan. A history of the Cornell hydropower plant is available on the university's website. Examples

  2. A Model for Teaching a Climate Change Elective Science Course at the Community College Level

    NASA Astrophysics Data System (ADS)

    Mandia, S. A.

    2012-12-01

    The impact of global climate change is far-reaching, both for humanity and for the environment. It is essential that our students be provided a strong scientific background for the role of natural and human caused climate change so that they are better prepared to become involved in the discussion. Here the author reveals a successful model designed for use with a diverse student body at the community college level. Teaching strategies beyond the traditional lecture and exam style include: web-based resources such as static websites along with dynamic blogging tools, post-lecture cooperative learning review sessions, weekly current event research projects, use of rubrics to assist students in their own project evaluation before submission, and a research paper utilizing the Skeptical Science website to examine the validity of the most common climate change myths.

  3. The Resilient Schools Consortium (RiSC): Linking Climate Literacy, Resilience Thinking and Service Learning

    NASA Astrophysics Data System (ADS)

    Branco, B. F.; Fano, E.; Adams, J.; Shon, L.; Zimmermann, A.; Sioux, H.; Gillis, A.

    2017-12-01

    Public schools and youth voices are largely absent from climate resilience planning and projects in New York City. Additionally, research shows that U.S. science teachers' understanding of climate science is lacking, hence there is not only an urgent need to train and support teachers on both the science and pedagogy of climate change, but to link climate literacy, resilience thinking and service learning in K-12 education. However, research on participation of students and teachers in authentic, civic-oriented experiences points to increased engagement and learning outcomes in science. The Resilient Schools Consortium (RiSC) Project will address all these needs through an afterschool program in six coastal Brooklyn schools that engages teachers and urban youth (grades 6-12), in school and community climate resilience assessment and project design. The RiSC climate curriculum, co-designed by New York City school teachers with Brooklyn College, the National Wildlife Federation, New York Sea Grant and the Science and Resilience Institute at Jamaica Bay, will begin by helping students to understand the difference between climate and weather. The curriculum makes extensive use of existing resources such as NOAA's Digital Coast and the Coastal Resilience Mapping Portal. Through a series of four modules over two school years, the six RiSC teams will; 1. explore and understand the human-induced drivers of climate change and, particularly, the significant climate and extreme weather related risks to their schools and surrounding communities; 2. complete a climate vulnerability assessment within the school and the community that is aligned to OneNYC - the city's resilience planning document; 3. design and execute a school-based resilience project; and 4. propose resilience guidelines for NYC Department of Education schools. At the end of each school year, the six RiSC teams will convene a RiSC summit with city officials and resilience practitioners to share ideas and experiences.

  4. An Overview of SASSCAL Activities Supporting Interdisciplinary Water Research in Southern Africa

    NASA Astrophysics Data System (ADS)

    Helmschrot, J.; Jürgens, N.

    2013-12-01

    Climate change will affect current water resources in sub-Saharan Africa. Considering projected climate scenarios, the overall challenge in the southern African region is to secure water at sufficient quality and quantity for both, the stability of ecosystems with their functions and services as well as for human well-being (potable water, irrigation water, and water for industrial use). Thus, improved understanding of the linkages between hydrological (including hydro-geological) components of ecosystems and society is needed as a precondition to develop sustainable management strategies for integrated water resources management in this data scarce region. Funded by the German Ministry of Education and Research (BMBF), 87 research projects of the SASSCAL Initiative (Southern African Science Service Centre for Climate Change and Adaptive Land Management) focus on providing information and services allowing for a better understanding and assessment of the impact of climate and land management changes in five thematic areas, namely climate, water, agriculture, forestry and biodiversity. Water-related research activities in SASSCAL aim to improve our knowledge on the complex interactions and feedbacks between surface and groundwater dynamics and resources as well as land surface processes in selected regions of the participating countries (Angola, Botswana, Namibia, South Africa and Zambia). The main objective of this joint and integrated research effort is to develop reliable hydrological and hydro-geological baseline data along with a set of analytical methods to strengthen the research capacity of the water sector of the Southern African region. Thereby, SASSCAL contributes to the implemention of integrated water resources management strategies for improved trans-boundary river management and resources usage in the perspective of global climate and land management changes. Here, we present an overview and first results of ongoing studies conducted by various SASSCAL research teams. Specifically addressed is the installation of 30 Automatic Weather Stations in Angola, Botswana and Zambia which will notably improve regional data availability. We further introduce case studies on flood monitoring using remote sensing products, hydrological risks assessments and early warning systems for floods, integrated hydrological modeling efforts, groundwater-surface water interactions and various hydrological process studies in different ecosystems, all at various spatial (local, regional, national and international) and temporal (short-term, long-term, climate projection) scales. With this variety of examples we demonstrate our interdisciplinary research approach as the prerequisite to address the complexity of interacting drivers and processes affecting our land and water resources. The integration of these joint research efforts with findings from other thematic areas, e.g. in the field of optimized land management, deforestation and restoration, ecosystem stability and resilience, climate projections, food production and security, will allow for a better understanding and assessment of global change related environmental threats and resulting societal challenges in the Southern African region.

  5. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb Aldrich; Lois Arena; Dianne Griffiths

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis bymore » 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).« less

  6. Built Expansion and Global Climate Change Drive Projected Urban Heat: Relative Magnitudes, Interactions, and Mitigation

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. S.; Georgescu, M.; Moustaoui, M.

    2016-12-01

    Surface climates are projected to warm due to global climate change over the course of the 21st century, and demographic projections suggest urban areas in the United States will continue to expand and develop, with associated local climate outcomes. Interactions between these two drivers of urban heat have not been robustly quantified to date. Here, simulations with the Weather Research and Forecasting model (coupled to a Single-Layer Urban Canopy Model) are performed at 20 km resolution over the continental U.S. for two 10-year periods: contemporary (2000-2009) and end-of-century (2090-2099). Present and end of century urban land use are derived from the Environmental Protection Agency's Integrated Climate and Land-Use Scenarios. Modelled effects on urban climates are evaluated regionally. Sensitivity to climate projection (Community Climate System Model 4.0, RCP 4.5 vs. RCP 8.5) and associated urban development scenarios are assessed. Effects on near-surface urban air temperature of RCP8.5 climate change are greater than those attributable to the corresponding urban development in many regions. Interaction effects vary by region, and while of lesser magnitude, are not negligible. Moreover, urban development and its interactions with RCP8.5 climate change modify the distribution of convective precipitation over the eastern US. Interaction effects result from the different meteorological effects of urban areas under current and future climate. Finally, the potential for design implementations such as green roofs and high albedo roofs to offset the projected warming is considered. Impacts of these implementations on precipitation are also assessed.

  7. Data management and analysis for the Earth System Grid

    NASA Astrophysics Data System (ADS)

    Williams, D. N.; Ananthakrishnan, R.; Bernholdt, D. E.; Bharathi, S.; Brown, D.; Chen, M.; Chervenak, A. L.; Cinquini, L.; Drach, R.; Foster, I. T.; Fox, P.; Hankin, S.; Henson, V. E.; Jones, P.; Middleton, D. E.; Schwidder, J.; Schweitzer, R.; Schuler, R.; Shoshani, A.; Siebenlist, F.; Sim, A.; Strand, W. G.; Wilhelmi, N.; Su, M.

    2008-07-01

    The international climate community is expected to generate hundreds of petabytes of simulation data within the next five to seven years. This data must be accessed and analyzed by thousands of analysts worldwide in order to provide accurate and timely estimates of the likely impact of climate change on physical, biological, and human systems. Climate change is thus not only a scientific challenge of the first order but also a major technological challenge. In order to address this technological challenge, the Earth System Grid Center for Enabling Technologies (ESG-CET) has been established within the U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC)-2 program, with support from the offices of Advanced Scientific Computing Research and Biological and Environmental Research. ESG-CET's mission is to provide climate researchers worldwide with access to the data, information, models, analysis tools, and computational capabilities required to make sense of enormous climate simulation datasets. Its specific goals are to (1) make data more useful to climate researchers by developing Grid technology that enhances data usability; (2) meet specific distributed database, data access, and data movement needs of national and international climate projects; (3) provide a universal and secure web-based data access portal for broad multi-model data collections; and (4) provide a wide-range of Grid-enabled climate data analysis tools and diagnostic methods to international climate centers and U.S. government agencies. Building on the successes of the previous Earth System Grid (ESG) project, which has enabled thousands of researchers to access tens of terabytes of data from a small number of ESG sites, ESG-CET is working to integrate a far larger number of distributed data providers, high-bandwidth wide-area networks, and remote computers in a highly collaborative problem-solving environment.

  8. Mapping Climate Change: Six U.S. Case Studies

    ERIC Educational Resources Information Center

    Holmberg, Marjorie O.

    2010-01-01

    This research focuses on the current role of mapping practices in communicating climate change in the United States. This includes maps used in monitoring climate change, projecting its potential impacts, and identifying potential adaptation strategies at particular scales. Since few, if any, studies have been done specifically on mapping…

  9. Changing currents: a strategy for understanding and predicting the changing ocean circulation.

    PubMed

    Bryden, Harry L; Robinson, Carol; Griffiths, Gwyn

    2012-12-13

    Within the context of UK marine science, we project a strategy for ocean circulation research over the next 20 years. We recommend a focus on three types of research: (i) sustained observations of the varying and evolving ocean circulation, (ii) careful analysis and interpretation of the observed climate changes for comparison with climate model projections, and (iii) the design and execution of focused field experiments to understand ocean processes that are not resolved in coupled climate models so as to be able to embed these processes realistically in the models. Within UK-sustained observations, we emphasize smart, cost-effective design of the observational network to extract maximum information from limited field resources. We encourage the incorporation of new sensors and new energy sources within the operational environment of UK-sustained observational programmes to bridge the gap that normally separates laboratory prototype from operational instrument. For interpreting the climate-change records obtained through a variety of national and international sustained observational programmes, creative and dedicated UK scientists should lead efforts to extract the meaningful signals and patterns of climate change and to interpret them so as to project future changes. For the process studies, individual scientists will need to work together in team environments to combine observational and process modelling results into effective improvements in the coupled climate models that will lead to more accurate climate predictions.

  10. Determination of cloud parameters from infrared sounder data

    NASA Technical Reports Server (NTRS)

    Yeh, H.-Y. M.

    1984-01-01

    The World Climate Research Programme (WCRP) plan is concerned with the need to develop a uniform global cloud climatology as part of a broad research program on climate processes. The International Satellite Cloud Climatology Project (ISCCP) has been approved as the first project of the WCRP. The ISCCP has the basic objective to collect and analyze satellite radiance data to infer the global distribution of cloud radiative properties in order to improve the modeling of cloud effects on climate. Research is conducted to explore an algorithm for retrieving cloud properties by utilizing the available infrared sounder data from polar-orbiting satellites. A numerical method is developed for computing cloud top heights, amount, and emissivity on the basis of a parameterized infrared radiative transfer equation for cloudy atmospheres. Theoretical studies were carried out by considering a synthetic atmosphere.

  11. EdGCM: Research Tools for Training the Climate Change Generation

    NASA Astrophysics Data System (ADS)

    Chandler, M. A.; Sohl, L. E.; Zhou, J.; Sieber, R.

    2011-12-01

    Climate scientists employ complex computer simulations of the Earth's physical systems to prepare climate change forecasts, study the physical mechanisms of climate, and to test scientific hypotheses and computer parameterizations. The Intergovernmental Panel on Climate Change 4th Assessment Report (2007) demonstrates unequivocally that policy makers rely heavily on such Global Climate Models (GCMs) to assess the impacts of potential economic and emissions scenarios. However, true climate modeling capabilities are not disseminated to the majority of world governments or U.S. researchers - let alone to the educators who will be training the students who are about to be presented with a world full of climate change stakeholders. The goal is not entirely quixotic; in fact, by the mid-1990's prominent climate scientists were predicting with certainty that schools and politicians would "soon" be running GCMs on laptops [Randall, 1996]. For a variety of reasons this goal was never achieved (nor even really attempted). However, around the same time NASA and the National Science Foundation supported a small pilot project at Columbia University to show the potential of putting sophisticated computer climate models - not just "demos" or "toy models" - into the hands of non-specialists. The Educational Global Climate Modeling Project (EdGCM) gave users access to a real global climate model and provided them with the opportunity to experience the details of climate model setup, model operation, post-processing and scientific visualization. EdGCM was designed for use in both research and education - it is a full-blown research GCM, but the ultimate goal is to develop a capability to embed these crucial technologies across disciplines, networks, platforms, and even across academia and industry. With this capability in place we can begin training the skilled workforce that is necessary to deal with the multitude of climate impacts that will occur over the coming decades. To further increase the educational potential of climate models, the EdGCM project has also created "EZgcm". Through a joint venture of NASA, Columbia University and McGill University EZgcm moves the focus toward a greater use of Web 1.0 and Web 2.0-based technologies. It shifts the educational objectives towards a greater emphasis on teaching students how science is conducted and what role science plays in assessing climate change. That is, students learn about the steps of the scientific process as conveyed by climate modeling research: constructing a hypothesis, designing an experiment, running a computer model, using scientific visualization to support analysis, communicating the results of that analysis, and role playing the scientific peer review process. This is in stark contrast to what they learn from the political debate over climate change, which they often confuse with a scientific debate.

  12. Fleet Management | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    Fleet Management Fleet Management Research campuses often own and operate vehicles to carry out Sample Project Related Links Fleet Management Options The goal of fleet management within climate action alternative fuel use. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) outlines

  13. Adaptation Planning for Water Resources Management in the Context of Scientific Uncertainty

    NASA Astrophysics Data System (ADS)

    Lowrey, J.; Kenney, D.

    2008-12-01

    Several municipalities are beginning to create policies and plans in order to adapt to potential impacts from climate change. A 2007 report from the Heinz Center for Science, Economics, and the Environment, 'A Survey of Climate Change Adaptation Planning,' surveyed fourteen cities or counties across the U.S. and Canada that have created or are working towards creating climate change adaptation plans. Informal interactions with water managers in the Intermountain West indicate an eagerness to learn from those who have already begun adapting to potential climate change. Many of those without plans do not feel comfortable making potentially expensive long-term policy decisions based on impacts derived from uncertain climate change projections. This research identifies how decision makers currently consider climate change in adaptation planning despite imperfect information about climate change impacts, particularly in the water sector. Insights are offered into how best to provide information on climate change projections to regional decision makers so that they can begin adaptation planning for a changing climate. This research analyzes how a subset of the fourteen municipalities justified adaptive planning in the face of scientific uncertainty, paying particular attention to water resource adaptation, using the adaptation approaches studied in the 2007 Heinz Center Report. Interviews will be conducted with decision makers to learn how policies will be implemented and evaluated, and to explore resulting changes in policy or planning. Adaptation strategies are not assessed, but are used to identify how the decision makers plan to evaluate their own adaptation policies. In addition to looking at information use in adaptation plans, we compare how the plans orient themselves (adapting to projected impacts vs. increasing resiliency to current climate variability), how they address barriers and opportunities for adaptation, and whether they follow some key steps for successful adaptation as outlined in the literature. This part of the study will identify any consensus among the municipalities already adapting, and see of the decision makers tend to agree with the points of views expressed in the literature. The conclusions here will not only help decision makers trying to adapt, but it will help researchers orient future research to the informational needs of the decision makers. The work is intended to provide useful information for the Western Water Assessment, a NOAA-funded research boundary organization, which provides climate information to water resource managers in the Intermountain West, including the Colorado River Basin.

  14. Multi-model Ensemble Regional Climate Projection of the Maritime Continent using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Kang, S.; IM, E. S.; Eltahir, E. A. B.

    2016-12-01

    In this study, the future change in precipitation due to global warming is investigated over the Maritime Continent using the MIT Regional Climate Model (MRCM). A total of nine 30-year projections under multi-GCMs (CCSM, MPI, ACCESS) and multi-scenarios of emissions (Control, RCP4.5, RCP8.5) are dynamically downscaled using the MRCM with 12km horizontal resolution. Since downscaled results tend to systematically overestimate the precipitation regardless of GCM used as lateral boundary conditions, the Parametric Quantile Mapping (PQM) is applied to reduce this wet bias. The cross validation for the control simulation shows that the PQM method seems to retain the spatial pattern and temporal variability of raw simulation, however it effectively reduce the wet bias. Based on ensemble projections produced by dynamical downscaling and statistical bias correction, a reduction of future precipitation is discernible, in particular during dry season (June-July-August). For example, intense precipitation in Singapore is expected to be reduced in RCP8.5 projection compared to control simulation. However, the geographical patterns and magnitude of changes still remain uncertain, suffering from statistical insignificance and a lack of model agreement. Acknowledgements This research is supported by the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise programme. The Center for Environmental Sensing and Modeling is an interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology

  15. The Roadmap to Climate Stability Based on IPCC Fifth Assessment Climate Accounting Protocols

    NASA Astrophysics Data System (ADS)

    Schultz, T.

    2016-12-01

    The Climate Stabilization Council recognizes the severe impact consequences of a rapidly warming climate and the challenging mitigation requirements of reaching the COP21 aspirational goal of +1.5°C. To address this challenge, we have used the IPCC Fifth Assessment Report which presents new methods for projecting increases in average global temperature and new metrics to update global climate accounting protocols. The updated protocols allow us to assess the full spectrum of climate mitigation projects available and identify the ability of specific projects to achieve various climate warming targets at different points in time. This assessment demonstrates the need to continue focusing on reducing and removing the major sources of overall excess heat linked to CO2, methane, black carbon, and tropospheric ozone. These findings also highlight the importance of solar radiation management (SRM) and earth radiation management (ERM) to achieve climate stabilization in the near-term. By integrating advanced life-cycle assessment (LCA) into the protocols, unintended environmental or human health impact trade-offs that may be associated with deployment of specific mitigation options can be identified. These protocols have also been introduced for standardization to the international ISO 14000 process. We conclude by describing the Climate Stabilization Council's role in establishing a platform for the scientific research, evaluation, and implementation of the identified climate mitigation projects.

  16. Climate change, tropospheric ozone and particulate matter, and health impacts.

    PubMed

    Ebi, Kristie L; McGregor, Glenn

    2008-11-01

    Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Additional research is needed to better understand the possible impacts of climate change on air pollution-related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations.

  17. Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison

    PubMed Central

    Dowsett, Harry J.; Foley, Kevin M.; Stoll, Danielle K.; Chandler, Mark A.; Sohl, Linda E.; Bentsen, Mats; Otto-Bliesner, Bette L.; Bragg, Fran J.; Chan, Wing-Le; Contoux, Camille; Dolan, Aisling M.; Haywood, Alan M.; Jonas, Jeff A.; Jost, Anne; Kamae, Youichi; Lohmann, Gerrit; Lunt, Daniel J.; Nisancioglu, Kerim H.; Abe-Ouchi, Ayako; Ramstein, Gilles; Riesselman, Christina R.; Robinson, Marci M.; Rosenbloom, Nan A.; Salzmann, Ulrich; Stepanek, Christian; Strother, Stephanie L.; Ueda, Hiroaki; Yan, Qing; Zhang, Zhongshi

    2013-01-01

    The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21st century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. PMID:23774736

  18. Translating Research into Practice: Establishing a Network of Climate Change Practitioners in Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Milner, G. A.

    2017-12-01

    Climate research and information continues to emerge at a rapid pace from the academic and scientific community. Decisions being made today by planners, engineers and staff across the Province of Ontario rely on science and information to plan and build our systems for the long term. Of course, as scientific information evolves continuously to produce lessons learned and new evidence, on the ground decisions often become entrenched in outdated information and need updating. Given this, bridging the gap between research to policy, and research to practice is of critical importance as the Province of Ontario upgrades its infrastructure, plans for long term growth in population within the Great Lakes Basin, and manages its natural systems and resources responsibly. The Ontario Climate Consortium (OCC) is an interdisciplinary network of academics and practitioners established in 2011 in the province that works to mobilize climate research findings towards building capacity, inspiring climate action, and training end-users with the latest science. The OCC has collaborated with more than 39 organizations throughout Ontario and across Canada, including government agencies at all levels (local, provincial and federal), non-profit organizations and private sector companies. This presentation will describe the foundations of climate action in Ontario, Canada including the landscape of climate adaptation practitioners from both public and private organizations. Furthermore, this presentation will feature lessons learned from the OCC network, including: 1) What comprises effective partnerships to undertake climate change adaptation planning for cities; 2) How to build the foundation for capacity at agencies with limited resources or expertise in the climate change field; and 3) How to successfully mobilize complex climate data for end-users to produce usable tools (through a case study research project). The latter will present findings from a two-year research project undertaken with OCC and the City of Vaughan, just northwest of Toronto, which examined vulnerability and risks of climate change to the city's stormwater infrastructure system and produced key tools and information for managers to begin building climate resilience into their planning and operations.

  19. Improving the effectiveness of communication about climate science: Insights from the "Global Warming's Six Americas" audience segmentation research project

    NASA Astrophysics Data System (ADS)

    Maibach, E.; Roser-Renouf, C.

    2011-12-01

    That the climate science community has not been entirely effective in sharing what it knows about climate change with the broader public - and with policy makers and organizations that should be considering climate change when making decisions - is obvious. Our research shows that a large majority of the American public trusts scientists (76%) and science-based agencies (e.g., 76% trust NOAA) as sources of information about climate change. Yet, despite the widespread agreement in the climate science community that the climate is changing as a result of human activity, only 64% of the public understand that the world's average temperature has been increasing (and only about half of them are sure), less than half (47%) understand that the warming is caused mostly by human activity, and only 39% understand that most scientists think global warming is happening (in fact, only 13% understand that the large majority of climate scientists think global warming is happening). Less obvious is what the climate science community should do to become more effective in sharing what it knows. In this paper, we will use evidence from our "Global Warming's Six Americas" audience segmentation research project to suggest ways that individual climate scientists -- and perhaps more importantly, ways in which climate science agencies and professional societies -- can enhance the effectiveness of their communication efforts. We will conclude by challenging members of the climate science community to identify and convey "simple, clear messages, repeated often, by a variety of trusted sources" - an approach to communication repeatedly shown to be effective by the public health community.

  20. Climate and Population Health Vulnerabilities to Vector-Borne Diseases: Increasing Resilience Under Climate Change Conditions in Africa

    NASA Astrophysics Data System (ADS)

    Ceccato, P.; McDonald, K. C.; Podest, E.; De La Torre Juarez, M.; Kruczkiewicz, A.; Lessel, J.; Jensen, K.; Thomson, M. C.

    2014-12-01

    The International Research Institute for Climate and Society (IRI), the City University of New York (CUNY) and NASA Jet Propulsion Laboratory (JPL) in collaboration with NASA SERVIR are developing tools to monitor climate variables (precipitation, temperature, vegetation, water bodies, inundation) that help projects in Africa to increase resilience to climate change for vector-borne diseases (i.e. malaria, trypanosomiasis, leishmaniasis, and schistosomiasis). Through the development of new products to monitor precipitation, water bodies and inundation, IRI, CUNY and JPL provide tools and capacity building to research communities, ministries of health and World Health Organization in Africa to: 1) Develop research teams' ability to appropriately use climate data as part of their research 2) Enable research teams and ministries to integrate climate information into social and economic drivers of vulnerability and opportunities for adaptation to climate change 3) Inform better policies and programs for climate change adaptation. This oral presentation will demonstrate how IRI, CUNY, and JPL developed new products, tools and capacity building to achieve the three objectives mentioned above.

  1. Upgrades, Current Capabilities and Near-Term Plans of the NASA ARC Mars Climate

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, Melinda April; Haberle, Robert M.; Schaeffer, James R.

    2012-01-01

    We describe and review recent upgrades to the ARC Mars climate modeling framework, in particular, with regards to physical parameterizations (i.e., testing, implementation, modularization and documentation); the current climate modeling capabilities; selected research topics regarding current/past climates; and then, our near-term plans related to the NASA ARC Mars general circulation modeling (GCM) project.

  2. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notz, Dirk; Jahn, Alexandra; Holland, Marika

    A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standardmore » for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. Furthermore, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.« less

  3. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations

    DOE PAGES

    Notz, Dirk; Jahn, Alexandra; Holland, Marika; ...

    2016-09-23

    A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standardmore » for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. Furthermore, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.« less

  4. Collaboration for Actionable Climate Science in Hawaii and the US-Affiliated Pacific Islands

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Grecni, Z. N.; Helweg, D. A.

    2016-12-01

    Hawaii and the US-Affiliated Pacific Islands (USAPI) encompass more than 2000 islands spread across millions of square miles of ocean. Islands can be high volcanic or low atolls, and vary widely in terms of geography, climate, ecology, language, culture, economies, government, and vulnerability to climate change impacts. For these reasons, meaningful collaboration across research groups and climate organizations is not only helpful, it is mandatory. No single group can address all the needs of every island, stakeholder, or sector, which has led to close collaboration and leveraging of research in the region to fill different niches. The NOAA-funded Pacific Regional Integrated Sciences & Assessments (RISA) program, DOI Pacific Islands Climate Science Center (PICSC), and the DOI LCC the Pacific Islands Climate Change Cooperative (PICCC) all take a stakeholder oriented approach to climate research, and have successfully collaborated on both specific projects and larger initiatives. Examples of these collaborations include comprising the core team of the Pacific Islands Regional Climate Assessment (PIRCA), the regional arm of the US National Climate Assessment, co-sponsoring a workshop on regional downscaling for scientists and managers, leveraging research projects across multiple sectors on a single island, collaborating on communication products such as handouts and websites to ensure a consistent message, and in the case of the Pacific RISA and the PICSC, jointly funding a PIRCA Sustained Assessment Specialist position. Barriers to collaboration have been around topics such as roles of research versus granting groups, perceived research overlap, and funding uncertainties. However, collaborations have been overwhelming positive in the Pacific Islands region due to communication, recognition of partners' strengths and expertise, and especially because of the "umbrella" organization and purpose provided by the PIRCA structure, which provides a shared platform for all regional groups working on climate science and adaptation, not owned by any one group. This work will give examples of successes and barriers encountered in the region.

  5. Interdisciplinary assessment of sea-level rise and climate change impacts on the lower Nile delta, Egypt.

    PubMed

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia S; Baumert, Niklas; Kloos, Julia; Renaud, Fabrice G; La Jeunesse, Isabelle; Mabrouk, Badr; Savić, Dragan A; Kapelan, Zoran; Ludwig, Ralf; Fischer, Georg; Roson, Roberto; Zografos, Christos

    2015-01-15

    CLImate-induced changes on WAter and SECurity (CLIWASEC) was a cluster of three complementary EC-FP7 projects assessing climate-change impacts throughout the Mediterranean on: hydrological cycles (CLIMB - CLimate-Induced changes on the hydrology of Mediterranean Basins); water security (WASSERMed - Water Availability and Security in Southern EuRope and the Mediterranean) and human security connected with possible hydro-climatic conflicts (CLICO - CLImate change hydro-COnflicts and human security). The Nile delta case study was common between the projects. CLIWASEC created an integrated forum for modelling and monitoring to understand potential impacts across sectors. This paper summarises key results from an integrated assessment of potential challenges to water-related security issues, focusing on expected sea-level rise impacts by the middle of the century. We use this common focus to illustrate the added value of project clustering. CLIWASEC pursued multidisciplinary research by adopting a single research objective: sea-level rise related water security threats, resulting in a more holistic view of problems and potential solutions. In fragmenting research, policy-makers can fail to understand how multiple issues can materialize from one driver. By combining efforts, an integrated assessment of water security threats in the lower Nile is formulated, offering policy-makers a clearer picture of inter-related issues to society and environment. The main issues identified by each project (land subsidence, saline intrusion - CLIMB; water supply overexploitation, land loss - WASSERMed; employment and housing security - CLICO), are in fact related. Water overexploitation is exacerbating land subsidence and saline intrusion, impacting on employment and placing additional pressure on remaining agricultural land and the underdeveloped housing market. All these have wider implications for regional development. This richer understanding could be critical in making better policy decisions when attempting to mitigate climate and social change impacts. The CLIWASEC clustering offers an encouraging path for the new European Commission Horizon 2020 programme to follow. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Detailed climate-change projections for urban land-use change and green-house gas increases for Belgium with COSMO-CLM coupled to TERRA_URB

    NASA Astrophysics Data System (ADS)

    Wouters, Hendrik; Vanden Broucke, Sam; van Lipzig, Nicole; Demuzere, Matthias

    2016-04-01

    Recent research clearly show that climate modelling at high resolution - which resolve the deep convection, the detailed orography and land-use including urbanization - leads to better modelling performance with respect to temperatures, the boundary-layer, clouds and precipitation. The increasing computational power enables the climate research community to address climate-change projections with higher accuracy and much more detail. In the framework of the CORDEX.be project aiming for coherent high-resolution micro-ensemble projections for Belgium employing different GCMs and RCMs, the KU Leuven contributes by means of the downscaling of EC-EARTH global climate model projections (provided by the Royal Meteorological Institute of the Netherlands) to the Belgian domain. The downscaling is obtained with regional climate simulations at 12.5km resolution over Europe (CORDEX-EU domain) and at 2.8km resolution over Belgium (CORDEX.be domain) using COSMO-CLM coupled to urban land-surface parametrization TERRA_URB. This is done for the present-day (1975-2005) and future (2040 → 2070 and 2070 → 2100). In these high-resolution runs, both GHG changes (in accordance to RCP8.5) and urban land-use changes (in accordance to a business-as-usual urban expansion scenario) are taken into account. Based on these simulations, it is shown how climate-change statistics are modified when going from coarse resolution modelling to high-resolution modelling. The climate-change statistics of particular interest are the changes in number of extreme precipitation events and extreme heat waves in cities. Hereby, it is futher investigated for the robustness of the signal change between the course and high-resolution and whether a (statistical) translation is possible. The different simulations also allow to address the relative impact and synergy between the urban expansion and increased GHG on the climate-change statistics. Hereby, it is investigated for which climate-change statistics the urban heat island and urban expansion is relevant, and to what extent the urban expansion can be included in the coarse-to-high resolution translation.

  7. Projecting the climatic effects of increasing carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacCracken, M C; Luther, F M

    This report presents the current knowns, unknowns, and uncertainties regarding the projected climate changes that might occur as a result of an increasing atmospheric CO/sub 2/ concentration. Further, the volume describes what research is required to estimate the magnitude and rate of a CO/sub 2/-induced clamate change with regional and seasonal resolution. Separate abstracts have been prepared for the individual papers. (ACR)

  8. Validation of the Regional Climate Model ALARO with different dynamical downscaling approaches and different horizontal resolutions

    NASA Astrophysics Data System (ADS)

    Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier

    2015-04-01

    At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.

  9. Preparing Teachers to Support the Development of Climate Literate Students

    NASA Astrophysics Data System (ADS)

    Haddad, N.; Ledley, T. S.; Ellins, K. K.; Bardar, E. W.; Youngman, E.; Dunlap, C.; Lockwood, J.; Mote, A. S.; McNeal, K.; Libarkin, J. C.; Lynds, S. E.; Gold, A. U.

    2014-12-01

    The EarthLabs climate project includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at increasing high school teachers' and students' understanding of the factors that shape our planet's climate. The project has developed four new modules which focus on climate literacy and which are part of the larger Web based EarthLabs collection of Earth science modules. Climate related themes highlighted in the new modules include the Earth system with its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. EarthLabs climate modules use two central strategies to help students navigate the multiple challenges inherent in understanding climate science. The first is to actively engage students with the content by using a variety of learning modes, and by allowing students to pace themselves through interactive visualizations that address particularly challenging content. The second strategy, which is the focus of this presentation, is to support teachers in a subject area where few have substantive content knowledge or technical skills. Teachers who grasp the processes and interactions that give Earth its climate and the technical skills to engage with relevant data and visualizations are more likely to be successful in supporting students' understanding of climate's complexities. This presentation will briefly introduce the EarthLabs project and will describe the steps the project takes to prepare climate literate teachers, including Web based resources, teacher workshops, and the development of a cadre of teacher leaders who are prepared to continue leading the workshops after project funding ends.

  10. PERPHECLIM ACCAF Project - Perennial fruit crops and forest phenology evolution facing climatic changes

    NASA Astrophysics Data System (ADS)

    Garcia de Cortazar-Atauri, Iñaki; Audergon, Jean Marc; Bertuzzi, Patrick; Anger, Christel; Bonhomme, Marc; Chuine, Isabelle; Davi, Hendrik; Delzon, Sylvain; Duchêne, Eric; Legave, Jean Michel; Raynal, Hélène; Pichot, Christian; Van Leeuwen, Cornelis; Perpheclim Team

    2015-04-01

    Phenology is a bio-indicator of climate evolutions. Measurements of phenological stages on perennial species provide actually significant illustrations and assessments of the impact of climate change. Phenology is also one of the main key characteristics of the capacity of adaptation of perennial species, generating questions about their consequences on plant growth and development or on fruit quality. Predicting phenology evolution and adaptative capacities of perennial species need to override three main methodological limitations: 1) existing observations and associated databases are scattered and sometimes incomplete, rendering difficult implementation of multi-site study of genotype-environment interaction analyses; 2) there are not common protocols to observe phenological stages; 3) access to generic phenological models platforms is still very limited. In this context, the PERPHECLIM project, which is funded by the Adapting Agriculture and Forestry to Climate Change Meta-Program (ACCAF) from INRA (French National Institute of Agronomic Research), has the objective to develop the necessary infrastructure at INRA level (observatories, information system, modeling tools) to enable partners to study the phenology of various perennial species (grapevine, fruit trees and forest trees). Currently the PERPHECLIM project involves 27 research units in France. The main activities currently developed are: define protocols and observation forms to observe phenology for various species of interest for the project; organizing observation training; develop generic modeling solutions to simulate phenology (Phenological Modelling Platform and modelling platform solutions); support in building research projects at national and international level; develop environment/genotype observation networks for fruit trees species; develop an information system managing data and documentation concerning phenology. Finally, PERPHECLIM project aims to build strong collaborations with public (Observatoire des Saisons) and private sector partners (technical institutes) in order to allow a more direct transfer of knowledge.

  11. Climate change impact assessment on flow regime by incorporating spatial correlation and scenario uncertainty

    NASA Astrophysics Data System (ADS)

    Vallam, P.; Qin, X. S.

    2017-07-01

    Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.

  12. Polaris Undergraduates Connecting With K-12 Students Though Story Telling-Learning About Climate Change Using Web-Mapping Based Investigations

    NASA Astrophysics Data System (ADS)

    Wood, J. H.; Natali, S.; Schade, J. D.; Fiske, G. J.; Linder, C.; Ramos, E.; Weber, L. R.; Kuhn, M. A.

    2014-12-01

    The Polaris Project is a unique undergraduate education, research, and outreach initiative that examines global climate change in the Siberian Arctic. The program focuses on permafrost and carbon processes in the boreal and tundra ecosystems of the Kolyma Watershed, the largest watershed underlain by continuous permafrost. Each summer, a diverse group of undergraduate students and faculty mentors spends one month living on the Kolyma River, developing independent projects that engage the students directly in the biogeosciences through authentic scientific research experiences in remote field sites. In all cases the student projects contribute to the overall goal of the Polaris Project to investigate the transport and transformations of carbon and nutrients as they move among terrestrial and aquatic ecosystems and the atmosphere. Through the use of online interactive ArcGIS maps the students share their experiences and learning, while posing questions in a format that can be used to engage K-12 learners in the classroom. By embedding information; including databases, photographs and video, informational text, and geospatial data; into user-friendly maps the Polaris Project students will "tell the story" of studying climate change in the Siberian tundra in a way that allows the users to explore climate science through inquiry and web-map based investigation. Through performance expectation topics including Weather and Climate, Interactions, Earth's Systems, and Human impacts, this investigation uses consideration of the vast amounts of ancient organic matter locked up in permafrost in the region, and concerns about the fate of this ancient organic carbon as temperatures warm and permafrost thaws, to make K-12 climate change connections with the Next Generation Science Standards (NGSS).

  13. Toward a phenology network in Turkey

    NASA Astrophysics Data System (ADS)

    Dalfes, H. N.; Ülgen, H.; Zeydanli, U.; Durak, A. T.

    2012-04-01

    All climate projections indicate that drastic changes are to occur in the Mediterranean Basin and Southwestern Asia. Detailed studies also foresee strong patterns of change in seasonality for most climate fields all across the country, threatening Turkey's rich biodiversity and diverse ecosystems already in trouble due to massive land use changes and careless resource extraction projects. It is therefore obvious that climate impact studies can benefit from detailed and continuous monitoring of relationships between climate and natural systems. Recently started efforts to build a phenology network for Turkey will hopefully constitute a component of a more comprehensive ecological observation infrastructure. The Phenology Network of Turkey Project saw its debut as a joint initiative of an academic institution (Istanbul Technical University) and a research NGO (Nature Conservation Center). It has been decided from the very beginning to rely a much as possible on Internet technologies (provided by the National High Performance Computing Center of Turkey). The effort is also inspired by and collaborates with already established networks in general and USA National Phenology Network in particular. Many protocols, instructional materials and Nature's Notebook application has been barrowed from the USA NPN. The project has been designed from the start as a two-faceted effort: an infrastructure to accumulate/provide useful data to climate/ecosystem research communities and a 'citizen science' project to raise nature and climate change awareness among all components of the society in Turkey in general and secondary education teachers and students in particular. It has been opted to start by gathering plant phenological data. A set with 20 plant species has been designed to serve as a countrywide 'calibration set'. It is also anticipated to salvage and extend as much of possible historical animal (especially bird and butterfly) observations.

  14. Effects of climate change on landslide hazard in Europe (Invited)

    NASA Astrophysics Data System (ADS)

    Nadim, F.; Solheim, A.

    2009-12-01

    Landslides represent a major threat to human life, property and constructed facilities, infrastructure and natural environment in most mountainous and hilly regions of the world. As a consequence of climatic changes and potential global warming, an increase of landslide activity is expected in some parts of the world in the future. This will be due to increased extreme rainfall events, changes of hydrological cycles, meteorological events followed by sea storms causing coastal erosion and melting of snow and of frozen soils in the high mountains. During the past century, Europe experienced many fatalities and significant economic losses due to landslides. Since in many parts of Europe landslides are the most serious natural hazard, several recent European research projects are looking into the effects of climate change on the risk associated with landslides. Examples are the recently initiated SafeLand project, which looks into this problem across the continent, and GeoExtreme, which focused on Norway. The ongoing project SafeLand (www.safeland-fp7.eu) is a large, integrating project financed by the European Commission. It involves close to 30 organizations from 13 countries in Europe, and it looks into the effects of global change (mainly changes in demography and climate change) on the pattern of landslide risk in Europe. The SafeLand objectives are to (1) provide policy-makers, public administrators, researchers, scientists, educators and other stakeholders with improved harmonized framework and methodology for the assessment and quantification of landslide risk in Europe's regions; (2) evaluate the changes in risk pattern caused by climate change, human activity and policy changes; and (3) provide guidelines for choosing the most appropriate risk management strategies, including risk mitigation and prevention measures. To assess the changes in the landslide risk pattern in Norway over the next 50 years, the four-year integrated research project GeoExtreme (www.geoextreme.no) was executed. Different modules of the project established the database of landslide and avalanche events in Norway, investigated the coupling between climatic parameters and the occurrence of avalanches and landslides, developed regional, down-scaled climate scenarios for the next 50 years, and simulated a picture of possible future geohazards risk in Norway. The socioeconomic implications of geohazards in Norway, both in the past, and under the predicted future climate scenarios were also studied in the project. The latter study considered the costs related to damage by natural disasters and mitigation measures, ability to learn by experience, changes in preparedness, and impact of policy decisions. The main conclusion of the GeoExtreme project was that in a country with large climatic variation like Norway, the effects of climate change on the geohazard situation will vary significantly from location to location. Over a short time interval of 50 years, the largest increase in the direct socio-economic costs will most likely be in the transport sector. However, better adaptation to the present climate and geohazard problems would also require large investments, and this would in fact be the most important step in preparing for the expected changes during the next 50 years.

  15. Tipping Points and Balancing Acts: Grand Challenges and Synergistic Opportunities of Integrating Research and Education, Science and Solutions

    NASA Astrophysics Data System (ADS)

    McCaffrey, M. S.; Stroeve, J. C.

    2011-12-01

    The "Grand Challenges" to address Global Change identified by the International Council for Science (ICSU) and its partners through the Earth System Sustainability Initiative-improving forecasting, enhancing and integrating observation systems, confining and minimizing global environmental change, responding effectively to change, as well as innovating and evaluating these efforts-require an integrative approach that engages and inspires society in general and young people in particular. What are some of the effective strategies-and stumbling blocks-in being able to make Earth System science and related sustainability efforts relevant and practical to non-technical audiences? Recent climate education projects have pioneered new strategies toward linking and infusing research with education, science with solutions. For example, the Climate Literacy and Energy Awareness Network (CLEAN), a National Science Digital Library Pathway funded by NSF, has approached this integral approach by "closing the loop" between climate and energy topics, identifying and annotating high quality online resources relating to the carbon cycle and related topics. The Inspiring Climate Education Excellence (ICEE) project, funded by NASA, offers professional development for teachers that infuses climate science with solutions as an emerging "best practice" while being sensitive to the emotional, psychological and political aspects of avoiding "gloom and doom" on one hand or advocating for particular policy solutions on another. Other examples includes NASA's climate website (http://climate.nasa.gov ), which serves as a robust, engaging portal for climate research and data, especially for educators. The recent PBS series Earth: The Operators' Manual and related book and website are other recent example of how climate science research, education and solutions can be incorporated in a way that is appealing and informative. The Alliance for Climate Education (ACE) has given assemblies in thousands of US high schools that integrate climate science and solutions in a way that inspires and informs youth, and similar programs exist internationally. Other approaches to prepare vulnerable communities, especially young people, for natural hazards and human-induced environmental change include programs such as Plan International's "Child Centered Disaster Risk Reduction- Building Resilience Through Participation," and their "Weathering the Storm" project, focusing on integrating the needs of teenage girls with climate change adaptation and risk reduction. While minimizing global environmental and climate change is crucial, these and related programs that weave research with education, science with solutions offer the potential for addressing the "Grand Challenges" by better preparing for societal and environmental tipping points through a more balanced and integrated approach to addressing change."

  16. Representative Agricultural Pathways and Climate Impact Assessment for Pacific Northwest Agricultural Systems

    NASA Astrophysics Data System (ADS)

    MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.

    2013-12-01

    Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.

  17. Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments

    USGS Publications Warehouse

    Brekke, L.D.; Dettinger, M.D.; Maurer, E.P.; Anderson, M.

    2008-01-01

    Ensembles of historical climate simulations and climate projections from the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset were investigated to determine how model credibility affects apparent relative scenario likelihoods in regional risk assessments. Methods were developed and applied in a Northern California case study. An ensemble of 59 twentieth century climate simulations from 17 WCRP CMIP3 models was analyzed to evaluate relative model credibility associated with a 75-member projection ensemble from the same 17 models. Credibility was assessed based on how models realistically reproduced selected statistics of historical climate relevant to California climatology. Metrics of this credibility were used to derive relative model weights leading to weight-threshold culling of models contributing to the projection ensemble. Density functions were then estimated for two projected quantities (temperature and precipitation), with and without considering credibility-based ensemble reductions. An analysis for Northern California showed that, while some models seem more capable at recreating limited aspects twentieth century climate, the overall tendency is for comparable model performance when several credibility measures are combined. Use of these metrics to decide which models to include in density function development led to local adjustments to function shapes, but led to limited affect on breadth and central tendency, which were found to be more influenced by 'completeness' of the original ensemble in terms of models and emissions pathways. ?? 2007 Springer Science+Business Media B.V.

  18. Apache Open Climate Workbench: Building Open Source Climate Science Tools and Community at the Apache Software Foundation

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Ramirez, P.; Boustani, M.; Mattmann, C. A.; Khudikyan, S.; McGibbney, L. J.; Whitehall, K. D.

    2014-12-01

    Apache Open Climate Workbench (OCW; https://climate.apache.org/) is a Top-Level Project at the Apache Software Foundation that aims to provide a suite of tools for performing climate science evaluations using model outputs from a multitude of different sources (ESGF, CORDEX, U.S. NCA, NARCCAP) with remote sensing data from NASA, NOAA, and other agencies. Apache OCW is the second NASA project to become a Top-Level Project at the Apache Software Foundation. It grew out of the Jet Propulsion Laboratory's (JPL) Regional Climate Model Evaluation System (RCMES) project, a collaboration between JPL and the University of California, Los Angeles' Joint Institute for Regional Earth System Science and Engineering (JIFRESSE). Apache OCW provides scientists and developers with tools for data manipulation, metrics for dataset comparisons, and a visualization suite. In addition to a powerful low-level API, Apache OCW also supports a web application for quick, browser-controlled evaluations, a command line application for local evaluations, and a virtual machine for isolated experimentation with minimal setup. This talk will look at the difficulties and successes of moving a closed community research project out into the wild world of open source. We'll explore the growing pains Apache OCW went through to become a Top-Level Project at the Apache Software Foundation as well as the benefits gained by opening up development to the broader climate and computer science communities.

  19. A Synoptic Weather Typing Approach and Its application to Assess Climate Change Impacts on Extreme Weather Events at Local Scale in South-Central Canada

    NASA Astrophysics Data System (ADS)

    Shouquan Cheng, Chad; Li, Qian; Li, Guilong

    2010-05-01

    The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been successfully applied in Environment Canada for several research projects to analyze climatic change impacts on a number of extreme weather events, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the extreme weather events, (2) statistical downscaling to provide station-scale future hourly/daily climate data, and (3) projections of changes in frequency and intensity of future extreme weather events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and a number of linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into each of the three parts of the projects. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. The modeled results from these projects found that the frequency and intensity of future extreme weather events are projected to significantly increase under a changing climate in this century. This talk will introduce these research projects and outline the modeling exercise and result verification process. The major findings on future projections from the studies will be summarized in the presentation as well. One of the major conclusions from the studies is that the procedures (including synoptic weather typing) used in the studies are useful for climate change impact analysis on future extreme weather events. The implication of the significant increases in frequency and intensity of future extreme weather events would be useful to be considered when revising engineering infrastructure design standards and developing adaptation strategies and policies.

  20. Hydrological modeling as an evaluation tool of EURO-CORDEX climate projections and bias correction methods

    NASA Astrophysics Data System (ADS)

    Hakala, Kirsti; Addor, Nans; Seibert, Jan

    2017-04-01

    Streamflow stemming from Switzerland's mountainous landscape will be influenced by climate change, which will pose significant challenges to the water management and policy sector. In climate change impact research, the determination of future streamflow is impeded by different sources of uncertainty, which propagate through the model chain. In this research, we explicitly considered the following sources of uncertainty: (1) climate models, (2) downscaling of the climate projections to the catchment scale, (3) bias correction method and (4) parameterization of the hydrological model. We utilize climate projections at the 0.11 degree 12.5 km resolution from the EURO-CORDEX project, which are the most recent climate projections for the European domain. EURO-CORDEX is comprised of regional climate model (RCM) simulations, which have been downscaled from global climate models (GCMs) from the CMIP5 archive, using both dynamical and statistical techniques. Uncertainties are explored by applying a modeling chain involving 14 GCM-RCMs to ten Swiss catchments. We utilize the rainfall-runoff model HBV Light, which has been widely used in operational hydrological forecasting. The Lindström measure, a combination of model efficiency and volume error, was used as an objective function to calibrate HBV Light. Ten best sets of parameters are then achieved by calibrating using the genetic algorithm and Powell optimization (GAP) method. The GAP optimization method is based on the evolution of parameter sets, which works by selecting and recombining high performing parameter sets with each other. Once HBV is calibrated, we then perform a quantitative comparison of the influence of biases inherited from climate model simulations to the biases stemming from the hydrological model. The evaluation is conducted over two time periods: i) 1980-2009 to characterize the simulation realism under the current climate and ii) 2070-2099 to identify the magnitude of the projected change of streamflow under the climate scenarios RCP4.5 and RCP8.5. We utilize two techniques for correcting biases in the climate model output: quantile mapping and a new method, frequency bias correction. The FBC method matches the frequencies between observed and GCM-RCM data. In this way, it can be used to correct for all time scales, which is a known limitation of quantile mapping. A novel approach for the evaluation of the climate simulations and bias correction methods was then applied. Streamflow can be thought of as the "great integrator" of uncertainties. The ability, or the lack thereof, to correctly simulate streamflow is a way to assess the realism of the bias-corrected climate simulations. Long-term monthly mean as well as high and low flow metrics are used to evaluate the realism of the simulations under current climate and to gauge the impacts of climate change on streamflow. Preliminary results show that under present climate, calibration of the hydrological model comprises of a much smaller band of uncertainty in the modeling chain as compared to the bias correction of the GCM-RCMs. Therefore, for future time periods, we expect the bias correction of climate model data to have a greater influence on projected changes in streamflow than the calibration of the hydrological model.

  1. Cryospheric Research in China

    DTIC Science & Technology

    2015-03-30

    marine monitoring for environment and security, using satellite Earth observation technologies), the WCRP/CliC Project (an international cooperative...BIOME4) to simulate the responses of biome distribution to future climate change in China. The simulation results suggest that regional climate

  2. The U.S. Geological Survey Climate Geo Data Portal: an integrated broker for climate and geospatial data

    USGS Publications Warehouse

    Blodgett, David L.

    2013-01-01

    The increasing availability of downscaled climate projections and other data products that summarize or predict climate conditions, is making climate data use more common in research and management. Scientists and decisionmakers often need to construct ensembles and compare climate hindcasts and future projections for particular spatial areas. These tasks generally require an investigator to procure all datasets of interest en masse, integrate the various data formats and representations into commonly accessible and comparable formats, and then extract the subsets of the datasets that are actually of interest. This process can be challenging and time intensive due to data-transfer, -storage, and(or) -processing limits, or unfamiliarity with methods of accessing climate data. Data management for modeling and assessing the impacts of future climate conditions is also becoming increasingly expensive due to the size of the datasets. The Climate Geo Data Portal (http://cida.usgs.gov/climate/gdp/) addresses these limitations, making access to numerous climate datasets for particular areas of interest a simple and efficient task.

  3. Palaeoclimatic insights into future climate challenges.

    PubMed

    Alley, Richard B

    2003-09-15

    Palaeoclimatic data document a sensitive climate system subject to large and perhaps difficult-to-predict abrupt changes. These data suggest that neither the sensitivity nor the variability of the climate are fully captured in some climate-change projections, such as the Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers. Because larger, faster and less-expected climate changes can cause more problems for economies and ecosystems, the palaeoclimatic data suggest the hypothesis that the future may be more challenging than anticipated in ongoing policy making. Large changes have occurred repeatedly with little net forcing. Increasing carbon dioxide concentration appears to have globalized deglacial warming, with climate sensitivity near the upper end of values from general circulation models (GCMs) used to project human-enhanced greenhouse warming; data from the warm Cretaceous period suggest a similarly high climate sensitivity to CO(2). Abrupt climate changes of the most recent glacial-interglacial cycle occurred during warm as well as cold times, linked especially to changing North Atlantic freshwater fluxes. GCMs typically project greenhouse-gas-induced North Atlantic freshening and circulation changes with notable but not extreme consequences; however, such models often underestimate the magnitude, speed or extent of past changes. Targeted research to assess model uncertainties would help to test these hypotheses.

  4. Linking climate projections to performance: A yield-based decision scaling assessment of a large urban water resources system

    NASA Astrophysics Data System (ADS)

    Turner, Sean W. D.; Marlow, David; Ekström, Marie; Rhodes, Bruce G.; Kularathna, Udaya; Jeffrey, Paul J.

    2014-04-01

    Despite a decade of research into climate change impacts on water resources, the scientific community has delivered relatively few practical methodological developments for integrating uncertainty into water resources system design. This paper presents an application of the "decision scaling" methodology for assessing climate change impacts on water resources system performance and asks how such an approach might inform planning decisions. The decision scaling method reverses the conventional ethos of climate impact assessment by first establishing the climate conditions that would compel planners to intervene. Climate model projections are introduced at the end of the process to characterize climate risk in such a way that avoids the process of propagating those projections through hydrological models. Here we simulated 1000 multisite synthetic monthly streamflow traces in a model of the Melbourne bulk supply system to test the sensitivity of system performance to variations in streamflow statistics. An empirical relation was derived to convert decision-critical flow statistics to climatic units, against which 138 alternative climate projections were plotted and compared. We defined the decision threshold in terms of a system yield metric constrained by multiple performance criteria. Our approach allows for fast and simple incorporation of demand forecast uncertainty and demonstrates the reach of the decision scaling method through successful execution in a large and complex water resources system. Scope for wider application in urban water resources planning is discussed.

  5. Learning Climate and Work Group Skills in Care Work

    ERIC Educational Resources Information Center

    Westerberg, Kristina; Hauer, Esther

    2009-01-01

    Purpose: The overall aim of the present study was to investigate the learning climate and work group skills perceived by managers and their subordinates in the municipal elderly care, prior to a development project. The specific research questions were: Are managers' and their subordinates' perceptions of the learning climate related? and Does the…

  6. Does climatic variability influence agricultural land prices under differing uses? The Texas High Plains case

    USDA-ARS?s Scientific Manuscript database

    The Texas High Plains faces projections of increasing temperature and declining precipitation in the future on account of its semi-arid climate. This research evaluated the impact of climatic variability on agricultural land prices under different land uses in the Texas High Plains, employing the Ri...

  7. Geothermal Energy | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    Geothermal Energy Geothermal Energy Research campuses can take advantage of geothermal resources sections that describe how examining geothermal energy may fit into your climate action plans. Campus Options Considerations Sample Project Related Links Campus Geothermal Energy Options Campuses can use

  8. Projecting demographic responses to climate change: adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population

    USGS Publications Warehouse

    Dybala, Kristen E.; Eadie, John M.; Gardali, Thomas; Seavy, Nathaniel E.; Herzog, Mark P.

    2013-01-01

    Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long-term mark-recapture data set, we examined the influence of multiple direct and indirect effects of weather on adult and juvenile survival for a population of Song Sparrows (Melospiza melodia) in California. We found evidence for a positive, direct effect of winter temperature on adult survival, and a positive, indirect effect of prior rainy season precipitation on juvenile survival, which was consistent with an effect of precipitation on food availability during the breeding season. We used these relationships, and climate projections of significantly warmer and slightly drier winter weather by the year 2100, to project a significant increase in mean adult survival (12-17%) and a slight decrease in mean juvenile survival (4-6%) under the B1 and A2 climate change scenarios. Together with results from previous studies on seasonal fecundity and postfledging survival in this population, we integrated these results in a population model and projected increases in the population growth rate under both climate change scenarios. Our results underscore the importance of considering multiple, direct, and indirect effects of weather throughout the annual cycle, as well as differences in the responses of each life stage to climate change. Projecting demographic responses to climate change can identify not only how populations will be affected by climate change but also indicate the demographic process(es) and specific mechanisms that may be responsible. This information can, in turn, inform climate change adaptation plans, help prioritize future research, and identify where limited conservation resources will be most effectively and efficiently spent.

  9. Producing custom regional climate data sets for impact assessment with xarray

    NASA Astrophysics Data System (ADS)

    Simcock, J. G.; Delgado, M.; Greenstone, M.; Hsiang, S. M.; Kopp, R. E.; Carleton, T.; Hultgren, A.; Jina, A.; Nath, I.; Rising, J. A.; Rode, A.; Yuan, J.; Chong, T.; Dobbels, G.; Hussain, A.; Song, Y.; Wang, J.; Mohan, S.; Larsen, K.; Houser, T.

    2017-12-01

    Research in the field of climate impact assessment and valuation frequently requires the pairing of economic observations with historical or projected weather variables. Impact assessments with large geographic scope or spatially aggregated data frequently require climate variables to be prepared for use with administrative/political regions, economic districts such as utility service areas, physical regions such as watersheds, or other larger, non-gridded shapes. Approaches to preparing such data in the literature vary from methods developed out of convenience to more complex measures intended to account for spatial heterogeneity. But more sophisticated methods are difficult to implement, from both a theoretical and a technical standpoint. We present a new python package designed to assist researchers in the preparation of historical and projected climate data for arbitrary spatial definitions. Users specify transformations by providing (a) sets of regions in the form of shapefiles, (b) gridded data to be transformed, and, optionally, (c) gridded weights to use in the transformation. By default, aggregation to regions is conducted such that the resulting regional data draws from each grid cell according to the cell's share of total region area. However, researchers can provide alternative weighting schemes, such that the regional data is weighted by, for example, the population or planted agricultural area within each cell. An advantage of this method is that it enables easy preparation of nonlinear transformations of the climate data before aggregation to regions, allowing aggregated variables to more accurately capture the spatial heterogeneity within a region in the transformed data. At this session, we will allow attendees to view transformed climate projections, examining the effect of various weighting schemes and nonlinear transformations on aggregate regional values, highlighting the implications for climate impact assessment work.

  10. National Centers for Environmental Prediction

    Science.gov Websites

    Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar projects. Starting a Monsoon Mission experiment or research project? Let us know so we can add it to our Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court

  11. Climate change, tropospheric ozone and particulate matter, and health impacts.

    PubMed

    Ebi, Kristie; McGregor, Glenn

    2009-01-01

    We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health, as well as studies projecting the impacts of climate change on air quality and the impacts of these changes on morbidity/mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty are the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given the uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, increasing morbidity/mortality. There are few projections for low- and middle-income countries. The evidence is less robust for PM, because few studies have been conducted. More research is needed to better understand the possible impacts of climate change on air pollution-related health impacts.

  12. Projected increases in the annual flood pulse of the Western Amazon

    NASA Astrophysics Data System (ADS)

    Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Véliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William

    2016-01-01

    The impact of a changing climate on the Amazon basin is a subject of intensive research because of its rich biodiversity and the significant role of rainforests in carbon cycling. Climate change has also a direct hydrological impact, and increasing efforts have focused on understanding the hydrological dynamics at continental and subregional scales, such as the Western Amazon. New projections from the Coupled Model Inter-comparison Project Phase 5 ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the upper Amazon river. Using extreme value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 yr. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100 yr return floods). These findings agree with previously projected increases in high extremes under the Special Report on Emissions Scenarios climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amidst a growing literature that more strongly emphasises future droughts and their impact on the viability of the rainforest system over greater Amazonia.

  13. Climate Projection Data base for Roads - CliPDaR: Design a guideline for a transnational database of downscaled climate projection data for road impact models - within the Conference's of European Directors of Roads (CEDR) TRANSNATIONAL ROAD RESEARCH PROG

    NASA Astrophysics Data System (ADS)

    Matulla, Christoph; Namyslo, Joachim; Fuchs, Tobias; Türk, Konrad

    2013-04-01

    The European road sector is vulnerable to extreme weather phenomena, which can cause large socio-economic losses. Almost every year there occur several weather triggered events (like heavy precipitation, floods, landslides, high winds, snow and ice, heat or cold waves, etc.), that disrupt transportation, knock out power lines, cut off populated regions from the outside and so on. So, in order to avoid imbalances in the supply of vital goods to people as well as to prevent negative impacts on health and life of people travelling by car it is essential to know present and future threats to roads. Climate change might increase future threats to roads. CliPDaR focuses on parts of the European road network and contributes, based on the current body of knowledge, to the establishment of guidelines helping to decide which methods and scenarios to apply for the estimation of future climate change based challenges in the field of road maintenance. Based on regional scale climate change projections specific road-impact models are applied in order to support protection measures. In recent years, it has been recognised that it is essential to assess the uncertainty and reliability of given climate projections by using ensemble approaches and downscaling methods. A huge amount of scientific work has been done to evaluate these approaches with regard to reliability and usefulness for investigations on possible impacts of climate changes. CliPDaR is going to collect the existing approaches and methodologies in European countries, discuss their differences and - in close cooperation with the road owners - develops a common line on future applications of climate projection data to road impact models. As such, the project will focus on reviewing and assessing existing regional climate change projections regarding transnational highway transport needs. The final project report will include recommendations how the findings of CliPDaR may support the decision processes of European national road administrations regarding possible future climate change impacts. First project results are presented at the conference.

  14. Dependence of future mortality changes on global CO2 concentrations: A review.

    PubMed

    Lee, Jae Young; Choi, Hayoung; Kim, Ho

    2018-05-01

    The heterogeneity among previous studies of future mortality projections due to climate change has often hindered comparisons and syntheses of resulting impacts. To address this challenge, the present study introduced a novel method to normalize the results from projection studies according to different baseline and projection periods and climate scenarios, thereby facilitating comparison and synthesis. This study reviewed the 15 previous studies involving projected climate change-related mortality under Representative Concentration Pathways. To synthesize their results, we first reviewed the important study design elements that affected the reported results in previous studies. Then, we normalized the reported results by CO 2 concentration in order to eliminate the effects of the baseline period, projection period, and climate scenario choices. For twenty-five locations worldwide, the normalized percentage changes in temperature-attributable mortality per 100 ppm increase in global CO 2 concentrations ranged between 41.9% and 330%, whereas those of total mortality ranged between 0.3% and 4.8%. The normalization methods presented in this work will guide future studies to provide their results in a normalized format and facilitate research synthesis to reinforce our understanding on the risk of climate change. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Climate and Health Vulnerability to Vector-Borne Diseases: Increasing Resilience under Climate Change Conditions in Africa

    NASA Astrophysics Data System (ADS)

    Ceccato, P.

    2015-12-01

    The International Research Institute for Climate and Society (IRI), the City University of New York (CUNY) and NASA Jet Propulsion Laboratory (JPL) in collaboration with NASA SERVIR are developing tools to monitor climate variables (precipitation, temperature, vegetation, water bodies, inundation) that help projects in Africa to increase resilience to climate change for vector-borne diseases ( malaria, trypanosomiasis, leishmaniasis, and schistosomiasis). Through the development of new products to monitor precipitation, water bodies and inundation, IRI, CUNY and JPL provide tools and capacity building to research communities; ministries of health; the WMO Global Framework for Climate and Services; and World Health Organization in Africa to: 1) Develop research teams' ability to appropriately use climate data as part of their research 2) Enable research teams and ministries to integrate climate information into social and economic drivers of vulnerability and opportunities for adaptation to climate change 3) Inform better policies and programs for climate change adaptation. This oral presentation will demonstrate how IRI, CUNY, and JPL developed new products, tools and capacity building to achieve the three objectives mentioned above with examples in South Africa, Zimbabwe, Tanzania and Malawi.

  16. Climate research, citizen science and art in Bangladesh

    NASA Astrophysics Data System (ADS)

    Stiller-Reeve, Mathew; Naznin, Zakia; Blanchard, Anne; Bremer, Scott

    2017-04-01

    Our research project focuses on climate information for adaptation in the northeast region of Bangladesh. In this project, we work closely with local rural communities. Since these local people are carrying out citizen science together, then a sense of community and good team spirit are essential for success. We collaborated with a Bangladeshi artist to achieve some important goals. Not only did we want to create new and exciting outreach materials, we -more importantly- wanted to see how the artistic process could nurture a sense of community for the local participants. Despite being limited by time, we saw some promising outcomes from the collaboration. The artist successfully interacted with the project researchers and the local participants. The final artwork was a real collaboration between the artist and the participants whom felt pride and ownership in the results.

  17. Evaluation of authentic science projects on climate change in secondary schools: a focus on gender differences

    NASA Astrophysics Data System (ADS)

    Dijkstra, Elma; Goedhart, Martin

    2011-07-01

    Background and purpose This study examines secondary-school students' opinions on participating in authentic science projects which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects, in which students work with and learn from scientists about the global carbon cycle. This study focuses in particular on differences between male and female students, as female students normally like traditional school science less than male students. Sample and design Data, drawn from 1370 students from 60 secondary schools across Europe, were collected through questionnaires taken at the end of the projects. The evaluated aspects were: organization; enjoyment; difficulty; and impact of the projects. Results The findings suggest that authentic science education is appreciated very much by both male students and even more by female students. The projects had positive impacts on climate change ideas, in particular for female students. Female students felt that they had learned many new things more often than male students. Conclusions Both male and female students have positive opinions about the authentic science projects. The results further point to positive effects of activities in which students have an active role, like hands-on experiments or presentation of results. The findings are placed in the international context of science education and their implications for policy are discussed.

  18. Adaptive silviculture for climate change: a national experiment in manager-scientist partnerships to apply an adaptation framework

    Treesearch

    Linda M. ​Nagel; Brian J. Palik; Michael A. Battaglia; Anthony W. D' Amato; James M. Guldin; Chris Swanston; Maria K. Janowiak; Matthew P. Powers; Linda A. Joyce; Constance I. Millar; David L. Peterson; Lisa M. Ganio; Chad Kirschbaum; Molly R. Roske

    2017-01-01

    Forest managers in the United States must respond to the need for climate-adaptive strategies in the face of observed and projected climatic changes. However, there is a lack of on-the-ground forest adaptation research to indicate what adaptation measures or tactics might be effective in preparing forest ecosystems to deal with climate change. Natural resource managers...

  19. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonowski, Christiane

    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project demonstrate significant advances in all six research areas. The major conclusions are that statically-adaptive variable-resolution modeling is currently becoming mature in the climate sciences, and that AMR holds outstanding promise for future-generation weather and climate models on high-performance computing architectures.« less

  20. Performance of concrete joint sealants in hot climates

    DOT National Transportation Integrated Search

    1987-11-01

    A research project was initiated in 1979 on project IR-17-1(126) to compare and evaluate several joint sealants. In 1982 another test section on project F 028-1-506 was established to evaluate several other sealants. This report documents the placeme...

  1. Improving the Accuracy of Estimation of Climate Extremes

    NASA Astrophysics Data System (ADS)

    Zolina, Olga; Detemmerman, Valery; Trenberth, Kevin E.

    2010-12-01

    Workshop on Metrics and Methodologies of Estimation of Extreme Climate Events; Paris, France, 27-29 September 2010; Climate projections point toward more frequent and intense weather and climate extremes such as heat waves, droughts, and floods, in a warmer climate. These projections, together with recent extreme climate events, including flooding in Pakistan and the heat wave and wildfires in Russia, highlight the need for improved risk assessments to help decision makers and the public. But accurate analysis and prediction of risk of extreme climate events require new methodologies and information from diverse disciplines. A recent workshop sponsored by the World Climate Research Programme (WCRP) and hosted at United Nations Educational, Scientific and Cultural Organization (UNESCO) headquarters in France brought together, for the first time, a unique mix of climatologists, statisticians, meteorologists, oceanographers, social scientists, and risk managers (such as those from insurance companies) who sought ways to improve scientists' ability to characterize and predict climate extremes in a changing climate.

  2. Final Technical Report for Collaborative Research: Developing and Implementing Ocean-Atmosphere Reanalyses for Climate Applications (OARCA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compo, Gilbert P

    As an important step toward a coupled data assimilation system for generating reanalysis fields needed to assess climate model projections, the Ocean Atmosphere Coupled Reanalysis for Climate Applications (OARCA) project assesses and improves the longest reanalyses currently available of the atmosphere and ocean: the 20th Century Reanalysis Project (20CR) and the Simple Ocean Data Assimilation with sparse observational input (SODAsi) system, respectively. In this project, we make off-line but coordinated improvements in the 20CR and SODAsi datasets, with improvements in one feeding into improvements of the other through an iterative generation of new versions. These datasets now span from themore » 19th to 21st centuries. We then study the extreme weather and variability from days to decades of the resulting datasets. A total of 24 publications have been produced in this project.« less

  3. Precipitation Variability and Projection Uncertainties in Climate Change Adaptation: Go Local!

    EPA Science Inventory

    Presentations agenda includes: Regional and local climate change effects: The relevance; Variability and uncertainty in decision- making and adaptation approaches; Adaptation attributes for the U.S. Southwest: Water availability, storage capacity, and related; EPA research...

  4. Climate and dengue transmission: evidence and implications.

    PubMed

    Morin, Cory W; Comrie, Andrew C; Ernst, Kacey

    2013-01-01

    Climate influences dengue ecology by affecting vector dynamics, agent development, and mosquito/human interactions. Although these relationships are known, the impact climate change will have on transmission is unclear. Climate-driven statistical and process-based models are being used to refine our knowledge of these relationships and predict the effects of projected climate change on dengue fever occurrence, but results have been inconsistent. We sought to identify major climatic influences on dengue virus ecology and to evaluate the ability of climate-based dengue models to describe associations between climate and dengue, simulate outbreaks, and project the impacts of climate change. We reviewed the evidence for direct and indirect relationships between climate and dengue generated from laboratory studies, field studies, and statistical analyses of associations between vectors, dengue fever incidence, and climate conditions. We assessed the potential contribution of climate-driven, process-based dengue models and provide suggestions to improve their performance. Relationships between climate variables and factors that influence dengue transmission are complex. A climate variable may increase dengue transmission potential through one aspect of the system while simultaneously decreasing transmission potential through another. This complexity may at least partly explain inconsistencies in statistical associations between dengue and climate. Process-based models can account for the complex dynamics but often omit important aspects of dengue ecology, notably virus development and host-species interactions. Synthesizing and applying current knowledge of climatic effects on all aspects of dengue virus ecology will help direct future research and enable better projections of climate change effects on dengue incidence.

  5. Evaluation of Historical and Projected Agricultural Climate Risk Over the Continental US

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Troy, T. J.; Devineni, N.

    2016-12-01

    Food demands are rising due to an increasing population with changing food preferences, which places pressure on agricultural systems. In addition, in the past decade climate extremes have highlighted the vulnerability of our agricultural production to climate variability. Quantitative analyses in the climate-agriculture research field have been performed in many studies. However, climate risk still remains difficult to evaluate at large scales yet shows great potential of help us better understand historical climate change impacts and evaluate the future risk given climate projections. In this study, we developed a framework to evaluate climate risk quantitatively by applying statistical methods such as Bayesian regression, distribution fitting, and Monte Carlo simulation. We applied the framework over different climate regions in the continental US both historically and for modeled climate projections. The relative importance of any major growing season climate index, such as maximum dry period or heavy precipitation, was evaluated to determine what climate indices play a role in affecting crop yields. The statistical modeling framework was applied using county yields, with irrigated and rainfed yields separated to evaluate the different risk. This framework provides estimates of the climate risk facing agricultural production in the near-term that account for the full uncertainty of climate occurrences, range of crop response, and spatial correlation in climate. In particular, the method provides robust estimates of importance of irrigation in mitigating agricultural climate risk. The results of this study can contribute to decision making about crop choice and water use in an uncertain climate.

  6. Climate Change, Tropospheric Ozone and Particulate Matter, and Health Impacts

    PubMed Central

    Ebi, Kristie L.; McGregor, Glenn

    2008-01-01

    Objective Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. Data sources We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Data synthesis Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Conclusions Additional research is needed to better understand the possible impacts of climate change on air pollution–related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations. PMID:19057695

  7. Predicting the Impacts of Climate Change on Runoff and Sediment Processes in Agricultural Watersheds: A Case Study from the Sunflower Watershed in the Lower Mississippi Basin

    NASA Astrophysics Data System (ADS)

    Elkadiri, R.; Momm, H.; Yasarer, L.; Armour, G. L.

    2017-12-01

    Climatic conditions play a major role in physical processes impacting soil and agrochemicals detachment and transportation from/in agricultural watersheds. In addition, these climatic conditions are projected to significantly vary spatially and temporally in the 21st century, leading to vast uncertainties about the future of sediment and non-point source pollution transport in agricultural watersheds. In this study, we selected the sunflower basin in the lower Mississippi River basin, USA to contribute in the understanding of how climate change affects watershed processes and the transport of pollutant loads. The climate projections used in this study were retrieved from the archive of World Climate Research Programme's (WCRP) Coupled Model Intercomparison Phase 5 (CMIP5) project. The CMIP5 dataset was selected because it contains the most up-to-date spatially downscaled and bias corrected climate projections. A subset of ten GCMs representing a range in projected climate were spatially downscaled for the sunflower watershed. Statistics derived from downscaled GCM output representing the 2011-2040, 2041-2070 and 2071-2100 time periods were used to generate maximum/minimum temperature and precipitation on a daily time step using the USDA Synthetic Weather Generator, SYNTOR. These downscaled climate data were then utilized as inputs to run in the Annualized Agricultural Non-Point Source (AnnAGNPS) pollution watershed model to estimate time series of runoff, sediment, and nutrient loads produced from the watershed. For baseline conditions a validated simulation of the watershed was created and validated using historical data from 2000 until 2015.

  8. Women Reaching Women: A Story of Change. The Role of Narrative in Building Trust and Commitment during an Action Research Project

    ERIC Educational Resources Information Center

    Langley, Dawn

    2012-01-01

    Women Reaching Women was a three-year action research project aimed at raising awareness of world poverty, gender inequality and climate change. The project brought together the National Federation of Women's Institutes, Oxfam, the Everyone Foundation and a unique group of 28 women drawn from Women's Institutes across the country. The project…

  9. Undergraduate Students As Effective Climate Change Communicators

    NASA Astrophysics Data System (ADS)

    Sharif, H. O.; Joseph, J.; Mullendore, G. L.

    2014-12-01

    The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. The program is in its third year. More than 75 students participated in a guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Three Colleges were involved in the program: Engineering, Education, and Science.

  10. Linking research, education and public engagement in geoscience: Leadership and strategic partnerships (invited)

    NASA Astrophysics Data System (ADS)

    Harcourt, P.

    2017-12-01

    Addressing the urgent issue of climate change requires mitigation and adaptation actions on individual to global scales, and appropriate action must be based upon geoscience literacy across population sectors. The NSF-funded MADE CLEAR (Maryland and Delaware Climate Change Education, Assessment, and Research) project provides a coordinated approach to embed climate change into education programs at the university level, in formal K12 classrooms, and among informal educators. We have worked with state agencies, university systems, non-profit organizations, and community groups to establish and support research-based education about climate change. In this panel I will describe how MADE CLEAR approached the task of infusing climate change education across sectors in the highly diverse states of Delaware and Maryland. I will share the characteristics of our strongest alliances, an analysis of significant barriers to climate change education, and our perspective on the outlook for the future of climate change education.

  11. Regional climate response collaboratives: Multi-institutional support for climate resilience

    USGS Publications Warehouse

    Averyt, Kristen; Derner, Justin D.; Dilling, Lisa; Guerrero, Rafael; Joyce, Linda A.; McNeeley, Shannon; McNie, Elizabeth; Morisette, Jeffrey T.; Ojima, Dennis; O'Malley, Robin; Peck, Dannele; Ray, Andrea J.; Reeves, Matt; Travis, William

    2018-01-01

    Federal investments by U.S. agencies to enhance climate resilience at regional scales grew over the past decade (2010s). To maximize efficiency and effectiveness in serving multiple sectors and scales, it has become critical to leverage existing agency-specific research, infrastructure, and capacity while avoiding redundancy. We discuss lessons learned from a multi-institutional “regional climate response collaborative” that comprises three different federally-supported climate service entities in the Rocky Mountain west and northern plains region. These lessons include leveraging different strengths of each partner, creating deliberate mechanisms to increase cross-entity communication and joint ownership of projects, and placing a common priority on stakeholder-relevant research and outcomes. We share the conditions that fostered successful collaboration, which can be transferred elsewhere, and suggest mechanisms for overcoming potential barriers. Synergies are essential for producing actionable research that informs climate-related decisions for stakeholders and ultimately enhances climate resilience at regional scales.

  12. Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Sriharan, S.; Fan, C.

    2014-12-01

    As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.

  13. Influences of Regional Climate Change on Air Quality Across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Nolte, Christopher; Otte, Tanya; Pinder, Robert; Bowden, J.; Herwehe, J.; Faluvegi, Gregory; Shindell, Drew

    2013-01-01

    Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture regional-scale changes in temperatures and precipitation. We use a regional climate model (RCM) to dynamically downscale the GCM's large-scale signal to investigate the changes in regional and local extremes of temperature and precipitation that may result from a changing climate. In this paper, we show preliminary results from downscaling the NASA/GISS ModelE IPCC AR5 Representative Concentration Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF) model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035) and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0. The regional climate change scenario is further processed using the Community Multiscale Air Quality modeling system to explore influences of regional climate change on air quality.

  14. The MeteoMet2 project—highlights and results

    NASA Astrophysics Data System (ADS)

    Merlone, A.; Sanna, F.; Beges, G.; Bell, S.; Beltramino, G.; Bojkovski, J.; Brunet, M.; del Campo, D.; Castrillo, A.; Chiodo, N.; Colli, M.; Coppa, G.; Cuccaro, R.; Dobre, M.; Drnovsek, J.; Ebert, V.; Fernicola, V.; Garcia-Benadí, A.; Garcia-Izquierdo, C.; Gardiner, T.; Georgin, E.; Gonzalez, A.; Groselj, D.; Heinonen, M.; Hernandez, S.; Högström, R.; Hudoklin, D.; Kalemci, M.; Kowal, A.; Lanza, L.; Miao, P.; Musacchio, C.; Nielsen, J.; Nogueras-Cervera, M.; Oguz Aytekin, S.; Pavlasek, P.; de Podesta, M.; Rasmussen, M. K.; del-Río-Fernández, J.; Rosso, L.; Sairanen, H.; Salminen, J.; Sestan, D.; Šindelářová, L.; Smorgon, D.; Sparasci, F.; Strnad, R.; Underwood, R.; Uytun, A.; Voldan, M.

    2018-02-01

    Launched in 2011 within the European Metrology Research Programme (EMRP) of EURAMET, the joint research project ‘MeteoMet’—Metrology for Meteorology—is the largest EMRP consortium; national metrology institutes, universities, meteorological and climate agencies, research institutes, collaborators and manufacturers are working together, developing new metrological techniques, as well as improving existing ones, for use in meteorological observations and climate records. The project focuses on humidity in the upper and surface atmosphere, air temperature, surface and deep-sea temperatures, soil moisture, salinity, permafrost temperature, precipitation, and the snow albedo effect on air temperature. All tasks are performed using a rigorous metrological approach and include the design and study of new sensors, new calibration facilities, the investigation of sensor characteristics, improved techniques for measurements of essential climate variables with uncertainty evaluation, traceability, laboratory proficiency and the inclusion of field influencing parameters, long-lasting measurements, and campaigns in remote and extreme areas. The vision for MeteoMet is to take a step further towards establishing full data comparability, coherency, consistency, and long-term continuity, through a comprehensive evaluation of the measurement uncertainties for the quantities involved in the global climate observing systems and the derived observations. The improvement in quality of essential climate variables records, through the inclusion of measurement uncertainty budgets, will also highlight possible strategies for the reduction of the uncertainty. This contribution presents selected highlights of the MeteoMet project and reviews the main ongoing activities, tasks and deliverables, with a view to its possible future evolution and extended impact.

  15. Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.

    2015-01-01

    NASA's Clouds and the Earth's Radiant Energy System (CERES) project integrates CERES, Moderate Resolution Imaging Spectroradiometer (MODIS), and geostationary satellite observations to provide top-of-atmosphere (TOA) irradiances derived from broadband radiance observations by CERES instruments. It also uses snow cover and sea ice extent retrieved from microwave instruments as well as thermodynamic variables from reanalysis. In addition, these variables are used for surface and atmospheric irradiance computations. The CERES project provides TOA, surface, and atmospheric irradiances in various spatial and temporal resolutions. These data sets are for climate research and evaluation of climate models. Long-term observations are required to understand how the Earth system responds to radiative forcing. A simple model is used to estimate the time to detect trends in TOA reflected shortwave and emitted longwave irradiances.

  16. Projecting Future Water Levels of the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Bennington, V.; Notaro, M.; Holman, K.

    2013-12-01

    The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.

  17. An evidence-based public health approach to climate change adaptation.

    PubMed

    Hess, Jeremy J; Eidson, Millicent; Tlumak, Jennifer E; Raab, Kristin K; Luber, George

    2014-11-01

    Public health is committed to evidence-based practice, yet there has been minimal discussion of how to apply an evidence-based practice framework to climate change adaptation. Our goal was to review the literature on evidence-based public health (EBPH), to determine whether it can be applied to climate change adaptation, and to consider how emphasizing evidence-based practice may influence research and practice decisions related to public health adaptation to climate change. We conducted a substantive review of EBPH, identified a consensus EBPH framework, and modified it to support an EBPH approach to climate change adaptation. We applied the framework to an example and considered implications for stakeholders. A modified EBPH framework can accommodate the wide range of exposures, outcomes, and modes of inquiry associated with climate change adaptation and the variety of settings in which adaptation activities will be pursued. Several factors currently limit application of the framework, including a lack of higher-level evidence of intervention efficacy and a lack of guidelines for reporting climate change health impact projections. To enhance the evidence base, there must be increased attention to designing, evaluating, and reporting adaptation interventions; standardized health impact projection reporting; and increased attention to knowledge translation. This approach has implications for funders, researchers, journal editors, practitioners, and policy makers. The current approach to EBPH can, with modifications, support climate change adaptation activities, but there is little evidence regarding interventions and knowledge translation, and guidelines for projecting health impacts are lacking. Realizing the goal of an evidence-based approach will require systematic, coordinated efforts among various stakeholders.

  18. Improving modelled impacts on the flowering of temperate fruit trees in the Iberian Peninsula of climate change projections for 21st century

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, Margarita; Pérez-Lopez, David; Sánchez-Sánchez, Enrique; Centeno, Ana; Dosio, Alessandro; Lopez-de-la-Franca, Noelia

    2013-04-01

    Flowering of temperate trees needs winter chilling, being the specific requirements dependent on the variety. This work studied the trend and changes of values of chilling hours for some representative agricultural locations in Spain for the last three decades and their projected changes under climate change scenarios. According to our previous results (Pérez-López et al., 2012), areas traditionally producing fruit as the Ebro (NE of Spain) or Guadalquivir (SO) valleys, Murcia (SE) and Extremadura (SO) could have a major cold reduction of chill-hours. This would drive a change of varieties or species and may enhance the use of chemicals to complete the needs of chill hours for flowering. However, these results showed high uncertainty, partly due to the bias of the climate data used, generated by Regional Climate Models. The chilling hours were calculated with different methods according to the species considered: North Carolina method (Shaltout and Unrath, 1983) was used for apples, Utah method (Richardson et al. 1974) for peach and grapevine and the approach used by De Melo-Abreu et al. (2004) for olive trees. The climate data used as inputs were the results of numerical simulations obtained from a group of regional climate models at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/) first bias corrected for temperatures and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012). This work aims to improve the impact projections obtained in Pérez-López et al. (2012). For this purpose, variation of chill-hours between 2nd half of 20th century and 1st half of 21st century at the study locations were recalculated considering 1) a feedback in the dates in which the chilling hours are calculated, to take into account the shift of phenological dates, and 2) substituting the original ENSEMBLES data set of climate used in Pérez-López et al. (2012) by the bias corrected data set. Calculations for the 2nd half of 20th century will be used to evaluate the quality of the new data set of projections. Acknowledgements This research has been funded by project PEII10-0248-5680 from Junta de Comunidades de Castilla-La Mancha, Spain. References De Melo-Abreu, J. P. Barranco D. Cordeiro, A. M. Tous, J. Rogado, B. M. Villalobos, F. J. 2004. Modelling olive flowering date using chilling for dormancy release and thermal time. Agricultural and Forest Meteorology, 125: 117-127. Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate . Journal of Geophysical Research, VOL. 116, D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research, Volume 117, D17, doi: 10.1029/2012JD017968 Herrera et. al. (2012) Development and Analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain02). International Journal of Climatology 32:74-85 DOI: 10.1002/joc.2256. Pérez-López; D., Ruiz-Ramos, M., Sánchez-Sánchez. E., Centeno A., Prieto-Egido, I., and López-de-la-Franca, N., 2012. Influence of climate change on the flowering of temperate fruit trees. Geophysical Research Abstracts Vol. 14, EGU2012-5774, EGU General Assembly 2012. Richardson, E.A. Seeley, S.D. Walker, D.R. 1974. A model for estimating the completion of rest for 'Redhaven' and 'Elberta' peach trees. HortScience, 9: 331-332. Shaltout, A.D. Unrath, C. r. 1983. Rest completion prediction model for 'Starkrimson Delicious' apples. J. Amer. Soc. Hort. Sci., 108: 957-961.

  19. Climate Mitigation in Latin America: Implications for Energy and Land Use: Preface to the Special Section on the findings of the CLIMACAP-LAMP Project

    DOE PAGES

    van der Zwaan, Bob; Calvin, Katherine V.; Clarke, Leon E.

    2016-05-01

    The CLIMACAP-LAMP project, completed in December 2015, was an inter-model comparison exercise that focused on energy and climate change economics issues in Latin America. The project partners – co-financed by the EC / EuropeAid (CLIMACAP part) and EPA / USAID (LAMP part) and co-coordinated by respectively the Energy research Centre of the Netherlands (ECN) and the Pacific Northwest National Laboratory (PNNL) – report their main and detailed findings in this Special Issue of Energy Economics, exclusively dedicated to climate mitigation, low-carbon development and implications for energy and land use in Latin America. Our research endeavor included several of the mostmore » prominent regional energy modeling groups from Latin America, as well as a representative set of global integrated assessment modeling groups from a number of institutions from Europe and the US. About two dozen universities, research groups and environmental or consulting organizations took part in the CLIMACAP-LAMP cross-model comparison project, from both sides of the Atlantic. Over a handful of workshops were organized over the past four years in several countries in Latin America, attended by between 30 and 50 participants from, amongst others, Argentina, Brazil, Colombia, Mexico, the EU, and the US.« less

  20. The Relationship Between School Climate and Implementation of an Innovation in Elementary Schools.

    ERIC Educational Resources Information Center

    Young, I. Phillip; Kasten, Katherine

    As part of a larger project on studies of implementation, specifically of Individually Guided Education (IGE), this paper describes the preliminary results of research on school climate, an important factor in retarding or promoting change. A review of the literature on school climate includes a description of Likert and Likert's Profile of a…

  1. Assessing Climate Literacy Content in Higher Education Science Courses: Distribution, Challenges, and Needs

    ERIC Educational Resources Information Center

    Veron, Dana E.; Marbach-Ad, Gili; Wolfson, Jane; Ozbay, Gulnihal

    2016-01-01

    The study described in this article is part of the Maryland and Delaware Climate Change Education Assessment and Research (MADE CLEAR) project, which aims to improve climate literacy in the K-16 population through systemic, sustainable change in teacher preparation. The authors surveyed faculty members at four higher education institutions to…

  2. Assessing the Vulnerability of Older Americans to Climate Change

    EPA Science Inventory

    This project is comprised of a series of activities – listening sessions, literature reviews, and an expert elicitation research agenda-setting workshop – designed to examine and characterize the vulnerability of older adults to climate change and opportunities for adaptation. ...

  3. Using diverse expertise to advance climate change fisheries science

    EPA Science Inventory

    As climate change continues to impact New England's coastal ecosystems and their related fisheries, the need for measuring, projecting, interpreting, and applying those impacts for adaptive management is expanding. In New England, different types of formal and informal research e...

  4. The Impact of Climate Projection Method on the Analysis of Climate Change in Semi-arid Basins

    NASA Astrophysics Data System (ADS)

    Halper, E.; Shamir, E.

    2016-12-01

    In small basins with arid climates, rainfall characteristics are highly variable and stream flow is tightly coupled with the nuances of rainfall events (e.g. hourly precipitation patterns Climate change assessments in these basins typically employ CMIP5 projections downscaled with Bias Corrected Statistical Downscaling and Bias Correction/Constructed Analogs (BCSD-BCCA) methods, but these products have drawbacks. Specifically, BCSD-BCCA these projections do not explicitly account for localized physical precipitation mechanisms (e.g. monsoon and snowfall) that are essential to many hydrological systems in the U. S. Southwest. An investigation of the impact of different types of precipitation projections for two kinds of hydrologic studies is being conducted under the U.S. Bureau of Reclamation's Science and Technology Grant Program. An innovative modeling framework consisting of a weather generator of likely hourly precipitation scenarios, coupled with rainfall-runoff, river routing and groundwater models, has been developed in the Nogales, Arizona area. This framework can simulate the impact of future climate on municipal water operations. This framework allows the rigorous comparison of the BCSD-BCCA methods with alternative approaches including rainfall output from dynamical downscaled Regional Climate Models (RCM), a stochastic rainfall generator forced by either Global Climate Models (GCM) or RCM, and projections using historical records conditioned on either GCM or RCM. The results will provide guide for the use of climate change projections into hydrologic studies of semi-arid areas. The project extends this comparison to analyses of flood control. Large flows on the Bill Williams River are a concern for the operation of dams along the Lower Colorado River. After adapting the weather generator for this region, we will evaluate the model performance for rainfall and stream flow, with emphasis on statistical features important to the specific needs of flood management. The end product of the research is to develop a test to guide selection of a precipitation projection method (including downscaling procedure) for a given region and objective.

  5. Is "the perfect model" really needed? - Analysis of the quality level of climate information necessary for supporting adaptation in agriculture and forestry

    NASA Astrophysics Data System (ADS)

    Gálos, Borbála; Ostler, Wolf-Uwe; Csáki, Péter; Bidló, András; Panferov, Oleg

    2016-04-01

    Recent results of climate science (e.g. IPCC AR5, 2013) and statements of climate policy (e.g. Paris Agreement) confirm that climate change is an ongoing issue. The consequences will be noticeable for a long time even if the 2 Degree goal is reached. Therefore, action plans are necessary for adaptation and mitigation on national and international level. Forestry and agriculture are especially threatened by the probable increase of the frequency and/or intensity of climate extremes. Severe impacts of recurrent droughts/heat waves that were observed in the last decades in the sensitive and vulnerable ecosystems and regions are very likely to occur with increasing probability throughout the 21st century. For the adequate climate impact assessments, for adaptation strategies as well as for supporting decisions in the above mentioned sectors the reliable information on the long-term climate tendencies and on ecosystem responses are required. Here are the two major problems: on the one hand the information on current climate and future climate developments are highly uncertain. On the other hand, due to limited knowledge on ecosystem responses, it is difficult to define how certain or accurate the provided climate data should be for the plausible application in agricultural/forestry research and practice. Considering agriculture and forestry, our research is focusing on the following questions: • What is the climate information demand of practice and impact research in the two sectors? • What quality level of climate information is necessary for adaptation support? • How does the accuracy of climate input affect the results of the climate impact assessments? The agriculture and forestry operate at two very different time scales and have a different reaction times and adaptation capacities. Agriculture requires short-term information on current conditions and short-/medium-term weather forecast. To assess the degree of information accuracy required by practical agriculture a questionnaire has been carried out among 180 farms of different sizes and specializations (mostly arable farming and viniculture) in Reinland-Palatine, Germany. The results show that almost all farmers use the weather information daily and are in need of weather forecast. More than a half requires also the forecast on extreme events. However the farmers require more qualitative (e.g. temperature coarser than 1°C) than high-precision quantitative information in short and medium-term forecasts. Forestry requires long-term (30-100 years) climate projections. For the assessment of climate change impacts on forest distribution, production and tree species selection, monthly temperature means and precipitation sums are sufficient. Based on the results of regional climate models it will be shown how the bias, the spread and spatial resolution of the simulation results are affecting the accuracy of impact assessments. Our analyses can help to fill the gap between climate services and the needs of impact researchers and end users in agriculture and forestry. User-relevant climate information can contribute to appropriate adaptation support services and management options in the two sectors. Keywords: regional climate projections, climate impact assessment, agriculture, forestry, adaptation support, accuracy of climate information Funding: The research is supported by the "Agroclimate-2" (VKSZ_12-1-2013-0034) joint EU-national research project.

  6. Proceedings of the Missouri Ozark Forest Ecosystem Project Symposium: an experimental approach to landscape research

    Treesearch

    Brian L. Brookshire; Stephen R., eds. Shifley

    1997-01-01

    Describes the Missouri Ozark Forest Ecosystem Projects (MOFEP) that was initiated in 1991 in southeastern Missouri. Describes in detail the coordinated research studies examining vegetation dynamics, down wood, fungi, birds, small mammals, herpetofauna, invertebrates, and genetics. Soils, geolandforms, ecological landtypes, and climate at the sites are described....

  7. Mapping Heat-related Risks for Community-based Adaptation Planning under Uncertainty

    NASA Astrophysics Data System (ADS)

    Bai, Yingjiu; Kaneko, Ikuyo; Kobayashi, Hikaru; Kurihara, Kazuo; Sasaki, Hidetaka; Murata, Akihiko; Takayabu, Izuru

    2016-04-01

    Climate change is leading to more frequent and intense heat waves. Recently, epidemiologic findings on heat-related health impacts have reinforced our understanding of the mortality impacts of extreme heat. This research has several aims: 1) to promote climate prediction services with spatial and temporal information on heat-related risks, using GIS (Geographical Information System), and digital mapping techniques; 2) to propose a visualization approach to articulating the evolution of local heat-health responses over time and the evaluation of new interventions for the implementation of valid community-based adaptation strategies and reliable actionable planning; and 3) to provide an appropriate and simple method of adjusting bias and quantifying the uncertainty in future outcomes, so that regional climate projections may be transcribed into useful forms for a wide variety of different users. Following the 2003 European heat wave, climatologists, medical specialists, and social scientists expedited efforts to revise and integrate risk governance frameworks for communities to take appropriate and effective actions themselves. Recently, the Coupled Model Intercomparison Project (CMIP) methodology has made projections possible for anyone wanting to openly access state-of-the-art climate model outputs and climate data to provide the backbone for decisions. Furthermore, the latest high-solution regional climate model (RCM) has been a huge increase in the volumes of data available. In this study, we used high-quality hourly projections (5-km resolution) from the Non-Hydrostatic Regional Climate Model (NHRCM-5km), following the SRES-A1B scenario developed by the Meteorological Research Institute (MRI) and observational data from the Automated Meteorological Data Acquisition System, Japan Meteorological Agency (JMA). The NHRCM-5km is a dynamic downscaling of results from the MRI-AGCM3.2S (20-km resolution), an atmospheric general circulation model (AGCM) driven by the ensemble of mean sea surface temperatures derived from the CMIP3 coupled GCMs. This contribution demonstrates how composite heat-related risk maps with a visualization of combined predicted population and the 5-km resolution climate projections, can be used in community-based adaptation planning in Japan. To test this approach, Tokyo (area 2190.9 km2; population 13.50 million as of 1 December 2015), a Japanese megacity, was chosen for a pilot study. Our challenges will be facilitated by the formation of research partnerships involving epidemiologists, climate scientists, and local stakeholders. Hopefully, the methodology could be transferred to developing countries to aid in planning heat adaptation.

  8. Effective Climate Refugia for Cold-water Fishes

    NASA Astrophysics Data System (ADS)

    Ebersole, J. L.; Morelli, T. L.; Torgersen, C.; Isaak, D.; Keenan, D.; Labiosa, R.; Fullerton, A.; Massie, J.

    2015-12-01

    Climate change threatens to create fundamental shifts in in the distributions and abundances of endothermic organisms such as cold-water salmon and trout species (salmonids). Recently published projected declines in mid-latitude salmonid distributions under future climates range from modest to severe, depending on modeling approaches, assumptions, and spatial context of analyses. Given these projected losses, increased emphasis on management for ecosystem resilience to help buffer cold-water fish populations and their habitats against climate change is emerging. Using terms such as "climate-proofing", "climate-ready", and "climate refugia", such efforts stake a claim for an adaptive, anticipatory planning response to the climate change threat. To be effective, such approaches will need to address critical uncertainties in both the physical basis for projected landscape changes in water temperature and streamflow, as well as the biological responses of organisms. Recent efforts define future potential climate refugia based on projected streamflows, air temperatures, and associated water temperature changes. These efforts reflect the relatively strong conceptual foundation for linkages between regional climate change and local hydrological responses and thermal dynamics. Yet important questions remain. Drawing on case studies throughout the Pacific Northwest, we illustrate some key uncertainties in the responses of salmonids and their habitats to altered hydro-climatic regimes currently not well addressed by physical or ecological models. Key uncertainties include biotic interactions, organismal adaptive capacity, local climate decoupling due to groundwater-surface water interactions, the influence of human engineering responses, and synergies between climatic and other stressors. These uncertainties need not delay anticipatory planning, but rather highlight the need for identification and communication of actions with high probabilities of success, and targeted research within an adaptive management framework.

  9. On procedures for model selection in providing climate scenario data for impact studies - A challenge to both communities

    NASA Astrophysics Data System (ADS)

    Fox Maule, Cathrine; Sloth Madsen, Marianne; May, Wilhelm; Hesselbjerg Christensen, Jens; Yang, Shuting; Christensen, Ole B.

    2015-04-01

    Climate impact studies are based on climate simulations originating from regional or global climate models, provided either through the climate modeling centers directly or through climate data portals. In order to give the most beneficial results, the climate model data need to fulfill various requirements related to the respective impact models. These requirements, however, are often not well defined and subjected to individual impact models, and hence, can lead to discrepancies between the climate data provided by the climate modeling community and the data required by the impact models. As the climate model data are the first step in a process chain, limitations and problems with these data will affect the studies based on the results by the impact models and, hence, might confine the value of a project working with these results. DMI has over the past years provided climate scenario data for impact studies in several international and national research projects, including ENSEMBLES, WATCH, CRES and HYACINTS as well as the still ongoing projects IMPRESSIONS, IMPACT2C and MODEXTREME, dealing with numerous different impact sectors. Thus DMI has gained experience with a wide range of projects from very different disciplines including agriculture, hydrology, socio-economics, air-pollution and sea-level rise. The lessons learned from all these projects is that there is no standard procedure that can be implemented, but rather that individual solutions have to be constructed on a case-by-case basis for each project. This is due to the fact that the requirements for different impact models differ. For example, some impact models may need monthly input data, while others need daily data. Some need very high horizontal resolution while others may make do with relatively coarse resolution; some operate on global scale while others focus on regional or local scale. Some models need only a few variables as e.g. precipitation and temperature, while others also require e.g. radiation and evaporation. All of these requirements - and many more - shape the outcome of each individual project. Here, we highlight some of the procedures developed in some of the projects we have been involved in, and reason why the given steps were taken in those projects; focus is on MODEXTREME and IMPRESSIONS. We also point out some of the limiting factors that arise in concrete cases, often due to lack of useful observations or simulations. To conclude, we suggest a flow chart for decision as guidance to ease the procedure of providing suitable climate model output data for impact studies in future projects.

  10. The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies

    NASA Astrophysics Data System (ADS)

    Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.

    The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.

  11. The Bering Sea Project Archive: a Prototype for Improved Discovery and Access

    NASA Astrophysics Data System (ADS)

    Stott, D.; Mayernik, M. S.; Daniels, M. D.; Moore, J. A.; Williams, S. F.; Allison, J.

    2015-12-01

    The Bering Sea Project was a research program from 2007 through 2012 that sought to understand the impacts of climate change and dynamic sea ice cover on the eastern Bering Sea ecosystem. More than 100 scientists engaged in field data collection, original research, and ecosystem modeling to link climate, physical oceanography, plankton, fishes, seabirds, marine mammals, humans, traditional knowledge and economic outcomes. Over the six-year period of the program hundreds of multidisciplinary datasets coming from a variety of instrumentation and measurement platforms within thirty-one categories of research were processed and curated by the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL). For the investigator proposing a field project, the researcher performing synthesis, or the modeler seeking data for verification, the easy discovery and access to the most relevant data is of prime importance. The heterogeneous products of oceanographic field programs such as the Bering Sea Project challenge the ability of researchers to identify which data sets, people, or tools might be relevant to their research, and to understand how certain data, instruments, or methods were used to produce particular results.EOL, as a partner in the NSF funded EarthCollab project, is using linked open data to permit the direct interlinking of information and data across platforms and projects. We are leveraging an existing open-source semantic web application, VIVO, to address connectivity gaps across distributed networks of researchers and resources and identify relevant content, independent of location. We will present our approach in connecting ontologies and integrating them within the VIVO system, using the Bering Sea Project datasets as a case study, and will provide insight into how the geosciences can leverage linked data to produce more coherent methods of information and data discovery across large multi-disciplinary projects.

  12. A Generalized Stability Analysis of the AMOC in Earth System Models: Implication for Decadal Variability and Abrupt Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Alexey V.

    2015-01-14

    The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth systemmore » models, to the stability and variability of the AMOC in past climates.« less

  13. Climate model simulations of the mid-Pliocene: Earth's last great interval of global warmth

    USGS Publications Warehouse

    Dolan, A.M.; Haywood, A.M.; Dowsett, H.J.

    2012-01-01

    Pliocene Model Intercomparison Project Workshop; Reston, Virginia, 2–4 August 2011 The Pliocene Model Intercomparison Project (PlioMIP), supported by the U.S. Geological Survey's (USGS) Pliocene Research, Interpretation and Synoptic Mapping (PRISM) project and Powell Center, is an integral part of a third iteration of the Paleoclimate Modelling Intercomparison Project (PMIP3). PlioMIP's aim is to systematically compare structurally different climate models. This is done in the context of the mid-Pliocene (~3.3–3.0 million years ago), a geological interval when the global annual mean temperature was similar to predictions for the next century.

  14. Assessment of the uncertainty in future projection for summer climate extremes over the East Asia

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Min, Seung-Ki; Cha, Dong-Hyun

    2017-04-01

    Future projections of climate extremes in regional and local scales are essential information needed for better adapting to climate changes. However, future projections hold larger uncertainty factors arising from internal and external processes which reduce the projection confidence. Using CMIP5 (Coupled Model Intercomparison Project Phase 5) multi-model simulations, we assess uncertainties in future projections of the East Asian temperature and precipitation extremes focusing on summer. In examining future projection, summer mean and extreme projections of the East Asian temperature and precipitation would be larger as time. Moreover, uncertainty cascades represent wider scenario difference and inter-model ranges with increasing time. A positive mean-extreme relation is found in projections for both temperature and precipitation. For the assessment of uncertainty factors for these projections, dominant uncertainty factors from temperature and precipitation change as time. For uncertainty of mean and extreme temperature, contributions of internal variability and model uncertainty declines after mid-21st century while role of scenario uncertainty grows rapidly. For uncertainty of mean precipitation projections, internal variability is more important than the scenario uncertainty. Unlike mean precipitation, extreme precipitation shows that the scenario uncertainty is expected to be a dominant factor in 2090s. The model uncertainty holds as an important factor for both mean and extreme precipitation until late 21st century. The spatial changes for the uncertainty factors of mean and extreme projections generally are expressed according to temporal changes of the fraction of total variance from uncertainty factors in many grids of the East Asia. ACKNOWLEDGEMENTS The research was supported by the Korea Meteorological Administration Research and Development program under grant KMIPA 2015-2083 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.

  15. Exploring Education Professionals' Perceptions of the Changes in School/Classroom Climate, Students' Experiences, and Educators' Experiences as a Result of Implementing the Secret Kindness Agents Project

    ERIC Educational Resources Information Center

    Pearson, Ferial G.

    2017-01-01

    This phenomenological study explored the perceptions of 23 educators as related to the implementation of the "Secret Kindness Agents Project." The methodology was comprised of a researcher-designed questionnaire to capture the essence of the participants' experiences with the project. A Conceptual Map developed by researchers at the…

  16. Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways.

    PubMed

    Rohat, Guillaume

    2018-03-19

    The Shared Socioeconomic Pathways (SSPs) are the new set of alternative futures of societal development that inform global and regional climate change research. They have the potential to foster the integration of socioeconomic scenarios within assessments of future climate-related health impacts. To date, such assessments have primarily superimposed climate scenarios on current socioeconomic conditions only. Until now, the few assessments of future health risks that employed the SSPs have focused on future human exposure-i.e., mainly future population patterns-, neglecting future human vulnerability. This paper first explores the research gaps-mainly linked to the paucity of available projections-that explain such a lack of consideration of human vulnerability under the SSPs. It then highlights the need for projections of socioeconomic variables covering the wide range of determinants of human vulnerability, available at relevant spatial and temporal scales, and accounting for local specificities through sectoral and regional extended versions of the global SSPs. Finally, this paper presents two innovative methods of obtaining and computing such socioeconomic projections under the SSPs-namely the scenario matching approach and an approach based on experts' elicitation and correlation analyses-and applies them to the case of Europe. They offer a variety of possibilities for practical application, producing projections at sub-national level of various drivers of human vulnerability such as demographic and social characteristics, urbanization, state of the environment, infrastructure, health status, and living arrangements. Both the innovative approaches presented in this paper and existing methods-such as the spatial disaggregation of existing projections and the use of sectoral models-show great potential to enhance the availability of relevant projections of determinants of human vulnerability. Assessments of future climate-related health impacts should thus rely on these methods to account for future human vulnerability-under varying levels of socioeconomic development-and to explore its influence on future health risks under different degrees of climate change.

  17. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison

    PubMed Central

    Rosenzweig, Cynthia; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Müller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay; Neumann, Kathleen; Piontek, Franziska; Pugh, Thomas A. M.; Schmid, Erwin; Stehfest, Elke; Yang, Hong; Jones, James W.

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies. PMID:24344314

  18. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Mueller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  19. Modeling impacts of climate change on freshwater availability in Africa

    NASA Astrophysics Data System (ADS)

    Faramarzi, Monireh; Abbaspour, Karim C.; Ashraf Vaghefi, Saeid; Farzaneh, Mohammad Reza; Zehnder, Alexander J. B.; Srinivasan, Raghavan; Yang, Hong

    2013-02-01

    SummaryThis study analyzes the impact of climate change on freshwater availability in Africa at the subbasin level for the period of 2020-2040. Future climate projections from five global circulation models (GCMs) under the four IPCC emission scenarios were fed into an existing SWAT hydrological model to project the impact on different components of water resources across the African continent. The GCMs have been downscaled based on observed data of Climate Research Unit to represent local climate conditions at 0.5° grid spatial resolution. The results show that for Africa as a whole, the mean total quantity of water resources is likely to increase. For individual subbasins and countries, variations are substantial. Although uncertainties are high in the simulated results, we found that in many regions/countries, most of the climate scenarios projected the same direction of changes in water resources, suggesting a relatively high confidence in the projections. The assessment of the number of dry days and the frequency of their occurrences suggests an increase in the drought events and their duration in the future. Overall, the dry regions have higher uncertainties than the wet regions in the projected impacts on water resources. This poses additional challenge to the agriculture in dry regions where water shortage is already severe while irrigation is expected to become more important to stabilize and increase food production.

  20. Future climate and surface mass balance of Svalbard glaciers in an RCP8.5 climate scenario: a study with the regional climate model MAR forced by MIROC5

    NASA Astrophysics Data System (ADS)

    Lang, C.; Fettweis, X.; Erpicum, M.

    2015-05-01

    We have performed a future projection of the climate and surface mass balance (SMB) of Svalbard with the MAR (Modèle Atmosphérique Régional) regional climate model forced by MIROC5 (Model for Interdisciplinary Research on Climate), following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudden acceleration of melt around 2050, with a larger melt increase in the south compared to the north of the archipelago. This melt acceleration around 2050 is mainly driven by the albedo-melt feedback associated with the expansion of the ablation/bare ice zone. This effect is dampened in part as the solar radiation itself is projected to decrease due to a cloudiness increase. The near-surface temperature is projected to increase more in winter than in summer as the temperature is already close to 0 °C in summer. The model also projects a stronger winter west-to-east temperature gradient, related to the large decrease of sea ice cover around Svalbard. By 2085, SMB is projected to become negative over all of Svalbard's glaciated regions, leading to the rapid degradation of the firn layer.

  1. Links between the built environment, climate and population health: interdisciplinary environmental change research in New York City.

    PubMed

    Rosenthal, Joyce Klein; Sclar, Elliott D; Kinney, Patrick L; Knowlton, Kim; Crauderueff, Robert; Brandt-Rauf, Paul W

    2007-10-01

    Global climate change is expected to pose increasing challenges for cities in the following decades, placing greater stress and impacts on multiple social and biophysical systems, including population health, coastal development, urban infrastructure, energy demand, and water supplies. Simultaneously, a strong global trend towards urbanisation of poverty exists, with increased challenges for urban populations and local governance to protect and sustain the wellbeing of growing cities. In the context of these 2 overarching trends, interdisciplinary research at the city scale is prioritised for understanding the social impacts of climate change and variability and for the evaluation of strategies in the built environment that might serve as adaptive responses to climate change. This article discusses 2 recent initiatives of The Earth Institute at Columbia University (EI) as examples of research that integrates the methods and objectives of several disciplines, including environmental health science and urban planning, to understand the potential public health impacts of global climate change and mitigative measures for the more localised effects of the urban heat island in the New York City metropolitan region. These efforts embody 2 distinct research approaches. The New York Climate & Health Project created a new integrated modeling system to assess the public health impacts of climate and land use change in the metropolitan region. The Cool City Project aims for more applied policy-oriented research that incorporates the local knowledge of community residents to understand the costs and benefits of interventions in the built environment that might serve to mitigate the harmful impacts of climate change and variability, and protect urban populations from health stressors associated with summertime heat. Both types of research are potentially useful for understanding the impacts of environmental change at the urban scale, the policies needed to address these challenges, and to train scholars capable of collaborative approaches across the social and biophysical sciences.

  2. Projected increases in the annual flood pulse of the western Amazon

    NASA Astrophysics Data System (ADS)

    Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Veliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William

    2016-04-01

    The impact of a changing climate on the Amazon basin is a subject of intensive research due to its rich biodiversity and the significant role of rain forest in carbon cycling. Climate change has also direct hydrological impact, and there have been increasing efforts to understand such dynamics at continental and subregional scales such as the scale of the western Amazon. New projections from the Coupled Model Inter- comparison Project Phase 5 (CMIP5) ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the river. Using extremes value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 years. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100- year return floods). These findings are in agreement with previously projected increases in high extremes under the Special Report on Emissions Scenarios (SRES) climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amid a growing literature that more strongly emphasises future droughts and their impact on the viability of the rain forest system over the greater Amazonia.

  3. Convening Young Leaders for Climate Resilience in New York State

    NASA Astrophysics Data System (ADS)

    Kretser, J.

    2017-12-01

    This project, led by The Wild Center, will partner with Cornell Cooperative Extension of Delaware County, the Kurt Hahn Expeditionary Learning School in Brooklyn, and the Alliance for Climate Education to do the following over three years: 1) increase climate literacy and preparedness planning in high school students through place-based Youth Climate Summits in the Adirondacks, Catskills, and New York City; 2) enhance young people's capacity to lead on climate issues through a Youth Climate Leadership Practicum 3) increase teacher comprehension and understanding of climate change through a Teacher Climate Institute and 4) communicate climate change impacts and resilience through student-driven Community Climate Outreach activities. The project will align with New York State's climate resiliency planning by collaborating with the NYS Department of Environmental Conservation Office of Climate (OCC), NYS Energy Research Development Authority (NYSERDA), and NOAA's Climate Program Office to provide accurate scientific information, resources, and tools. This collaboration will result in an increase in understanding of the impacts of climate change in rural (Adirondacks, Catskills) and urban (New York City) regions of New York State; a wider awareness of the threats and vulnerabilities that are associated with a community's location; and a stronger connection between current community resilience initiatives, educators, and youth. All three of the project sites are critically underserved in both climate literacy and action, making addressing the need of these sites to be resilient and proactive in the face of climate change critical. Our model will provide pilot lessons for how youth in both rural and urban areas can draw on local assets to address resiliency in ways appropriate for their own areas, and these lessons may be able to be applied across the United States.The proposed project is informed by best practices and specifically strengthens and replicates The Wild Center's past success with the Adirondack Youth Climate Summit, student leadership, and student-led community outreach for climate awareness - all work that has been tested or piloted over the last seven years.

  4. Engagement Between Decision Makers and the Research Community in Califonria'a Climate Assessments

    NASA Astrophysics Data System (ADS)

    Bedsworth, L. W.; Franco, G.; Wilhelm, S.; DeLaRosa, J.

    2016-12-01

    The State of California has been supporting the development of regional climate change science for more than two decades. The engagement between the scientific community in California and State agencies has been strong, and supported by multiple formalized relationships. For example, research results have informed state climate policy formulation such as the passage of AB32, a law that requires the State to bring GHG emissions to 1990 levels by 2020, and three Bills on climate adaptation that became law late in 2015. Scientific research has also been used for long-term planning of state resources such as the Forestry Plan, the Water Plan, and the Integrated Energy Policy Report. The Climate Action Team Research Working Group meets monthly to coordinate climate-related research activities supported by more than 20 state agencies and is the steering committee for the next California Climate Assessment that will be released in 2018. The State is co-producing the research commissioned for the 2018 Assessment in various ways, including the identification of research projects, the integration of more than 50 research studies, and active participation during execution of the research. The presentation will discuss the State's successes in linking decision-makers and the scientific community as well as challenges and potential ways to enhance these linkages.

  5. Integrating Climate and Ecosystem-Response Sciences in Temperate Western North American Mountains: The CIRMOUNT Initiative

    NASA Astrophysics Data System (ADS)

    Millar, C. I.; Fagre, D. B.

    2004-12-01

    Mountain regions are uniquely sensitive to changes in climate, vulnerable to climate effects on biotic and physical factors of intense social concern, and serve as critical early-warning systems of climate impacts. Escalating demands on western North American (WNA) mountain ecosystems increasingly stress both natural resources and rural community capacities; changes in mountain systems cascade to issues of national concern. Although WNA has long been a focus for climate- and climate-related environmental research, these efforts remain disciplinary and poorly integrated, hindering interpretation into policy and management. Knowledge is further hampered by lack of standardized climate monitoring stations at high-elevations in WNA. An initiative is emerging as the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT) whose primary goal is to improve knowledge of high-elevation climate systems and to better integrate physical, ecological, and social sciences relevant to climate change, ecosystem response, and natural-resource policy in WNA. CIRMOUNT seeks to focus research on climate variability and ecosystem response (progress in understanding synoptic scale processes) that improves interpretation of linkages between ecosystem functions and human processing (progress in understanding human-environment integration), which in turn would yield applicable information and understanding on key societal issues such as mountains as water towers, biodiversity, carbon forest sinks, and wildland hazards such as fire and forest dieback (progress in understanding ecosystem services and key thresholds). Achieving such integration depends first on implementing a network of high-elevation climate-monitoring stations, and linking these with integrated ecosystem-response studies. Achievements since 2003 include convening the 2004 Mountain Climate Sciences Symposium (1, 2) and several special sessions at technical conferences; initiating a biennial mountain climate research symposium (MTNCLIM), the first to be held in spring 2005; developing a strategy for climate-monitoring in WNA; installing and networking high-elevation (>3000m) climate-monitoring stations; and completing three target regions (Glacier National Park, MT; Sierra Nevada and White Mountains, CA) of the international GLORIA (Global Observation Research Initiative in Alpine Environments) plant-monitoring project, the first in WNA. CIRMOUNT emphasizes integration at the regional scale in WNA, collaborating with and complementing projects such as the Western Mountain Initiative, whose mandate is more targeted than CIRMOUNT's, and global programs such as GLORIA and the international Mountain Research Initiative. Achievement of continuing success in WNA hinges on the capacity to secure long-term funding and institutional investment. (1) See associated URL for paper and poster pdfs (2) Discussing the future of western U.S. mountains, climate change, and ecosystems. EOS 31 August 2004, 85(35), p. 329

  6. Hydrologic Impacts of Climate Change: Quantification of Uncertainties (Alexander von Humboldt Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Mujumdar, Pradeep P.

    2014-05-01

    Climate change results in regional hydrologic change. The three prominent signals of global climate change, viz., increase in global average temperatures, rise in sea levels and change in precipitation patterns convert into signals of regional hydrologic change in terms of modifications in water availability, evaporative water demand, hydrologic extremes of floods and droughts, water quality, salinity intrusion in coastal aquifers, groundwater recharge and other related phenomena. A major research focus in hydrologic sciences in recent years has been assessment of impacts of climate change at regional scales. An important research issue addressed in this context deals with responses of water fluxes on a catchment scale to the global climatic change. A commonly adopted methodology for assessing the regional hydrologic impacts of climate change is to use the climate projections provided by the General Circulation Models (GCMs) for specified emission scenarios in conjunction with the process-based hydrologic models to generate the corresponding hydrologic projections. The scaling problem arising because of the large spatial scales at which the GCMs operate compared to those required in distributed hydrologic models, and their inability to satisfactorily simulate the variables of interest to hydrology are addressed by downscaling the GCM simulations to hydrologic scales. Projections obtained with this procedure are burdened with a large uncertainty introduced by the choice of GCMs and emission scenarios, small samples of historical data against which the models are calibrated, downscaling methods used and other sources. Development of methodologies to quantify and reduce such uncertainties is a current area of research in hydrology. In this presentation, an overview of recent research carried out by the author's group on assessment of hydrologic impacts of climate change addressing scale issues and quantification of uncertainties is provided. Methodologies developed with conditional random fields, Dempster-Shafer theory, possibility theory, imprecise probabilities and non-stationary extreme value theory are discussed. Specific applications on uncertainty quantification in impacts on streamflows, evaporative water demands, river water quality and urban flooding are presented. A brief discussion on detection and attribution of hydrologic change at river basin scales, contribution of landuse change and likely alterations in return levels of hydrologic extremes is also provided.

  7. FACE-IT: Framework to Advance Climate, Economics, and Impact Investigations with Information Technology

    NASA Astrophysics Data System (ADS)

    Foster, I.; Elliott, J. W.; Jones, J.; Montella, R.

    2013-12-01

    Issues relating to climate change and food security require an understanding of the interaction between the natural world and human society over long time scales. Understanding climate change, its impacts on the natural world and society, and the tradeoffs inherent in societal responses demands an unprecedented degree of cooperation across academic fields. New data sources on expected future climate, soil characteristics, economic activity, historical weather, population, and land cover, provide a potential basis for this cooperation. New methods are needed for sharing within and across communities not only data but the software used to generate, synthesize, and analyze it. Progress on these research challenges is hindered by the extreme difficulties that researchers, collaborators, and the community experiences when they collaborate around data. Multiplicity of data formats; inadequate computational tools; difficulty in sharing data and programs, lack of incentives for pro-social behavior and large data volumes are among the technology barriers. The FACE-IT project at the University of Chicago, NASA, and University of Florida employs an integrated approach to cyberinfrastructure to advance the characterization of vulnerabilities, impacts, mitigation, and adaptation to climate change in human and environmental systems. Leveraging existing research cyberinfrastructure the project is creating a full-featured FACE-IT Platform prototype with new capabilities for ingesting, organizing, managing, analyzing and using large quantities of diverse data. The project team collaborates with two distinct interdisciplinary communities to create community specific FACE-IT Instances to both advance their research and enable at-scale evaluation of the utility of the FACE-IT approach. In this talk I will introduce the FACE-IT system and discuss early applications.

  8. Bringing home sustainability and climate change research and developments via on-line virtual reality

    NASA Astrophysics Data System (ADS)

    Granshaw, F. D.

    2016-12-01

    One of the key challenges of sustainability and climate education is one of accessibility. For example many of the sites where significant climate research is taking place in National Parks are largely inaccessible to the average park visitor. Likewise, taking students to visit exemplary efforts in environmentally sustainable design or habitat restoration projects may be logistically difficult or impossible for the average class. Yet despite these difficulties, finding ways to give students, park visitors, and the general public a chance to explore these areas is critical to their developing sustainability and climate literacy. To address this issue, the author has been working with National Park staff and community groups to develop desktop virtual reality environments that showcase glacier-climate research sites, developments designed with environmental sustainability in mind, and urban watersheds being rehabilitated by volunteer groups and public agencies. These environments provide the user with a chance to take a virtual walk through a site of interest, access data collected at the site, and even listen to researchers and site stewards talk about key activities taking place there. Though they are used as proxies for actual visits via independent on-line exploration, media for public talks, or the framework for student lab exercises, they these virtual environments have also been used to encourage and guide actual sites visits. A focus of this talk will be a recently launched project involving the construction of a library showcasing environmental sustainability projects in the Portland Metropolitan area. In addition to being a resource for local sustainability educators, the library will be a contribution to international sustainability education efforts as it is being developed under the umbrella of a UN affiliate (Greater Portland Sustainability Education Network).

  9. Climate Science's Globally Distributed Infrastructure

    NASA Astrophysics Data System (ADS)

    Williams, D. N.

    2016-12-01

    The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.

  10. Documenting Climate Models and Simulations: the ES-DOC Ecosystem in Support of CMIP

    NASA Astrophysics Data System (ADS)

    Pascoe, C. L.; Guilyardi, E.

    2017-12-01

    The results of climate models are of increasing and widespread importance. No longer is climate model output of sole interest to climate scientists and researchers in the climate change impacts and adaptation fields. Now non-specialists such as government officials, policy-makers, and the general public, all have an increasing need to access climate model output and understand its implications. For this host of users, accurate and complete metadata (i.e., information about how and why the data were produced) is required to document the climate modeling results. Here we describe the ES-DOC community-govern project to collect and make available documentation of climate models and their simulations for the internationally coordinated modeling activity CMIP6 (Coupled Model Intercomparison Project, Phase 6). An overview of the underlying standards, key properties and features, the evolution from CMIP5, the underlying tools and workflows as well as what modelling groups should expect and how they should engage with the documentation of their contribution to CMIP6 is also presented.

  11. Complex challenges of maintaining whitebark pine in Greater Yellowstone under climate change: A call for innovative research, management, and policy approaches

    Treesearch

    Andrew Hansen; Kathryn Ireland; Kristin Legg; Robert Keane; Edward Barge; Martha Jenkins; Michiel Pillet

    2016-01-01

    Climate suitability is projected to decline for many subalpine species, raising questions about managing species under a deteriorating climate. Whitebark pine (WBP) (Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE) crystalizes the challenges that natural resource managers of many high mountain ecosystems will likely face in the coming decades. We...

  12. Regional Approaches to Climate Change for Inland Pacific Northwest Cereal Production Systems

    NASA Astrophysics Data System (ADS)

    Eigenbrode, S. D.; Abatzoglou, J. T.; Burke, I. C.; Capalbo, S.; Gessler, P.; Huggins, D. R.; Johnson-Maynard, J.; Kruger, C.; Lamb, B. K.; Machado, S.; Mote, P.; Painter, K.; Pan, W.; Petrie, S.; Paulitz, T. C.; Stockle, C.; Walden, V. P.; Wulfhorst, J. D.; Wolf, K. J.

    2011-12-01

    The long-term environmental and economic sustainability of agriculture in the Inland Pacific Northwest (northern Idaho, north central Oregon, and eastern Washington) depends upon improving agricultural management, technology, and policy to enable adaptation to climate change and to help realize agriculture's potential to contribute to climate change mitigation. To address this challenge, three land-grant institutions (Oregon State University, the University of Idaho and Washington State University) (OSU, UI, WSU) and USDA Agricultural Research Service (ARS) units are partners in a collaborative project - Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH-PNA). The overarching goal of REACCH is to enhance the sustainability of Inland Pacific Northwest (IPNW) cereal production systems under ongoing and projected climate change while contributing to climate change mitigation. Supporting goals include: - Develop and implement sustainable agricultural practices for cereal production within existing and projected agroecological zones throughout the region as climate changes, - Contribute to climate change mitigation through improved fertilizer, fuel, and pesticide use efficiency, increased sequestration of soil carbon, and reduced greenhouse gas (GHG) emissions consistent with the 2030 targets set by the USDA National Institute for Food and Agriculture (NIFA), - Work closely with stakeholders and policymakers to promote science-based agricultural approaches to climate change adaptation and mitigation, - Increase the number of scientists, educators, and extension professionals with the skills and knowledge to address climate change and its interactions with agriculture. In this poster, we provide an overview of the specific goals of this project and activities that are underway since its inception in spring of 2011.

  13. Promoting Regionally-Based Climate Change Education through Collaborations with Formal and Informal Education Institutions

    NASA Astrophysics Data System (ADS)

    Stylinski, C.; Griswold, M.

    2012-12-01

    Improving climate literacy is necessary to effectively respond to climate change impacts. However, climate change education efforts face significant hurdles both in the classroom and in out-of-school settings. These include addressing uncertainity and the complex mix of drivers and impacts that occur over large spatial and temporal scales. These efforts are further hampered by audiences who are disinterested and resisant to discussions of anthropogenic climate change. Bridging formal and informal education experiences focused on climate change offers a potentially powerful strategy to tackle these challenges. In this session, we will describe our NSF-funded Maryland-Delaware Climate Change Education, Assessment and Research (MADE-CLEAR) project, which applies a comprehensive regional partnership among scientists, education researchers, K-12 and informal education practitioners, and other stakeholders to improve public and student understanding of and engagement in climate change issues and solutions. To better understand gaps and opportunities, we have conducted surveys and interviews with K-12, informal, and undergraduate educators and administrators. We found that climate change education aligns with most institutions' missions and efforts, that most educators do not face institutional barriers to climate change education, and that climate change is typically incorporated as part of a host of environmental issues. Despite this, climate change education is still quite limited with few institutions explicitly focusing on climate change in their programming. Additionally, there is little apparent communication among these institutions with regard to this issue. In response to these needs, we have focused the MADE-CLEAR project on creating and providing regionally-relevant resouces and professional development on climate change science, impacts and solutions for both formal and informal educators. Our approach is collaborative and includes strategies to promote networking within and among these two groups. For example, we will lead joint workshops where K-12 teachers can share their in-depth understanding of climate change concepts and links to education standards, while free-choice-learning practitioners can provide their expertise in engaging diverse audiences and supporting more learner-centered teaching. Our resources will further support a formal-informal bridge by helping both groups of educators make climate change relevant to their audiences with local examples of impacts and ways to mitigate or adapt to these impacts. Our project includes design-based research, and thus we will examine how our professional development is translated into practice at different types of institutions and the impact of our approach on enhancing formal-informal education collaborations focused on climate change education.

  14. NASA GISS Climate Change Research Initiative: A Multidisciplinary Vertical Team Model for Improving STEM Education by Using NASA's Unique Capabilities.

    NASA Astrophysics Data System (ADS)

    Pearce, M. D.

    2017-12-01

    CCRI is a year-long STEM education program designed to bring together teams of NASA scientists, graduate, undergraduate and high school interns and high school STEM educators to become immersed in NASA research focused on atmospheric and climate changes in the 21st century. GISS climate research combines analysis of global datasets with global models of atmospheric, land surface, and oceanic processes to study climate change on Earth and other planetary atmospheres as a useful tool in assessing our general understanding of climate change. CCRI interns conduct research, gain knowledge in assigned research discipline, develop and present scientific presentations summarizing their research experience. Specifically, CCRI interns write a scientific research paper explaining basic ideas, research protocols, abstract, results, conclusion and experimental design. Prepare and present a professional presentation of their research project at NASA GISS, prepare and present a scientific poster of their research project at local and national research symposiums along with other federal agencies. CCRI Educators lead research teams under the direction of a NASA GISS scientist, conduct research, develop research based learning units and assist NASA scientists with the mentoring of interns. Educators create an Applied Research STEM Curriculum Unit Portfolio based on their research experience integrating NASA unique resources, tools and content into a teacher developed unit plan aligned with the State and NGSS standards. STEM Educators also Integrate and implement NASA unique units and content into their STEM courses during academic year, perform community education STEM engagement events, mentor interns in writing a research paper, oral research reporting, power point design and scientific poster design for presentation to local and national audiences. The CCRI program contributes to the Federal STEM Co-STEM initiatives by providing opportunities, NASA education resources and programing that improve STEM instruction, increase and sustain youth and public engagement in STEM, enhance STEM experience of undergraduate students, better serve groups under-represented groups in STEM fields and design graduate education for tomorrow's STEM workforce.

  15. Integrated Modeling and Participatory Scenario Planning for Climate Adaptation: the Maui Groundwater Project

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Finucane, M.; Brewington, L.

    2014-12-01

    For the last century, the island of Maui, Hawaii, has been the center of environmental, agricultural, and legal conflict with respect to surface and groundwater allocation. Planning for adequate future freshwater resources requires flexible and adaptive policies that emphasize partnerships and knowledge transfer between scientists and non-scientists. In 2012 the Hawai'i state legislature passed the Climate Change Adaptation Priority Guidelines (Act 286) law requiring county and state policy makers to include island-wide climate change scenarios in their planning processes. This research details the ongoing work by researchers in the NOAA funded Pacific RISA to support the development of Hawaii's first island-wide water use plan under the new climate adaptation directive. This integrated project combines several models with participatory future scenario planning. The dynamically downscaled triply nested Hawaii Regional Climate Model (HRCM) was modified from the WRF community model and calibrated to simulate the many microclimates on the Hawaiian archipelago. For the island of Maui, the HRCM was validated using 20 years of hindcast data, and daily projections were created at a 1 km scale to capture the steep topography and diverse rainfall regimes. Downscaled climate data are input into a USGS hydrological model to quantify groundwater recharge. This model was previously used for groundwater management, and is being expanded utilizing future climate projections, current land use maps and future scenario maps informed by stakeholder input. Participatory scenario planning began in 2012 to bring together a diverse group of over 50 decision-makers in government, conservation, and agriculture to 1) determine the type of information they would find helpful in planning for climate change, and 2) develop a set of scenarios that represent alternative climate/management futures. This is an iterative process, resulting in flexible and transparent narratives at multiple scales. The resulting climate, land use, and groundwater recharge maps give stakeholders a common set of future scenarios that they understand through the participatory scenario process, and identify the vulnerabilities, trade-offs, and adaptive priorities for different groundwater management and land uses in an uncertain future.

  16. Increasing Diversity in Global Climate Change, Space Weather and Space Technology Research and Education

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Austin, S. A.; Howard, A. M.; Boxe, C.; Jiang, M.; Tulsee, T.; Chow, Y. W.; Zavala-Gutierrez, R.; Barley, R.; Filin, B.; Brathwaite, K.

    2015-12-01

    This presentation describes projects at Medgar Evers College of the City University of New York that contribute to the preparation of a diverse workforce in the areas of ocean modeling, planetary atmospheres, space weather and space technology. Specific projects incorporating both undergraduate and high school students include Assessing Parameterizations of Energy Input to Internal Ocean Mixing, Reaction Rate Uncertainty on Mars Atmospheric Ozone, Remote Sensing of Solar Active Regions and Intelligent Software for Nano-satellites. These projects are accompanied by a newly developed Computational Earth and Space Science course to provide additional background on methodologies and tools for scientific data analysis. This program is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research and the NASA New York State Space Grant Consortium.

  17. Atmospheric, Climatic, and Environmental Research

    NASA Technical Reports Server (NTRS)

    Broecker, Wallace S.; Gornitz, Vivien M.

    1994-01-01

    The climate and atmospheric modeling project involves analysis of basic climate processes, with special emphasis on studies of the atmospheric CO2 and H2O source/sink budgets and studies of the climatic role Of CO2, trace gases and aerosols. These studies are carried out, based in part on use of simplified climate models and climate process models developed at GISS. The principal models currently employed are a variable resolution 3-D general circulation model (GCM), and an associated "tracer" model which simulates the advection of trace constituents using the winds generated by the GCM.

  18. Revolutionizing Climate Science: Using Teachers as Communicators

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Crowley, S.; Wood, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the Polar Regions. Teachers are the dynamic conduits for communicating climate science. In the PolarTREC final report, researchers found that teachers were vital in refining the language of their science and have shaped the goals of the scientific project. Program data demonstrates that science in classrooms is better understood when teachers have a full-spectrum grasp of project intricacies from defining the project, to field data collection, encountering situations for creativity and critical thinking, as well as participating in data and project analysis. Teachers' translating the authentic scientific process is integral in communicating climate science to the broader public. Teachers playing a major role in polar science revolutionize the old paradigm of "in-school learning". Through daily online journaling and forums, social media communication, live webinars with public, and professional development events, these teachers are moving beyond classrooms to communicate with society. Through teachers, climate policy can be shaped for the future by having scientifically literate students as well as assessable science. New paradigms come as teachers attain proficient levels of scientific understanding paired with the expert abilities for communication with years of experience. PolarTREC teachers are a model for new interactions peer-to-peer learning and mentorship for young scientists. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach exponential audiences in media, policy, and classrooms. Modeling this program, we designed and conducted a teacher training on climate science in Denali National Park. Utilizing expert university faculty in climate science and a PolarTREC alumni teacher the program was touted as 'the best professional opportunity to date". This program gave new teachers the tools to adequately communicate climate science with a new generation of scientifically literate students. Additionally, teachers possess the skills to inform young professional scientists on effective outreach and communication beyond peer-reviewed papers and scientific circles.

  19. Salmon and Sagebrush: The Shoshone-Bannock Tribes Collaborative Approach to Adaptation Planning

    NASA Astrophysics Data System (ADS)

    Petersen, A.; Nasser, E.; Stone, D.; Krosby, M.; Whitley-Binder, L.; Morgan, H.; Rupp, D. E.; Dello, K.; Dalton, M. M.; Fox, M.; Rodgers, K.

    2017-12-01

    The Shoshone-Bannock Tribes reside in the Upper Snake River Watershed in southeast Idaho. Their lives and culture are intertwined with the lands where they live; lands which continue to sustain the Tribes cultural, spiritual, dietary and economic needs. Climate change presents a new threat to the region requiring innovative approaches to prepare for changes as well as to protect the natural resources within the region. As a critical first step in building climate resilience, the Tribes worked with Adaptation International, the University of Washington's Climate Impacts Group (CIG) and the Oregon Climate Change Research Institute (OCCRI) to complete a collaborative climate change vulnerability assessment and adaptation planning process. This presentation provides an overview of collaborative process, shares the results of the project, and includes a 3-minute video presentation. The project started with the identification of 34 plant and animal species to focus the vulnerability assessment. OCCRI analyzed detailed downscaled climate projections for two key climate scenarios (RCP 4.5 and RCP 8.5) and timescales (2050s and 2080s). CIG then used NatureServe's Climate Change Vulnerability Index (CCVI) to develop initial relative vulnerability results for these species. A core team of Tribal staff members from various departments refined these results, drawing upon and integrating rich local and traditional knowledges of the natural environmental and cultural resources. The adaptation planning phase of the project continued in a similar collaborative manner with the project team identifying promising adaptation actions and working directly with Tribal staff to refine and customize these strategies. Tailoring the actions to the local context provides a framework for action that the Tribes can continue to build on in the future. By engaging in these efforts to identify vulnerable species and adaptation strategies and actions to minimize the negative effects of climate change, the Tribes have demonstrated their continued commitment to protecting their vital natural resources. The Tribes will continue to implement projects across landscapes in the near term and utilize the information co-produced as part of this project to develop long-term strategies and projects to build resilience.

  20. The Regional Climate Model Evaluation System: A Systematic Evaluation Of CORDEX Simulations Using Obs4MIPs

    NASA Astrophysics Data System (ADS)

    Goodman, A.; Lee, H.; Waliser, D. E.; Guttowski, W.

    2017-12-01

    Observation-based evaluations of global climate models (GCMs) have been a key element for identifying systematic model biases that can be targeted for model improvements and for establishing uncertainty associated with projections of global climate change. However, GCMs are limited in their ability to represent physical phenomena which occur on smaller, regional scales, including many types of extreme weather events. In order to help facilitate projections in changes of such phenomena, simulations from regional climate models (RCMs) for 14 different domains around the world are being provided by the Coordinated Regional Climate Downscaling Experiment (CORDEX; www.cordex.org). However, although CORDEX specifies standard simulation and archiving protocols, these simulations are conducted independently by individual research and modeling groups representing each of these domains often with different output requirements and data archiving and exchange capabilities. Thus, with respect to similar efforts using GCMs (e.g., the Coupled Model Intercomparison Project, CMIP), it is more difficult to achieve a standardized, systematic evaluation of the RCMs for each domain and across all the CORDEX domains. Using the Regional Climate Model Evaluation System (RCMES; rcmes.jpl.nasa.gov) developed at JPL, we are developing easy to use templates for performing systematic evaluations of CORDEX simulations. Results from the application of a number of evaluation metrics (e.g., biases, centered RMS, and pattern correlations) will be shown for a variety of physical quantities and CORDEX domains. These evaluations are performed using products from obs4MIPs, an activity initiated by DOE and NASA, and now shepherded by the World Climate Research Program's Data Advisory Council.

  1. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutowski, William J.

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASMmore » can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes in the freshwater flux between arctic climate system components resulting from decadal changes in land and sea ice, seasonal snow, vegetation, and ocean circulation. - Changing energetics due to decadal changes in ice mass, vegetation, and air-sea interactions. - The role of small-scale atmospheric and oceanic processes that influence decadal variability. This research has been addressing modes of natural climate variability as well as extreme and rapid climate change. RASM can facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts.« less

  2. Climate change and soil salinity: The case of coastal Bangladesh.

    PubMed

    Dasgupta, Susmita; Hossain, Md Moqbul; Huq, Mainul; Wheeler, David

    2015-12-01

    This paper estimates location-specific soil salinity in coastal Bangladesh for 2050. The analysis was conducted in two stages: First, changes in soil salinity for the period 2001-2009 were assessed using information recorded at 41 soil monitoring stations by the Soil Research Development Institute. Using these data, a spatial econometric model was estimated linking soil salinity with the salinity of nearby rivers, land elevation, temperature, and rainfall. Second, future soil salinity for 69 coastal sub-districts was projected from climate-induced changes in river salinity and projections of rainfall and temperature based on time trends for 20 Bangladesh Meteorological Department weather stations in the coastal region. The findings indicate that climate change poses a major soil salinization risk in coastal Bangladesh. Across 41 monitoring stations, the annual median projected change in soil salinity is 39 % by 2050. Above the median, 25 % of all stations have projected changes of 51 % or higher.

  3. Sonification of Climate Data

    NASA Astrophysics Data System (ADS)

    Vogt, Katharina; Visda, Goudarzi

    2013-04-01

    Sonification is the acoustic analogue of data visualization and takes advantage of human perceptual and cognitive capabilities. The amount of data being processed today is steadily increasing, and both scientists and society need new ways to understand scientific data and their implications. Sonification is especially suited to the preliminary exploration of complex, dynamic, and multidimensional data sets, as can be found in climate science. In the research project SysSon (https://sysson.kug.ac.at/), we apply a systematic approach to design sonifications to climate data. In collaboration with the Wegener Center for Climate and Global Change (http://www.wegcenter.at/) we assessed the metaphors climate scientists use and their typical workflows, and chose data sets where sonification has high potential revealing new phenomena. This background will be used to develop an audio interface which is directly linked to the visualization interfaces for data analysis the scientists use today. The protoype will be evaluated according to its functionality, intuitivity for climate scientists, and aesthetic criteria. In the current stage of the project, conceptual links between climate science and sound have been elaborated and first sonification designs have been developed. The research is mainly carried out at the Institute of Electronic Music and Acoustics (http://iem.kug.ac.at/), which has extensive experience in interactive sonification with multidimensional data sets.

  4. Climate change and human health: Spatial modeling of water availability, malnutrition, and livelihoods in Mali, Africa

    USGS Publications Warehouse

    Jankowska, Marta M.; Lopez-Carr, David; Funk, Chris; Husak, Gregory J.; Chafe, Z.A.

    2012-01-01

    This study develops a novel approach for projecting climate trends in the Sahel in relation to shifting livelihood zones and health outcomes. Focusing on Mali, we explore baseline relationships between temperature, precipitation, livelihood, and malnutrition in 407 Demographic and Health Survey (DHS) clusters with a total of 14,238 children, resulting in a thorough spatial analysis of coupled climate-health dynamics. Results suggest links between livelihoods and each measure of malnutrition, as well as a link between climate and stunting. A ‘front-line’ of vulnerability, related to the transition between agricultural and pastoral livelihoods, is identified as an area where mitigation efforts might be usefully targeted. Additionally, climate is projected to 2025 for the Sahel, and demographic trends are introduced to explore how the intersection of climate and demographics may shift the vulnerability ‘front-line’, potentially exposing an additional 6 million people in Mali, up to a million of them children, to heightened risk of malnutrition from climate and livelihood changes. Results indicate that, holding constant morbidity levels, approximately one quarter of a million children will suffer stunting, nearly two hundred thousand will be malnourished, and over one hundred thousand will become anemic in this expanding arid zone by 2025. Climate and health research conducted at finer spatial scales and within shorter projected time lines can identify vulnerability hot spots that are of the highest priority for adaptation interventions; such an analysis can also identify areas with similar characteristics that may be at heightened risk. Such meso-scale coupled human-environment research may facilitate appropriate policy interventions strategically located beyond today’s vulnerability front-line.

  5. The Nevada NSF EPSCoR infrastructure for climate change science, education, and outreach project: highlights and progress on investigations of ecological change and water resources along elevational gradients

    NASA Astrophysics Data System (ADS)

    Saito, L.; Biondi, F.; Fenstermaker, L. F.; Arnone, J.; Devitt, D.; Riddle, B.; Young, M.

    2010-12-01

    In 2008, the Nevada System of Higher Education received a 5-year, $15 million grant from the National Science Foundation’s (NSF) Experimental Program to Stimulate Competitive Research (EPSCoR). The mission of the project is to create a statewide interdisciplinary program to stimulate transformative research, education, and outreach about the effects of regional climate change on ecosystem services (especially water resources), and support use of this knowledge by policy makers and stakeholders. The overarching question that this effort will address is: how will climate change affect water resources, disturbance regimes and linked ecosystem and human services? While the overall project includes cyberinfrastructure, policy, education and climate modeling, this presentation will focus on the ecological change and water resources components. The goals of these two components are: 1) improving understanding of processes controlling local- and basin-wide impacts of climate on species dynamics, disturbance regimes, and water recharge rates; 2) evaluating interactions between landscape-level processes and biophysical indicators; 3) evaluating interactions between surface and groundwater systems; 4) predicting changes in wildfire regime, primary productivity, and biodiversity (including invasive species); and 5) assessing how interactions between water and ecology will differ under climate change and/or climate variability scenarios. To achieve these goals, the two components will quantify present-day climate variability at multiple temporal and spatial scales, including at multiple elevations within Nevada’s Basin and Range ecosystem continuum. This presentation will discuss key elements for achieving these goals, including the establishment of instrumented transects spanning a range of elevations and vegetation zones in eastern and southern Nevada.

  6. Interactive Correlation Analysis and Visualization of Climate Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Kwan-Liu

    The relationship between our ability to analyze and extract insights from visualization of climate model output and the capability of the available resources to make those visualizations has reached a crisis point. The large volume of data currently produced by climate models is overwhelming the current, decades-old visualization workflow. The traditional methods for visualizing climate output also have not kept pace with changes in the types of grids used, the number of variables involved, and the number of different simulations performed with a climate model or the feature-richness of high-resolution simulations. This project has developed new and faster methods formore » visualization in order to get the most knowledge out of the new generation of high-resolution climate models. While traditional climate images will continue to be useful, there is need for new approaches to visualization and analysis of climate data if we are to gain all the insights available in ultra-large data sets produced by high-resolution model output and ensemble integrations of climate models such as those produced for the Coupled Model Intercomparison Project. Towards that end, we have developed new visualization techniques for performing correlation analysis. We have also introduced highly scalable, parallel rendering methods for visualizing large-scale 3D data. This project was done jointly with climate scientists and visualization researchers at Argonne National Laboratory and NCAR.« less

  7. A New Trans-Disciplinary Approach to Regional Integrated Assessment of Climate Impact and Adaptation in Agricultural Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Antle, J. M.; Valdivia, R. O.; Jones, J.; Rosenzweig, C.; Ruane, A. C.

    2013-12-01

    This presentation provides an overview of the new methods developed by researchers in the Agricultural Model Inter-comparison and Improvement Project (AgMIP) for regional climate impact assessment and analysis of adaptation in agricultural systems. This approach represents a departure from approaches in the literature in several dimensions. First, the approach is based on the analysis of agricultural systems (not individual crops) and is inherently trans-disciplinary: it is based on a deep collaboration among a team of climate scientists, agricultural scientists and economists to design and implement regional integrated assessments of agricultural systems. Second, in contrast to previous approaches that have imposed future climate on models based on current socio-economic conditions, this approach combines bio-physical and economic models with a new type of pathway analysis (Representative Agricultural Pathways) to parameterize models consistent with a plausible future world in which climate change would be occurring. Third, adaptation packages for the agricultural systems in a region are designed by the research team with a level of detail that is useful to decision makers, such as research administrators and donors, who are making agricultural R&D investment decisions. The approach is illustrated with examples from AgMIP's projects currently being carried out in Africa and South Asia.

  8. Challenges of Communicating Climate Change in North Dakota: Undergraduate Internship and Collaboration with Middle School Educators

    NASA Astrophysics Data System (ADS)

    Mullendore, G. L.; Munski, L.; Kirilenko, A.; Remer, F.; Baker, M.

    2012-12-01

    In summer 2010, the University of North Dakota (UND) hosted an internship for undergraduates to learn about climate change in both the classroom and group research projects. As a final project, the undergraduates were tasked to present their findings about different aspects of climate change in webcasts that would be later used in middle school classrooms in the region. Interns indicated that participation significantly improved their own confidence in future scholarly pursuits. Also, communicating about climate change, both during the project and afterwards, helped the interns feel more confident in their own learning. Use of webcasts widened the impact of student projects (e.g. YouTube dissemination), and multiple methods of student communication should continue to be an important piece of climate change education initiatives. Other key aspects of the internship were student journaling and group building. Challenges faced included media accessibility and diverse recruiting. Best practices from the UND internship will be discussed as a model for implementation at other universities. Lesson plans that complement the student-produced webcasts and adhere to regional and national standards were created during 2011. Communication between scientists and K-12 education researchers was found to be a challenge, but improved over the course of the project. These lesson plans have been reviewed both during a teacher workshop in January 2012 and by several Master teachers. Although select middle school educators have expressed enthusiasm for testing of these modules, very little hands-on testing with students has occurred. Wide-ranging roadblocks to implementation exist, including the need for adherence to state standards and texts, inadequate access to technology, and generally negative attitudes toward climate change in the region. Feedback from regional educators will be presented, and possible solutions will be discussed. Although some challenges are specific to the Northern Great Plains region, understanding these challenges are important for agencies and universities with goals of national dissemination.

  9. Climate change impact on the establishment and seasonal abundance of Invasive Mosquito Species: current state and future risk maps over southeast Europe

    NASA Astrophysics Data System (ADS)

    Tagaris, Efthimios; -Eleni Sotiropoulou, Rafaella; Sotiropoulos, Andreas; Spanos, Ioannis; Milonas, Panayiotis; Michaelakis, Antonios

    2017-04-01

    Establishment and seasonal abundance of a region for Invasive Mosquito Species (IMS) are related to climatic parameters such as temperature and precipitation. In this work the current state is assessed using data from the European Climate Assessment and Dataset (ECA&D) project over Greece and Italy for the development of current spatial risk databases of IMS. Results are validated from the installation of a prototype IMS monitoring device that has been designed and developed in the framework of the LIFE CONOPS project at key points across the two countries. Since climate models suggest changes in future temperature and precipitation rates, the future potentiality of IMS establishment and spread over Greece and Italy is assessed using the climatic parameters in 2050's provided by the NASA GISS GCM ModelE under the IPCC-A1B emissions scenarios. The need for regional climate projections in a finer grid size is assessed using the Weather Research and Forecasting (WRF) model to dynamically downscale GCM simulations. The estimated changes in the future meteorological parameters are combined with the observation data in order to estimate the future levels of the climatic parameters of interest. The final product includes spatial distribution maps presenting the future suitability of a region for the establishment and seasonal abundance of the IMS over Greece and Italy. Acknowledgement: LIFE CONOPS project "Development & demonstration of management plans against - the climate change enhanced - invasive mosquitoes in S. Europe" (LIFE12 ENV/GR/000466).

  10. Key Findings from the U.S.-India Partnership for Climate Resilience Workshop on Development and Application of Downscaling Climate Projections

    NASA Astrophysics Data System (ADS)

    Kunkel, K.; Dissen, J.; Easterling, D. R.; Kulkarni, A.; Akhtar, F. H.; Hayhoe, K.; Stoner, A. M. K.; Swaminathan, R.; Thrasher, B. L.

    2017-12-01

    s part of the Department of State U.S.-India Partnership for Climate Resilience (PCR), scientists from NOAA NCEI, CICS-NC, Texas Tech University (TTU), Stanford University (SU), and the Indian Institute of Tropical Meteorology (IITM) held a workshop at IITM in Pune, India during 7-9 March 2017 on the development, techniques and applications of downscaled climate projections. Workshop participants from TTU, SU, and IITM presented state-of-the-art climate downscaling techniques using the ARRM method, NASA NEX climate products, CORDEX-South Asia and analysis tools for resilience planning and sustainable development. PCR collaborators in attendance included Indian practitioners, researchers and other NGO including the WRI Partnership for Resilience and Preparedness (PREP), The Energy and Resources Institute (TERI), and NIH. The scientific techniques were provided to workshop participants in a software package written in R by TTU scientists and several sessions were devoted to hands-on experience with the software package. The workshop further examined case studies on the use of downscaled climate data for decision making in a range of sectors, including human health, agriculture, and water resources management as well as to inform the development of the India State Action Plans. This talk will discuss key outcomes including information needs for downscaling climate projections, importance of QA/QC of the data, key findings from select case studies, and the importance of collaborations and partnerships to apply downscaling projections to help inform the development of the India State Action Plans.

  11. Workshop on the Impacts of Aviation on Climate Change

    NASA Technical Reports Server (NTRS)

    Wuebbles, Don; Gupta, Mohan; Ko, Malcolm

    2006-01-01

    Projections indicate that demand for aviation transportation will increase by more than two fold over the next few decades. Timely action is needed to understand and quantify the potential climate impacts of aviation emissions particularly given the sustained lapse over the last several years in U.S. research activities in this area. In response to the stated needs, a group of international experts participated in the Workshop on the Impacts of Aviation on Climate Change during June 7-9, 2006 in Boston, MA. The workshop focus was on the impacts of subsonic aircraft emissions in the UT/LS region and on the potential response of the climate system. The goals of the workshop were to assess and document the present state of scientific knowledge, to identify the key underlying uncertainties and gaps, to identify ongoing and further research needed, to explore the development of climate impact metrics, and to help focus the scientific community on the aviation-climate change research needs. The workshop concluded that the major ways that aviation can affect climate, in agreement with the 1999 assessment by the Intergovernmental Panel on Climate Change (IPCC), are the direct climate effects from CO2 and water vapor emissions, the indirect forcing on climate resulting from changes in the distributions and concentrations of ozone and methane as a primary consequence of aircraft nitrogen oxide (NOx) emissions, the direct effects (and indirect effects on clouds) from emitted aerosols and aerosol precursors, and the climate effects associated with contrails and cirrus cloud formation. The workshop was organized in three subgroups: (1) Effects of aircraft emissions on the UT/LS chemical composition, (2) Effects of water and particle emissions on contrails and on cirrus clouds, and (3) Impacts on climate from aircraft emissions and identification of suitable metrics to measure these impacts. The workshop participants acknowledged the need for focused research specifically to address the uncertainties and gaps in our understanding of current and projected impacts of aviation on climate and to develop metrics to better characterize these impacts. This may entail coordination and/or expansion of existing and planned climate research programs, or new activities. Such efforts should include strong and continuing interactions among the science and aviation communities as well as policymakers to develop well-informed decisions.

  12. High altitude environmental monitoring: the SHARE project and CEOP-HE

    NASA Astrophysics Data System (ADS)

    Tartari, G.

    2009-04-01

    Mountain areas above 2,500 m a.s.l. constitute about 25% of the Earth's surface and play a fundamental role in the global water balance, while influencing global climate and atmospheric circulation systems. Several millions, including lowlanders, are directly affected by the impacts of climate change on glaciers and water resource distribution. Mountains and high altitude plateaus are subject to the highest rate of temperature increase (e.g., Tibetan Plateau) and are recognized as particularly vulnerable to the effects of climate change. In spite of this, the number of permanent monitoring sites in the major environmental networks decreases with altitude. On a sample of two hundred high altitude automatic weather stations located above 2,500 m a.s.l., less than 20% are over 4,000 m, while there are only 24 stations in the world that could be considered "complete" high altitude observatories. Furthermore, entire mountain areas are left uncovered, creating significant data gaps which make reliable modelling and forecasting nearly impossible. In response to these problems, Ev-K2-CNR has developed the project SHARE (Stations at High Altitude for Research on the Environment) with the support of the Italian government and in collaboration with UNEP. This integrated environmental monitoring and research project aims to improve knowledge on the local, regional and global consequences of climate change in mountain regions and on the influence of high elevations on climate, atmospheric circulation and hydrology. SHARE today boasts a network of 13 permanent monitoring stations between 2,165 m and 8,000 m. Affiliated researchers have produced over 150 scientific publications in atmospheric sciences, meteorology and climate, glaciology, limnology and paleolimnology and geophysics. SHARE network data is also contributed to international programs (UNEP-ABC, WMO-GAW, WCRP-GEWEX-CEOP, NASA-AERONET, ILTER, EU-EUSAAR, EU-ACCENT). Within this context, the CEOP-High Elevations (CEOP-HE) element of regional focus was developed under the GEWEX CEOP programme to study multi-scale variability in water and energy cycles in high elevation areas, and to help improve observations, modelling and data management. Future plans include expansion of the SHARE network, addition of other key research areas including hydrology, and creation of mechanisms to favour exchange of data amongst high altitude networks. In coordination with other global research and monitoring projects (CliC, etc.), SHARE and CEOP-HE could provide a more organic and well-distributed interdisciplinary network, thus allowing governments and international agencies to better face impacts of climate change effects on energy and water budgets and elaborate appropriate adaptation strategies.

  13. Toward Evaluating the Predictability of Arctic-related Climate Variations: Initial Results from ArCS Project Theme 5

    NASA Astrophysics Data System (ADS)

    Hasumi, H.

    2016-12-01

    We present initial results from the theme 5 of the project ArCS, which is a national flagship project for Arctic research in Japan. The goal of theme 5 is to evaluate the predictability of Arctic-related climate variations, wherein we aim to: (1) establish the scientific basis of climate predictability; and (2) develop a method for predicting/projecting medium- and long-term climate variations. Variability in the Arctic environment remotely influences middle and low latitudes. Since some of the processes specific to the Arctic environment function as a long memory of the state of the climate, understanding of the process of remote connections would lead to higher-precision and longer-term prediction of global climate variations. Conventional climate models have large uncertainty in the Arctic region. By making Arctic processes in climate models more sophisticated, we aim to clarify the role of multi-sphere interaction in the Arctic environment. In this regard, our newly developed high resolution ice-ocean model has revealed the relationship between the oceanic heat transport into the Arctic Ocean and the synoptic scale atmospheric variability. We also aim to reveal the mechanism of remote connections by conducting climate simulations and analyzing various types of climate datasets. Our atmospheric model experiments under possible future situations of Arctic sea ice cover indicate that reduction of sea ice qualitatively alters the basic mechanism of remote connection. Also, our analyses of climate data have identified the cause of recent more frequent heat waves at Eurasian mid-to-high latitudes and clarified the dynamical process which forms the West Pacific pattern, a dominant mode of the atmospheric anomalous circulation in the West Pacific region which also exhibits a significant signal in the Arctic stratosphere.

  14. Research on Climate and Dengue in Malaysia: A Systematic Review.

    PubMed

    Hii, Yien Ling; Zaki, Rafdzah Ahmad; Aghamohammadi, Nasrin; Rocklöv, Joacim

    2016-03-01

    Dengue is a climate-sensitive infectious disease. Climate-based dengue early warning may be a simple, low-cost, and effective tool for enhancing surveillance and control. Scientific studies on climate and dengue in local context form the basis for advancing the development of a climate-based early warning system. This study aims to review the current status of scientific studies in climate and dengue and the prospect or challenges of such research on a climate-based dengue early warning system in a dengue-endemic country, taking Malaysia as a case study. We reviewed the relationship between climate and dengue derived from statistical modeling, laboratory tests, and field studies. We searched electronic databases including PubMed, Scopus, EBSCO (MEDLINE), Web of Science, and the World Health Organization publications, and assessed climate factors and their influence on dengue cases, mosquitoes, and virus and recent development in the field of climate and dengue. Few studies in Malaysia have emphasized the relationship between climate and dengue. Climatic factors such as temperature, rainfall, and humidity are associated with dengue; however, these relationships were not consistent. Climate change projections for Malaysia show a mounting risk for dengue in the future. Scientific studies on climate and dengue enhance dengue surveillance in the long run. It is essential for institutions in Malaysia to promote research on climate and vector-borne diseases to advance the development of climate-based early warning systems. Together, effective strategies that improve existing research capacity, maximize the use of limited resources, and promote local-international partnership are crucial for sustaining research on climate and health.

  15. Integrated Modeling Approach for the Development of Climate-Informed, Actionable Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judi, David R.; Rakowski, Cynthia L.; Waichler, Scott R.

    Flooding is a prevalent natural disaster with both short and long-term social, economic, and infrastructure impacts. Changes in intensity and frequency of precipitation (including rain, snow, and rain on snow) events create challenges for the planning and management of resilient infrastructure and communities. While there is general acknowledgement that new infrastructure design should account for future climate change, no clear methods or actionable information is available to community planners and designers to ensure resilient design considering an uncertain climate future. This research used climate projections to drive high-resolution hydrology and flood models to evaluate social, economic, and infrastructure resilience formore » the Snohomish Watershed, WA, U.S.A. The proposed model chain has been calibrated and validated. Based on the established model chain, the peaks of precipitation and streamflows were found to shift from spring and summer to earlier winter season. The nonstationarity of peak discharges was discovered with more frequent and severe flood risks projected. The peak discharges were also projected to decrease for a certain period in the near future, which might be due to the reduced rain-on-snow events. This research was expected to provide a clear method for the incorporation of climate science in flood resilience analysis and to also provide actionable information relative to the frequency and intensity of future precipitation events.« less

  16. Drought Risk and Adaptation in the Interior (DRAI)

    NASA Astrophysics Data System (ADS)

    McNeeley, S.; Ojima, D. S.

    2013-12-01

    Drought is part of the normal climate variability in the Great Plains and Intermountain Western United States, but recent severe droughts along with climate change projections have increased the interest and need for better understanding of drought science and decision making. The purpose of this study is to understand how the U.S. Department of the Interior's (DOI) federal land and resource managers and their stakeholders (i.e., National Park Service, Bureau of Land Management, Fish and Wildlife Service, Bureau of Reclamation, Bureau of Indian Affairs and tribes, among others) are experiencing and dealing with drought in their landscapes. The Drought Risk and Adaptation in the Interior (DRAI) project is part of a new DOI-sponsored North Central Climate Science Center (NC CSC) crosscutting science initiative on drought across the Center's three foundational science areas: 1. physical climate, 2. ecosystems impacts and responses, and 3. human adaptation and decision making. The overarching goal is to learn more about drought within the DOI public lands and resource management in order to contribute to both the NC CSC regional science as well as providing managers and other decision makers with the most salient, credible, and legitimate research to support land and resource management decisions. Here we will present the project approach along with some initial insights learned from the research to date along with its utility for climate adaptation.

  17. Enhancing the relevance of new scenarios for climate change impacts, adaptation and vulnerability research

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.

    2013-12-01

    Over the past three decades, scenario analyses have occupied a central role in assessments of the potential impacts of climate change on natural and human systems at different scales during the 21st century. Here, we discuss the role and relevance of new scenarios using shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs) for climate change impacts, adaptation, and vulnerability (IAV) research. It first provides an overview of uses of social-environmental scenarios in IAV studies and identifies the main shortcomings of earlier such scenarios. Second, the paper elaborates on two aspects of new scenarios needing to be improved in order to enhance their usefulness for IAV studies: the ability to work coherently across spatial scales and adding indicators of importance to projections of vulnerability and adaptive capacity in addition to standard indicators of population and gross domestic product. This paper presents a research agenda to add income distribution, spatial population, human health projections, and governance indicators to the new scenarios.

  18. Lens on Climate Change (LOCC) - Engaging Secondary Students in Climate Science through Videography

    NASA Astrophysics Data System (ADS)

    Gold, A. U.; Oonk, D. J.; Smith, L. K.; Sullivan, S. B.; Boykoff, M.; Osnes, B.

    2014-12-01

    The impact of climate change is often discussed using examples from Polar Regions such as decreasing polar bear populations but significant changes are happening to local climates around the world. Climate change is often perceived as happening elsewhere, evoking a sense that others have to take action to mitigate climate change. Learning about climate change is very tangible for students when it addresses impacts they can observe close to their home. The Lens on Climate Change (LOCC) program engaged Colorado middle and high school students in producing short videos about climate change topics in Colorado, specifically ones that are impacting students' lives and their local community. Participating schools were located in rural, suburban and urban Colorado many of which have diverse student populations and high Free and Reduced Lunch rates. Project staff recruited university graduate and undergraduate student to mentor the students in their research and video production. With the help of these mentors, ten student groups selected and researched climate topics, interviewed science experts from local research institutes and produced short videos. The program aimed at engaging students in self-motivated researching and learning about a climate topic. Furthermore, it served as a way to spark students' interest in a career in science by matching them with college students for the program duration and bringing them to the University of Colorado campus for a final screening event, for many of students their first visit to a college campus. The LOCC middle and high school student groups were in addition paired with undergraduate student groups enrolled in a college course that explores climate change through artistic compositions. The undergraduate students were tasked to develop a companion video based only on a brief prompt from the secondary students. Both student videos were screened back-to-back at a final screening. The LOCC project's goal was to connect secondary students, who would otherwise not have the opportunity, with college life and the scientific community. Our evaluation results showed that the process of video production was a powerful tool for the students to explore and learn about climate change topics. Students and teachers appreciated the unique approach to learning.

  19. Integrating Native knowledge and community perspectives in geoscience research and education

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Stephens, S.; Schneider, W.

    2010-12-01

    Multiple perspectives are being incorporated in geoscience research and education exemplified by ongoing projects at the University of Alaska Fairbanks. This presentation will highlight two such projects. In the Seasons and Biomes project, that monitors seasons through global learning communities, in an effort to increase K-12 student understanding of Earth as a system and the environmental changes occurring in their local environment, students are accessing different knowledge systems in their studies. During professional development workshops for K-12 teachers, Alaska Native elders and community experts have been invited to be part of the scientist-educator team to help teachers engage their students in geoscience studies. Teachers learn and practice scientific measurement protocols in investigations such as atmosphere/weather, phenology and hydrology, learn about increasing their observation skills and systems thinking and how to engage and guide their students in environmental investigations. Native elders have been involved in classroom projects to help students understand what changes have occurred and currently occurring in their villages. They have also been involved in projects where small groups of students have conducted investigations under their guidance and the teachers’/scientists’ guidance. A student group from Shageluk, Alaska, successfully completed their study on effects of environmental changes and fire, and was invited and funded along with their Native mentor, to present their findings at an international student conference. In the Stakeholders and Climate Change project, fieldwork, meetings and numerous interviews have been conducted with Tanana, Ft. Yukon, and Chalkyitsik elders and middle-aged travelers and subsistence users. These video-taped interviews have been transcribed, digitized and processed into a draft Alaska Stakeholders and Climate Change/Project Jukebox website using Drupal CMA to create and maintain dynamic content and XSLT to create synchronized transcription. Interviews also have been analyzed and sorted according to 6 emerging themes: weather, rivers and lakes, fire, permafrost, plants and animals, and seasonality. Additionally, an interview “sampler” has been produced in DVD format for sharing with communities. This past February, we conducted a Stakeholders and Climate Change Workshop that melded local and indigenous observations and scientific research. Residents of Fort Yukon, Chalkyitsik and Tanana, Alaska and IARC and other UAF scientists met for two days to discuss changes in weather, climate, seasonality and the effects on landscape, subsistence resources and activities. Participating scientists were stimulated by the questions and observations of local residents and are interested in how their knowledge and future investigations might align more directly with local concerns. Local residents were appreciative of attention to their climate change concerns and are particularly interested in how their observations link to scientific explanations and to climate change forecasts for their specific location and getting climate change information out to communities and schools.

  20. Technical Challenges and Solutions in Representing Lakes when using WRF in Downscaling Applications

    EPA Science Inventory

    The Weather Research and Forecasting (WRF) model is commonly used to make high resolution future projections of regional climate by downscaling global climate model (GCM) outputs. Because the GCM fields are typically at a much coarser spatial resolution than the target regional ...

  1. Assessing the impact of science communication in the development of resilient cities to extreme weather

    NASA Astrophysics Data System (ADS)

    Vicari, Rosa; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2014-05-01

    The combined effects of climate change and increasing urbanisation call for new solutions to achieve urban resiliency to extreme weather. The research projects carried out by the HM&Co team (LEESU & Chair 'Hydrology for Resilient Cities' sponsored by Veolia) need to be supported by communication activities aimed to support community capacity building and cooperation between scientists and their partners and stakeholders. While outreach activities are becoming an integral part of many research projects on climate adaptation, their evaluation is scarce, rather optional, very limited. This work aims to develop quantitative and qualitative evaluation of science communication and to design corresponding assessment tools. It will be examined how evaluation can eventually improve the quality, efficiency and impact of communication activities in enhancing collaboration between scientists, professionals (e.g. water managers, urban planners) and beneficiaries (e.g. concerned citizens, policy makers). The research takes hold on several case studies on projects and programs aiming to increase the resiliency of cities to extreme weather: French projects and programmes such as RadX@IdF and Chair "Hydrology for a resilient city", European projects such as Climate KIC Blue Green Dream and Interreg NWE IVB RainGain and worldwide collaborations (e.g. TOMACS). The evaluation techniques and tools developed in the framework of this work are intended to become a useful support for engineers and researchers involved in projects on urban hydrology where resilience to extreme weather events relies also on effective communication processes between the above mentioned social actors. In particular, one of the purposes of this work is to highlight how auto-evaluation can improve on-going communication activities and create a virtuous circle of planning/implementation/evaluation. This research has links with those on the development of exploration techniques of the unstructured social big data, with a particular focus on digital communications.

  2. Climate Change Impacts on Texas Water: A White Paper Assessment of the Past, Present and Future and Recommendations for Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banner, Jay L.; Jackson, Charles S.; Yang, Zong-Liang

    2010-09-01

    Texas comprises the eastern portion of the Southwest region, where the convergence of climatological and geopolitical forces has the potential to put extreme stress on water resources. Geologic records indicate that Texas experienced large climate changes on millennial time scales in the past, and over the last thousand years, tree-ring records indicate that there were significant periods of drought in Texas. These droughts were of longer duration than the 1950s 'drought of record' that is commonly used in planning, and they occurred independently of human-induced global climate change. Although there has been a negligible net temperature increase in Texas overmore » the past century, temperatures have increased more significantly over the past three decades. Under essentially all climate model projections, Texas is susceptible to significant climate change in the future. Most projections for the 21st century show that with increasing atmospheric greenhouse gas concentrations, there will be an increase in temperatures across Texas and a shift to a more arid average climate. Studies agree that Texas will likely become significantly warmer and drier, yet the magnitude, timing, and regional distribution of these changes are uncertain. There is a large uncertainty in the projected changes in precipitation for Texas for the 21st century. In contrast, the more robust projected increase in temperature with its effect on evaporation, which is a dominant component in the region's hydrologic cycle, is consistent with model projections of frequent and extended droughts throughout the state. For these reasons, we recommend that Texas invest resources to investigate and anticipate the impacts of climate change on Texas water resources, with the goal of providing data to inform resource planning. This investment should support development of (1) research programs that provide policy-relevant science; (2) education programs to engage future researchers and policy-makers; and (3) connections between policy-makers, scientists, water resource managers, and other stakeholders. It is proposed that these goals may be achieved through the establishment of a Texas Climate Consortium, consisting of representatives from academia, industry, government agencies, water authorities, and other stakeholders. The mission of this consortium would be to develop the capacity to provide decision makers with the information needed to develop adaptation strategies in the face of future climate change and uncertainty.« less

  3. The I-Cleen Project (Inquiring on CLimate & ENergy). Research Meets Education in AN Inquiry-Based Approach to Earth System Science in Italian Classrooms

    NASA Astrophysics Data System (ADS)

    Cattadori, M.; Editorial Staff of the I-CLEN Project

    2011-12-01

    Italian citizens' perception of the seriousness of the issue of climate change is one of the lowest in Europe (Eurobarometer survey, 2008), running next to last among the 28 EU Nations. This has recently driven many national science institutions to take action in order to connect society with the complexities and consequences of climate change. These connection initiatives have encountered a certain deal of opposition in Italian schools. A fact most likely due both to a further weakening of the use of inquiry-based educational practices adopted by teachers and to their reluctance to cooperate on a professional level, which hinders the diffusion of educational practices. I-CLEEN (Inquiring on CLimate and Energy, www.icleen.museum) is a service that offers a new type of link between schools and the complexity of climate change. The project took off in 2008 thanks to the Trento Science Museum (former Tridentine Museum of Natural Science), one of the major Italian science museums that includes both research and science education and dissemination departments. The main aim is to create, using the tools of professional cooperation, a free repository of educational resources that can support teachers in preparing inquiry-based lessons on climate change and earth system science topics, making the task less of a burden. I-CLEEN is inspired by many models, which include: the ARISE (Andrill Research Immersion for Science Educators), the OER (Open Educational Resources) models and those of other projects that have developed similar information gateways such as LRE (Learning Resource Exchange) and DLESE (Digital Library on Earth Science Education). One of the strategies devised by I-CLEEN is to rely upon an editorial team made up of a highly selected group of teachers that interacts with the researchers of the museum and of other Earth system science research centres like the National Institute of Geophysics and Volcanology (INGV). Resource selection, production, revision and publication processes follow a specific procedure that was laid out in a selection policy document according to the guidelines established by the established standards. Thanks to this, all educational resources have a common layout and scientific relevance guaranteed by researcher review that both further facilitate users in taking them up. All the parts that make up the project and their respective activities are fully dealt with using an open source web platform called LifeRay. This platform and the metadata structure made it possible to publish I-CLEEN resources in international project repositories, such as Scientix. The role of the service is thus twofold, gathering local educational practices and linking them to leading international excellences in this field I-CLEEN won the first prize at the 2010 e-learning award and has also been evaluated to determine both the effectiveness of the service among teachers and also the user-friendliness of the Graphic User Interface of the project website. This contribution illustrates several aspects of the I-CLEEN, the results of the two evaluation activities and those coming from the analysis of the project website access data.

  4. Integrating Research and Education in a Study of Biocomplexity in Arctic Tundra Ecosystems: Costs, Results, and Benefits to the Research Agenda

    NASA Astrophysics Data System (ADS)

    Gould, W. A.; González, G.; Walker, D. A.

    2006-12-01

    The integration of research and education is one of the fundamental goals of our national science policy. There is strong interest to improve this integration at the graduate and undergraduate levels, with the general public, and with local and indigenous people. Efforts expended in integrating research and education can occur at the expense of research productivity and represent a cost. Results may include number of personnel involved, activities accomplished, research or other products produced. Benefits are difficult to quantify and may be short term and tangible, e.g. education-research projects enhancing research productivity with publications, or long-term and include intangibles such as personal interactions and experiences influencing career choices, the perception of research activities, enhanced communication, and direct or indirect influence on related research and educational projects. We have integrated the University field course Arctic Field Ecology with an interdisciplinary research project investigating the interactions of climate, vegetation, and permafrost in the study Biocomplexity of Arctic Tundra Ecosystems. The integration is designed to give students background in regional ecology; introduce students to the project objectives, methods, and personnel; provide for interaction with participating scientists; conduct research initiated by the class and instructors; and provide the opportunity to interact with indigenous people with interests in traditional ecological knowledge and land management. Our costs included increased logistical complexity and time-demands on the researchers and staff managing the integration. The educational component increased the size of the research group with the addition of 55 participants over the 4 field seasons of the study. Participants came from 7 countries and included 20 enrolled university students, 18 Inuit non student participants, 9 Inuit students, 3 visiting scientists, 3 staff, and 2 scientist-instructors. The educational component initiated 6 research studies at a series of eight sites along the complete climatic gradient of the North America Arctic. These include studies of variation in nonsorted circle morphology, climatic and cryoturbation effects on species diversity and community composition of plants and soil invertebrates, and an analysis of climatic and cryoturbation effects controls on litter decomposition and soil microbial biomass. A youth-elder-science camp was conducted which introduced Inuit students to permafrost and nonsorted circles. Four students have continued their involvement with the Biocomplexity study as graduate or post graduate students. Indirect benefits are difficult to assess but the integration has allowed a number of students to participate directly with the research team, drawn by the opportunity to gain education and experience over the course of a field season, and this participation has had synergistic benefits with the research agenda of the project.

  5. Dynamic Agroecological Zones for the Inland Pacific Northwest, USA

    NASA Astrophysics Data System (ADS)

    Huggins, D. R.; Rupp, R.; Gessler, P.; Pan, W.; Brown, D. J.; Machado, S.; Walden, V. P.; Eigenbrode, S.; Abatzoglou, J. T.

    2011-12-01

    Agroecological zones (AEZ's) have traditionally been defined by integrating multiple layers of biophysical (e.g. climate, soil, terrain) and occasionally socioeconomic data to create unique zones with specific ranges of land use constraints and potentials. Our approach to defining AEZ's assumes that current agricultural land uses have emerged as a consequence of biophysical and socioeconomic drivers. Therefore, we explore the concept that AEZ's can be derived from classifying the geographic distribution of current agricultural systems (e.g. the wheat-fallow cropping system zone) based on spatially geo-referenced annual cropland use data that is currently available through the National Agricultural Statistical Service (NASS). By defining AEZ's in this way, we expect to: (1) provide baseline information that geographically delineates the boundaries of current AEZ's and subzones and therefore the capacity to evaluate shifts in AEZ boundaries over time; (2) assess the biophysical (e.g. climate, soils, terrain) and socioeconomic factors (e.g. commodity prices) that are most useful for predicting and correctly classifying current AEZ's, subzones or future shifts in AEZ boundaries; (3) identify and develop AEZ-relevant climate mitigation and adaptation strategies; and (4) integrate biophysical and socioeconomic data sources to pursue a transdisciplinary examination of climate-driven AEZ futures. Achieving these goals will aid in realizing major objectives for a USDA National Institute of Food and Agriculture, Agriculture and Food Research Initiative, Cooperative Agricultural Project entitled "Regional Approaches to Climate Change (REACCH) for Pacific Northwest Agriculture". REACCH is a research, education and extension project under the leadership of the University of Idaho with significant collaboration from Washington State University, Oregon State University and the USDA Agricultural Research Service that is working towards increasing the capacity of Inland Pacific Northwest cereal production systems to adapt to and mitigate climate change. The AEZ concept is central to project-wide integration that will enable researchers, stakeholders, students, the public, and policymakers to acquire a more holistic understanding of the interrelationships of agriculture, climate change and the development of mitigation and adaptation strategies. Therefore AEZ's are part of a prescription for land management, given climate change that will enable the incorporation of information from climate models, economic models, crop models, pest disease and weed vulnerabilities, and other data sources. Specific to this presentation, we address the AEZ-related objective of developing methodology for defining major AEZ's within the Inland Pacific Northwest REACCH study area based on annual NASS cropland data.

  6. Where’s the beef? Predicting the effects of climate change on cattle production in western U.S. rangelands

    Treesearch

    Sue Miller; Matt Reeves; Karen Bagne; John Tanaka

    2017-01-01

    Cattle production capacity on western rangelands is potentially vulnerable to climate change through impacts on the amount of forage, changes in vegetation type, heat stress, and year-to-year forage variability. The researchers in this study projected climate change effects to rangelands through 2100 and compared them to a present-day baseline to estimate vulnerability...

  7. The response of soil organic carbon of a rich fen peatland in interior Alaska to projecte climate change

    Treesearch

    Zhaosheng Fan; David McGuire; Merritt R. Turetsky; Jennifer W. Harden; James Michael Waddington; Evan S. Kane

    2013-01-01

    It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in...

  8. Effects of different regional climate model resolution and forcing scales on projected hydrologic changes

    NASA Astrophysics Data System (ADS)

    Mendoza, Pablo A.; Mizukami, Naoki; Ikeda, Kyoko; Clark, Martyn P.; Gutmann, Ethan D.; Arnold, Jeffrey R.; Brekke, Levi D.; Rajagopalan, Balaji

    2016-10-01

    We examine the effects of regional climate model (RCM) horizontal resolution and forcing scaling (i.e., spatial aggregation of meteorological datasets) on the portrayal of climate change impacts. Specifically, we assess how the above decisions affect: (i) historical simulation of signature measures of hydrologic behavior, and (ii) projected changes in terms of annual water balance and hydrologic signature measures. To this end, we conduct our study in three catchments located in the headwaters of the Colorado River basin. Meteorological forcings for current and a future climate projection are obtained at three spatial resolutions (4-, 12- and 36-km) from dynamical downscaling with the Weather Research and Forecasting (WRF) regional climate model, and hydrologic changes are computed using four different hydrologic model structures. These projected changes are compared to those obtained from running hydrologic simulations with current and future 4-km WRF climate outputs re-scaled to 12- and 36-km. The results show that the horizontal resolution of WRF simulations heavily affects basin-averaged precipitation amounts, propagating into large differences in simulated signature measures across model structures. The implications of re-scaled forcing datasets on historical performance were primarily observed on simulated runoff seasonality. We also found that the effects of WRF grid resolution on projected changes in mean annual runoff and evapotranspiration may be larger than the effects of hydrologic model choice, which surpasses the effects from re-scaled forcings. Scaling effects on projected variations in hydrologic signature measures were found to be generally smaller than those coming from WRF resolution; however, forcing aggregation in many cases reversed the direction of projected changes in hydrologic behavior.

  9. The role of land-climate interactions for the regional amplification of temperature extremes in climate projections

    NASA Astrophysics Data System (ADS)

    Seneviratne, S. I.; Vogel, M.; Zscheischler, J.; Schwingshackl, C.; Davin, E.; Gudmundsson, L.; Guillod, B.; Hauser, M.; Hirsch, A.; Hirschi, M.; Humphrey, V.; Thiery, W.

    2017-12-01

    Regional hot extremes are projected to increase more strongly than the global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level (Seneviratne et al. 2016). This presentation will highlight the processes underlying this behavior, which is strongly related to land-climate feedbacks (Vogel et al. 2017). The identified feedbacks are also affecting the occurrence probability of compound drought and heat events (Zscheischler and Seneviratne 2017), with high relevance for impacts on forest fire and agriculture production. Moreover, the responsible land processes strongly contribute to the inter-model spread in the projections, and can thus be used to derive observations-based constraints to reduce the uncertainty of projected changes in climate extremes. Finally, we will also discuss the role of soil moisture effects on carbon uptake and their relevance for projections, as well as the role of land use changes in affecting the identified feedbacks and projected changes in climate extremes. References: Seneviratne, S.I., M. Donat, A.J. Pitman, R. Knutti, and R.L. Wilby, 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529, 477-483, doi:10.1038/nature16542. Vogel, M.M., R. Orth, F. Cheruy, S. Hagemann, R. Lorenz, B.J.J.M. Hurk, and S.I. Seneviratne, 2017: Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, 44(3), 1511-1519, doi:10.1002/2016GL071235. Zscheischler, J., and S.I. Seneviratne, 2017: Dependence of drivers affects risks associated with compound events. Science Advances, 3(6), doi: 10.1126/sciadv.1700263

  10. Climate Change Signals in the EURO-CORDEX Simulations

    NASA Astrophysics Data System (ADS)

    Jacob, Daniela; Preuschmann, Swantje

    2014-05-01

    A new high-resolution regional climate change ensemble has been established for Europe within the World Climate Research Program Coordinated Regional Downscaling Experiment (EURO-CORDEX) initiative. Within this presentation, the first results on climate change signals based on simulations with a horizontal resolution of 12.5 km for the new emission scenarios RCP4.5 and RCP8.5 will be presented. The new EURO-CORDEX ensemble results have been compared to the SRES A1B simulation results achieved within the ENSEMBLES project. The presentation is based on the results of the Paper JACOB et al. (2013). We concentrated on the statistical analysis of robustness and significance of the climate change signals for mean annual and seasonal temperature, total annual and seasonal precipitation, heavy precipitation, heat waves and dry spells, by using daily data for three time periods: 1971-2000, 2021-2050 and 2071-2100. The analysis of impact indices shows that for RCP8.5, there is a substantially larger change projected for temperature-based indices than for RCP4.5. The difference is less pronounced for precipitation-based indices. Two effects of the increased resolution can be regarded as an added value of regional climate simulations. Regional climate model simulations provide higher daily precipitation intensities, which are completely missing in the global climate model simulations, and they provide a significantly different climate change of daily precipitation intensities resulting in a smoother shift from weak to moderate and high intensities. The analysis of projected changes in the 95th percentile of the mean length of dry spells shows similar patterns for all scenarios. The climate projections from the new ensemble indicate a reduced northwards shift of Mediterranean drying evolution and slightly stronger mean precipitation increases over most of Europe. Within the high-resolution simulations in the EURO-CORDEX changes of the pattern for heavy precipitation events are clearly visible. (Jacob2013) Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O. B.; Bouwer, L.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; Georgopoulou, E.; Gobiet, A.; Menut, L.; Nikulin, G.; Haensler, A.; Hempelmann, N.; Jones, C.; Keuler, K.; Kovats, S.; Kröner, N.; Kotlarski, S.; Kriegsmann, A.; Martin, E.; Meijgaard, E.; Moseley, C.; Pfeifer, S.; Preuschmann, S.; Radermacher, C.; Radtke, K.; Rechid, D.; Rounsevell, M.; Samuelsson, P.; Somot, S.; Soussana, J.-F.; Teichmann, C.; Valentini, R.; Vautard, R.; Weber, B. & Yiou, P.( 2013): EURO-CORDEX: new high-resolution climate change projections for European impact research Regional Environmental Change, Springer Berlin Heidelberg, 2013, 1-16.

  11. Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways

    PubMed Central

    2018-01-01

    The Shared Socioeconomic Pathways (SSPs) are the new set of alternative futures of societal development that inform global and regional climate change research. They have the potential to foster the integration of socioeconomic scenarios within assessments of future climate-related health impacts. To date, such assessments have primarily superimposed climate scenarios on current socioeconomic conditions only. Until now, the few assessments of future health risks that employed the SSPs have focused on future human exposure—i.e., mainly future population patterns—, neglecting future human vulnerability. This paper first explores the research gaps—mainly linked to the paucity of available projections—that explain such a lack of consideration of human vulnerability under the SSPs. It then highlights the need for projections of socioeconomic variables covering the wide range of determinants of human vulnerability, available at relevant spatial and temporal scales, and accounting for local specificities through sectoral and regional extended versions of the global SSPs. Finally, this paper presents two innovative methods of obtaining and computing such socioeconomic projections under the SSPs—namely the scenario matching approach and an approach based on experts’ elicitation and correlation analyses—and applies them to the case of Europe. They offer a variety of possibilities for practical application, producing projections at sub-national level of various drivers of human vulnerability such as demographic and social characteristics, urbanization, state of the environment, infrastructure, health status, and living arrangements. Both the innovative approaches presented in this paper and existing methods—such as the spatial disaggregation of existing projections and the use of sectoral models—show great potential to enhance the availability of relevant projections of determinants of human vulnerability. Assessments of future climate-related health impacts should thus rely on these methods to account for future human vulnerability—under varying levels of socioeconomic development—and to explore its influence on future health risks under different degrees of climate change. PMID:29562727

  12. Modeling Climate Change Impacts on Landscape Evolution, Fire, and Hydrology

    NASA Astrophysics Data System (ADS)

    Sheppard, B. S.; O Connor, C.; Falk, D. A.; Garfin, G. M.

    2015-12-01

    Landscape disturbances such as wildfire interact with climate variability to influence hydrologic regimes. We coupled landscape, fire, and hydrologic models and forced them using projected climate to demonstrate climate change impacts anticipated at Fort Huachuca in southeastern Arizona, USA. The US Department of Defense (DoD) recognizes climate change as a trend that has implications for military installations, national security and global instability. The goal of this DoD Strategic Environmental Research and Development Program (SERDP) project (RC-2232) is to provide decision making tools for military installations in the southwestern US to help them adapt to the operational realities associated with climate change. For this study we coupled the spatially explicit fire and vegetation dynamics model FireBGCv2 with the Automated Geospatial Watershed Assessment tool (AGWA) to evaluate landscape vegetation change, fire disturbance, and surface runoff in response to projected climate forcing. A projected climate stream for the years 2005-2055 was developed from the Multivariate Adaptive Constructed Analogs (MACA) 4 km statistical downscaling of the CanESM2 GCM using Representative Concentration Pathway (RCP) 8.5. AGWA, an ArcGIS add-in tool, was used to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and the KINematic runoff and EROSion2 (KINEROS2) models based on GIS layers. Landscape raster data generated by FireBGCv2 project an increase in fire and drought associated tree mortality and a decrease in vegetative basal area over the years of simulation. Preliminary results from SWAT modeling efforts show an increase to surface runoff during years following a fire, and for future winter rainy seasons. Initial results from KINEROS2 model runs show that peak runoff rates are expected to increase 10-100 fold as a result of intense rainfall falling on burned areas.

  13. The PAGES 2k Network, Phase 3: Introduction, Goals and Call for Participation

    NASA Astrophysics Data System (ADS)

    McGregor, Helen; Phipps, Steven; von Gunten, Lucien; Martrat, Belen; Linderholm, Lars; Abram, Nerilie; Bothe, Oliver; Neukom, Raphael; St. George, Scott; Evans, Michael; Kaufman, Darrell; Goosse, Hugues; Turney, Chris

    2017-04-01

    The past 2000 years (the "2k" interval) provides critical context for recent anthropogenic forcing of the climate, baseline information about Earth's natural climate variability, opportunities to improve the interpretation of proxy observations, and evaluation of climate models. The PAGES 2k Network (2008-2013 Phase 1; 2014-2016 Phase 2) built regional and global surface temperature reconstructions for terrestrial regions and the oceans, and used comparison with realistically forced simulations to identify mechanisms of climate variation on interannual to bicentennial time scales. The goals of Phase 3 (2017-2019), which launches in May 2017 at the PAGES Open Science Meeting, are to: 1) Further understand the mechanisms driving regional climate variability and change on interannual to centennial time scales (Theme: "Climate Variability, Modes and Mechanisms"); 2) Reduce uncertainties in the interpretation of observations imprinted in paleoclimatic archives by environmental sensors (Theme: "Methods and Uncertainties"); and 3) Identify and analyse the extent of agreement between reconstructions and climate model simulations (Theme: "Proxy and Model Understanding") Research will be organized as a linked network of well-defined projects and targeted manuscripts, identified and led by 2k members. The 2k projects will focus on specific scientific questions aligned with Phase 3 goals, rather than being defined along regional boundaries. An enduring element from earlier phases of PAGES 2k will be a culture of collegiality, transparency, and reciprocity. Phase 3 seeks to stimulate community based projects and facilitate collaboration of researchers from different regions and career stages, drawing on breadth and depth of the global PAGES 2k community; support end-to-end workflow transparency and open data and knowledge access; and develop collaborations with other research communities and engage with stakeholders. If you would like to participate in PAGES 2k Phase 3 or receive updates, please join our mailing list, or speak to a coordinating committee member.

  14. Reconstruction of Past Mediterranean Climate

    NASA Astrophysics Data System (ADS)

    García-Herrera, Ricardo; Luterbacher, Jürg; Lionello, Piero; Gonzáles-Rouco, Fidel; Ribera, Pedro; Rodó, Xavier; Kull, Christoph; Zerefos, Christos

    2007-02-01

    First MEDCLIVAR Workshop on Reconstruction of Past Mediterranean Climate; Pablo de Olavide University, Carmona, Spain, 8-11 November 2006; Mediterranean Climate Variability and Predictability (MEDCLIVAR; http://www.medclivar.eu) is a program that coordinates and promotes research on different aspects of Mediterranean climate. The main MEDCLIVAR goals include the reconstruction of past climate, describing patterns and mechanisms characterizing climate space-time variability, extremes at different time and space scales, coupled climate model/empirical reconstruction comparisons, seasonal forecasting, and the identification of the forcings responsible for the observed changes. The program has been endorsed by CLIVAR (Climate Variability and Predictability project) and is funded by the European Science Foundation.

  15. Towards process-informed bias correction of climate change simulations

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Shepherd, Theodore G.; Widmann, Martin; Zappa, Giuseppe; Walton, Daniel; Gutiérrez, José M.; Hagemann, Stefan; Richter, Ingo; Soares, Pedro M. M.; Hall, Alex; Mearns, Linda O.

    2017-11-01

    Biases in climate model simulations introduce biases in subsequent impact simulations. Therefore, bias correction methods are operationally used to post-process regional climate projections. However, many problems have been identified, and some researchers question the very basis of the approach. Here we demonstrate that a typical cross-validation is unable to identify improper use of bias correction. Several examples show the limited ability of bias correction to correct and to downscale variability, and demonstrate that bias correction can cause implausible climate change signals. Bias correction cannot overcome major model errors, and naive application might result in ill-informed adaptation decisions. We conclude with a list of recommendations and suggestions for future research to reduce, post-process, and cope with climate model biases.

  16. Translating Extreme Precipitation Data from Climate Change Projections into Resilient Engineering Applications

    NASA Astrophysics Data System (ADS)

    Cook, L. M.; Samaras, C.; Anderson, C.

    2016-12-01

    Engineers generally use historical precipitation trends to inform assumptions and parameters for long-lived infrastructure designs. However, resilient design calls for the adjustment of current engineering practice to incorporate a range of future climate conditions that are likely to be different than the past. Despite the availability of future projections from downscaled climate models, there remains a considerable mismatch between climate model outputs and the inputs needed in the engineering community to incorporate climate resiliency. These factors include differences in temporal and spatial scales, model uncertainties, and a lack of criteria for selection of an ensemble of models. This research addresses the limitations to working with climate data by providing a framework for the use of publicly available downscaled climate projections to inform engineering resiliency. The framework consists of five steps: 1) selecting the data source based on the engineering application, 2) extracting the data at a specific location, 3) validating for performance against observed data, 4) post-processing for bias or scale, and 5) selecting the ensemble and calculating statistics. The framework is illustrated with an example application to extreme precipitation-frequency statistics, the 25-year daily precipitation depth, using four publically available climate data sources: NARCCAP, USGS, Reclamation, and MACA. The attached figure presents the results for step 5 from the framework, analyzing how the 24H25Y depth changes when the model ensemble is culled based on model performance against observed data, for both post-processing techniques: bias-correction and change factor. Culling the model ensemble increases both the mean and median values for all data sources, and reduces range for NARCCAP and MACA ensembles due to elimination of poorer performing models, and in some cases, those that predict a decrease in future 24H25Y precipitation volumes. This result is especially relevant to engineers who wish to reduce the range of the ensemble and remove contradicting models; however, this result is not generalizable for all cases. Finally, this research highlights the need for the formation of an intermediate entity that is able to translate climate projections into relevant engineering information.

  17. The Northeast Climate Science Center

    NASA Astrophysics Data System (ADS)

    Ratnaswamy, M. J.; Palmer, R. N.; Morelli, T.; Staudinger, M.; Holland, A. R.

    2013-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. Recognizing the critical threats, unique climate challenges, and expansive and diverse nature of the northeast region, the University of Massachusetts Amherst, College of Menominee Nation, Columbia University, Marine Biological Laboratory, University of Minnesota, University of Missouri Columbia, and University of Wisconsin-Madison have formed a consortium to host the NE CSC. This partnership with the U.S. Geological Survey climate science center network provides wide-reaching expertise, resources, and established professional collaborations in both climate science and natural and cultural resources management. This interdisciplinary approach is needed for successfully meeting the regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach throughout the northeast region. Thus, the NE CSC conducts research, both through its general funds and its annual competitive award process, that responds to the needs of natural resource management partners that exist, in part or whole, within the NE CSC bounds. This domain includes the North Atlantic, Upper Midwest and Great Lakes, Eastern Tallgrass and Big Rivers, and Appalachian Landscape Conservation Cooperatives (LCCs), among other management stakeholders. For example, researchers are developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; conducting a Designing Sustainable Landscapes project to assess the capability of current and potential future landscapes in the Northeast to provide integral ecosystems and suitable habitat for a suite of representative species and provide guidance for strategic habitat conservation; studying the effects of changes in the frequency and magnitude of drought and stream temperature on brook trout habitats, spatial distribution and population persistence; and conducting assessments of northeastern regional climate projections and high-resolution downscaling.

  18. Using Dynamically Downscaled Climate Model Outputs to Inform Projections of Extreme Precipitation Events

    NASA Technical Reports Server (NTRS)

    Wobus, Cameron; Reynolds, Lara; Jones, Russell; Horton, Radley; Smith, Joel; Fries, J. Stephen; Tryby, Michael; Spero, Tanya; Nolte, Chris

    2015-01-01

    Many of the storms that generate damaging floods are caused by locally intense, sub-daily precipitation, yet the spatial and temporal resolution of the most widely available climate model outputs are both too coarse to simulate these events. Thus there is often a disconnect between the nature of the events that cause damaging floods and the models used to project how climate change might influence their magnitude. This could be a particular problem when developing scenarios to inform future storm water management options under future climate scenarios. In this study we sought to close this gap, using sub-daily outputs from the Weather Research and Forecasting model (WRF) from each of the nine climate regions in the United States. Specifically, we asked 1) whether WRF outputs projected consistent patterns of change for sub-daily and daily precipitation extremes; and 2) whether this dynamically downscaled model projected different magnitudes of change for 3-hourly vs 24-hourly extreme events. We extracted annual maximum values for 3-hour through 24-hour precipitation totals from an 11-year time series of hindcast (1995-2005) and mid-century (2045-2055) climate, and calculated the direction and magnitude of change for 3-hour and 24-hour extreme events over this timeframe. The model results project that the magnitude of both 3-hour and 24-hour events will increase over most regions of the United States, but there was no clear or consistent difference in the relative magnitudes of change for sub-daily vs daily events.

  19. Projected changes in the future distribution and production of sessile oak forests near the xeric limit

    NASA Astrophysics Data System (ADS)

    Gulyás, Krisztina; Berki, Imre; Veperdi, Gábor

    2017-04-01

    As a result of regional climate change, most European countries are experiencing an increase in mean annual temperature and CO2 concentration and a decrease in mean annual precipitation. In low-elevation areas in Southeast Europe, where precipitation is a limiting factor, the projected climate change threatens the health, production, and potential distribution of forest ecosystems. The intensive summer droughts and commonly occurring extreme weather events create negative influences that cause health declines, changes in yield potential, and tree mortality. Due to the observed damages, attention has been focused on these problems. The impacts of climatic extremes cause difficulties in forest management; these difficulties occur more frequently in Hungary, which is a region that is the most sensitive to climatic extremes. Regional climate model simulations project that the frequency of extremely high temperatures and long-term dry periods will increase; both of these factors have negative effects on future tree species distribution and production. Thus, the aim of our study is to utilize the sessile oak (Quercus petraea) as a climate indicator tree species to investigate potential future distribution and estimate changes in growth trends. For future spatial distribution, we used the Fuzzy membership distribution model in a new Decision Support System (DSS) which was developed for the Hungarian forestry and agricultural sectors. Through study techniques we can employ DSS, which contains various environmental layers (topography, vegetation, past and projected future climate, soils, and hydrology), to create probability distribution maps. The results, based on 12 regional climate model simulations (www.ensembles-eu.org), show that the area of sessile oak forests is shrinking continuously and will continue to do so to the end of the 21st century. For future production estimations, we analysed intensive long-term growth monitoring network plots that were established in 1993. We calculated production capacity on the basis of age and height; we then compared these to past climate conditions to discover connections between climate, site conditions, and production. We estimated future growth tendencies for three different time periods (2011-2040; 2041-2070; 2071-2100). Results show that the most vulnerable region is the south-western part of Hungary where the projected production capacity may decrease by 26% for the time period 2071-2100. The impacts of climate change may be milder in the north-eastern part of Hungary where a 19% decrease in the production capacity of sessile oak forests is estimated. These investigations and results are important for sustainable forest management and help define climate change adaptation strategies in forestry. Keywords: climate change impacts, distribution modelling, production capacity Acknowledgements: Research is supported by the ÚNKP-16-3-3 New National Excellence Program of the Ministry of Human Capacities and the "Agroclimate.2" (VKSZ_12-1-2013-0034) EU-national joint funded research project.

  20. Arctic summer school onboard an icebreaker

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir A.; Repina, Irina A.

    2014-05-01

    The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to Kirkenes on September 23, 2013. In our presentation we will try to convey the spirit of learning and excitement of the students during the expedition and the summer school.

  1. A changing climate: impacts on human exposures to O3 using ...

    EPA Pesticide Factsheets

    Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur

  2. Earth System Grid II (ESG): Turning Climate Model Datasets Into Community Resources

    NASA Astrophysics Data System (ADS)

    Williams, D.; Middleton, D.; Foster, I.; Nevedova, V.; Kesselman, C.; Chervenak, A.; Bharathi, S.; Drach, B.; Cinquni, L.; Brown, D.; Strand, G.; Fox, P.; Garcia, J.; Bernholdte, D.; Chanchio, K.; Pouchard, L.; Chen, M.; Shoshani, A.; Sim, A.

    2003-12-01

    High-resolution, long-duration simulations performed with advanced DOE SciDAC/NCAR climate models will produce tens of petabytes of output. To be useful, this output must be made available to global change impacts researchers nationwide, both at national laboratories and at universities, other research laboratories, and other institutions. To this end, we propose to create a new Earth System Grid, ESG-II - a virtual collaborative environment that links distributed centers, users, models, and data. ESG-II will provide scientists with virtual proximity to the distributed data and resources that they require to perform their research. The creation of this environment will significantly increase the scientific productivity of U.S. climate researchers by turning climate datasets into community resources. In creating ESG-II, we will integrate and extend a range of Grid and collaboratory technologies, including the DODS remote access protocols for environmental data, Globus Toolkit technologies for authentication, resource discovery, and resource access, and Data Grid technologies developed in other projects. We will develop new technologies for (1) creating and operating "filtering servers" capable of performing sophisticated analyses, and (2) delivering results to users. In so doing, we will simultaneously contribute to climate science and advance the state of the art in collaboratory technology. We expect our results to be useful to numerous other DOE projects. The three-year R&D program will be undertaken by a talented and experienced team of computer scientists at five laboratories (ANL, LBNL, LLNL, NCAR, ORNL) and one university (ISI), working in close collaboration with climate scientists at several sites.

  3. Lens on Climate Change (LOCC) - Engaging Diverse Secondary Students in Climate Science through Videography

    NASA Astrophysics Data System (ADS)

    Gold, Anne; Smith, Lesley; Leckey, Erin; Oonk, David; Woods, Melanie

    2016-04-01

    The impact of climate change is often discussed using examples from Polar Regions, such as decreasing polar bear populations, but significant changes are happening to local climates around the world. Climate change is often perceived as happening elsewhere, evoking a sense that others have to take action to mitigate climate change. Learning about climate change is very tangible for students when it addresses impacts they can observe close to their home. The Lens on Climate Change (LOCC) program engages students, ages 11to18 in producing short videos about climate change topics in Colorado, USA, specifically ones that are impacting students' lives and their local community. Participating schools are located in rural, suburban and urban Colorado many of which have diverse student populations often from socioeconomically disadvantaged backgrounds. Project staff recruits university graduate and undergraduate students to mentor the students in their research and video production. With the help of these mentors, student groups select and research climate topics, interview science experts and stakeholders, and produce short videos. The program aims to engage students in self-motivated research and learning about a climate topic. Furthermore, it serves as a way to spark students' interest in a career in science by matching them with college students for the program duration and bringing them to a university campus for a final screening event. For many of the students it is their first visit to a college campus. The LOCC project aims to connect secondary students, who otherwise would not have this opportunity, with college life and the scientific community. Evaluation results show that the process of video production is a powerful tool for the students to explore and learn about climate change topics. Students and teachers appreciate the unique approach to learning. The here presented approach of teaching science with videography in an active, self-directed style can easily be transferred.

  4. An analysis of historic and projected climate scenarios in the Western United States using hydrologic landscape classification.

    EPA Science Inventory

    : Identifying areas of similar hydrology within the United States and its regions (hydrologic landscapes - HLs) is an active area of research. HLs are being used to construct spatially distributed assessments of variability in streamflow and climatic response in Oregon, Alaska, a...

  5. An analysis of historic and projected climate scenarios in the Western united States using hydrologic landscape classification

    EPA Science Inventory

    Identifying areas of similar hydrology within the United States and its regions (Hydrologic landscapes - HLs) is an active area of research. HLs have been used to make spatially distributed assessments of variability in streamflow and climatic response in Oregon, Alaska, and the ...

  6. Time to refine key climate policy models

    NASA Astrophysics Data System (ADS)

    Barron, Alexander R.

    2018-05-01

    Ambition regarding climate change at the national level is critical but is often calibrated with the projected costs — as estimated by a small suite of energy-economic models. Weaknesses in several key areas in these models will continue to distort policy design unless collectively addressed by a diversity of researchers.

  7. EXAMINING THE IMPACT OF CLIMATE CHANGE AND VARIABILITY OF REGIONAL AIR QUALITY OVER THE UNITED STATES

    EPA Science Inventory

    The United States has established a series of standards for criteria and other air pollutants to safeguard air quality to protect human health and the environment. The Climate Impact on Regional Air Quality (CIRAQ) project, a collaborative research effort involving multiple Fede...

  8. Educational Experiences Associated with International Students' Learning, Development, and Positive Perceptions of Campus Climate

    ERIC Educational Resources Information Center

    Glass, Chris R.

    2012-01-01

    This research project uses the constructive-developmental tradition, in the self-authorship framework of intercultural maturity (King & Baxter Magolda, 2005), to examine the extent to which 12 specific educational experiences may be associated with international undergraduates' learning, development, and perception of campus climate. The study…

  9. Performance of a Battery Electric Vehicle in the Cold Climate and Hilly Terrain of Vermont

    DOT National Transportation Integrated Search

    2008-12-23

    The goal of this research project was to determine the performance of a battery electric vehicle (BEV) in the cold climate and hilly terrain of Vermont. For this study, a 2005 Toyota Echo was converted from an internal combustion engine (ICE) vehicle...

  10. CONSEQUENCES OF FUTURE CLIMATE CHANGE AND CHANGING CLIMATE VARIABILITY ON MAIZE YIELDS IN THE MIDWESTERN UNITED STATES. (R824996)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. Do climate model predictions agree with long-term precipitation trends in the arid southwestern United States?

    USDA-ARS?s Scientific Manuscript database

    Researchers evaluating climate projections across southwestern North America observed a decreasing precipitation trend. Aridification was most pronounced in the cold (non-monsoonal) season, whereas downward trends in precipitation were smaller in the warm (monsoonal) season. In this region, based up...

  12. Integrated Assessment of Climate Change, Agricultural Land Use, and Regional Carbon Changes

    NASA Astrophysics Data System (ADS)

    MU, J.

    2014-12-01

    Changes in land use have caused a net release of carbon to the atmosphere over the last centuries and decades1. On one hand, agriculture accounts for 52% and 84% of global anthropogenic methane and nitrous oxide emissions, respectively. On the other hand, many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management2. From this perspective, land use change that reduces emissions and/or increases carbon sequestration can play an important role in climate change mitigation. As shown in Figure 1, this paper is an integrated study of climate impacts, land uses, and regional carbon changes to examine, link and assess climate impacts on regional carbon changes via impacts on land uses. This study will contribute to previous research in two aspects: impacts of climate change on future land uses under an uncertain future world and projections of regional carbon dynamics due to changes in future land use. Specifically, we will examine how land use change under historical climate change using observed data and then project changes in land use under future climate projections from 14 Global Climate Models (GCMs) for two emission scenarios (i.e., RCP4.5 and RCP8.5). More importantly, we will investigate future land use under uncertainties with changes in agricultural development and social-economic conditions along with a changing climate. By doing this, we then could integrate with existing efforts by USGS land-change scientists developing and parameterizing models capable of projecting changes across a full spectrum of land use and land cover changes and track the consequences on ecosystem carbon to provide better information for land managers and policy makers when informing climate change adaptation and mitigation policies.

  13. The Role of Ethnographic Interviewing in Climate Change Evaluation Research: Investigating Intended and Unintended program effects

    NASA Astrophysics Data System (ADS)

    Lloro-Bidart, T.

    2012-12-01

    Ethnographic interviewing is an under-utilized tool in climate change evaluation research, even though it has the potential to serve as a powerful method of data collection. The utility of the ethnographic interview lies in its ability to elicit responses from program participants describing what a program is in practice, shedding light on both intended and unintended program impacts. Drawing on evaluation work involving a federally-funded climate change grant at the University of California, Riverside, I will discuss how to design an ethnographic interview protocol in an effort to share "best practices" with other climate change evaluators. Particular attention will be given to applying ethnographic approaches to various program types, even those differing from the one discussed. I will share some of the concrete findings from my work on this grant, to serve as examples of the kinds of data evaluators can collect when employing an ethnographic approach to interviewing. UC Riverside's climate change grant is multi-faceted, however the component studied ethnographically was a science fair mentoring program. About twenty K-12 students from high poverty, ethnically diverse schools who expressed an interest in participating in science fair were paired up with graduate student mentors to simultaneously research climate change and design authentic science fair projects to compete at various levels. Since one of the stated goals of the grant is to "stimulate…students to consider climate science as a career track through experiential education activities" I was particularly interested in how student experiences with the project might differ from school science which has historically "pushed out" ethnically diverse students like those in many of Riverside's schools. (In the program students are able to interact one-on-one with a mentor and in school settings there is typically one teacher for more than thirty students). I also sought to understand student perceptions of the project design and implementation and how these perceptions might influence their thinking about science as a career. Further, I aimed to explore how mentor pedagogical philosophies might impact student experiences with the projects, since the scholarly literature supports the idea that teaching practices are linked to student success and interest in science. The key to ethnographic interviewing, which sets it apart from survey research and other interviewing styles is that the evaluator or researcher designs guided, yet open-ended questions, allowing informants to discuss what is important to them. This type of questioning affords the researcher the opportunity to ascertain whether or not the grant met some of its intended goals and impacts, while simultaneously granting participants the freedom to discuss unintended impacts not anticipated by the principal investigator and evaluator.

  14. Does the Rain fall in our heads?

    NASA Astrophysics Data System (ADS)

    Costa, M. E. G.; Rodrigues, M. A. S.

    2012-04-01

    In our school the activities linked with sciences are developed in a partnership with other school subjects. Interdisciplinary projects are always valued from beginning to end of a project. It is common for teachers of different areas to work together in a Science project. Research of English written articles is very important not only for the development of our students' scientific literacy but also as a way of widening knowledge and a view on different perspectives of life instead of being limited to research of any articles in Portuguese language. In this work, we are going to study the rainfall trends in our council (Góis, Portugal). The use of the analyses of long-term time series of rainfall becomes imperative to evaluate variability and tendency of the climate in secular time series. These, in turn, result in a better understanding of the regional climate, allowing a prognosis of the future climate which is of extreme importance in managing the natural and hydro resources and for planning human activities through scenarios and their impact. This work consists of analysis of long-term observed rainfall series for the council of Góis.

  15. Fast-track knowledge transfer from climate studies to user's decision-making process

    NASA Astrophysics Data System (ADS)

    Côté, Hélène; de Elía, Ramón; Larrivée, Caroline; Chaumont, Diane

    2017-04-01

    Over the last decade, many countries implemented various initiatives to bring their scientific community to develop more research projects addressing end-user needs. This shift in priorities gave rise to new expressions such as « actionable science », « co-production of knowledge » etc. This phenomenon is noteworthy in climate and climate change related research due to the pressing needs for societies to both adapt to climate change and quickly reduce greenhouse gases emissions. Although the attempt to include users into their projects made perfect sense, academic and even governmental researchers have often been overwhelmed by the "language barrier", the variety of needs, and the magnitude of the viewpoint change required to provide salient, credible and legitimate information to decision makers. In addition, many researchers worry that their growing involvement with users might jeopardize the progress of their own scientific interests and slowdown their academic careers. Useŕs needs are not necessarily well defined nor solely driven by scientific issues. They are a more or less complex mixture of short-term obligations like the sudden realization that an imminent decision needs to take climate change into account, long-term concerns about their risks and vulnerabilities, and knowledge gaps involving interdisciplinary inputs and communication challenges. In this context, the emergence of boundary organizations is a convincing approach to build the interface between science and end users. Since a single individual or even a single organization is rarely able to completely fulfill useŕs expectations, this presentation will show how strong and productive links between academia, boundary organization and users can stimulate knowledge transfer among all parties. To that purpose, examples will be taken from the 15-year existence of Ouranos Consortium on Regional Climatology and Adaptation to Climate Change (Montreal, Canada). We will see how Ouranoś staff -with varied expertise in vulnerabilities, impacts and adaptation, regional climate modeling and climate services- interacts with their partners in several climate related studies.

  16. Putting climate impact estimates to work: the empirical approach of the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Jina, A.; Hsiang, S. M.; Kopp, R. E., III; Rasmussen, D.; Rising, J.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assesses climate risks posed to the United States' economy in a number of sectors [1]. Four of these - crop yield, crime, labor productivity, and mortality - draw upon research which identifies social impacts using contemporary variability in climate. We first identify a group of rigorous studies that use climate variability to identify responses to temperature and precipitation, while controlling for unobserved differences between locations. To incorporate multiple studies from a single sector, we employ a meta-analytical approach that draws on Bayesian methods commonly used in medical research and previously implemented in [2]. We generate a series of aggregate response functions for each sector using this meta-analytical method. We combine response functions with downscaled physical climate projections to estimate climate impacts out to the end of the century, incorporating uncertainty from statistical estimates, weather, climate models, and different emissions scenarios. Incorporating multiple studies in a single estimation framework allows us to directly compare impacts across the economy. We find that increased mortality has the largest effect on the US economy, followed by costs associated with decreased labor productivity. Agricultural losses and increases in crime contribute lesser but nonetheless substantial costs, and agriculture, notably, shows many areas benefitting from projected climate changes. The ACP also presents results throughout the 21stcentury. The dynamics of each of the impact categories differs, with, for example, mortality showing little change until the end of the century, but crime showing a monotonic increase from the present day. The ACP approach can expand to include new findings in current sectors, new sectors, and new geographical areas of interest. It represents an analytical framework that can incorporate empirical studies into a broad characterization of climate impacts across an economy, ensuring that each individual study can contribute to guiding policy priorities on climate change. References: [1] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org. [2] Hsiang, Burke, and Miguel (2013), Science.

  17. Final Scientific/Technical Report from Hofstra University on DE-SC0001985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, E. Christa

    The U.S. Department of Energy award DE-SC0001985 funded the Hofstra University Center for Climate Study (HUCCS) from 29 September 2009 through 1 October 2016. This support enabled several activities over the period of the grant, including 1) the pursuit of several research projects, including sediment coring of coastal marshes, analysis of habitat impact due to climate change, and effects of raindrops of CO2 transfer; 2) support for multiple graduate and undergraduate students, and sponsorship of research projects that involved high school students; 3) fostering mentoring relationships and networking; 4) the design, creation, and installation of an exhibit on climate changemore » at the Cradle of Aviation Museum in Garden City, NY as an effort of public outreach. A total of 11 presentations at conferences, one book, and one peer-reviewed journal article resulted from these activities.« less

  18. Potential effects of climate change on freshwater ecosystems of the New England/Mid-Atlantic Region

    USGS Publications Warehouse

    Moore, M.V.; Pace, M.L.; Mather, J.R.; Murdoch, Peter S.; Howarth, R.W.; Folt, C.L.; Chen, C.-Y.; Hemond, Harold F.; Flebbe, P.A.; Driscoll, C.T.

    1997-01-01

    Numerous freshwater ecosystems, dense concentrations of humans along the eastern seaboard, extensive forests and a history of intensive land use distinguish the New England/Mid-Atlantic Region. Human population densities are forecast to increase in portions of the region at the same time that climate is expected to be changing. Consequently, the effects of humans and climatic change are likely to affect freshwater ecosystems within the region interactively. The general climate, at present, is humid continental, and the region receives abundant precipitation. Climatic projections for a 2 ??CO2 atmosphere, however, suggest warmer and drier conditions for much of this region. Annual temperature increases ranging from 3-5??C are projected, with the greatest increases occurring in autumn or winter. According to a water balance model, the projected increase in temperature will result in greater rates of evaporation and evapotranspiration. This could cause a 21 and 31% reduction in annual stream flow in the southern and northern sections of the region, respectively, with greatest reductions occurring in autumn and winter. The amount and duration of snow cover is also projected to decrease across the region, and summer convective thunderstorms are likely to decrease in frequency but increase in intensity. The dual effects of climate change and direct anthropogenic stress will most likely alter hydrological and biogeochemical processes, and, hence, the floral and faunal communities of the region's freshwater ecosystems. For example, the projected increase in evapotranspiration and evaporation could eliminate most bog ecosystems, and increases in water temperature may increase bioaccumulation, and possibly biomagnification, of organic and inorganic contaminants. Not all change may be adverse. For example, a decrease in runoff may reduce the intensity of ongoing estuarine eutrophication, and acidification of aquatic habitats during the spring snowmelt period may be ameliorated. Recommendations for future monitoring efforts include: (1) extending and improving data on the distribution, abundance and effect of anthropogenic Stressors (non-point pollution) within the region; and (2) improving scientific knowledge regarding the contemporary distribution and abundance of aquatic species. Research recommendations include: (1) establishing a research centre(s) where field studies designed to understand interactions between freshwater ecosystems and climate change can be conducted; (2) projecting the future distribution, activities and direct effects of humans within the region; (3) developing mathematical analyses, experimental designs and aquatic indicators that distinguish between climatic and anthropogenic effects on aquatic systems; (4) developing and refining projections of climate variability such that the magnitude, frequency and seasonal timing of extreme events can be forecast; and (5) describing quantitatively the flux of materials (sediments, nutrients, metals) from watersheds characterized by a mosaic of land uses. ?? 1997 by John Wiley & Sons, Ltd.

  19. Adapting to Teach Climate Literacy

    NASA Astrophysics Data System (ADS)

    Wilkening, B.; Schwartz, K. L.

    2017-12-01

    Adaptation is a key strategy to deal with the effects of climate change, and it can also be a key strategy in teaching climate literacy. Adapting curriculum to include utilizing new instructional practices, modifying existing lessons, evaluating evidence and engaging students in real-world projects are strategies employed in Recharge the Rain. Arizona Project WET and Watershed Management Group developed the Recharge the Rain project, through a NOAA Environmental Literacy Grant, to build community resiliency to hazards associated with increased temperatures, drought and flooding in Arizona. Sixth through twelfth grade teachers, students and the public will move through a continuum from awareness, to knowledge gain, to conceptual understanding, to action. During the first year of the project, through professional development and ongoing guidance, teachers developed a climate literacy curriculum to use in their classrooms. Using systems thinking language and structure from the Cabrera Research Labs, teachers and students gain the thinking tools necessary to increase understanding of Earth's climate system. Lessons and resources for teaching about climate change are abundant and many, such as those on the Climate Literacy Education Awareness Network (CLEAN), have gone through an extensive review process. By cataloguing online resources and sharing these with teachers through a social bookmarking tool, wakelet.com, teachers are easily able to find appropriate teaching material. Engaging students in evaluating evidence requires the data to be relevant to their everyday lives. Online data resources are readily available from NOAA and other sources at both the global and local levels. When teachers, students and the public contribute to the data collection process in citizen science projects such as CoCoRaHS, iSeeChange, and USA National Phenology Network, the data empowers them to act in ways to mitigate the climate threats in their community. Adapting to teach climate literacy can create a community of teachers, students and the public who are moving forward with making responsible decisions that affect the climate.

  20. Collaborative Project. Understanding the effects of tides and eddies on the ocean dynamics, sea ice cover and decadal/centennial climate prediction using the Regional Arctic Climate Model (RACM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, Jennifer; Joseph, Renu

    2013-09-14

    The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less

  1. Climate Change and Impacts Research Experiences for Urban Students

    NASA Astrophysics Data System (ADS)

    Marchese, P.; Carlson, B. E.; Rosenzweig, C.; Austin, S. A.; Peteet, D. M.; Druyan, L.; Fulakeza, M.; Gaffin, S.; Scalzo, F.; Frost, J.; Moshary, F.; Greenbaum, S.; Cheung, T. K.; Howard, A.; Steiner, J. C.; Johnson, L. P.

    2011-12-01

    Climate change and impacts research for undergraduate urban students is the focus of the Center for Global Climate Research (CGCR). We describe student research and significant results obtained during the Summer 2011. The NSF REU site, is a collaboration between the City University of New York (CUNY) and the NASA Goddard Institute for Space Studies (GISS). The research teams are mentored by NASA scientists and CUNY faculty. Student projects include: Effects of Stratospheric Aerosols on Tropical Cyclone Activity in the North Atlantic Basin; Comparison of Aerosol Optical Depth and Angstrom Exponent Retrieved by AERONET, MISR, and MODIS Measurements; White Roofs to the Rescue: Combating the Urban Heat Island Effect; Tropospheric Ozone Investigations in New York City; Carbon Sequestration with Climate Change in Alaskan Peatlands; Validating Regional Climate Models for Western Sub-Sahara Africa; Bio-Remediation of Toxic Waste Sites: Mineral Characteristics of Cyanide-Treated Mining Waste; Assessment of an Ocean Mixing Parameterization for Climate Studies; Comparative Wind Speed through Doppler Sounding with Pulsed Infrared LIDAR; and Satellite Telemetry and Communications. The CGCR also partners with the New York City Research Initiative (NYCRI) at GISS. The center is supported by NSF ATM-0851932 and the American Recovery and Reinvestment Act of 2009 (ARRA).

  2. Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate

    NASA Astrophysics Data System (ADS)

    Samaras, C.; Cook, L.

    2015-12-01

    Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.

  3. Determing Credibility of Regional Simulations of Future Climate

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.

    2009-12-01

    Climate models have been evaluated or validated ever since they were first developed. Establishing that a climate model can reproduce (some) aspects of the current climate of the earth on various spatial and temporal scales has long been a standard procedure for providing confidence in the model's ability to simulate future climate. However, direct links between the successes and failures of models in reproducing the current climate with regard to what future climates the models simulate has been largely lacking. This is to say that the model evaluation process has been largely divorced from the projections of future climate that the models produce. This is evidenced in the separation in the Intergovernmental Panel on Climate Change (IPCC) WG1 report of the chapter on evaluation of models from the chapter on future climate projections. There has also been the assumption of 'one model, one vote, that is, that each model projection is given equal weight in any multi-model ensemble presentation of the projections of future climate. There have been various attempts at determing measures of credibility that would avoid the 'ultrademocratic' assumption of the IPCC. Simple distinctions between models were made by research such as in Giorgi and Mearns (2002), Tebaldi et al., (2005), and Greene et al., (2006). But the metrics used were rather simplistic. More ambitous means of discriminating among the quality of model simulations have been made through the production of complex multivariate metrics, but insufficent work has been produced to verify that the metrics successfully discriminate in meaningful ways. Indeed it has been suggested that we really don't know what a model must successfully model to establish confidence in its regional-scale projections (Gleckler et al., 2008). Perhaps a more process oriented regional expert judgment approach is needed to understand which errors in climate models really matter for the model's response to future forcing. Such an approach is being attempted in the North American Climate Change Assessment Program (NARCCAP) whereby multiple global models are used to drive multiple regional models for the current period and the mid-21st century over the continent. Progress in this endeavor will be reported.

  4. Future Climate Change in the Baltic Sea Area

    NASA Astrophysics Data System (ADS)

    Bøssing Christensen, Ole; Kjellström, Erik; Zorita, Eduardo; Sonnenborg, Torben; Meier, Markus; Grinsted, Aslak

    2015-04-01

    Regional climate models have been used extensively since the first assessment of climate change in the Baltic Sea region published in 2008, not the least for studies of Europe (and including the Baltic Sea catchment area). Therefore, conclusions regarding climate model results have a better foundation than was the case for the first BACC report of 2008. This presentation will report model results regarding future climate. What is the state of understanding about future human-driven climate change? We will cover regional models, statistical downscaling, hydrological modelling, ocean modelling and sea-level change as it is projected for the Baltic Sea region. Collections of regional model simulations from the ENSEMBLES project for example, financed through the European 5th Framework Programme and the World Climate Research Programme Coordinated Regional Climate Downscaling Experiment, have made it possible to obtain an increasingly robust estimation of model uncertainty. While the first Baltic Sea assessment mainly used four simulations from the European 5th Framework Programme PRUDENCE project, an ensemble of 13 transient regional simulations with twice the horizontal resolution reaching the end of the 21st century has been available from the ENSEMBLES project; therefore it has been possible to obtain more quantitative assessments of model uncertainty. The literature about future climate change in the Baltic Sea region is largely built upon the ENSEMBLES project. Also within statistical downscaling, a considerable number of papers have been published, encompassing now the application of non-linear statistical models, projected changes in extremes and correction of climate model biases. The uncertainty of hydrological change has received increasing attention since the previous Baltic Sea assessment. Several studies on the propagation of uncertainties originating in GCMs, RCMs, and emission scenarios are presented. The number of studies on uncertainties related to downscaling and impact models is relatively small, but more are emerging. A large number of coupled climate-environmental scenario simulations for the Baltic Sea have been performed within the BONUS+ projects (ECOSUPPORT, INFLOW, AMBER and Baltic-C (2009-2011)), using various combinations of output from GCMs, RCMs, hydrological models and scenarios for load and emission of nutrients as forcing for Baltic Sea models. Such a large ensemble of scenario simulations for the Baltic Sea has never before been produced and enables for the first time an estimation of uncertainties.

  5. Future Projections of Heating and Cooling Degree Days in a Changing Climate of Turkey

    NASA Astrophysics Data System (ADS)

    An, Nazan; Turp, M. Tufan; Kurnaz, M. Levent

    2017-04-01

    The use of the degree days method is the most practical way to forsee the future changes in energy demand due to climate change-induced heating and cooling. Since the temperatures in Turkey vary considerably on a regional basis, the periods 2016-2035 and 2046-2065 have been respectively examined with reference to the period of 1981-2000, taking the mean temperature values into consideration in order to make the most accurate estimation. The future projections were applied based on the RCP8.5 (BAU-business as usual case) emission scenario using regional climate model called RegCM. According to the result of the study, it is projected that the numbers of heating degree days (HDDs) will decrease in the whole country, whereas the frequency of cooling degree days(CDDs) will increase in general. This decrease in HDDs and the increase in CDDs will be higher in the period of 2046-2065 than in the period of 2016-2035. These findings are also consistent with the expectation of temperature increases over these regions for the future period, obtained from the studies of climate modeling for the Mediterranean Basin and Turkey as well. Acknowledgement: This research has been supported by Bogazici University Research Fund Grant Number 12220.

  6. Projected Climate Impacts to South African Maize and Wheat Production in 2055: A Comparison of Empirical and Mechanistic Modeling Approaches

    NASA Technical Reports Server (NTRS)

    Estes, Lyndon D.; Beukes, Hein; Bradley, Bethany A.; Debats, Stephanie R.; Oppenheimer, Michael; Ruane, Alex C.; Schulze, Roland; Tadross, Mark

    2013-01-01

    Crop model-specific biases are a key uncertainty affecting our understanding of climate change impacts to agriculture. There is increasing research focus on intermodel variation, but comparisons between mechanistic (MMs) and empirical models (EMs) are rare despite both being used widely in this field. We combined MMs and EMs to project future (2055) changes in the potential distribution (suitability) and productivity of maize and spring wheat in South Africa under 18 downscaled climate scenarios (9 models run under 2 emissions scenarios). EMs projected larger yield losses or smaller gains than MMs. The EMs' median-projected maize and wheat yield changes were 3.6% and 6.2%, respectively, compared to 6.5% and 15.2% for the MM. The EM projected a 10% reduction in the potential maize growing area, where the MM projected a 9% gain. Both models showed increases in the potential spring wheat production region (EM = 48%, MM = 20%), but these results were more equivocal because both models (particularly the EM) substantially overestimated the extent of current suitability. The substantial water-use efficiency gains simulated by the MMs under elevated CO2 accounted for much of the EMMM difference, but EMs may have more accurately represented crop temperature sensitivities. Our results align with earlier studies showing that EMs may show larger climate change losses than MMs. Crop forecasting efforts should expand to include EMMM comparisons to provide a fuller picture of crop-climate response uncertainties.

  7. Improving Predictions and Management of Hydrological Extremes through Climate Services

    NASA Astrophysics Data System (ADS)

    van den Hurk, Bart; Wijngaard, Janet; Pappenberger, Florian; Bouwer, Laurens; Weerts, Albrecht; Buontempo, Carlo; Doescher, Ralf; Manez, Maria; Ramos, Maria-Helena; Hananel, Cedric; Ercin, Ertug; Hunink, Johannes; Klein, Bastian; Pouget, Laurent; Ward, Philip

    2016-04-01

    The EU Roadmap on Climate Services can be seen as a result of convergence between the society's call for "actionable research", and the climate research community providing tailored data, information and knowledge. However, although weather and climate have clearly distinct definitions, a strong link between weather and climate services exists that is not explored extensively. Stakeholders being interviewed in the context of the Roadmap consider climate as a far distant long term feature that is difficult to consider in present-day decision taking, which is dominated by daily experience with handling extreme events. It is argued that this experience is a rich source of inspiration to increase society's resilience to an unknown future. A newly started European research project, IMPREX, is built on the notion that "experience in managing current day weather extremes is the best learning school to anticipate consequences of future climate". This paper illustrates possible ways to increase the link between information and services addressing weather and climate time scales by discussing the underlying concepts of IMPREX and its expected outcome.

  8. SciDAC's Earth System Grid Center for Enabling Technologies Semiannual Progress Report October 1, 2010 through March 31, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2011-04-02

    This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators andmore » stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National Laboratory (ORNL), Pacific Marine Environmental Laboratory (PMEL)/NOAA, Rensselaer Polytechnic Institute (RPI), and University of Southern California, Information Sciences Institute (USC/ISI). All ESG-CET work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Through the ESG project, the ESG-CET team has developed and delivered a production environment for climate data from multiple climate model sources (e.g., CMIP (IPCC), CESM, ocean model data (e.g., Parallel Ocean Program), observation data (e.g., Atmospheric Infrared Sounder, Microwave Limb Sounder), and analysis and visualization tools) that serves a worldwide climate research community. Data holdings are distributed across multiple sites including LANL, LBNL, LLNL, NCAR, and ORNL as well as unfunded partners sites such as the Australian National University (ANU) National Computational Infrastructure (NCI), the British Atmospheric Data Center (BADC), the Geophysical Fluid Dynamics Laboratory/NOAA, the Max Planck Institute for Meteorology (MPI-M), the German Climate Computing Centre (DKRZ), and NASA/JPL. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users who want to understand it, process it, extract value from it, visualize it, and/or communicate it to others. This ongoing effort is extremely large and complex, but it will be incredibly valuable for building 'science gateways' to critical climate resources (such as CESM, CMIP5, ARM, NARCCAP, Atmospheric Infrared Sounder (AIRS), etc.) for processing the next IPCC assessment report. Continued ESG progress will result in a production-scale system that will empower scientists to attempt new and exciting data exchanges, which could ultimately lead to breakthrough climate science discoveries.« less

  9. Mapping of interconnection of climate risks

    NASA Astrophysics Data System (ADS)

    Yokohata, Tokuta; Tanaka, Katsumasa; Nishina, Kazuya; Takanashi, Kiyoshi; Emori, Seita; Kiguchi, Masashi; Iseri, Yoshihiko; Honda, Yasushi; Okada, Masashi; Masaki, Yoshimitsu; Yamamoto, Akitomo; Shigemitsu, Masahito; Yoshimori, Masakazu; Sueyoshi, Tetsuo; Iwase, Kenta; Hanasaki, Naota; Ito, Akihiko; Sakurai, Gen; Iizumi, Toshichika; Oki, Taikan

    2015-04-01

    Anthropogenic climate change possibly causes various impacts on human society and ecosystem. Here, we call possible damages or benefits caused by the future climate change as "climate risks". Many climate risks are closely interconnected with each other by direct cause-effect relationship. In this study, the major climate risks are comprehensively summarized based on the survey of studies in the literature using IPCC AR5 etc, and their cause-effect relationship are visualized by a "network diagram". This research is conducted by the collaboration between the experts of various fields, such as water, energy, agriculture, health, society, and eco-system under the project called ICA-RUS (Integrated Climate Assessment - Risks, Uncertainties and Society). First, the climate risks are classified into 9 categories (water, energy, food, health, disaster, industry, society, ecosystem, and tipping elements). Second, researchers of these fields in our project survey the research articles, and pick up items of climate risks, and possible cause-effect relationship between the risk items. A long list of the climate risks is summarized into ~130, and that of possible cause-effect relationship between the risk items is summarized into ~300, because the network diagram would be illegible if the number of the risk items and cause-effect relationship is too large. Here, we only consider the risks that could occur if climate mitigation policies are not conducted. Finally, the chain of climate risks is visualized by creating a "network diagram" based on a network graph theory (Fruchtman & Reingold algorithm). Through the analysis of network diagram, we find that climate risks at various sectors are closely related. For example, the decrease in the precipitation under the global climate change possibly causes the decrease in river runoff and the decrease in soil moisture, which causes the changes in crop production. The changes in crop production can have an impact on society by changing the food price or food supply. Changes in river runoff can also make an impact on the hydropower efficiency. Comprehensive pictures of climate risks and their interconnections are clearly shown in a straightforward manner by the network diagram. We will have a discussion how our results can be helpful for our society to recognize the climate risk.

  10. Visualization of the chains of risks under global climate change

    NASA Astrophysics Data System (ADS)

    Yokohata, T.; Nishina, K.; Takahashi, K.; Kiguchi, M.; Iseri, Y.; Sueyoshi, T.; Yoshimori, M.; Iwase, K.; Yamamoto, A.; Shigemitsu, M.; Honda, Y.; Hanasaki, N.; Masaki, Y.; Ito, A.; Iizumi, T.; Sakurai, G.; Okada, M.; Emori, S.; Oki, T.

    2014-12-01

    Anthropogenic climate change possibly causes various impacts on human society and ecosystem. Here, we call possible damages or benefits caused by the future climate change as "climate risks". Many climate risks are closely interconnected with each other by direct cause-effect relationship. In this study, the major climate risks are comprehensively summarized based on the survey of studies in the literature using IPCC AR5 etc, and their cause-effect relationship are visualized by a "network diagram". This research is conducted by the collaboration between the experts of various fields, such as water, energy, agriculture, health, society, and eco-system under the project called ICA-RUS (Integrated Climate Assessment - Risks, Uncertainties and Society). First, the climate risks are classified into 9 categories (water, energy, food, health, disaster, industry, society, ecosystem, and tipping elements). Second, researchers of these fields in our project survey the research articles, and pick up items of climate risks, and possible cause-effect relationship between the risk items. A long list of the climate risks is summarized into ~130, and that of possible cause-effect relationship between the risk items is summarized into ~300, because the network diagram would be illegible if the number of the risk items and cause-effect relationship is too large. Here, we only consider the risks that could occur if climate mitigation policies are not conducted. Finally, the chain of climate risks is visualized by creating a "network diagram" based on a network graph theory (Fruchtman & Reingold algorithm). Through the analysis of network diagram, we find that climate risks at various sectors are closely related. For example, the decrease in the precipitation under the global climate change possibly causes the decrease in river runoff and the decrease in soil moisture, which causes the changes in crop production. The changes in crop production can have an impact on society by changing the food price or food supply. Changes in river runoff can also make an impact on the hydropower efficiency. Comprehensive pictures of climate risks and their interconnections are clearly shown in a straightforward manner by the network diagram. We will have a discussion how our results can be helpful for our society to recognize the climate risk.

  11. Climate, Water and Renewable Energy in the Nordic Countries

    NASA Astrophysics Data System (ADS)

    Snorrason, A.; Jonsdottir, J. F.

    2004-05-01

    Climate and Energy (CE) is a new Nordic research project with funding from Nordic Energy Research (NEFP) and the Nordic energy sector. The project has the objective of a comprehensive assessment of the impact of climate variability and change on Nordic renewable energy resources including hydropower, wind power, bio-fuels and solar energy. This will include assessment of the power production of the hydropower dominated Nordic energy system and its sensitivity and vulnerability to climate change on both temporal and spatial scales; assessment of the impacts of extremes including floods, droughts, storms, seasonal patterns and variability. Within the CE project several thematic groups work on specific issues of climatic change and their impacts on renewable energy. A primary aim of the CE climate group is to supply a standard set of common scenarios of climate change in northern Europe and Greenland, based on recent global and regional climate change experiments. The snow and ice group has chosen glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. Preliminary work with dynamic modelling and climate scenarios shows a dramatic response of glacial runoff to increased temperature and precipitation. The statistical analysis group has reported on the status of time series analysis in the Nordic countries. The group has selected and quality controlled time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. Preliminary work using multivariate analysis on stream flow and climate variables shows strong linkages with the long term atmospheric circulation in the North Atlantic. The hydrological modelling group has already reported on "Climate change impacts on water resources in the Nordic countries - State of the art and discussion of principles". The group will compare different approaches of transferring the climate change signal into hydrological models and discuss uncertainties in models and climate scenarios. Furthermore, comprehensive assessment and mapping of impact of climate change will be produced for the whole Nordic region based on the scenarios from the CE-climate group.

  12. Reaping the benefits of task conflict in teams: the critical role of team psychological safety climate.

    PubMed

    Bradley, Bret H; Postlethwaite, Bennett E; Klotz, Anthony C; Hamdani, Maria R; Brown, Kenneth G

    2012-01-01

    Past research suggests that task conflict may improve team performance under certain conditions; however, we know little about these specific conditions. On the basis of prior theory and research on conflict in teams, we argue that a climate of psychological safety is one specific context under which task conflict will improve team performance. Using evidence from 117 project teams, the present research found that psychological safety climate moderates the relationship between task conflict and performance. Specifically, task conflict and team performance were positively associated under conditions of high psychological safety. The results support the conclusion that psychological safety facilitates the performance benefits of task conflict in teams. Theoretical implications and suggestions for future research are discussed.

  13. Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries

    NASA Astrophysics Data System (ADS)

    Pattnayak, K. C.; Kar, S. C.; Dalal, Mamta; Pattnayak, R. K.

    2017-05-01

    Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) comprising Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand brings together 21% of the world population. Thus the impact of climate change in this region is a major concern for all. To study the climate change, fifth phase of Climate Model Inter-comparison Project (CMIP5) models have been used to project the climate for the 21st century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 over the BIMSTEC countries for the period 1901 to 2100 (initial 105 years are historical period and the later 95 years are projected period). Climate change in the projected period has been examined with respect to the historical period. In order to validate the models, the mean annual rainfall has been compared with observations from multiple sources and temperature has been compared with the data from Climatic Research Unit (CRU) during the historical period. Comparison reveals that ensemble mean of the models is able to represent the observed spatial distribution of rainfall and temperature over the BIMSTEC countries. Therefore, data from these models may be used to study the future changes in the 21st century. Four out of six models show that the rainfall over India, Thailand and Myanmar has decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka show an increasing trend in both the RCP scenarios. In case of temperature, all the models show an increasing trend over all the BIMSTEC countries in both the scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. The rate of increase/decrease in rainfall and temperature are relatively more in RCP8.5 than RCP4.5 over all these countries. Inter-model comparison show that there are uncertainties within the CMIP5 model projections. More similar studies are required to be done for better understanding the model uncertainties in climate projections over this region.

  14. Environmental Impact of Megacities - Results from CityZen

    NASA Astrophysics Data System (ADS)

    Gauss, M.

    2012-04-01

    Megacities have increasingly important impacts on air quality and climate change on different spatial scales, owing to their high population densities and concentrated emission sources. The EU FP7 project CityZen (Megacity - Zoom for the Environment) ended in 2011 and was, together with its sister project MEGAPOLI, part of a major research effort within FP7 on megacities in Europe and worldwide. The project mainly focused on air pollution trends in large cities and emission hotspots, climate-chemistry couplings, future projections, and emission mitigation options. Both observational and modeling tools have been extensively used. This paper reviews some of the main results from CityZen regarding present air pollution in and around megacities, future scenarios and mitigation options to reduce air pollution and/or climate change, and the main policy messages from the project. The different observed trends over European and Asian hotspots during the last 10 to 15 years are shown. Results of source attribution of pollutants, which have been measured and calculated in and around the different selected hot spots in CityZen will be discussed. Another important question to be addressed is the extent to which climate change will affect air quality and the effectiveness of air quality legislation. Although projected emission reductions are a major determinate influencing the predictions of future air pollution, model results suggest that climate change has to be taken into account when devising future air quality legislation. This paper will also summarize some important policy messages in terms of ozone, particles and the observational needs that have been put forward as conclusions from the project.

  15. The C20C+ Detection and Attribution Project

    NASA Astrophysics Data System (ADS)

    Stone, D. A.; Angélil, O. M.; Cholia, S.; Christidis, N.; Dittus, A. J.; Folland, C. K.; King, A.; Kinter, J. L.; Krishnan, H.; Min, S. K.; Shiogama, H.; Wehner, M. F.; Wolski, P.

    2015-12-01

    Over the past decade there has been a remarkable growth in interest concerning the effects of anthropogenic emissions on extreme weather. However, research has been constrained by the lack of a public climate-model-based data product optimised for investigation of extreme weather in the context of climate change, relying instead on products designed for other purposes or on bespoke simulations designed for the particular study and not generally applicable to other extremes. The international Climate of the 20th Century Plus (C20C+) Detection and Attribution Project is filling this gap by producing the first large ensemble, multi-model, multi-year, and multi-scenario historical climate data product, specifically designed for resolving variations in the occurrence and characteristics of extreme weather from year to year and their differences from what might have been in the absence of anthropogenic emissions. Updates on project status and tens of terabytes of simulation output are available at http://portal.nersc.gov/c20c.Here we describe the experimental design of the first phase of the project, conducted with six atmospheric climate models, and discuss its various strengths and weaknesses with respect to various types of extreme weather. We also present analyses of the relative importance of climate model, estimate of anthropogenic ocean warming, spatial and temporal scale, and aspects of experimental design on estimates of how much emissions have affected extreme weather.

  16. Towards a comprehensive climate impacts assessment of solar geoengineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, Peter J.; Kravitz, Ben; Lawrence, Mark G.

    Here, despite a growing literature on the projected physical climate responses to solar geoengineering — i.e. proposals to cool the planet by increasing the planetary albedo — there is no clear picture of the subsequent impacts of such a modified climate on natural and human systems such as agriculture, health, water resources, and ecosystems. Here we argue that engaging the climate impacts research community is necessary to evaluate and communicate how solar geoengineering might reduce some risks, exacerbate others, and give rise to novel risks. We review the current state of knowledge on consequences of solar geoengineering and conclude thatmore » a thorough assessment of its impacts can proceed by building upon the frameworks developed for assessing impacts of climate change. However, the climate response to solar geoengineering will depend on the form under consideration and the manner in which it is deployed, presenting a novel challenge for the climate impacts research community.« less

  17. Towards a comprehensive climate impacts assessment of solar geoengineering

    DOE PAGES

    Irvine, Peter J.; Kravitz, Ben; Lawrence, Mark G.; ...

    2016-11-23

    Here, despite a growing literature on the projected physical climate responses to solar geoengineering — i.e. proposals to cool the planet by increasing the planetary albedo — there is no clear picture of the subsequent impacts of such a modified climate on natural and human systems such as agriculture, health, water resources, and ecosystems. Here we argue that engaging the climate impacts research community is necessary to evaluate and communicate how solar geoengineering might reduce some risks, exacerbate others, and give rise to novel risks. We review the current state of knowledge on consequences of solar geoengineering and conclude thatmore » a thorough assessment of its impacts can proceed by building upon the frameworks developed for assessing impacts of climate change. However, the climate response to solar geoengineering will depend on the form under consideration and the manner in which it is deployed, presenting a novel challenge for the climate impacts research community.« less

  18. Improving the Nation's Climate Literacy through the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Grogan, M.; Niepold, F.; Ledley, T. S.; Gold, A. U.; Breslyn, W. G.; Carley, S.

    2013-12-01

    Climate Literacy: The Essential Principles of Climate Science (2009) presented the information that is deemed important for individuals and communities to know and understand about Earth's climate, impacts of climate change, and approaches to adaptation or mitigation by a group of federal agencies, science and educational partners. These principles guided the development of the NRC Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012) and the Next Generation Science Standards (NGSS, 2013). National Science Foundation recently funded two partnership projects which support the implementation of the climate component of the NGSS using the Climate Literacy framework. The first project, the Climate Literacy and Energy Awareness Network (CLEAN), was launched in 2010 as a National Science Digital Library (NSDL) Pathways project. CLEAN's primary effort is to steward a collection of educational resources around energy and climate topics and foster a community that supports learning about climate and energy topics. CLEAN's focus has been to integrate the effective use of the educational resources across all grade levels - with a particular focus on the middle-school through undergraduate levels (grades 6-16) and align the resources with educational standards. The second project, the Maryland and Delaware Climate Change Education, Assessment and Research (MADE-CLEAR) program is supported by a Phase II Climate Change Education Partnership (CCEP) grant awarded to the University System of Maryland (USM) by the National Science Foundation. The MADE-CLEAR project's related goals are to support innovations in interdisciplinary P-20 (preschool through graduate school) climate change education, and develop new pathways for teacher education and professional development leading to expertise in climate change content and pedagogy. Work in Maryland, Delaware (MADE-CLEAR) and other states on the implementation of the NGSS, that will utilize the years of work, the efforts of hundreds of community members and tens of millions of dollars of investment and to increase the nations climate literacy, will be highlighted. We will particularly focus on the partnerships among MADE-CLEAR, NOAA and CLEAN. Climate science and energy are complex topics, with rapidly developing science and technology and the potential for controversy. The NGSS offer educators an opportunity to effectively bring these important subjects into their classrooms across a learning progression spanning K-12 and well beyond. Yet regardless of the pedagogic setting, using a literacy-based approach can provide a sound foundation for building learners' understanding of these topics. In this presentation, we will describe contributions by a group of collaborative projects and organizations to support the NGSS implementation through an integrated Earth system science approach in K-12 education.

  19. Quantifying uncertainty in future floods and drought conditions in the Northeastern United States using regionally downscaled climate projections

    NASA Astrophysics Data System (ADS)

    Siddique, R.; Wu, C.; Karmalkar, A.; Bradley, R. S.; Palmer, R. N.

    2017-12-01

    Northeastern region (NER) of the United States (US) has been projected to be a place where climate change can have the most severe impacts. These impacts include, but are not limited to, increases in the following: extreme precipitation events, temperature, flood magnitudes, flood frequencies, droughts, and sea level rise. In this study, we estimate the frequency of hydrological extremes under different climate change scenarios using regionally downscaled climate projections from a limited number of selected models from the fifth phase of Coupled Model Intercomparison Project (CMIP5). The models are chosen to minimize the loss of key climate information relevant to the NER. Precipitation and temperature from the selected models are forced into a distributed hydrological model called Hydrology Laboratory - Research Distributed Hydrological Model (HL-RDHM) to obtain streamflows for two different time regimes, near-term (20-50 years out) and long-term (50-80 years out). For this, two climate emission scenarios will be considered: RCP 4.5 and RCP 8.5. The impacts of the climate projections on the streamflows are then evaluated across different watershed scales in the NER. Among different metrics, we employ: 1) Flood Events - return period of 1 year, 10 year, 20 year, 50 year, and 100 year flood events and 2) Drought Events -low flow events associated with the 7-day 10 year low flow, number of days per month that will be below the historic monthly average, number of days per month that will be below the 25 percentile monthly historic average, changes in the 30-day and 60-day cumulative summer flows, and the timing and magnitude of spring run-off. For estimates of the climate impacts on low and high flows, only the unregulated watersheds are taken into consideration. Ensembles of streamflows obtained by forcing different climate projections are used to quantify and account for the associated uncertainties. Thus, the outcomes of this study are expected to guide regional decision makers on potential impacts of climate change on hydrological extreme events and water resources across different spatial scales within NER of the US.

  20. Science on stage

    NASA Astrophysics Data System (ADS)

    Ciceri, Piera

    2017-04-01

    Pictures and diaries of the legendary Antarctic Expedition of sir E. Shackleton and his crew aboard the Endurance (1914/16) have become the starting point to learn about Natural Science, Earth Science and Climate Change. Students, 12 years old, were involved in hands on activities, took part to a network project, used interactive virtual labs, talked to university researchers on Skype and became the writers of a play. The theater was the place to act the story of Shackleton's expedition, to "stage" some scientific experiments and to tell to the audience about ice cores, climate change, physical and geographical characteristic of polar regions, thermal phenomena related to adaptations of polar animals, solar radiation at different latitude, day/night duration. The project was carried out from teachers of science, letters, geography and English in collaboration with the "Piccolo Teatro di Milano", the association "Scienza Under 18", researchers of the "Byrd Polar and Climate Research Center of Ohio State University" and of "M. Zucchelli Station" based in Antarctica. In our opinion drama activities improve both verbal and non-verbal communication skills and soft skills such as teamwork, responsibility and commitment. To be able to write and to act, students need a deep understanding of contents. To have an audience different from their own teachers and classmates and to interact with university researchers offer real tasks. The project aims to develop a relevant skill for the students: to become awareness citizens in a changing word.

  1. Challenges and opportunities of cloud computing for atmospheric sciences

    NASA Astrophysics Data System (ADS)

    Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.

    2016-04-01

    Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.

  2. Enhancing the Extreme Climate Index (ECI) to monitor climate extremes for an index-based insurance scheme across Africa

    NASA Astrophysics Data System (ADS)

    Helmschrot, J.; Malherbe, J.; Chamunorwa, M.; Muthige, M.; Petitta, M.; Calmanti, S.; Cucchi, M.; Syroka, J.; Iyahen, E.; Engelbrecht, F.

    2017-12-01

    Climate services are a key component of National Adaptation Plan (NAP) processes, which require the analysis of current climate conditions, future climate change scenarios and the identification of adaptation strategies, including the capacity to finance and implement effective adaptation options. The Extreme Climate Facility (XCF) proposed by the African Risk Capacity (ARC) developed a climate index insurance scheme, which is based on the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events, thus indicating possible shifts to a new climate regime in various regions. The main hazards covered by ECI are extreme dry, wet and heat events, with the possibility of adding other region-specific risk events. The ECI is standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be compared. Initially developed by an Italian company specialized in Climate Services, research is now conducted at the CSIR and SASSCAL, to verify and further develop the ECI for application in southern African countries, through a project initiated by the World Food Programme (WFP) and ARC. The paper will present findings on the most appropriate definitions of extremely wet and dry conditions in Africa, in terms of their impact across a multitude of sub-regional climates of the African continent. Findings of a verification analysis of the ECI, as determined through vegetation monitoring data and the SASSCAL weather station network will be discussed. Changes in the ECI under climate change will subsequently be projected, using detailed regional projections generated by the CSIR and through the Coordinated Regional Downscaling Experiment (CORDEX). This work will be concluded by the development of a web-based climate service informing African Stakeholders on climate extremes.

  3. Predicting future US water yield and ecosystem productivity by linking an ecohydrological model to WRF dynamically downscaled climate projections

    Treesearch

    S. Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter Caldwell; K. Duan; Y. Zhang

    2015-01-01

    Quantifying the potential impacts of climate change on water yield and ecosystem productivity (i.e., carbon balances) is essential to developing sound watershed restoration plans, and climate change adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model)...

  4. Characterizing and Addressing the Need for Statistical Adjustment of Global Climate Model Data

    NASA Astrophysics Data System (ADS)

    White, K. D.; Baker, B.; Mueller, C.; Villarini, G.; Foley, P.; Friedman, D.

    2017-12-01

    As part of its mission to research and measure the effects of the changing climate, the U. S. Army Corps of Engineers (USACE) regularly uses the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset. However, these data are generated at a global level and are not fine-tuned for specific watersheds. This often causes CMIP5 output to vary from locally observed patterns in the climate. Several downscaling methods have been developed to increase the resolution of the CMIP5 data and decrease systemic differences to support decision-makers as they evaluate results at the watershed scale. Evaluating preliminary comparisons of observed and projected flow frequency curves over the US revealed a simple framework for water resources decision makers to plan and design water resources management measures under changing conditions using standard tools. Using this framework as a basis, USACE has begun to explore to use of statistical adjustment to alter global climate model data to better match the locally observed patterns while preserving the general structure and behavior of the model data. When paired with careful measurement and hypothesis testing, statistical adjustment can be particularly effective at navigating the compromise between the locally observed patterns and the global climate model structures for decision makers.

  5. Analysis of climate change impact on rainfall pattern of Sambas district, West Kalimantan

    NASA Astrophysics Data System (ADS)

    Berliana Sipayung, Sinta; Nurlatifah, Amalia; Siswanto, Bambang; Slamet S, Lilik

    2018-05-01

    Climate change is one of the most important issues being discussed globally. It caused by global warming and indirectly affecting the world climate cycle. This research discussed the effect of climate change on rainfall pattern of Sambas District and predicted the future rainfall pattern due to climate change. CRU and TRMM were used and has been validated using in situ data. This research was used Climate Modelling and Prediction using CCAM (Conformal Cubic Atmospheric Model) which also validated by in situ data (correlation= 0.81). The results show that temperature trends in Sambas regency increased to 0.082°C/yr from 1991-2014 according to CRU data. High temperature trigger changes in rainfall patterns. Rainfall pattern in Sambas District has an equatorial type where the peak occurs when the sun is right on the equator. Rainfall in Sambas reaches the maximum in March and September when the equinox occurs. The CCAM model is used to project rainfall in Sambas District in the future. The model results show that rainfall in Sambas District is projected to increase to 0.018 mm/month until 2055 so the flow rate increase 0.006 m3/month and the water balance increase 0.009 mm/month.

  6. Inspiring your audience to action: insights from theory and practice

    NASA Astrophysics Data System (ADS)

    Wong, W.; Hekkers, J.; Mott, B.

    2011-12-01

    Findings from market research sponsored by The Ocean Project, along with many other recent studies, have revealed two troubling facts: 1. Despite increased efforts to grow climate and ocean literacy among the general public, American adult's knowledge of climate and ocean health has remained stagnant in the past decade; and 2. Knowledge and level of concern about climate change show little correlation, i.e. the people who are most concerned about climate change are not the ones who know most about the science of climate change, and vice versa. If knowledge does not lead to action among the general public, what implications does this have for those of us working for conservation? How can we motivate people to act for conservation? The Ocean Project's large-scale survey of American attitudes and values vis-à-vis ocean, climate change, and related conservation issues provides answers to many such burning questions. Our research findings reveal critical insights about what, who, and how we can communicate for maximum efficacy. In particular, youth and minorities emerged as important constituencies: not only are they more environmentally aware and/or socially conscious, they are important influencers who demonstrate greater propensity to modify their behaviors and/or engage in conservation advocacy. Our presentation will discuss the implications of these findings for strategic communication for conservation action as well as present case studies from the Monterey Bay Aquarium that support these research findings and provide insights from evaluation of two significantly different interpretive approaches to communicate about climate change-a live animal exhibit and a video-based, live-narrated auditorium program.

  7. The Interplay of Climate Change and Air Pollution on Health.

    PubMed

    Orru, H; Ebi, K L; Forsberg, B

    2017-12-01

    Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-related health impacts and identify knowledge gaps for future research. Several studies modelled future ozone and particulate matter concentrations and calculated the resulting health impacts under different climate scenarios. Due to climate change, ozone- and fine particle-related mortalities are expected to increase in most studies; however, results differ by region, assumed climate change scenario and other factors such as population and background emissions. This review explores the relationships between climate change, air pollution and air pollution-related health impacts. The results highly depend on the climate change scenario used and on projections of future air pollution emissions, with relatively high uncertainty. Studies primarily focused on mortality; projections on the effects on morbidity are needed.

  8. Impact of climate change on global malaria distribution.

    PubMed

    Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M; Morse, Andrew P; Colón-González, Felipe J; Stenlund, Hans; Martens, Pim; Lloyd, Simon J

    2014-03-04

    Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.

  9. Impact of climate change on global malaria distribution

    PubMed Central

    Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M.; Morse, Andrew P.; Colón-González, Felipe J.; Stenlund, Hans; Martens, Pim; Lloyd, Simon J.

    2014-01-01

    Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution. PMID:24596427

  10. A framework to assess the impacts of Climate Change for different hazards at local and regional scale through probabilistic multi-model approaches

    NASA Astrophysics Data System (ADS)

    Mercogliano, P.; Reder, A.; Rianna, G.

    2017-12-01

    Extreme weather events (EWEs) are projected to be more frequent and severe across the globe because of global warming. This poses challenging problems for critical infrastructures (CIs) which can be dramatically affected by EWEs needing adaptation countermeasures againts changing climate conditions. In this work, we present the main results achieved in the framework of the FP7-European project INTACT aimed at analyzing the resilience of CIs against shocks and stresses due to the climate changes. To identify variations in the hazard induced by climate change, appropriate Extreme Weather Indicators (EWIs) are defined for several case studies and different approaches are analyzed to obtain local climate projections. The different approaches, with increasing refinement depending on local information available and methodologies selected, are investigated considering raw versus bias corrected data and weighted or equiprobable ensemble mean projections given by the regional climate models within the Euro-CORDEX program. Specifically, this work focuses on two case studies selected from the five proposed within the INTACT project and for which local station data are available: • rainfall-induced landslide affecting Campania region (Southern Italy) with a special view on the Nocera municipality; • storms and heavy rainfall/winds in port of Rotterdam (Netherlands). In general, our results show a small sensitivity to the weighting approach and a large sensitivity to bias-correction in the future projections. For landslides in Campania region, the Euro-CORDEX simulations projected a generalized worsening of the safety conditions depending on the scenario (RCP4.5/8.5) and period (2011-2040/2041-2070/2071-2100) considered. For the port of Rotterdam, the Euro-CORDEX simulations projected an increment in the intense events of daily and weekly precipitation, also in this case depending on the scenario and period considered. Considering framework, methodologies and results, the activities developed within the INTACT project, also through an intense effort of knowledge co-production between researchers and stakeholders, posed a theoretical-based starting point for CI owners, operators and protection policy makers for the setup of protection systems against present and future climatic hazard features.

  11. Climate services in the tourism sector - examples and market research

    NASA Astrophysics Data System (ADS)

    Damm, Andrea; Köberl, Judith; Prettenthaler, Franz; Kortschak, Dominik; Hofer, Marianne; Winkler, Claudia

    2017-04-01

    Tourism is one of the most weather-sensitive sectors. Hence, dealing with weather and climate risks is an important part of operational risk management. WEDDA® (WEather Driven Demand Analysis), developed by Joanneum Research, represents a comprehensive and flexible toolbox for managing weather and climate risks. Modelling the demand for products or services of a particular economic sector or company and its weather and climate sensitivity usually forms the starting and central point of WEDDA®. Coupling the calibrated demand models to either long-term climate scenarios or short-term weather forecasts enables the use of WEDDA® for the following areas of application: (i) implementing short-term forecasting systems for the prediction of the considered indicator; (ii) quantifying the weather risk of a particular economic sector or company using parameters from finance (e.g. Value-at-Risk); (iii) assessing the potential impacts of changing climatic conditions on a particular economic sector or company. WEDDA® for short-term forecasts on the demand for products or services is currently used by various tourism businesses, such as open-air swimming pools, ski areas, and restaurants. It supports tourism and recreation facilities to better cope with (increasing) weather variability by optimizing the disposability of staff, resources and merchandise according to expected demand. Since coping with increasing weather variability forms one of the challenges with respect to climate change, WEDDA® may become an important component within a whole pool of weather and climate services designed to support tourism and recreation facilities to adapt to climate change. Climate change impact assessments at European scale, as conducted in the EU-FP7 project IMPACT2C, provide basic information of climate change impacts on tourism demand not only for individual tourism businesses, but also for regional and national tourism planners and policy makers interested in benchmarks for the vulnerability of their tourism destination. In this project we analysed the impacts of +2 °C global warming on winter tourism demand in ski tourism related regions in Europe. In order to achieve the climate targets, tailored climate information services - for individual businesses as well as at the regional and national level - play an important role. The current market, however, is still in the early stages. In the ongoing H2020 projects EU-MACS (www.eu-macs.eu) and MARCO (www.marco-h2020.eu) (Nov 2016 - Oct 2018) Joanneum Research explores the climate services market in the tourism sector. The current use of climate services is reviewed in detail and in an interactive process key market barriers and enablers will be identified in close collaboration with stakeholders from the tourism industry. The analysis and co-development of new climate services concepts for the tourism sector aims to reduce the gaps between climate services supply and demand.

  12. "Nuestra Tierra Dinamica" Global Climate Change STEM Education Fostering Environmental Stewardship

    NASA Astrophysics Data System (ADS)

    La Grave, M.; de Valenzuela, M.; Russell, R.

    2012-12-01

    CLUB ECO LÓGICO is a democratic and participatory program that provides active citizenship in schools and community, placing climate change into context for the Latino Community. The program's objectives focus on: 1. The Environment. Reducing the school and community impact on the environment through environmental footprint through stewardship actions. 2. Empowerment. Engaging participants through project and service learning and make decisions about how to improve their schools, their homes and their community's environment. 3. Community and Research Partnerships. Fostering collaborations with local community, stakeholders, government, universities, research organizations, and businesses that have expertise in environmental research, management, education and climate change. 4. Awareness. Increasing environmental and climate science knowledge of participants through STEM activities and hands-on access to technology. 5. Research and evaluation. Assessing the relevance of program activities through the engagement of the Latino community in planning and the effectiveness and impact of STEM activities through formative and summative evaluation. To address these objectives, the program has several inter related components in an after school setting: SUN EARTH Connections: Elementary (grades K to 2) students learn the basic climate change concepts through inquiry and hands on STEM activities. Bilingual 8 facilitators adapt relevant NASA educational resources for use in inquiry based, hands on activities. Drama and the arts provide unique experiences as well as play a key role in learning, participation and facilitation. GREEN LABS: Elementary students (grades 3 to 5) participate in stations where each Lab is staffed by at least two professionals: a College level fully bilingual Latin American Professional and a stakeholder representing either a research organization or other relevant environmental organization. Our current Green Lab themes include: Air, Soils, Water, Energy, Health, Waste and Communicating Science. Parental and Community Engagement: Family or Community Nights and community events showcasing student products, videos, and service learning projects in a bilingual format; and presentations by research scientists on climate and environmental science topics of interest to the Latino community. Our events have been highlighted on Univision television evening news, reaching Latinos across the state. Digital Story Telling: Our Video Lab involves Latino high school students who are trained as mentors, encouraged to research climate change topics, meet scientists and learn about video technology. By fall 2013, our HS Video Lab will mentor local middle school students. Throughout the year students take field trips to film and interview key scientists and educators. The project will share lessons learned concerning several issues: 1. What environmental and climate science issues are most relevant for Latinos; 2. What strategies are effective in engaging the Latino community in program planning and in engaging participation; 3. What approaches are effective in developing or adapting environmental and climate science education activities for Latino students and families; 4. How to develop effective partnerships with research and other environmental organizations; 5. How to develop culturally sensitive evaluation strategies.

  13. High-resolution regional climate model evaluation using variable-resolution CESM over California

    NASA Astrophysics Data System (ADS)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine-scale processes. This assessment is also relevant for addressing the scale limitation of current RCMs or VRGCMs when next-generation model resolution increases to ~10km and beyond.

  14. The Earth System Grid Center for Enabling Technologies (ESG-CET): Scaling the Earth System Grid to Petascale Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2007-09-27

    This report, which summarizes work carried out by the ESG-CET during the period April 1, 2007 through September 30, 2007, includes discussion of overall progress, period goals, highlights, collaborations and presentations. To learn more about our project, please visit the Earth System Grid website. In addition, this report will be forwarded to the DOE SciDAC project management, the Office of Biological and Environmental Research (OBER) project management, national and international stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), etc.), and collaborators. Themore » ESG-CET executive committee consists of David Bernholdt, ORNL; Ian Foster, ANL; Don Middleton, NCAR; and Dean Williams, LLNL. The ESG-CET team is a collective of researchers and scientists with diverse domain knowledge, whose home institutions include seven laboratories (ANL, LANL, LBNL, LLNL, NCAR, ORNL, PMEL) and one university (ISI/USC); all work in close collaboration with the project's stakeholders and domain researchers and scientists. During this semi-annual reporting period, the ESG-CET increased its efforts on completing requirement documents, framework design, and component prototyping. As we strove to complete and expand the overall ESG-CET architectural plans and use-case scenarios to fit our constituency's scope of use, we continued to provide production-level services to the community. These services continued for IPCC AR4, CCES, and CCSM, and were extended to include Cloud Feedback Model Intercomparison Project (CFMIP) data.« less

  15. The Southern Global Change Program: Determining the relationship between air pollutants, climate change and forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickler, R.A.; Fox, S.A.

    The mission of the SGCP is to conduct research and monitoring in the southern region of the US; to determine the interactive responses among forest ecosystems, atmospheric pollution, and climate change; and to use this knowledge to manage and protect forest ecosystems. The first 5 years of research have emphasized the interactions and impacts of five stresses: CO{sub 2}, ozone, temperature, moisture, and nutrients in pine ecosystems. Hierarchial research approaches include correlational studies, experimental field and lab studies, and modeling Across individual-tree to regional levels. The results from 36 projects suggest: elevated CO{sub 2} increases carbon gain and suppress respirationmore » across site-resource conditions; genotypes are differentially affected by climate events; and competition and reproductive biology are likely to be impacted by climate change. An overview of five years of research results will be discussed.« less

  16. Environmental Sciences Division: Summaries of research in FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principalmore » investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.« less

  17. Approaches to Climate Change & Health in Cuba: Guillermo Mesa MD MPhil, Director, Disasters & Health, National School of Public Health. Paulo Ortiz MS PhD, Senior Researcher, Climate Center, Cuban Meteorology Institute.

    PubMed

    Mesa, Guillermo; Ortiz, Paulo; Gorry, Conner

    2015-04-01

    The US National Institutes of Health predict climate change will cause an additional 250,000 deaths between 2030 and 2050, with damages to health costing US$2-$4 billion by 2030. Although much debate still surrounds climate change, island ecosystems-such as Cuba's-in the developing world are arguably among the most vulnerable contexts in which to confront climate variability. Beginning in the 1990s, Cuba launched research to develop the evidence base, set policy priorities, and design mitigation and adaptation actions specifically to address climate change and its effects on health. Two researchers at the forefront of this interdisciplinary, intersectoral effort are epidemiologist Dr Guillermo Mesa, who directed design and implementation of the nationwide strategy for disaster risk reduction in the Cuban public health system as founding director of the Latin American Center for Disaster Medicine (CLAMED) and now heads the Disasters and Health department at the National School of Public Health; and Dr Paulo Ortiz, a biostatistician and economist at the Cuban Meteorology Institute's Climate Center (CENCLIM), who leads the research on Cuba's Climate and Health project and is advisor on climate change and health for the UN Economic Commission for Latin America and the Caribbean (ECLAC).

  18. The Earth System Grid Federation (ESGF): Climate Science Infrastructure for Large-scale Data Management and Dissemination

    NASA Astrophysics Data System (ADS)

    Williams, D. N.

    2015-12-01

    Progress in understanding and predicting climate change requires advanced tools to securely store, manage, access, process, analyze, and visualize enormous and distributed data sets. Only then can climate researchers understand the effects of climate change across all scales and use this information to inform policy decisions. With the advent of major international climate modeling intercomparisons, a need emerged within the climate-change research community to develop efficient, community-based tools to obtain relevant meteorological and other observational data, develop custom computational models, and export analysis tools for climate-change simulations. While many nascent efforts to fill these gaps appeared, they were not integrated and therefore did not benefit from collaborative development. Sharing huge data sets was difficult, and the lack of data standards prevented the merger of output data from different modeling groups. Thus began one of the largest-ever collaborative data efforts in climate science, resulting in the Earth System Grid Federation (ESGF), which is now used to disseminate model, observational, and reanalysis data for research assessed by the Intergovernmental Panel on Climate Change (IPCC). Today, ESGF is an open-source petabyte-level data storage and dissemination operational code-base that manages secure resources essential for climate change study. It is designed to remain robust even as data volumes grow exponentially. The internationally distributed, peer-to-peer ESGF "data cloud" archive represents the culmination of an effort that began in the late 1990s. ESGF portals are gateways to scientific data collections hosted at sites around the globe that allow the user to register and potentially access the entire ESGF network of data and services. The growing international interest in ESGF development efforts has attracted many others who want to make their data more widely available and easy to use. For example, the World Climate Research Program, which provides governance for CMIP, has now endorsed the ESGF software foundation to be used for ~70 other model intercomparison projects (MIPs), such as obs4MIPs, TAMIP, CFMIP, and GeoMIP. At present, more than 40 projects disseminate their data via ESGF.

  19. Tools for enhancing motivation in teaching climate change and impacts for students in forest- and environmental engineering

    NASA Astrophysics Data System (ADS)

    Gálos, Borbála

    2017-04-01

    Climate change is observed to have severe impacts on forest ecosystems. Ongoing research projects are dealing with the complex analysis of the causes of the health status decline and mortality of the vulnerable tree species. In the Carpathian Basin, recurrent long lasting drought periods and heatwaves of the last decades initiated the sequence of abiotic and biotic impacts in the beech and oak forests. Threatening extreme events are very likely to occur more frequent under changing climate conditions until the end of the 21st century. Therefore adaptation strategies and renewed regulations of the tree species selection are necessary. Learning material of forest education needs to be continuously updated with the new aspects and results of recent research and forest management planning. Therefore ideas and tools have been developed for teaching climate change impacts for students in forest- and environmental engineering. Using examples from world sport championships (e.g. losers and winners of climate change) these tools are applied to communicate the basic research questions in an easily understandable way as well as to motivate students and raise their awareness for the complex processes of forest - climate interactions. By the application of the developed examples for motivation, the key competences and learning outcomes can be the following: • students get an insight into the observed and projected tendencies of climate extremes; • they get an impression on the complexity of the climate change related damage chains; • they will be able to identify the climatic drivers of forest decline and mortality; • with the skill of critical thinking they will be able to evaluate the ecological role of forests that are already affected and that could be affected by the consequences of changing climate conditions; • they recognize the importance and urgency of the appropriate decisions in forestry and nature conservation. Keywords: climate change impacts, forest education, teaching tools for motivation The research is supported by the ÚNKP-16-4-3 New National Excellence Program of the Ministry of Human Capacities.

  20. European climate reconstructed for the past 500 years based on documentary and instrumental evidence

    NASA Astrophysics Data System (ADS)

    Wheeler, Dennis; Brazdil, Rudolf; Pfister, Christian

    2010-05-01

    European climate reconstructed for the past 500 years based on documentary and instrumental evidence Dennis Wheeler, Rudolf Brázdil, Christian Pfister and the Millennium project SG1 team The paper summarises the results of historical-climatological research conducted as part of the EU-funded 6th FP project MILLENNIUM the principal focus of which was the investigation of European climate during the past one thousand years (http://www.millenniumproject.net/). This project represents a major advance in bringing together, for the first time on such a scale, historical climatologists with other palaeoclimatological communities and climate modellers from many European countries. As part of MILLENNIUM, a sub-group (SG1) of historical climatologists from ten countries had the responsibility of collating and comprehensively analysing evidence from instrumental and documentary archives. This paper presents the main results of this undertaking but confines its attention to the study of the climate of the past 500 years and represents a summary of 10 themed papers submitted for a special issue of Climatic Change. They range across a variety of topics including newly-studied documentary data sources (e.g. early instrumental records, opening of the Stockholm harbour, ship log book data), temperature reconstructions for Central Europe, the Stockholm area and Mediterranean based on different types of documentary evidence, the application of standard paleoclimatological approaches to reconstructions based on index series derived from the documentary data, the influence of circulation dynamics on January-April climate , a comparison of reconstructions based on documentary data with the model runs (ECHO-G), a study of the quality of instrumental data in climate reconstructions, a 500-year flood chronology in Europe, and selected disastrous European windstorms and their reflection in documentary evidence and human memory. Finally, perspectives of historical-climatological research and future challenges and directions in this rapidly-developing and important field are presented together with an overview of the potential of documentary sources for climatic reconstructions.

  1. An Evidence-Based Public Health Approach to Climate Change Adaptation

    PubMed Central

    Eidson, Millicent; Tlumak, Jennifer E.; Raab, Kristin K.; Luber, George

    2014-01-01

    Background: Public health is committed to evidence-based practice, yet there has been minimal discussion of how to apply an evidence-based practice framework to climate change adaptation. Objectives: Our goal was to review the literature on evidence-based public health (EBPH), to determine whether it can be applied to climate change adaptation, and to consider how emphasizing evidence-based practice may influence research and practice decisions related to public health adaptation to climate change. Methods: We conducted a substantive review of EBPH, identified a consensus EBPH framework, and modified it to support an EBPH approach to climate change adaptation. We applied the framework to an example and considered implications for stakeholders. Discussion: A modified EBPH framework can accommodate the wide range of exposures, outcomes, and modes of inquiry associated with climate change adaptation and the variety of settings in which adaptation activities will be pursued. Several factors currently limit application of the framework, including a lack of higher-level evidence of intervention efficacy and a lack of guidelines for reporting climate change health impact projections. To enhance the evidence base, there must be increased attention to designing, evaluating, and reporting adaptation interventions; standardized health impact projection reporting; and increased attention to knowledge translation. This approach has implications for funders, researchers, journal editors, practitioners, and policy makers. Conclusions: The current approach to EBPH can, with modifications, support climate change adaptation activities, but there is little evidence regarding interventions and knowledge translation, and guidelines for projecting health impacts are lacking. Realizing the goal of an evidence-based approach will require systematic, coordinated efforts among various stakeholders. Citation: Hess JJ, Eidson M, Tlumak JE, Raab KK, Luber G. 2014. An evidence-based public health approach to climate change adaptation. Environ Health Perspect 122:1177–1186; http://dx.doi.org/10.1289/ehp.1307396 PMID:25003495

  2. Defining climate modeling user needs: which data are actually required to support impact analysis and adaptation policy development?

    NASA Astrophysics Data System (ADS)

    Swart, R. J.; Pagé, C.

    2010-12-01

    Until recently, the policy applications of Earth System Models in general and climate models in particular were focusing mainly on the potential future changes in the global and regional climate and attribution of observed changes to anthropogenic activities. Is climate change real? And if so, why do we have to worry about it? Following the broad acceptance of the reality of the risks by the majority of governments, particularly after the publication of IPCC’s 4th Assessment Report and the increasing number of observations of changes in ecological and socio-economic systems that are consistent with the observed climatic changes, governments, companies and other societal groups have started to evaluate their own vulnerability in more detail and to develop adaptation and mitigation strategies. After an early focus on the most vulnerable developing countries, recently, an increasing number of industrialized countries have embarked on the design of adaptation and mitigation plans, or on studies to evaluate the level of climate resilience of their development plans and projects. Which climate data are actually required to effectively support these activities? This paper reports on the efforts of the IS-ENES project, the infrastructure project of the European Network for Earth System Modeling, to address this question. How do we define user needs and can the existing gap between the climate modeling and impact research communities be bridged in support of the ENES long-term strategy? In contrast from the climate modeling community, which has a relatively long history of collaboration facilitated by a relatively uniform subject matter, commonly agreed definitions of key terminology and some level of harmonization of methods, the climate change impacts research community is very diverse and fragmented, using a wide variety of data sources, methods and tools. An additional complicating factor is that researchers working on adaptation usually closely collaborate with non-scientific stakeholders in government, civil society and the private sector, in a context which is different in many European countries. In the IS-ENES effort, a dialogue is set up between the communities in Europe, building on various existing research networks in the area of climate change impacts, vulnerability and adaptation. Generally, the data needs have not been well articulated. If asked, people working on impacts and adaptation routinely seem to ask for data with the highest possible resolution. However, in reality for many impact and adaptation applications this is not needed, and the large resulting data sets may exceed the analytical capacity of the impact researchers. For impact analysis often various types of climate indices, derived from primary climate model output variables, are required, including indices for extremes and in probabilistic format. Rather than making output from climate modeling generically available, e.g. through a climate service e-portal, context-specific tailoring of information for specific applications is important for effective use. This may require some level of interaction between the users and the data providers, dependent on the specific questions to be addressed.

  3. Climate change and landscape development in post-closure safety assessment of solid radioactive waste disposal: Results of an initiative of the IAEA.

    PubMed

    Lindborg, T; Thorne, M; Andersson, E; Becker, J; Brandefelt, J; Cabianca, T; Gunia, M; Ikonen, A T K; Johansson, E; Kangasniemi, V; Kautsky, U; Kirchner, G; Klos, R; Kowe, R; Kontula, A; Kupiainen, P; Lahdenperä, A-M; Lord, N S; Lunt, D J; Näslund, J-O; Nordén, M; Norris, S; Pérez-Sánchez, D; Proverbio, A; Riekki, K; Rübel, A; Sweeck, L; Walke, R; Xu, S; Smith, G; Pröhl, G

    2018-03-01

    The International Atomic Energy Agency has coordinated an international project addressing climate change and landscape development in post-closure safety assessments of solid radioactive waste disposal. The work has been supported by results of parallel on-going research that has been published in a variety of reports and peer reviewed journal articles. The project is due to be described in detail in a forthcoming IAEA report. Noting the multi-disciplinary nature of post-closure safety assessments, here, an overview of the work is given to provide researchers in the broader fields of radioecology and radiological safety assessment with a review of the work that has been undertaken. It is hoped that such dissemination will support and promote integrated understanding and coherent treatment of climate change and landscape development within an overall assessment process. The key activities undertaken in the project were: identification of the key processes that drive environmental change (mainly those associated with climate and climate change), and description of how a relevant future may develop on a global scale; development of a methodology for characterising environmental change that is valid on a global scale, showing how modelled global changes in climate can be downscaled to provide information that may be needed for characterising environmental change in site-specific assessments, and illustrating different aspects of the methodology in a number of case studies that show the evolution of site characteristics and the implications for the dose assessment models. Overall, the study has shown that quantitative climate and landscape modelling has now developed to the stage that it can be used to define an envelope of climate and landscape change scenarios at specific sites and under specific greenhouse-gas emissions assumptions that is suitable for use in quantitative post-closure performance assessments. These scenarios are not predictions of the future, but are projections based on a well-established understanding of the important processes involved and their impacts on different types of landscape. Such projections support the understanding of, and selection of, plausible ranges of scenarios for use in post-closure safety assessments. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Predicting Coupled Ocean-Atmosphere Modes with a Climate Modeling Hierarchy -- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Ghil, UCLA; Andrew W. Robertson, IRI, Columbia Univ.; Sergey Kravtsov, U. of Wisconsin, Milwaukee

    The goal of the project was to determine midlatitude climate predictability associated with tropical-extratropical interactions on interannual-to-interdecadal time scales. Our strategy was to develop and test a hierarchy of climate models, bringing together large GCM-based climate models with simple fluid-dynamical coupled ocean-ice-atmosphere models, through the use of advanced probabilistic network (PN) models. PN models were used to develop a new diagnostic methodology for analyzing coupled ocean-atmosphere interactions in large climate simulations made with the NCAR Parallel Climate Model (PCM), and to make these tools user-friendly and available to other researchers. We focused on interactions between the tropics and extratropics throughmore » atmospheric teleconnections (the Hadley cell, Rossby waves and nonlinear circulation regimes) over both the North Atlantic and North Pacific, and the ocean’s thermohaline circulation (THC) in the Atlantic. We tested the hypothesis that variations in the strength of the THC alter sea surface temperatures in the tropical Atlantic, and that the latter influence the atmosphere in high latitudes through an atmospheric teleconnection, feeding back onto the THC. The PN model framework was used to mediate between the understanding gained with simplified primitive equations models and multi-century simulations made with the PCM. The project team is interdisciplinary and built on an existing synergy between atmospheric and ocean scientists at UCLA, computer scientists at UCI, and climate researchers at the IRI.« less

  5. U.S. Funding is insufficient to address the human health impacts of and public health responses to climate variability and change.

    PubMed

    Ebi, Kristie L; Balbus, John; Kinney, Patrick L; Lipp, Erin; Mills, David; O'Neill, Marie S; Wilson, Mark L

    2009-06-01

    The need to identify and try to prevent adverse health impacts of climate change has risen to the forefront of climate change policy debates and become a top priority of the public health community. Given the observed and projected changes in climate and weather patterns, their current and anticipated health impacts, and the significant degree of regulatory discussion underway in the U.S. government, it is reasonable to determine the extent of federal investment in research to understand, avoid, prepare for, and respond to the human health impacts of climate change in the United States. In this commentary we summarize the health risks of climate change in the United States and examine the extent of federal funding devoted to understanding, avoiding, preparing for, and responding to the human health risks of climate change. Future climate change is projected to exacerbate various current health problems, including heat-related mortality, diarrheal diseases, and diseases associated with exposure to ozone and aeroallergens. Demographic trends and geophysical and socioeconomic factors could increase overall vulnerability. Despite these risks, extramural federal funding of climate change and health research is estimated to be < $3 million per year. Given the real risks that climate change poses for U.S. populations, the National Institutes of Health, Centers for Disease Control and Prevention, U.S. Environmental Protection Agency, and other agencies need to have robust intramural and extramural programs, with funding of > $200 million annually. Oversight of the size and priorities of these programs could be provided by a standing committee within the National Academy of Sciences.

  6. Quantifying the effect of Tmax extreme events on local adaptation to climate change of maize crop in Andalusia for the 21st century

    NASA Astrophysics Data System (ADS)

    Gabaldon, Clara; Lorite, Ignacio J.; Ines Minguez, M.; Lizaso, Jon; Dosio, Alessandro; Sanchez, Enrique; Ruiz-Ramos, Margarita

    2015-04-01

    Extreme events of Tmax can threaten maize production on Andalusia (Ruiz-Ramos et al., 2011). The objective of this work is to attempt a quantification of the effects of Tmax extreme events on the previously identified (Gabaldón et al., 2013) local adaptation strategies to climate change of irrigated maize crop in Andalusia for the first half of the 21st century. This study is focused on five Andalusia locations. Local adaptation strategies identified consisted on combinations of changes on sowing dates and choice of cultivar (Gabaldón et al., 2013). Modified cultivar features were the duration of phenological phases and the grain filling rate. The phenological and yield simulations with the adaptative changes were obtained from a modelling chain: current simulated climate and future climate scenarios (2013-2050) were taken from a group of regional climate models at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/). After bias correcting these data for temperature and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012) crop simulations were generated by the CERES-maize model (Jones and Kiniry, 1986) under DSSAT platform, previously calibrated and validated. Quantification of the effects of extreme Tmax on maize yield was computed for different phenological stages following Teixeira et al. (2013). A heat stress index was computed; this index assumes that yield-damage intensity due to heat stress increases linearly from 0.0 at a critical temperature to a maximum of 1.0 at a limit temperature. The decrease of crop yield is then computed by a normalized production damage index which combines attainable yield and heat stress index for each location. Selection of the most suitable adaptation strategy will be reviewed and discussed in light of the quantified effect on crop yield of the projected change of Tmax extreme events. This study will contribute to MACSUR knowledge Hub within the Joint Programming Initiative on Agriculture, Food Security and Climate Change (FACCE - JPI) of EU and is financed by MULCLIVAR project (CGL2012-38923-C02-02) and IFAPA project AGR6126 from Junta de Andalucía, Spain. References Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, VOL. 116, D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research, Volume 117, D17, doi: 0.1029/2012JD017968 Gabaldón C, Lorite IJ, Mínguez MI, Dosio A, Sánchez-Sánchez E and Ruiz-Ramos M, 2013. Evaluation of local adaptation strategies to climate change of maize crop in Andalusia for the first half of 21st century. Geophysical Research Abstracts. Vol. 15, EGU2013-13625, 2013. EGU General Assembly 2013, April 2013, Vienna, Austria. Jones C.A. and J.R. Kiniry. 1986. CERES-Maize: A simulation model of maize growth and development. Texas A&M Univ. Press, College Station. Ruiz-Ramos M., E. Sanchez, C. Galllardo, and M.I. Minguez. 2011. Impacts of projected maximum temperature extremes for C21 by an ensemble of regional climate models on cereal cropping systems in the Iberian Peninsula. Natural Hazards and Earth System Science 11: 3275-3291. Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F. Global hotspots of heat stress on agricultural crops due to climate change. Agric For Meteorol. 2013;170(15):206-215.

  7. Blending ecology and evolution using emerging technologies to determine species distributions with a non-native pathogen in a changing climate

    Treesearch

    K. Waring; S. Cushman; A. Eckert; L. Flores-Renteria; H. Lintz; R. Sniezko; C. Still; C. Wehenkel; A. Whipple; M. Wing

    2017-01-01

    A collaborative team of researchers from the United States and Mexico has begun an exciting new research project funded by The National Science Foundation’s Macrosystems Biology program. The project will study ecological and evolutionary processes affecting the distribution of southwestern white pine (Pinus strobiformis), an important tree species of mixed conifer...

  8. Collaborative Research: Robust Climate Projections and Stochastic Stability of Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghil, Michael; McWilliams, James; Neelin, J. David

    The project was completed along the lines of the original proposal, with additional elements arising as new results were obtained. The originally proposed three thrusts were expanded to include an additional, fourth one. (i) The e ffects of stochastic perturbations on climate models have been examined at the fundamental level by using the theory of deterministic and random dynamical systems, in both nite and in nite dimensions. (ii) The theoretical results have been implemented first on a delay-diff erential equation (DDE) model of the El-Nino/Southern-Oscillation (ENSO) phenomenon. (iii) More detailed, physical aspects of model robustness have been considered, as proposed,more » within the stripped-down ICTP-AGCM (formerly SPEEDY) climate model. This aspect of the research has been complemented by both observational and intermediate-model aspects of mid-latitude and tropical climate. (iv) An additional thrust of the research relied on new and unexpected results of (i) and involved reduced-modeling strategies and associated prediction aspects have been tested within the team's empirical model reduction (EMR) framework. Finally, more detailed, physical aspects have been considered within the stripped-down SPEEDY climate model. The results of each of these four complementary e fforts are presented in the next four sections, organized by topic and by the team members concentrating on the topic under discussion.« less

  9. Assessing present and future climate changes in Siberia and their regional socioeconomic consequences using a web-based big data geoprocessing platform

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Gordov, E. P.

    2016-12-01

    Recently initiated collaborative research project is presented. Its main objective is to develop high spatial and temporal resolution datasets for studying the ongoing and future climate changes in Siberia, caused by global and regional processes in the atmosphere and the ocean. This goal will be achieved by using a set of regional and global climate models for the analysis of the mechanisms of climate change and quantitative assessment of changes in key climate variables, including analysis of extreme weather and climate events and their dynamics, evaluation of the frequency, amplitude and the risks caused by the extreme events in the region. The main practical application of the project is to provide experts, stakeholders and the public with quantitative information about the future climate change in Siberia obtained on the base of a computational web- geoinformation platform. The thematic platform will be developed in order to facilitate processing and analysis of high resolution georeferenced datasets that will be delivered and made available to scientific community, policymakes and other end users as a result of the project. Software packages will be developed to implement calculation of various climatological indicators in order to characterize and diagnose climate change and its dynamics, as well as to archive results in digital form of electronic maps (GIS layers). By achieving these goals the project will provide science based tools necessary for developing mitigation measures for adapting to climate change and reducing negative impact on the population and infrastructure of the region. Financial support of the computational web- geoinformation platform prototype development by the RF Ministry of Education and Science under Agreement 14.613.21.0037 (RFMEFI61315X0037) is acknowledged.

  10. Evaluation of Prospective Changes in Temperature Extremes for the CORDEX-Australasia Domain Using the NEX-GDDP Dataset

    NASA Astrophysics Data System (ADS)

    Turp, M. Tufan; An, Nazan; Kurnaz, M. Levent

    2017-04-01

    CORDEX-Australasia is a vast domain where comprises primarily Australia, New Zealand, and Papua New Guinea whilst it also covers the islands in the Pacific Ocean such as New Caledonia, Fiji, Tonga, Tuvalu, and Vanuatu as well. Climate of Australasia varies from tropical monsoonal and arid to moist temperate and alpine. The number of studies about the domain of Australasia is very limited and it is in urgent need of further efforts. This research points out the relationship between the climate change and temperature extremes over the domain of Australasia and it investigates the changes in the number of some specific temperature extreme indices (i.e. summer days, consecutive summer days, heat wave duration, very warm days, tropical nights, etc.) as described by the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI). All these extreme indices were also calculated using the NASA Earth Exchange Global Daily Downscaled Projection (NEX-GDDP) dataset. In this study, all these index computations have been employed by utilizing ACCESS1-0 and MPI-ESM-MR global circulation models' bias corrected daily minimum and maximum air temperature variables, which were statistically downscaled to a 0.25 degrees x 0.25 degrees spatial resolution by the Climate Analytics Group and NASA Ames Research Center, under both medium-low and high emission trajectories (i.e. RCP4.5 and RCP8.5). Moreover, the analysis of the projected changes in the temperature extremes was applied for the period of 2081-2100 with respect to the reference period of 1986-2005. Acknowledgements: This research has been supported by Bogazici University Research Fund Grant Number 12220. Climate scenarios used were from the NEX-GDDP dataset, prepared by the Climate Analytics Group and NASA Ames Research Center using the NASA Earth Exchange, and distributed by the NASA Center for Climate Simulation (NCCS).

  11. Scientists and Science Museums: Forging New Collaborations to Interpret the Environment and Engage Public Audiences in Climate Change

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Bartels, D.; Schwartzenberg, S.; Andrews, M. S.

    2011-12-01

    The Exploratorium engages Americans on issues of climate change, and energy use and production in a distinctive way; using a multilayered approach emphasizing all of the Exploratorium's strengths, not simply exhibitions. Specifically, the institution gives people access to the latest science research and researchers, provides the inquiry skills and basic science needed to make sense of this research, studies perception and cognition and how we come to believe what we believe, and sets up social communities and spaces for people to test their ideas and understandings with others. Using exhibits, the web and other media, visualization technology, building architecture, physical spaces, classes and professional education the Exploratorium achieves this multilayered approach. This powerful combination enhances people's own ability to make sound, evidence-based decisions for themselves, their families, and their communities. In 2013, the Exploratorium will move from its current home in the Palace of Fine Arts in San Francisco to a waterfront campus with access to the bay and outdoor platforms for instrumentation and observation. This will allow program and exhibit development in the environmental sciences that focuses on natural phenomena and physical and biological systems. Some current and planned Exploratorium projects with an emphasis on global climate change and potential for further development in the new location: 1. An Observatory building, where visitors can investigate Bay waters and climate. 2. Wired Pier, a suite of environmental sensors that will track local conditions over time and connect to larger observing networks regionally and globally 3. NOAA education and climate science partnership, including a scientist-in-residence program for training front-line staff 4. Global Climate Change Research Explorer website enabling visitors to observe current climate data or analyze evidence. 5. The Ice Stories project which trained polar scientists in media production and story-telling to blog and produce videos from their research field sites. 6. The science of thinking and sharing: How do we make decisions? How do we evaluate risk?

  12. Support for research towards understanding the population health vulnerabilities to vector-borne diseases: increasing resilience under climate change conditions in Africa.

    PubMed

    Ramirez, Bernadette

    2017-12-12

    Diseases transmitted to humans by vectors account for 17% of all infectious diseases and remain significant public health problems. Through the years, great strides have been taken towards combatting vector-borne diseases (VBDs), most notably through large scale and coordinated control programmes, which have contributed to the decline of the global mortality attributed to VBDs. However, with environmental changes, including climate change, the impact on VBDs is anticipated to be significant, in terms of VBD-related hazards, vulnerabilities and exposure. While there is growing awareness on the vulnerability of the African continent to VBDs in the context of climate change, there is still a paucity of research being undertaken in this area, and impeding the formulation of evidence-based health policy change. One way in which the gap in knowledge and evidence can be filled is for donor institutions to support research in this area. The collaboration between the WHO Special Programme for Research and Training in Tropical Diseases (TDR) and the International Centre for Research and Development (IDRC) builds on more than 10 years of partnership in research capacity-building in the field of tropical diseases. From this partnership was born yet another research initiative on VBDs and the impact of climate change in the Sahel and sub-Saharan Africa. This paper lists the projects supported under this research initiative and provides a brief on some of the policy and good practice recommendations emerging from the ongoing implementation of the research projects. Data generated from the research initiative are expected to be uptaken by stakeholders (including communities, policy makers, public health practitioners and other relevant partners) to contribute to a better understanding of the impacts of social, environmental and climate change on VBDs(i.e. the nature of the hazard, vulnerabilities, exposure), and improve the ability of African countries to adapt to and reduce the effects of these changes in ways that benefit their most vulnerable populations.

  13. Modeling and projection of dengue fever cases in Guangzhou based on variation of weather factors.

    PubMed

    Li, Chenlu; Wang, Xiaofeng; Wu, Xiaoxu; Liu, Jianing; Ji, Duoying; Du, Juan

    2017-12-15

    Dengue fever is one of the most serious vector-borne infectious diseases, especially in Guangzhou, China. Dengue viruses and their vectors Aedes albopictus are sensitive to climate change primarily in relation to weather factors. Previous research has mainly focused on identifying the relationship between climate factors and dengue cases, or developing dengue case models with some non-climate factors. However, there has been little research addressing the modeling and projection of dengue cases only from the perspective of climate change. This study considered this topic using long time series data (1998-2014). First, sensitive weather factors were identified through meta-analysis that included literature review screening, lagged analysis, and collinear analysis. Then, key factors that included monthly average temperature at a lag of two months, and monthly average relative humidity and monthly average precipitation at lags of three months were determined. Second, time series Poisson analysis was used with the generalized additive model approach to develop a dengue model based on key weather factors for January 1998 to December 2012. Data from January 2013 to July 2014 were used to validate that the model was reliable and reasonable. Finally, future weather data (January 2020 to December 2070) were input into the model to project the occurrence of dengue cases under different climate scenarios (RCP 2.6 and RCP 8.5). Longer time series analysis and scientifically selected weather variables were used to develop a dengue model to ensure reliability. The projections suggested that seasonal disease control (especially in summer and fall) and mitigation of greenhouse gas emissions could help reduce the incidence of dengue fever. The results of this study hope to provide a scientifically theoretical basis for the prevention and control of dengue fever in Guangzhou. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Irby, Isaac D.; Friedrichs, Marjorie A. M.; Da, Fei; Hinson, Kyle E.

    2018-05-01

    The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic-biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO) concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. Results indicate that warming bay waters will decrease oxygen solubility year-round, while also increasing oxygen utilization via respiration and remineralization, primarily impacting bottom oxygen in the spring. Rising sea level will increase estuarine circulation, reducing residence time in bottom waters and increasing stratification. As a result, oxygen concentrations in bottom waters are projected to increase, while oxygen concentrations at mid-depths (3 < DO < 5 mg L-1) will typically decrease. Changes in precipitation are projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling increased primary production. Together, these multiple climate impacts will lower DO throughout the Chesapeake Bay and negatively impact progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load. However, this research also shows that the potential impacts of climate change will be significantly smaller than improvements in DO expected in response to the required nutrient reductions, especially at the anoxic and hypoxic levels. Overall, increased temperature exhibits the strongest control on the change in future DO concentrations, primarily due to decreased solubility, while sea level rise is expected to exert a small positive impact and increased winter river flow is anticipated to exert a small negative impact.

  15. Evaluating the Relevance, Reliability, and Applicability of CMIP5 Climate Projections for Water Resources and Environmental Planning

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Scott, J.; Ferguson, I. M.; Arnold, J.; Raff, D. A.; Webb, R. S.

    2012-12-01

    Water managers need to understand the applicability of climate projection information available for decision-support at the scale of their applications. Applicability depends on information reliability and relevance. This need to understand applicability stems from expectations that entities rationalize adaptation investments or decisions to delay investment. It is also occurring at a time when new global climate projections are being released through the World Climate Research Programme Coupled Model Intercomparison Project phase 5 (CMIP5), which introduces new information opportunities and interpretation challenges. This project involves an interagency collaboration to evaluate the applicability of CMIP5 projections for use in water and environmental resources planning. The overarching goal is to develop and demonstrate a framework that involves dual evaluations of relevance and reliability informing an ultimate discussion and judgment of applicability, which is expected to vary with decision-making context. The framework is being developed and demonstrated within the context of reservoir systems management in California's Sacramento and San Joaquin River basins. The relevance evaluation focuses on identifying the climate variables and statistical measures relevant to long-term management questions, which may depend on satisfying multiple objectives. Past studies' results are being considered in this evaluation, along with new results from system sensitivity analyses conducted through this effort. The reliability evaluation focuses on the CMIP5 climate models' ability to simulate past conditions relative to observed references. The evaluation is being conducted across the global domain using a large menu of climate variables and statistical measures, leveraging lessons learned from similar evaluations of CMIP3 climate models. The global focus addresses a broader project goal of producing a web resource that can serve reliability information to applicability discussions around the world, with evaluation results being served through a web-portal similar to that developed by NOAA/CIRES to serve CMIP3 information on future climate extremes (http://www.esrl.noaa.gov/psd/ipcc/extremes/). The framework concludes with an applicability discussion informed by relevance and reliability results. The goal is to observe the discussion process and identify features, choice points, and challenges that might be summarized and shared with other resource management groups facing applicability questions. This presentation will discuss the project framework and preliminary results. In addition to considering CMIP5 21st century projection information, the framework is being developed to support evaluation of CMIP5 decadal predictability experiment simulations and reconcile those simulations with 21st century projections. The presentation will also discuss implications of considering the applicability of bias-corrected and downscaled information within this framework.

  16. Climate change impacts on tropical cyclones and extreme sea levels in the South Pacific — A regional assessment

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin J. E.; McInnes, Kathleen L.; McBride, John L.

    2012-01-01

    This paper reviews the current understanding of the effect of climate change on extreme sea levels in the South Pacific region. This region contains many locations that are vulnerable to extreme sea levels in the current climate, and projections indicate that this vulnerability will increase in the future. The recent publication of authoritative statements on the relationship between global warming and global sea level rise, tropical cyclones and the El Niño-Southern Oscillation phenomenon has motivated this review. Confident predictions of global mean sea level rise are modified by regional differences in the steric (density-related) component of sea level rise and changing gravitational interactions between the ocean and the ice sheets which affect the regional distribution of the eustatic (mass-related) contribution to sea level rise. The most extreme sea levels in this region are generated by tropical cyclones. The intensity of the strongest tropical cyclones is likely to increase, but many climate models project a substantial decrease in tropical cyclone numbers in this region, which may lead to an overall decrease in the total number of intense tropical cyclones. This projection, however, needs to be better quantified using improved high-resolution climate model simulations of tropical cyclones. Future changes in ENSO may lead to large regional variations in tropical cyclone incidence and sea level rise, but these impacts are also not well constrained. While storm surges from tropical cyclones give the largest sea level extremes in the parts of this region where they occur, other more frequent high sea level events can arise from swell generated by distant storms. Changes in wave climate are projected for the tropical Pacific due to anthropogenically-forced changes in atmospheric circulation. Future changes in sea level extremes will be caused by a combination of changes in mean sea level, regional sea level trends, tropical cyclone incidence and wave climate. Recommendations are given for research to increase understanding of the response of these factors to climate change. Implications of the results for adaptation research are also discussed.

  17. EUPORIAS: plans and preliminary results

    NASA Astrophysics Data System (ADS)

    Buontempo, C.

    2013-12-01

    Recent advances in our understanding and ability to forecast climate variability have meant that skilful predictions are beginning to be routinely made on seasonal to decadal (s2d) timescales. Such forecasts have the potential to be of great value to a wide range of decision-making, where outcomes are strongly influenced by variations in the climate. In 2012 the European Commission funded EUPORIAS, a four year long project to develop prototype end-to-end climate impact prediction services operating on a seasonal to decadal timescale, and assess their value in informing decision-making. EUPORIAS commenced on 1 November 2012, coordinated by the UK Met Office leading a consortium of 24 organisations representing world-class European climate research and climate service centres, expertise in impacts assessments and seasonal predictions, two United Nations agencies, specialists in new media, and commercial companies in climate-vulnerable sectors such as energy, water and tourism. The poster describes the setup of the project, its main outcome and some of the very preliminary results.

  18. Getting ready for crops' adaptation to climate change in France ; two complementary experiences : what lessons can we draw from them ?

    NASA Astrophysics Data System (ADS)

    de Noblet, Nathalie; Levrault, Frédéric; Caubel, Julie; Garcia de CortazarAtauri, Iñaki; Vivant, Anne-Charlotte; Wieruszeski, Sophie; Launay, Marie

    2016-04-01

    The french agriculture is a sector particularly concerned by climate change: the scale of the already observed impacts and the expected climatic evolutions prevent any hesitation on the necessity of an adaptation of agriculture. This assessment is simultaneously shared by the scientific, political as well as the economic communities. However, a generalized and organized movement of adaptation of agriculture has difficulty in emerging in France and maybe in other countries, while past decades have seen the development of research projects and publications on the adaptation to climate change. Two parallel initiatives have been run in France over the past 5 years, that happen to share the same name while not involving the same actors: an observatory of climate change and agriculture functioning (ORACLE: Observatoire Régional sur l'Agriculture et le Changement Climatique), and a nationally funded research project that explores with various tools risks and opportunities for agro-ecosystems in the future in France (ORACLE: Opportunities and Risks of Agrosystems & forests in response to CLimate, socio-economic and policy changEs in France). The Observatory is carrying on a regional analysis of historical trends of both climatic and agricultural variables. It has for ambition to help the agricultural world to better integrate the evolution of climate into its decision-making, for purposes of adaptation as well as mitigation. The observatory is run since year 2011 in the Poitou-Charentes region and is now being implemented in other regions in France (Aquitaine, Pays de la Loire, Champagne Ardennes, Normandie). The research project has looked into the impacts of various scenarios of climate change through the use of various techniques : mechanistic models (Calvet et al. 2013, Wu et al. 2016) and eco-climatic indicators (Caubel et al. 2015). Informations regarding risks and opportunities for large crops in France is in the process being assessed though those tools and results. Both projects have identified weaknesses regarding the appropriation of their findings by the economic players. This is why we propose to revitalize the adaptation of French agriculture to climate change via four ways of action: • Set-up an organization at the national level to improve the distribution and use of any available study, indicator, tool, … ; • Improve and better coordinate students' and professionnal training to increase the skills of actors of the agricultural world and fasten the flow of information-findings-tools ; • Work on what 'transfer of knowledge' means when going from scientists to actors. We suggest the start of a mid-term virtuous circle ( 5 - 7 years) that will allow to understand the observed changes, test our tools and indicators on observed climate and analyze the various climate change scenarios provided ; • Specify the improvements to be operated in national planning texts, such as the 'Plan national d'adaptation au changement climatique' that has been elaborated by the Ministry of Environment and Sustainable Development.

  19. Latest research related to climate change analysis with applications in impact studies over the territory of Serbia

    NASA Astrophysics Data System (ADS)

    Vukovic, Ana; Vujadinovic, Mirjam; Djurdjevic, Vladimir; Cvetkovic, Bojan; Djordjevic, Marija; Ruml, Mirjana; Rankovic-Vasic, Zorica; Przic, Zoran; Stojicic, Djurdja; Krzic, Aleksandra; Rajkovic, Borivoj

    2015-04-01

    Serbia is a country with relatively small scale terrain features with economy mostly based on local landowners' agricultural production. Climate change analysis must be downscaled accordingly, to recognize climatological features of the farmlands. Climate model simulations and impact studies significantly contribute to the future strategic planning in economic development and therefore impact analysis must be approached with high level of confidence. This paper includes research related to climate change and impacts in Serbia resulted from cooperative work of the modeling and user community. Dynamical downscaling of climate projections for the 21st century with multi-model approach and statistical bias correction are done in order to prepare model results for impact studies. Presented results are from simulations performed using regional EBU-POM model, which is forced with A1B and A2 SRES/IPCC (2007) with comparative analysis with other regional models and from the latest high resolution NMMB simulations forced with RCP8.5 IPCC scenario (2012). Application of bias correction of the model results is necessary when calculated indices are not linearly dependent on the model results and delta approach in presenting results with respect to present climate simulations is insufficient. This is most important during the summer over the north part of the country where model bias produce much higher temperatures and less precipitation, which is known as "summer drying problem" and is common in regional models' simulations over the Pannonian valley. Some of the results, which are already observed in present climate, like higher temperatures and disturbance in the precipitation pattern, lead to present and future advancement of the start of the vegetation period toward earlier dates, associated with an increased risk of the late spring frost, extended vegetation period, disturbed preparation for the rest period, increased duration and frequency of the draught periods, etc. Based on the projected climate changes an application is proposed of the ensemble seasonal forecasts for early preparation in case of upcoming unfavorable weather conditions. This paper was realized as a part of the projects "Studying climate change and its influence on the environment: impacts, adaptation and mitigation" (43007) and "Assessment of climate change impacts on water resources in Serbia" (37005) financed by the Ministry of Education and Science of the Republic of Serbia within the framework of integrated and interdisciplinary research for the period 2011-2015.

  20. Developing Models for Predictive Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, John B; Jones, Philip W

    2007-01-01

    The Community Climate System Model results from a multi-agency collaboration designed to construct cutting-edge climate science simulation models for a broad research community. Predictive climate simulations are currently being prepared for the petascale computers of the near future. Modeling capabilities are continuously being improved in order to provide better answers to critical questions about Earth's climate. Climate change and its implications are front page news in today's world. Could global warming be responsible for the July 2006 heat waves in Europe and the United States? Should more resources be devoted to preparing for an increase in the frequency of strongmore » tropical storms and hurricanes like Katrina? Will coastal cities be flooded due to a rise in sea level? The National Climatic Data Center (NCDC), which archives all weather data for the nation, reports that global surface temperatures have increased over the last century, and that the rate of increase is three times greater since 1976. Will temperatures continue to climb at this rate, will they decline again, or will the rate of increase become even steeper? To address such a flurry of questions, scientists must adopt a systematic approach and develop a predictive framework. With responsibility for advising on energy and technology strategies, the DOE is dedicated to advancing climate research in order to elucidate the causes of climate change, including the role of carbon loading from fossil fuel use. Thus, climate science--which by nature involves advanced computing technology and methods--has been the focus of a number of DOE's SciDAC research projects. Dr. John Drake (ORNL) and Dr. Philip Jones (LANL) served as principal investigators on the SciDAC project, 'Collaborative Design and Development of the Community Climate System Model for Terascale Computers.' The Community Climate System Model (CCSM) is a fully-coupled global system that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. The collaborative SciDAC team--including over a dozen researchers at institutions around the country--developed, validated, documented, and optimized the performance of CCSM using the latest software engineering approaches, computational technology, and scientific knowledge. Many of the factors that must be accounted for in a comprehensive model of the climate system are illustrated in figure 1.« less

  1. CAN-DOO: The Climate Action Network through Direct Observations and Outreach

    NASA Astrophysics Data System (ADS)

    Taubman, B.; Sherman, J. P.; Perry, L. B.; Markham, J.; Kelly, G.

    2011-12-01

    The urgency of climate change demands a greater understanding of our climate system, not only by the leaders of today, but by the scientists, policy makers, and citizens of tomorrow. Unfortunately, a large segment of the population currently possesses inadequate knowledge of climate science. In direct response to a need for greater scientific literacy with respect to climate science, researchers from Appalachian State University's Appalachian Atmospheric Interdisciplinary Research (AppalAIR) group, with support from NASA, have developed CAN-DOO: the Climate Action Network through Direct Observations and Outreach. CAN-DOO addresses climate science literacy by 1) Developing the infrastructure for sustaining and expanding public outreach through long-term climate measurements capable of complementing existing NASA measurements, 2) Enhancing public awareness of climate science and NASA's role in advancing our understanding of the Earth System, and 3) Introducing Science, Technology, Engineering, and Mathematics principles to homeschooled, public school, and Appalachian State University students through applied climate science activities. Project partners include the Grandfather Mountain Stewardship Foundation, Pisgah Astronomical Research Institute, and local elementary schools. In partnership with Grandfather Mountain, climate science awareness is promoted through citizen science activities, interactive public displays, and staff training. CAN-DOO engages students by involving them in the entire scientific investigative process as applied to climate science. We introduce local elementary and middle school students, homeschooled students throughout North Carolina, and undergraduate students in a new Global Climate Change course and select other courses at Appalachian State University to instrument assembly, measurement techniques, data collection, hypothesis testing, and drawing conclusions. Results are placed in the proper context via comparisons with other student data products, local research-grade measurements, and NASA measurements. Several educational modules have been developed that address specific topics in climate science. The modules are scalable and have been successfully implemented at levels ranging from 2nd grade through first-year graduate as well as with citizen science groups. They also can be applied in user-desired segments to a variety of Earth Science units. In this paper, we will introduce the project activities and present results from the first year of observations and outreach, with a special emphasis on two of the developed modules, the surface energy balance and aerosol optical depth module.

  2. A framework for evaluating statistical downscaling performance under changing climatic conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Dixon, K. W.; Balaji, V.; Lanzante, J.; Radhakrishnan, A.; Hayhoe, K.; Stoner, A. K.; Gaitan, C. F.

    2013-12-01

    Statistical downscaling (SD) methods may be viewed as generating a value-added product - a refinement of global climate model (GCM) output designed to add finer scale detail and to address GCM shortcomings via a process that gleans information from a combination of observations and GCM-simulated climate change responses. Making use of observational data sets and GCM simulations representing the same historical period, cross-validation techniques allow one to assess how well an SD method meets this goal. However, lacking observations of future, the extent to which a particular SD method's skill might degrade when applied to future climate projections cannot be assessed in the same manner. Here we illustrate and describe extensions to a 'perfect model' experimental design that seeks to quantify aspects of SD method performance both for a historical period (1979-2008) and for late 21st century climate projections. Examples highlighting cases in which downscaling performance deteriorates in future climate projections will be discussed. Also, results will be presented showing how synthetic datasets having known statistical properties may be used to further isolate factors responsible for degradations in SD method skill under changing climatic conditions. We will describe a set of input files used to conduct these analyses that are being made available to researchers who wish to utilize this experimental framework to evaluate SD methods they have developed. The gridded data sets cover a region centered on the contiguous 48 United States with a grid spacing of approximately 25km, have daily time resolution (e.g., maximum and minimum near-surface temperature and precipitation), and represent a total of 120 years of model simulations. This effort is consistent with the 2013 National Climate Predictions and Projections Platform Quantitative Evaluation of Downscaling Workshop goal of supporting a community approach to promote the informed use of downscaled climate projections.

  3. Insights on drought and long-term climatic trends: Retrospective analyses of RMA cause of loss data

    USDA-ARS?s Scientific Manuscript database

    A modern trend among federal agencies, funding streams, and research projects involves the synthesis of existing data to increase the overall collective value and meaning of such knowledge. The creation of the U.S. Department of Agriculture (USDA) Climate Hubs follows this line of thought with infor...

  4. Insights on drought and long-term climatic trends: Retrospective analyses of crop insurance data

    USDA-ARS?s Scientific Manuscript database

    A modern trend among federal agencies, funding streams, and research projects involves the synthesis of existing data to increase the overall collective value and meaning of such knowledge. The creation of the U.S. Department of Agriculture (USDA) Climate Hubs follows this line of thought with infor...

  5. SENSITIVITY OF WINTER WHEAT YIELDS IN THE MIDWESTERN UNITED STATES TO FUTURE CHANGES IN CLIMATE, CLIMATE VARIABILITY, AND CO2 FERTILIZATION. (R824996)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Inter-model variability in hydrological extremes projections for Amazonian sub-basins

    NASA Astrophysics Data System (ADS)

    Andres Rodriguez, Daniel; Garofolo, Lucas; Lázaro de Siqueira Júnior, José; Samprogna Mohor, Guilherme; Tomasella, Javier

    2014-05-01

    Irreducible uncertainties due to knowledge's limitations, chaotic nature of climate system and human decision-making process drive uncertainties in Climate Change projections. Such uncertainties affect the impact studies, mainly when associated to extreme events, and difficult the decision-making process aimed at mitigation and adaptation. However, these uncertainties allow the possibility to develop exploratory analyses on system's vulnerability to different sceneries. The use of different climate model's projections allows to aboard uncertainties issues allowing the use of multiple runs to explore a wide range of potential impacts and its implications for potential vulnerabilities. Statistical approaches for analyses of extreme values are usually based on stationarity assumptions. However, nonstationarity is relevant at the time scales considered for extreme value analyses and could have great implications in dynamic complex systems, mainly under climate change transformations. Because this, it is required to consider the nonstationarity in the statistical distribution parameters. We carried out a study of the dispersion in hydrological extremes projections using climate change projections from several climate models to feed the Distributed Hydrological Model of the National Institute for Spatial Research, MHD-INPE, applied in Amazonian sub-basins. This model is a large-scale hydrological model that uses a TopModel approach to solve runoff generation processes at the grid-cell scale. MHD-INPE model was calibrated for 1970-1990 using observed meteorological data and comparing observed and simulated discharges by using several performance coeficients. Hydrological Model integrations were performed for present historical time (1970-1990) and for future period (2010-2100). Because climate models simulate the variability of the climate system in statistical terms rather than reproduce the historical behavior of climate variables, the performances of the model's runs during the historical period, when feed with climate model data, were tested using descriptors of the Flow Duration Curves. The analyses of projected extreme values were carried out considering the nonstationarity of the GEV distribution parameters and compared with extremes events in present time. Results show inter-model variability in a broad dispersion on projected extreme's values. Such dispersion implies different degrees of socio-economic impacts associated to extreme hydrological events. Despite the no existence of one optimum result, this variability allows the analyses of adaptation strategies and its potential vulnerabilities.

  7. THE DEVELOPING CLIMATE FOR READING RESEARCH--PROGRAMS VS. PROJECTS.

    ERIC Educational Resources Information Center

    ADAMS, RICHARD B.; PENNEY, MONTE

    PROGRAMMATIC RESEARCH IS DISCUSSED AS ONE OF THE BASIC NEEDS OF READING RESEARCH. OTHER NEEDS ARE--(1) FOR BASIC RESEARCH THAT FOCUSES ON THE READING PROCESS, (2) FOR LEADERSHIP THAT VALUES SCIENTIFIC OBJECTIVITY AND INTELLECTUAL HONESTY, AND (3) TO INFORM AND CONVINCE THE PUBLIC OF THE POSSIBLE CONTRIBUTIONS OF READING RESEARCH. PROGRAMMATIC…

  8. The DACCIWA project: Dynamics-aerosol-chemistry-cloud interactions in West Africa

    NASA Astrophysics Data System (ADS)

    Knippertz, Peter

    2017-04-01

    This contribution provides an overview of the EU-funded DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project. DACCIWA consists of 16 European and African research organisations and has strong links to universities, weather services and government organisations across West Africa. The project runs from 2010 to 2018 and is built around a major international field campaign in 2016. A key motivation for DACCIWA is the expected tripling of anthropogenic emissions in southern West Africa (SWA) between 2000 and 2030, whose impacts on human health, ecosystems, food security and the regional climate are largely unknown. An integrated assessment of this problem, which is mostly due to massive economic and population growth and urbanization, is challenging due to (a) a superposition of regional effects with global climate change, (b) a strong dependence on the variable West African monsoon, (c) incomplete scientific understanding of interactions between emissions, clouds, radiation, precipitation and regional circulations, and (d) a lack of observations. DACCIWA combines measurements in the field in SWA with extensive modelling activities and work on satellite data. In particular during the main DACCIWA field campaign in June-July 2016 high-quality observations of emissions, atmospheric composition and meteorological parameters were sampled. The campaign involved three research aircraft, three ground-based supersites, enhanced radiosonde launches, and intensive measurements at urban sites in Abidjan and Cotonou. These data have already been quality-controlled and will be freely available to the research community through a database at http://baobab.sedoo.fr/DACCIWA/ after the end of the project. The resulting benchmark dataset is currently combined with a wide range of modelling and satellite-based research activities that will ultimately allow (a) an assessment of the roles of relevant physical, chemical and biological processes, (b) an improvement of the monitoring of climate and atmospheric composition from space, and (c) a contribution to the development of the next generation of weather and climate models capable of representing coupled cloud-aerosol interactions. The latter will ultimately contribute to reduce uncertainties in climate predictions. An important part of the DACCIWA mission is to work with operational centres, international programs, policy-makers and users to foster the uptake of research results and to actively guide sustainable future planning for West Africa. Amongst other things, this will be achieved through the writing of policy briefs and recommendations for model development towards the end of the project. More specific aspects of DACCIWA will be presented in other contributions to this session.

  9. An interdisciplinary, outcome-based approach to astmospheric CO2 mitigation with planted southern pine forests

    NASA Astrophysics Data System (ADS)

    Martin, T.; Fox, T.; Peter, G.; Monroe, M.

    2012-12-01

    The Pine Integrated Network: Education, Mitigation and Adaptation Project ("PINEMAP") was funded by National Institute of Food and Agriculture to produce outcomes of enhanced climate change mitigation and adaptation in planted southern pine ecosystems. The PINEMAP project leverages a strong group of existing networks to produce synergy and cooperation on applied forestry research in the region. Over the last 50 years, cooperative research on planted southern pine management among southeastern U.S. universities, government agencies, and corporate forest landowners has developed and facilitated the widespread implementation of improved genetic and silvicultural technology. The impact of these regional research cooperatives is difficult to overstate, with current members managing 55% of the privately owned planted pine forestland, and producing 95% of the pine seedlings planted each year. The PINEMAP team includes the eight major forestry cooperative research programs, scientists from eleven land grant institutions, the US Forest Service, and climate modeling and adaptation specialists associated with the multi-state SE Climate Consortium and state climate offices. Our goal is to create and disseminate the knowledge that enables landowners to: harness planted pine forest productivity to mitigate atmospheric CO2; more efficiently use nitrogen and other fertilizer inputs; and adapt their forest management to increase resilience in the face of changing climate. We integrate our team's infrastructure and expertise to: 1) develop breeding, genetic deployment and innovative management systems to increase C sequestration and resilience to changing climate of planted southern pine forests ; 2) understand interactive effects of policy, biology, and climate change on sustainable management; 3) transfer new management and genetic technologies to private industrial and non-industrial landowners; and 4) educate a diverse cross-section of the public about the relevance of forests, forest management, and climate change. These efforts will enable our stakeholders to enhance the productivity of southern pine forests, while maintaining social, economic, and ecological sustainability.

  10. Increased temperature variation poses a greater risk to species than climate warming.

    PubMed

    Vasseur, David A; DeLong, John P; Gilbert, Benjamin; Greig, Hamish S; Harley, Christopher D G; McCann, Kevin S; Savage, Van; Tunney, Tyler D; O'Connor, Mary I

    2014-03-22

    Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change. Here, we couple fine-grained climate projections (2050-2059) to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model. We show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert. Although most species show increases in performance at greater mean temperatures, the effect of mean and variance change together yields a range of responses, with temperate species at greatest risk of performance declines. Our work highlights the importance of using fine-grained temporal data to incorporate the full extent of temperature variation when assessing and projecting performance.

  11. Increased temperature variation poses a greater risk to species than climate warming

    PubMed Central

    Vasseur, David A.; DeLong, John P.; Gilbert, Benjamin; Greig, Hamish S.; Harley, Christopher D. G.; McCann, Kevin S.; Savage, Van; Tunney, Tyler D.; O'Connor, Mary I.

    2014-01-01

    Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change. Here, we couple fine-grained climate projections (2050–2059) to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model. We show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert. Although most species show increases in performance at greater mean temperatures, the effect of mean and variance change together yields a range of responses, with temperate species at greatest risk of performance declines. Our work highlights the importance of using fine-grained temporal data to incorporate the full extent of temperature variation when assessing and projecting performance. PMID:24478296

  12. Paleoclimate of the Southern San Joaquin Valley, CA: Research Participation Opportunities for Improving Minority Participation and Achievement in the Geosciences

    NASA Astrophysics Data System (ADS)

    Baron, D.; Negrini, R.; Palacios-Fest, M. R.

    2004-12-01

    Numerous studies have shown that one of the best ways to draw students into geoscience programs is to expose them and their teachers to research projects designed to investigate issues relevant to their lives and communities. To be most effective, involvement in these projects should begin at the pre-college level and continue throughout their college career. Recognizing the importance of genuine research experiences, the Department of Geology at California State University, Bakersfield (CSUB), with support from the National Science Foundation's Opportunities for Enhancing Diversity in the Geosciences program, provides research participation opportunities for teachers and students from the Bakersfield City School District and the Kern High School District. Both districts have a high percentage of low-income and minority students that normally would not consider a degree or career in the geosciences. The project centers around a four-week summer research program and follow-up activities during the school year. The research investigates the climate history of the southern San Joaquin Valley as well as the frequency of flooding in the valley. Many teachers and students are familiar with periodic flooding from personal experience and are aware of the larger issue of climate change in the past and present from news reports. Thus, they can directly relate to the relevance of the research. The project draws on the faculty's expertise in paleoclimatology and geochemistry and takes advantage of CSUB's existing research facilities. Sediments in the dry lake basins of Buena Vista Lake and Kern Lake preserve a record of the regional climate history and flooding of the Kern River and its tributaries. In the first year of the project, 6 teachers and 10 high school students worked with CSUB faculty and students. Three cores from the lake basins were collected. The cores were analyzed using established geophysical, geochemical, lithological, and micropaleontological techniques. The analyses of the sediment samples range from simple tasks such as core descriptions or total organic carbon analysis to complex procedures such as the separation, identification, and chemical analysis of ostracode shells. Thus, the participants can find tasks appropriate to their diverse backgrounds and experience. CSUB students served as mentors and role models for high school students. Surveys conducted before and after the summer program indicate that knowledge of climate change and local geology of both teachers and students increased. Student's attitudes towards the geosciences and possible geoscience careers improved.

  13. Future tendencies of climate indicators important for adaptation and mitigation strategies in forestry

    NASA Astrophysics Data System (ADS)

    Galos, Borbala; Hänsler, Andreas; Gulyas, Krisztina; Bidlo, Andras; Czimber, Kornel

    2014-05-01

    Climate change is expected to have severe impacts in the forestry sector, especially in low-elevation regions in Southeast Europe, where forests are vulnerable and sensitive to the increasing probability and severity of climatic extremes, especially to droughts. For providing information about the most important regional and local risks and mitigation options for the Carpathian basin, a GIS-supported Decision Support System is under development. This study focuses on the future tendencies of climate indicators that determine the distribution, growth, health status and production of forests as well as the potential pests and diseases. For the analyses the climate database of the Decision Support System has been applied, which contains daily time series for precipitation and temperature means and extremes as well as derived climate indices for 1961-2100. For the future time period, simulation results of 12 regional climate models are included (www.ensembles-eu.org) based on the A1B emission scenario. The main results can be summarized as follows: · The projected change of the climate indices (e.g. total number of hot days, frost days, dry days, consecutive dry periods) and forestry indices (e.g. Ellenberg climate quotient, Forestry aridity index; Tolerance index for beech) indicates the warming and drying of the growing season towards the end of the 21st century. These can have severe consequences on the ecosystem services of forests. · The climatic suitable area of the native tree species is projected to move northwards and upwards in the mountains, respectively. For beech (Fagus sylvatica L.) this shift would mean the drastic shrink of the distribution area in the analyzed region. · The characteristic climate conditions that are expected in the Carpathian basin in the second half of the century, are now located southeastern from the case study region. In this way, the potential future provenance regions can be determined. Results provide input for the climate impact analyses and build an important basis of the future adaptation strategies in forestry, agriculture and water management. Funding: The research is supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0013 and TÁMOP-4.1.1.C-12/1/KONV-2012-0012 (ZENFE) joint EU-national research projects. Keywords: climate indices, climate change impacts, forestry, regional climate modelling

  14. Regional climate change over South Korea projected by the HadGEM2-AO and WRF model chain under RCP emission scenarios

    NASA Astrophysics Data System (ADS)

    Ahn, Joong-Bae; Im, Eun-Soon; Jo, Sera

    2017-04-01

    This study assesses the regional climate projection newly projected within the framework of the national downscaling project in South Korea. The fine-scale climate information (12.5 km) is produced by dynamical downscaling of the HadGEM2-AO global projections forced by the representative concentration pathway (RCP4.5 and 8.5) scenarios using the Weather Research and Forecasting (WRF) modeling system. Changes in temperature and precipitation in terms of long-term trends, daily characteristics and extremes are presented by comparing two 30 yr periods (2041-2070 vs. 2071-2100). The temperature increase presents a relevant trend, but the degree of warming varies in different periods and emission scenarios. While the temperature distribution from the RCP8.5 projection is continuously shifted toward warmer conditions by the end of the 21st century, the RCP4.5 projection appears to stabilize warming in accordance with emission forcing. This shift in distribution directly affects the magnitude of extremes, which enhances extreme hot days but reduces extreme cold days. Precipitation changes, however, do not respond monotonically to emission forcing, as they exhibit less sensitivity to different emission scenarios. An enhancement of high intensity precipitation and a reduction of weak intensity precipitation are discernible, implying an intensified hydrologic cycle. Changes in return levels of annual maximum precipitation suggest an increased probability of extreme precipitation with 20 yr and 50 yr return periods. Acknowledgement : This work was funded by the Korea Meteorological Administration Research and Development Program under grant KMIPA 2015-2081

  15. A framework for identifying tailored subsets of climate projections for impact and adaptation studies

    NASA Astrophysics Data System (ADS)

    Vidal, Jean-Philippe; Hingray, Benoît

    2014-05-01

    In order to better understand the uncertainties in the climate of the next decades, an increasingly large number of increasingly diverse climate projections is being produced by the climate research community through coordinated initiatives (e.g., CMIP5, CORDEX), but also through more specific experiments at both the global scale (perturbed parameter ensembles) and the regional-to-local scale (empirical statistical downscaling ensembles). When significant efforts are put into making such projections available online, very few works focus on how to make such an enormous amount of information actually usable by the impact and adaptation community. Climate services should therefore include guidelines and recommendations for identifying subsets of climate projections that would have (1) a size manageable by downstream modelling approaches and (2) the relevant properties for informing adaptation strategies. This works proposes a generic framework for identifying tailored subsets of climate projections that would meet both the objectives and the constraints of a specific impact / adaptation study in a typical top-down approach. This decision framework builds on two main preliminary tasks that lead to critical choices in the selection strategy: (1) understanding the requirements of the specific impact / adaptation study, and (2) characterizing the (downscaled) climate projections dataset available. An impact / adaptation study has two types of requirements. First, the study may aim at various outcomes for a given climate-related feature: the best estimate of the future, the range of possible futures, a set of representative futures, or a statistically interpretable ensemble of futures. Second, impact models may come with specific constraints on climate input variables, like spatio-temporal and between-variables coherence. Additionally, when concurrent impact models are used, the most restrictive constraints have to be considered in order to be able to assess the uncertainty associated from this modelling step. Besides, the climate projection dataset available for a given study has several characteristics that will heavily condition the type of conclusions that can be reached. Indeed, the dataset at hand may or not sample different types of uncertainty (socio-economic, structural, parametric, along with internal variability). Moreover, these types are present at different steps in the well-known cascade of uncertainty, from the emission / concentration scenarios and the global climate to the regional-to-local climate. Critical choices for the selection are therefore conditioned on all features above. The type of selection (picking out, culling, or statistical sampling) is closely related to the study objectives and the uncertainty types present in the dataset. Moreover, grounds for picking out or culling projections may stem from global, regional or feature-specific present-day performance, representativeness, or covered range. An example use of this framework is a hierarchical selection for 3 classes of impact models among 3000 transient climate projections from different runs of 4 GCMs, statistically downscaled by 3 probabilistic methods, and made available for an integrated water resource adaptation study in the Durance catchment (southern French Alps). This work is part of the GICC R2D2-20501 project (Risk, water Resources and sustainable Development of the Durance catchment in 2050) and the EU FP7 COMPLEX2 project (Knowledge Based Climate Mitigation Systems for a Low Carbon Economy).

  16. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models.

    PubMed

    Anderson, Thomas R; Hawkins, Ed; Jones, Philip D

    2016-09-01

    Climate warming during the course of the twenty-first century is projected to be between 1.0 and 3.7°C depending on future greenhouse gas emissions, based on the ensemble-mean results of state-of-the-art Earth System Models (ESMs). Just how reliable are these projections, given the complexity of the climate system? The early history of climate research provides insight into the understanding and science needed to answer this question. We examine the mathematical quantifications of planetary energy budget developed by Svante Arrhenius (1859-1927) and Guy Stewart Callendar (1898-1964) and construct an empirical approximation of the latter, which we show to be successful at retrospectively predicting global warming over the course of the twentieth century. This approximation is then used to calculate warming in response to increasing atmospheric greenhouse gases during the twenty-first century, projecting a temperature increase at the lower bound of results generated by an ensemble of ESMs (as presented in the latest assessment by the Intergovernmental Panel on Climate Change). This result can be interpreted as follows. The climate system is conceptually complex but has at its heart the physical laws of radiative transfer. This basic, or "core" physics is relatively straightforward to compute mathematically, as exemplified by Callendar's calculations, leading to quantitatively robust projections of baseline warming. The ESMs include not only the physical core but also climate feedbacks that introduce uncertainty into the projections in terms of magnitude, but not sign: positive (amplification of warming). As such, the projections of end-of-century global warming by ESMs are fundamentally trustworthy: quantitatively robust baseline warming based on the well-understood physics of radiative transfer, with extra warming due to climate feedbacks. These projections thus provide a compelling case that global climate will continue to undergo significant warming in response to ongoing emissions of CO 2 and other greenhouse gases to the atmosphere. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Ocean-atmosphere relationships from synoptic scale to local scale in South San Francisco Bay, with implications to flood risk at NASA Ames Research Center, Silicon Valley

    NASA Astrophysics Data System (ADS)

    Mills, W. B.; Costa-Cabral, M. C.; Bromirski, P. D.; Miller, N. L.; Coats, R. N.; Loewenstein, M.; Roy, S. B.; MacWilliams, M.

    2012-12-01

    This work evaluates the implications to flooding risk at the low-lying NASA Ames Research Center in South San Francisco Bay under historical and projected climate and sea level rise. Atmospheric circulation patterns over the Pacific Ocean, influenced by ENSO and PDO, can result in extended periods of higher mean coastal sea level in California. Simultaneously they originate a larger number of storms that make landfall and have higher mean intensity. These storms generate barometrically-induced high water anomalies, and winds that are sometimes capable of producing large coastal waves. Storm surges that propagate from the coast into the estuary and South Bay, and locally-generated waves, may compromise the discharge capacity of stream channels. These conditions also typically generate high intensity rainfall, and the reduced channel capacity may result in fluvial flooding. Such atmospheric circulation patterns may persist for many months, during which California experiences more precipitation events of longer mean duration and higher intensity, leading to large precipitation totals that saturate soils and may exceed the storage capacity of stormwater retention ponds. Future scenarios of sea level rise, that may surpass a meter in this century according to the projections recently published by the National Research Council for states of CA, OR and WA, and projected atmospheric circulation changes associated with anthropogenic climate change, may amplify these risks. We evaluate the impacts of these changes on NASA's Ames Research Center through four areas of study: (i) wetland accretion and evolution as mean sea level rises, with implications to the Bay's response to the sea level rise and storm surges, (ii) hydrodynamic modeling to simulate the propagation of tidal height and storm surges in the Bay and the influence of local winds on wave height, (iii) evaluation of historical data and future climate projections to identify extreme precipitation events, and (iv) regional climate models to identify moisture source areas and evaluate the role of moisture flux on projected California precipitation.;

  18. Production of long-term global water vapor and liquid water data set using ultra-fast methods to assimilate multi-satellite and radiosonde observations

    NASA Technical Reports Server (NTRS)

    Vonderhaar, Thomas H.; Randel, David L.; Reinke, Donald L.; Stephens, Graeme L.; Ringerud, Mark A.; Combs, Cynthia L.; Greenwald, Thomas J.; Wittmeyer, Ian L.

    1994-01-01

    In recent years climate research scientists have recognized the need for increased time and space resolution precipitable and liquid water data sets. This project is designed to meet those needs. Specifically, NASA is funding STC-METSAT to develop a total integrated column and layered precipitable water data set. This is complemented by a total column liquid water data set. These data are global in extent, 1 deg x 1 deg in resolution, with daily grids produced. Precipitable water is measured by a combination of in situ radiosonde observations and satellite derived infrared and microwave retrievals from four satellites. This project combines these data into a coherent merged product for use in global climate research. This report is the Year 2 Annual Report from this NASA-sponsored project and includes progress-to-date on the assigned tasks.

  19. ARC3.2 Summary for City Leaders Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network

    NASA Technical Reports Server (NTRS)

    Rosenzweig, C.; Solecki, W.; Romero-Lankao, P.; Mehrotra, S.; Dhakal, S.; Bowman, T.; Ibrahim, S. Ali

    2015-01-01

    ARC3.2 presents a broad synthesis of the latest scientific research on climate change and cities. Mitigation and adaptation climate actions of 100 cities are documented throughout the 16 chapters, as well as online through the ARC3.2 Case Study Docking Station. Pathways to Urban Transformation, Major Findings, and Key Messages are highlighted here in the ARC3.2 Summary for City Leaders. These sections lay out what cities need to do achieve their potential as leaders of climate change solutions. UCCRN Regional Hubs in Europe, Latin America, Africa, Australia and Asia will share ARC3.2 findings with local city leaders and researchers. The ARC3.2 Summary for City Leaders synthesizes Major Findings and Key Messages on urban climate science, disasters and risks, urban planning and design, mitigation and adaptation, equity and environmental justice, economics and finance, the private sector, urban ecosystems, urban coastal zones, public health, housing and informal settlements, energy, water, transportation, solid waste, and governance. These were based on climate trends and future projections for 100 cities around the world.

  20. Impacts of Future Climate Change on California Perennial Crop Yields: Model Projections with Climate and Crop Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobell, D; Field, C; Cahill, K

    2006-01-10

    Most research on the agricultural impacts of climate change has focused on the major annual crops, yet perennial cropping systems are less adaptable and thus potentially more susceptible to damage. Improved assessments of yield responses to future climate are needed to prioritize adaptation strategies in the many regions where perennial crops are economically and culturally important. These impact assessments, in turn, must rely on climate and crop models that contain often poorly defined uncertainties. We evaluated the impact of climate change on six major perennial crops in California: wine grapes, almonds, table grapes, oranges, walnuts, and avocados. Outputs from multiplemore » climate models were used to evaluate climate uncertainty, while multiple statistical crop models, derived by resampling historical databases, were used to address crop response uncertainties. We find that, despite these uncertainties, climate change in California is very likely to put downward pressure on yields of almonds, walnuts, avocados, and table grapes by 2050. Without CO{sub 2} fertilization or adaptation measures, projected losses range from 0 to >40% depending on the crop and the trajectory of climate change. Climate change uncertainty generally had a larger impact on projections than crop model uncertainty, although the latter was substantial for several crops. Opportunities for expansion into cooler regions are identified, but this adaptation would require substantial investments and may be limited by non-climatic constraints. Given the long time scales for growth and production of orchards and vineyards ({approx}30 years), climate change should be an important factor in selecting perennial varieties and deciding whether and where perennials should be planted.« less

  1. Can we trust climate models to realistically represent severe European windstorms?

    NASA Astrophysics Data System (ADS)

    Trzeciak, Tomasz M.; Knippertz, Peter; Owen, Jennifer S. R.

    2014-05-01

    Despite the enormous advances made in climate change research, robust projections of the position and the strength of the North Atlantic stormtrack are not yet possible. In particular with respect to damaging windstorms, this incertitude bears enormous risks to European societies and the (re)insurance industry. Previous studies have addressed the problem of climate model uncertainty through statistical comparisons of simulations of the current climate with (re-)analysis data and found that there is large disagreement between different climate models, different ensemble members of the same model and observed climatologies of intense cyclones. One weakness of such statistical evaluations lies in the difficulty to separate influences of the climate model's basic state from the influence of fast processes on the development of the most intense storms. Compensating effects between the two might conceal errors and suggest higher reliability than there really is. A possible way to separate influences of fast and slow processes in climate projections is through a "seamless" approach of hindcasting historical, severe storms with climate models started from predefined initial conditions and run in a numerical weather prediction mode on the time scale of several days. Such a cost-effective case-study approach, which draws from and expands on the concepts from the Transpose-AMIP initiative, has recently been undertaken in the SEAMSEW project at the University of Leeds funded by the AXA Research Fund. Key results from this work focusing on 20 historical storms and using different lead times and horizontal and vertical resolutions include: (a) Tracks are represented reasonably well by most hindcasts. (b) Sensitivity to vertical resolution is low. (c) There is a systematic underprediction of cyclone depth for a coarse resolution of T63, but surprisingly no systematic bias is found for higher-resolution runs using T127, showing that climate models are in fact able to represent the storm dynamics well, if given the correct initial conditions. Combined with a too low number of deep cyclones in many climate models, this points too an insufficient number of storm-prone initial conditions in free-running climate runs. This question will be addressed in future work.

  2. Creating a Partnering Community Aimed to Foster Climate Literacy in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Rutherford, D.; McNeal, K. S.; Smith, R.; Hare, D.; Nair, U. S.

    2011-12-01

    The Climate Literacy Partnership in the Southeast (CLiPSE) is a part of the Climate Change Education Program supported by the National Science Foundation (http://CLiPSE-project.org). The established CLiPSE partnership is dedicated to improving climate literacy in the southeast through crafting a shared vision and strategic plan among stakeholders that promotes scientific formal and informal educational resources, materials and programs; a diverse network of key partnering organizations throughout the Southeastern United States (SE US); and effective public dialogues that address diverse learners and audiences and supports learning of climate, climate change, and its relevance upon human and environmental systems. The CLiPSE project has been successful in creating partnerships with more than fifty key stakeholders that stem from a few key publics such as agriculture, education, leisure, religious organizations, and culturally diverse communities. These key publics in the SE US frequently consist of individuals that place great trust in local, private efforts, and CLiPSE has realized the importance of the role of the partnering organizations in providing information through a trusted source. A second unique characteristic of the SE US is the predominately conservative and Protestant citizenry in the region. Working with and through these communities enhances climate change education outreach to this citizenry. The CLiPSE project rests on solid climate science and learning science research in order to formulate an effective plan with desired learning outcomes of critical thinking and civil conversation through effective communication strategies. This paper will present the CLiPSE model in reaching the key publics that traditionally hold ideologies that are traditionally perceived as incompatible with climate change science. We will present the strategies utilized to bring together experts and researchers in climate science, learning science, and social science with practitioners and leaders of key stakeholder groups to formulate a shared climate change education plan in the SE US that is uniquely formatted for each target audience. We will also share what we have learned from interacting with the leaders of our partnering organizations in crafting effective messages for their audiences and addressing learners' affective and cognitive domains.

  3. The ARGO Project: Global Ocean Observations for Understanding and Prediction of Climate Variability. Report for Calendar Year 2004

    DTIC Science & Technology

    2004-01-01

    international Argo practices. Data appropriate for research applications and for comparison with climate change models are not available for several...global ocean heat and fresh water storage and the detection and attribution of climate change . These presentations can be accessed at http...stresses on ocean ecosystems have serious consequences, and sometimes dramatic ones, such as coral reef bleaching . In the future, the impacts of a

  4. Impacts of climate change on Oregon's coasts and estuaries: Chapter 6

    USGS Publications Warehouse

    Ruggiero,; Brown, Cheryl A.; Komar, Paul D.; Allan, Jonathan C.; Reusser, Deborah A.; Lee,

    2010-01-01

    In the following sections we attempt to summarize the most recent literature documenting historical changes as well as what may be expected to occur in response to climate change. Where little information is available we draw preliminary conclusions about the potential for specific impacts. When possible we highlight what research is needed to bridge knowledge gaps to improve our ability to identify climate change impacts more precisely, ultimately allowing for future projections.

  5. Application of Geographic Information System (GIS) in Student Experiential Learning on Climate Change and Sustainability

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Sriharan, S.; Fan, C.; Prakash, A.; San Juan, F.

    2016-12-01

    Consortium of minority serving institutions including Delaware State University, Virginia State University, Morgan State University, University of Alaska Fairbanks, and Elizabeth City State University have collaborated on various student experiential learning programs to expand the technology-based education by incorporating Geographic Information System (GIS) technique to promote student learning on climate change and sustainability. Specific objectives of this collaborative programs are to: (i) develop new or enhance existing courses of Introduction to Geographic Information System (GIS) and Introduction to Remote Sensing, (ii) enhance teaching and research capabilities through faculty professional development workshops, (iii) engage minority undergraduates in GIS and remote sensing research via experiential learning activities including summer internship, workshop, and work study experience. Ultimate goal is to prepare pipeline of minority task force with skills in GIS and remote sensing application in climate sciences. Various research projects were conducted on topics such as carbon footprint, atmospheric CO2, wildlife diversity, ocean circulation, wild fires, geothermal exploration, etc. Students taking GIS and remote sensing courses often express interests to be involved in research projects to enhance their knowledge and obtain research skills. Of about 400 students trained, approximately 30% of these students were involved in research experience in our programs since 2004. The summer undergraduate research experiences (REU) have offered hands-on research experience to the students on climate change and sustainability. Previous studies indicate that students who are previously exposed to environmental science only by a single field trip or an introductory course could be still at risk of dropping out of this field in their early years of the college. The research experience, especially at early college years, would significantly increase the participation and retention of students in climate sciences and sustainability by creating and maintaining interest in these areas. These programs promoted active recruitment of faculty, staff, and students, fostered the development of partnerships, and enhanced related skill sets among students in GIS and remote sensing.

  6. The NorWeST project: Crowd-sourcing a big data stream temperature database and high-resolution climate scenarios for western rivers and streams

    NASA Astrophysics Data System (ADS)

    Isaak, D.; Wenger, S. J.; Peterson, E.; Ver Hoef, J.; Luce, C.; Hostetler, S.

    2015-12-01

    Climate change is warming streams across the western U.S. and threatens billions of dollars of investments made to conserve valuable cold-water species like trout and salmon. Efficient threat response requires prioritization of limited conservation resources and coordinated interagency efforts guided by accurate information about climate at scales relevant to the distributions of species across landscapes. To provide that information, the NorWeST project was initiated in 2011 to aggregate stream temperature data from all available sources and create high-resolution climate scenarios. The database has since grown into the largest of its kind globally, and now consists of >60,000,000 hourly temperature recordings at >20,000 unique stream sites that were contributed by 100s of professionals working for >95 state, federal, tribal, municipal, county, and private resource agencies. This poster shows a high-resolution (1-kilometer) summer temperature scenario created with these data and mapped to 800,000 kilometers of network across eight western states (ID, WA, OR, MT, WY, UT, NV, CA). The geospatial data associated with this climate scenario and thirty others developed in this project are distributed in user-friendly digital formats through the NorWeST website (http://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.shtml). The accuracy, utility, and convenience of NorWeST data products has led to their rapid adoption and use by the management and research communities for conservation planning, inter-agency coordination of monitoring networks, and new research on stream temperatures and thermal ecology. A project of this scope and utility was possible only through crowd-sourcing techniques, which have also served to engage data contributors in the process of science creation while strengthening the social networks needed for effective conservation.

  7. Fostering climate dialogue by introducing students to uncertainty in decision-making

    NASA Astrophysics Data System (ADS)

    Addor, N.; Ewen, T.; Johnson, L.; Coltekin, A.; Derungs, C.; Muccione, V.

    2014-12-01

    Uncertainty is present in all fields of climate research, spanning from climate projections, to assessing regional impacts and vulnerabilities to adaptation policy and decision-making. The complex and interdisciplinary nature of climate information, however, makes the decision-making process challenging. This process is further hindered by a lack of institutionalized dialogue between climate researchers, decision-makers and user groups. Forums that facilitate such dialogue would allow these groups to actively engage with each other to improve decisions. In parallel, introducing students to these challenges is one way to foster such climate dialogue. We present the design and outcome of an innovative workshop-seminar series we convened at the University of Zurich to demonstrate the pedagogical importance of such forums. An initial two-day workshop brought together 50 participants, including bachelor, master and PhD students and academic staff, and nine speakers from academia, industry, government, and philanthropy. The main objectives were to provide participants with tools to communicate uncertainty in their current or future research projects, to foster exchange between practitioners, students and scientists from different backgrounds and finally to expose students to multidisciplinary collaborations and real-world problems involving decisions under uncertainty. An opinion survey conducted before and after the workshop enabled us to observe changes in participants' perspectives on what information and tools should be exchanged between researchers and decision-makers to better address uncertainty. Responses demonstrated a marked shift from a pre-workshop vertical conceptualization of researcher-user group interaction to a post-workshop horizontal mode: in the former, researchers were portrayed as bestowing data-based products to decision-makers, while in the latter, both sets of actors engaged in frequent communication, exchanging their needs and expertise. Drawing on examples from the course evaluation, we seek to encourage the organization of similar events, introducing students to these challenges at an early stage of their education and career as a first step towards improving future dialogue.

  8. DENGUE FEVER EPIDEMIC POTENTIAL AS PROJECTED BY GENERAL CIRCULATION MODELS OF GLOBAL CLIMATE CHANGE. (R824995)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. Enhancing watershed research capacity: the role of data management

    USDA-ARS?s Scientific Manuscript database

    Water resources are under growing pressure globally, and in the face of projected climate change, changes in precipitation frequency and intensity; evapotranspiration, runoff, and snowmelt pose severe societal challenges. Interdisciplinary environmental research across natural and social sciences to...

  10. Data management to enhance long-term watershed research capacity

    USDA-ARS?s Scientific Manuscript database

    Water resources are under growing pressure globally, and in the face of projected climate change, uncertainty about precipitation frequency and intensity; evapotranspiration, runoff, and snowmelt poses severe societal challenges. Interdisciplinary environmental research across natural and social sc...

  11. Climate change impact assessment on Veneto and Friuli Plain groundwater. Part I: an integrated modeling approach for hazard scenario construction.

    PubMed

    Baruffi, F; Cisotto, A; Cimolino, A; Ferri, M; Monego, M; Norbiato, D; Cappelletto, M; Bisaglia, M; Pretner, A; Galli, A; Scarinci, A; Marsala, V; Panelli, C; Gualdi, S; Bucchignani, E; Torresan, S; Pasini, S; Critto, A; Marcomini, A

    2012-12-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life+ project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961-1990 and the projection period 2010-2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071-2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble produced information about the potential variations of the water balance components (e.g. river discharge, groundwater level and volume) due to climate change. Such projections were used to develop potential hazard scenarios for the case study area, to be further applied within climate change risk assessment studies for groundwater resources and associated ecosystems. This paper describes the models' chain and the methodological approach adopted in the TRUST project and analyzes the hazard scenarios produced in order to investigate climate change risks for the case study area. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Use of a Weather Generator for analysis of projections of future daily temperature and its validation with climate change indices

    NASA Astrophysics Data System (ADS)

    Di Piazza, A.; Cordano, E.; Eccel, E.

    2012-04-01

    The issue of climate change detection is considered a major challenge. In particular, high temporal resolution climate change scenarios are required in the evaluation of the effects of climate change on agricultural management (crop suitability, yields, risk assessment, etc.) energy production and water management. In this work, a "Weather Generator" technique was used for downscaling climate change scenarios for temperature. An R package (RMAWGEN, Cordano and Eccel, 2011 - available on http://cran.r-project.org) was developed aiming to generate synthetic daily weather conditions by using the theory of vectorial auto-regressive models (VAR). The VAR model was chosen for its ability in maintaining the temporal and spatial correlations among variables. In particular, observed time series of daily maximum and minimum temperature are transformed into "new" normally-distributed variable time series which are used to calibrate the parameters of a VAR model by using ordinary least square methods. Therefore the implemented algorithm, applied to monthly mean climatic values downscaled by Global Climate Model predictions, can generate several stochastic daily scenarios where the statistical consistency among series is saved. Further details are present in RMAWGEN documentation. An application is presented here by using a dataset with daily temperature time series recorded in 41 different sites of Trentino region for the period 1958-2010. Temperature time series were pre-processed to fill missing values (by a site-specific calibrated Inverse Distance Weighting algorithm, corrected with elevation) and to remove inhomogeneities. Several climatic indices were taken into account, useful for several impact assessment applications, and their time trends within the time series were analyzed. The indices go from the more classical ones, as annual mean temperatures, seasonal mean temperatures and their anomalies (from the reference period 1961-1990) to the climate change indices selected from the list recommended by the World Meteorological Organization Commission for Climatology (WMO-CCL) and the Research Programme on Climate Variability and Predictability (CLIVAR) project's Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). Each index was applied to both observed (and processed) data and to synthetic time series produced by the Weather Generator, over the thirty year reference period 1981-2010, in order to validate the procedure. Climate projections were statistically downscaled for a selection of sites for the two 30-year periods 2021-2050 and 2071-2099 of the European project "Ensembles" multi-model output (scenario A1B). The use of several climatic indices strengthens the trend analysis of both the generated synthetic series and future climate projections.

  13. Integrating Climate Change into Great Lakes Protection

    NASA Astrophysics Data System (ADS)

    Hedman, S.

    2012-12-01

    Climate change is now recognized as one of the greatest threats to the Great Lakes. Projected climate change impacts to the Great Lakes include increases in surface water and air temperature; decreases in ice cover; shorter winters, early spring, and longer summers; increased frequency of intense storms; more precipitation falling as rain in the winter; less snowfall; and variations in water levels, among other effects. Changing climate conditions may compromise efforts to protect and restore the Great Lakes ecosystem and may lead to irrevocable impacts on the physical, chemical, and biological integrity of the Great Lakes. Examples of such potential impacts include the transformation of coastal wetlands into terrestrial ecosystems; reduced fisheries; increased beach erosion; change in forest species composition as species migrate northward; potential increase in toxic substance concentrations; potential increases in the frequency and extent of algal blooms; degraded water quality; and a potential increase in invasive species. The Great Lakes Restoration Initiative, signed into law by President Obama in 2010, represents the commitment of the federal government to protect, restore, and maintain the Great Lakes ecosystem. The GLRI Action Plan, issued in February 2010, identifies five focus areas: - Toxic Substances and Areas of Concern - Invasive Species - Nearshore Health and Nonpoint Source Pollution - Habitat and Wildlife Protection and Restoration - Accountability, Education, Monitoring, Evaluation, Communication, and Partnerships The Action Plan recognizes that the projected impacts of climate change on the Great Lakes have implications across all focus areas and encourages incorporation of climate change considerations into GLRI projects and programs as appropriate. Under the GLRI, EPA has funded climate change-related work by states, tribes, federal agencies, academics and NGOs through competitive grants, state and tribal capacity grants, and Interagency Agreements. EPA has provided GLRI funding for a diverse suite of climate change-related projects including Great Lakes climate change research and modeling; adaptation plan development and implementation; ecosystem vulnerability assessments; outreach and education programs; habitat restoration and protection projects that will increase ecosystem resilience; and other projects that address climate change impacts. This presentation will discuss how the GLRI is helping to improve the climate change science needed to support the Action Plan. It will further describe how the GLRI is helping coordinate climate change efforts among Great Lakes states, tribes, Federal agencies, and other stakeholders. Finally, it will discuss how the GLRI is facilitating adaptation planning by our Great Lakes partners. The draft Lake Superior Ecosystem Climate Change Adaptation Plan serves as a case study for an integrated, collaborative, and coordinated climate change effort.

  14. Advantages and applicability of commonly used homogenisation methods for climate data

    NASA Astrophysics Data System (ADS)

    Ribeiro, Sara; Caineta, Júlio; Henriques, Roberto; Soares, Amílcar; Costa, Ana Cristina

    2014-05-01

    Homogenisation of climate data is a very relevant subject since these data are required as an input in a wide range of studies, such as atmospheric modelling, weather forecasting, climate change monitoring, or hydrological and environmental projects. Often, climate data series include non-natural irregularities which have to be detected and removed prior to their use, otherwise it would generate biased and erroneous results. Relocation of weather stations or changes in the measuring instruments are amongst the most relevant causes for these inhomogeneities. Depending on the climate variable, its temporal resolution and spatial continuity, homogenisation methods can be more or less effective. For example, due to its natural variability, precipitation is identified as a very challenging variable to be homogenised. During the last two decades, numerous methods have been proposed to homogenise climate data. In order to compare, evaluate and develop those methods, the European project COST Action ES0601, Advances in homogenisation methods of climate series: an integrated approach (HOME), was released in 2008. Existing homogenisation methods were improved based on the benchmark exercise issued by this project. A recent approach based on Direct Sequential Simulation (DSS), not yet evaluated by the benchmark exercise, is also presented as an innovative methodology for homogenising climate data series. DSS already proved to be a successful geostatistical method in environmental and hydrological studies, and it provides promising results for the homogenisation of climate data. Since DSS is a geostatistical stochastic approach, it accounts for the joint spatial and temporal dependence between observations, as well as the relative importance of stations both in terms of distance and correlation. This work presents a chronological review of the most commonly used homogenisation methods for climate data and available software packages. A short description and classification is provided for each method. Their advantages and applicability are discussed based on literature review and on the results of the HOME project. Acknowledgements: The authors gratefully acknowledge the financial support of "Fundação para a Ciência e Tecnologia" (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 ("GSIMCLI - Geostatistical simulation with local distributions for the homogenization and interpolation of climate data").

  15. Seasonal and decadal information towards climate services: EUPORIAS

    NASA Astrophysics Data System (ADS)

    Buontempo, Carlo; Hewitt, Chris

    2013-04-01

    Societies have always faced challenges and opportunities arising from variations in climate, and have often flourished or collapsed depending on their ability to adapt to such changes. Recent advances in our understanding and ability to forecast climate variability and climate change have meant that skilful predictions are beginning to be routinely made on seasonal to decadal (s2d) timescales. Such forecasts have the potential to be of great value to a wide range of decision-making, where outcomes are strongly influenced by variations in the climate. The European Commission have recently commissioned a major four year long project (EUPORIAS) to develop prototype end-to-end climate impact prediction services operating on a seasonal to decadal timescale, and assess their value in informing decision-making. EUPORIAS commenced on 1 November 2012, coordinated by the UK Met Office leading a consortium of 24 organisations representing world-class European climate research and climate service centres, expertise in impacts assessments and seasonal predictions, two United Nations agencies, specialists in new media, and commercial companies in climate-vulnerable sectors such as energy, water and tourism. The paper describes the setup of the project, its main outcome and some of the very preliminary results.

  16. Impacts of climate variability and future climate change on harmful algal blooms and human health.

    PubMed

    Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E

    2008-11-07

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae.

  17. Impacts of climate variability and future climate change on harmful algal blooms and human health

    PubMed Central

    Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E

    2008-01-01

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae. PMID:19025675

  18. Climate Change Projection for the Department of Energy's Savannah River Site

    NASA Astrophysics Data System (ADS)

    Werth, D. W.

    2014-12-01

    As per recent Department of Energy (DOE) sustainability requirements, the Savannah River National Laboratory (SRNL) is developing a climate projection for the DOE's Savannah River Site (SRS) near Aiken, SC. This will comprise data from both a statistical and a dynamic downscaling process, each interpolated to the SRS. We require variables most relevant to operational activities at the site (such as the US Forest Service's forest management program), and select temperature, precipitation, wind, and humidity as being most relevant to energy and water resource requirements, fire and forest ecology, and facility and worker safety. We then develop projections of the means and extremes of these variables, estimate the effect on site operations, and develop long-term mitigation strategies. For example, given that outdoor work while wearing protective gear is a daily facet of site operations, heat stress is of primary importance to work planning, and we use the downscaled data to estimate changes in the occurrence of high temperatures. For the statistical downscaling, we use global climate model (GCM) data from the Climate Model Intercomparison Project, version 5 (CMIP-5), which was used in the IPCC Fifth Assessment Report (AR5). GCM data from five research groups was selected, and two climate change scenarios - RCP 4.5 and RCP 8.5 - are used with observed data from site instruments and other databases to produce the downscaled projections. We apply a quantile regression downscaling method, which involves the use of the observed cumulative distribution function to correct that of the GCM. This produces a downscaled projection with an interannual variability closer to that of the observed data and allows for more extreme values in the projections, which are often absent in GCM data. The statistically downscaled data is complemented with dynamically downscaled data from the NARCCAP database, which comprises output from regional climate models forced with GCM output from the CMIP-3 database of GCM simulations. Applications of the downscaled climate projections to some of the unique operational needs of a large DOE weapons complex site are described.

  19. Cumulative biological impacts framework for solar energy projects in the California Desert

    USGS Publications Warehouse

    Davis, Frank W.; Kreitler, Jason R.; Soong, Oliver; Stoms, David M.; Dashiell, Stephanie; Hannah, Lee; Wilkinson, Whitney; Dingman, John

    2013-01-01

    This project developed analytical approaches, tools and geospatial data to support conservation planning for renewable energy development in the California deserts. Research focused on geographical analysis to avoid, minimize and mitigate the cumulative biological effects of utility-scale solar energy development. A hierarchical logic model was created to map the compatibility of new solar energy projects with current biological conservation values. The research indicated that the extent of compatible areas is much greater than the estimated land area required to achieve 2040 greenhouse gas reduction goals. Species distribution models were produced for 65 animal and plant species that were of potential conservation significance to the Desert Renewable Energy Conservation Plan process. These models mapped historical and projected future habitat suitability using 270 meter resolution climate grids. The results were integrated into analytical frameworks to locate potential sites for offsetting project impacts and evaluating the cumulative effects of multiple solar energy projects. Examples applying these frameworks in the Western Mojave Desert ecoregion show the potential of these publicly-available tools to assist regional planning efforts. Results also highlight the necessity to explicitly consider projected land use change and climate change when prioritizing areas for conservation and mitigation offsets. Project data, software and model results are all available online.

  20. The CLUVA project: Climate-change scenarios and their impact on urban areas in Africa

    NASA Astrophysics Data System (ADS)

    Di Ruocco, Angela; Weets, Guy; Gasparini, Paolo; Jørgensen, Gertrud; Lindley, Sarah; Pauleit, Stephan; Vahed, Anwar; Schiano, Pasquale; Kabisch, Sigrun; Vedeld, Trond; Coly, Adrien; Tonye, Emmanuel; Touré, Hamidou; Kombe, Wilbard; Yeshitela, Kumelachew

    2013-04-01

    CLUVA (CLimate change and Urban Vulnerability in Africa; http://www.cluva.eu/) is a 3 years project, funded by the European Commission in 2010. Its main objective is the estimate of the impacts of climate changes in the next 40 years at urban scale in Africa. The mission of CLUVA is to develop methods and knowledge to assess risks cascading from climate-changes. It downscales IPCC climate projections to evaluate threats to selected African test cities; mainly floods, sea-level rise, droughts, heat waves and desertification. The project evaluates and links: social vulnerability; vulnerability of in-town ecosystems and urban-rural interfaces; vulnerability of urban built environment and lifelines; and related institutional and governance dimensions of adaptation. A multi-scale and multi-disciplinary quantitative, probabilistic, modelling is applied. CLUVA brings together climate experts, risk management experts, urban planners and social scientists with their African counterparts in an integrated research effort focusing on the improvement of the capacity of scientific institutions, local councils and civil society to cope with climate change. The CLUVA approach was set-up in the first year of the project and developed as follows: an ensemble of eight global projections of climate changes is produced for east and west Africa until 2050 considering the new IPCC (International Panel on Climate Changes; http://www.ipcc.ch/) scenarios. These are then downscaled to urban level, where territorial modeling is required to compute hazard effects on the vulnerable physical system (urban ecosystems, informal settlements, lifelines such as transportation and sewer networks) as well as on the social context, in defined time frames, and risk analysis is then employed to assess expected consequences. An investigation of the existing urban planning and governance systems and its interface with climate risks is performed. With the aid of the African partners, the developed approach is currently being applied to selected African case studies: Addis Ababa - Ethiopia; Dar es Salaam - Tanzania, Douala - Cameroun; Ouagadougou - Burkina Faso, St. Louis - Senegal. The poster will illustrate the CLUVA's framework to assess climate-change-related risks at an urban scale in Africa, and will report on the progresses of selected case studies to demonstrate feasibility of a multi-scale and multi-risk quantitative approach for risk management.

  1. Assessing the capability of high resolution climatic model experiments to simulate Mediterranean cyclonic tracks

    NASA Astrophysics Data System (ADS)

    Hatzaki, M.; Flocas, H. A.; Giannakopoulos, C.; Kostopoulou, E.; Kouroutzoglou, I.; Keay, K.; Simmonds, I.

    2010-09-01

    In this study, a comparison of a reanalysis driven simulation to a GCM driven simulation of a regional climate model is performed in order to assess the model's ability to capture the climatic characteristics of cyclonic tracks in the Mediterranean in the present climate. The ultimate scope of the study will be to perform a future climate projection related to cyclonic tracks in order to better understand and assess climate change in the Mediterranean. The climatology of the cyclonic tracks includes inter-monthly variations, classification of tracks according to their origin domain, dynamic and kinematic characteristics, as well as trend analysis. For this purpose, the ENEA model is employed based on PROTHEUS system composed of the RegCM atmospheric regional model and the MITgcm ocean model, coupled through the OASIS3 flux coupler. These model data became available through the EU Project CIRCE which aims to perform, for the first time, climate change projections with a realistic representation of the Mediterranean Sea. Two experiments are employed; a) the ERA402 with lateral Boundary conditions from ERA40 for the 43-year period 1958-2000, and b) the EH5OM_20C3M where the lateral boundary conditions for the atmosphere (1951-2000) are taken from the ECHAM5-MPIOM 20c3m global simulation (run3) included in the IPCC-AR4. The identification and tracking of cyclones is performed with the aid of the Melbourne University algorithm (MS algorithm), according to the Lagrangian perspective. MS algorithm characterizes a cyclone only if a vorticity maximum could be connected with a local pressure minimum. This approach is considered to be crucial, since open lows are also incorporated into the storm life-cycle, preventing possible inappropriate time series breaks, if a temporary weakening to an open-low state occurs. The model experiments verify that considerable inter-monthly variations of track density occur in the Mediterranean region, consistent with previous studies. The classification of the tracks according to their origin domain show that the vast majority originate within the examined area itself. The study of the kinematic and dynamic parameters of tracks according to their origin demonstrate that deeper cyclones follow the SW track. ACKNOWLEDGMENTS: M. Hatzaki would like to thank the Greek State Scholarships Foundation for financial support through the program of postdoctoral research. The support of EU-FP6 project CIRCE Integrated Project-Climate Change and Impact Research: the Mediterranean Environment (http://www.circeproject.eu) for climate model data provision is also greatly acknowledged.

  2. Earth System Science at NASA: Teleconnections Between Sea Surface Temperature and Epidemics in Africa

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.

    2000-01-01

    The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.

  3. Climate impacts on agricultural biomass production in the CORDEX.be project context

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Van Schaeybroeck, Bert; Termonia, Piet; Willems, Patrick; Van Lipzig, Nicole; Marbaix, Philippe; van Ypersele, Jean-Pascal; Fettweis, Xavier; De Ridder, Koen; Stavrakou, Trissevgeni; Luyten, Patrick; Pottiaux, Eric

    2016-04-01

    The most important coordinated international effort to translate the IPCC-AR5 outcomes to regional climate modelling is the so-called "COordinated Regional climate Downscaling EXperiment" (CORDEX, http://wcrp-cordex.ipsl.jussieu.fr/). CORDEX.be is a national initiative that aims at combining the Belgian climate and impact modelling research into a single network. The climate network structure is naturally imposed by the top-down data flow, from the four participating upper-air Regional Climate Modelling groups towards seven Local Impact Models (LIMs). In addition to the production of regional climate projections following the CORDEX guidelines, very high-resolution results are provided at convection-permitting resolutions of about 4 km across Belgium. These results are coupled to seven local-impact models with severity indices as output. A multi-model approach is taken that allows uncertainty estimation, a crucial aspect of climate projections for policy-making purposes. The down-scaled scenarios at 4 km resolution allow for impact assessment in different Belgian agro-ecological zones. Climate impacts on arable agriculture are quantified using REGCROP which is a regional dynamic agri-meteorological model geared towards modelling climate impact on biomass production of arable crops (Gobin, 2010, 2012). Results from previous work show that heat stress and water shortages lead to reduced crop growth, whereas increased CO2-concentrations and a prolonged growing season have a positive effect on crop yields. The interaction between these effects depend on the crop type and the field conditions. Root crops such as potato will experience increased drought stress particularly when the probability rises that sensitive crop stages coincide with dry spells. This may be aggravated when wet springs cause water logging in the field and delay planting dates. Despite lower summer precipitation projections for future climate in Belgium, winter cereal yield reductions due to drought stress will be smaller due to earlier maturity. Preliminary results will be presented using the new scenario runs for Belgium.

  4. Hydroclimatic Change in the Congo River Basin: Past, Present and Future169

    NASA Astrophysics Data System (ADS)

    Aloysius, N. R.

    2016-12-01

    Tropical regions provide habitat for the world's most diverse fauna and flora, sequester more atmospheric carbon and provide livelihood for millions of people. The hydrological cycle provides vital linkages for maintaining these ecosystem functions, yet, the understanding of its spatiotemporal variability is limited. Research on the hydrological cycle of the Congo River Basin (CRB), which encompasses the second largest rainforests, has been largely ignored. Global Climate Models (GCM) show limited skills in simulating CRB's climate and their future projections vary widely. Yet, GCMs provide the most plausible scenarios of future climate, based upon which changes in hydrologic fluxes can be predicted with the aid hydrological models. In order to address the gaps in knowledge and to highlight the research needs, we i) developed a spatially explicit hydrological model suitable for describing key hydrological processes, ii) evaluated the performance of GCMs in simulating precipitation and temperature in the region, iii) developed a set of climate change scenarios for the CRB and iv) developed a simplified modeling framework to quantify water management options for rain-fed agriculture with the objective of achieving the triple goals of sustainable development: food security, poverty alleviation and ecosystem conservation. The hydrology model, which was validated with observed stream flows at 50 locations, satisfactorily characterizes spatiotemporal variability of key fluxes. Our evaluation of 25 GCM outputs reveal that many GCMs poorly simulate regional precipitation. We implemented a statistical bias-correction method to develop precipitation and temperature projections for two future greenhouse gas emission scenarios. These climate forcings were, then, used to drive the hydrology model. Our results show that the near-term projections are not affected by emission scenarios. However, towards the mid-21st century, projections are emission scenario dependent. Available freshwater resources are projected to increase in the CRB, except in the semiarid southeast. Our findings have wider implications for climate change assessment and water resource management, because the region, with high population growth and limited capacity to adapt, are primary targets of land and water grabs. 155

  5. Effects of Projected Transient Changes in Climate on Tennessee Forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H; Tharp, M Lynn; Lannom, Karen O.

    This study examines transient effects of projected climate change on the structure and species composition of forests in Tennessee. The climate change scenarios for 2030 and 2080 were provided by the National Center for Atmospheric Research (NCAR) from three General Circulation Models (GCMs) that simulate the range of potential climate conditions for the state. The precipitation and temperature projections from the three GCMs for 2030 and 2080 were related to changes in the ecoregions by using the monthly record of temperature and precipitation from 1980 to 1997 for each 1 km cell across the state as aggregated into the fivemore » ecological provinces. Temperatures are projected to increase in all ecological provinces in all months for all three GCMs for both 2030 and 2080. Precipitation patterns are more complex with one model projecting wetter summers and two models projecting drier summers. The forest ecosystem model LINKAGES was used to simulate conditions in forest stands for the five ecological provinces of Tennessee from 1989 to 2300. These model runs suggest there will be a change in tree diversity and species composition in all ecological provinces with the greatest changes occurring in the Southern Mixed Forest province. Most projections show a decline in total tree biomass followed by recovery as species replacement occurs in stands. The changes in forest biomass and composition, as simulated in this study, are likely to have implications on forest economy, tourism, understory conditions, wildlife habitat, mast provisioning, and other services provided by forest systems.« less

  6. Evaluating a 5 year climate change research teacher professional development program in Southern Nevada

    NASA Astrophysics Data System (ADS)

    Buck, P.; Rudd, L.; McAlister, J.; Bonde, A.

    2013-12-01

    We present results of a 5 yr NSF funded project, part of Nevada ';s Climate Change Research Education and Outreach EPSCoR award. Goals of the K-12 portion of the project included: a replicable professional development model of K-12 climate change science education for Nevada and other institutions; strengthened relationships between secondary school teachers and NSHE climate change researchers; and greater teacher pedagogical content knowledge in climate change science and greater confidence in ability to teach effectively. Two overarching research questions formed the foundation of our teacher professional development program: 1) How will climate change affect Nevada's baseline water resources (groundwater and surface water) and linked ecosystem services? 2) How will climate change affect natural and anthropogenic disturbances (e.g., wildland fires, invasive species, and insect outbreaks)? All teachers participated in at least one (2-week long) summer institute and academic year follow up focused on one of two overarching research questions forming the basis of the award assisted by a disciplinary graduate student . An on-line class (ENV 794) was a 3 credit graduate credit bearing class from UNLV based on the fundamentals of climate change science was available free to participating teachers. A supplemental program in the final award year was added following advisory board recommendations to develop a cohort or "learning community" approach at an interested high school. The 'About Climate Change' Integrated Curriculum spans several subject areas and cuts across national standards for STEM English and Social Studies; a 2-week unit developed by Clark HS teachers for their classes. Our teachers increased their content knowledge about climate change science. This is indicated in student evaluations of the on-line course ENV 794, and in the summer institute post test of content knowledge which included about 25 questions. There was improvement for our one focus question about climate change having the greatest impact on high-latitudes. While there was no improvement on our focus question of human produced CO2 being greater than nature sequestered CO2, for this question nearly everyone got it correct pre and post, which makes it seem that our group of teachers began the institute with an understanding that humans are producing CO2 which has an impact on climate and our summer institutes nurtured that understanding. Teachers feel that they are more competent to teach climate change science effectively in the classroom. All teachers rated themselves as significantly more confident in reference to selected focus questions (11 in total, only 4 are described here). They were asked to describe their current belief about their level of skill and knowledge in teaching the following topics; Q#1 explain the greenhouse effect; Q#6 relate climate change to disturbances in natural ecosystems; Q#8 incorporate climate change labs into your science teaching; and Q#10 teach about local impacts of climate change in your science classroom. Each teacher was observed delivering a lesson plan in their classroom. We conducted no formal audit or assessment of any teachers pedagogical skill in teaching-this was beyond the scope of the project. Likewise, the program did not attempt to assess learning of the students taught by our teachers.

  7. How Might Recharge Change Under Projected Climate Change in the Western U.S.?

    NASA Astrophysics Data System (ADS)

    Niraula, R.; Meixner, T.; Dominguez, F.; Bhattarai, N.; Rodell, M.; Ajami, H.; Gochis, D.; Castro, C.

    2017-10-01

    Although groundwater is a major water resource in the western U.S., little research has been done on the impacts of climate change on groundwater storage and recharge in the West. Here we assess the impact of projected changes in climate on groundwater recharge in the near (2021-2050) and far (2071-2100) future across the western U.S. Variable Infiltration Capacity model was run with RCP 6.0 forcing from 11 global climate models and "subsurface runoff" output was considered as recharge. Recharge is expected to decrease in the West (-5.8 ± 14.3%) and Southwest (-4.0 ± 6.7%) regions in the near future and in the South region (-9.5 ± 24.3%) in the far future. The Northern Rockies region is expected to get more recharge in the near (+5.3 ± 9.2%) and far (+11.8 ± 12.3%) future. Overall, southern portions of the western U.S. are expected to get less recharge in the future and northern portions will get more. Climate change interacts with land surface properties to affect the amount of recharge that occurs in the future. Effects on recharge due to change in vegetation response from projected changes in climate and CO2 concentration, though important, are not considered in this study.

  8. A Meta-Analysis of Local Climate Change Adaptation Actions ...

    EPA Pesticide Factsheets

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we do not have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their community, the types of actions they have in place to address climate change, and the resources at their disposal for implementation. Several studies have been conducted by academics, non-governmental organizations, and public agencies to assess the status of local climate change adaptation. This project collates the findings from dozens of such studies to conduct a meta-analysis of local climate change adaptation actions. The studies will be characterized along several dimensions, including (a) methods used, (b) timing and geographic scope, (c) topics covered, (d) types of adaptation actions identified, (e) implementation status, and (f) public engagement and environmental justice dimensions considered. The poster presents the project's rationale and approach and some illustrative findings from early analyses. [Note: The document being reviewed is an abstract in which a poster is being proposed. The poster will enter clearance if the abstract is accepted] The purpose of this poster is to present the research framework and approaches I am developing for my ORISE postdoctoral project, and to get feedback on early analyses.

  9. High resolution global climate modelling; the UPSCALE project, a large simulation campaign

    NASA Astrophysics Data System (ADS)

    Mizielinski, M. S.; Roberts, M. J.; Vidale, P. L.; Schiemann, R.; Demory, M.-E.; Strachan, J.; Edwards, T.; Stephens, A.; Lawrence, B. N.; Pritchard, M.; Chiu, P.; Iwi, A.; Churchill, J.; del Cano Novales, C.; Kettleborough, J.; Roseblade, W.; Selwood, P.; Foster, M.; Glover, M.; Malcolm, A.

    2014-01-01

    The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) project constructed and ran an ensemble of HadGEM3 (Hadley centre Global Environment Model 3) atmosphere-only global climate simulations over the period 1985-2011, at resolutions of N512 (25 km), N216 (60 km) and N96 (130 km) as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe) in 2012, with additional resources supplied by the Natural Environmental Research Council (NERC) and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the high performance computing center Stuttgart (HLRS), and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA) for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE dataset. This dataset is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.

  10. High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign

    NASA Astrophysics Data System (ADS)

    Mizielinski, M. S.; Roberts, M. J.; Vidale, P. L.; Schiemann, R.; Demory, M.-E.; Strachan, J.; Edwards, T.; Stephens, A.; Lawrence, B. N.; Pritchard, M.; Chiu, P.; Iwi, A.; Churchill, J.; del Cano Novales, C.; Kettleborough, J.; Roseblade, W.; Selwood, P.; Foster, M.; Glover, M.; Malcolm, A.

    2014-08-01

    The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) project constructed and ran an ensemble of HadGEM3 (Hadley Centre Global Environment Model 3) atmosphere-only global climate simulations over the period 1985-2011, at resolutions of N512 (25 km), N216 (60 km) and N96 (130 km) as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe) in 2012, with additional resources supplied by the Natural Environment Research Council (NERC) and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the High Performance Computing Center Stuttgart (HLRS), and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA) for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE data set. This data set is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.

  11. Project BudBurst: Citizen Science for All Seasons

    NASA Astrophysics Data System (ADS)

    Meymaris, K.; Henderson, S.; Alaback, P.; Havens, K.

    2008-12-01

    Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, now in its second year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, participants from 49 states have submitted data that is being submitted to the USA National Phenology Network (www.usanpn.org) database. Project BudBurst has been the subject of almost 200 media outlets including NPR, national and regional television broadcasts, and most of the major national and regional newspapers. This presentation will provide an overview of Project Budburst and will report on the results of the 2008 field campaign and discuss plans to expand Project BudBurst in 2009. Project BudBurst is a Windows to the Universe Citizen Science program managed by the University Corporation for Atmospheric Research, the Chicago Botanic Garden, University of Montana in collaboration with the USA -National Phenology Network and with financial support from U.S. Bureau of Land Management, U.S. Geological Survey, NEON, and the Fish and Wildlife Foundation.

  12. Evaluating Changes in Climate Literacy among Middle and High School Students who Participate in Climate Change Education Modules

    NASA Astrophysics Data System (ADS)

    DeWaters, J.; Powers, S.; Dhaniyala, S.; Small, M.

    2012-12-01

    Middle school (MS) and high school (HS) teachers have developed and taught instructional modules that were created through their participation in Clarkson University's NASA-funded Project-Based Global Climate Change Education project. A quantitative survey was developed to help evaluate the project's impact on students' climate literacy, which includes content knowledge as well as affective and behavioral attributes. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. The survey was developed according to established psychometric principles and methodologies in the sociological and educational sciences which involved developing and evaluating a pool of survey items, adapted primarily from existing climate surveys and questionnaires; preparing, administering, and evaluating two rounds of pilot tests; and preparing a final instrument with revisions informed by both pilot assessments. The resulting survey contains three separate subscales: cognitive, affective, and behavioral, with five self-efficacy items embedded within the affective subscale. Cognitive items use a multiple choice format with one correct response; non-cognitive items use a 5-point Likert-type scale with options generally ranging from "strongly agree" to "strongly disagree" (affective), or "almost always" to "hardly ever" (behavioral). Three versions of the survey were developed and administered using an on-line Zoomerang™ platform to college students/adults; HS students; and MS students, respectively. Instrument validity was supported by using items drawn from existing surveys, by reviewing/applying prior research in climate literacy, and through comparative age-group analysis. The internal consistency reliability of each subscale, as measured by Cronbach's alpha, ranges from 0.78-0.86 (cognitive), 0.87-0.89 (affective) and 0.84-0.85 (behavioral), all satisfying generally accepted criteria for internal reliability of educational surveys. MS and HS students completed the on-line survey prior to and at least 3 weeks following participation in one of the newly developed project-based climate change modules. Surveys were completed anonymously. In all, 9 HS and 3 MS teachers successfully completed the educational programming and assessment protocol in AY2012, yielding 200 HS and 227 MS matched pre/post climate literacy surveys. Both groups of students demonstrated significant gains in climate-related content knowledge (p<<0.001) and affect (p<0.01). MS students also experienced significant gains in their climate-related self-efficacy (p=0.03), with no significant change in self-efficacy for HS students and no change in either group on the behavioral subscale. Post-scores were remarkably similar for the two groups of students; reported as percent of maximum attainable score for HS/MS students: 59%/58%, knowledge; 65%/64%, affect; 71%/72%, self-efficacy, and 63%/62%, behavior. The presentation will include a description of the development and content of the climate literacy survey used in this research, as well the interpretation of specific pre/post changes in participating MS and HS students relative to the content of and approach used in the project-based modules.

  13. IASON - Fostering sustainability and uptake of research results through Networking activities in Black Sea & Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Patias, P.

    2014-09-01

    IASON Project has the ultimate goal to establish a permanent and sustainable Network of scientific and non-scientific institutions, stakeholders and private sector enterprises belonging in the EU and third countries located in two significant areas: The Mediterranean and the Black Sea regions. The main focal points of the project will be the usage and application of Earth Observation (EO) in the following topics: - climate change - resource efficiency - raw materials management IASON aims to build on the experiences gained by 5 FP7 funded projects, OBSERVE, enviroGRIDS, GEONETCab, EGIDA, and BalkanGEONet. All of the above projects focused on enhancing EO capacities, knowledge and technology in the EU and in neighborhood countries. During their execution time they managed to establish links with a critical mass of research institutions, organizations, public organizations, stakeholders, and policy makers in the Balkan region, the Mediterranean, and the Black Sea Basin. IASON intends to create the proper conditions for enhancing knowledge transfer capacity building, and market opportunities in using EO applications and mechanisms in specific research fields that are addressing climate actions resource efficiency and raw materials management.

  14. Using Citizen Science Data to Model the Distributions of Common Songbirds of Turkey Under Different Global Climatic Change Scenarios

    PubMed Central

    Abolafya, Moris; Onmuş, Ortaç; Şekercioğlu, Çağan H.; Bilgin, Raşit

    2013-01-01

    In this study, we evaluated the potential impact of climate change on the distributions of Turkey’s songbirds in the 21st century by modelling future distributions of 20 resident and nine migratory species under two global climate change scenarios. We combined verified data from an ornithological citizen science initiative (www.kusbank.org) with maximum entropy modeling and eight bioclimatic variables to estimate species distributions and projections for future time periods. Model predictions for resident and migratory species showed high variability, with some species projected to lose and others projected to gain suitable habitat. Our study helps improve the understanding of the current and potential future distributions of Turkey’s songbirds and their responses to climate change, highlights effective strategies to maximize avian conservation efforts in the study region, and provides a model for using citizen science data for biodiversity research in a large developing country with few professional field biologists. Our results demonstrate that climate change will not affect every species equally in Turkey. Expected range reductions in some breeding species will increase the risk of local extinction, whereas others are likely to expand their ranges. PMID:23844151

  15. Using citizen science data to model the distributions of common songbirds of Turkey under different global climatic change scenarios.

    PubMed

    Abolafya, Moris; Onmuş, Ortaç; Şekercioğlu, Çağan H; Bilgin, Raşit

    2013-01-01

    In this study, we evaluated the potential impact of climate change on the distributions of Turkey's songbirds in the 21st century by modelling future distributions of 20 resident and nine migratory species under two global climate change scenarios. We combined verified data from an ornithological citizen science initiative (www.kusbank.org) with maximum entropy modeling and eight bioclimatic variables to estimate species distributions and projections for future time periods. Model predictions for resident and migratory species showed high variability, with some species projected to lose and others projected to gain suitable habitat. Our study helps improve the understanding of the current and potential future distributions of Turkey's songbirds and their responses to climate change, highlights effective strategies to maximize avian conservation efforts in the study region, and provides a model for using citizen science data for biodiversity research in a large developing country with few professional field biologists. Our results demonstrate that climate change will not affect every species equally in Turkey. Expected range reductions in some breeding species will increase the risk of local extinction, whereas others are likely to expand their ranges.

  16. Assessing Climate Vulnerability and Resilience of a Major Water Resource System - Inverting the Paradigm for Specific Risk Quantification at Decision Making Points of Impact

    NASA Astrophysics Data System (ADS)

    Murphy, K. W.; Ellis, A. W.; Skindlov, J. A.

    2015-12-01

    Water resource systems have provided vital support to transformative growth in the Southwest United States and the Phoenix, Arizona metropolitan area where the Salt River Project (SRP) currently satisfies 40% of the area's water demand from reservoir storage and groundwater. Large natural variability and expectations of climate changes have sensitized water management to risks posed by future periods of excess and drought. The conventional approach to impacts assessment has been downscaled climate model simulations translated through hydrologic models; but, scenario ranges enlarge as uncertainties propagate through sequential levels of modeling complexity. The research often does not reach the stage of specific impact assessments, rendering future projections frustratingly uncertain and unsuitable for complex decision-making. Alternatively, this study inverts the common approach by beginning with the threatened water system and proceeding backwards to the uncertain climate future. The methodology is built upon reservoir system response modeling to exhaustive time series of climate-driven net basin supply. A reservoir operations model, developed with SRP guidance, assesses cumulative response to inflow variability and change. Complete statistical analyses of long-term historical watershed climate and runoff data are employed for 10,000-year stochastic simulations, rendering the entire range of multi-year extremes with full probabilistic characterization. Sets of climate change projections are then translated by temperature sensitivity and precipitation elasticity into future inflow distributions that are comparatively assessed with the reservoir operations model. This approach provides specific risk assessments in pragmatic terms familiar to decision makers, interpretable within the context of long-range planning and revealing a clearer meaning of climate change projections for the region. As a transferable example achieving actionable findings, the approach can guide other communities confronting water resource planning challenges.

  17. Global Climate Change Pilot Course Project

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region's attitude towards climate change science, policy, and the stances taken by other regions on climate change. The professor will provide a model of integrative research using the U.S. as a focus, and on discussion days, prompt a sort of United Nations discussion on each of these topics with the intention of having the students look at climate change from a different point of view that contrasts their current U.S.-centric view, as well as realize the interdependence of regions particularly in regards to climate change.

  18. Effects of future climate conditions on terrestrial export from coastal southern California

    NASA Astrophysics Data System (ADS)

    Feng, D.; Zhao, Y.; Raoufi, R.; Beighley, E.; Melack, J. M.

    2015-12-01

    The Santa Barbara Coastal - Long Term Ecological Research Project (SBC-LTER) is focused on investigating the relative importance of land and ocean processes in structuring giant kelp forest ecosystems. Understanding how current and future climate conditions influence terrestrial export is a central theme for the project. Here we combine the Hillslope River Routing (HRR) model and daily precipitation and temperature downscaled using statistical downscaling based on localized constructed Analogs (LOCA) to estimate recent streamflow dynamics (2000 to 2014) and future conditions (2015 to 2100). The HRR model covers the SBC-LTER watersheds from just west of the Ventura River to Point Conception; a land area of roughly 800 km2 with 179 watersheds ranging from 0.1 to 123 km2. The downscaled climate conditions have a spatial resolution of 6 km by 6 km. Here, we use the Penman-Monteith method with the Food and Agriculture Organization of the United Nations (FAO) limited climate data approximations and land surface conditions (albedo, leaf area index, land cover) measured from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites to estimate potential evapotranspiration (PET). The HRR model is calibrated for the period 2000 to 2014 using USGS and LTER streamflow. An automated calibration technique is used. For future climate scenarios, we use mean 8-day land cover conditions. Future streamflow, ET and soil moisture statistics are presented and based on downscaled P and T from ten climate model projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5).

  19. Practical Tips and Techniques on the Process of Transdisciplinary Sea Level Rise Research

    NASA Astrophysics Data System (ADS)

    DeLorme, D.; Hagen, S. C.; Kidwell, D.; Stephens, S. H.

    2015-12-01

    There is increasing awareness of the need for transdisciplinary science to address complex climate change issues, yet practical guidance is lacking. This presentation describes the iterative planning, implementation, and evaluation process of an ongoing transdisciplinary sea level rise (SLR) research project. Observations, reflections, and recommendations from firsthand experience are shared, illustrated with examples, and placed within a transdisciplinary research framework. The NOAA-sponsored project, Ecological Effects of Sea Level Rise in the Northern Gulf of Mexico (EESLR-NGOM) is a six-year regional study involving a team of biology, ecology, civil/coastal engineering, and communication scholars working with government agency personnel and industry professionals; supervising students and post-doctoral researchers; and engaging a group of non-academic stakeholders (i.e., coastal resource managers). EESLR-NGOM's focus is on detailed assessment and process-based modeling to project SLR impacts on northern Gulf of Mexico coastal wetland habitats and flood plains. This presentation highlights collaboration, communication, and project management considerations, and explains knowledge co-production from a dynamic combination of natural and social scientific methods (secondary data analysis, computer modeling, field observations, field and laboratory experiments, focus group interviews, surveys) and interrelated stakeholder engagement mechanisms (advisory committee, project flow chart, workshops, focus groups, webinars) infused throughout the EESLR-NGOM project to improve accessibility and utility of the scientific results and products. Attention is also given to project evaluation including monitoring, multiple quantitative and qualitative measures, and recognition of challenges and limitations. This presentation should generate productive dialogue and direction for similar endeavors to find transformative solutions to pressing problems of climate change.

  20. Climate change and species interactions: ways forward.

    PubMed

    Angert, Amy L; LaDeau, Shannon L; Ostfeld, Richard S

    2013-09-01

    With ongoing and rapid climate change, ecologists are being challenged to predict how individual species will change in abundance and distribution, how biotic communities will change in structure and function, and the consequences of these climate-induced changes for ecosystem functioning. It is now well documented that indirect effects of climate change on species abundances and distributions, via climatic effects on interspecific interactions, can outweigh and even reverse the direct effects of climate. However, a clear framework for incorporating species interactions into projections of biological change remains elusive. To move forward, we suggest three priorities for the research community: (1) utilize tractable study systems as case studies to illustrate possible outcomes, test processes highlighted by theory, and feed back into modeling efforts; (2) develop a robust analytical framework that allows for better cross-scale linkages; and (3) determine over what time scales and for which systems prediction of biological responses to climate change is a useful and feasible goal. We end with a list of research questions that can guide future research to help understand, and hopefully mitigate, the negative effects of climate change on biota and the ecosystem services they provide. © 2013 New York Academy of Sciences.

  1. Cool Science: Year 2 of Using Children's Artwork about Climate Change to Engage Riders on Mass Transit

    NASA Astrophysics Data System (ADS)

    Lustick, D. S.; Lohmeier, J.; Chen, R. F.

    2014-12-01

    A team of educators and scientists from the University of Massachusetts Lowell and the University of Massachusetts Boston will report on the second year of an informal science learning research project using mass transit spaces in Lowell, MA. Cool Science (CS) conducts a statewide art competition for K-12 students in the fall challenging them to express climate science understanding through the visual arts. An inter-disciplinary panel of judges evaluates entries and identifies the top 24 works of art. The best six student works of art are then put on public display throughout the spring on the Lowell Regional Transit Authority (LRTA). Displaying student artwork in Out of Home Multi-Media (OHMM) such as bus placards and posters is intended to engage riders with opportunities to learn informally. CS aims to promote and evaluate learning about climate change science among the general public and k-12 students/teachers. The goals of CS are: 1) Engage teachers, students, and parents in a climate change science communication competition. 2) Display the winning 6 artworks from K-12 students throughout the LRTA. 3) Assess the impact of Cool Science on the teaching and learning of climate science in K-12 formal education. 4) Assess the impact of Cool Science artwork on attitudes, awareness, and understanding of climate change among adult bus riders. A naturalistic inquiry employing a mixed methodology approach best describes our research design. The evaluation focuses on providing feedback regarding the potential learning outcomes for the K-12 students who create the media for the project and the general riding public who engage with the student artwork. To identify possible outcomes, data was collected in the several forms: survey, interviews, and online analytics. We see an urgent need to improve both the public's engagement with climate change science and to the profile of climate change science in formal education settings. The Cool Science (CS) project is an opportunity to bring formal and informal science learning settings together for mutual engagement in the science of climate change. The research that will be presented should be of interest to both informal and formal science educators, art and science educators, and environmental education advocates.

  2. Adaptation Strategies to Climate Change and the Role of Planning Instruments - The Example of the Dresden Region (Saxony/Germany)

    NASA Astrophysics Data System (ADS)

    Albrecht, J.; Juta, K.; Nobis, A.

    2009-04-01

    In the past, identifying anthropogenic influences on climate change, scenario analyses and issues of climate change mitigation were predominant approaches in climate change research (IPCC 2007). Currently, for instance in Germany, climate impact research on regional level comes to the forefront of research and policy making. Climate change has become an important topic on the agenda of politicians, administration and planning. In order to counteract the (unavoidable) climate change and its impacts it is necessary to develop adaptation strategies. At present, such strategies and guidelines are formulated on international, supranational and national level. The initial point was the United Nations Framework Convention on Climate Change in 1992 where the contracting states obligated themselves to develop national (and regional) programmes for adaptation. In 2007 the European Commission published its Green Paper called Adaptation to Climate Change in Europe. The paper states that adaptation efforts have to be intensified at different (spatial) levels (local, regional, national, and so forth). Furthermore, coordinating these efforts is of high importance. With the recent agreement on the German Adaptation Strategy to Climate Change (DAS 2008) in December 2008, federal government tries to accomplish this task. The German strategy mainly focuses on two elements: decreasing vulnerability and increasing adaptability. While the above mentioned strategies have presented information and policies concerning climate change and adaptation on international, supranational and national level, such documents dońt yet exist on regional level. However, because of their close link to the local level the regions are of high importance for adaptation strategies. Therefore, the Leibniz-Institute of Ecological and Regional Development developed a transdisciplinary project to formulate and implement the so-called Integrated Regional Climate Adaptation Programme (IRCAP) for the Model Region of Dresden (project REGKLAM). The REGKLAM-project is based on regionalised scenarios of climate change and includes measures of climate change adaptation to change for instance, urban form, infrastructure assets (e.g., reservoirs) and land use. Various institutions from politics, administration, economy, and research as well as civil society are involved in the project (the city of Dresden, several ministries and authorities of Saxony, the Dresden Chamber of Industry and Commerce and the University of Dresden). The IRCAP is planned to be an informal, cross-sectoral instrument of adaptation to climate change. As a regional programme, the IRCAP is addressed to decision-makers of the region of Dresden (defined, for instance, as planning region). Its function is to complement and coordinate existing instruments and measures. These instruments also include instruments of environmental and spatial planning on the regional level. Spatial and environmental planning can rely on a wide range of formal and informal instruments on different spatial, administrative, and sectoral levels, e.g. land use and landscape plans. Our contribution to the EGU conference aims to clear the role and relevance of the existing formal and informal planning instruments in the region of Dresden for the process of developing the IRCAP. Firstly, a survey is conducted for the purpose of identifying all relevant planning instruments. The identification process is based on specific criteria, for example: reference to the region, contents relating to the topic of climate change respectively climate adaptation. Secondly, the presentation argues for a selection of those planning instruments which seem to be most relevant for the process of developing an IRCAP. This selection process is based on specific criteria which include, for instance, complexity of expected effects, reference to regional and sectoral vulnerability, opportunity for future change of the existing planning instruments (e.g., current process of updating), interests of project partners and stakeholders. Thirdly, as a result, an overview of relevant planning instruments in the region of Dresden is shown, including their current status and statements about their relevance for the topic of climate adaptation strategies. Finally it is derived that this procedure provides a basis for the following possibilities: Adapting existing planning instruments, integrate contents of existing planning instruments in the IRCAP process, or develop and define new strategies or measures on the way to an IRCAP.

  3. Staff - Jacquelyn R. Overbeck | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in main content Jacquelyn R. Overbeck Jacquelyn R. Overbeck Geomorphology, coastal hazards, remote sensing University, Environmental Science Projects and/or Research Interests As the project manager for the Coastal

  4. The Effect of School Building Renovation/Construction on School Culture

    ERIC Educational Resources Information Center

    Lesisko, Lee J.; Wright, Robert J.; O'Hern, Brenda

    2010-01-01

    School construction or renovation projects can have a profound affect on students, faculty and administration. The literature revealed that continuous communication is essential for a smooth process. This research identified bureaucratic issues and school climate to be leading factors of concern during construction projects. Analysis of this study…

  5. Projected changes in rainfall and temperature over homogeneous regions of India

    NASA Astrophysics Data System (ADS)

    Patwardhan, Savita; Kulkarni, Ashwini; Rao, K. Koteswara

    2018-01-01

    The impact of climate change on the characteristics of seasonal maximum and minimum temperature and seasonal summer monsoon rainfall is assessed over five homogeneous regions of India using a high-resolution regional climate model. Providing REgional Climate for Climate Studies (PRECIS) is developed at Hadley Centre for Climate Prediction and Research, UK. The model simulations are carried out over South Asian domain for the continuous period of 1961-2098 at 50-km horizontal resolution. Here, three simulations from a 17-member perturbed physics ensemble (PPE) produced using HadCM3 under the Quantifying Model Uncertainties in Model Predictions (QUMP) project of Hadley Centre, Met. Office, UK, have been used as lateral boundary conditions (LBCs) for the 138-year simulations of the regional climate model under Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The projections indicate the increase in the summer monsoon (June through September) rainfall over all the homogeneous regions (15 to 19%) except peninsular India (around 5%). There may be marginal change in the frequency of medium and heavy rainfall events (>20 mm) towards the end of the present century. The analysis over five homogeneous regions indicates that the mean maximum surface air temperatures for the pre-monsoon season (March-April-May) as well as the mean minimum surface air temperature for winter season (January-February) may be warmer by around 4 °C towards the end of the twenty-first century.

  6. Real options analysis for photovoltaic project under climate uncertainty

    NASA Astrophysics Data System (ADS)

    Kim, Kyeongseok; Kim, Sejong; Kim, Hyoungkwan

    2016-08-01

    The decision on photovoltaic project depends on the level of climate environments. Changes in temperature and insolation affect photovoltaic output. It is important for investors to consider future climate conditions for determining investments on photovoltaic projects. We propose a real options-based framework to assess economic feasibility of photovoltaic project under climate change. The framework supports investors to evaluate climate change impact on photovoltaic projects under future climate uncertainty.

  7. Climate Change Impacts on Sediment Transport In a Lowland Watershed System: Controlling Processes and Projection

    NASA Astrophysics Data System (ADS)

    al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.

    2017-12-01

    Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.

  8. Challenge: Reframing, communicating, and finding relevance. Solution: Teachers on the research team

    NASA Astrophysics Data System (ADS)

    Bartholow, S.; Warburton, J.

    2013-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a program in which K-12 teachers spend 2-6 weeks participating in hands-on field research experiences in the polar regions. The goal of PolarTREC is to invigorate polar science education and understanding by bringing K-12 educators and polar researchers together. Program data has illuminated a crucial dynamic that increases the potential for a successful climate change science campaign. We contend that the inclusion of a teacher into the field research campaign can tackle challenges such as reframing climate change science to better address the need for a particular campaign, as well as garnering the science project the necessary support through effective, authentic, and tangible communication efforts to policymakers, funders, students, and the public. The program evaluation queried researchers on a.) the teachers' primary roles in the field b.) the impact teachers on the team's field research, and c.) the teachers' role conducting outreach. Additionally, researchers identified the importance of the facilitator, the Arctic Research Consortium of the United States (ARCUS), as an integral component to the challenge of providing a meaningful broader impact statement to the science proposal. Researchers reported the value of explaining their science, in-situ, allowed them to reframe and rework the objectives of the science project to attain meaningful outcomes. More than half of the researchers specifically noted that one of the strengths of the PolarTREC project is its benefit to the scientific process. The researchers also viewed PolarTREC as an essential outreach activity for their research project. Other researchers said that the outreach provided by their teacher also improved the research project's public image and articulated complex ideas to the public at large. This presentation will speak to the practices within the PolarTREC program and how researchers can meet outreach expectations, impact the public, and refine their science with teachers in the field.

  9. Engaging communities and climate change futures with Multi-Scale, Iterative Scenario Building (MISB) in the western United States

    Treesearch

    Daniel Murphy; Carina Wyborn; Laurie Yung; Daniel R. Williams; Cory Cleveland; Lisa Eby; Solomon Dobrowski; Erin Towler

    2016-01-01

    Current projections of future climate change foretell potentially transformative ecological changes that threaten communities globally. Using two case studies from the United States Intermountain West, this article highlights the ways in which a better articulation between theory and methods in research design can generate proactive applied tools that enable...

  10. Resilience and Struggle: Exploring the Experiences of Undocumented College Students through Chicana Feminist Theory and Dialogical Performance

    ERIC Educational Resources Information Center

    Juarez, Sergio F.

    2017-01-01

    In an increasingly hostile political and social climate undocumented students in the United States continue to struggle to find space for themselves within universities. This research project undertakes a goal of illuminating how undocumented students make sense of their experiences on university campuses despite facing difficult climates at their…

  11. Effect of climate change on marine ecosystems

    NASA Astrophysics Data System (ADS)

    Vikebo, F. B.; Sundby, S.; Aadlandsvik, B.; Fiksen, O.

    2003-04-01

    As a part of the INTEGRATION project, headed by Potsdam Institute for Climate Impact Research, funded by the German Research Council, the impact of climate change scenarios on marine fish populations will be addressed on a spesific population basis and will focus on fish populations in the northern North Atlantic with special emphasis on cod. The approach taken will mainly be a modelling study supported by analysis of existing data on fish stocks and climate. Through down-scaling and nesting techniques, various climate change scenarios with reduced THC in the North Atlantic will be investigated with higher spatial resolution for selected shelf areas. The hydrodynamical model used for the regional ocean modeling is ROMS (http://marine.rutgers.edu/po/models/roms/). An individual based model will be implemented into the larval drift module to simulate growth of the larvae along the drift paths.

  12. Communicating climate science to high school students in the Arctic: Adventure Learning @ Greenland

    NASA Astrophysics Data System (ADS)

    Hougham, R. J.; Miller, B.; Cox, C. J.

    2012-12-01

    Adventure Learning @ Greenland (AL@GL) engaged high school students in atmospheric research in the Arctic and in local environments to enhance climate literacy. The overarching objective for this project was to support climate literacy in high school students, specifically the concept of energy exchange between the Earth, atmosphere, and space. The goal then is to produce a model of education and outreach for remote STEM research that can be used to meaningfully engage K-12 and public communities. Over the course of the program experience, students conducted scientific inquiry associated with their place that supported a more focused science content at a field location. Approximately 45 students participated in the hybrid learning environments as part of this project at multiple locations in Idaho, USA, and Greenland. In Greenland, the Summit Camp research station located on the Greenland Ice Sheet was the primary location. The AL@GL project provided a compelling opportunity to engage students in an inquiry-based curriculum alongside a cutting-edge geophysical experiment at Summit: the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit (ICECAPS) experiment. ICECAPS measures parameters that are closely tied to those identified in student misconceptions. Thus, ICECAPS science and the AL@ approach combined to create a learning environment that was practical, rich, and engaging. Students participating in this project were diverse, rural, and traditionally underrepresented. Groups included: students participating in a field school at Kangerlussuaq, Greenland and Summit Station as members of the JSEP; students at MOSS will were part of the Upward Bound Math Science (UBMS) and HOIST (Helping Orient Indian Students and Teachers) project. These project serve high school students who are first college generation and from low-income families. JSEP is an international group of students from the United States, Greenland, and Denmark. As a result of this project a model for education and outreach for remote science research was developed. The AL@ GL project was interested in the impact on student science and climate literacy. Survey data was collected from student participants two times and the surveys included questions pertaining to student knowledge of atmospheric science and climate and their impressions on scientific inquiry, and student interest and skills in technology. A subset of students were interviewed using a semi-structured, open-ended protocol at the end of the AL@ GL expedition. Beyond reaching 45 students directly through AL@GL instruction and field experiences, the web-based platform for communicating within this project reached over 10,000 site visits. This platform can be viewed at adventurelearningat.org and includes photos, videos and authentic narratives of the students and scientists involved with the project. The Adventure Learning @ (AL@) approach presents a powerful tool for teaching and learning exploring novel places through technology-rich curricula. By defining problems of local interest, and working with experts with local knowledge who have connections to the community, students can come to think of themselves as experts, scientists, and problem solvers within their own places.

  13. The American Meteorological Society and Second Nature: Working Together to Increase Climate Literacy at Minority Serving Institutions Nationwide

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Geer, I. W.; Mills, E. W.; Kauffman, C.; Nugnes, K. A.; Naik, A.

    2013-12-01

    To raise climate literacy, the American Meteorological Society (AMS) developed AMS Climate Studies, an innovative, undergraduate-level climate science course. With a focus on real-world climate data, the course is a primer for responsible, scientifically-literate participation in the discussion of climate change. Designed to be adaptable to traditional, hybrid, or online instructional settings, AMS Climate Studies has already been adopted by more than 80 institutions since fall 2010. Course materials include a hardcover textbook, an investigations manual, and an online lab component, Current Climate Studies, which is created weekly throughout the semester utilizing resources from the IPCC, the US Global Change Research Program, NASA, and NOAA. AMS Climate Studies is mutually beneficial because AMS enhances coursework with real-world data while NASA, NOAA, and other government agencies reach a much larger audience with the results of their work. With support from NSF and NASA and in partnership with Second Nature, AMS offers the AMS Climate Studies Diversity Project with the goal of training 100 minority-serving institution (MSI) faculty members to implement the climate course on their campus. The Diversity Project consists of an expenses-paid weeklong workshop for MSI faculty members and a follow-up workshop at the next year's AMS Annual Meeting. The initial workshop covers fundamental understandings within AMS Climate Studies and implementation procedures. Highlights of this workshop are presentations from NOAA, NASA, and other government and university climate scientists as well as field trips to science laboratories. In the year following workshop attendance, faculty work within their MSI to implement AMS Climate Studies. Participants are then invited to a second workshop at the AMS Annual Meeting to report back the results of their work. Currently in its second year, the Project has trained 50 MSI faculty members with subsequent workshops to be held throughout the next 2 years. The AMS Climate Studies Diversity Project follows the proven models of the AMS Weather Studies (2002-2007) and AMS Ocean Studies (2006-2008) Diversity Projects, which have impacted more than 200 MSI faculty and 24,000 students. Second Nature is a national non-profit organization that works with higher education leaders to accelerate movement toward a sustainable society. Second Nature manages and supports the American College & University Presidents' Climate Commitment (ACUPCC), a high-visibility effort by a network of more than 670 presidents and chancellors committed to achieving climate neutrality by eliminating net greenhouse gas emissions from campus operations, and making sustainability a part of the curriculum and other educational experiences for all students. Second Nature has been actively working with MSIs, which has given AMS the opportunity to effectively recruit for the AMS Climate Studies Diversity Project. With successful partnerships, such as this one, AMS is excited to bring climate science coursework to more students, strengthening the pathway towards advanced geoscience study and careers, and empowering institutions to be leaders in deep climate action.

  14. Building America Case Study: Compact Buried Ducts in a Hot-Humid Climate House, Lady's Island, South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-02-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely onmore » encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences, 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs, and 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.« less

  15. Compact Buried Ducts in a Hot-Humid Climate House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallay, Dave

    2016-01-07

    "9A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely onmore » encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences; 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs; 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.« less

  16. The PLOT (Paleolimnological Transect) Project in the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Gromig, R.; Andreev, A.; Baumer, M.; Bolshiyanov, D.; Fedorov, G.; Frolova, L.; Krastel, S.; Lebas, E.; Ludikova, A.; Melles, M.; Meyer, H.; Nazarova, L.; Pestryakova, L.; Savelieva, L.; Shumilovskikh, L.; Subetto, D.; Wagner, B.; Wennrich, V.

    2017-12-01

    The joint Russian- German project 'PLOT - Paleolimnological Transec' aims to recover lake sediment sequences along a >6000 km long longitudinal transect across the Eurasian Arctic in order to investigate the Late Quaternary climatic and environmental history. The climate history of the Arctic is of particular interest since it is the region, which is experiencing major impact of the current climate change. The project is funded for three years (2015-2018) by the Russian and German Ministries of Research. Since 2013 extensive fieldwork, including seismic surveys, coring, and hydrological investigations, was carried out at lakes Ladoga (NW Russia, pilot study), Bolshoye Shuchye (Polar Urals), Emanda (Verkhoyansk Range, field campaign planned for August 2017), Levinson-Lessing and Taymyr (Taymyr Peninsula). Fieldwork at lakes Bolshoye Shuchye, Levinson-Lessing and Taymyr was conducted in collaboration with the Russian-Norwegian CHASE (Climate History along the Arctic Seaboard of Eurasia) project. A major objective of the PLOT project was to recover preglacial sediments. A multiproxy approach was applied to the analytical work of all cores, including (bio-)geochemical, sedimentological, geophysical, and biological analyses. First data implies the presence of preglacial sediments in the cores from all lakes so far visited. Age-depth models, based on radiocarbon dating, OSL dating, paleomagnetic measurements, identification of cryptotephra, and varve counting (where applicable), are in progress. Climate variability in the records shall be compared to that recorded at Lake Eĺgygytgyn (NE Russia), which represents the master record for the Siberian Arctic. The outcome of the PLOT project will be a better understanding of the temporal and spatial variability and development of the Arctic climate. Here, we present the major results and first key interpretations of the PLOT project, along with an outlook on the future strategy and foci. First results from lakes Ladoga, Bolshoye Shuchye, Levinson-Lessing and Taymyr will be published in a special journal issue (Boreas) in spring 2018.

  17. The QWeCI Project: seamlessly linking climate science to society

    NASA Astrophysics Data System (ADS)

    Morse, A. P.; Caminade, C.; Jones, A. E.; MacLeod, D.; Heath, A. E.

    2012-04-01

    The EU FP7 QWeCI project Quantifying Weather and Climate Impacts on health in developing countries (www.liv.ac.uk/qweci) has 13 partners with 7 of these in Africa. The geographical focus of the project is in Senegal, Ghana and Malawi. In all three countries the project has a strong scientific dissemination outlook as well as having field based surveillance programmes in Ghana and Senegal to understand more about the local parameters controlling the transmission of malaria and in Senegal of Rift Valley fever. The project has a strong and active climate science activity in using hindcasts of the new System 4 seasonal forecasting system at ECMWF; to further develop the use of monthly to seasonal forecasts from ensemble prediction systems; within project downscaling development; the assessment of decadal ensemble prediction systems; and the development and testing of vector borne disease models for malaria and Rift Valley fever. In parallel with the science programme the project has a large outreach activity involving regular communication and bi-lateral exchanges, science and decision maker focused workshops. In Malawi a long range WiFi network has been established for the dissemination of data. In Senegal where they is a concentration of partners and stakeholders the project is gaining a role as a catalyst for wider health and climate related activity within government departments and national research bodies along with the support and involvement of local communities. Within these wider community discussions we have interactive inputs from African and European scientists who are partners in the project. This paper will show highlights of the work completed so far and give an outline to future development and to encourage a wider user interaction from outside of the current project team and their direct collaborators.

  18. The ESA DUE GlobVapour Project

    NASA Astrophysics Data System (ADS)

    Schröder, M.; ESA Due Globvapour Project Team

    2010-12-01

    The European Space Agency (ESA) Data User Element (DUE) project series aims at bridging the gap between research projects and the sustainable provision of Earth Observation (EO) climate data products at an information level that fully responds to the operational needs of user communities. The ultimate objective of GlobVapour is to provide long-term coherent water vapour data sets exploiting the synergistic capabilities of different EO missions aiming at improved accuracies and enhanced temporal and spatial sampling better than those provided by the single sources. The project seeks to utilize the increasing potential of the synergistic capabilities of past, existing and upcoming satellite missions (ERS-1 and -2, ENVISAT, METOP, MSG as well as relevant non-European missions and in-situ data) in order to meet the increasing needs for coherent long-term water vapour datasets required by the scientific community. GlobVapour develops, validates and applies novel water vapour climate data sets derived from various sensors. More specifically, the primary objectives of the GlobVapour project are: 1)The development of multi-annual global water vapour data sets inclusive of error estimates based on carefully calibrated and inter-calibrated radiances. 2)The validation of the water vapour products against ground based, airborne and other satellite based measurements. 3) The provision of an assessment of the quality of different IASI water vapour profile algorithms developed by the project partners and other groups. 4) The provision of a complete processing system that can further strengthen operational production of the developed products. 5) A demonstration of the use of the products in the field of climate modelling, including applying alternative ways of climate model validation using forward radiation operators. 6) The promotion of the strategy of data set construction and the data sets themselves to the global research and operational community. The ultimate goal of the DUE GlobVapour project is the preparation of recognised data sets and successful concepts that can be used to ensure a sustainable provision of such data from operational entities such as the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility (SAF) network. Key scientific questions which GlobVapour data can contribute to are climate monitoring and attribution, assimilation of different water vapour datasets to form a consistent analysis, model process studies, evaluation of in-situ water vapour measurements, validation of climate models and reanalyses, assessing the relationship between water vapour and dynamics, research and development for operational applications and input to atmospheric reanalyses. This presentation will introduce the GlobVapour project and concept as well as the products which are the global total column water vapour (TCWV) time series from a combination of MERIS and SSM/I as well as TCWV data sets derived from the GOME/SCIAMACHY/GOME-2 and the (A)ATSR instruments. A shorter time series of water vapour profiles will be derived from a combination of IASI and SEVIRI. The retrieval and combination methods as well as first validation results will also be discussed.

  19. US Food Security and Climate Change: Mid-Century Projections of Commodity Crop Production by the IMPACT Model

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Gustafson, D. I.; Beachy, R.; Nelson, G. C.; Mason-D'Croz, D.; Palazzo, A.

    2013-12-01

    Agreement is developing among agricultural scientists on the emerging inability of agriculture to meet growing global food demands. The lack of additional arable land and availability of freshwater have long been constraints on agriculture. Changes in trends of weather conditions that challenge physiological limits of crops, as projected by global climate models, are expected to exacerbate the global food challenge toward the middle of the 21st century. These climate- and constraint-driven crop production challenges are interconnected within a complex global economy, where diverse factors add to price volatility and food scarcity. We use the DSSAT crop modeling suite, together with mid-century projections of four AR4 global models, as input to the International Food Policy Research Institute IMPACT model to project the impact of climate change on food security through the year 2050 for internationally traded crops. IMPACT is an iterative model that responds to endogenous and exogenous drivers to dynamically solve for the world prices that ensure global supply equals global demand. The modeling methodology reconciles the limited spatial resolution of macro-level economic models that operate through equilibrium-driven relationships at a national level with detailed models of biophysical processes at high spatial resolution. The analysis presented here suggests that climate change in the first half of the 21st century does not represent a near-term threat to food security in the US due to the availability of adaptation strategies (e.g., loss of current growing regions is balanced by gain of new growing regions). However, as climate continues to trend away from 20th century norms current adaptation measures will not be sufficient to enable agriculture to meet growing food demand. Climate scenarios from higher-level carbon emissions exacerbate the food shortfall, although uncertainty in climate model projections (particularly precipitation) is a limitation to impact studies.

  20. Coastal Climate Change Education, Mitigation, and Adaptation in the Natural and Built Environments: Progress of the Coastal Areas Climate Change Education Partnership

    NASA Astrophysics Data System (ADS)

    Feldman, A.; Herman, B.; Vernaza-Hernández, V.; Ryan, J. G.; Muller-Karger, F. E.; Gilbes, F.

    2011-12-01

    The Coastal Area Climate Change Education (CACCE) Partnership, funded by the National Science Foundation, seeks to develop new ways to educate citizens about global climate change. The core themes are sea level rise and impacts of climate change in the southeastern United States and the Caribbean Sea. CACCE focuses on helping partners, educators, students, and the general public gain a fundamental and working understanding of the interrelation among the natural environment, built environment, and social aspects in the context of climate change in coastal regions. To this end, CACCE's objectives reported here include: 1) defining the current state of awareness, perceptions, and literacy about the impacts of climate change; and 2) testing a model of transdisciplinary research and learning as a means of training a new generation of climate professionals. Objective one is met in part by CACCE survey efforts that reveal Florida and Puerto Rico secondary science teachers hold many non-scientific views about climate change and climate change science and provide inadequate instruction about climate change. Associated with objective two are five Multiple Outcome Interdisciplinary Research and Learning (MOIRL) pilot projects underway in schools in Florida and Puerto Rico. In the CACCE Partnership the stakeholders include: students (K-16 and graduate); teachers and education researchers; informal science educators; scientists and engineers; business and industry; policy makers; and community members. CACCE combines interdisciplinary research with action research and community-based participatory research in a way that is best described as "transdisciplinary". Learning occurs in all spheres of interactions among stakeholders as they engage in scientific, educational, community and business activities through their legitimate peripheral participation in research communities of practice. We will describe the process of seeking and building partnerships, and call for a dialogue with groups pursuing climate and climate change education.

  1. Technical Report Series on Global Modeling and Data Assimilation, Volume 41 : GDIS Workshop Report

    NASA Technical Reports Server (NTRS)

    Koster, Randal D. (Editor); Schubert, Siegfried; Pozzi, Will; Mo, Kingtse; Wood, Eric F.; Stahl, Kerstin; Hayes, Mike; Vogt, Juergen; Seneviratne, Sonia; Stewart, Ron; hide

    2015-01-01

    The workshop "An International Global Drought Information System Workshop: Next Steps" was held on 10-13 December 2014 in Pasadena, California. The more than 60 participants from 15 countries spanned the drought research community and included select representatives from applications communities as well as providers of regional and global drought information products. The workshop was sponsored and supported by the US National Integrated Drought Information System (NIDIS) program, the World Climate Research Program (WCRP: GEWEX, CLIVAR), the World Meteorological Organization (WMO), the Group on Earth Observations (GEO), the European Commission Joint Research Centre (JRC), the US Climate Variability and Predictability (CLIVAR) program, and the US National Oceanic and Atmospheric Administration (NOAA) programs on Modeling, Analysis, Predictions and Projections (MAPP) and Climate Variability & Predictability (CVP). NASA/JPL hosted the workshop with logistical support provided by the GEWEX program office. The goal of the workshop was to build on past Global Drought Information System (GDIS) progress toward developing an experimental global drought information system. Specific goals were threefold: (i) to review recent research results focused on understanding drought mechanisms and their predictability on a wide range of time scales and to identify gaps in understanding that could be addressed by coordinated research; (ii) to help ensure that WRCP research priorities mesh with efforts to build capacity to address drought at the regional level; and (iii) to produce an implementation plan for a short duration pilot project to demonstrate current GDIS capabilities. See http://www.wcrp-climate.org/gdis-wkshp-2014-objectives for more information.

  2. Modeling Urban Energy Savings Scenarios Using Earth System Microclimate and Urban Morphology

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Rose, A.; New, J. R.; Yuan, J.; Omitaomu, O.; Sylvester, L.; Branstetter, M. L.; Carvalhaes, T. M.; Seals, M.; Berres, A.

    2017-12-01

    We analyze and quantify the relationships among climatic conditions, urban morphology, population, land cover, and energy use so that these relationships can be used to inform energy-efficient urban development and planning. We integrate different approaches across three research areas: earth system modeling; impacts, adaptation and vulnerability; and urban planning in order to address three major gaps in the existing capability in these areas: i) neighborhood resolution modeling and simulation of urban micrometeorological processes and their effect on and from regional climate; ii) projections for future energy use under urbanization and climate change scenarios identifying best strategies for urban morphological development and energy savings; iii) analysis and visualization tools to help planners optimally use these projections.

  3. Evidence and implications of recent and projected climate change in Alaska's forest ecosystems

    USGS Publications Warehouse

    Wolken, Jane M.; Hollingsworth, Teresa N.; Rupp, T. Scott; Chapin, Stuart III; Trainor, Sarah F.; Barrett, Tara M.; Sullivan, Patrick F.; McGuire, A. David; Euskirchen, Eugénie S.; Hennon, Paul E.; Beever, Erik A.; Conn, Jeff S.; Crone, Lisa K.; D'Amore, David V.; Fresco, Nancy; Hanley, Thomas A.; Kielland, Knut; Kruse, James J.; Patterson, Trista; Schuur, Edward A.G.; Verbyla, David L.; Yarie, John

    2011-01-01

    The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly to a changing climate. We then identify the regional and global implications to the climate system and associated socio-economic impacts, as presented in the current literature. Projections of temperature and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and severity of insect outbreaks and associated wildfires, and increase the probability of establishment by invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers and rising elevation of the winter snowline will alter discharge in many rivers, which will have important consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas emissions and radiation budgets, which are globally important. Our conceptual framework facilitates assessment of current and future consequences of a changing climate, emphasizes regional differences in biophysical factors, and points to linkages that may exist but that currently lack supporting research. The framework also serves as a visual tool for resource managers and policy makers to develop regional and global management strategies and to inform policies related to climate mitigation and adaptation.

  4. How well does climate change and human health research match the demands of policymakers? A scoping review.

    PubMed

    Hosking, Jamie; Campbell-Lendrum, Diarmid

    2012-08-01

    In 2008, the World Health Organization (WHO) Member States passed a World Health Assembly resolution that identified the following five priority areas for research and pilot projects on climate change and human health: health vulnerability, health protection, health impacts of mitigation and adaptation policies, decision-support and other tools, and costs of health protection from climate change. To assess the extent to which recently published research corresponds to these priorities, we undertook a scoping review of original research on climate change and human health. Scoping reviews address topics that are too broad for a systematic review and commonly aim to identify research gaps in existing literature. We also assessed recent publication trends for climate change and health research. We searched for original quantitative research published from 2008 onward. We included disease burden studies that were specific to climate change and health and included intervention studies that focused on climate change and measured health outcomes. We used MEDLINE, Embase, and Web of Science databases and extracted data on research priority areas, geographic regions, health fields, and equity (systematic differences between advantaged and disadvantaged social groups). We identified 40 eligible studies. Compared with other health topics, the number of climate change publications has grown rapidly, with a larger proportion of reviews or editorials. Recent original research addressed four of the five priority areas identified by the WHO Member States, but we found no eligible studies of health adaptation interventions, and most of the studies focused on high-income countries. Climate change and health is a rapidly growing area of research, but quantitative studies remain rare. Among recently published studies, we found gaps in adaptation research and a deficit of studies in most developing regions. Funders and researchers should monitor and respond to research gaps to help ensure that the needs of policymakers are met.

  5. Vulnerability of Thai rice production to simultaneous climate and socioeconomic changes: a double exposure analysis

    NASA Astrophysics Data System (ADS)

    Sangpenchan, R.

    2011-12-01

    This research explores the vulnerability of Thai rice production to simultaneous exposure by climate and socioeconomic change -- so-called "double exposure." Both processes influence Thailand's rice production system, but the vulnerabilities associated with their interactions are unknown. To understand this double exposure, I adopts a mixed-method, qualitative-quantitative analytical approach consisting of three phases of analysis involving a Vulnerability Scoping Diagram, a Principal Component Analysis, and the EPIC crop model using proxy datasets collected from secondary data sources at provincial scales.The first and second phases identify key variables representing each of the three dimensions of vulnerability -- exposure, sensitivity, and adaptive capacity indicating that the greatest vulnerability in the rice production system occurs in households and areas with high exposure to climate change, high sensitivity to climate and socioeconomic stress, and low adaptive capacity. In the third phase, the EPIC crop model simulates rice yields associated with future climate change projected by CSIRO and MIROC climate models. Climate change-only scenarios project the decrease in yields by 10% from the current productivity during 2016-2025 and 30% during 2045-2054. Scenarios applying both climate change and improved technology and management practices show that a 50% increase in rice production is possible, but requires strong collaboration between sectors to advance agricultural research and technology and requires strong adaptive capacity in the rice production system characterized by well-developed social capital, social networks, financial capacity, and infrastructure and household mobility at the local scale. The vulnerability assessment and climate and crop adaptation simulations used here provide useful information to decision makers developing vulnerability reduction plans in the face of concurrent climate and socioeconomic change.

  6. Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America

    USGS Publications Warehouse

    Collingsworth, Paris D.; Bunnell, David B.; Murray, Michael W.; Kao, Yu-Chun; Feiner, Zachary S.; Claramunt, Randall M.; Lofgren, Brent M.; Höök, Tomas O.; Ludsin, Stuart A.

    2017-01-01

    The Laurentian Great Lakes of North America provide valuable ecosystem services, including fisheries, to the surrounding population. Given the prevalence of other anthropogenic stressors that have historically affected the fisheries of the Great Lakes (e.g., eutrophication, invasive species, overfishing), climate change is often viewed as a long-term stressor and, subsequently, may not always be prioritized by managers and researchers. However, climate change has the potential to negatively affect fish and fisheries in the Great Lakes through its influence on habitat. In this paper, we (1) summarize projected changes in climate and fish habitat in the Great Lakes; (2) summarize fish responses to climate change in the Great Lakes; (3) describe key interactions between climate change and other stressors relevant to Great Lakes fish, and (4) summarize how climate change can be incorporated into fisheries management. In general, fish habitat is projected to be characterized by warmer temperatures throughout the water column, less ice cover, longer periods of stratification, and more frequent and widespread periods of bottom hypoxia in productive areas of the Great Lakes. Based solely on thermal habitat, fish populations theoretically could experience prolonged optimal growth environment within a changing climate, however, models that assess physical habitat influences at specific life stages convey a more complex picture. Looking at specific interactions with other stressors, climate change may exacerbate the negative impacts of both eutrophication and invasive species for fish habitat in the Great Lakes. Although expanding monitoring and research to consider climate change interactions with currently studied stressors, may offer managers the best opportunity to keep the valuable Great Lakes fisheries sustainable, this expansion is globally applicable for large lake ecosystem dealing with multiple stressors in the face of continued human-driven changes.

  7. Development of Climate Change Adaptation Platform using Spatial Information

    NASA Astrophysics Data System (ADS)

    Lee, J.; Oh, K. Y.; Lee, M. J.; Han, W. J.

    2014-12-01

    Climate change adaptation has attracted growing attention with the recent extreme weather conditions that affect people around the world. More and more countries, including the Republic of Korea, have begun to hatch adaptation plan to resolve these matters of great concern. They all, meanwhile, have mentioned that it should come first to integrate climate information in all analysed areas. That's because climate information is not independently made through one source; that is to say, the climate information is connected one another in a complicated way. That is the reason why we have to promote integrated climate change adaptation platform before setting up climate change adaptation plan. Therefore, the large-scaled project has been actively launched and worked on. To date, we researched 620 literatures and interviewed 51 government organizations. Based on the results of the researches and interviews, we obtained 2,725 impacts about vulnerability assessment information such as Monitoring and Forecasting, Health, Disaster, Agriculture, Forest, Water Management, Ecosystem, Ocean/Fisheries, Industry/Energy. Among 2,725 impacts, 995 impacts are made into a database until now. This database is made up 3 sub categories like Climate-Exposure, Sensitivity, Adaptive capacity, presented by IPCC. Based on the constructed database, vulnerability assessments were carried out in order to evaluate climate change capacity of local governments all over the country. These assessments were conducted by using web-based vulnerability assessment tool which was newly developed through this project. These results have shown that, metropolitan areas like Seoul, Pusan, Inchon, and so on have high risks more than twice than rural areas. Acknowledgements: The authors appreciate the support that this study has received from "Development of integrated model for climate change impact and vulnerability assessment and strengthening the framework for model implementation ", an initiative of the Korea Environmental & Industry Technology Institute .

  8. Raising Climate Literacy of K-12 Teachers with Datastreme Earth's Climate System

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Geer, I.; Weinbeck, R. S.; Mills, E. W.; Nugnes, K. A.

    2014-12-01

    The American Meteorological Society (AMS) DataStreme Project is a free professional development program for in-service K-12 teachers, in which they gain considerable subject matter content and confidence in Earth science instruction. DataStreme Atmosphere, Ocean, and Earth's Climate System (ECS) are offered each fall and spring semester by Local Implementation Teams (LITs) across the country in coordination with a team of AMS Education Program scientists and educators who develop instructional materials, provide logistical support to the LITs, and administer the project. The 3-member LITs mentor about 8 teachers and in some instances an emergency manager, per semester through a given DataStreme course. Teachers may receive 3 tuition-free graduate credits through State University of New York's The College at Brockport upon completion of each DataStreme course. DataStreme is in close alignment with A Framework for K-12 Science Education and the Next Generation Science Standards (NGSS). Investigating the scientific basis of the workings of Earth's atmosphere, ocean, and climate system follows the cross-cutting theme of the Framework and the NGSS and is the cornerstone of the DataStreme courses. In particular, DataStreme ECS explores the fundamental science of Earth's climate system and addresses the societal impacts relevant to today's teachers and students. The course utilizes resources from respected organizations, such as the IPCC and U.S. Global Change Research Program. Key to the NGSS is that students learn disciplinary core ideas in the context of science and engineering practices. In order for the students to learn in this way, the AMS believes that it is important to train the teachers in this context. DataStreme ECS emphasizes investigation of real-word and current NASA and NOAA data. Participants also are made aware of NASA's EdGCM, a research-grade Global Climate Model where they can explore various future climate scenarios in the same way that actual research scientists do. The AMS DataStreme Project has received support from the National Science Foundation, NASA, and NOAA. Since 1996, more than 18,000 teachers have completed a DataStreme course, directly impacting hundreds of thousands of additional teachers and more than 1 million students.

  9. Projection of Summer Climate on Tokyo Metropolitan Area using Pseudo Global Warming Method

    NASA Astrophysics Data System (ADS)

    Adachi, S. A.; Kimura, F.; Kusaka, H.; Hara, M.

    2010-12-01

    Recent surface air temperature observations in most of urban areas show the remarkable increasing trend affected by the global warming and the heat island effects. There are many populous areas in Japan. In such areas, the effects of land-use change and urbanization on the local climate are not negligible (Fujibe, 2010). The heat stress for citizen there is concerned to swell moreover in the future. Therefore, spatially detailed climate projection is required for making adaptation and mitigation plans. This study focuses on the Tokyo metropolitan area (TMA) in summer and aims to estimate the local climate change over the TMA in 2070s using a regional climate model. The Regional Atmospheric Modeling System (RAMS) was used for downscaling. A single layer urban canopy model (Kusaka et al., 2001) is built into RAMS as a parameterization expressing the features of urban surface. We performed two experiments for estimating present and future climate. In the present climate simulation, the initial and boundary conditions for RAMS are provided from the JRA-25/JCDAS. On the other hand, the Pseudo Global Warming (PGW) method (Sato et al., 2007) is applied to estimate the future climate, instead of the conventional dynamical downscaling method. The PGW method is expected to reduce the model biases in the future projection estimated by Atmosphere-Ocean General Circulation Models (AOGCM). The boundary conditions used in the PGW method is given by the PGW data, which are obtained by adding the climate monthly difference between 1990s and 2070s estimated by AOGCMs to the 6-hourly reanalysis data. In addition, the uncertainty in the regional climate projection depending on the AOGCM projections is estimated from additional downscaling experiments using the different PGW data obtained from five AOGCMs. Acknowledgment: This work was supported by the Global Environment Research Fund (S-5-3) of the Ministry of the Environment, Japan. References: 1. Fujibe, F., Int. J. Climatol., doi:10.1002/joc.2142 (2010). 2. Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, Bound.-Layer Meteor., 101, 329-358 (2001). 3. Sato, T., F. Kimura, and A. Kitoh, J. Hydrology, 144-154 (2007).

  10. Final Technical Report for "Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, A.W.; Ghil, M.; Kravtsov, K.

    2011-04-08

    This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs,more » we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.« less

  11. Final Technical Report for "Collaborative Research. Regional climate-change projections through next-generation empirical and dynamical models"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravtsov, S.; Robertson, Andrew W.; Ghil, Michael

    2011-04-08

    This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs,more » we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.« less

  12. Regional Climate and Streamflow Projections in North America Under IPCC CMIP5 Scenarios

    NASA Astrophysics Data System (ADS)

    Chang, H. I.; Castro, C. L.; Troch, P. A. A.; Mukherjee, R.

    2014-12-01

    The Colorado River system is the predominant source of water supply for the Southwest U.S. and is already fully allocated, making the region's environmental and economic health particularly sensitive to annual and multi-year streamflow variability. Observed streamflow declines in the Colorado Basin in recent years are likely due to synergistic combination of anthropogenic global warming and natural climate variability, which are creating an overall warmer and more extreme climate. IPCC assessment reports have projected warmer and drier conditions in arid to semi-arid regions (e.g. Solomon et al. 2007). The NAM-related precipitation contributes to substantial Colorado streamflows. Recent climate change studies for the Southwest U.S. region project a dire future, with chronic drought, and substantially reduced Colorado River flows. These regional effects reflect the general observation that climate is being more extreme globally, with areas climatologically favored to be wet getting wetter and areas favored to be dry getting drier (Wang et al. 2012). Multi-scale downscaling modeling experiments are designed using recent IPCC AR5 global climate projections, which incorporate regional climate and hydrologic modeling components. The Weather Research and Forecasting model (WRF) has been selected as the main regional modeling tool; the Variable Infiltration Capacity model (VIC) will be used to generate streamflow projections for the Colorado River Basin. The WRF domain is set up to follow the CORDEX-North America guideline with 25km grid spacing, and VIC model is individually calibrated for upper and lower Colorado River basins in 1/8° resolution. The multi-scale climate and hydrology study aims to characterize how the combination of climate change and natural climate variability is changing cool and warm season precipitation. Further, to preserve the downscaled RCM sensitivity and maintain a reasonable climatology mean based on observed record, a new bias correction technique is applied when using the RCM climatology to the streamflow model. Of specific interest is how major droughts associated with La Niña-like conditions may worsen in the future, as these are the times when the Colorado River system is most critically stressed and would define the "worst case" scenario for water resource planning.

  13. Mid-21st century projections of hydroclimate in Western Himalayas and Satluj River basin

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.

    2018-02-01

    The Himalayan climate system is sensitive to global warming and climate change. Regional hydrology and the downstream water flow in the rivers of Himalayan origin may change due to variations in snow and glacier melt in the region. This study examines the mid-21st century climate projections over western Himalayas from the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models under Representative Concentration Pathways (RCP) scenarios (RCP4.5 and RCP8.5). All the global climate models used in the present analysis indicate that the study region would be warmer by mid-century. The temperature trends from all the models studied here are statistically significant at 95% confidence interval. Multi-model ensemble spreads show that there are large differences among the models in their projections of future climate with spread in temperature ranging from about 1.5 °C to 5 °C over various areas of western Himalayas in all the seasons. Spread in precipitation projections lies between 0.3 and 1 mm/day in all the seasons. Major shift in the timing of evaporation maxima and minima is noticed. The GFDL_ESM2G model products have been downscaled to Satluj River basin using the weather research and forecast (WRF) model and impact of climate change on streamflow has been studied. The reduction of precipitation during JJAS is expected to be > 3-6 mm/day in RCP8.5 as compared to present climate. It is expected that precipitation amount shall increase over Satluj basin in future (mid-21st century) The soil and water assessment tool (SWAT) model has been used to simulate the Satluj streamflow for the present and future climate using GFDL_ESM2G precipitation and temperature data as well as the WRF model downscaled data. The computations using the global model data show that total annual discharge from Satluj will be less in future than that in present climate, especially in peak discharge season (JJAS). The SWAT model with downscaled output indicates that during winter and spring, more discharge shall occur in future (RCP8.5) in Satluj River.

  14. Clime: analyzing and producing climate data in GIS environment

    NASA Astrophysics Data System (ADS)

    Cattaneo, Luigi; Rillo, Valeria; Mercogliano, Paola

    2014-05-01

    In the last years, Impacts on Soil and Coasts Division (ISC) of CMCC (Euro-Mediterranean Center on Climate Change) had several collaboration experiences with impact communities, including IS-ENES (FP7-INF) and SafeLand (FP7-ENV) projects, which involved a study of landslide risk in Europe, and is currently active in GEMINA (FIRB) and ORIENTGATE (SEE Transnational Cooperation Programme) research projects. As a result, it has brought research activities about different impact of climate changes as flood and landslide hazards, based on climate simulation obtained from the high resolution regional climate models COSMO CLM, developed at CMCC as member of the consortium CLM Assembly. ISC-Capua also collaborates with local institutions interested in atmospherical climate change and also of their impacts on the soil, such as river basin authorities in the Campania region, ARPA Emilia Romagna and ARPA Calabria. Impact models (e.g. hydraulic or stability models) are usually developed in a GIS environment, since they need an accurate territory description, so Clime has been designed to bridge the usually existing gap between climate data - both observed and simulated - gathered from different sources, and impact communities. The main goal of Clime, special purpose Geographic Information System (GIS) software integrated in ESRI ArcGIS Desktop 10, is to easily evaluate multiple climate features and study climate changes over specific geographical domains with their related effects on environment, including impacts on soil. Developed as an add-in tool, this software has been conceived for research activities of ISC Division in order to provide a substantial contribution during post-processing and validation phase. Therefore, it is possible to analyze and compare multiple datasets (observations, climate simulations, etc.) through processes involving statistical functions, percentiles, trends test and evaluation of extreme events with a flexible system of temporal and spatial filtering, and to represent results as maps, temporal and statistic plots (time series, seasonal cycles, PDFs, scatter plots, Taylor diagrams) or Excel tables; in addition, it features bias correction techniques for climate model results. Summarizing, Clime is able to provide users a simple and fast way to retrieve analysis over simulated climate data and observations within any geographical site of interest (provinces, regions, countries, etc.).

  15. Multi-disciplinary assessments of climate change impacts on agriculture to support adaptation decision making in developing countries

    NASA Astrophysics Data System (ADS)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Many existing climate change impact studies, carried out by academic researchers, are disconnected from decision making processes of stakeholders. On the other hand many climate change adaptation projects in developing countries lack a solid evidence base of current and future climate impacts as well as vulnerabilities assessment at different scales. In order to fill this information gap, FAO has developed and implemented a tool "MOSAICC (Modelling System for Agricultural Impacts of Climate Change)" in several developing countries such as Morocco, the Philippines and Peru, and recently in Malawi and Zambia. MOSAICC employs a multi-disciplinary assessment approach to addressing climate change impacts and adaptation planning in the agriculture and food security sectors, and integrates five components from different academic disciplines: 1. Statistical downscaling of climate change projections, 2. Yield simulation of major crops at regional scale under climate change, 3. Surface hydrology simulation model, 4. Macroeconomic model, and 5. Forestry model. Furthermore MOSAICC has been developed as a capacity development tool for the national scientists so that they can conduct the country assessment themselves, using their own data, and reflect the outcome into the national adaptation policies. The outputs are nation-wide coverage, disaggregated at sub-national level to support strategic planning, investments and decisions by national policy makers. MOSAICC is designed in such a way to promote stakeholders' participation and strengthen technical capacities in developing countries. The paper presents MOSAICC and projects that used MOSAICC as a tool with case studies from countries.

  16. Managing Climate Change Refugia for Biodiversity ...

    EPA Pesticide Factsheets

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such efforts stake a claim for an adaptive, anticipatory planning response to the climate change threat. To be effective, approaches will need to address critical uncertainties in both the physical basis for projected landscape changes, as well as the biological responses of organisms. Recent efforts define future potential climate refugia based on air temperatures and associated microclimatic changes. These efforts reflect the relatively strong conceptual foundation for linkages between regional climate change and local responses and thermal dynamics. Yet important questions remain. Drawing on case studies, we illustrate some key uncertainties in the responses of species and their habitats to altered hydro-climatic regimes currently not well addressed by physical or ecological models. These uncertainties need not delay anticipatory planning, but rather highlight the need for identification and communication of actions with high probabilities of success, and targeted research within an adaptive management framework.In this workshop, we will showcase the latest science on climate refugia and participants will interact through small group discussions, relevant examples, and facilitated dialogue to i

  17. Future malaria spatial pattern based on the potential global warming impact in South and Southeast Asia.

    PubMed

    Khormi, Hassan M; Kumar, Lalit

    2016-11-21

    We used the Model for Interdisciplinary Research on Climate-H climate model with the A2 Special Report on Emissions Scenarios for the years 2050 and 2100 and CLIMEX software for projections to illustrate the potential impact of climate change on the spatial distributions of malaria in China, India, Indochina, Indonesia, and The Philippines based on climate variables such as temperature, moisture, heat, cold and dryness. The model was calibrated using data from several knowledge domains, including geographical distribution records. The areas in which malaria has currently been detected are consistent with those showing high values of the ecoclimatic index in the CLIMEX model. The match between prediction and reality was found to be high. More than 90% of the observed malaria distribution points were associated with the currently known suitable climate conditions. Climate suitability for malaria is projected to decrease in India, southern Myanmar, southern Thailand, eastern Borneo, and the region bordering Cambodia, Malaysia and the Indonesian islands, while it is expected to increase in southern and south-eastern China and Taiwan. The climatic models for Anopheles mosquitoes presented here should be useful for malaria control, monitoring, and management, particularly considering these future climate scenarios.

  18. Online Discovery and Mapping of Great Lakes Climate Change Education and Scientific Research Activities: Building an Online Collaborative Learning Community of Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Tuddenham, P.; Bishop, K.; Walters, H.; Carley, S.

    2011-12-01

    The Great Lakes Climate Change Science and Education Systemic Network (GLCCSESN) project is an NSF-funded CCEP program awarded to Eastern Michigan University in 2010. The College of Exploration is one of the project partners and has conducted a series of online surveys, workshop and focus group to identify a wide range of organizations, individuals, resources and needs related to climate change education and research activities in and about the Great Lakes Region and to provide information about climate change science to the education community. One of the first steps taken to build this community was to build a web site that features a dynamic online map of individuals and organizations concerned about climate change as well as interested in resources and activities specific to the Great Lakes. Individuals and organizations have been, and are still, invited to put themselves on the map at http://greatlakesclimate.org This map of the Great Lakes region provides both a visual representation of activities and resources as well as a database of climate change activities. This map will grow over time as more people and organizations put themselves on the map. The use of online technologies has helped broaden the participation and representation in the GLCCSESN from all states/provinces in the Great Lakes region, encouraging diverse audiences and stakeholders, including scientists, educators, and journalists, etc.to engage with the project. In the fall of 2011 a combined online professional development workshop and focus group is planned. Educators and scientists working on climate change studies and issues related to the Great Lakes will be sharing their work and expertise in an online workshop and focus group. Following the professional development activity a focus group will be conducted online using a model developed as part of a NSF funded COSEE project. The focus group purpose is to review current educational resources and to identify gaps and needs for further educational programs, materials and resources. The online format will encourage and support widespread participation across the Great Lakes region. Data from the needs assessment surveys will provide a foundation for online focus group discussion questions.

  19. PAVICS: A Platform for the Analysis and Visualization of Climate Science

    NASA Astrophysics Data System (ADS)

    Gauvin St-Denis, B.; Landry, T.; Huard, D. B.; Byrns, D.; Chaumont, D.; Foucher, S.

    2016-12-01

    Climate service providers are boundary organizations working at the interface of climate science research and users of climate information. Users include academics in other disciplines looking for credible, customized future climate scenarios, government planners, resource managers, asset owners, as well as service utilities. These users are looking for relevant information regarding the impacts of climate change as well as informing decisions regarding adaptation options. As climate change concerns become mainstream, the pressure on climate service providers to deliver tailored, high quality information in a timely manner increases rapidly. To meet this growing demand, Ouranos, a climate service center located in Montreal, is collaborating with the Centre de recherche informatique de Montreal (CRIM) to develop a climate data analysis web-based platform interacting with RESTful services covering data access and retrieval, geospatial analysis, bias correction, distributed climate indicator computing and results visualization. The project, financed by CANARIE, relies on the experience of the UV-CDAT and ESGF-CWT teams, as well as on the Birdhouse framework developed by the German Climate Research Center (DKRZ) and French IPSL. Climate data is accessed through OPEnDAP, while computations are carried through WPS. Regions such as watersheds or user-defined polygons, used as spatial selections for computations, are managed by GeoServer, also providing WMS, WFS and WPS capabilities. The services are hosted on independent servers communicating by high throughput network. Deployment, maintenance and collaboration with other development teams are eased by the use of Docker and OpenStack VMs. Web-based tools are developed with modern web frameworks such as React-Redux, OpenLayers 3, Cesium and Plotly. Although the main objective of the project is to build a functioning, usable data analysis pipeline within two years, time is also devoted to explore emerging technologies and assess their potential. For instance, sandbox environments will store climate data in HDFS, process it with Apache Spark and allow interaction through Jupyter Notebooks. Data streaming of observational data with OpenGL and Cesium is also considered.

  20. Interagency Collaboration in Support of Climate Change Education

    NASA Astrophysics Data System (ADS)

    Schoedinger, S. E.; Chambers, L. H.; Karsten, J. L.; McDougall, C.; Campbell, D.

    2011-12-01

    NASA, NOAA and NSF support climate change education (CCE) through their grant programs. As the agencies' investment in CCE has grown, coordination among the agencies has become increasingly important. Although the political landscape and budgets continue to change, the agencies are committed to continued coordination and collaboration. To date, this has taken the form of jointly hosted principal investigator (PI) meetings, the largest of which was held last February (see Eos Vol. 92, No. 24, 14 June 2011). The joint goals are: (1) increased collaboration among grantees and across programs; (2) building capacity among grantees in areas of mutual interest; (3) identification of gaps in investments to date; and (4) identification of opportunities for coordination of evaluation efforts. NOAA's primary funding opportunity for CCE projects is its Environmental Literacy Grant (ELG) Program. Although not exclusively focused on climate, there has been increased emphasis on this area since 2009. Through ELG, NOAA encourages the use of NOAA assets (data, facilities, educational resources, and people) in grantees' work. Thirty awards with a primary focus on CCE have been awarded to institutions of higher education, informal science education, and non-profit organizations involved in K-12 and informal/non-formal education. We anticipate this funding opportunity will continue to support the improvement of climate literacy among various audiences of learners in the future. NASA supported efforts in CCE in an ad hoc way for years. It became a focus area in 2008 with the launch of the NASA Global Climate Change Education (GCCE) Project. This project funded 57 awards in 2008-2010, the vast majority of them in teacher professional development, or use of data, models, or simulations. Beginning in FY11, NASA moved the project into the Minority University Research and Education Program. Fourteen awards were made to minority higher education institutions, non-profit organizations, and community colleges. These efforts are expected to continue in FY12 and beyond under NASA Innovations in Climate Education (NICE). A solicitation for the NICE project is currently anticipated in Summer 2012. Through its core programs, NSF supports a variety of efforts designed to improve teaching and learning about CCE in formal and informal settings, often through leveraging NSF-supported climate research. In 2009, dedicated CCE funding supported 10 new awards aimed at focusing NSF investments in key areas: preparing innovators for the workforce; strategies for scaling up and disseminating effective curricula and instructional resources; assessment of student learning of complex climate issues; and, increasing access to CCE and professional development for learners, educators, and policymakers. Phase I of the Climate Change Education Partnership (CCEP) program, launched in 2010, supports strategic planning activities within 15 regional and thematic partnerships that bring together climate scientists, learning scientists, and education practitioners. A solicitation for CCEP Phase II implementation is anticipated in Fall 2011. We will discuss agency funding opportunities, examples of collaborations, and common metrics/sharing tools for evaluation of CCE projects.

Top