Sample records for climate research unit

  1. The relationship between patient safety climate and occupational safety climate in healthcare - A multi-level investigation.

    PubMed

    Pousette, Anders; Larsman, Pernilla; Eklöf, Mats; Törner, Marianne

    2017-06-01

    Patient safety climate/culture is attracting increasing research interest, but there is little research on its relation with organizational climates regarding other target domains. The aim of this study was to investigate the relationship between patient safety climate and occupational safety climate in healthcare. The climates were assessed using two questionnaires: Hospital Survey on Patient Safety Culture and Nordic Occupational Safety Climate Questionnaire. The final sample consisted of 1154 nurses, 886 assistant nurses, and 324 physicians, organized in 150 work units, within hospitals (117units), primary healthcare (5units) and elderly care (28units) in western Sweden, which represented 56% of the original sample contacted. Within each type of safety climate, two global dimensions were confirmed in a higher order factor analysis; one with an external focus relative the own unit, and one with an internal focus. Two methods were used to estimate the covariation between the global climate dimensions, in order to minimize the influence of bias from common method variance. First multilevel analysis was used for partitioning variances and covariances in a within unit part (individual level) and a between unit part (unit level). Second, a split sample technique was used to calculate unit level correlations based on aggregated observations from different respondents. Both methods showed associations similar in strength between the patient safety climate and the occupational safety climate domains. The results indicated that patient safety climate and occupational safety climate are strongly positively related at the unit level, and that the same organizational processes may be important for the development of both types of organizational climate. Safety improvement interventions should not be separated in different organizational processes, but be planned so that both patient safety and staff safety are considered concomitantly. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  2. Potential climate change impacts on fire weather in the United States

    Treesearch

    Warren E. Heilman; Ying Tang; Lifeng Luo; Shiyuan Zhong; Julie Winkler; Xindi. Bian

    2015-01-01

    Researchers at Michigan State University and the Forest Service's Northern Research Station worked on a joint study to examine the possible effects of future global and regional climate change on the occurrence of fire-weather patterns often associated with extreme and erratic wildfire behavior in the United States.

  3. Global climate change impacts in the United States

    DOT National Transportation Integrated Search

    2009-06-01

    This report summarizes the science of climate change and the impacts of climate change on the United States, now and in the future. It is largely based on results of the U.S. Global Change Research Program (USGCRP), a and integrates those results wit...

  4. Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training

    DTIC Science & Technology

    2016-03-01

    identifying the model’s elements and influential individuals, define spheres of influence and construct a model that details the ecological systems...Research Report 1997 Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training...Technical review by: Sena Garven, U.S. Army Research Institute Michael D. Wood , Walter Reed Army Institute of Research

  5. Understanding How Climate Change Could Affect Tornadoes

    NASA Astrophysics Data System (ADS)

    Elsner, James; Guishard, Mark

    2014-11-01

    Current understanding of how tornadoes might change with global warming is limited. Incomplete data sets and the small-scale nature of tornadic events make it difficult to draw definitive conclusions. A consensus report on the climate of extreme storms found little evidence of trends in tornado frequency in the United States. However new research suggests a potential climate change footprint on tornadoes. Some of this research was presented at the First International Summit on Tornadoes and Climate Change, hosted by Aegean Conferences. The summit took place at the Minoa Palace in Chania, Greece, from 25 to 30 May 2014. Thirty delegates from eight countries—Greece, the United States, Germany, the United Kingdom, China, Japan, Israel, and Taiwan—participated.

  6. Climate change through an intersectional lens: gendered vulnerability and resilience in indigenous communities in the United States

    Treesearch

    Kirsten Vinyeta; Kyle Powys Whyte; Kathy Lynn

    2015-01-01

    The scientific and policy literature on climate change increasingly recognizes the vulnerabilities of indigenous communities and their capacities for resilience. The role of gender in defining how indigenous peoples experience climate change in the United States is a research area that deserves more attention. Advancing climate change threatens the continuance of many...

  7. Climate change in grasslands, shrublands, and deserts of the interior American West: a review and needs assessment

    Treesearch

    Deborah M. Finch

    2012-01-01

    Recent research and species distribution modeling predict large changes in the distributions of species and vegetation types in the western interior of the United States in response to climate change. This volume reviews existing climate models that predict species and vegetation changes in the western United States, and it synthesizes knowledge about climate change...

  8. Impacts of Climate Change on Human Health in the United States: A Scientific Assessment

    EPA Science Inventory

    Climate change threatens human health and well-being in the United States. To address this growing threat, the Interagency Group on Climate Change and Human Health (CCHHG), a working group of the U.S. Global Change Research Program’s (USGCRP), has developed this assessment as par...

  9. NASA GISS Climate Change Research Initiative: A Multidisciplinary Vertical Team Model for Improving STEM Education by Using NASA's Unique Capabilities.

    NASA Astrophysics Data System (ADS)

    Pearce, M. D.

    2017-12-01

    CCRI is a year-long STEM education program designed to bring together teams of NASA scientists, graduate, undergraduate and high school interns and high school STEM educators to become immersed in NASA research focused on atmospheric and climate changes in the 21st century. GISS climate research combines analysis of global datasets with global models of atmospheric, land surface, and oceanic processes to study climate change on Earth and other planetary atmospheres as a useful tool in assessing our general understanding of climate change. CCRI interns conduct research, gain knowledge in assigned research discipline, develop and present scientific presentations summarizing their research experience. Specifically, CCRI interns write a scientific research paper explaining basic ideas, research protocols, abstract, results, conclusion and experimental design. Prepare and present a professional presentation of their research project at NASA GISS, prepare and present a scientific poster of their research project at local and national research symposiums along with other federal agencies. CCRI Educators lead research teams under the direction of a NASA GISS scientist, conduct research, develop research based learning units and assist NASA scientists with the mentoring of interns. Educators create an Applied Research STEM Curriculum Unit Portfolio based on their research experience integrating NASA unique resources, tools and content into a teacher developed unit plan aligned with the State and NGSS standards. STEM Educators also Integrate and implement NASA unique units and content into their STEM courses during academic year, perform community education STEM engagement events, mentor interns in writing a research paper, oral research reporting, power point design and scientific poster design for presentation to local and national audiences. The CCRI program contributes to the Federal STEM Co-STEM initiatives by providing opportunities, NASA education resources and programing that improve STEM instruction, increase and sustain youth and public engagement in STEM, enhance STEM experience of undergraduate students, better serve groups under-represented groups in STEM fields and design graduate education for tomorrow's STEM workforce.

  10. Changing climate, changing forests: The impacts of climate change on forests of the northeastern United States and eastern Canada

    Treesearch

    Lindsey Rustad; John Campbell; Jeffrey S. Dukes; Thomas Huntington; Kathy Fallon Lambert; Jacqueline Mohan; Nicholas Rodenhouse

    2012-01-01

    Decades of study on climatic change and its direct and indirect effects on forest ecosystems provide important insights for forest science, management, and policy. A synthesis of recent research from the northeastern United States and eastern Canada shows that the climate of the region has become warmer and wetter over the past 100 years and that there are more extreme...

  11. Climate Discovery: Integrating Research With Exhibit, Public Tours, K-12, and Web-based EPO Resources

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Carbone, L.; Gardiner, L.; Johnson, R.; Russell, R.; Advisory Committee, S.; Ammann, C.; Lu, G.; Richmond, A.; Maute, A.; Haller, D.; Conery, C.; Bintner, G.

    2005-12-01

    The Climate Discovery Exhibit at the National Center for Atmospheric Research (NCAR) Mesa Lab provides an exciting conceptual outline for the integration of several EPO activities with other well-established NCAR educational resources and programs. The exhibit is organized into four topic areas intended to build understanding among NCAR's 80,000 annual visitors, including 10,000 school children, about Earth system processes and scientific methods contributing to a growing body of knowledge about climate and global change. These topics include: 'Sun-Earth Connections,' 'Climate Now,' 'Climate Past,' and 'Climate Future.' Exhibit text, graphics, film and electronic media, and interactives are developed and updated through collaborations between NCAR's climate research scientists and staff in the Office of Education and Outreach (EO) at the University Corporation for Atmospheric Research (UCAR). With funding from NCAR, paleoclimatologists have contributed data and ideas for a new exhibit Teachers' Guide unit about 'Climate Past.' This collection of middle-school level, standards-aligned lessons are intended to help students gain understanding about how scientists use proxy data and direct observations to describe past climates. Two NASA EPO's have funded the development of 'Sun-Earth Connection' lessons, visual media, and tips for scientists and teachers. Integrated with related content and activities from the NASA-funded Windows to the Universe web site, these products have been adapted to form a second unit in the Climate Discovery Teachers' Guide about the Sun's influence on Earth's climate. Other lesson plans, previously developed by on-going efforts of EO staff and NSF's previously-funded Project Learn program are providing content for a third Teachers' Guide unit on 'Climate Now' - the dynamic atmospheric and geological processes that regulate Earth's climate. EO has plans to collaborate with NCAR climatologists and computer modelers in the next year to develop lessons and ancillary exhibit interactives and visualizations for the final Teachers' Guide unit about 'Climate Future.' Units developed so far are available in downloadable format on the NCAR EO and Windows to the Universe web sites for dissemination to educators and the general public public. Those web sites are, respectively, (http://eo.ucar.edu/educators/ClimateDiscovery) and (http://www.windows.ucar.edu). Encouragement from funding agencies to integrate and relate resources and growing pressure to implement efficiencies in educational programs have created excellent opportunities which will be described from the viewpoints of EO staff and scientists'. Challenges related to public and student perceptions about climate and global change, the scientific endeavor, and how to establish successful dialogues between educators and scientists will also be discussed.

  12. Climate Impacts Already Affect Every Region of the United States, Report Warns

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-05-01

    "Climate change, once considered an issue for a distant future, has moved firmly into the present," according to the third iteration of the U.S. National Climate Assessment (NCA), issued by the White House on 6 May. "The observed warming and other climatic changes are triggering wide-ranging impacts in every region of our country and throughout our economy," states the report, titled Climate Change Impacts in the United States, issued through the federal interagency U.S. Global Change Research Program.

  13. Climate Voices: Bridging Scientist Citizens and Local Communities across the United States

    NASA Astrophysics Data System (ADS)

    Wegner, K.; Ristvey, J. D., Jr.

    2016-12-01

    Based out of the University Corporation for Atmospheric Research (UCAR), the Climate Voices Science Speakers Network (climatevoices.org) has more than 400 participants across the United States that volunteer their time as scientist citizens in their local communities. Climate Voices experts engage in nonpartisan conversations about the local impacts of climate change with groups such as Rotary clubs, collaborate with faith-based groups on climate action initiatives, and disseminate their research findings to K-12 teachers and classrooms through webinars. To support their participants, Climate Voices develops partnerships with networks of community groups, provides trainings on how to engage these communities, and actively seeks community feedback. In this presentation, we will share case studies of science-community collaborations, including meta-analyses of collaborations and lessons learned.

  14. Relationship between the Quality of Educational Facilities, School Climate, and School Safety of High School Tenth Graders in the United States

    ERIC Educational Resources Information Center

    Bell, Darnell Brushawn

    2011-01-01

    The purpose of the study was to understand the relationships among facility conditions, school climate, and school safety of high school tenth graders in the United States. Previous research on the quality of educational facilities influence on student achievement has varied. Recent research has suggested that the quality of educational facilities…

  15. A Research Agenda for Bridging the Gap Between Climate Science, Media and Public

    NASA Astrophysics Data System (ADS)

    Strauss, B.

    2012-12-01

    A large and widely noted gap exists between the urgent threats indicated by climate science, and the general lack of priority being assigned to climate change by the broader public, media and policy-makers in the United States. This gap has motivated many climate scientists to try to engage more with lay audiences. One pathway for doing so is to speak or write directly for these audiences—for example, via blogs. To succeed, however, this route generally demands development of entirely new and deceptively difficult skill sets, navigation of common important pitfalls, and a significant dedication of time outside of research. A second pathway instead builds on scientists' traditional strength in research: orienting and extending research to increase its interest and accessibility for wider audiences. A trivially simple but relevant example is using U.S. instead of metric units, even to the point of doing separate additional analyses based on round U.S. unit variable values. More fundamentally, scientists can (and increasingly do) resolve research results to the finest spatial and temporal scales possible, in order to deliver information that is of local and immediate interest. But for maximum effectiveness, research products must go beyond, for example, color scale maps—whatever their resolution—to summarizing and communicating findings for the units that people care about, such as individual states, counties or cities, whenever this is a legitimate and feasible exercise. In this talk, I will develop these and related themes, and draw heavily on my experience and lessons learned from Climate Central's Surging Seas project, a conceptually integrated research and communications program on sea level rise that has stimulated over 800 news stories, from small-town independent reporting to major national coverage, since its launch in March 2012.

  16. Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA

    USGS Publications Warehouse

    ,

    2009-01-01

    Fifty years of U.S. Geological Survey (USGS) research on glacier change shows recent dramatic shrinkage of glaciers in three climatic regions of the United States. These long periods of record provide clues to the climate shifts that may be driving glacier change. The USGS Benchmark Glacier Program began in 1957 as a result of research efforts during the International Geophysical Year (Meier and others, 1971). Annual data collection occurs at three glaciers that represent three climatic regions in the United States: South Cascade Glacier in the Cascade Mountains of Washington State; Wolverine Glacier on the Kenai Peninsula near Anchorage, Alaska; and Gulkana Glacier in the interior of Alaska (fig. 1).

  17. The importance of organizational climate and implementation strategy at the introduction of a new working tool in primary health care.

    PubMed

    Carlfjord, S; Andersson, A; Nilsen, P; Bendtsen, P; Lindberg, M

    2010-12-01

    The transmission of research findings into routine care is a slow and unpredictable process. Important factors predicting receptivity for innovations within organizations have been identified, but there is a need for further research in this area. The aim of this study was to describe contextual factors and evaluate if organizational climate and implementation strategy influenced outcome, when a computer-based concept for lifestyle intervention was introduced in primary health care (PHC). The study was conducted using a prospective intervention design. The computer-based concept was implemented at six PHC units. Contextual factors in terms of size, leadership, organizational climate and political environment at the units included in the study were assessed before implementation. Organizational climate was measured using the Creative Climate Questionnaire (CCQ). Two different implementation strategies were used: one explicit strategy, based on Rogers' theories about the innovation-decision process, and one implicit strategy. After 6 months, implementation outcome in terms of the proportion of patients who had been referred to the test, was measured. The CCQ questionnaire response rates among staff ranged from 67% to 91% at the six units. Organizational climate differed substantially between the units. Managers scored higher on CCQ than staff at the same unit. A combination of high CCQ scores and explicit implementation strategy was associated with a positive implementation outcome. Organizational climate varies substantially between different PHC units. High CCQ scores in combination with an explicit implementation strategy predict a positive implementation outcome when a new working tool is introduced in PHC. © 2010 Blackwell Publishing Ltd.

  18. Should Psychosocial Safety Climate Theory Be Extended to Include Climate Strength?

    PubMed

    Afsharian, Ali; Zadow, Amy; Dollard, Maureen F; Dormann, Christian; Ziaian, Tahereh

    2017-08-31

    Psychosocial safety climate (PSC; climate for psychological health) is an organizational antecedent to work conditions articulated in the job demands-resources model. We responded to calls for broader consideration of organizational climate in terms of both climate level and strength. We tested PSC level and strength as main and interactive predictors of work conditions, psychological health, and engagement. Using multilevel analysis and cross-sectional data, the effects of unit-level PSC constructs were investigated in 21 hospital work units (n = 249 employees) in Australia. The correlation between PSC levels (measured at the unit mean) and PSC strength (measured as unit -1 × SD) was moderate and positive, suggesting that ceiling effects of PSC scores were not problematic. PSC level was a better predictor than PSC strength or their interactions for job demands (psychological and emotional demands), job resources (e.g., skill discretion and organizational support), and health (emotional exhaustion). For engagement, the interaction was significant-improving engagement, therefore, benefits from high levels of PSC and PSC strength within the work units. So, in answer to the research question regarding PSC theory extension, "it depends on the outcome." Research limitations are acknowledged, and the potential of the PSC model to guide the reduction of workplace psychosocial risk factors and the negative consequences is discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Carbon Offsets | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    offsets may fit into climate action plans for your research campus. Options Considerations Sample Project United States. Instead, several organizations offer certification, so the buyer must carefully research a seller's claims for carbon reduction. Today, carbon offsets are widely available. For example, the Chicago

  20. An analysis of historic and projected climate scenarios in the Western United States using hydrologic landscape classification.

    EPA Science Inventory

    : Identifying areas of similar hydrology within the United States and its regions (hydrologic landscapes - HLs) is an active area of research. HLs are being used to construct spatially distributed assessments of variability in streamflow and climatic response in Oregon, Alaska, a...

  1. An analysis of historic and projected climate scenarios in the Western united States using hydrologic landscape classification

    EPA Science Inventory

    Identifying areas of similar hydrology within the United States and its regions (Hydrologic landscapes - HLs) is an active area of research. HLs have been used to make spatially distributed assessments of variability in streamflow and climatic response in Oregon, Alaska, and the ...

  2. Using Hydrologic Landscape Classification to Evaluate the Hydrologic Effects of Climate in the Southwestern United States

    EPA Science Inventory

    Hydrologic landscapes (HLs) have been an active area of research at regional and national scales in the United States. The concept has been used to make spatially distributed assessments of variability in streamflow and climatic response in Oregon, Alaska, and the Pacific Northwe...

  3. EXAMINING THE IMPACT OF CLIMATE CHANGE AND VARIABILITY OF REGIONAL AIR QUALITY OVER THE UNITED STATES

    EPA Science Inventory

    The United States has established a series of standards for criteria and other air pollutants to safeguard air quality to protect human health and the environment. The Climate Impact on Regional Air Quality (CIRAQ) project, a collaborative research effort involving multiple Fede...

  4. Responses of stream nitrate and DOC loadings to hydrological forcing and climate change in an upland forest of the northeastern United States

    Treesearch

    Stephen D. Sebestyen; Elizabeth W. Boyer; James B. Shanley

    2009-01-01

    In coming decades, higher annual temperatures, increased growing season length, and increased dormant season precipitation are expected across the northeastern United States in response to anthropogenic forcing of global climate. We synthesized long-term stream hydrochemical data from the Sleepers River Research Watershed in Vermont, United States, to explore the...

  5. Climate Change in an IB PYP Classroom

    NASA Astrophysics Data System (ADS)

    da Costa, Ana

    2014-05-01

    Students in elementary school are inherently curious, which allows them to explore, experiment and investigate various themes, while also demonstrating the will to preserve the resources that surround them and take action to contribute to a better world. One of the units taught at International School Carinthia is "climate change" and its impacts on life on Earth. During this unit, grade 4 students conduct research to answer their own inquiries related to this topic. They investigate the different climate zones on our planet, examine why climate change happens, and discover how global warming and climate change are connected and its consequences on living beings.

  6. Spatial variation in messaging effects

    NASA Astrophysics Data System (ADS)

    Warshaw, Christopher

    2018-05-01

    There is large geographic variation in the public's views about climate change in the United States. Research now shows that climate messages can influence public beliefs about the scientific consensus on climate change, particularly in the places that are initially more skeptical.

  7. Climate change and California: potential implications for vegetation, carbon, and fire.

    Treesearch

    Jonathan Thompson

    2005-01-01

    Nineteen scientists from leading research institutes in the United States collaborated to estimate how California’s environment and economy would respond to global climate change. A scientist from the PNW Research Station led efforts to estimate effects on vegetation, carbon, and fire.To quantify the range of the possible effects of climate change over the...

  8. Associations among unit leadership and unit climates for implementation in acute care: a cross-sectional study.

    PubMed

    Shuman, Clayton J; Liu, Xuefeng; Aebersold, Michelle L; Tschannen, Dana; Banaszak-Holl, Jane; Titler, Marita G

    2018-04-25

    Nurse managers have a pivotal role in fostering unit climates supportive of implementing evidence-based practices (EBPs) in care delivery. EBP leadership behaviors and competencies of nurse managers and their impact on practice climates are widely overlooked in implementation science. The purpose of this study was to examine the contributions of nurse manager EBP leadership behaviors and nurse manager EBP competencies in explaining unit climates for EBP implementation in adult medical-surgical units. A multi-site, multi-unit cross-sectional research design was used to recruit the sample of 24 nurse managers and 553 randomly selected staff nurses from 24 adult medical-surgical units from 7 acute care hospitals in the Northeast and Midwestern USA. Staff nurse perceptions of nurse manager EBP leadership behaviors and unit climates for EBP implementation were measured using the Implementation Leadership Scale and Implementation Climate Scale, respectively. EBP competencies of nurse managers were measured using the Nurse Manager EBP Competency Scale. Participants were emailed a link to an electronic questionnaire and asked to respond within 1 month. The contributions of nurse manager EBP leadership behaviors and competencies in explaining unit climates for EBP implementation were estimated using mixed-effects models controlling for nurse education and years of experience on current unit and accounting for the variability across hospitals and units. Significance level was set at α < .05. Two hundred sixty-four staff nurses and 22 nurse managers were included in the final sample, representing 22 units in 7 hospitals. Nurse manager EBP leadership behaviors (p < .001) and EBP competency (p = .008) explained 52.4% of marginal variance in unit climate for EBP implementation. Leadership behaviors uniquely explained 45.2% variance. The variance accounted for by the random intercepts for hospitals and units (p < .001) and years of nursing experience in current unit (p < .05) were significant but level of nursing education was not. Nurse managers are significantly related to unit climates for EBP implementation primarily through their leadership behaviors. Future implementation studies should consider the leadership of nurse managers in creating climates supportive of EBP implementation.

  9. The relationship between safety climate and recent accidents: behavioral learning and cognitive attributions.

    PubMed

    Desai, Vinit M; Roberts, Karlene H; Ciavarelli, Anthony P

    2006-01-01

    The association between accidents and subsequent work unit safety perceptions was assessed to address cognitive and behavioral changes following accidents. Many studies attempt to predict accident rates using measures of work unit safety, but effects vary considerably. Conversely, this study examined whether recent accidents may be positively associated with work unit safety perceptions, as suggested by behavioral learning mechanisms (increases in safety investments following accidents) or cognitive mechanisms (defensive attributions regarding accident causality). Lagged squadron-level accident experience was correlated with work unit safety perceptions obtained through a 61-question safety climate survey administered to 6,361 individuals in U.S. Navy flight squadrons. Positive associations between minor or intermediately severe accidents and future safety climate scores were found, although no effect was found for major accidents. We suggest that accident history should be considered when examining work unit safety perceptions because recent accidents may be associated with higher safety climate scores. We did not find that this varies systematically with accident severity, and longitudinal research on additional samples is needed to further test this possibility. This research may be used to refine measurement of work unit safety and to examine impacts of accidents or safety violations on workers' cognitive processes and group behavioral changes.

  10. Beyond Adapting to Climate Change: Embedding Adaptation in Responses to Multiple Threats and Stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbanks, Thomas J; Kates, Dr. Robert W.

    2010-01-01

    Climate change impacts are already being experienced in every region of the United States and every part of the world most severely in Arctic regions and adaptation is needed now. Although climate change adaptation research is still in its infancy, significant adaptation planning in the United States has already begun in a number of localities. This article seeks to broaden the adaptation effort by integrating it with broader frameworks of hazards research, sustainability science, and community and regional resilience. To extend the range of experience, we draw from ongoing case studies in the Southeastern United States and the environmental historymore » of New Orleans to consider the multiple threats and stresses that all communities and regions experience. Embedding climate adaptation in responses to multiple threats and stresses helps us to understand climate change impacts, themselves often products of multiple stresses, to achieve community acceptance of needed adaptations as co-benefits of addressing multiple threats, and to mainstream the process of climate adaptation through the larger envelope of social relationships, communication channels, and broad-based awareness of needs for risk management that accompany community resilience.« less

  11. Engaging communities and climate change futures with Multi-Scale, Iterative Scenario Building (MISB) in the western United States

    Treesearch

    Daniel Murphy; Carina Wyborn; Laurie Yung; Daniel R. Williams; Cory Cleveland; Lisa Eby; Solomon Dobrowski; Erin Towler

    2016-01-01

    Current projections of future climate change foretell potentially transformative ecological changes that threaten communities globally. Using two case studies from the United States Intermountain West, this article highlights the ways in which a better articulation between theory and methods in research design can generate proactive applied tools that enable...

  12. Should the United Nations Framework Convention on Climate Change recognize climate migrants?

    NASA Astrophysics Data System (ADS)

    Gibb, Christine; Ford, James

    2012-12-01

    Climate change is expected to increase migration flows, especially from socially and environmentally vulnerable populations. These ‘climate migrants’ do not have any official protection under international law, which has implications for the human security of migrants. This work argues that the United Nations Framework Convention on Climate Change (UNFCCC) can and should recognize climate migrants, and is the most relevant international framework for doing so. While not legally binding, the acknowledgment of climate displacement, migration and planned relocation issues in the UNFCCC’s Cancun Adaptation Framework indicates a willingness to address the issue through an adaptation lens. Herein, the paper proposes a framework for setting the institutional groundwork for recognizing climate migrants, focusing on the most vulnerable, promoting targeted research and policy agendas, and situating policies within a comprehensive strategy.

  13. Recent advances in research on climate and human conflict

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.

    2014-12-01

    A rapidly growing body of empirical, quantitative research examines whether rates of human conflict can be systematically altered by climatic changes. We discuss recent advances in this field, including Bayesian meta-analyses of the effect of temperature and rainfall on current and future large-scale conflicts, the impact of climate variables on gang violence and suicides in Mexico, and probabilistic projections of personal violence and property crime in the United States under RCP scenarios. Criticisms of this research field will also be explained and addressed.

  14. Relationships between the Survey of Organizational Research Climate (SORC) and self-reported research practices.

    PubMed

    Crain, A Lauren; Martinson, Brian C; Thrush, Carol R

    2013-09-01

    The Survey of Organizational Research Climate (SORC) is a validated tool to facilitate promotion of research integrity and research best practices. This work uses the SORC to assess shared and individual perceptions of the research climate in universities and academic departments and relate these perceptions to desirable and undesirable research practices. An anonymous web- and mail-based survey was administered to randomly selected biomedical and social science faculty and postdoctoral fellows in the United States. Respondents reported their perceptions of the research climates at their universities and primary departments, and the frequency with which they engaged in desirable and undesirable research practices. More positive individual perceptions of the research climate in one's university or department were associated with higher likelihoods of desirable, and lower likelihoods of undesirable, research practices. Shared perceptions of the research climate tended to be similarly predictive of both desirable and undesirable research practices as individuals' deviations from these shared perceptions. Study results supported the central prediction that more positive SORC-measured perceptions of the research climate were associated with more positive reports of research practices. There were differences with respect to whether shared or individual climate perceptions were related to desirable or undesirable practices but the general pattern of results provide empirical evidence that the SORC is predictive of self-reported research behavior.

  15. Collaborative Science with Indigenous Knowledge for Climate Solutions: Why, How, and with Whom?

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Lazrus, H.; Gough, B.

    2017-12-01

    The inherent complexity of climate change requires diverse perspectives to understand and respond to its impacts. The Rising Voices: Collaborative Science with Indigenous Knowledge for Climate Solutions (Rising Voices) program represents a growing network of engaged Indigenous and non-Indigenous scientists committed to cross-cultural and collaborative research and activities to understand and mitigate the impacts of extreme weather and climate change. Five annual Rising Voices workshops have occurred since 2013, engaging hundreds of participants from across Tribal communities, the United States, and internationally over the years. Housed at the National Center for Atmospheric Research, Rising Voices aims to expand how diversity is understood in atmospheric science, to include intellectual diversity stemming from distinct cultural backgrounds. It envisions collaborative research that brings together Indigenous knowledges and science with Western climate and weather sciences in a respectful and inclusive manner to achieve culturally relevant and scientifically robust climate and weather adaptation solutions. The premise of the program and the research and collaborations it produces is that there is an opportunity cost to not involving diverse knowledge systems and observations from varied cultural backgrounds in addressing climate change. We cannot afford that cost given the challenges ahead. This poster presents some of the protocols, methods, challenges, and outcomes of cross-cultural research between Western and Indigenous scientists and communities from across the United States. It also presents some of the recommendations that have emerged from Rising Voices workshops over the past five years.

  16. Effects of learning climate and registered nurse staffing on medication errors.

    PubMed

    Chang, Yunkyung; Mark, Barbara

    2011-01-01

    Despite increasing recognition of the significance of learning from errors, little is known about how learning climate contributes to error reduction. The purpose of this study was to investigate whether learning climate moderates the relationship between error-producing conditions and medication errors. A cross-sectional descriptive study was done using data from 279 nursing units in 146 randomly selected hospitals in the United States. Error-producing conditions included work environment factors (work dynamics and nurse mix), team factors (communication with physicians and nurses' expertise), personal factors (nurses' education and experience), patient factors (age, health status, and previous hospitalization), and medication-related support services. Poisson models with random effects were used with the nursing unit as the unit of analysis. A significant negative relationship was found between learning climate and medication errors. It also moderated the relationship between nurse mix and medication errors: When learning climate was negative, having more registered nurses was associated with fewer medication errors. However, no relationship was found between nurse mix and medication errors at either positive or average levels of learning climate. Learning climate did not moderate the relationship between work dynamics and medication errors. The way nurse mix affects medication errors depends on the level of learning climate. Nursing units with fewer registered nurses and frequent medication errors should examine their learning climate. Future research should be focused on the role of learning climate as related to the relationships between nurse mix and medication errors.

  17. Projecting wildfire area burned in the south-eastern United States, 2011-60

    Treesearch

    Jeffrey P. Prestemon; Uma Shankar; Aijun Xiu; K. Talgo; D. Yang; Ernest Dixon; Donald McKenzie; Karen L. Abt

    2016-01-01

    Future changes in society and climate are expected to affect wildfire activity in the south-eastern United States. The objective of this research was to understand how changes in both climate and society may affect wildfire in the coming decades.We estimated a three-stage statistical model of wildfire area burned by ecoregion province for lightning and human causes (...

  18. Risky Business and the American Climate Prospectus: Economic Risks of Climate Change in the United States"

    NASA Astrophysics Data System (ADS)

    Gordon, K.; Houser, T.; Kopp, R. E., III; Hsiang, S. M.; Larsen, K.; Jina, A.; Delgado, M.; Muir-Wood, R.; Rasmussen, D.; Rising, J.; Mastrandrea, M.; Wilson, P. S.

    2014-12-01

    The United States faces a range of economic risks from global climate change - from increased flooding and storm damage, to climate-driven changes in crop yields and labor productivity, to heat-related strains on energy and public health systems. The Risky Business Project commissioned a groundbreaking new analysis of these and other climate risks by region of the country and sector of the economy. The American Climate Prospectus (ACP) links state-of-the-art climate models with econometric research of human responses to climate variability and cutting edge private sector risk assessment tools, the ACP offers decision-makers a data driven assessment of the specific risks they face. We describe the challenge, methods, findings, and policy implications of the national risk analysis, with particular focus on methodological innovations and novel insights.

  19. Cluster analysis of Southeastern U.S. climate stations

    NASA Astrophysics Data System (ADS)

    Stooksbury, D. E.; Michaels, P. J.

    1991-09-01

    A two-step cluster analysis of 449 Southeastern climate stations is used to objectively determine general climate clusters (groups of climate stations) for eight southeastern states. The purpose is objectively to define regions of climatic homogeneity that should perform more robustly in subsequent climatic impact models. This type of analysis has been successfully used in many related climate research problems including the determination of corn/climate districts in Iowa (Ortiz-Valdez, 1985) and the classification of synoptic climate types (Davis, 1988). These general climate clusters may be more appropriate for climate research than the standard climate divisions (CD) groupings of climate stations, which are modifications of the agro-economic United States Department of Agriculture crop reporting districts. Unlike the CD's, these objectively determined climate clusters are not restricted by state borders and thus have reduced multicollinearity which makes them more appropriate for the study of the impact of climate and climatic change.

  20. Mapping Climate Change: Six U.S. Case Studies

    ERIC Educational Resources Information Center

    Holmberg, Marjorie O.

    2010-01-01

    This research focuses on the current role of mapping practices in communicating climate change in the United States. This includes maps used in monitoring climate change, projecting its potential impacts, and identifying potential adaptation strategies at particular scales. Since few, if any, studies have been done specifically on mapping…

  1. Fairness at the collective level: a meta-analytic examination of the consequences and boundary conditions of organizational justice climate.

    PubMed

    Whitman, Daniel S; Caleo, Suzette; Carpenter, Nichelle C; Horner, Margaret T; Bernerth, Jeremy B

    2012-07-01

    This article uses meta-analytic methods (k = 38) to examine the relationship between organizational justice climate and unit-level effectiveness. Overall, our results suggest that the relationship between justice and effectiveness is significant (ρ = .40) when both constructs are construed at the collective level. Our results also indicate that distributive justice climate was most strongly linked with unit-level performance (e.g., productivity, customer satisfaction), whereas interactional justice was most strongly related to unit-level processes (e.g., organizational citizenship behavior, cohesion). We also show that a number of factors moderate this relationship, including justice climate strength, the level of referent in the justice measure, the hierarchical level of the unit, and how criteria are classified. We elaborate on these findings and attempt to provide a clearer direction for future research in this area. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  2. Impacts of Climate Change on Human Health in the United ...

    EPA Pesticide Factsheets

    Climate change threatens human health and well-being in the United States. To address this growing threat, the Interagency Group on Climate Change and Human Health (CCHHG), a working group of the U.S. Global Change Research Program’s (USGCRP), has developed this assessment as part of the ongoing efforts of the USGCRP’s National Climate Assessment (NCA) and as called for under the President’s Climate Action Plan. The authors of this assessment have compiled and assessed current research on human health impacts of climate change and summarized the current “state of the science” for a number of key impact areas. This assessment provides a comprehensive update to the most recent detailed technical assessment for the health impacts of climate change, 2008 Synthesis and Assessment Product 4.6 (SAP 4.6) Analyses of the Effects of Global Change on Human Health and Welfare and Human Systems (CCSP 2008). It also updates and builds upon the health chapter of the third NCA (Melillo et al. 2014). The lead and coordinating Federal agencies for the USGCRP Climate and Health Assessment are the Centers for Disease Control and Prevention (CDC), Environmental Protection Agency (EPA), National Institute of Health (NIH), and National Oceanic and Atmospheric Administration (NOAA). Available at https://health2016.globalchange.gov/ The interagency U.S. Global Change Research Program (USGCRP) has developed this assessment as part of the ongoing efforts of their National C

  3. Sociology: Shaping US climate opinion

    NASA Astrophysics Data System (ADS)

    Brechin, Steven R.

    2012-04-01

    Exposure to scientific information cannot explain entirely the levels of public concern about global warming in the United States. Now research shows that US views on climate change are largely affected by the actions of political groups.

  4. Ecosystem vulnerability to climate change in the southeastern United States

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Costanza, Jennifer

    2016-08-11

    Two recent investigations of climate-change vulnerability for 19 terrestrial, aquatic, riparian, and coastal ecosystems of the southeastern United States have identified a number of important considerations, including potential for changes in hydrology, disturbance regimes, and interspecies interactions. Complementary approaches using geospatial analysis and literature synthesis integrated information on ecosystem biogeography and biodiversity, climate projections, vegetation dynamics, soil and water characteristics, anthropogenic threats, conservation status, sea-level rise, and coastal flooding impacts. Across a diverse set of ecosystems—ranging in size from dozens of square meters to thousands of square kilometers—quantitative and qualitative assessments identified types of climate-change exposure, evaluated sensitivity, and explored potential adaptive capacity. These analyses highlighted key gaps in scientific understanding and suggested priorities for future research. Together, these studies help create a foundation for ecosystem-level analysis of climate-change vulnerability to support effective biodiversity conservation in the southeastern United States.

  5. Phenology research for natural resource management in the United States.

    PubMed

    Enquist, Carolyn A F; Kellermann, Jherime L; Gerst, Katharine L; Miller-Rushing, Abraham J

    2014-05-01

    Natural resource professionals in the United States recognize that climate-induced changes in phenology can substantially affect resource management. This is reflected in national climate change response plans recently released by major resource agencies. However, managers on-the-ground are often unclear about how to use phenological information to inform their management practices. Until recently, this was at least partially due to the lack of broad-based, standardized phenology data collection across taxa and geographic regions. Such efforts are now underway, albeit in very early stages. Nonetheless, a major hurdle still exists: phenology-linked climate change research has focused more on describing broad ecological changes rather than making direct connections to local to regional management concerns. To help researchers better design relevant research for use in conservation and management decision-making processes, we describe phenology-related research topics that facilitate "actionable" science. Examples include research on evolution and phenotypic plasticity related to vulnerability, the demographic consequences of trophic mismatch, the role of invasive species, and building robust ecological forecast models. Such efforts will increase phenology literacy among on-the-ground resource managers and provide information relevant for short- and long-term decision-making, particularly as related to climate response planning and implementing climate-informed monitoring in the context of adaptive management. In sum, we argue that phenological information is a crucial component of the resource management toolbox that facilitates identification and evaluation of strategies that will reduce the vulnerability of natural systems to climate change. Management-savvy researchers can play an important role in reaching this goal.

  6. A strategy for assessing potential future changes in climate, hydrology, and vegetation in the Western United States

    USGS Publications Warehouse

    Thompson, Robert Stephen; Hostetler, Steven W.; Bartlein, Patrick J.; Anderson, Katherine H.

    1998-01-01

    Historical and geological data indicate that significant changes can occur in the Earth's climate on time scales ranging from years to millennia. In addition to natural climatic change, climatic changes may occur in the near future due to increased concentrations of carbon dioxide and other trace gases in the atmosphere that are the result of human activities. International research efforts using atmospheric general circulation models (AGCM's) to assess potential climatic conditions under atmospheric carbon dioxide concentrations of twice the pre-industrial level (a '2 X CO2' atmosphere) conclude that climate would warm on a global basis. However, it is difficult to assess how the projected warmer climatic conditions would be distributed on a regional scale and what the effects of such warming would be on the landscape, especially for temperate mountainous regions such as the Western United States. In this report, we present a strategy to assess the regional sensitivity to global climatic change. The strategy makes use of a hierarchy of models ranging from an AGCM, to a regional climate model, to landscape-scale process models of hydrology and vegetation. A 2 X CO2 global climate simulation conducted with the National Center for Atmospheric Research (NCAR) GENESIS AGCM on a grid of approximately 4.5o of latitude by 7.5o of longitude was used to drive the NCAR regional climate model (RegCM) over the Western United States on a grid of 60 km by 60 km. The output from the RegCM is used directly (for hydrologic models) or interpolated onto a 15-km grid (for vegetation models) to quantify possible future environmental conditions on a spatial scale relevant to policy makers and land managers.

  7. Primer on transportation and climate change

    DOT National Transportation Integrated Search

    2008-04-01

    This primer is an introduction to the issue of climate change and its implications for transportation policy in the United States. Its purpose is to outline the current thinking of governmental agencies, researchers, and advocacy groups on the issue ...

  8. Co-worker characteristics and nurses' safety-climate perceptions.

    PubMed

    Abrahamson, Kathleen; Ramanujam, Rangaraj; Anderson, James G

    2013-01-01

    Previous research indicates that nurses' safety-climate perceptions are influenced by individual nurse characteristics, leadership, staffing levels and workplace structure. No literature was identified that explored the relationship between nurses' safety climate perceptions and staffing composition in a particular hospital unit. This paper aims to fill some of the gaps in the research in this area. Data supplied by 430 registered nurses working in two Midwestern US hospitals were analyzed to co-worker characteristics such as education, licensure, experience and full- or part-time status. Registered nurses working in hospitals with proportionally more-experienced nurses perceived their workplaces to be significantly safer for patients. Surprisingly, co-worker licensure, education and full- or part-time status did not significantly influence nurses' safety climate perceptions. Findings indicate that safety-climate perceptions vary significantly between hospital units and experienced nurses may act as a resource that promotes a positive safety climate. Hospitals retaining experienced nurses may potentially reduce errors. The paper illustrates that the results highlight the importance of providing nurses with an environment that encourages retention and creates a workplace where experienced nurses' skills are best utilized.

  9. A clarion call for aeolian research to engage with global land degradation and climate change

    NASA Astrophysics Data System (ADS)

    Chappell, Adrian; Lee, Jeffrey A.; Baddock, Matthew; Gill, Thomas E.; Herrick, Jeffrey E.; Leys, John F.; Marticorena, Beatrice; Petherick, Lynda; Schepanski, Kerstin; Tatarko, John; Telfer, Matt; Webb, Nicholas P.

    2018-06-01

    This editorial represents a clarion call for the aeolian research community to provide increased scientific input to the Intergovernmental Panel on Climate Change (IPCC) and the United Nations Convention to Combat Desertification (UNCCD) and an invitation to apply for ISAR funding to organize a working group to support this engagement.

  10. Adaptive silviculture for climate change: a national experiment in manager-scientist partnerships to apply an adaptation framework

    Treesearch

    Linda M. ​Nagel; Brian J. Palik; Michael A. Battaglia; Anthony W. D' Amato; James M. Guldin; Chris Swanston; Maria K. Janowiak; Matthew P. Powers; Linda A. Joyce; Constance I. Millar; David L. Peterson; Lisa M. Ganio; Chad Kirschbaum; Molly R. Roske

    2017-01-01

    Forest managers in the United States must respond to the need for climate-adaptive strategies in the face of observed and projected climatic changes. However, there is a lack of on-the-ground forest adaptation research to indicate what adaptation measures or tactics might be effective in preparing forest ecosystems to deal with climate change. Natural resource managers...

  11. Projecting wildfire area burned in the south-eastern United States, 2011-60

    Treesearch

    Jeff Prestemon; Uma Shankar; Aijun Xiu; K. Talgo; D. Yang; Ernest Dixon IV; Donald McKenzie; Karen L. Abt

    2016-01-01

    Future changes in society and climate are expected to affect wildfire activity in the south-eastern United States. The objective of this research was to understand how changes in both climate and society may affect wildfire in the coming decades.Weestimated a three-stage statistical model of wildfire area burned by ecoregion province for lightning and human causes (...

  12. Do it well and do it right: The impact of service climate and ethical climate on business performance and the boundary conditions.

    PubMed

    Jiang, Kaifeng; Hu, Jia; Hong, Ying; Liao, Hui; Liu, Songbo

    2016-11-01

    Prior research has demonstrated that service climate can enhance unit performance by guiding employees' service behavior to satisfy customers. Extending this literature, we identified ethical climate toward customers as another indispensable organizational climate in service contexts and examined how and when service climate operates in conjunction with ethical climate to enhance business performance of service units. Based on data collected in 2 phases over 6 months from multiple sources of 196 movie theaters, we found that service climate and ethical climate had disparate impacts on business performance, operationalized as an index of customer attendance rate and operating income per labor hour, by enhancing service behavior and reducing unethical behavior, respectively. Furthermore, we found that service behavior and unethical behavior interacted to affect business performance, in such a way that service behavior was more positively related to business performance when unethical behavior was low than when it was high. This interactive effect between service and unethical behaviors was further strengthened by high market turbulence and competitive intensity. These findings provide new insight into theoretical development of service management and offer practical implications about how to maximize business performance of service units by managing organizational climates and employee behaviors synergistically. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. NASA Goddard Space Flight Center presents Enhancing Standards Based Science Curriculum through NASA Content Relevancy: A Model for Sustainable Teaching-Research Integration Dr. Robert Gabrys, Raquel Marshall, Dr. Evelina Felicite-Maurice, Erin McKinley

    NASA Astrophysics Data System (ADS)

    Marshall, R. H.; Gabrys, R.

    2016-12-01

    NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.

  14. Nineteenth Century Long-Term Instrumental Records, Examples From the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Mock, C. J.

    2001-12-01

    Early instrumental records in the United States, defined as those operating before 1892 which is regarded the period prior to the modern climate record, provide a longer perspective of climatic variability at decadal and interannual timescales. Such reconstructions also provide a means of verification for other proxy data. This paper provides a American perspective of historical climatic research, emphasizing the urgent need to properly evaluate data quality and provide necessary corrections to make them compatible with the modern record. Different fixed observation times, different practices of weather instrument exposures, and statistical methods for calibration are the main issues in applying corrections and conducting proper climatic interpretations. I illustrate several examples on methodologies of this historical climatic research, focusing on the following in the Southeastern United States: daily reconstructed temperature time-series centered on Charleston SC and Natchez MS back to the late eighteenth century, and precipitation frequency reconstructions during the antebellum period for the Gulf Coast and coastal Southeast Atlantic states. Results indicate several prominent extremes unprecedented as compared to the modern record, such as the widespread warm winter of 1827-28, and the severe cold winters of 1856 and 1857. The reconstructions also yield important information concerning responses to past ENSO events, the PNA, NAO, and the PDO, particularly when compared with instrumental data from other regions. A high potential also exists for applying the climate reconstructions to assess historical climatic impacts on society in the Southeast, such as to understand climatic linkages to famous case studies of Yellow Fever epidemics and severe drought.

  15. Global Framework for Climate Services (GFCS): status of implementation

    NASA Astrophysics Data System (ADS)

    Lucio, Filipe

    2015-04-01

    The World Climate Conference-3 (Geneva 2009) unanimously decided to establish the Global Framework for Climate Services (GFCS), a UN-led initiative spearheaded by WMO to guide the development and application of science-based climate information and services in support of decision-making in climate sensitive sectors. By promoting science-based decision-making, the GFCS is empowering governments, communities and companies to build climate resilience, reduce vulnerabilities and adapt to impacts. The initial priority areas of GFCS are Agriculture and Food Security; Disaster Risk Reduction; Health; and Water Resources. The implementation of GFCS is well underway with a governance structure now fully established. The governance structure of GFCS includes the Partner Advisory Committee (PAC), which is GFCS's stakeholder engagement mechanism. The membership of the PAC allows for a broad participation of stakeholders. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the European Commission (EC), the Food and Agriculture Organization of the UN (FAO), the Global Water Partnership (GWP), the International Federation of Red Cross and Red Crescent Societies (IFRC), the International Union of Geodesy and Geophysics (IUGG), United Nations Environment Programme (UNEP), the United Nations Institute for Training and Research (UNITAR), the World Business Council for Sustainable Development (WBCSD), the World Food Programme (WFP) and WMO have already joined the PAC. Activities are being implemented in various countries in Africa, the Caribbean, Asia and Pacific Small Islands Developing States through flagship projects and activities in the four priority areas of GFCS to enable the development of a Proof of Concept. The focus at national level is on strengthening institutional capacities needed for development of capacities for co-design and co-production of climate services and their application in support of decision-making in climate sensitive sectors. Establishment of regional capacities through climate centres to support national institutional capacities is a major focus. The Proof of Concept will be replicated in other parts of the world to ensure worldwide improvements in climate services for the four priority areas to facilitate the reduction of society's vulnerability to climate-related hazards and the advancement of the key global development goals. To streamline and harness climate research and knowledge in support of GFCS implementation, regional research plans or agendas are being shaped in different regions. For example, a Climate Research for Development Agenda for Africa (CR4D) is being developed under the leadership of the World Climate Research Programme (WCRP) and in cooperation with the African Union Commission and other partners. Similarly, regional climate research priorities are being developed for Latin America and the Caribbean, following the WCRP Conference for Latin America and the Caribbean (Montevideo, March 2014). Availability of regional research plans or agendas would ensure more effective research and involvement of national experts in climate research activities.

  16. The Climate Science Special Report (CSSR) of the Fourth National Climate Assessment (NCA4)

    NASA Astrophysics Data System (ADS)

    Wuebbles, D. J.; Fahey, D. W.; Hibbard, K. A.

    2016-12-01

    The Climate Science Special Report (CSSR) will provide key input into the Fourth National Climate Assessment (NCA4). The report was initiated in 2016 under the guidance of the U.S. Global Change Research Program (USGCRP) as a new, stand-alone report of the state-of-science relating to climate change and its physical impacts. The report is undergoing peer and public review in late 2016 with the aim for final publication in the fourth quarter of 2017. CSSR will provide a comprehensive assessment of the science underlying the changes occurring in the Earth's climate system, with a special focus on the United States. CSSR will serve several purposes for NCA4, including 1) providing an updated detailed analysis of the findings of how climate change is affecting weather and climate across the United States, 2) providing an executive summary that will be used as the basis for the climate science discussion in NCA4, and 3) providing foundational information and projections for climate change, including extremes, to improve "end-to-end" consistency in sectoral, regional, and resilience analyses for NCA4. We will present a summary of the origins and development of CSSR, the writing team, the chapter topics and the relation of CSSR content to NCA4, other assessments and relevance to policy and research communities.

  17. Climate Change Now Apparent and Unequivocal, New Report Warns

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-06-01

    Climate change is happening now in the United States and globally, and its impacts are expected to become increasingly severe for more people and places unless the rate of emissions of heat-trapping gases is substantially reduced, according to a new report, “Global Climate Change Impacts in the United States,” issued at a 16 June White House briefing. The 190-page report, a product of the interagency U.S. Global Change Research Program (USGCRP), states that “global warming is unequivocal and primarily human-induced.” Among other key findings of the report—which drew on USGCRP results and other studies including Intergovernmental Panel on Climate Change reports and the Arctic Climate Impact Assessment—is that climate change will have numerous impacts on water resources, ecosystems, agriculture, coastal areas, human health, and other sectors.

  18. USGCRP assessments: Meeting the challenges of climate and global change

    NASA Astrophysics Data System (ADS)

    Dickinson, T.; Kuperberg, J. M.

    2016-12-01

    The United States Global Change Research Program (USGCRP) is a confederation of the research arms of 13 Federal departments and agencies. Its mission is to build a knowledge base that informs human responses to climate and global change through coordinated and integrated Federal programs of research, education, communication, and decision support. USGCRP has supported several initiatives to promote better understanding of climate change impacts on health, support responses, and build on the progress of the 2014 National Climate Assessment. Most recently, USGCRP released a new report, "The Impacts of Climate Change on Human Health: A Scientific Assessment". This presentation will provide an overview of USGCRP, highlight the importance of assessments, and introduce ways in which assessment findings and underlying data can be translated into critical tools to build resilience.

  19. Using Argumentation to Foster Learning about Global Climate Change

    NASA Astrophysics Data System (ADS)

    Golden, B. W.

    2012-12-01

    Given the complexity of the science involving climate change (IPCC, 2007), its lack of curricular focus within US K-12 schooling (Golden, 2009), and the difficulty in effecting conceptual change in science (Vosniadou, 2007), we sought to research middle school students' conceptions about climate change, in addition to how those conceptions changed during and as a result of a deliberately designed global climate change (GCC) unit. In a sixth grade classroom, a unit was designed which incorporated Argumentation-Driven Inquiry (Sampson & Grooms, 2010). That is, students were assigned to groups and asked to make sense of standard GCC data such as paleoclimate data from ice cores, direct temperature measurement, and Keeling curves, in addition to learning about the greenhouse effect in a modeling lesson (Hocking, et al, 1993). The students were then challenged, in groups, to create, on whiteboards, explanations and defend these explanations to and with their peers. They did two iterations of this argumentation. The first iteration focused on the simple identification of climate change patterns. The second focused on developing causal explanations for those patterns. After two rounds of such argumentation, the students were then asked to write (individually) a "final" argument which accounted for the given data. Interview and written data were analyzed prior to the given unit, during it, and after it, in order to capture complicated nuance that might escape detection by simpler research means such as surveys. Several findings emerged which promised to be of interest to climate change educators. The first is that many students tended to "know" many "facts" about climate change, but were unable to connect these disparate facts in any meaningful ways. A second finding is that while no students changed their entire belief systems, even after a robust unit which would seemingly challenge such, each student engaged did indeed modify the manner in which they discussed the validation of their beliefs. That is, we argue that the unit, and the emphases contained within the unit, resulted in the "epistemic scaffolding" of their ideas, to the extent that they shifted from arguing from anecdotes to arguing based on other types of data, especially from line graphs. A third finding underscores prior research in conceptual change, indicating that learning, especially conceptual change, is not a strictly rational process. Students, and others, are highly influenced by extra rational factors, such as the given political, scientific, and/or religious leanings of their families, their own willingness to explore anomalies, and other factors. Additionally, we found that students' understandings of climate change were tied to their ontological constructions of the subject matter, i.e., many perceived climate change as one more environmentally sensitive issue such as littering and pollution, and were therefore limited in their ability to understand anthropogenic climate change in the vast and robust sense meant by current scientific consensus. Given these known difficulties, it is critical to explore further research of this sort in order to better understand what students are actually thinking, and how that thinking is prone to change, modification, or not. Subsequently, K-12 strategies might be better designed, if that is indeed a priority of US/Western society.

  20. Linking organizational resources and work engagement to employee performance and customer loyalty: the mediation of service climate.

    PubMed

    Salanova, Marisa; Agut, Sonia; Peiró, José María

    2005-11-01

    This study examined the mediating role of service climate in the prediction of employee performance and customer loyalty. Contact employees (N=342) from 114 service units (58 hotel front desks and 56 restaurants) provided information about organizational resources, engagement, and service climate. Furthermore, customers (N=1,140) from these units provided information on employee performance and customer loyalty. Structural equation modeling analyses were consistent with a full mediation model in which organizational resources and work engagement predict service climate, which in turn predicts employee performance and then customer loyalty. Further analyses revealed a potential reciprocal effect between service climate and customer loyalty. Implications of the study are discussed, together with limitations and suggestions for future research. ((c) 2005 APA, all rights reserved).

  1. The US economic impacts of climate change and the costs of inaction : a review and assessment by the Center for Integrative Environmental Research (CIER) at the University of Maryland

    DOT National Transportation Integrated Search

    2007-10-01

    This report presents a review of economic studies for the United States and relates them to predicted impacts of climate change. The summary findings are organized by region and identify the key sectors likely affected by climate change, the main imp...

  2. Multi-scale modeling of relationships between forest health and climatic factors

    Treesearch

    Michael K. Crosby; Zhaofei Fan; Xingang Fan; Martin A. Spetich; Theodor D. Leininger

    2015-01-01

    Forest health and mortality trends are impacted by changes in climate. These trends can vary by species, plot location, forest type, and/or ecoregion. To assess the variation among these groups, Forest Inventory and Analysis (FIA) data were obtained for 10 states in the southeastern United States and combined with downscaled climate data from the Weather Research and...

  3. Middle School Students' Understandings About Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Golden, B. W.

    2013-12-01

    Given the complexity of the science involving climate change (IPCC, 2007), its lack of curricular focus within US K-12 schooling (Golden, 2009; Golden & Francis, 2013), and the difficulty in effecting conceptual change in science (Vosniadou, 2007), we sought to research middle school students' conceptions about climate change, in addition to how those conceptions changed during and as a result of a deliberately designed global climate change (GCC) unit. In a sixth grade classroom, a unit was designed which incorporated Argumentation-Driven Inquiry (Sampson & Grooms, 2010). That is, students were assigned to groups and asked to make sense of standard GCC data such as paleoclimate data from ice cores, direct temperature measurement, and Keeling curves, in addition to learning about the greenhouse effect in a modeling lesson (Hocking, et al, 1993). The students were then challenged, in groups, to create, on whiteboards, explanations and defend these explanations to and with their peers. They did two iterations of this argumentation. The first iteration focused on the simple identification of climate change patterns. The second focused on developing causal explanations for those patterns. After two rounds of such argumentation, the students were then asked to write (individually) a "final" argument which accounted for the given data. Interview and written data were analyzed prior to the given unit, during it, and after it, in order to capture complicated nuance that might escape detection by simpler research means such as surveys. Several findings emerged which promised to be of interest to climate change educators. The first is that many students tended to "know" many "facts" about climate change, but were unable to connect these disparate facts in any meaningful ways. A second finding is that while no students changed their entire belief systems, even after a robust unit which would seemingly challenge such, each student engaged did indeed modify the manner in which they discussed the validation of their beliefs. That is, we argue that the unit, and the emphases contained within the unit, resulted in the "epistemic scaffolding" of their ideas, to the extent that they shifted from arguing from anecdotes to arguing based on other types of data, especially from line graphs. Additionally, we found that students' understandings of climate change were tied to their ontological constructions of the subject matter, i.e., many perceived climate change as just another environmentally sensitive issue such as littering and pollution, and were therefore limited in their ability to understand anthropogenic climate change in the vast and robust sense meant by current scientific consensus. Given these known difficulties, it is critical to explore further research of this sort in order to better understand what students are actually thinking, and how that thinking is prone to change, modification, or not. Subsequently, K-12 strategies might be better designed, if that is indeed a priority of US/Western society.

  4. [Factors related to nurses' patient identification behavior and the moderating effect of person-organization value congruence climate within nursing units].

    PubMed

    Kim, Young Mee; Kang, Seung Wan; Kim, Se Young

    2014-04-01

    This research was an empirical study designed to identify precursors and interaction effects related to nurses' patient identification behavior. A multilevel analysis methodology was used. A self-report survey was administered to registered nurses (RNs) of a university hospital in South Korea. Of the questionnaires, 1114 were analyzed. The individual-level factors that had a significantly positive association with patient identification behavior were person-organization value congruence, organizational commitment, occupational commitment, tenure at the hospital, and tenure at the unit. Significantly negative group-level precursors of patient identification behavior were burnout climate and the number of RNs. Two interaction effects of the person-organization value congruence climate were identified. The first was a group-level moderating effect in which the negative relationship between the number of RNs and patient identification behavior was weaker when the nursing unit's value congruence climate was high. The second was a cross-level moderating effect in which the positive relationship between tenure at the unit and patient identification behavior was weaker when value congruence climate was high. This study simultaneously tested both individual-level and group-level factors that potentially influence patient identification behavior and identified the moderating role of person-organization value congruence climate. Implications of these results are discussed.

  5. Watershed-scale response to climate change through the twenty-first century for selected basins across the United States

    USGS Publications Warehouse

    Hay, Lauren E.; Markstrom, Steven; Ward-Garrison, Christian D.

    2011-01-01

    The hydrologic response of different climate-change emission scenarios for the twenty-first century were evaluated in 14 basins from different hydroclimatic regions across the United States using the Precipitation-Runoff Modeling System (PRMS), a process-based, distributed-parameter watershed model. This study involves four major steps: 1) setup and calibration of the PRMS model in 14 basins across the United States by local U.S. Geological Survey personnel; 2) statistical downscaling of the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3 climate-change emission scenarios to create PRMS input files that reflect these emission scenarios; 3) run PRMS for the climate-change emission scenarios for the 14 basins; and 4) evaluation of the PRMS output.This paper presents an overview of this project, details of the methodology, results from the 14 basin simulations, and interpretation of these results. A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be very different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the climate emission scenarios and how this uncertainty propagates through the hydrologic simulations. This paper concludes with a discussion of the lessons learned and potential for future work.

  6. Climate patterns as predictors of amphibians species richness and indicators of potential stress

    USGS Publications Warehouse

    Battaglin, W.; Hay, L.; McCabe, G.; Nanjappa, P.; Gallant, Alisa L.

    2005-01-01

    Amphibians occupy a range of habitats throughout the world, but species richness is greatest in regions with moist, warm climates. We modeled the statistical relations of anuran and urodele species richness with mean annual climate for the conterminous United States, and compared the strength of these relations at national and regional levels. Model variables were calculated for county and subcounty mapping units, and included 40-year (1960-1999) annual mean and mean annual climate statistics, mapping unit average elevation, mapping unit land area, and estimates of anuran and urodele species richness. Climate data were derived from more than 7,500 first-order and cooperative meteorological stations and were interpolated to the mapping units using multiple linear regression models. Anuran and urodele species richness were calculated from the United States Geological Survey's Amphibian Research and Monitoring Initiative (ARMI) National Atlas for Amphibian Distributions. The national multivariate linear regression (MLR) model of anuran species richness had an adjusted coefficient of determination (R2) value of 0.64 and the national MLR model for urodele species richness had an R2 value of 0.45. Stratifying the United States by coarse-resolution ecological regions provided models for anUrans that ranged in R2 values from 0.15 to 0.78. Regional models for urodeles had R2 values. ranging from 0.27 to 0.74. In general, regional models for anurans were more strongly influenced by temperature variables, whereas precipitation variables had a larger influence on urodele models.

  7. Principal-Counselor Collaboration and School Climate

    ERIC Educational Resources Information Center

    Rock, Wendy D.; Remley, Theodore P.; Range, Lillian M.

    2017-01-01

    Examining whether principal-counselor collaboration and school climate were related, researchers sent 4,193 surveys to high school counselors in the United States and received 419 responses. As principal-counselor collaboration increased, there were increases in counselors viewing the principal as supportive, the teachers as regarding one another…

  8. Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling

    EPA Science Inventory

    This study evaluates interior nudging techniques using the Weather Research and Forecasting (WRF) model for regional climate modeling over the conterminous United States (CONUS) using a two-way nested configuration. NCEP–Department of Energy Atmospheric Model Intercomparison Pro...

  9. USGS Capabilities to Study the Impacts of Drought and Climate Change in the Southeastern United States

    USGS Publications Warehouse

    ,

    2009-01-01

    In the Southeast, U.S. Geological Survey (USGS) scientists are researching issues through technical studies of water availability and quality, geologic processes (marine, coastal, and terrestrial), geographic complexity, and biological resources. The USGS is prepared to tackle multifaceted questions associated with global climate change and resulting weather patterns such as drought through expert scientific skill, innovative research approaches, and accurate information technology.

  10. U.S. Forest Service Leads Climate Change Adaptation in the Western United States

    NASA Astrophysics Data System (ADS)

    Halofsky, J.; Peterson, D. L.

    2014-12-01

    Effective climate change engagement on public lands is characterized by (1) an enduring science-management partnership, (2) involvement of key stakeholders, (3) consideration of broad landscapes with multiple landowners, (4) science-based, peer-reviewed assessments of sensitivity of natural resources to climate change, (5) adaptation strategies and tactics developed by resource managers, (6) leadership and a workforce motivated to implement climate-smart practices in resource planning and project management. Using this approach, the U.S. Forest Service, in partnership with other organizations, has developed climate change vulnerability assessments and adaptation plans for diverse ecosystems and multiple resources in national forests and other lands in the western United States, although implementation (step 6) has been slow in some cases. Hundreds of meetings, strategies, plans, and panels have focused on climate change adaptation over the past decade, but only direct engagement between scientists and resource managers (less research, less planning, more action) has resulted in substantive outcomes and increased organizational capacity for climate-smart management.

  11. Demographic amplification of climate change experienced by the contiguous United States population during the 20(th) century.

    PubMed

    Samson, Jason; Berteaux, Dominique; McGill, Brian J; Humphries, Murray M

    2012-01-01

    Better understanding of the changing relationship between human populations and climate is a global research priority. The 20(th) century in the contiguous United States offers a particularly well-documented example of human demographic expansion during a period of radical socioeconomic and environmental change. One would expect that as human society has been transformed by technology, we would become increasingly decoupled from climate and more dependent on social infrastructure. Here we use spatially-explicit models to evaluate climatic, socio-economic and biophysical correlates of demographic change in the contiguous United States between 1900 and 2000. Climate-correlated variation in population growth has caused the U.S. population to shift its realized climate niche from cool, seasonal climates to warm, aseasonal climates. As a result, the average annual temperature experienced by U.S. citizens between 1920 and 2000 has increased by more than 1.5°C and the temperature seasonality has decreased by 1.1°C during a century when climate change accounted for only a 0.24°C increase in average annual temperature and a 0.15°C decrease in temperature seasonality. Thus, despite advancing technology, climate-correlated demographics continue to be a major feature of contemporary U.S. society. Unfortunately, these demographic patterns are contributing to a substantial warming of the climate niche during a period of rapid environmental warming, making an already bad situation worse.

  12. Demographic Amplification of Climate Change Experienced by the Contiguous United States Population during the 20th Century

    PubMed Central

    Samson, Jason; Berteaux, Dominique; McGill, Brian J.; Humphries, Murray M.

    2012-01-01

    Better understanding of the changing relationship between human populations and climate is a global research priority. The 20th century in the contiguous United States offers a particularly well-documented example of human demographic expansion during a period of radical socioeconomic and environmental change. One would expect that as human society has been transformed by technology, we would become increasingly decoupled from climate and more dependent on social infrastructure. Here we use spatially-explicit models to evaluate climatic, socio-economic and biophysical correlates of demographic change in the contiguous United States between 1900 and 2000. Climate-correlated variation in population growth has caused the U.S. population to shift its realized climate niche from cool, seasonal climates to warm, aseasonal climates. As a result, the average annual temperature experienced by U.S. citizens between 1920 and 2000 has increased by more than 1.5°C and the temperature seasonality has decreased by 1.1°C during a century when climate change accounted for only a 0.24°C increase in average annual temperature and a 0.15°C decrease in temperature seasonality. Thus, despite advancing technology, climate-correlated demographics continue to be a major feature of contemporary U.S. society. Unfortunately, these demographic patterns are contributing to a substantial warming of the climate niche during a period of rapid environmental warming, making an already bad situation worse. PMID:23115624

  13. CONSEQUENCES OF FUTURE CLIMATE CHANGE AND CHANGING CLIMATE VARIABILITY ON MAIZE YIELDS IN THE MIDWESTERN UNITED STATES. (R824996)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Do climate model predictions agree with long-term precipitation trends in the arid southwestern United States?

    USDA-ARS?s Scientific Manuscript database

    Researchers evaluating climate projections across southwestern North America observed a decreasing precipitation trend. Aridification was most pronounced in the cold (non-monsoonal) season, whereas downward trends in precipitation were smaller in the warm (monsoonal) season. In this region, based up...

  15. Proceedings from the second science team meeting of the United States of America Department of Energy and the People's Republic of China Academia Sinica Joint Research Program on CO/sub 2/-Induced Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The six papers presented here as the proceedings of this second Joint CO/sub 2/ Research Team Meeting are examples of the research progress during the last two years. The first paper is documentation of the first numerical climate simulation model developed by the Institute of Atmospheric Physics in Beijing. Two papers from the National Oceanic and Atmospheric Administration's National Climatic Data Center at Asheville, North Carolina, demonstrate the work being done on the United States Historical Climatology Network data (the time series of temperature, precipitation, and sunshine) in the US. The fourth paper speaks of climate variability on a regionalmore » scale being much larger than that based on averages of global-wide data and therefore more difficult to predict. The China Precipitation Proxy Index covers a period of 510 years. This permits comparison of contemporary climate patterns (i.e., the last 100 years) with the period of the Little Ice Age when the mean temperature over China was 2/degree/ colder than present. The fifth paper is fascinating documentation of the effects of climate change upon the wild elephants whose habitat has shifted from as far north as Beijing, in historical times, to a currently small, sequestered section in the southwest corner of the country. The final paper demonstrates the pragmatic exchange of both data and technical assistance between the two countries.« less

  16. The microcomputer scientific software series 9: user's guide to Geo-CLM: geostatistical interpolation of the historical climatic record in the Lake States.

    Treesearch

    Margaret R. Holdaway

    1994-01-01

    Describes Geo-CLM, a computer application (for Mac or DOS) whose primary aim is to perform multiple kriging runs to interpolate the historic climatic record at research plots in the Lake States. It is an exploration and analysis tool. Addition capabilities include climatic databases, a flexible test mode, cross validation, lat/long conversion, English/metric units,...

  17. Is organizational justice climate at the workplace associated with individual-level quality of care and organizational affective commitment? A multi-level, cross-sectional study on dentistry in Sweden.

    PubMed

    Berthelsen, Hanne; Conway, Paul Maurice; Clausen, Thomas

    2018-02-01

    The aim of this study is to investigate whether organizational justice climate at the workplace level is associated with individual staff members' perceptions of care quality and affective commitment to the workplace. The study adopts a cross-sectional multi-level design. Data were collected using an electronic survey and a response rate of 75% was obtained. Organizational justice climate and affective commitment to the workplace were measured by items from Copenhagen Psychosocial Questionnaire and quality of care by three self-developed items. Non-managerial staff working at dental clinics with at least five respondents (n = 900 from 68 units) was included in analyses. A set of Level-2 random intercept models were built to predict individual-level organizational affective commitment and perceived quality of care from unit-level organizational justice climate, controlling for potential confounding by group size, gender, age, and occupation. The results of the empty model showed substantial between-unit variation for both affective commitment (ICC-1 = 0.17) and quality of care (ICC-1 = 0.12). The overall results showed that the shared perception of organizational justice climate at the clinical unit level was significantly associated with perceived quality of care and affective commitment to the organization (p < 0.001). Organizational justice climate at work unit level explained all variation in affective commitment among dental clinics and was associated with both the individual staff members' affective commitment and perceived quality of care. These findings suggest a potential for that addressing organizational justice climate may be a way to promote quality of care and enhancing affective commitment. However, longitudinal studies are needed to support causality in the examined relationships. Intervention research is also recommended to probe the effectiveness of actions increasing unit-level organizational justice climate and test their impact on quality of care and affective commitment.

  18. Conceptual Change regarding middle school students' experience with Global Climate Change

    NASA Astrophysics Data System (ADS)

    Golden, B. W.; Lutz, B.

    2011-12-01

    Given the complexity of the science involving climate change (IPCC, 2007), its lack of curricular focus within US K-12 schooling (Golden, 2009), and the difficulty in effecting conceptual change in science (Vosniadou, 2007), we sought to research middle school students' conceptions about climate change, in addition to how those conceptions changed during and as a result of a deliberately designed global climate change (GCC) unit. In a sixth grade classroom, a unit was designed which incorporated Argumentation-Driven Inquiry (Sampson & Grooms, 2010). That is, students were assigned to groups and asked to make sense of standard GCC data such as paleoclimate data from ice cores, direct temperature measurement, and Keeling curves, in addition to learning about the greenhouse effect in a modeling lesson (Hocking, et al, 1993). The students were then challenged, in groups, to create, on whiteboards, explanations and defend these explanations to and with their peers. They did two iterations of this argumentation. The first iteration focused on the simple identification of climate change patterns. The second focused on developing causal explanations for those patterns. After two rounds of such argumentation, the students were then asked to write (individually) a "final" argument which accounted for the given data. Interview and written data were analyzed prior to the given unit, during it, and after it, in order to capture complicated nuance that might escape detection by simpler research means such as surveys. Several findings emerged which promised to be of interest to climate change educators. The first is that many students tended to "know" many "facts" about climate change, but were unable to connect these disparate facts in any meaningful ways. A second finding is that while no students changed their entire belief systems, even after a robust unit which would seemingly challenge such, each student engaged did indeed modify the manner in which they discussed the validation of their beliefs. That is, we argue that the unit, and the emphases contained within the unit, resulted in the "epistemic scaffolding" of their ideas, to the extent that they shifted from arguing from anecdote to arguing based on other types of data, especially from line graphs. A third finding underscores prior research in conceptual change, indicating that learning, especially conceptual change, is not a strictly rational process. Students, and others, are highly influenced by extra rational factors, such as the given political, scientific, and/or religious leanings of their families, their own willingness to explore anomalies, and other factors. Given these known difficulties, it is critical to explore further research of this sort in order to better understand what students are actually thinking, and how that thinking is prone to change, modification, or not. Subsequently, K-12 strategies might be better designed, if that is indeed a priority of US/Western society.

  19. U.S. Funding is insufficient to address the human health impacts of and public health responses to climate variability and change.

    PubMed

    Ebi, Kristie L; Balbus, John; Kinney, Patrick L; Lipp, Erin; Mills, David; O'Neill, Marie S; Wilson, Mark L

    2009-06-01

    The need to identify and try to prevent adverse health impacts of climate change has risen to the forefront of climate change policy debates and become a top priority of the public health community. Given the observed and projected changes in climate and weather patterns, their current and anticipated health impacts, and the significant degree of regulatory discussion underway in the U.S. government, it is reasonable to determine the extent of federal investment in research to understand, avoid, prepare for, and respond to the human health impacts of climate change in the United States. In this commentary we summarize the health risks of climate change in the United States and examine the extent of federal funding devoted to understanding, avoiding, preparing for, and responding to the human health risks of climate change. Future climate change is projected to exacerbate various current health problems, including heat-related mortality, diarrheal diseases, and diseases associated with exposure to ozone and aeroallergens. Demographic trends and geophysical and socioeconomic factors could increase overall vulnerability. Despite these risks, extramural federal funding of climate change and health research is estimated to be < $3 million per year. Given the real risks that climate change poses for U.S. populations, the National Institutes of Health, Centers for Disease Control and Prevention, U.S. Environmental Protection Agency, and other agencies need to have robust intramural and extramural programs, with funding of > $200 million annually. Oversight of the size and priorities of these programs could be provided by a standing committee within the National Academy of Sciences.

  20. Responses of stream nitrate and DOC loadings to hydrological forcing and climate change in an upland forest of the northeastern United States

    NASA Astrophysics Data System (ADS)

    Sebestyen, Stephen D.; Boyer, Elizabeth W.; Shanley, James B.

    2009-06-01

    In coming decades, higher annual temperatures, increased growing season length, and increased dormant season precipitation are expected across the northeastern United States in response to anthropogenic forcing of global climate. We synthesized long-term stream hydrochemical data from the Sleepers River Research Watershed in Vermont, United States, to explore the relationship of catchment wetness to stream nitrate and DOC loadings. We modeled changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nutrient loadings respond to climate change. Model results for the 2070-2099 time period suggest that stream nutrient loadings during both the dormant and growing seasons will respond to climate change. During a warmer climate, growing season stream fluxes (runoff +20%, nitrate +57%, and DOC +58%) increase as more precipitation (+28%) and quick flow (+39%) occur during a longer growing season (+43 days). During the dormant season, stream water and nutrient loadings decrease. Net annual stream runoff (+8%) and DOC loading (+9%) increases are commensurate with the magnitude of the average increase of net annual precipitation (+7%). Net annual stream water and DOC loadings are primarily affected by increased dormant season precipitation. In contrast, decreased annual loading of stream nitrate (-2%) reflects a larger effect of growing season controls on stream nitrate and the effects of lengthened growing seasons in a warmer climate. Our findings suggest that leaching of nitrate and DOC from catchment soils will be affected by anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream loadings in the northeastern United States.

  1. Climate change and indigenous peoples: A synthesis of current impacts and experiences

    USGS Publications Warehouse

    Norton-Smith, Kathryn; Lynn, Kathy; Chief, Karletta; Cozetto, Karen; Donatuto, Jamie; Hiza, Margaret; Kruger, Linda; Maldonado, Julie; Viles, Carson; Whyte, Kyle P.

    2016-01-01

    A growing body of literature examines the vulnerability, risk, resilience, and adaptation of indigenous peoples to climate change. This synthesis of literature brings together research pertaining to the impacts of climate change on sovereignty, culture, health, and economies that are currently being experienced by Alaska Native and American Indian tribes and other indigenous communities in the United States. The knowledge and science of how climate change impacts are affecting indigenous peoples contributes to the development of policies, plans, and programs for adapting to climate change and reducing greenhouse gas emissions. This report defines and describes the key frameworks that inform indigenous understandings of climate change impacts and pathways for adaptation and mitigation, namely, tribal sovereignty and self-determination, culture and cultural identity, and indigenous community health indicators. It also provides a comprehensive synthesis of climate knowledge, science, and strategies that indigenous communities are exploring, as well as an understanding of the gaps in research on these issues. This literature synthesis is intended to make a contribution to future efforts such as the 4th National Climate Assessment, while serving as a resource for future research, tribal and agency climate initiatives, and policy development.

  2. Beyond Knowledge: Service Learning and Local Climate Change Research Engagement Activities that Foster Action and Behavior Change

    NASA Astrophysics Data System (ADS)

    Low, R.; Mandryk, C.; Gosselin, D. C.; Haney, C.

    2013-12-01

    Climate change engagement requires individuals to understand an abstract and complex topic and realize the profound implications of climate change for their families and local community. In recent years federal agencies have spent millions of dollars on climate change education to prepare a nation for a warming future. The majority of these education efforts are based on a knowledge deficit model. In this view 'educate' means 'provide information'. However cognitive and behavioral research and current action demonstrate that information alone is not enough; knowledge does not necessarily lead to action. Educators are speaking to deaf ears if we rely on passive and abstract information transfer and neglect more persuasive and affective approaches to communication. When climate change is presented abstractly as something that happens in the future to people, environments, animals somewhere else it is easy to discount. People employ two separate systems for information processing: analytical-rational and intuitive-experiential Authentic local research experiences that engage both analytical and experiential information processing systems not only help individuals understand the abstraction of climate change in a concrete and personally experienced manner, but are more likely to influence behavior. Two on-line, graduate-level courses offered within University of Nebraska's Masters of Applied Science program provide opportunities for participants to engage in authentic inquiry based studies climate change's local impacts, and work with K-12 learners in promoting the scientific awareness and behavioral changes that mitigate against the negative impacts of a changing climate. The courses are specifically designed to improve middle and high school (grades 6-12) teachers' content knowledge of climate processes and climate change science in the context of their own community. Both courses provide data-rich, investigative science experiences in a distributed digital environment and support teachers in the creation of lessons and units that promote both inquiry science and service learning in the community. Course participants connect the dots from their newly acquired theoretical science knowledge to concrete examples of change taking place locally, and see the value of promoting awareness as well as behavioral changes that contribute to adaptation and mitigation of local climate change impacts. We describe the assessments used and the research outcomes associated with NRES 832, Human Dimensions of Climate Change, where participants conduct archival research to create a climate change chronicle for their community, and NRES 830 Climate Research Applications, where teachers lead and evaluate the impacts of student-designed service learning activities as a capstone project for a unit on climate change. We also showcase community-based initiatives resulting from this work that seed the behavioral changes we need to live sustainably in our communities and on our planet.

  3. Leading the Way: Tribal Colleges Prepare Students to Address Climate Change

    ERIC Educational Resources Information Center

    Sorensen, Barbara Ellen

    2011-01-01

    Across the United States, tribal people are noticing adverse changes in the natural world due to climate change--and these changes affect their cultures. Today, tribal colleges and universities (TCUs) are developing and delivering the education and research opportunities needed to produce the next generation of American Indian science,…

  4. The Dynamics of Climate Change: A Case Study in Organisational Learning

    ERIC Educational Resources Information Center

    Wasdell, David

    2011-01-01

    Purpose: Based in the discipline of applied consultancy-research, this paper seeks to present a synthesis-review of the social dynamics underlying the stalled negotiations of the United Nations Framework Convention on Climate Change. Its aim is to enhance understanding of the processes involved, to offer a working agenda to the organizational…

  5. 78 FR 24287 - Call for Expert Reviewers to the U.S. Government Review of the 2013 Revised Supplementary Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... socio-economic information for understanding the scientific basis of climate change, potential impacts... submissions by Parties to the U.N. Framework Convention on Climate Change (UNFCCC). These reports are... SUMMARY: The United States Global Change Research Program, in cooperation with the Department of State...

  6. Middle School Students' Conceptual Change in Global Climate Change: Using Argumentation to Foster Knowledge Construction

    ERIC Educational Resources Information Center

    Golden, Barry W.

    2011-01-01

    This research examined middle school student conceptions about global climate change (GCC) and the change these conceptions undergo during an argument driven instructional unit. The theoretical framework invoked for this study is the "framework theory" of conceptual change (Vosniadou, 2007a). This theory posits that students do not…

  7. SENSITIVITY OF WINTER WHEAT YIELDS IN THE MIDWESTERN UNITED STATES TO FUTURE CHANGES IN CLIMATE, CLIMATE VARIABILITY, AND CO2 FERTILIZATION. (R824996)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Short-term climate change impacts on Mara basin hydrology

    NASA Astrophysics Data System (ADS)

    Demaria, E. M.; Roy, T.; Valdés, J. B.; Lyon, B.; Valdés-Pineda, R.; Serrat-Capdevila, A.; Durcik, M.; Gupta, H.

    2017-12-01

    The predictability of climate diminishes significantly at shorter time scales (e.g. decadal). Both natural variability as well as sampling variability of climate can obscure or enhance climate change signals in these shorter scales. Therefore, in order to assess the impacts of climate change on basin hydrology, it is important to design climate projections with exhaustive climate scenarios. In this study, we first create seasonal climate scenarios by combining (1) synthetic precipitation projections generated from a Vector Auto-Regressive (VAR) model using the University of East Anglia Climate Research Unit (UEA-CRU) data with (2) seasonal trends calculated from 31 models in the Coupled Model Intercomparison Project Phase 5 (CMIP). The seasonal climate projections are then disaggregated to daily level using the Agricultural Modern-Era Retrospective Analysis for Research and Applications (AgMERRA) data. The daily climate data are then bias-corrected and used as forcings to the land-surface model, Variable Infiltration Capacity (VIC), to generate different hydrological projections for the Mara River basin in East Africa, which are then evaluated to study the hydrologic changes in the basin in the next three decades (2020-2050).

  9. Varying geospatial analyses to assess climate risk and adaptive capacity in a hotter, drier Southwestern United States

    NASA Astrophysics Data System (ADS)

    Elias, E.; Reyes, J. J.; Steele, C. M.; Rango, A.

    2017-12-01

    Assessing vulnerability of agricultural systems to climate variability and change is vital in securing food systems and sustaining rural livelihoods. Farmers, ranchers, and forest landowners rely on science-based, decision-relevant, and localized information to maintain production, ecological viability, and economic returns. This contribution synthesizes a collection of research on the future of agricultural production in the American Southwest (SW). Research was based on a variety of geospatial methodologies and datasets to assess the vulnerability of rangelands and livestock, field crops, specialty crops, and forests in the SW to climate-risk and change. This collection emerged from the development of regional vulnerability assessments for agricultural climate-risk by the U.S. Department of Agriculture (USDA) Climate Hub Network, established to deliver science-based information and technologies to enable climate-informed decision-making. Authors defined vulnerability differently based on their agricultural system of interest, although each primarily focuses on biophysical systems. We found that an inconsistent framework for vulnerability and climate risk was necessary to adequately capture the diversity, variability, and heterogeneity of SW landscapes, peoples, and agriculture. Through the diversity of research questions and methodologies, this collection of articles provides valuable information on various aspects of SW vulnerability. All articles relied on geographic information systems technology, with highly variable levels of complexity. Agricultural articles used National Agricultural Statistics Service data, either as tabular county level summaries or through the CropScape cropland raster datasets. Most relied on modeled historic and future climate information, but with differing assumptions regarding spatial resolution and temporal framework. We assert that it is essential to evaluate climate risk using a variety of complementary methodologies and perspectives. In addition, we found that spatial analysis supports informed adaptation, within and outside the SW United States. The persistence and adaptive capacity of agriculture in the water-limited Southwest serves as an instructive example and may offer solutions to reduce future climate risk.

  10. Identifying climate risk perceptions, information needs, and barriers to information exchange among public land managers.

    PubMed

    Peters, Casey B; Schwartz, Mark W; Lubell, Mark N

    2018-03-01

    Meeting ecosystem management challenges posed by climate change requires building effective communication channels among researchers, planners and practitioners to focus research on management issues requiring new knowledge. We surveyed resource managers within two regions of the western United States regions to better understand perceived risks and vulnerabilities associated with climate change and barriers to obtaining and using relevant climate science information in making ecosystem management decisions. We sought to understand what types of climate science information resource managers find most valuable, and the formats in which they prefer to receive climate science information. We found broad concern among natural resource managers in federal agencies that climate change will make it more difficult for them to achieve their management goals. Primary barriers to incorporating climate science into planning are distributed among challenges identifying, receiving, and interpreting appropriate science and a lack of direction provided by agency leadership needed to meaningfully use this emerging science in resource planning. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating.

    PubMed

    Hejazi, Mohamad I; Voisin, Nathalie; Liu, Lu; Bramer, Lisa M; Fortin, Daniel C; Hathaway, John E; Huang, Maoyi; Kyle, Page; Leung, L Ruby; Li, Hong-Yi; Liu, Ying; Patel, Pralit L; Pulsipher, Trenton C; Rice, Jennie S; Tesfa, Teklu K; Vernon, Chris R; Zhou, Yuyu

    2015-08-25

    There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.

  12. Reducing Our Carbon Footprint: Frontiers in Climate Forecasting (LBNL Science at the Theater)

    ScienceCinema

    Collins, Bill [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-06-07

    Bill Collins directs Berkeley Lab's research dedicated to atmospheric and climate science. Previously, he headed the development of one of the leading climate models used in international studies of global warming. His work has confirmed that man-made greenhouse gases are probably the main culprits of recent warming and future warming poses very real challenges for the environment and society. A lead author of the most recent assessment of the science of climate change by the United Nations' Intergovernmental Panel on Climate Change, Collins wants to create a new kind of climate model, one that will integrate cutting-edge climate science with accurate predictions people can use to plan their lives

  13. Survey of organizational research climates in three research intensive, doctoral granting universities.

    PubMed

    Wells, James A; Thrush, Carol R; Martinson, Brian C; May, Terry A; Stickler, Michelle; Callahan, Eileen C; Klomparens, Karen L

    2014-12-01

    The Survey of Organizational Research Climate (SOuRCe) is a new instrument that assesses dimensions of research integrity climate, including ethical leadership, socialization and communication processes, and policies, procedures, structures, and processes to address risks to research integrity. We present a descriptive analysis to characterize differences on the SOuRCe scales across departments, fields of study, and status categories (faculty, postdoctoral scholars, and graduate students) for 11,455 respondents from three research-intensive universities. Among the seven SOuRCe scales, variance explained by status and fields of study ranged from 7.6% (Advisor-Advisee Relations) to 16.2% (Integrity Norms). Department accounted for greater than 50% of the variance explained for each of the SOuRCe scales, ranging from 52.6% (Regulatory Quality) to 80.3% (Integrity Inhibitors). It is feasible to implement this instrument in large university settings across a broad range of fields, department types, and individual roles within academic units. Published baseline results provide initial data for institutions using the SOuRCe who wish to compare their own research integrity climates. © The Author(s) 2014.

  14. Visiting the United States Without Leaving Your Classroom.

    ERIC Educational Resources Information Center

    Fugate, Roberta

    1987-01-01

    Ways in which teachers can interest students about learning more about the United States are presented, focusing on a planned "pretend" visit to a particular state or region. Research topics include geography, history, population, climate, chief products, and background information. State tourism agencies are listed. (CB)

  15. Coastal Climate Change Education, Mitigation, and Adaptation in the Natural and Built Environments: Progress of the Coastal Areas Climate Change Education Partnership

    NASA Astrophysics Data System (ADS)

    Feldman, A.; Herman, B.; Vernaza-Hernández, V.; Ryan, J. G.; Muller-Karger, F. E.; Gilbes, F.

    2011-12-01

    The Coastal Area Climate Change Education (CACCE) Partnership, funded by the National Science Foundation, seeks to develop new ways to educate citizens about global climate change. The core themes are sea level rise and impacts of climate change in the southeastern United States and the Caribbean Sea. CACCE focuses on helping partners, educators, students, and the general public gain a fundamental and working understanding of the interrelation among the natural environment, built environment, and social aspects in the context of climate change in coastal regions. To this end, CACCE's objectives reported here include: 1) defining the current state of awareness, perceptions, and literacy about the impacts of climate change; and 2) testing a model of transdisciplinary research and learning as a means of training a new generation of climate professionals. Objective one is met in part by CACCE survey efforts that reveal Florida and Puerto Rico secondary science teachers hold many non-scientific views about climate change and climate change science and provide inadequate instruction about climate change. Associated with objective two are five Multiple Outcome Interdisciplinary Research and Learning (MOIRL) pilot projects underway in schools in Florida and Puerto Rico. In the CACCE Partnership the stakeholders include: students (K-16 and graduate); teachers and education researchers; informal science educators; scientists and engineers; business and industry; policy makers; and community members. CACCE combines interdisciplinary research with action research and community-based participatory research in a way that is best described as "transdisciplinary". Learning occurs in all spheres of interactions among stakeholders as they engage in scientific, educational, community and business activities through their legitimate peripheral participation in research communities of practice. We will describe the process of seeking and building partnerships, and call for a dialogue with groups pursuing climate and climate change education.

  16. Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tian; Voisin, Nathalie; Leng, Guoyong

    Water management activities or flow regulations modify water fluxes at the land surface and affect water resources in space and time. We hypothesize that flow regulations change the sensitivity of river flow to climate change with respect to unmanaged water resources. Quantifying these changes in sensitivity could help elucidate the impacts of water management at different spatiotemporal scales and inform climate adaptation decisions. In this study, we compared the emergence of significant changes in natural and regulated river flow regimes across the Western United States from simulations driven by multiple climate models and scenarios. We find that significant climate change-inducedmore » alterations in natural flow do not cascade linearly through water management activities. At the annual time scale, 50% of the Hydrologic Unit Code 4 (HUC4) sub-basins over the Western U.S. regions tend to have regulated flow regime more sensitive to the climate change than natural flow regime. Seasonality analyses show that the sensitivity varies remarkably across the seasons. We also find that the sensitivity is related to the level of water management. For 35% of the HUC4 sub-basins with the highest level of water management, the summer and winter flows tend to show a heightened sensitivity to climate change due to the complexity of joint reservoir operations. We further demonstrate that the impacts of considering water management in models are comparable to those that arises from uncertainties across climate models and emission scenarios. This prompts further climate adaptation studies research about nonlinearity effects of climate change through water management activities.« less

  17. Developing a clinical trial unit to advance research in an academic institution.

    PubMed

    Croghan, Ivana T; Viker, Steven D; Limper, Andrew H; Evans, Tamara K; Cornell, Alissa R; Ebbert, Jon O; Gertz, Morie A

    2015-11-01

    Research, clinical care, and education are the three cornerstones of academic health centers in the United States. The research climate has always been riddled with ebbs and flows, depending on funding availability. During a time of reduced funding, the number and scope of research studies have been reduced, and in some instances, a field of study has been eliminated. Recent reductions in the research funding landscape have led institutions to explore new ways to continue supporting research. Mayo Clinic in Rochester, MN has developed a clinical trial unit within the Department of Medicine, which provides shared resources for many researchers and serves as a solution for training and mentoring new investigators and study teams. By building on existing infrastructure and providing supplemental resources to existing research, the Department of Medicine clinical trial unit has evolved into an effective mechanism for conducting research. This article discusses the creation of a central unit to provide research support in clinical trials and presents the advantages, disadvantages, and required building blocks for such a unit. Copyright © 2015 Mayo Clinic. Published by Elsevier Inc. All rights reserved.

  18. Structuring injustice: partisan politics in the making and unmaking of James Madison University's equal opportunity policy.

    PubMed

    Robinson, Christine M; Spivey, Sue E

    2011-01-01

    This analysis contributes to LGBT campus climate research on the quality of campus life in higher education in the United States. We argue that public education institutions in different states face divergent impediments to improving campus climate, and that more research is needed identifying structural factors affecting campus climate. Using a social systems analysis of policymaking at one university as a case study, we illustrate how partisan politics and state regulation make Virginia colleges and universities more vulnerable to political scrutiny and control. Finally, we propose a social justice-oriented policy agenda to address structural inequalities.

  19. Forecasting resource-allocation decisions under climate uncertainty: fire suppression with assessment of net benefits of research

    Treesearch

    Jeffrey P. Prestemon; Geoffrey H. Donovan

    2008-01-01

    Making input decisions under climate uncertainty often involves two-stage methods that use expensive and opaque transfer functions. This article describes an alternative, single-stage approach to such decisions using forecasting methods. The example shown is for preseason fire suppression resource contracting decisions faced by the United States Forest Service. Two-...

  20. Convergence of microclimate in residential landscapes across diverse cities in the United States

    Treesearch

    Sharon J. Hall; J. Learned; B. Ruddell; K.L. Larson; J. Cavender-Bares; N. Bettez; P.M. Groffman; Morgan Grove; J.B. Heffernan; S.E. Hobbie; J.L. Morse; C. Neill; K.C. Nelson; Jarlath O' Neil-Dunne; L. Ogden; D.E. Pataki; W.D. Pearse; C. Polsky; R. Roy Chowdhury; M.K. Steele; T.L.E. Trammell

    2016-01-01

    The urban heat island (UHI) is a well-documented pattern of warming in cities relative to rural areas. Most UHI research utilizes remote sensing methods at large scales, or climate sensors in single cities surrounded by standardized land cover. Relatively few studies have explored continental-scale climatic patterns within common urban microenvironments such as...

  1. Resilience and Struggle: Exploring the Experiences of Undocumented College Students through Chicana Feminist Theory and Dialogical Performance

    ERIC Educational Resources Information Center

    Juarez, Sergio F.

    2017-01-01

    In an increasingly hostile political and social climate undocumented students in the United States continue to struggle to find space for themselves within universities. This research project undertakes a goal of illuminating how undocumented students make sense of their experiences on university campuses despite facing difficult climates at their…

  2. Recent improvement and projected worsening of weather in the United States.

    PubMed

    Egan, Patrick J; Mullin, Megan

    2016-04-21

    As climate change unfolds, weather systems in the United States have been shifting in patterns that vary across regions and seasons. Climate science research typically assesses these changes by examining individual weather indicators, such as temperature or precipitation, in isolation, and averaging their values across the spatial surface. As a result, little is known about population exposure to changes in weather and how people experience and evaluate these changes considered together. Here we show that in the United States from 1974 to 2013, the weather conditions experienced by the vast majority of the population improved. Using previous research on how weather affects local population growth to develop an index of people’s weather preferences, we find that 80% of Americans live in counties that are experiencing more pleasant weather than they did four decades ago. Virtually all Americans are now experiencing the much milder winters that they typically prefer, and these mild winters have not been offset by markedly more uncomfortable summers or other negative changes. Climate change models predict that this trend is temporary, however, because US summers will eventually warm more than winters. Under a scenario in which greenhouse gas emissions proceed at an unabated rate (Representative Concentration Pathway 8.5), we estimate that 88% of the US public will experience weather at the end of the century that is less preferable than weather in the recent past. Our results have implications for the public’s understanding of the climate change problem, which is shaped in part by experiences with local weather. Whereas weather patterns in recent decades have served as a poor source of motivation for Americans to demand a policy response to climate change, public concern may rise once people’s everyday experiences of climate change effects start to become less pleasant.

  3. Responses of stream nitrate and DOC loadings to hydrological forcing and climate change in an upland forest of the northeastern United States

    USGS Publications Warehouse

    Sebestyen, S.D.; Boyer, E.W.; Shanley, J.B.

    2009-01-01

    In coming decades, higher annual temperatures, increased growing season length, and increased dormant season precipitation are expected across the northeastern United States in response to anthropogenic forcing of global climate. We synthesized long-term stream hydrochemical data from the Sleepers River Research Watershed in Vermont, United States, to explore the relationship of catchment wetness to stream nitrate and DOC loadings. We modeled changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nutrient loadings respond to climate change. Model results for the 2070-2099 time period suggest that stream nutrient loadings during both the dormant and growing seasons will respond to climate change. During a warmer climate, growing season stream fluxes (runoff+20%, nitrate +57%, and DOC +58%) increase as more precipitation (+28%) and quick flow (+39%) occur during a longer growing season (+43 days). During the dormant season, stream water and nutrient loadings decrease. Net annual stream runoff (+8%) and DOC loading (+9%) increases are commensurate with the magnitude of the average increase of net annual precipitation (+7%). Net annual stream water and DOC loadings are primarily affected by increased dormant season precipitation. In contrast, decreased annual loading of stream nitrate (-2%) reflects a larger effect of growing season controls on stream nitrate and the effects of lengthened growing seasons in a warmer climate. Our findings suggest that leaching of nitrate and DOC from catchment soils will be affected by anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream loadings in the northeastern United States. Copyright 2009 by the American Geophysical Union.

  4. A climatology of late-spring freezes in the northeastern United States.

    Treesearch

    Brian E. Potter; Thomas W. Cate

    1999-01-01

    Presents maps of late-spring freeze characteristics for the northeastern and north central United States based on heat-sum thresholds and historic climate data. Discusses patterns seen in the maps. Provides examples and ways these maps could be used by resource managers and research scientists.

  5. A new landscape classification system for monitoring and assessment of pastures

    USDA-ARS?s Scientific Manuscript database

    Pasturelands in the United States span a broad range of climate, soils, physical sites, and management. Rather than treat each site as a unique entity, this diversity must be classified into basic units for research and management purposes. A similar system based on ecological principles is needed f...

  6. Keeping the Hope: Seeing, Understanding, and Teaching Climate Change

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Bartholow, S.; Larson, A.

    2016-12-01

    Climate Change: Seeing, Understanding, and Teaching in Denali is a four-day immersive teacher professional development course held in Denali National Park, Alaska. Now in it's fifth year, this field-based course has been developed in partnership with three organizations, Alaska Geographic, the National Park Service, and the Arctic Research Consortium of the United States. The course aims to develop teachers' skills for integrating climate change content into their classrooms. Throughout the course, participants gain skills in communicating science, increase their climate literacy, and learn how to facilitate classroom discussions that move us all towards making a positive impact on the future of climate change. This presentation aims to share tangible best practices for linking researchers and teachers through a field course that not only delivers content but also navigates the challenges of bringing climate change content to the classrooms. We will share data on how participants overwhelmingly value the deep commitment this course has to linking their field experience to the classroom attributing to the role of a teacher-leader; an expert science teacher with first-hand field research experience in the polar regions.

  7. Building partnerships to produce actionable science to support climate-informed management decisions: North Central Climate Science Center example

    NASA Astrophysics Data System (ADS)

    Lackett, J.; Ojima, D. S.; McNeeley, S.

    2017-12-01

    As climate change impacts become more apparent in our environment, action is needed to enhance the social-ecological system resilience. Incorporating principles which lead to actionable research and project co-development, when appropriate, will facilitate building linkages between the research and the natural resource management communities. In order to develop strategies to manage for climatic and ecosystem changes, collaborative actions are needed between researchers and resource managers to apply appropriate knowledge of the ecosystem and management environments to enable feasible solutions and management actions to respond to climate change. Our team has been involved in developing and establishing a research and engagement center, the North Central Climate Science Center (NC CSC), for the US Department of Interior, to support the development and translation of pertinent climate science information to natural resource managers in the north central portion of the United States. The NC CSC has implemented a platform to support the Resource for Vulnerability Assessment, Adaptation, and Mitigation Projects (ReVAMP) with research, engagement, and training activities to support resource managers and researchers. These activities are aimed at the co-production of appropriate response strategies to climate change in the region, in particular to drought-related responses. Through this platform we, with other partners in the region, including the Department of Interior and the Department of Agriculture, are bringing various training tools, climate information, and management planning tools to resource managers. The implementation of ReVAMP has led to development of planning efforts which include a more explicit representation of climate change as a driver of drought events in our region. Scenario planning provides a process which integrates management goals with possible outcomes derived from observations and simulations of ecological impacts of climate change. Co-development of management options under these various scenarios have allowed for guidance about further research needed, observations needed to better monitor ecological conditions under climate changes, and adaptive management practices to increase resilience.

  8. Putting the Assessment into Practice: Applications of Climate and Health Data and Information

    NASA Astrophysics Data System (ADS)

    Balbus, J. M.; Morris, J.; Luber, G.

    2016-12-01

    The USGCRP Climate and Health Assessment represents the most up to date synthesis of the scientific literature on the health impacts of climate change in the United States. One of its key messages is that climate change is already affecting the health of people in the United States and around the world, and these impacts are likely to become more extensive over time. Another key message is that all Americans have some degree of vulnerability to the health impacts of climate change at some point in their lives. Conclusions as significant as those call for measures to translate current knowledge into specific actions to protect populations and enhance resilience to the health impacts of climate change. This presentation will summarize efforts underway across the federal government to apply research results and climate and health data to enhancing the resilience of populations. These efforts include the development of early warning systems and other applications of predictive models of weather and climate-related health hazards; partnerships with health professional societies to help translate the assessment's findings into specific recommendations for health professionals; and the development of educational materials to help enhance the resilience of students and their families by enhancing their understanding of the connections between climate, climate change and health.

  9. Climate Change and Human Health Impacts in the United States: An Update on the Results of the U.S. National Assessment

    PubMed Central

    Ebi, Kristie L.; Mills, David M.; Smith, Joel B.; Grambsch, Anne

    2006-01-01

    The health sector component of the first U.S. National Assessment, published in 2000, synthesized the anticipated health impacts of climate variability and change for five categories of health outcomes: impacts attributable to temperature, extreme weather events (e.g., storms and floods), air pollution, water- and food-borne diseases, and vector- and rodent-borne diseases. The Health Sector Assessment (HSA) concluded that climate variability and change are likely to increase morbidity and mortality risks for several climate-sensitive health outcomes, with the net impact uncertain. The objective of this study was to update the first HSA based on recent publications that address the potential impacts of climate variability and change in the United States for the five health outcome categories. The literature published since the first HSA supports the initial conclusions, with new data refining quantitative exposure–response relationships for several health end points, particularly for extreme heat events and air pollution. The United States continues to have a very high capacity to plan for and respond to climate change, although relatively little progress has been noted in the literature on implementing adaptive strategies and measures. Large knowledge gaps remain, resulting in a substantial need for additional research to improve our understanding of how weather and climate, both directly and indirectly, can influence human health. Filling these knowledge gaps will help better define the potential health impacts of climate change and identify specific public health adaptations to increase resilience. PMID:16966082

  10. Middle school students' conceptual change in global climate change: Using argumentation to foster knowledge construction

    NASA Astrophysics Data System (ADS)

    Golden, Barry W.

    This research examined middle school student conceptions about global climate change (GCC) and the change these conceptions undergo during an argument driven instructional unit. The theoretical framework invoked for this study is the framework theory of conceptual change (Vosniadou, 2007a). This theory posits that students do not simply correct incorrect ideas with correct ones, but instead weigh incoming ideas against already existing explanatory frameworks, which have likely served the learner well to this point. The research questions were as follows: (1) What are the patterns of students' conceptual change in GCC? (a) What conceptions are invoked in student learning in this arena? (b) What conceptions are most influential? (c) What are the extra-rational factors influencing conceptual change in GCC? This research took place in an urban public school in a medium sized city in the southeastern United States. A sixth grade science teacher at Central Middle school, Ms. Octane, taught a course titled "Research Methods I., which was an elective science course that students took as part of a science magnet program. A unit was designed for 6th grade instruction that incorporated an Argument-Driven Inquiry (ADI) approach, centered on the subject matter of Global Climate change and Global Warming. Students were immersed in three separate lessons within the unit, each of which featured an emphasis upon creating scientific explanations based upon evidence. Additionally, each of the lessons placed a premium on students working towards the development of such explanations as a part of a group, with an emphasis on peer review of the robustness of the explanations proposed. The students were involved in approximately a two week unit emphasizing global climate change. This unit was based on an argumentation model that provided data to students and asked them to develop explanations that accounted for the data. The students then underwent a peer-review process to determine if their explanations could be modified to better account for the data as pointed out by peers. As the students experienced the three lessons comprising the unit, data were taken of various modes, including pre-unit, mid-unit, post-unit, and delayed-post unit interviews, observer notes from the classroom, and artifacts created by the students as individuals and as members of a group. At the end of the unit, a written post-assessment was administered, and post-interviews were conducted with the selected students. These varied data sources were analyzed in order to develop themes corresponding to their frameworks of climate change. Negative cases were sought in order to test developing themes. Themes that emerged from the data were triangulated across the various data sources in order to ensure quality and rigor. These themes were then used to construct understandings of various students' frameworks of the content. Several findings emerged from this research. The first finding is that each student underwent some conceptual change regarding GCC, although of varying natures. The students' synthetic frameworks of GCC were more complex than their initial, or naive frameworks. Some characteristics of the naive frameworks included that the students tended to conflate climate change with a broader, generic category of environmental things. Examples of this conflation include the idea that climate change entails general pollution, litter, and needless killing of dolphins while fishing for tuna. This research suggests that students might benefit from explicit attention to this concept in terms of an ontological category, with the ideal synthetic view realizing that GCC is itself an example of an emergent process. Another characteristic of their naive frameworks includes some surprisingly accurate notions of GCC, including a general sense that temperatures and sea levels are rising. At the same time, none of the students were able to adequately invoke data to support their understandings of GCC. Instead, when data were invoked, students tended to include anecdotal information. Students' synthetic frameworks showed great improvements in these and other aspects. Each student without exception made great strides in reference to data invoked to explain his or her position. The data analyzed show evidence of epistemic scaffolding in that the students' poor ability to invoke evidence was improved through the experience in the argumentation unit. This research also suggests that each student's learning was greatly impacted by his or her own affective tendencies and understandings. Darko provided an example of this called belief identification (Cederblom, 1989), in that he stated that his anti-global warming beliefs are the same as those of his family. Other affective factors of note included self-efficacy and fascination with animals. While each student's understanding of GCC grew substantially, an explanation of their growth was offered with reference to four major categories: Ontological, Epistemological, Analytical, and Affective. In order to understand any one student's conceptual change, a thorough accounting of each of these factors needs to be examined. This research described the interaction of these factors for these students.

  11. BASINs 4.0 Climate Assessment Tool (CAT): Supporting ...

    EPA Pesticide Factsheets

    EPA announced the availability of the report, BASINS 4.0 Climate Assessment Tool (CAT): Supporting Documentation and User's Manual. This report was prepared by the EPA's Global Change Research Program (GCRP), an assessment-oriented program, that sits within the Office of Research and Development, that focuses on assessing how potential changes in climate and other global environmental stressors may impact water quality, air quality, aquatic ecosystems, and human health in the United States. The Program’s focus on water quality is consistent with the Research Strategy of the U.S. Climate Change Research Program—the federal umbrella organization for climate change science in the U.S. government—and is responsive to U.S. EPA’s mission and responsibilities as defined by the Clean Water Act and the Safe Drinking Water Act. A central goal of the EPA GCRP is to provide EPA program offices, Regions, and other stakeholders with tools and information for assessing and responding to any potential future impacts of climate change. In 2007, the EPA Global Change Research Program (GCRP), in partnership with the EPA Office of Water, supported development of a Climate Assessment Tool (CAT) for version 4 of EPA’s BASINS modeling system. This report provides supporting documentation and user support materials for the BASINS CAT tool. The purpose of this report is to provide in a single document a variety of documentation and user support materials supporting the use

  12. Evaluating historical climate and hydrologic trends in the Central Appalachian region of the United States

    NASA Astrophysics Data System (ADS)

    Gaertner, B. A.; Zegre, N.

    2015-12-01

    Climate change is surfacing as one of the most important environmental and social issues of the 21st century. Over the last 100 years, observations show increasing trends in global temperatures and intensity and frequency of precipitation events such as flooding, drought, and extreme storms. Global circulation models (GCM) show similar trends for historic and future climate indicators, albeit with geographic and topographic variability at regional and local scale. In order to assess the utility of GCM projections for hydrologic modeling, it is important to quantify how robust GCM outputs are compared to robust historical observations at finer spatial scales. Previous research in the United States has primarily focused on the Western and Northeastern regions due to dominance of snow melt for runoff and aquifer recharge but the impact of climate warming in the mountainous central Appalachian Region is poorly understood. In this research, we assess the performance of GCM-generated historical climate compared to historical observations primarily in the context of forcing data for macro-scale hydrologic modeling. Our results show significant spatial heterogeneity of modeled climate indices when compared to observational trends at the watershed scale. Observational data is showing considerable variability within maximum temperature and precipitation trends, with consistent increases in minimum temperature. The geographic, temperature, and complex topographic gradient throughout the central Appalachian region is likely the contributing factor in temperature and precipitation variability. Variable climate changes are leading to more severe and frequent climate events such as temperature extremes and storm events, which can have significant impacts on our drinking water supply, infrastructure, and health of all downstream communities.

  13. Social Climate Science: A New Vista for Psychological Science.

    PubMed

    Pearson, Adam R; Schuldt, Jonathon P; Romero-Canyas, Rainer

    2016-09-01

    The recent Paris Agreement to limit greenhouse gas emissions, adopted by 195 nations at the 2015 United Nations Climate Change Conference, signaled unprecedented commitment by world leaders to address the human social aspects of climate change. Indeed, climate change increasingly is recognized by scientists and policymakers as a social issue requiring social solutions. However, whereas psychological research on intrapersonal and some group-level processes (e.g., political polarization of climate beliefs) has flourished, research into other social processes-such as an understanding of how nonpartisan social identities, cultural ideologies, and group hierarchies shape public engagement on climate change-has received substantially less attention. In this article, we take stock of current psychological approaches to the study of climate change to explore what is "social" about climate change from the perspective of psychology. Drawing from current interdisciplinary perspectives and emerging empirical findings within psychology, we identify four distinct features of climate change and three sets of psychological processes evoked by these features that are fundamentally social and shape both individual and group responses to climate change. Finally, we consider how a more nuanced understanding of the social underpinnings of climate change can stimulate new questions and advance theory within psychology. © The Author(s) 2016.

  14. Transforming Catholic Education through Research: The American Educational Research Association Catholic Education Special Interest Group

    ERIC Educational Resources Information Center

    Martin, Shane

    2014-01-01

    Catholic schools in the United States and abroad face numerous financial, cultural, and structural challenges due to contemporary education policies and economic trends. Within this climate, research about Catholic education is often conducted and leveraged in efforts to serve schools' most immediate needs. To be certain, research aimed at finding…

  15. Initial Results from the Survey of Organizational Research Climates (SOuRCe) in the U.S. Department of Veterans Affairs Healthcare System.

    PubMed

    Martinson, Brian C; Nelson, David; Hagel-Campbell, Emily; Mohr, David; Charns, Martin P; Bangerter, Ann; Thrush, Carol R; Ghilardi, Joseph R; Bloomfield, Hanna; Owen, Richard; Wells, James A

    2016-01-01

    In service to its core mission of improving the health and well-being of veterans, Veterans Affairs (VA) leadership is committed to supporting research best practices in the VA. Recognizing that the behavior of researchers is influenced by the organizational climates in which they work, efforts to assess the integrity of research climates and share such information with research leadership in VA may be one way to support research best practices. The Survey of Organizational Research Climate (SOuRCe) is the first validated survey instrument specifically designed to assess the organizational climate of research integrity in academic research organizations. The current study reports on an initiative to use the SOuRCe in VA facilities to characterize the organizational research climates and pilot test the effectiveness of using SOuRCe data as a reporting and feedback intervention tool. We administered the SOuRCe using a cross-sectional, online survey, with mailed follow-up to non-responders, of research-engaged employees in the research services of a random selection of 42 VA facilities (e.g., Hospitals/Stations) believed to employ 20 or more research staff. We attained a 51% participation rate, yielding more than 5,200 usable surveys. We found a general consistency in organizational research climates across a variety of sub-groups in this random sample of research services in the VA. We also observed similar SOuRCe scale score means, relative rankings of these scales and their internal reliability, in this VA-based sample as we have previously documented in more traditional academic research settings. Results also showed more substantial variability in research climate scores within than between facilities in the VA research service as reflected in meaningful subgroup differences. These findings suggest that the SOuRCe is suitable as an instrument for assessing the research integrity climates in VA and that the tool has similar patterns of results that have been observed in more traditional academic research settings. The local and specific nature of organizational climates in VA research services, as reflected in variability across sub-groups within individual facilities, has important policy implications. Global, "one-size-fits-all" type initiatives are not likely to yield as much benefit as efforts targeted to specific organizational units or sub-groups and tailored to the specific strengths and weaknesses documented in those locations.

  16. Using Children's Drawings to Examine Student Perspectives of Classroom Climate in a School-within-a-School Elementary School

    ERIC Educational Resources Information Center

    Farmer, Jennie L.; Spearman, Mindy; Qian, Meihua; Leonard, Alison E.; Rosenblith, Suzanne

    2018-01-01

    This study examines student perceptions of classroom climate at a school-within-a-school (SWAS) elementary school located in the southeastern United States. The elementary school contains a school for students identified as highly gifted within a neighborhood school. Researchers utilized drawings to determine students' perceptions of their…

  17. Evaluating the climate effects of reforestation in New England using a weather research and forecasting (WRF) model multiphysics ensemble

    Treesearch

    E.A. Burakowski; S.V. Ollinger; G.B. Bonan; C.P. Wake; J.E. Dibb; D.Y. Hollinger

    2016-01-01

    The New England region of the northeastern United States has a land use history characterized by forest clearing for agriculture and other uses during European colonization and subsequent reforestation following widespread farm abandonment. Despite these broad changes, the potential influence on local and regional climate has received relatively little attention. This...

  18. ASSESSMENT OF THE IMPACTS OF GLOBAL CHANGE ON REGIONAL U.S. AIR QUALITY: A SYNTHESIS OF CLIMATE CHANGE IMPACTS ON GROUND-LEVEL OZONE (AN INTERIM REPORT OF THE U.S. EPA GLOBAL CHANGE RESEARCH PROGRAM)

    EPA Science Inventory

    The Air Quality Assessment Final Report is intended for managers and scientists working on air quality to provide them with information on the potential effects of climate change on regional air quality in the United States.

  19. Perceptions of Stereotype Vulnerability, Belonging and Campus Climate by African Americans Attending a Predominately White Institution

    ERIC Educational Resources Information Center

    Thompson, Loren Wright

    2017-01-01

    The purpose of this study was to examine of stereotype vulnerability, sense of belonging and campus climate for African American college students at a Predominately White Institution (PWI) in the Southeast. This research used a sociocultural model to explore African American student perceptions at a PWI in the southeast of the United States. This…

  20. Aquatic species invasions in the context of fire and climate change

    Treesearch

    Michael K. Young

    2012-01-01

    This paper focuses on the nexus among native and nonnative fishes with respect to fire and climate change in the western United States. Although many taxa are involved, I emphasize native and nonnative salmonids because these are obligate coldwater species that might be expected to respond strongly to fire and because most research has been conducted on these fishes....

  1. "It's Not a Political Issue!" The Interaction of Subject and Politics on Professors' Beliefs in Human-Induced Climate Change

    ERIC Educational Resources Information Center

    Nussbaum, E. Michael; Owens, Marissa C.; Cordova, Jacqueline R.

    2016-01-01

    This study examines the interaction of political orientation with academic discipline on beliefs in anthropogenic climate change (ACC) among higher education faculty. Over 300 faculty members at two research institutions in the United States were surveyed on topics concerning ACC and the results were analyzed with multiple regression. Even among…

  2. The Epidemiology of Occupational Heat-Related Morbidity and Mortality in the United States: A Review of the Literature and Assessment of Research Needs in a Changing Climate

    PubMed Central

    Gubernot, Diane M.; Anderson, G. Brooke; Hunting, Katherine L.

    2014-01-01

    In recent years, the United States has experienced record-breaking summer heat. Climate change models forecast increasing U.S. temperatures and more frequent heat waves in coming years. This scoping review summarizes research findings that characterize U.S. occupational heat-related morbidity and mortality and identifies gaps in the existing research literature. Exposure to environmental heat is a significant, but overlooked, workplace hazard that has not been well-characterized or studied. The working population is diverse; job function, age, fitness level, and risk factors to heat-related illnesses vary. This review found that few studies examine or characterize the incidence of occupational heat-related illnesses and outcomes. More research on the effects of occupational heat exposure is needed to identify and implement evidence-based policies and interventions. Since heat-related health hazards at work can be anticipated before they manifest, preventive measures can be implemented before illness occurs. With no federal regulatory standards to protect workers from environmental heat exposure, and with climate change as a driver for adaptation and prevention of heat disorders, crafting policy to characterize and prevent occupational heat stress for all workers is increasingly sensible, practical, and imperative. PMID:24326903

  3. New Strategies in the New Millennium: Servant Leadership As Enhancer of Service Climate and Customer Service Performance

    PubMed Central

    Linuesa-Langreo, Jorge; Ruiz-Palomino, Pablo; Elche-Hortelano, Dioni

    2017-01-01

    In a world in which customers are increasingly looking for solutions to their own concerns on how to make a better globalized world, new organizational strategies are emerging to approach the customer in the current third millennium. Servant leadership, which involves putting employees’ needs first and serving the broader society, is emerging as a new strategic mechanism to approach the customer in line with the new social values-driven Marketing 3.0 era. Yet research has ignored the role and the various mechanisms servant leadership might utilize to improve customer service performance of their service units. Spanning 185 hotels located in Spain, a sample of 247 service units –in close contact with customers– was used to investigate whether servant leadership enhances customer service performance through shaping a service climate within the service unit. Results revealed that service climate mediates the positive influence of servant leadership on customer service performance. Managers can use these findings to note the value of leading the service unit in a servant friendly direction, which is better aligned with the new aspirations of customers today. PMID:28559873

  4. New Strategies in the New Millennium: Servant Leadership As Enhancer of Service Climate and Customer Service Performance.

    PubMed

    Linuesa-Langreo, Jorge; Ruiz-Palomino, Pablo; Elche-Hortelano, Dioni

    2017-01-01

    In a world in which customers are increasingly looking for solutions to their own concerns on how to make a better globalized world, new organizational strategies are emerging to approach the customer in the current third millennium. Servant leadership, which involves putting employees' needs first and serving the broader society, is emerging as a new strategic mechanism to approach the customer in line with the new social values-driven Marketing 3.0 era. Yet research has ignored the role and the various mechanisms servant leadership might utilize to improve customer service performance of their service units. Spanning 185 hotels located in Spain, a sample of 247 service units -in close contact with customers- was used to investigate whether servant leadership enhances customer service performance through shaping a service climate within the service unit. Results revealed that service climate mediates the positive influence of servant leadership on customer service performance. Managers can use these findings to note the value of leading the service unit in a servant friendly direction, which is better aligned with the new aspirations of customers today.

  5. Performance of the WRF model to simulate the seasonal and interannual variability of hydrometeorological variables in East Africa: a case study for the Tana River basin in Kenya

    NASA Astrophysics Data System (ADS)

    Kerandi, Noah Misati; Laux, Patrick; Arnault, Joel; Kunstmann, Harald

    2017-10-01

    This study investigates the ability of the regional climate model Weather Research and Forecasting (WRF) in simulating the seasonal and interannual variability of hydrometeorological variables in the Tana River basin (TRB) in Kenya, East Africa. The impact of two different land use classifications, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) and the US Geological Survey (USGS) at two horizontal resolutions (50 and 25 km) is investigated. Simulated precipitation and temperature for the period 2011-2014 are compared with Tropical Rainfall Measuring Mission (TRMM), Climate Research Unit (CRU), and station data. The ability of Tropical Rainfall Measuring Mission (TRMM) and Climate Research Unit (CRU) data in reproducing in situ observation in the TRB is analyzed. All considered WRF simulations capture well the annual as well as the interannual and spatial distribution of precipitation in the TRB according to station data and the TRMM estimates. Our results demonstrate that the increase of horizontal resolution from 50 to 25 km, together with the use of the MODIS land use classification, significantly improves the precipitation results. In the case of temperature, spatial patterns and seasonal cycle are well reproduced, although there is a systematic cold bias with respect to both station and CRU data. Our results contribute to the identification of suitable and regionally adapted regional climate models (RCMs) for East Africa.

  6. Climate change adaptation for the US National Wildlife Refuge System

    USGS Publications Warehouse

    Griffith, Brad; Scott, J. Michael; Adamcik, Robert S.; Ashe, Daniel; Czech, Brian; Fischman, Robert; Gonzalez, Patrick; Lawler, Joshua J.; McGuire, A. David; Pidgorna, Anna

    2009-01-01

    Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species, pollution, and competition for water have stressed refuges for decades, but the interaction of climate change with these stressors presents the most recent, pervasive, and complex conservation challenge to the NWRS. Geographic isolation and small unit size compound the challenges of climate change, but a combined emphasis on species that refuges were established to conserve and on maintaining biological integrity, diversity, and environmental health provides the NWRS with substantial latitude to respond. Individual symptoms of climate change can be addressed at the refuge level, but the strategic response requires system-wide planning. A dynamic vision of the NWRS in a changing climate, an explicit national strategic plan to implement that vision, and an assessment of representation, redundancy, size, and total number of units in relation to conservation targets are the first steps toward adaptation. This adaptation must begin immediately and be built on more closely integrated research and management. Rigorous projections of possible futures are required to facilitate adaptation to change. Furthermore, the effective conservation footprint of the NWRS must be increased through land acquisition, creative partnerships, and educational programs in order for the NWRS to meet its legal mandate to maintain the biological integrity, diversity, and environmental health of the system and the species and ecosystems that it supports.

  7. Climate Change Perceptions of NY State Farmers: The Role of Risk Perceptions and Adaptive Capacity.

    PubMed

    Takahashi, Bruno; Burnham, Morey; Terracina-Hartman, Carol; Sopchak, Amanda R; Selfa, Theresa

    2016-12-01

    Climate change is expected to severely impact agricultural practices in many important food-producing regions, including the Northeast United States. Changing climate conditions, such as increases in the amount of rainfall, will require farmers to adapt. Yet, little is known with regard to farmers' perceptions and understandings about climate change, especially in the industrialized country context. This paper aims at overcoming this research limitation, as well as determining the existing contextual, cognitive, and psychological barriers that can prevent adoption of sustainable practices of farmers in New York State. The study is framed within the adaptive capacity and risk perception literature, and is based on a qualitative analysis of in-depth interviews with farmers in 21 farms in two counties in Central New York. The results reveal diverging views about the long-term consequences of climate change. Results also reveal that past experience remains as the most important source of information that influences beliefs and perceptions about climate change, confirming previous research.

  8. Climate Change Perceptions of NY State Farmers: The Role of Risk Perceptions and Adaptive Capacity

    NASA Astrophysics Data System (ADS)

    Takahashi, Bruno; Burnham, Morey; Terracina-Hartman, Carol; Sopchak, Amanda R.; Selfa, Theresa

    2016-12-01

    Climate change is expected to severely impact agricultural practices in many important food-producing regions, including the Northeast United States. Changing climate conditions, such as increases in the amount of rainfall, will require farmers to adapt. Yet, little is known with regard to farmers' perceptions and understandings about climate change, especially in the industrialized country context. This paper aims at overcoming this research limitation, as well as determining the existing contextual, cognitive, and psychological barriers that can prevent adoption of sustainable practices of farmers in New York State. The study is framed within the adaptive capacity and risk perception literature, and is based on a qualitative analysis of in-depth interviews with farmers in 21 farms in two counties in Central New York. The results reveal diverging views about the long-term consequences of climate change. Results also reveal that past experience remains as the most important source of information that influences beliefs and perceptions about climate change, confirming previous research.

  9. Land-atmosphere interactions over the continental United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xubin

    This paper briefly discusses four suggested modifications for land surface modeling in climate models. The impact of the modifications on climate simulations is analyzed with the Biosphere-Atmosphere Transfer Scheme (BATS) land surface model. It is found that the modifications can improve BATS simulations. In particular, the sensitivity of BATS to the prescribed value of physical root fraction which cannot be observed from satellite remote sensing or field experiments is improved. These modifications significantly reduce the excessive summer land surface temperature over the continental United States simulated by the National Center for Atmospheric Research Community Climate Model (CCM2) coupled with BATS.more » A land-atmosphere interaction mechanism involving energy and water cycles is proposed to explain the results. 9 refs., 1 fig.« less

  10. Changes in Black-legged Tick Population in New England with Future Climate Change

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; Huber, M.

    2015-12-01

    Lyme disease is one of the most frequently reported vector-borne diseases in the United States. In the Northeastern United States, vector transmission is maintained in a horizontal transmission cycle between the vector, the black-legged ticks, and the vertebrate reservoir hosts, which include white-tailed deer, rodents and other medium to large sized mammals. Predicting how vector populations change with future climate change is critical to understanding disease spread in the future, and for developing suitable regional adaptation strategies. For the United States, these predictions have mostly been made using regressions based on field and lab studies, or using spatial suitability studies. However, the relation between tick populations at various life-cycle stages and climate variables are complex, necessitating a mechanistic approach. In this study, we present a framework for driving a mechanistic tick population model with high-resolution regional climate modeling projections. The goal is to estimate changes in black-legged tick populations in New England for the 21st century. The tick population model used is based on the mechanistic approach of Ogden et al., (2005) developed for Canada. Dynamically downscaled climate projections at a 3-kms resolution using the Weather and Research Forecasting Model (WRF) are used to drive the tick population model.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This year, in September, world leaders will meet at the United Nations to assess progress on the Millennium Development Goals and to chart a course of action for the period leading up to the agreed MDG deadline of 2015. Later in the year, government delegations will gather in Mexico to continue the process of working towards a comprehensive, robust and ambitious climate change agreement. Energy lies at the heart of both of these efforts. The decisions we take today on how we produce, consume and distribute energy will profoundly influence our ability to eradicate poverty and respond effectively to climatemore » change. Addressing these challenges is beyond the reach of governments alone. It will take the active engagement of all sectors of society: the private sector; local communities and civil society; international organizations and the world of academia and research. To that end, in 2009 a high-level Advisory Group on Energy and Climate Change was established, chaired by Kandeh Yumkella, Director-General of the United Nations Industrial Development Organization (UNIDO). Comprising representatives from business, the United Nations system and research institutions, its mandate was to provide recommendations on energy issues in the context of climate change and sustainable development. The Group also examined the role the United Nations system could play in achieving internationally-agreed climate goals. The Advisory Group has identified two priorities - improving energy access and strengthening energy efficiency - as key areas for enhanced effort and international cooperation. Expanding access to affordable, clean energy is critical for realizing the MDGs and enabling sustainable development across much of the globe. Improving energy efficiency is paramount if we are to reduce greenhouse gas emissions. It can also support market competitiveness and green innovation. (LN)« less

  12. Current State of Climate Education in the United States: Are Graduate Students being Adequately Prepared to Address Climate Issues?

    NASA Astrophysics Data System (ADS)

    Kuster, E.; Fox, G.

    2016-12-01

    Climate change is happening; scientists have already observed changes in sea level, increases in atmospheric carbon dioxide, and declining polar ice. The students of today are the leaders of tomorrow, and it is our duty to make sure they are well equipped and they understand the implications of climate change as part of their research and professional careers. Graduate students, in particular, are gaining valuable and necessary research, leadership, and critical thinking skills, but we need to ensure that they are receiving the appropriate climate education in their graduate training. Previous studies have primarily focused on capturing the K-12, college level, and general publics' knowledge of the climate system, concluding with recommendations on how to improve climate literacy in the classroom. While this is extremely important to study, very few studies have captured the current perception that graduate students hold regarding the amount of climate education being offered to them. This information is important to capture, as it can inform future curriculum development. We developed and distributed a nationwide survey (495 respondents) for graduate students to capture their perception on the level of climate system education being offered and their view on the importance of having climate education. We also investigated differences in the responses based on either geographic area or discipline. We compared how important graduate students felt it was to include climate education in their own discipline versus outside disciplines. The authors will discuss key findings from this ongoing research.

  13. In Brief: Climate Adaptation Summit report released

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    “We understand from the science that we have no choice between mitigation and adaptation. We have to do both,” John Holdren, President Barack Obama's science and technology advisor, said at a 29 September meeting where he was presented with a new report about national and regional preparations for adapting to changing climate. The report is based on the National Climate Adaptation Summit, which was convened by the University Corporation for Atmospheric Research in May 2010. Stating that the United States must adapt to a changing climate now and prepare for increasing impacts on urban infrastructure, food, water, human health, and ecosystems in the coming decades, the report identifies a set of priorities for near-term action. Among the priorities are developing an overarching national strategy, with research, planning, and management components to guide federal climate change adaptation programs. Other priorities include improving coordination of federal plans and programs and creating a federal climate information portal and a clearinghouse of best practices and tool kits for adaptation. The report also identifies other priorities, including the need for support for assessments in the U.S. Global Change Research Program agency budgets, for increasing funding for research on vulnerability and impacts, and for initiating a regional series of ongoing climate adaptation forums. For more information, see http://www.joss.ucar.edu/events/2010/ncas/index.html.

  14. Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites

    Treesearch

    Julia A. Jones; Irena F. Creed; Kendra L. Hatcher; Robert J. Warren; Mary Beth Adams; Melinda H. Benson; Emery Boose; Warren A. Brown; John L. Campbell; Alan Covich; David W. Clow; Clifford N. Dahm; Kelly Elder; Chelcy R. Ford; Nancy B. Grimm; Donald L Henshaw; Kelli L. Larson; Evan S. Miles; Kathleen M. Miles; Stephen D. Sebestyen; Adam T. Spargo; Asa B. Stone; James M. Vose; Mark W. Williams

    2012-01-01

    Analyses of long-term records at 35 headwater basins in the United States and Canada indicate that climate change effects on streamflow are not as clear as might be expected, perhaps because of ecosystem processes and human influences. Evapotranspiration was higher than was predicted by temperature in water-surplus ecosystems and lower than was predicted in water-...

  15. Reconstructing Student Conceptions of Climate Change; An Inquiry Approach

    NASA Astrophysics Data System (ADS)

    McClelland, J. Collin

    No other environmental issue today has as much potential to alter life on Earth as does global climate change. Scientific evidence continues to grow; indicating that climate change is occurring now, and that change is a result of human activities (National Research Council [NRC], 2010). The need for climate literacy in society has become increasingly urgent. Unfortunately, understanding the concepts necessary for climate literacy remains a challenge for most individuals. A growing research base has identified a number of common misconceptions people have about climate literacy concepts (Leiserowitz, Smith, & Marlon 2011; Shepardson, Niyogi, Choi, & Charusombat, 2009). However, few have explored this understanding in high school students. This sequential mixed methods study explored the changing conceptions of global climate change in 90 sophomore biology students through the course of their participation in an eight-week inquiry-based global climate change unit. The study also explored changes in students' attitudes over the course of the study unit, contemplating possible relationships between students' conceptual understanding of and attitudes toward global climate change. Phase I of the mixed methods study included quantitative analysis of pre-post content knowledge and attitude assessment data. Content knowledge gains were statistically significant and over 25% of students in the study shifted from an expressed belief of denial or uncertainty about global warming to one of belief in it. Phase II used an inductive approach to explore student attitudes and conceptions. Conceptually, very few students grew to a scientifically accurate understanding of the greenhouse effect or the relationship between global warming and climate change. However, they generally made progress in their conceptual understanding by adding more specific detail to explain their understanding. Phase III employed a case study approach with eight purposefully selected student cases, identifying five common conceptual and five common attitudebased themes. Findings suggest similar misconceptions revealed in prior research also occurred in this study group. Some examples include; connecting global warming to the hole in the ozone layer, and falsely linking unrelated environmental issues like littering to climate change. Data about students' conceptual understanding of energy may also have implications for education research curriculum development. Similar to Driver & While no statistical relationship between students' attitudes about global climate change and overall conceptual understanding emerged, some data suggested that climate change skeptics may perceive the concept of evidence differently than non-skeptics. One-way ANOVA data comparing skeptics with other students on evidence-based assessment items was significant. This study offers insights to teachers of potential barriers students face when trying to conceptualize global climate change concepts. More importantly it reinforces the idea that students generally find value in learning about global climate change in the classroom.

  16. Effective Teacher Practice on the Plausibility of Human-Induced Climate Change

    NASA Astrophysics Data System (ADS)

    Niepold, F.; Sinatra, G. M.; Lombardi, D.

    2013-12-01

    Climate change education programs in the United States seek to promote a deeper understanding of the science of climate change, behavior change and stewardship, and support informed decision making by individuals, organizations, and institutions--all of which are summarized under the term 'climate literacy.' The ultimate goal of climate literacy is to enable actors to address climate change, both in terms of stabilizing and reducing emissions of greenhouse gases, but also an increased capacity to prepare for the consequences and opportunities of climate change. However, the long-term nature of climate change and the required societal response involve the changing students' ideas about controversial scientific issues which presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). This session will explore how the United States educational efforts focus on three distinct, but related, areas: the science of climate change, the human-climate interaction, and using climate education to promote informed decision making. Each of these approaches are represented in the Atlas of Science Literacy (American Association for the Advancement of Science, 2007) and in the conceptual framework for science education developed at the National Research Council (NRC) in 2012. Instruction to develop these fundamental thinking skills (e.g., critical evaluation and plausibility reappraisal) has been called for by the Next Generation Science Standards (NGSS) (Achieve, 2013), an innovative and research based way to address climate change education within the decentralized U.S. education system. However, the promise of the NGSS is that students will have more time to build mastery on the subjects, but the form of that instructional practice has been show to be critical. Research has show that effective instructional activities that promote evaluation of evidence improve students' understanding and acceptance toward the scientifically accepted model of human-induced climate change (Lombardi, Sinatra, & Nussbaum, 2013). This study and many others show the critical role instructional practice plays in the development of a climate literate nation. Climate change communication faces many challenges, but federal agencies, civil society, and individuals have invested in numerous initiatives to develop a climate-literate citizenry. In the NRC Report America's Climate Choices the authors find that 'climate change is difficult to understand by its very nature,' however, 'education and communication are among the most powerful tools the nation has to bring hidden hazards to public attention, understanding, and action.' This session will explore how the federal science mission agencies and their partners are working to harness these tools and use the best available research to develop programs and partnership that build on the promise of the NGSS. When citizens have knowledge of the causes, likelihood, and severity of climate impacts, as well as of the range, cost, and efficacy of options to adapt to impacts, they are more prepared to effectively address the risks and opportunities

  17. Towards a climate service for the Tunisian tourism industry

    NASA Astrophysics Data System (ADS)

    Henia, Latifa; Hlaoui, Zouhaier

    2013-04-01

    Until today's Tunisia, there is little communication between generators of meteorological or climatological data and stakeholders in the tourism sector. However: - A recent survey shows that professionals in the tourism sector are aware of the importance of integrating relevant climate information in their tourism management and development strategies. - Tunisia has expertise in the field of meteorology and climatology which meets the demand of the tourism sector in relevant climate information. The program CLIM RUN has created a framework allowing the introduction of a climate service in the Tunisian tourism sector. It identified the needs of the sector in climate information as well as examined together with specialized services and trained researchers the possibility of responding to these needs. The "GREVACHOT" research unit based at the University of Tunis and partner of the CLIM RUN program has developed one of the products for which great demand was formulated by tourism stakeholders: this is climate-tourism comfort indices (ICT) at regional and local scales. We here present: - The Tunisian experience in identifying climate information needs of the tourism sector, - The approach method to the development, study, mapping of ICT and results.

  18. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building America Industrialized Housing Partnership; Building Industry Research Alliance; Building Science Consortium

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studiesmore » in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.« less

  19. Spatial relationship between climatic diversity and biodiversity conservation value.

    PubMed

    Wang, Junjun; Wu, Ruidong; He, Daming; Yang, Feiling; Hu, Peijun; Lin, Shiwei; Wu, Wei; Diao, Yixin; Guo, Yang

    2018-06-04

    Capturing the full range of climatic diversity in a reserve network is expected to improve the resilience of biodiversity to climate change. Therefore, a study on systematic conservation planning for climatic diversity that explicitly or implicitly hypothesizes that regions with higher climatic diversity will support greater biodiversity is needed. However, little is known about the extent and generality of this hypothesis. This study utilized the case of Yunnan, southwest China, to quantitatively classify climatic units and modeled 4 climatic diversity indicators, including the variety of climatic units (VCU), rarity of climatic units (RCU), endemism of climatic units (ECU) and a composite index of climatic units (CICD). We used 5 reliable priority conservation area (PCA) schemes to represent the areas with high biodiversity conservation value. We then investigated the spatial relationships between the 4 climatic diversity indicators and the 5 PCA schemes and assessed the representation of climatic diversity within the existing nature reserves. The CICD exhibited the best performance for indicating high conservation value areas, followed by the ECU and RCU. However, contrary to conventional knowledge, VCU did not show a positive association with biodiversity conservation value. The rarer or more endemic climatic units tended to have higher reserve coverage than the more common units. However, only 28 units covering 10.5% of the land in Yunnan had more than 17% of their areas protected. In addition to climatic factors, topography and human disturbances also significantly affected the relationship between climatic diversity and biodiversity conservation value. This analysis suggests that climatic diversity can be an effective surrogate for establishing a more robust reserve network under climate change in Yunnan. Our study improves the understanding of the relationship between climatic diversity and biodiversity and helps build an evidence-based foundation for systematic conservation planning that targets climatic diversity in response to climate change. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Effectiveness of United Nation’s Missions in Africa: A Comparative Assessment of UNAMSIL, MONUC, and UNAMID

    DTIC Science & Technology

    2010-06-11

    29 CHAPTER 3 RESEARCH METHODOLOGY ................................................................30 Congruence Method ...32 Method of Research/Criteria of Analysis...systems of taxation have collapsed and physical infrastructure has been destroyed, trade and any form of business are cut off and a climate of

  1. The impacts of climatologically-driven megadrought, past and future, on semi-arid watersheds and the water resource system they support in central Arizona, USA.

    NASA Astrophysics Data System (ADS)

    Murphy, K. W.; Ellis, A. W.

    2017-12-01

    The sustainability of water resource systems in the western United States has previously been brought into question by drought concerns and how it will be influenced by future climate change. Although decadal droughts are observed in instrumental records, the data are typically too short and the droughts too few to render the range of hydroclimatic variability that might impact modern water resource systems in the future. Natural modes of variability are not well represented in climate models, which limits the applicability of their downscaled projections in a region of interest since drought risk would be understated. Paleoclimate data have provided evidence of megadroughts from centuries ago whose hydrologic manifestations of climate variability could readily reoccur again in the future. These can be applied to research into watershed hydrologic response and resource system resilience - past, present, and future. A 645-year tree ring reconstruction of stream flow for the Salt and Verde River watersheds in central Arizona has revealed several drought periods, some more severe than seen in the 129-year instrumental record, including a late 16th century megadrought which affected large portions of the United States. This research study translated the tree ring record into net basin water supply which drives a reservoir operations simulation model to assess how the resource system performs under such severe drought. Regional climate change scenarios were developed from the observation that watershed climate sensitivity has been twice the global warming response. These were applied to the watersheds' temperature sensitivities and precipitation elasticities (reported at AGU2014) to obtain detailed renditions of hydrologic response should megadrought reoccur in a future climate. This provided one of the first rigorous projections of surface water supply under future climate change that amplifies the impact of megadrought arising from modes of climate variability often seen in the western United States. The implications to a large reservoir system serving 40% of water demand in the metropolitan Phoenix, Arizona area is reported which enables decision making for future adaptation planning.

  2. Conceptualizing In-service Secondary School Science Teachers' Knowledge Base for Promoting Understanding about the Science of Global Climate Change

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Devarati

    Efforts to adapt and mitigate the effects of global climate change (GCC) have been ongoing for the past two decades and have become a major global concern. However, research and practice for promoting climate literacy and understanding about GCC have only recently become a national priority. The National Research Council (NRC), has recently emphasized upon the importance of developing learners' capacity of reasoning, their argumentation skills and understanding of GCC (Framework for K-12 Science Education, National Research Council, 2012). This framework focuses on fostering conceptual clarity about GCC to promote innovation, resilience, and readiness in students as a response towards the threat of a changing environment. Previous research about teacher understanding of GCC describes that in spite of the prevalent frameworks like the AAAS Science Literacy Atlas (AAAS, 2007) and the Essential Principles for Climate Literacy (United States Global Climate Research Program, 2009; Bardsley, 2007), most learners are challenged in understanding the science of GCC (Michail et al., 2007) and misinformed perceptions about basic climate science content and the role of human activities in changing climate remain persistent (Reibich and Gautier, 2006). Our teacher participants had a rather simplistic knowledge structure. While aware of climate change, teacher participants lacked in depth understanding of how change in climate can impact various ecosystems on the Earth. Furthermore, they felt overwhelmed with the extensive amount of information needed to comprehend the complexity in GCC. Hence, extensive efforts not only focused on assessing conceptual understanding of GCC but also for teaching complex science topics like GCC are essential. This dissertation explains concept mapping, and the photo elicitation method for assessing teachers' understanding of GCC and the use of metacognitive scaffolding in instruction of GCC for developing competence of learners in this complex science phenomenon.

  3. The enduring effect of scientific interest on trust in climate scientists in the United States

    NASA Astrophysics Data System (ADS)

    Motta, Matthew

    2018-06-01

    People who distrust scientists are more likely to reject scientific consensus, and are more likely to support politicians who are sceptical of scientific research1. Consequently, boosting Americans' trust in scientists is a central goal of science communication2. However, while previous research has identified several correlates of distrust in climate scientists3 and scientists more broadly4, far less is known about potential long-term influences taking root in young adulthood. This omission is notable, as previous research suggests that attitudes towards science formulated in pre-teenage years play a key role in shaping attitudes in adulthood5. Using data from the Longitudinal Study of American Youth, I find that interest in science at age 12-14 years is associated with increased trust in climate scientists in adulthood (mid thirties), irrespective of Americans' political ideology. The enduring and bipartisan effects of scientific interest at young ages suggest a potential direction for future efforts to boost mass trust in climate scientists.

  4. Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: providing the basis for action.

    PubMed

    Ogle, Stephen M; Olander, Lydia; Wollenberg, Lini; Rosenstock, Todd; Tubiello, Francesco; Paustian, Keith; Buendia, Leandro; Nihart, Alison; Smith, Pete

    2014-01-01

    Agriculture in developing countries has attracted increasing attention in international negotiations within the United Nations Framework Convention on Climate Change for both adaptation to climate change and greenhouse gas mitigation. However, there is limited understanding about potential complementarity between management practices that promote adaptation and mitigation, and limited basis to account for greenhouse gas emission reductions in this sector. The good news is that the global research community could provide the support needed to address these issues through further research linking adaptation and mitigation. In addition, a small shift in strategy by the Intergovernmental Panel on Climate Change (IPCC) and ongoing assistance from agricultural organizations could produce a framework to move the research and development from concept to reality. In turn, significant progress is possible in the near term providing the basis for UNFCCC negotiations to move beyond discussion to action for the agricultural sector in developing countries. © 2013 John Wiley & Sons Ltd.

  5. Winter temperature conditions (1670-2010) reconstructed from varved sediments, western Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Amann, Benjamin; Lamoureux, Scott F.; Boreux, Maxime P.

    2017-09-01

    Advances in paleoclimatology from the Arctic have provided insights into long-term climate conditions. However, while past annual and summer temperature have received considerable research attention, comparatively little is known about winter paleoclimate. Arctic winter is of special interest as it is the season with the highest sensitivity to climate change, and because it differs substantially from summer and annual measures. Therefore, information about past changes in winter climate is key to improve our knowledge of past forced climate variability and to reduce uncertainty in climate projections. In this context, Arctic lakes with snowmelt-fed catchments are excellent potential winter climate archives. They respond strongly to snowmelt-induced runoff, and indirectly to winter temperature and snowfall conditions. To date, only a few well-calibrated lake sediment records exist, which appear to reflect site-specific responses with differing reconstructions. This limits the possibility to resolve large-scale winter climate change prior the instrumental period. Here, we present a well-calibrated quantitative temperature and snowfall record for the extended winter season (November through March; NDJFM) from Chevalier Bay (Melville Island, NWT, Canadian Arctic) back to CE 1670. The coastal embayment has a large catchment influenced by nival terrestrial processes, which leads to high sedimentation rates and annual sedimentary structures (varves). Using detailed microstratigraphic analysis from two sediment cores and supported by μ-XRF data, we separated the nival sedimentary units (spring snowmelt) from the rainfall units (summer) and identified subaqueous slumps. Statistical correlation analysis between the proxy data and monthly climate variables reveals that the thickness of the nival units can be used to predict winter temperature (r = 0.71, pc < 0.01, 5-yr filter) and snowfall (r = 0.65, pc < 0.01, 5-yr filter) for the western Canadian High Arctic over the last ca. 400 years. Results reveal a strong variability in winter temperature back to CE 1670 with the coldest decades reconstructed for the period CE 1800-1880, while the warmest decades and major trends are reconstructed for the period CE 1880-1930 (0.26°C/decade) and CE 1970-2010 (0.37°C/decade). Although the first aim of this study was to increase the paleoclimate data coverage for the winter season, the record from Chevalier Bay also holds great potential for more applied climate research such as data-model comparisons and proxy-data assimilation in climate model simulations.

  6. From the field to the classroom: Connecting climate research to classroom lessons

    NASA Astrophysics Data System (ADS)

    Brinker, R.; Steiner, S. M.; Coleman, L.

    2015-12-01

    Improving scientific literacy is a goal in the United States. Scientists from the United States are often expected to present research findings in ways that are meaningful and accessible to the general public, including K-12 students. PolarTREC - Teachers and Researchers Exploring and Collaborating, a program funded by the National Science Foundation, partners teachers with scientists in the Arctic and Antarctica. Teachers communicate the research to general audiences on a regular basis. After the field experience, they then create classroom-ready lessons to relay the science exploration into science curriculum. In this presentation, secondary level educators, will share their experiences with being part of field research teams in the Arctic and Antarctica, and their strategies for bringing current science research into the classroom and aligning lessons with Next Generation Science Standards (NGSS). Topics include an overview on using polar science to teach about climate change, application of field research techniques to improve students' understanding of scientific investigation methodology, phenology observations, soil porosity and permeability, litter decomposition, effect of sunlight on release of carbon dioxide from thawing permafrost, and understanding early life on Earth by studying stromatolites in Antarctica.

  7. Integrated watershed-scale response to climate change for selected basins across the United States

    USGS Publications Warehouse

    Markstrom, Steven L.; Hay, Lauren E.; Ward-Garrison, D. Christian; Risley, John C.; Battaglin, William A.; Bjerklie, David M.; Chase, Katherine J.; Christiansen, Daniel E.; Dudley, Robert W.; Hunt, Randall J.; Koczot, Kathryn M.; Mastin, Mark C.; Regan, R. Steven; Viger, Roland J.; Vining, Kevin C.; Walker, John F.

    2012-01-01

    A study by the U.S. Geological Survey (USGS) evaluated the hydrologic response to different projected carbon emission scenarios of the 21st century using a hydrologic simulation model. This study involved five major steps: (1) setup, calibrate and evaluated the Precipitation Runoff Modeling System (PRMS) model in 14 basins across the United States by local USGS personnel; (2) acquire selected simulated carbon emission scenarios from the World Climate Research Programme's Coupled Model Intercomparison Project; (3) statistical downscaling of these scenarios to create PRMS input files which reflect the future climatic conditions of these scenarios; (4) generate PRMS projections for the carbon emission scenarios for the 14 basins; and (5) analyze the modeled hydrologic response. This report presents an overview of this study, details of the methodology, results from the 14 basin simulations, and interpretation of these results. A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the carbon emission scenarios and how this uncertainty propagates through the hydrologic simulations.

  8. Vegetation change and pollen geochronology from the Atlantic Coast of the United States during the last Millennium

    NASA Astrophysics Data System (ADS)

    Christie, M.; Bernhardt, C. E.; Clear, J.; Corbett, D. R.; Horton, B.

    2017-12-01

    Vegetation changes related to anthropogenic and climatic change have been reconstructed at many locations. Synthesizing observations from multiple locations improves our understanding of the regionality of these impacts and drivers. Human alterations to the plant communities vary spatially in timing and impact. For example, deforestation occurred at different times, rates, and magnitudes along the Atlantic Coast of the United States, while of the introduction of non-native plants into ecosystems varies by region. Gradual climate shifts cause the appearance of migration in sensitive plants, so climate-related transitions can be traced from one location to another. Here, we combine new and published pollen data from Florida to Connecticut to produce a regional synthesis of vegetation changes for the last 1000 years. We have produced detailed reconstructions of vegetation changes in response to anthropogenic and climatic forcing. Our database contains pollen assemblages from more than 10 locations along the Atlantic coast of the United States, including new reconstructions from the Florida Keys, Delaware Estuary, and northern New Jersey. All pollen assemblages are placed in a geochronological framework with as fine as decadal resolution using composite chronologies of radiocarbon, pollution histories and cesium isotopes. Anthropogenic impacts, including deforestation from European settlement and the introduction of non-native plants, are observed in the pollen record and serve as useful markers of time. For example, the abrupt increase in Ambrosia pollen in the mid-Atlantic corresponds to 18th Century deforestation. Climate transitions that can be seen in the pollen record during the last millennium include the Medieval Climate Optimum, Little Ice Age, and human-induced warming following industrialization in the 20th century. Plant communities of the United States Atlantic Coast adapted to the evolving climate. For example, Picea and Tsuga are indicative of cooler, moister conditions and disappear from regions as conditions become warmer or drier. We combine the various histories of vegetation change from pollen assemblages into a single source for researchers to use when attempting to understand geochronology and impacts of climate change along the Atlantic coast of the United States.

  9. A Review and Annotated Bibliography of Training Performance Measurement and Assessment Literature

    DTIC Science & Technology

    1988-10-01

    work envirorments and orgoIizational climate questomaires. Identifies empirical eaures of Army unit effectiveness . Key Points: Looks at inspection reparts, mission accompil lsl’nt results, eff iclwy measures etc. A-63 ...PROJECT TASK WORK UNIT TRADE/ARI), 12350 Research Parkway ELEMENT NO. NO. NO. ACCESSION NO. Orlando, FL 32826-3276 (continued) 6.3.7.43 A794 4.3.2 C.1 11... effectiveness . Researchers should investigate means for developing more empirical data, better analytic methods, and standardized measurement. Increased

  10. Initial Results from the Survey of Organizational Research Climates (SOuRCe) in the U.S. Department of Veterans Affairs Healthcare System

    PubMed Central

    Martinson, Brian C.; Nelson, David; Hagel-Campbell, Emily; Mohr, David; Charns, Martin P.; Bangerter, Ann; Thrush, Carol R.; Ghilardi, Joseph R.; Bloomfield, Hanna; Owen, Richard; Wells, James A.

    2016-01-01

    Background In service to its core mission of improving the health and well-being of veterans, Veterans Affairs (VA) leadership is committed to supporting research best practices in the VA. Recognizing that the behavior of researchers is influenced by the organizational climates in which they work, efforts to assess the integrity of research climates and share such information with research leadership in VA may be one way to support research best practices. The Survey of Organizational Research Climate (SOuRCe) is the first validated survey instrument specifically designed to assess the organizational climate of research integrity in academic research organizations. The current study reports on an initiative to use the SOuRCe in VA facilities to characterize the organizational research climates and pilot test the effectiveness of using SOuRCe data as a reporting and feedback intervention tool. Methods We administered the SOuRCe using a cross-sectional, online survey, with mailed follow-up to non-responders, of research-engaged employees in the research services of a random selection of 42 VA facilities (e.g., Hospitals/Stations) believed to employ 20 or more research staff. We attained a 51% participation rate, yielding more than 5,200 usable surveys. Results We found a general consistency in organizational research climates across a variety of sub-groups in this random sample of research services in the VA. We also observed similar SOuRCe scale score means, relative rankings of these scales and their internal reliability, in this VA-based sample as we have previously documented in more traditional academic research settings. Results also showed more substantial variability in research climate scores within than between facilities in the VA research service as reflected in meaningful subgroup differences. These findings suggest that the SOuRCe is suitable as an instrument for assessing the research integrity climates in VA and that the tool has similar patterns of results that have been observed in more traditional academic research settings. Conclusions The local and specific nature of organizational climates in VA research services, as reflected in variability across sub-groups within individual facilities, has important policy implications. Global, “one-size-fits-all” type initiatives are not likely to yield as much benefit as efforts targeted to specific organizational units or sub-groups and tailored to the specific strengths and weaknesses documented in those locations. PMID:26967736

  11. The deep ocean under climate change

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Le Bris, Nadine

    2015-11-01

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  12. Interdisciplinary research in climate and energy sciences

    DOE PAGES

    Xu, Xiaofeng; Goswami, Santonu; Gulledge, Jay; ...

    2015-09-12

    Due to the complex nature of climate change, interdisciplinary research approaches involving knowledge and skills from a broad range of disciplines have been adopted for studying changes in the climate system as well as strategies for mitigating climate change (i.e., greenhouse gas emissions reductions) and adapting to its impacts on society and natural systems. Harnessing of renewable energy sources to replace fossil fuels is widely regarded as a long-term mitigation strategy that requires the synthesis of knowledge from engineering, technology, and natural and social sciences. In this study, we examine how the adoption of interdisciplinary approaches has evolved over timemore » and in different geographic regions. We conducted a comprehensive literature survey using an evaluation matrix of keywords, in combination with a word cloud analysis, to evaluate the spatiotemporal dynamics of scholarly discourse about interdisciplinary approaches to climate change and renewable energy research and development (R&D). Publications that discuss interdisciplinary approaches to climate change and renewable energy have substantially increased over the last 60 years; it appears, however, that the nature, timing, and focus of these publications vary across countries and through time. Over the most recent three decades, the country-level contribution to interdisciplinary research for climate change has become more evenly distributed, but this was not true for renewable energy research, which remained dominated by the United Sates and a few other major economies. The research topics have also evolved: Water resource management was emphasized from 1990s to 2000s, policy and adaptation were emphasized from the 2000s to 2010 – 2013, while vulnerability became prominent during the most recent years (2010 – 2013). Lastly, our analysis indicates that the rate of growth of interdisciplinary research for renewable energy lags behind that for climate change, possibly because knowledge emanating from climate change science has motivated the subsequent upswing in renewable energy R&D.« less

  13. Science You Can Use Bulletin: Upwardly mobile in the western U.S. desert: Blackbrush shrublands respond to a changing climate

    Treesearch

    Sue Miller; Susan Meyer; Bryce Richardson; Rosemary Pendleton; Burton Pendleton; Stanley Kitchen

    2013-01-01

    Blackbrush (Colegyne ramosissima) is a desert shrubland species that is currently dominant on over three million acres of the transition zone between the cold desert of the Great Basin and the warm desert of the southwestern United States. Western landscapes are projected to experience unprecedented changes as the climate warms, and researchers at the Rocky Mountain...

  14. Do Leadership Style, Unit Climate, and Safety Climate Contribute to Safe Medication Practices?

    PubMed

    Farag, Amany; Tullai-McGuinness, Susan; Anthony, Mary K; Burant, Christopher

    2017-01-01

    This study aims at: examining if leadership style and unit climate predict safety climate; and testing the direct, indirect, and total effect of leadership style, unit climate, and safety climate on nurses' safe medication practices. The Institute of Medicine and nursing scholars propose that safety climate is a prerequisite to safety practices. However, there is limited empirical evidence about factors contributing to the development of safety climate and about the association with nurses' safe medication practices. This cross-sectional study used survey data from 246 RNs working in a Magnet® hospital. Leadership style and unit climate predicted 20% to 50% of variance on all safety climate dimensions. Model testing revealed the indirect impact of leadership style and unit climate on nurses' safe medication practices. Our hypothesized model explained small amount of the variance on nurses' safe medication practices. This finding suggests that nurses' safe medication practices are influenced by multiple contextual and personal factors that should be further examined.

  15. From Free to Free Market: Cost Recovery in Federally Funded Clinical Research

    PubMed Central

    McCammon, Margaret G.; Fogg, Thomas T.; Jacobsen, Lynda; Roache, John; Sampson, Royce; Bower, Cynthia L.

    2012-01-01

    In a climate of increased expectation for the translation of research, academic clinical research units are looking at new ways to streamline their operation and maintain effective translational support services. Clinical research, although undeniably expensive, is an essential step in the translation of any medical breakthrough, and as a result, many academic clinical research units are actively looking to expand their clinical services despite financial pressures. We examine some of the hybrid academic-business models in 19 clinical research centers within the Clinical and Translational Science Award consortium that are emerging to address the issue of cost recovery of clinical research that is supported by the United States federal government. We identify initiatives that have succeeded or failed, essential supporting and regulatory components, and lessons learned from experience to design an optimal cost recovery model and a timeline for its implementation. PMID:22764204

  16. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Doyle, Thomas W.; Enwright, Nicholas

    2013-01-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970–2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh–mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.

  17. Climate change effects on North American inland fish populations and assemblages

    USGS Publications Warehouse

    Lynch, Abigail J.; Myers, Bonnie; Chu, Cindy; Eby, Lisa A.; Falke, Jeffrey A.; Kovach, Ryan P.; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Lyons, John; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Climate is a critical driver of many fish populations, assemblages, and aquatic communities. However, direct observational studies of climate change impacts on North American inland fishes are rare. In this synthesis, we (1) summarize climate trends that may influence North American inland fish populations and assemblages, (2) compile 31 peer-reviewed studies of documented climate change effects on North American inland fish populations and assemblages, and (3) highlight four case studies representing a variety of observed responses ranging from warmwater systems in the southwestern and southeastern United States to coldwater systems along the Pacific Coast and Canadian Shield. We conclude by identifying key data gaps and research needs to inform adaptive, ecosystem-based approaches to managing North American inland fishes and fisheries in a changing climate.

  18. Responses of stream nitrate and dissolved organic carbon loadings to hydrological forcing and climate change in an upland forest of the northeast USA

    USGS Publications Warehouse

    Sebestyen, Stephen D.; Boyer, Elizabeth W.; Shanley, James B.

    2009-01-01

    [1] In coming decades, higher annual temperatures, increased growing season length, and increased dormant season precipitation are expected across the northeastern United States in response to anthropogenic forcing of global climate. We synthesized long-term stream hydrochemical data from the Sleepers River Research Watershed in Vermont, United States, to explore the relationship of catchment wetness to stream nitrate and DOC loadings. We modeled changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nutrient loadings respond to climate change. Model results for the 2070–2099 time period suggest that stream nutrient loadings during both the dormant and growing seasons will respond to climate change. During a warmer climate, growing season stream fluxes (runoff +20%, nitrate +57%, and DOC +58%) increase as more precipitation (+28%) and quick flow (+39%) occur during a longer growing season (+43 days). During the dormant season, stream water and nutrient loadings decrease. Net annual stream runoff (+8%) and DOC loading (+9%) increases are commensurate with the magnitude of the average increase of net annual precipitation (+7%). Net annual stream water and DOC loadings are primarily affected by increased dormant season precipitation. In contrast, decreased annual loading of stream nitrate (−2%) reflects a larger effect of growing season controls on stream nitrate and the effects of lengthened growing seasons in a warmer climate. Our findings suggest that leaching of nitrate and DOC from catchment soils will be affected by anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream loadings in the northeastern United States.

  19. Linking Environmental Research and Practice: Lessons From The Integration of Climate Science and Water Management in the Western United States

    NASA Astrophysics Data System (ADS)

    Ferguson, D. B.; Rice, J.; Woodhouse, C. A.

    2015-12-01

    Efforts to better connect scientific research with people and organizations involved in environmental decision making are receiving increased interest and attention. Some of the challenges we currently face, however—including complex questions associated with climate change—present unique challenges because of their scale and scope. Focused research on the intersections between environment and society has provided substantial insight into dynamics of large-scale environmental change and the related impacts on people, natural resources, and ecosystems, yet our ability to connect this research to real-world decision making remains limited. Addressing these complex environmental problems requires broad cooperation between scientists and those who may apply research results in decision making, but there are few templates for guiding the growing number of scientists and practitioners now engaging in this kind of cooperative work. This presentation will offer a set of heuristics for carrying out collaborative work between scientists and practitioners. These heuristics were derived from research that examined the direct experiences of water resources professionals and climate researchers who have been working to integrate science and practice.

  20. Bringing Exoplanet Habitability Investigations to High School

    NASA Astrophysics Data System (ADS)

    Woody, M. A.; Sohl, L. E.

    2016-12-01

    Habitability, a.k.a. habitat suitability, is a topic typically discussed in Biology class. We present here a curriculum unit that introduces the topic in a Physics classroom, allowing students to engage in cutting-edge science and re-framing an otherwise "typical" unit. Unit development was made possible by the Climate Change Research Initiative (CCRI) at the NASA Goddard Institute for Space Studies, a year-long program that partners a scientist-mentor with a high school educator to engage in research and curriculum development. At its core, habitability is a temperature-dependent quality that is introduced and explored during the Energy unit. Students conducted a research project with the goal of determining the habitability state for a chosen exoplanet. Classroom implementation was modeled after the scientist-mentor's actual research plan, with content and resources for lesson activities also contributed by the scientist. Students first engaged in discussion of 5 basic habitability factors and explored these variables through climate modeling software. Students then chose an exoplanet to examine through the lens of those habitability factors, an activity that required them to perform authentic research on the exoplanet and its host star. Students also developed hypotheses about factors beyond currently available mission data, such as atmospheric composition and surface albedo of their exoplanet. They then used the modeling software to collect data, test hypotheses, and draw conclusions. Lastly, students communicated their findings in a poster session and presentation at the high school's annual science symposium. This scientist/educator partnership had a strongly positive impact on the high school students involved. By bringing actual science and research practices to the classroom, the students were not only more actively engaged with the required Physics course content, but also gained a better understanding of how scientific research is done.

  1. Organizational climate configurations: relationships to collective attitudes, customer satisfaction, and financial performance.

    PubMed

    Schulte, Mathis; Ostroff, Cheri; Shmulyian, Svetlana; Kinicki, Angelo

    2009-05-01

    Research on organizational climate has tended to focus on independent dimensions of climate rather than studying the total social context as configurations of multiple climate dimensions. The authors examined relationships between configurations of unit-level climate dimensions and organizational outcomes. Three profile characteristics represented climate configurations: (1) elevation, or the mean score across climate dimensions; (2) variability, or the extent to which scores across dimensions vary; and (3) shape, or the pattern of the dimensions. Across 2 studies (1,120 employees in 120 bank branches and 4,317 employees in 86 food distribution stores), results indicated that elevation was related to collective employee attitudes and service perceptions, while shape was related to customer satisfaction and financial performance. With respect to profile variability, results were mixed. The discussion focuses on future directions for taking a configural approach to organizational climate. (c) 2009 APA, all rights reserved.

  2. Transformational leadership and group interaction as climate antecedents: a social network analysis.

    PubMed

    Zohar, Dov; Tenne-Gazit, Orly

    2008-07-01

    In order to test the social mechanisms through which organizational climate emerges, this article introduces a model that combines transformational leadership and social interaction as antecedents of climate strength (i.e., the degree of within-unit agreement about climate perceptions). Despite their longstanding status as primary variables, both antecedents have received limited empirical research. The sample consisted of 45 platoons of infantry soldiers from 5 different brigades, using safety climate as the exemplar. Results indicate a partially mediated model between transformational leadership and climate strength, with density of group communication network as the mediating variable. In addition, the results showed independent effects for group centralization of the communication and friendship networks, which exerted incremental effects on climate strength over transformational leadership. Whereas centralization of the communication network was found to be negatively related to climate strength, centralization of the friendship network was positively related to it. Theoretical and practical implications are discussed.

  3. The Effect of Toxic Leadership

    DTIC Science & Technology

    2012-03-15

    traits) and not the disease (culture, climate, outcomes ).3 Several researchers agree that the long-term negative effect that toxic leaders have on an...The Effect of Toxic Leadership by Lieutenant Colonel Darrell W. Aubrey United States Army United States Army War...The Effect of Toxic Leadership 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Lieutenant

  4. Air Mobility Command Global Reach to Africa: Sustained Rapid Global Mobility to United States Africa Command

    DTIC Science & Technology

    2009-06-12

    the entire Global Reach Laydown (GRL) strategy. Finally, analysis within this paper shows a correlation between political climate , basing, ground...17 Analysis of Literature...study researched Air Mobility Command (AMC) delivery of DoD resources to and through USAFRICOM. Specifically, the research and analysis within

  5. An Evaluation of the Pavement Condition Index Prediction Model for Rigid Airfield Pavements

    DTIC Science & Technology

    1982-09-01

    UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGO(I*%A Data Entotoi) The United States Army Corps of Engineers, Construction Engineering Research Laboratory...Condition . . . 31 Pavement Design/ Construction ....... . 82 Aircraft Traffic ........ .............. 82 Climate Conditions ........ ............. 84...PATTERSON AFB . . . . . . . . . . . . . . . . . . . . . . . . . 155 C. DATA OBTAINED FROM THE CONSTRUCTION ENGINEERING RESEARCH LABORATORY. .. .. 168 D

  6. Southern Coup: Recruiting African American Faculty Members at an Elite Private Southern Research University

    ERIC Educational Resources Information Center

    Barrett, Thomas Gregory; Smith, Theophus

    2008-01-01

    Competition for highly qualified African American faculty members among elite universities in the United States remains keen. Two of the most successful research universities at recruiting African American faculty members are located in the Southeast. Employing a conceptual framework grounded in organizational culture and climate literature, in…

  7. "Stop Photoshopping!": A Visual Participatory Inquiry into Students' Responses to a Body Curriculum

    ERIC Educational Resources Information Center

    Azzarito, Laura; Simon, Mara; Marttinen, Risto

    2016-01-01

    In today's school climate of accountability, researchers in Physical Education (PE) pedagogy have contested current fitness curricula that aim to manage, control, and normalize young people's bodies. This participatory visual research incorporated a Body Curriculum into a fitness unit in a secondary school (a) to assist young people critically…

  8. Evaluating the Effectiveness of Science for Decision-Making: Water Managers and Tree- Ring Data in the Western United States

    NASA Astrophysics Data System (ADS)

    Rice, J. L.; Woodhouse, C.; Lukas, J.

    2008-12-01

    Current climate variability, potential impacts of climate change, and limited resources in the face of growing demand are increasingly prompting water managers in the western United States to consider and use data from climate-related research in water resource planning. Much of these data are produced by stakeholder- driven science programs, such as NOAA's Regional Integrated Science Assessments (RISAs), but there have been few efforts to evaluate the effectiveness of these science-to-application efforts. Over the past several years, researchers with the Western Water Assessment (WWA) RISA have been providing tree-ring reconstructions of streamflow to water managers in Colorado and other western states, and presenting technical workshops explaining the applications of these tree-ring data for water management and planning. Using in-depth interviews and a survey questionnaire, we have assessed the effectiveness and outcomes of these engagements, addressing (1) the factors that have prompted water managers to seek out tree-ring data, (2) how paleoclimate data has been made relevant and accessible for water resource planning, and (3) how tree-ring data and information have been utilized by water managers and other workshop participants. We also provide an assessment of challenges and opportunities that exist in the translation of climate science for decision-making, including how tree-ring data are interpreted in the context of water planning paradigms, issues of credibility and acceptance of tree ring data, and what data needs exist in different planning environments. These findings have broader application in improving and evaluating science-policy interactions related to climate and climate change.

  9. Zoonotic infections in Alaska: disease prevalence, potential impact of climate change and recommended actions for earlier disease detection, research, prevention and control.

    PubMed

    Hueffer, Karsten; Parkinson, Alan J; Gerlach, Robert; Berner, James

    2013-01-01

    Over the last 60 years, Alaska's mean annual temperature has increased by 1.6°C, more than twice the rate of the rest of the United States. As a result, climate change impacts are more pronounced here than in other regions of the United States. Warmer temperatures may allow some infected host animals to survive winters in larger numbers, increase their population and expand their range of habitation thus increasing the opportunity for transmission of infection to humans. Subsistence hunting and gathering activities may place rural residents of Alaska at a greater risk of acquiring zoonotic infections than urban residents. Known zoonotic diseases that occur in Alaska include brucellosis, toxoplasmosis, trichinellosis, giardiasis/cryptosporidiosis, echinococcosis, rabies and tularemia. Actions for early disease detection, research and prevention and control include: (1) determining baseline levels of infection and disease in both humans and host animals; (2) conducting more research to understand the ecology of infection in the Arctic environment; (3) improving active and passive surveillance systems for infection and disease in humans and animals; (4) improving outreach, education and communication on climate-sensitive infectious diseases at the community, health and animal care provider levels; and (5) improving coordination between public health and animal health agencies, universities and tribal health organisations.

  10. Application of data on climate extremes for the southwestern United States

    NASA Astrophysics Data System (ADS)

    Redmond, K. T.; Fleishman, E.; Cayan, D. R.; Daudert, B.; Gershunov, A.

    2015-12-01

    We are improving the scientific capacity to evaluate responses of natural resources to climate extremes. We also are enhancing a platform for derivation of and access to customized climate information for the full extent or any subset of the southwestern United States. Extreme climate can have substantial effects on species, ecological and evolutionary processes, and the health of visitors to public lands. We are working with federal and state managers and with researchers who collaborate with decision-makers to use data on climate extremes to inform resource management. Current applications include sudden oak death, estuarine management, and fine-resolution manipulation of montane vegetation. To facilitate practical use of data on climate extremes, we are screening global climate models on the basis of their realism in representing natural regional patterns and extremes of temperature and precipitation, including those driven by El Niño and La Niña. We are assessing how well each model represents different climate elements. We also are delivering point and gridded observations and downscaled model projections, all at daily and 6 km resolution, on past and future climate extremes. Additionally, we are using the downscaled outputs to drive a hydrologic model and derive multiple probabilistic measures of water availability, flood, and drought. Moreover, we are extending the capacity of the Southwest Climate and Environmental Information Collaborative (SCENIC; wrcc.dri.edu/csc/scenic), a product developed by the Western Regional Climate Center, to provide access to diverse observed and simulated data on regional weather and climate, particularly on extremes.

  11. C2R2: Training Students To Build Coastal Resilience

    NASA Astrophysics Data System (ADS)

    Ferraro, C.; Kopp, R. E.; Jordan, R.; Gong, J.; Andrews, C.; Auermuller, L. M.; Herb, J.; McDonnell, J. D.; Bond, S.

    2017-12-01

    In the United States, about 23 million people live within 6 meters of sea level. In many parts of the country, sea-level rise between 1960 and 2010 has already led to a 2-5-fold increase in the rate of `nuisance' flooding. On top of rising seas, intensifying hurricanes and more frequent extremes of heat, humidity and precipitation pose additional risks to coastal societies, economies and ecosystems. Addressing risks posed by changing climate conditions in coastal areas demands innovative strategies that intersect multiple disciplines including engineering, ecology, communication, climate science, and community planning. To be usable, it also requires engaging coastal stakeholders in the development of research questions, the assessment of implications of research for planning and policy, and the communication of research results. Yet traditional, disciplinary programs are poorly configured to train the workforce needed to assess coastal climate risk and to develop and deploy integrated strategies for increasing coastal climate resilience. Coastal Climate Risk & Resilience (C2R2) is an NSF Research Traineeship (NRT) working to prepare the workforce that will build coastal resilience in the face of climate risks. Through its trainee and certificate programs, C2R2 works with graduate students at Rutgers University from multiple disciplines to better integrate all the elements of coastal systems and to communicate effectively with coastal stakeholders. C2R2 students will acquire the knowledge and practical skills needed to become leading researchers and practitioners tackling the critical challenges of coastal resilience.

  12. 78 FR 66817 - Preparing the United States for the Impacts of Climate Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ...--Preparing the United States for the Impacts of Climate Change #0; #0; #0; Presidential Documents #0; #0; #0... the United States for the Impacts of Climate Change By the authority vested in me as President by the... of climate change by undertaking actions to enhance climate preparedness and resilience, it is hereby...

  13. Nevada Infrastructure for Climate Change Science, Education, and Outreach

    NASA Astrophysics Data System (ADS)

    Dana, G. L.; Lancaster, N.; Mensing, S. A.; Piechota, T.

    2008-12-01

    The Great Basin is characterized by complex basin and range topography, arid to semiarid climate, and a history of sensitivity to climate change. Mountain areas comprise about 10% of the landscape, yet are the areas of highest precipitation and generate 85% of groundwater recharge and most surface runoff. These characteristics provide an ideal natural laboratory to study the effects of climate change. The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision "to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders." Six major strategies are proposed to develop infrastructure needs and attain our vision: 1) Develop a capability to model climate change at a regional and sub-regional scale(Climate Modeling Component) 2) Analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Assess effects on human systems and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Train teachers and students at all levels and provide public outreach in climate change issues (Education Component). Two new climate observational transects will be established across Great Basin Ranges, one anticipated on a mountain range in southern Nevada and the second to be located in north-central Nevada. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions key to understanding the effects of future climate change on Great Basin mountain ecosystems and the potential management strategies for responding to these changes: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems? Infrastructure developed through this project will provide new interdisciplinary capability to detect, analyze, and model effects of regional climate change in mountainous regions of the west and provide a major contribution to existing climate change research and monitoring networks.

  14. Improving the Accuracy of Estimation of Climate Extremes

    NASA Astrophysics Data System (ADS)

    Zolina, Olga; Detemmerman, Valery; Trenberth, Kevin E.

    2010-12-01

    Workshop on Metrics and Methodologies of Estimation of Extreme Climate Events; Paris, France, 27-29 September 2010; Climate projections point toward more frequent and intense weather and climate extremes such as heat waves, droughts, and floods, in a warmer climate. These projections, together with recent extreme climate events, including flooding in Pakistan and the heat wave and wildfires in Russia, highlight the need for improved risk assessments to help decision makers and the public. But accurate analysis and prediction of risk of extreme climate events require new methodologies and information from diverse disciplines. A recent workshop sponsored by the World Climate Research Programme (WCRP) and hosted at United Nations Educational, Scientific and Cultural Organization (UNESCO) headquarters in France brought together, for the first time, a unique mix of climatologists, statisticians, meteorologists, oceanographers, social scientists, and risk managers (such as those from insurance companies) who sought ways to improve scientists' ability to characterize and predict climate extremes in a changing climate.

  15. NASA Nice Climate Change Education

    NASA Astrophysics Data System (ADS)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate change education can be beneficial to future learners and general public. The main scope is to increase the amount of STEM knowledge throughout the nations scientific literacy as we are using the platform of climate change. Federal entities which may include but not limited to National Security Agency and the Department of Homeland Security and Management will serve as resources partners for this common goal of having a more knowledgeable technological savvy and scientific literate society. The presentation will show that incorporating these best practices into elementary and early childhood education undergraduate programs will assist with increasing a enhance scientific literate society. As a measurable outcome have a positive impact on instructional effectiveness of future teachers. Their successfully preparing students in meeting the standards of the Common Core Initiative will attempt to measure across the curriculum uniformly.

  16. Climate change and epidemics in Chinese history: A multi-scalar analysis.

    PubMed

    Lee, Harry F; Fei, Jie; Chan, Christopher Y S; Pei, Qing; Jia, Xin; Yue, Ricci P H

    2017-02-01

    This study seeks to provide further insight regarding the relationship of climate-epidemics in Chinese history through a multi-scalar analysis. Based on 5961 epidemic incidents in China during 1370-1909 CE we applied Ordinary Least Square regression and panel data regression to verify the climate-epidemic nexus over a range of spatial scales (country, macro region, and province). Results show that epidemic outbreaks were negatively correlated with the temperature in historical China at various geographic levels, while a stark reduction in the correlational strength was observed at lower geographic levels. Furthermore, cooling drove up epidemic outbreaks in northern and central China, where population pressure reached a clear threshold for amplifying the vulnerability of epidemic outbreaks to climate change. Our findings help to illustrate the modifiable areal unit and the uncertain geographic context problems in climate-epidemics research. Researchers need to consider the scale effect in the course of statistical analyses, which are currently predominantly conducted on a national/single scale; and also the importance of how the study area is delineated, an issue which is rarely discussed in the climate-epidemics literature. Future research may leverage our results and provide a cross-analysis with those derived from spatial analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Integrating Fire, Climate, and Societal Factors into Decision Support for Strategic Planning in Wildland Fire Management

    Treesearch

    Barbara J. Morehouse; Gregg Garfin; Timothy Brown; Thomas W. Swetnam

    2006-01-01

    An El Niño winter in 1998-99, followed by a strong La Niña winter in 1999- 2000, set the stage for potentially large wildfires in the southwestern, southeastern, and northwestern forests of the United States. Researchers at the University of Arizona organized a three-day workshop to discuss the relationship between synoptic scale climate conditions and wildland fire...

  18. Strategic Response to Energy-Related Security Threats in the US Department of Defense

    DTIC Science & Technology

    2014-10-15

    generation in the United States are fossil fuels . These include coal, natural gas, and oil . In some cases solar, wind, geothermal, and hydroelectric...and findings. The research addressed engagement on climate change and energy security issues by DoD across various tiers and sectors of the...on climate change and energy security issues by DoD across various tiers and sectors of the organization. Specifically, a tripartite analysis

  19. Interagency collaboration in the Rocky Mountains and Great Plains: Federal-university climate service networks for producing actionable information for climate change adaptation

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; McNie, E.; Averyt, K.; Morisette, J. T.; Derner, J. D.; Ojima, D. S.; Dilling, L.; Barsugli, J. J.

    2014-12-01

    Several federal agencies in north-central United States are each working to develop and disseminate useful climate information to enhance resilience to climate change. This talk will discuss how the U.S. Geological Survey (USGS) the North Central Climate Science Center, the National Oceanic and Atmospheric Administration Western Water Assessment RISA, and the U.S. Department of Agriculture Climate Hub, are building and managing a collaborative research and climate-service network in the Rocky Mountains and Great Plains. This presentation will describe the evolution of the interagency collaboration and the partnership with universities to build a climate service network. Such collaboration takes time and intention and must include the right people and organizations to effectively bridge the gap between use-inspired research and application. In particular, we will discuss a focus on the Upper Missouri Basin, developing research to meet needs in a basin that has had relatively less attention on risks of climate change and adaptation to those risks. Each organization has its own mission, stakeholders, and priorities, but there are many commonalities and potential synergies. Together, these organizations, and their agency scientists and university partners, are fostering cross-agency collaboration at the regional scale to optimize efficient allocation of resources while simultaneously enabling information to be generated at a scale that is relevant to decision makers. By each organization knowing the others needs and priorities, there are opportunities to craft research agendas and strategies for providing services that take advantage of the strengths and skills of the different organizations. University partners are key components of each organization, and of the collaboration, who bring in expertise beyond that in the agencies, in particular connections to social scientists, extension services.

  20. Potential Impacts of Climate Change on Stream Water Temperatures Across the United States

    NASA Astrophysics Data System (ADS)

    Ehsani, N.; Knouft, J.; Ficklin, D. L.

    2017-12-01

    Analyses of long-term observation data have revealed significant changes in several components of climate and the hydrological cycle over the contiguous United States during the twentieth and early twenty-first century. Mean surface air temperatures have significantly increased in most areas of the country. In addition, water temperatures are increasing in many watersheds across the United States. While there are numerous studies assessing the impact of climate change on air temperatures at regional and global scales, fewer studies have investigated the impacts of climate change on stream water temperatures. Projecting increases in water temperature are particularly important to the conservation of freshwater ecosystems. To achieve better insights into attributes regulating population and community dynamics of aquatic biota at large spatial and temporal scales, we need to establish relationships between environmental heterogeneity and critical biological processes of stream ecosystems at these scales. Increases in stream temperatures caused by the doubling of atmospheric carbon dioxide may result in a significant loss of fish habitat in the United States. Utilization of physically based hydrological-water temperature models is computationally demanding and can be onerous to many researchers who specialize in other disciplines. Using statistical techniques to analyze observational data from 1760 USGS stream temperature gages, our goal is to develop a simple yet accurate method to quantify the impacts of climate warming on stream water temperatures in a way that is practical for aquatic biologists, water and environmental management purposes, and conservation practitioners and policy-makers. Using an ensemble of five global climate models (GCMs), we estimate the potential impacts of climate change on stream temperatures within the contiguous United States based on recent trends. Stream temperatures are projected to increase across the US, but the magnitude of the changes are not expected to be uniform across the region and these relationships are expected to vary from month to month. Combined with expected changes in stream flows, the projected changes in the thermal regimes of streams can fundamentally transform stream habitats and the distribution of biodiversity.

  1. Climate change research in Massachusetts, U.S.A.: searching for phenology in the historical record.

    NASA Astrophysics Data System (ADS)

    Primack, R.; Miller-Rushing, A.

    2009-04-01

    The United States does not have as many large, well-researched sets of phenological records as can be found in Europe. Such phenological research is important both scientifically to investigate the effects of climate change and, just as importantly, for convincing the public that climate change is really happening and is already affecting our environment. Scientists in the United States are currently uncovering a wealth of data from a variety of unconventional sources on the effects of climate on the phenology of a wide range of organisms, with many studies being published on birds and plants. For the past six years, we have been investigating the impact of climate change in Massachusetts, a region with a particularly strong tradition of science and natural history. We are able to use combinations of herbarium specimens, photographs, diaries of individual naturalists, records from research stations, and current observations of our own to document the effects of climate change. Each of these data sources has certain limitations, but the overall message is the same: a warming climate is causing plants to flower earlier and certain migratory birds to arrive earlier. Such data has to be interpreted carefully due to issues of changing population sizes and changing sampling methods and intensity. The single most valuable source of data for our research has been the observations of flowering times of hundreds of plant species from 1852 to 1858 in Concord, Massachusetts, made by Henry David Thoreau. Thoreau is the most famous environmental philosopher in the United States, and most students read his book Walden. Later botanists also recorded flowering times and the abundance of plant species in Concord, and we recorded flowering times and species abundances in Concord starting in 2004. The project has shown that spring flowering species are the most responsive to temperatures, and that these plant species are now flowering seven days earlier than they were in the 1850s. Numerous species have declined in abundance since the time of Thoreau and 27 % of the species can no longer be found in Concord. A further 36 % of the species seen by Thoreau are now locally rare, only occurring as one or two populations, and are in danger of going locally extinct. A synthesis of these separate data sets from Concord was carried out using a phylogenetic approach that controls for the evolutionary history of the species. The surprising result is that species that are most responsive to temperature in their flowering times have tended to persist in Concord; in contrast, species with flowering times that are not responsive to temperature have tended to decline and go locally extinct in Concord. This significant result demonstrates that the warming temperature associated with climate change is partially responsible for the loss of biodiversity in Concord, along with other such well-known factors such as forest succession, habitat destruction, habitat fragmentation, invasive species, the overabundance of deer, and pollution. Records of bird arrival times in Concord, starting with Thoreau and continuing up to the present, show that birds are also responding to a warming climate, but not as much as spring-flowering plants. Throughout the project, special efforts have been made to publicize this work by writing press releases, working with science journalists, and producing dramatic, high-quality photographs and figures. These results have turned out to have great interest for the American public who greatly revere Thoreau, and this research has been widely reported by newspapers, magazines, radio programs, and websites.

  2. The epidemiology of occupational heat exposure in the United States: a review of the literature and assessment of research needs in a changing climate

    NASA Astrophysics Data System (ADS)

    Gubernot, Diane M.; Anderson, G. Brooke; Hunting, Katherine L.

    2014-10-01

    In recent years, the United States has experienced record-breaking summer heat. Climate change models forecast increasing US temperatures and more frequent heat wave events in the coming years. Exposure to environmental heat is a significant, but overlooked, workplace hazard that has not been well-characterized or studied. The working population is diverse; job function, age, fitness level, and risk factors to heat-related illnesses vary. Yet few studies have examined or characterized the incidence of occupational heat-related morbidity and mortality. There are no federal regulatory standards to protect workers from environmental heat exposure. With climate change as a driver for adaptation and prevention of heat disorders, crafting policy to characterize and prevent occupational heat stress for both indoor and outdoor workers is increasingly sensible, practical, and imperative.

  3. Prehistoric Packrats Piled Up Clues to Climate Change

    USGS Publications Warehouse

    Cole, Kenneth L.

    2008-01-01

    Scientists from the U.S. Geological Survey and Northern Arizona University studying climate change in the Southwestern United States are getting a helping hand?or would that be paw??from prehistoric packrats. By hoarding parts of animals and plants, including seeds and leaves, in garbage piles or ?middens,? these bushy-tailed rodents preserved crucial ecological and environmental information about the past. From these middens, scientists are able to reconstruct plant communities and natural systems from as long ago as 50,000 years. The contents of middens allow scientists to understand how ecosystems responded to rapid, large-scale climate changes of the past. The insights gained from midden research could offer clues to future changes driven by rapid climate shifts.

  4. The deep ocean under climate change.

    PubMed

    Levin, Lisa A; Le Bris, Nadine

    2015-11-13

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems. Copyright © 2015, American Association for the Advancement of Science.

  5. Survey on patient safety climate in public hospitals in China.

    PubMed

    Zhou, Ping; Bundorf, M Kate; Gu, Jianjun; He, Xiaoyan; Xue, Di

    2015-02-07

    Patient safety climate has been recognized as a core determinant for improving safety in hospitals. Describing workforce perceptions of patient safety climate is an important part of safety climate management. This study aimed to describe staff's perceptions of patient safety climate in public hospitals in Shanghai, China and to determine how perceptions of patient safety climate differ between different types of workers in the U.S. and China. Survey of employees of 6 secondary, general public hospitals in Shanghai conducted during 2013 using a modified version of the U.S. Patient Safety Climate in Health Care Organizations (PSCHO) tool. The percentage of "problematic responses" (PPRs) was used to measure safety climate, and the PPRs were compared among employees with different job types, using χ (2) tests and multivariate regression models. Perceptions of patient safety climate were relatively positive among hospital employees and similar to those of employees in U.S. hospitals along most dimensions. For workers in Chinese hospitals, the scales of "fear of blame" and "fear of shame" had the highest PPRs, whereas in the United States the scale of "fear of shame" had among the lowest PPRs. As in the United States, hospital managers in China perceived a more positive patient safety climate overall than other types of personnel. "Fear of shame" and "fear of blame" may be important barriers to improvement of patient safety in Chinese hospitals. Research on the effect of patient safety climate on outcomes is necessary to implement effective polices to improve patient safety and quality outcomes in China.

  6. An evaluation of 20th century climate for the Southeastern United States as simulated by Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models

    USGS Publications Warehouse

    David E. Rupp,

    2016-05-05

    The 20th century climate for the Southeastern United States and surrounding areas as simulated by global climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) was evaluated. A suite of statistics that characterize various aspects of the regional climate was calculated from both model simulations and observation-based datasets. CMIP5 global climate models were ranked by their ability to reproduce the observed climate. Differences in the performance of the models between regions of the United States (the Southeastern and Northwestern United States) warrant a regional-scale assessment of CMIP5 models.

  7. Creating a Partnering Community Aimed to Foster Climate Literacy in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Rutherford, D.; McNeal, K. S.; Smith, R.; Hare, D.; Nair, U. S.

    2011-12-01

    The Climate Literacy Partnership in the Southeast (CLiPSE) is a part of the Climate Change Education Program supported by the National Science Foundation (http://CLiPSE-project.org). The established CLiPSE partnership is dedicated to improving climate literacy in the southeast through crafting a shared vision and strategic plan among stakeholders that promotes scientific formal and informal educational resources, materials and programs; a diverse network of key partnering organizations throughout the Southeastern United States (SE US); and effective public dialogues that address diverse learners and audiences and supports learning of climate, climate change, and its relevance upon human and environmental systems. The CLiPSE project has been successful in creating partnerships with more than fifty key stakeholders that stem from a few key publics such as agriculture, education, leisure, religious organizations, and culturally diverse communities. These key publics in the SE US frequently consist of individuals that place great trust in local, private efforts, and CLiPSE has realized the importance of the role of the partnering organizations in providing information through a trusted source. A second unique characteristic of the SE US is the predominately conservative and Protestant citizenry in the region. Working with and through these communities enhances climate change education outreach to this citizenry. The CLiPSE project rests on solid climate science and learning science research in order to formulate an effective plan with desired learning outcomes of critical thinking and civil conversation through effective communication strategies. This paper will present the CLiPSE model in reaching the key publics that traditionally hold ideologies that are traditionally perceived as incompatible with climate change science. We will present the strategies utilized to bring together experts and researchers in climate science, learning science, and social science with practitioners and leaders of key stakeholder groups to formulate a shared climate change education plan in the SE US that is uniquely formatted for each target audience. We will also share what we have learned from interacting with the leaders of our partnering organizations in crafting effective messages for their audiences and addressing learners' affective and cognitive domains.

  8. Applications of monsoon research: Opportunities to inform decisionmaking and reduce regional vulnerability

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Garfin, G. M.; Wilder, M.; Lenart, M.; Vásquez-León, M.; Comrie, A. C.

    2007-05-01

    This presentation will describe ongoing efforts to understand interactions between the North American Monsoon and society, in order to develop applications for monsoon research in a highly complex, multicultural and binational region. The North American Monsoon is an annual precipitation regime that begins in early June in Mexico and progresses northward to the southwestern United States. The region includes stakeholders in large urban complexes, productive agricultural areas, and sparsely populated arid and semi-arid ecosystems. The political, cultural, and socioeconomic divisions between the U.S. and Mexico create a broad range of sensitivities to climate variability as well as capacities to use forecasts and other information to cope with climate. We will highlight methodologies to link climate science with society and analyze opportunities for monsoon science to benefit society in four sectors: natural hazards management, agriculture, public health, and water management. We present a synthesized list of stakeholder needs and a calendar of decisions to help scientists link user needs to potential forecasts and products. To ensure usability of forecasts and other research products, we recommend iterative scientist-stakeholder interactions, through integrated assessments. These knowledge- exchange interactions can improve the capacity for stakeholders to use forecasts thoughtfully and inform the development of research, and for the research community to obtain feedback on climate-related products and receive insights to guide research direction. We expect that integrated assessments can capitalize on the opportunities for monsoon science to inform decisionmaking, in the best instances, reduce regional climate vulnerabilities and enhance regional sustainability

  9. Climatic variability of near-surface turbulent kinetic energy over the United States: implications for fire-weather predications

    Treesearch

    Warren E. Heilman; Xindi Bain

    2013-01-01

    Recent research suggests that high levels of ambient near-surface atmospheric turbulence are often associated with rapid and sometimes erratic wildland fire spread that may eventually lead to large burn areas. Previous research has also examined the feasibility of using near-surface atmospheric turbulent kinetic energy (TKEs) alone or in...

  10. Experimental Forests and Ranges of the USDA Forest Service

    Treesearch

    Mary Beth Adams; Linda Loughry; Linda, comps. Plaugher

    2008-01-01

    The USDA Forest Service has an outstanding scientific resource in the 77 Experimental Forests and Ranges that exist across the United States and its territories. These valuable scientific resources incorporate a broad range of climates, forest types, research emphases, and history. This publication, revised in March 2008, describes each of the research sites within the...

  11. Climate variation explains a third of global crop yield variability

    PubMed Central

    Ray, Deepak K.; Gerber, James S.; MacDonald, Graham K.; West, Paul C.

    2015-01-01

    Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability. PMID:25609225

  12. Tribal engagement strategy of the South Central Climate Science Center, 2014

    USGS Publications Warehouse

    Andrews, William J.; Taylor, April; Winton, Kimberly T.

    2014-01-01

    The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.

  13. Non-stationary Return Levels of CMIP5 Multi-model Temperature Extremes

    DOE PAGES

    Cheng, L.; Phillips, T. J.; AghaKouchak, A.

    2015-05-01

    The objective of this study is to evaluate to what extent the CMIP5 climate model simulations of the climate of the twentieth century can represent observed warm monthly temperature extremes under a changing environment. The biases and spatial patterns of 2-, 10-, 25-, 50- and 100-year return levels of the annual maxima of monthly mean temperature (hereafter, annual temperature maxima) from CMIP5 simulations are compared with those of Climatic Research Unit (CRU) observational data considered under a non-stationary assumption. The results show that CMIP5 climate models collectively underestimate the mean annual maxima over arid and semi-arid regions that are mostmore » subject to severe heat waves and droughts. Furthermore, the results indicate that most climate models tend to underestimate the historical annual temperature maxima over the United States and Greenland, while generally disagreeing in their simulations over cold regions. Return level analysis shows that with respect to the spatial patterns of the annual temperature maxima, there are good agreements between the CRU observations and most CMIP5 simulations. However, the magnitudes of the simulated annual temperature maxima differ substantially across individual models. Discrepancies are generally larger over higher latitudes and cold regions.« less

  14. Predicting Summer Dryness Under a Warmer Climate: Modeling Land Surface Processes in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Winter, J. M.; Eltahir, E. A.

    2009-12-01

    One of the most significant impacts of climate change is the potential alteration of local hydrologic cycles over agriculturally productive areas. As the world’s food supply continues to be taxed by its burgeoning population, a greater percentage of arable land will need to be utilized and land currently producing food must become more efficient. This study seeks to quantify the effects of climate change on soil moisture in the American Midwest. A series of 24-year numerical experiments were conducted to assess the ability of Regional Climate Model Version 3 coupled to Integrated Biosphere Simulator (RegCM3-IBIS) and Biosphere-Atmosphere Transfer Scheme 1e (RegCM3-BATS1e) to simulate the observed hydroclimatology of the midwestern United States. Model results were evaluated using NASA Surface Radiation Budget, NASA Earth Radiation Budget Experiment, Illinois State Water Survey, Climate Research Unit Time Series 2.1, Global Soil Moisture Data Bank, and regional-scale estimations of evapotranspiration. The response of RegCM3-IBIS and RegCM3-BATS1e to a surrogate climate change scenario, a warming of 3oC at the boundaries and doubling of CO2, was explored. Precipitation increased significantly during the spring and summer in both RegCM3-IBIS and RegCM3-BATS1e, leading to additional runoff. In contrast, enhancement of evapotranspiration and shortwave radiation were modest. Soil moisture remained relatively unchanged in RegCM3-IBIS, while RegCM3-BATS1e exhibited some fall and winter wetting.

  15. Climate Change and Agriculture in the U.S.: Effects and Adaptation (Invited)

    NASA Astrophysics Data System (ADS)

    Walsh, M. K.; Rippey, B.; Walthall, C. L.; Hatfield, J.; Backlund, P. W.; Lengnick, L.; Marshall, E.

    2013-12-01

    Agriculture in the United States has followed a path of continual adaptation to a wide range of factors throughout its history. However, observational evidence, supported by an understanding of the physical climate system, shows that human-induced climate change is underway in the U.S. and even now causing changes for which there is no historical reference for producers. Temperatures have increased and precipitation patterns have changed; the incidence, frequency, and extent of pest infestations have been altered, as well as the natural resource base (water, air, and soils) upon which production depends. Each factor challenges agricultural management as atmospheric concentrations of greenhouse gases rise. These trends are likely to continue over the next century. Importantly, a gap exists between U.S. agricultural producers and managers' needs related to climate-driven problems and the information that research currently offers them. In the past, agricultural research into climate change effects has largely focused on mean values of precipitation and temperature. Today's management requirements, however, often demand immediate response on shorter time scales to address abrupt, often novel needs. Further complicating this reality, future decisions will likely require even greater emphasis on managing under increasing levels of uncertainty, and planning for and adjusting to the extremes. Research is moving to better address these emerging issues for the relevant timescales and parameters in order to allow the formulation of improved and resilient management strategies that apply to a future in which past experience has become less applicable. A climate-ready U.S. agricultural system requires easy access to useable climate knowledge and technical resources, improved climate risk management strategies, new processes to support effective adaptive actions, and the development of sustainable production systems resilient to climate effects. Mainstreaming climate knowledge improves adaptive capacity of the agricultural system by ensuring that land managers, technical advisors, researchers, private businesspeople, government program managers, and policymakers are aware of current and projected climate impacts and can access best management practices to reduce risks and capture opportunities.

  16. Direct and indirect effects of climate change on projected future fire regimes in the western United States.

    PubMed

    Liu, Zhihua; Wimberly, Michael C

    2016-01-15

    We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The Policy Trade-off Between Energy Security and Climate Change in the GCC States

    NASA Astrophysics Data System (ADS)

    Shahbek, Shaikha Ali

    Developing policies for energy security and climate change simultaneously can be very challenging as there is a trade-off. This research project strives to analyze the policies regarding the same that should be developed in the Gulf Co-operation Council (GCC) States which are; Saudi Arabia, Kuwait, Qatar, United Arab Emirates, Bahrain and Oman. Energy security is important in these countries because it is the prominent sector of their economies. Yet, the environment is being negatively impacted because of the energy production. There has been lot of international pressure on the GCC to divert its production and move towards clean energy production. It needs more research and development, as well as better economic diversification to maintain and improve the economic growth. Along with the literature review that has been used to study the cases and impacts of the GCC states, six in-depth interviews were conducted with professors, scholars and specialists in the environment and natural science fields to discuss about the GCC's situation. It has been alluded that the GCC states cannot be held solely responsible about the climate change because they are not the only energy producing nations in the world. Based on OPEC, there are 14 countries including the United States and China that also have prominent energy sectors. They should also be held accountable for the causes of environmental and climate change. This research provides recommendations for the GCC states to follow and apply in order to move forward with clean energy production, economic diversification and develop better policies.

  18. Police close unsolved 'climategate' investigation

    NASA Astrophysics Data System (ADS)

    Lavender, Gemma

    2012-09-01

    Police in Norfolk in the UK have closed an investigation into the hacking of e-mails at the University of East Anglia's Climate Research Unit (CRU) after admitting that they will not be able to find the hackers who broke into CRU computer servers.

  19. Nevada Infrastructure for Climate Change Science, Education, and Outreach

    NASA Astrophysics Data System (ADS)

    Dana, G. L.; Piechota, T. C.; Lancaster, N.; Mensing, S. A.

    2009-12-01

    The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision “to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders.” Six major strategies are proposed: 1) Develop a capability to model climate change and its effects at a regional and sub-regional scales to evaluate different future scenarios and strategies (Climate Modeling Component) 2) Develop data collection, modeling, and visualization infrastructure to determine and analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Develop data collection, modeling, and visualization infrastructure to better quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Develop data collection and modeling infrastructure to assess effects on human systems, responses to institutional and societal aspects, and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Develop educational infrastructure to train students at all levels and provide public outreach in climate change issues (Education Component). As part of the new infrastructure, two observational transects will be established across Great Basin Ranges, one in southern Nevada in the Spring Mountains, and the second to be located in the Snake Range of eastern Nevada which will reach bristlecone pine stands. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems?

  20. Vulnerability to Climate Change in Rural Nicaragua

    NASA Astrophysics Data System (ADS)

    Byrne, T. R.; Townshend, I.; Byrne, J. M.; McDaniel, S. A.

    2013-12-01

    While there is a growing recognition of the impact that climate change may have on human development, there has been a shift in focus from an impacts-led assessment approach towards a vulnerability-led assessment approach. This research operationalizes the IPCC's definition of vulnerability in a sub-national assessment to understand how different factors that shape vulnerability to climate change vary spatially across rural Nicaragua. The research utilizes the Food and Agriculture Organization of the United Nations' (FAO UN) CropWat model to evaluate how the annual yield of two of Nicaragua's staple crops may change under projected changes in temperature and precipitation. This analysis of agricultural sensitivity under exposure to climate change is then overlain with an indicator-based assessment of adaptive capacity in rural Nicaraguan farming households. Adaptive capacity was evaluated using household survey data from the 2001 National Household Survey on Living Standards Measurement, which was provided to us by the FAO UN. The result is a map representing current vulnerability to future climate change, and can serve as a basis for targeting policy interventions in rural Nicaragua.

  1. Revisiting the climate impacts of cool roofs around the globe using an Earth system model

    NASA Astrophysics Data System (ADS)

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George

    2016-08-01

    Solar reflective ‘cool roofs’ absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11 ± 0.10 K) and the United States (-0.14 ± 0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (-0.0021 ± 0.026 K). Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.

  2. Revisiting the Climate Impacts of Cool Roofs around the Globe Using an Earth System Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ban-Weiss, G. A.; Zhang, K.; Liu, J.

    2016-12-01

    Solar reflective "cool roofs" absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11±0.10 K) and the United States (-0.14±0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (-0.0021 ± 0.026 K). Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.

  3. Deriving evaluation indicators for knowledge transfer and dialogue processes in the context of climate research

    NASA Astrophysics Data System (ADS)

    Treffeisen, Renate; Grosfeld, Klaus; Kuhlmann, Franziska

    2017-12-01

    Knowledge transfer and dialogue processes in the field of climate science have captured intensive attention in recent years as being an important part of research activities. Therefore, the demand and pressure to develop a set of indicators for the evaluation of different activities in this field have increased, too. Research institutes are being asked more and more to build up structures in order to map these activities and, thus, are obliged to demonstrate the success of these efforts. This paper aims to serve as an input to stimulate further reflection on the field of evaluation of knowledge transfer and dialogue processes in the context of climate sciences. The work performed in this paper is embedded in the efforts of the German Helmholtz Association in the research field of earth and environment and is driven by the need to apply suitable indicators for knowledge transfer and dialogue processes in climate research center evaluations. We carry out a comparative analysis of three long-term activities and derive a set of indicators for measuring their output and outcome by balancing the wide diversity and range of activity contents as well as the different tools to realize them. The case examples are based on activities which are part of the regional Helmholtz Climate Initiative Regional Climate Change (REKLIM) and the Climate Office for Polar Regions and Sea Level Rise at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research. Both institutional units have been working on a wide range of different knowledge transfer and dialogue processes since 2008/2009. We demonstrate that indicators for the evaluation must be based on the unique objectives of the individual activities and the framework they are embedded in (e.g., research foci which provide the background for the performed knowledge transfer and dialogue processes) but can partly be classified in a principle two-dimensional scheme. This scheme might serve as a usable basis for climate research center evaluation in the future. It, furthermore, underlines the need for further development of proper mechanisms to evaluate scientific centers, in particular with regard to knowledge transfer and dialogue processes.

  4. Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, James; Aldrich, Robb

    2015-08-19

    Traditionally, air-source heat pumps (ASHPs) have been used more often in warmer climates; however, some new ASHPs are gaining ground in colder areas. These systems operate at subzero (Fahrenheit) temperatures and many do not include backup electric resistance elements. There are still uncertainties, however, about capacity and efficiency in cold weather. Also, questions such as “how cold is too cold?” do not have clear answers. These uncertainties could lead to skepticism among homeowners; poor energy savings estimates; suboptimal system selection by heating, ventilating, and air-conditioning contractors; and inconsistent energy modeling. In an effort to better understand and characterize the heatingmore » performance of these units in cold climates, the U.S. Department of Energy Building America team, Consortium for Advanced Residential Buildings (CARB), monitored seven inverter-driven, ductless ASHPs across the Northeast. Operating data were collected for three Mitsubishi FE18 units, three Mitsubishi FE12 units, and one Fujitsu 15RLS2 unit. The intent of this research was to assess heat output, electricity consumption, and coefficients of performance (COPs) at various temperatures and load conditions. This assessment was accomplished with long- and short-term tests that measured power consumption; supply, return, and outdoor air temperatures; and airflow through the indoor fan coil.« less

  5. One hundred years: A collective case study of climate change education in Georgia

    NASA Astrophysics Data System (ADS)

    Bloch, Leonard Mark

    This collective case study examined how five K-12 science teachers taught about climate change during Fall 2013, and asked how the University of Georgia can support climate change education. The participants were all experienced teachers, and included: three high school teachers, a middle school teacher, and an elementary school teacher. 'Postcarbonism', an emerging theoretical framework, shaped the research and guided the analysis. The teachers varied in their teaching practices and in their conceptions of 'climate change', but they were united in: 1) their focus on mitigation over adaptation, and 2) presenting climate change as a remote problem with simple solutions. The teachers drew on varied resources, but in all cases, their most valuable resources were their own skills, knowledge and personality. The University of Georgia can support climate change education by developing locally relevant educational resources. Curriculum developers might consider building upon the work of outstanding teach.

  6. Zoonotic infections in Alaska: disease prevalence, potential impact of climate change and recommended actions for earlier disease detection, research, prevention and control

    PubMed Central

    Hueffer, Karsten; Parkinson, Alan J.; Gerlach, Robert

    2013-01-01

    Over the last 60 years, Alaska's mean annual temperature has increased by 1.6°C, more than twice the rate of the rest of the United States. As a result, climate change impacts are more pronounced here than in other regions of the United States. Warmer temperatures may allow some infected host animals to survive winters in larger numbers, increase their population and expand their range of habitation thus increasing the opportunity for transmission of infection to humans. Subsistence hunting and gathering activities may place rural residents of Alaska at a greater risk of acquiring zoonotic infections than urban residents. Known zoonotic diseases that occur in Alaska include brucellosis, toxoplasmosis, trichinellosis, giardiasis/cryptosporidiosis, echinococcosis, rabies and tularemia. Actions for early disease detection, research and prevention and control include: (1) determining baseline levels of infection and disease in both humans and host animals; (2) conducting more research to understand the ecology of infection in the Arctic environment; (3) improving active and passive surveillance systems for infection and disease in humans and animals; (4) improving outreach, education and communication on climate-sensitive infectious diseases at the community, health and animal care provider levels; and (5) improving coordination between public health and animal health agencies, universities and tribal health organisations. PMID:23399790

  7. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Weiss, E.; Skene, J.; Tran, L.

    2011-12-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It aligns with the Ocean Literacy and Climate Literacy Frameworks, as well as multiple core ideas in the new National Academy of Sciences Framework for K-12 Science Education. In brief, the curriculum comprises 33 45-minute sessions organized into three thematic units that are each driven by an exploratory question: Unit 1 (11 sessions)-How do the ocean and atmosphere interact?; Unit 2 (8 sessions)-How does carbon flow through the ocean, land, and atmosphere?; and Unit 3 (12 sessions)-What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems, and challenges students to use scientific evidence to make explanations about climate change. The Ocean Sciences Sequence for Grades 6-8 is currently being classroom tested by teachers across the United States in a wide variety of classroom settings. Evaluation is also being undertaken to determine the efficacy of the sequence in addressing the curriculum's learning goals.

  8. Benefits of collaborative and comparative research on land use change and climate mitigation

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiliang; Gong, Peng

    2016-04-01

    The world's two largest economies are also the latest greenhouse gas emitters. The United States is committed to reduce the net greenhouse gas emission by 28% below the 2005 level by 2025. Similarly China also announced significant climate mitigation steps at the Paris climate convention. These policy plans will require actions including reduction of GHG emissions as well as protection of carbon stored in biologic pools and increase of carbon sequestration by the natural ecosystems. Major drivers of ecosystem carbon sequestration and protection of existing carbon resources include land use, disturbances, and climate change. Recent studies indicate that vegetated ecosystems in the United States remain as a carbon sink but the sink is weakening due to increased disturbances (such as wildfire and harvesting) and aging of forests. Unique land use policies in China such as large-scale afforestation in the recent decades have reportedly led to significant increase in total forest area and aboveground biomass, although it is not clear to what degree the increase has translated to strengthened net uptake of atmospheric CO2 and the rate of sequestration by vegetated ecosystems. What lessons can we draw from different land management and land use practices in the U.S. and China that can benefit scientific advances and climate mitigation goals? Research conducted collaboratively by the U.S. Geological Survey and China Ministry of Science and Technology has led to improved techniques for tracking and modeling land use change and ecosystem disturbances and improved understanding of consequences of different land use change and management practices on ecosystem carbon sequestration capacities.

  9. Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunsell, Nathaniel; Mechem, David; Ma, Chunsheng

    Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive tomore » alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the validity of an innovative multi–resolution information theory approach, and the ability of the RCM modeling framework to represent the low-frequency modulation of extreme climate events. Once the skill of the modeling and analysis methodology has been established, we will apply the same approach for the AR5 (IPCC Fifth Assessment Report) climate change scenarios in order to assess how climate extremes and the the influence of lowfrequency variability on climate extremes might vary under changing climate. The research specifically addresses the DOE focus area 2. Simulation of climate extremes under a changing climate. Specific results will include (1) a better understanding of the spatial and temporal structure of extreme events, (2) a thorough quantification of how extreme values are impacted by low-frequency climate teleconnections, (3) increased knowledge of current regional climate models ability to ascertain these influences, and (4) a detailed examination of the how the distribution of extreme events are likely to change under different climate change scenarios. In addition, this research will assess the ability of the innovative wavelet information theory approach to characterize extreme events. Any and all of these results will greatly enhance society’s ability to understand and mitigate the regional ramifications of future global climate change.« less

  10. Improving teamwork: impact of structured interdisciplinary rounds on a hospitalist unit.

    PubMed

    O'Leary, Kevin J; Haviley, Corinne; Slade, Maureen E; Shah, Hiren M; Lee, Jungwha; Williams, Mark V

    2011-02-01

    Effective collaboration and teamwork is essential in providing safe and effective care. Research reveals deficiencies in teamwork on medical units involving hospitalists. The aim of this study was to assess the impact of an intervention, Structured Inter-Disciplinary Rounds (SIDR), on nurses' ratings of collaboration and teamwork. The study was a controlled trial involving an intervention and control hospitalist unit. The intervention, SIDR, combined a structured format for communication with a forum for regular interdisciplinary meetings. We asked nurses to rate the quality of communication and collaboration with hospitalists using a 5-point ordinal scale. We also assessed teamwork and safety climate using a validated instrument. Multivariable regression analyses were used to assess the impact on length of stay (LOS) and cost using both a concurrent and historic control. A total of 49 of 58 (84%) nurses completed surveys. A larger percentage of nurses rated the quality of communication and collaboration with hospitalists as high or very high on the intervention unit compared to the control unit (80% vs. 54%; P = 0.05). Nurses also rated the teamwork and safety climate significantly higher on the intervention unit (P = 0.008 and P = 0.03 for teamwork and safety climate, respectively). Multivariable analyses demonstrated no difference in the adjusted LOS and an inconsistent effect on cost. SIDR had a positive effect on nurses' ratings of collaboration and teamwork on a hospitalist unit, yet no impact on LOS and cost. Further study is required to assess the impact of SIDR on patient safety measures. Copyright © 2010 Society of Hospital Medicine.

  11. Assessing the influence of climate change on flooding hazards following tropical cyclone events in the Southeast United States

    NASA Astrophysics Data System (ADS)

    Stone, Monica Helen

    Recent tropical cyclones, like Hurricane Katrina, have been some of the worst the United States has experienced. Tropical cyclones are expected to intensify, bringing about 20% more precipitation, in the near future in response to global climate warming. Further, global climate warming may extend the hurricane season. This study focuses on four major river basins (Neches, Pearl, Mobile, and Roanoke) in the Southeast United States that are frequently impacted by tropical cyclones. The Soil and Water Assessment Tool (SWAT) was used to model flow along these rivers from 1998-2014 with 20% more precipitation during tropical cyclones. The results of this study show that an increase in tropical cyclone precipitation due to future climate change may increase peak flows at the mouths of these Southeast rivers by ˜7-18%. Most tropical cyclones that impact these river basins occur during the low discharge season, and thus rarely produce flooding conditions at their mouths. An extension of the current hurricane season of June-November, due to global climate warming, could encroach upon the wet season in these basins and lead to increased flooding. On average, this analysis shows that an extension of the hurricane season to May-December increased flooding susceptibility by 63% for the rivers analyzed in this study. That is, 4-6 more days per year likely would have been above bankfull discharge if an average tropical cyclone had occurred any day (based on 1998-2014 data) in the months May-December than in the current hurricane season months of June-November. More research is needed on the mechanisms and processes involved in the water balance of the four rivers analyzed in this study, and others in the Southeast United States, and how this is likely to change in the near future with global climate warming.

  12. Pyroconvection and Climate Change

    DTIC Science & Technology

    2007-01-01

    Climate Change 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory,4555 Overlook Avenue SW,Washington,DC,20375 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited

  13. Concordance Between Administrator and Clinician Ratings of Organizational Culture and Climate.

    PubMed

    Beidas, Rinad S; Williams, Nathaniel J; Green, Philip D; Aarons, Gregory A; Becker-Haimes, Emily M; Evans, Arthur C; Rubin, Ronnie; Adams, Danielle R; Marcus, Steven C

    2018-01-01

    Organizational culture and climate are important determinants of behavioral health service delivery for youth. The Organizational Social Context measure is a well validated assessment of organizational culture and climate that has been developed and extensively used in public sector behavioral health service settings. The degree of concordance between administrators and clinicians in their reports of organizational culture and climate may have implications for research design, inferences, and organizational intervention. However, the extent to which administrators' and clinicians' reports demonstrate concordance is just beginning to garner attention in public behavioral health settings in the United States. We investigated the concordance between 73 administrators (i.e., supervisors, clinical directors, and executive directors) and 247 clinicians in 28 child-serving programs in a public behavioral health system. Findings suggest that administrators, compared to clinicians, reported more positive cultures and climates. Organizational size moderated this relationship such that administrators in small programs (<466 youth clients served annually) provided more congruent reports of culture and climate in contrast to administrators in large programs (≥466 youth clients served annually) who reported more positive cultures and climates than clinicians. We propose a research agenda that examines the effect of concordance between administrators and clinicians on organizational outcomes in public behavioral health service settings.

  14. 78 FR 18323 - Notice of Availability of a Draft Programmatic Environmental Assessment of the Proposed United...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... Proposed United States Regional Climate Reference Network (USRCRN) AGENCY: National Weather Service (NWS..., is proposing to implement, operate, and manage a USRCRN. With other climate monitoring efforts..., high-quality climate data for use in climate-monitoring activities and for placing current climate...

  15. The value of superpower-submitted INDCs in cooperative and non-cooperative action scenarios: economic impact, dynamic risk, and temperature rise

    NASA Astrophysics Data System (ADS)

    Augustin, C. M.

    2015-12-01

    As the 2015 Paris climate talks near, policy discussions are focused on "intended nationally determined contributions" (INDCs) submitted in advance of the discussions. As the major global emitters - specifically the United States and China - have already submitted their INDCs, we have a point of comparison for evaluating the relative potential impacts of the proposed targets. By applying integrated assessment models to robust, publicly available data sets,we aim to evaluate the interplay between climate change and economic development, comment on emissions reduction scenarios in cooperative and non-cooperative situations, and assess the dynamic risks of multiple regional emissions scenarios. We use both the RICE model and the C-ROADS model to examine alternative regional outcomes for emissions, climate change, and damages,under different reduction scenarios, including a scenario where geo-engineering plays a prominent role. These simulators allow us to vary emissions, population, and economic levels in China and the United States specifically to comment on the international climate risk impact of actors working jointly - or not - toward a global climate goal. In a complementary piece of analysis we seek to understand the value judgments, trade-offs, and regional policies that would lead to favorable climate finance flows. To reach an international sample of industry decision-makers, we propose a novel application of a standard discrete-choice survey methodology. A conjoint analysis requires a participant to chose between combinations of attributes and identify trade-offs while allowing the researcher to determine the relative importance of each individual attribute by mathematically assessing the impact each attribute could have on total item utility. As climate policy negotiations will consist of allocation of scarce resources and rejection of certain attributes, a conjoint analysis is an ideal tool for evaluating policy outcomes. This research program seeks to provide a commentary useful to policy makers on the most desirable outcomes of the negotiations and other international cooperation.

  16. The climate change and energy security nexus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Marcus Dubois; Gulledge, Jay

    2013-01-01

    The study of the impacts of climate change on national and interna-tional security has grown as a research field, particularly in the last five years. Within this broad field, academic scholarship has concentrated primarily on whether climate change is, or may become, a driver of violent conflict. This relationship remains highly contested. However, national security policy and many non-governmental organizations have identified climate change as a threat multiplier in conflict situations. The U.S. Department of Defense and the United Kingdom's Ministry of Defense have incorporated these findings into strategic planning documents such as the Quadrennial Defense Review and the Strategicmore » Defence and Security Review. In contrast to the climate-conflict nexus, our analysis found that academic scholarship on the climate change and energy security nexus is small and more disciplinarily focused. In fact, a search of social science litera-ture found few sources, with a significant percentage of these works attribut-able to a single journal. Assuming that policymakers are more likely to rely on broader social science literature than technical or scientific journals, this leaves a limited foundation. This then begged the question: what are these sources? We identified a body of grey literature on the nexus of climate change and energy security of a greater size than the body of peer-reviewed social science literature. We reviewed fifty-eight recent reports, issue briefs, and transcripts to better understand the nexus of climate change and energy security, as well as to gain insight about the questions policymakers need answered by those undertaking the research. In this article, we describe the nature of the sources reviewed, highlight possible climate change and energy security linkages found within those sources, identify emerging risks, and offer conclusions that can guide further research.« less

  17. The potential health impacts of climate variability and change for the United States: executive summary of the report of the health sector of the U.S. National Assessment.

    PubMed Central

    Patz, J A; McGeehin, M A; Bernard, S M; Ebi, K L; Epstein, P R; Grambsch, A; Gubler, D J; Reither, P; Romieu, I; Rose, J B; Samet, J M; Trtanj, J

    2000-01-01

    We examined the potential impacts of climate variability and change on human health as part of a congressionally mandated study of climate change in the United States. Our author team, comprising experts from academia, government, and the private sector, was selected by the federal interagency U.S. Global Change Research Program, and this report stems from our first 18 months of work. For this assessment we used a set of assumptions and/or projections of future climates developed for all participants in the National Assessment of the Potential Consequences of Climate Variability and Change. We identified five categories of health outcomes that are most likely to be affected by climate change because they are associated with weather and/or climate variables: temperature-related morbidity and mortality; health effects of extreme weather events (storms, tornadoes, hurricanes, and precipitation extremes); air-pollution-related health effects; water- and foodborne diseases; and vector- and rodent-borne diseases. We concluded that the levels of uncertainty preclude any definitive statement on the direction of potential future change for each of these health outcomes, although we developed some hypotheses. Although we mainly addressed adverse health outcomes, we identified some positive health outcomes, notably reduced cold-weather mortality, which has not been extensively examined. We found that at present most of the U.S. population is protected against adverse health outcomes associated with weather and/or climate, although certain demographic and geographic populations are at increased risk. We concluded that vigilance in the maintenance and improvement of public health systems and their responsiveness to changing climate conditions and to identified vulnerable subpopulations should help to protect the U.S. population from any adverse health outcomes of projected climate change. PMID:10753097

  18. The potential health impacts of climate variability and change for the United States: executive summary of the report of the health sector of the U.S. National Assessment.

    PubMed

    Patz, J A; McGeehin, M A; Bernard, S M; Ebi, K L; Epstein, P R; Grambsch, A; Gubler, D J; Reither, P; Romieu, I; Rose, J B; Samet, J M; Trtanj, J

    2000-04-01

    We examined the potential impacts of climate variability and change on human health as part of a congressionally mandated study of climate change in the United States. Our author team, comprising experts from academia, government, and the private sector, was selected by the federal interagency U.S. Global Change Research Program, and this report stems from our first 18 months of work. For this assessment we used a set of assumptions and/or projections of future climates developed for all participants in the National Assessment of the Potential Consequences of Climate Variability and Change. We identified five categories of health outcomes that are most likely to be affected by climate change because they are associated with weather and/or climate variables: temperature-related morbidity and mortality; health effects of extreme weather events (storms, tornadoes, hurricanes, and precipitation extremes); air-pollution-related health effects; water- and foodborne diseases; and vector- and rodent-borne diseases. We concluded that the levels of uncertainty preclude any definitive statement on the direction of potential future change for each of these health outcomes, although we developed some hypotheses. Although we mainly addressed adverse health outcomes, we identified some positive health outcomes, notably reduced cold-weather mortality, which has not been extensively examined. We found that at present most of the U.S. population is protected against adverse health outcomes associated with weather and/or climate, although certain demographic and geographic populations are at increased risk. We concluded that vigilance in the maintenance and improvement of public health systems and their responsiveness to changing climate conditions and to identified vulnerable subpopulations should help to protect the U.S. population from any adverse health outcomes of projected climate change.

  19. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States.

    PubMed

    Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D

    2001-05-01

    Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation.

  20. Useful to Usable (U2U): Transforming climate information into usable tools to support Midwestern agricultural production

    NASA Astrophysics Data System (ADS)

    Prokopy, L. S.; Widhalm, M.

    2014-12-01

    There is a close connection between weather and climate patterns and successful agricultural production. Therefore, incorporating climate information into farm management is likely to reduce the risk of economic losses and increase profitability. While weather and climate information is becoming ever more abundant and accessible, the use of such information in the agricultural community remains limited. Useful to Usable (U2U): Transforming Climate Variability and Change Information for Cereal Crop Producers is a USDA-NIFA funded research and extension project focused on improving the use of climate information for agricultural production in the Midwestern United States by developing user-driven decision tools and training resources. The U2U team is a diverse and uniquely qualified group of climatologists, crop modelers, agronomists, and social scientists from 9 Midwestern universities and two NOAA Regional Climate Centers. Together, we strive to help producers make better long-term plans on what, when and where to plant and also how to manage crops for maximum yields and minimum environmental damage. To ensure relevance and usability of U2U products, our social science team is using a number of techniques including surveys and focus groups to integrate stakeholder interests, needs, and concerns into all aspects of U2U research. It is through this coupling of physical and social science disciplines that we strive to transform existing climate information into actionable knowledge.

  1. The impact of using different modern climate data sets in pollen-based paleoclimate reconstructions of North America

    NASA Astrophysics Data System (ADS)

    Ladd, M.; Way, R. G.; Viau, A. E.

    2015-03-01

    The use of different modern climate data sets is shown to impact a continental-scale pollen-based reconstruction of mean July temperature (TJUL) over the last 2000 years for North America. Data from climate stations, physically modeled from climate stations and reanalysis products are used to calibrate the reconstructions. Results show that the use of reanalysis products produces warmer and/or smoother reconstructions as compared to the use of station based data sets. The reconstructions during the period of 1050-1550 CE are shown to be more variable because of a high latitude cold-bias in the modern TJUL data. The ultra-high resolution WorldClim gridded data may only useful if the modern pollen sites have at least the same spatial precision as the gridded dataset. Hence we justify the use of the lapse-rate corrected University of East Anglia Climate Research Unit (CRU) based Whitmore modern climate data set for North American pollen-based climate reconstructions.

  2. 78 FR 12807 - Call for Expert Reviewers to the U.S. Government Review of the Working Group III Contribution to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... on Climate Change (IPCC), Mitigation of Climate Change SUMMARY: The United States Global Change... Panel on Climate Change (IPCC), Mitigation of Climate Change. The United Nations Environment Programme...-economic information for understanding the scientific basis of climate change, potential impacts, and...

  3. 77 FR 59238 - Call for Expert Reviewers to the U.S. Government Review of the Working Group I Contribution to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... Climate Change (IPCC), Climate Change 2013: The Physical Science Basis Summary: The United States Global... Panel on Climate Change (IPCC) Climate Change 2013: The Physical Science Basis. The United Nations..., and socio-economic information for understanding the scientific basis of climate change, potential...

  4. Impact of the climate change on the performance of the steam and gas turbines in Russia

    NASA Astrophysics Data System (ADS)

    Fedotova (Kasilova, E. V.; Klimenko, V. V.; Klimenko, A. V.; Tereshin, A. G.

    2017-11-01

    The power generating industry is known to be vulnerable to the climate change due to the deteriorating efficiency of the power equipment. Effects for Russia are not completely understood yet. But they are already detected and will be more pronounced during the entire current century, as the Russian territory is one of the areas around the world where the climate change is developing most rapidly. An original climate model was applied to simulate the change of the air temperature across Russia for the twenty-first century. The results of the climate simulations were used to conduct impact analysis for the steam and gas turbine performance taking into account seasonal and spatial heterogeneity of the climate change across the Russian territory. Sensitivity of the turbines to the climatic conditions was simulated using both results of fundamental heat transfer research and empirical performance curves for the units being in operation nowadays. The integral effect of the climate change on the power generating industry was estimated. Some possible challenges and opportunities resulted from the climate change were identified.

  5. In Brief: Science academies' statement on climate change

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-06-01

    “It is essential that world leaders agree on emissions reductions needed to combat negative consequences of anthropogenic climate change,” national science academies from 13 countries declared in a joint statement issued on 11 June. The statement, issued by the academies of the G8 countries—including England, France, Russia, and the United States—and five other countries (Brazil, China, India, Mexico, and South Africa), came in advance of a G8 meeting in Italy in July and prior to United Nations Framework Convention on Climate Change (UNFCCC) negotiations in Denmark in December. “The G8+5 should lead the transition to an energy-efficient and low-carbon world economy, and foster innovation and research and development for both mitigation and adaptation technologies,” the statement noted. The academies urged governments to agree at the UNFCCC negotiations to adopt a long-term global goal and short-term emissions reduction targets so that by 2050 global emissions would be reduced by about 50% from 1990 levels.

  6. Communicating the Urgency of Climate Change to Local Government Policy Makers

    NASA Astrophysics Data System (ADS)

    Young, A.

    2004-12-01

    What are the challenges and obstacles in conveying scientific research and uncertainties about climate change to local government policy makers? What information do scientists need from local government practitioners to guide research efforts into producing more relevant information for the local government audience? What works and what doesn't in terms of communicating climate change science to non-technical audiences? Based on over a decade of experience working with local governments around the world on greenhouse gas mitigation, ICLEI - Local Governments for Sustainability has developed a unique perspective and valuable insight into effective communication on climate science that motivates policy action. In the United States practical actions necessary to mitigate global climate change occur largely at the local level. As the level of government closest to individual energy consumers, local governments play a large role in determining the energy intensity of communities. How can local governments be persuaded to make greenhouse gas mitigation a policy priority over the long-term? Access to relevant information is critical to achieving that commitment. Information that will persuade local officials to pursue climate protection commitments includes specific impacts of global warming to communities, the costs of adaptation versus mitigation, and the potential benefits of implementing greenhouse gas-reducing initiatives. The manner in which information is conveyed is also critically important. The scientific community is loath to advocate for specific policies, or to make determinate statements on topics for which research is ongoing. These communication hurdles can be overcome if the needs of local policy practitioners can be understood by the scientific community, and research goals can be cooperatively defined.

  7. Water resources in the twenty-first century; a study of the implications of climate uncertainty

    USGS Publications Warehouse

    Moss, Marshall E.; Lins, Harry F.

    1989-01-01

    The interactions of the water resources on and within the surface of the Earth with the atmosphere that surrounds it are exceedingly complex. Increased uncertainty can be attached to the availability of water of usable quality in the 21st century, therefore, because of potential anthropogenic changes in the global climate system. For the U.S. Geological Survey to continue to fulfill its mission with respect to assessing the Nation's water resources, an expanded program to study the hydrologic implications of climate uncertainty will be required. The goal for this program is to develop knowledge and information concerning the potential water-resources implications for the United States of uncertainties in climate that may result from both anthropogenic and natural changes of the Earth's atmosphere. Like most past and current water-resources programs of the Geological Survey, the climate-uncertainty program should be composed of three elements: (1) research, (2) data collection, and (3) interpretive studies. However, unlike most other programs, the climate-uncertainty program necessarily will be dominated by its research component during its early years. Critical new concerns to be addressed by the research component are (1) areal estimates of evapotranspiration, (2) hydrologic resolution within atmospheric (climatic) models at the global scale and at mesoscales, (3) linkages between hydrology and climatology, and (4) methodology for the design of data networks that will help to track the impacts of climate change on water resources. Other ongoing activities in U.S. Geological Survey research programs will be enhanced to make them more compatible with climate-uncertainty research needs. The existing hydrologic data base of the Geological Survey serves as a key element in assessing hydrologic and climatologic change. However, this data base has evolved in response to other needs for hydrologic information and probably is not as sensitive to climate change as is desirable. Therefore, as measurement and network-design methodologies are improved to account for climate-change potential, new data-collection activities will be added to the existing programs. One particular area of data-collection concern pertains to the phenomenon of evapotranspiration. Interpretive studies of the hydrologic implications of climate uncertainty will be initiated by establishing several studies at the river-basin scale in diverse hydroclimatic and demographic settings. These studies will serve as tests of the existing methodologies for studying the impacts of climate change and also will help to define subsequent research priorities. A prototype for these studies was initiated in early 1988 in the Delaware River basin.

  8. Integrating STEM Place-Based, Culturally Responsive and Citizen Science Learning in Exploring the Impacts and Feedbacks of a Changing Arctic

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Spellman, K. V.; Fabbri, C.; Comiso, J. C.; Chase, M.; Fochesatto, G. J.; Butcher, C. E.; Jones, D.; Bacsujlaky, M.; Yoshikawa, K.; Gho, C. L.; Wegner, K.

    2016-12-01

    To build capacity in navigating challenges associated with a changing climate, learning in Arctic communities must not only increase STEM and climate change literacy, but also generate new knowledge as the rapid changes occur. Among the new NASA Science Mission Directorate Science Education projects, Arctic and Earth SIGNs (STEM Integrating GLOBE and NASA assets) is providing opportunities for K-12 pre-service and in-service teachers, their students, and lifelong learners to engage in citizen science using the Global Learning and Observations to Benefit the Environment (GLOBE) methods and culturally responsive learning to help address climate change challenges within their unique community, and contribute to hypothesis driven research. This project will weave traditional knowledge and western science, and use ground observations and satellite data and best teaching practices in STEM learning, supported through a NASA cooperative agreement and collaborative partnerships. Implementation will begin in rural Alaska and grow within Alaska and throughout the United States to reach underserved and STEM underrepresented populations, through face-to-face and on-line teaching and learning as well as building partnerships among educators, scientists, local and indigenous experts, institutions, agencies, and learning communities. Partners include research and teaching institutions at the University of Alaska Fairbanks, the Association of Interior Native Educators, the North Slope Borough School District and other school districts, the Kenaitze Tribe Environmental Education program, NASA science education and research programs as well as those of NOAA and NSF, the GLOBE Implementation Office, the 4-H program and others. The program resources and model will be shared and disseminated within the United States and globally through partners for local, national and worldwide use in STEM climate change education and citizen empowerment.

  9. Blending ecology and evolution using emerging technologies to determine species distributions with a non-native pathogen in a changing climate

    Treesearch

    K. Waring; S. Cushman; A. Eckert; L. Flores-Renteria; H. Lintz; R. Sniezko; C. Still; C. Wehenkel; A. Whipple; M. Wing

    2017-01-01

    A collaborative team of researchers from the United States and Mexico has begun an exciting new research project funded by The National Science Foundation’s Macrosystems Biology program. The project will study ecological and evolutionary processes affecting the distribution of southwestern white pine (Pinus strobiformis), an important tree species of mixed conifer...

  10. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change.

    PubMed

    Schueler, Silvio; Falk, Wolfgang; Koskela, Jarkko; Lefèvre, François; Bozzano, Michele; Hubert, Jason; Kraigher, Hojka; Longauer, Roman; Olrik, Ditte C

    2014-05-01

    A transnational network of genetic conservation units for forest trees was recently documented in Europe aiming at the conservation of evolutionary processes and the adaptive potential of natural or man-made tree populations. In this study, we quantified the vulnerability of individual conservation units and the whole network to climate change using climate favourability models and the estimated velocity of climate change. Compared to the overall climate niche of the analysed target species populations at the warm and dry end of the species niche are underrepresented in the network. However, by 2100, target species in 33-65 % of conservation units, mostly located in southern Europe, will be at the limit or outside the species' current climatic niche as demonstrated by favourabilities below required model sensitivities of 95%. The highest average decrease in favourabilities throughout the network can be expected for coniferous trees although they are mainly occurring within units in mountainous landscapes for which we estimated lower velocities of change. Generally, the species-specific estimates of favourabilities showed only low correlations to the velocity of climate change in individual units, indicating that both vulnerability measures should be considered for climate risk analysis. The variation in favourabilities among target species within the same conservation units is expected to increase with climate change and will likely require a prioritization among co-occurring species. The present results suggest that there is a strong need to intensify monitoring efforts and to develop additional conservation measures for populations in the most vulnerable units. Also, our results call for continued transnational actions for genetic conservation of European forest trees, including the establishment of dynamic conservation populations outside the current species distribution ranges within European assisted migration schemes. © 2013 John Wiley & Sons Ltd.

  11. Employee customer orientation in context: how the environment moderates the influence of customer orientation on performance outcomes.

    PubMed

    Grizzle, Jerry W; Zablah, Alex R; Brown, Tom J; Mowen, John C; Lee, James M

    2009-09-01

    This empirical study evaluated the moderating effects of unit customer orientation (CO) climate and climate strength on the relationship between service workers' level of CO and their performance of customer-oriented behaviors (COBs). In addition, the study examined whether aggregate COB performance influences unit profitability. Building on multisource, multilevel data, the study's results suggest that the influence of employee CO on employee COB performance is positive when the unit's CO climate is relatively high and that the constructs are unrelated when unit CO climate is relatively low. In addition, the data reveal that unit COB performance influences unit profitability by enhancing revenues without a concomitant increase in costs. The study's results underscore the theoretical importance of considering cross-level influencers of employee-level relationships and suggest that managers should focus on creating a climate that is supportive of COBs if their units are to profit from the recruitment, hiring, and retention of customer-oriented employees.

  12. The Role of Federal Government for Climate Adaptation in the Urban Context: Results of a workshop (Invited)

    NASA Astrophysics Data System (ADS)

    Buizer, J.; Chhetri, N.; Roy, M.

    2010-12-01

    Extreme weather events in urban areas such as torrential rainfall in Chicago and London, floods in Boston and Elbe and heat waves in Europe have shed stark light on cities’ vulnerability to the effects of climate change. At the same time, cities themselves are significant net contributors to GHG’s attributable to climatic changes through the built environment (e.g. housing, roads, and parking lots), transport, consumption and recreation. In the arid region of southwestern United States, issues associated with the adequacy of water resources, urban heat island, and air quality best exemplify these contributions. This duality - cities as impacted by, and contributors to extreme climatic patterns induced by climate change, and the specific climate information needed for decision-making by city planners - provided the impetus for a two-day workshop in January 2009. Organized by Arizona State University, the workshop included city managers, planners, private sector stakeholders, water managers, researchers, and Federal program managers. The aim was to identify information needs, and data and research gaps, as well as to design strategies to address climate uncertainty. Two key approaches discussed were: a) building multiple, flexible scenarios and modeling efforts that enable decision-makers to plan for a number of possible futures, and b) matching Federal climate assets to local, regional and sectoral needs through continuous collaboration that supports decision-making within the social, economic, and political context of the place. Federal leadership in facilitating, coordinating and informing efforts that nurture the creative intellectual capacity of cities to produce integrated solutions to mitigate the effects of and adapt to climate change will go a long way in addressing urban climate adaptation in the United States. Participants outlined a number of concerns and suggestions for Federal government leaders and services associated with a national climate network. Concerns included a broad range of issues, including flood protection, sea level rise, extreme events, infrastructure investment decisions, water supply, storm-water and wastewater management, public education and outreach. Suggestions included an in-depth exploration of new roles for federal agencies, as well as new partnerships with state and local entities, the private sector, and non-governmental entities; developing specialized communicators and trusted information brokers who can connect federal science agencies to local decision makers; and integrating federal decision making with local implementation.

  13. Climate change and the water cycle: A new southwest regional climate hub curriculum unit for 6th-12th grade students

    USDA-ARS?s Scientific Manuscript database

    As climate change intensifies, increased temperatures and altered precipitation will make water, a limited resource in the arid southwestern United States, even scarcer in many locations. The USDA Southwest Regional Climate Hub (SWRCH) developed Climate Change and the Water Cycle, an engaging and sc...

  14. How pre-service elementary teachers express emotions about climate change and related disciplinary ideas

    NASA Astrophysics Data System (ADS)

    Hufnagel, Elizabeth J.

    As we face the challenges of serious environmental issues, science education has made a commitment to improving environmental literacy, in particular climate literacy (NRC, 2012; 2013). With an increased focus on climate change education in the United States, more research on the teaching and learning of this problem in science classrooms is occurring (e.g. Arslan, Cigdemoglu, & Moseley, 2012; Svihla & Linn, 2012). However, even though people experience a range of emotions about global problems like climate change (Hicks & Holden, 2007; Ojala, 2012; Rickinson, 2001), little attention is given to their emotions about the problem in science classrooms. Because emotions are evaluative (Boler, 1999; Keltner & Gross, 1999), they provided a lens for understanding how students engage personally with climate change. In this study, I drew from sociolinguistics, social psychology, and the sociology of emotions to examine a) the social interactions that allowed for emotional expressions to be constructed and b) the ways in which pre-service elementary teachers constructed emotional expressions about climate change in a science course. Three overall findings emerged: 1) emotions provided a means of understanding how students' conceptualized climate to be relevant to their lives, 2) emotional expressions and the aboutness of these expressions indicated that the students conceptualized climate change as distanced, both temporally and spatially, and 3) although most emotional constructions were distanced, there were multiple instances of emotional expressions in which students took climate change personally. Following a discussion of the findings, implications, limitations, and directions for future research are also described.

  15. New Directions in Land Remote Sensing Policy and International Cooperation

    NASA Astrophysics Data System (ADS)

    Stryker, Timothy

    2010-12-01

    Recent changes to land remote sensing satellite data policies in Brazil and the United States have led to the phenomenal growth in the delivery of land imagery to users worldwide. These new policies, which provide free and unrestricted access to land remote sensing data over a standard electronic interface, are expected to provide significant benefits to scientific and operational users, and open up new areas of Earth system science research and environmental monitoring. Freely-available data sets from the China-Brazil Earth Resources Satellites (CBERS), the U.S. Landsat satellites, and other satellite missions provide essential information for land surface monitoring, ecosystems management, disaster mitigation, and climate change research. These missions are making important contributions to the goals and objectives of regional and global terrestrial research and monitoring programs. These programs are in turn providing significant support to the goals and objectives of the United Nations Framework Convention on Climate Change (UN FCCC), the Global Earth Observation System of Systems (GEOSS), and the UN Reduction in Emissions from Deforestation and Degradation (REDD) program. These data policies are well-aligned with the "Data Democracy" initiative undertaken by the international Committee on Earth Observation Satellites (CEOS), through its current Chair, Brazil's National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais, or INPE), and its former chairs, South Africa's Council for Scientific and Industrial Research (CSIR) and Thailand's Geo Informatics and Space Technology Development Agency (GISTDA). Comparable policies for land imaging data are under consideration within Europe and Canada. Collectively, these initiatives have the potential to accelerate and improve international mission collaboration, and greatly enhance the access, use, and application of land surface imagery for environmental monitoring and societal adaption to changing climate conditions.

  16. Exploring Earth Systems Through STEM

    NASA Astrophysics Data System (ADS)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2015-04-01

    During the 2010 school year, grade 8 science teachers at Dwight D. Eisenhower Middle School in Wyckoff, New Jersey, began using the draft of A Framework for K-12 Science Education to transition to the Next Generation Science Standards. In an evolutionary process of testing and revising, teachers work collaboratively to develop problem-based science, technology, engineering, and mathematics (STEM) units that integrate earth science, physical science, and life science topics. Students explore the interconnections of Earth's atmosphere, lithosphere, hydrosphere, and biosphere through problem-based learning. Problem-based learning engages students in (1) direct observations in the field and classroom, (2) collection and analysis of data from remote sensors and hand-held sensors, and (3) analysis of physical, mathematical, and virtual models. Students use a variety of technologies and applications in their investigations, for example iPad apps, Google Classroom, and Vernier sensors. Data from NASA, NOAA, non-government organizations, and scientific research papers inspire student questions and spark investigations. Teachers create materials and websites to support student learning. Teachers curate reading, video, simulations, and other Internet resources for students. Because curriculum is standards-based as opposed to textbook-based, teacher participation in workshops and institutes frequently translates into new or improved study units. Recent programs include Toyota International Teacher Program to Costa Rica, Japan Society Going Global, Siemens STEM Academy, U.S. Naval Academy SET Sail, and NJSTA Maitland P. Simmons Memorial Award Summer Institute. Unit themes include weather and climate, introduction to general chemistry and biochemistry, and cells and heredity. Each if the three 12-week units has embedded engineering challenges inspired by current events, community needs, and/or the work of scientists. The unit segments begin with a problem, progress to observations and data collection, and end with an engineering application. English language arts and mathematics skills are developed through performance assessments that include written arguments that require students to state a claim and support the claim with evidence, analysis, and reasoning. Student selected capstone projects are completed during the final three weeks of the school year. Partnerships with universities, research scientists, and science centers are essential to the development of unit challenges. Collaborative projects have included studies of iron cycling in the Ross Sea with scientists from Rutgers University, climate and climate change using NASA data and resources from Liberty Science Center, human and natural impacts on endangered species with San Diego Zoo Institute for Conservation Research, and air quality monitoring with the University of Northern Iowa. Grant funds have supported student research projects involving air quality improvement, urban heat island mitigation, alternative energies, and sustainability.

  17. Intercomparison of Downscaling Methods on Hydrological Impact for Earth System Model of NE United States

    NASA Astrophysics Data System (ADS)

    Yang, P.; Fekete, B. M.; Rosenzweig, B.; Lengyel, F.; Vorosmarty, C. J.

    2012-12-01

    Atmospheric dynamics are essential inputs to Regional-scale Earth System Models (RESMs). Variables including surface air temperature, total precipitation, solar radiation, wind speed and humidity must be downscaled from coarse-resolution, global General Circulation Models (GCMs) to the high temporal and spatial resolution required for regional modeling. However, this downscaling procedure can be challenging due to the need to correct for bias from the GCM and to capture the spatiotemporal heterogeneity of the regional dynamics. In this study, the results obtained using several downscaling techniques and observational datasets were compared for a RESM of the Northeast Corridor of the United States. Previous efforts have enhanced GCM model outputs through bias correction using novel techniques. For example, the Climate Impact Research at Potsdam Institute developed a series of bias-corrected GCMs towards the next generation climate change scenarios (Schiermeier, 2012; Moss et al., 2010). Techniques to better represent the heterogeneity of climate variables have also been improved using statistical approaches (Maurer, 2008; Abatzoglou, 2011). For this study, four downscaling approaches to transform bias-corrected HADGEM2-ES Model output (daily at .5 x .5 degree) to the 3'*3'(longitude*latitude) daily and monthly resolution required for the Northeast RESM were compared: 1) Bilinear Interpolation, 2) Daily bias-corrected spatial downscaling (D-BCSD) with Gridded Meteorological Datasets (developed by Abazoglou 2011), 3) Monthly bias-corrected spatial disaggregation (M-BCSD) with CRU(Climate Research Unit) and 4) Dynamic Downscaling based on Weather Research and Forecast (WRF) model. Spatio-temporal analysis of the variability in precipitation was conducted over the study domain. Validation of the variables of different downscaling methods against observational datasets was carried out for assessment of the downscaled climate model outputs. The effects of using the different approaches to downscale atmospheric variables (specifically air temperature and precipitation) for use as inputs to the Water Balance Model (WBMPlus, Vorosmarty et al., 1998;Wisser et al., 2008) for simulation of daily discharge and monthly stream flow in the Northeast US for a 100-year period in the 21st century were also assessed. Statistical techniques especially monthly bias-corrected spatial disaggregation (M-BCSD) showed potential advantage among other methods for the daily discharge and monthly stream flow simulation. However, Dynamic Downscaling will provide important complements to the statistical approaches tested.

  18. Status and management of moose in the northeastern United States

    USGS Publications Warehouse

    Wattles, David W.; DeStefano, Stephen

    2011-01-01

    Moose (Alces alces) populations have recolonized much of their historic range in the northeastern United States in the past 30 years, with their southern range edge extending to southern New England and northern New York. This southerly expansion occurred when certain other populations in the United States were in decline along the southern range edge, with climate change often cited as a probable cause. The areas that moose have recently occupied in the northeastern United States are some of the most densely human populated in moose range, which has raised concern about human safety and moose-vehicle collisions (MVC). We conducted a literature search about moose in the northeastern United States, and distributed a questionnaire and conducted phone interviews with regional biologists responsible for moose management to determine the status of moose, management activity, and research deficiencies and needs. Moose numbers appear stable throughout much of the region, with slow population growth in northern New York. Management activity ranges from regulated harvest of moose in Maine, New Hampshire, and Vermont, to no active management in southern New England and New York. The combined annual harvest in Maine, New Hampshire, and Vermont is >3,000. MVCs are a widespread regional concern with >1,000 occurring annually involving several human fatalities. Research should address impacts of parasitism by winter tick (Dermacentor albipictus) and brain-worm (Parelaphostrongylus tenuis) on productivity and mortality of moose, influence of climate change on population dynamics and range, and conflicts in areas with high human population density.

  19. Characterizing tradeoffs between water and food under different climate regimes across the United States

    NASA Astrophysics Data System (ADS)

    Troy, T.; Zhu, X.; Kipgen, C.; Li, X.; Pal, I.

    2015-12-01

    As water demand approaches or exceeds the available water supply in many regions of the globe, water stress will become increasingly prevalent with potentially necessary tradeoffs required between water prioritization amongst sectors. Agriculture is the largest consumptive water user in the US, and irrigation plays a vital role in ensuring a stable food supply by buffering against climate extremes. However, it also plays a negative role in inducing water stress in many regions. Much research has focused on reducing agricultural water use, but this needs to be complemented by better quantifying the benefit of irrigation on crop yields under a range of climate conditions. Regions are identified with significant irrigation benefits with and without water stress to parse apart the role of climate, crop choice, and water usage to then evaluate tradeoffs with food production in a climate-water-food nexus.

  20. Socio-economic impacts of climate change on rural United States

    Treesearch

    Pankaj Lal; Janaki R.R. Alavalapati; Evan Mercer

    2011-01-01

    Directly or indirectly, positively or negatively, climate change will affect all sectors and regions of the United States. The impacts, however, will not be homogenous across regions, sectors, population groups or time. The literature specifically related to how climate change will affect rural communities, their resilience, and adaptive capacity in the United States (...

  1. Earth Systems Questions in Experimental Climate Change Science: Pressing Questions and Necessary Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmond, B.

    2002-05-20

    Sixty-four scientists from universities, national laboratories, and other research institutions worldwide met to evaluate the feasibility and potential of the Biosphere2 Laboratory (B2L) as an inclusive multi-user scientific facility (i.e., a facility open to researchers from all institutions, according to agreed principles of access) for earth system studies and engineering research, education, and training relevant to the mission of the United States Department of Energy (DOE).

  2. Colloborative International Resesarch on the Water Energy Nexus: Lessons Learned from the Clean Energy Research Center - Water Energy Technologies (CERC-WET)

    NASA Astrophysics Data System (ADS)

    Remick, C.

    2017-12-01

    The U.S.-China Clean Energy Research Center - Water and Energy Technologies (CERC-WET) is a global research partnership focused on developing and deploying technologies that to allow the U.S. and China to thrive in a future with constrained energy and water resources in a changing global climate. This presentation outlines and addresses the opportunities and challenges for international research collaboration on the so called "water-energy nexus", with a focus on industrial partnership, market readiness, and intellectual property. The U.S. Department of Energy created the CERC program as a research and development partnership between the United States and China to accelerate the development and deployment of advanced clean energy technologies. The United States and China are not only the world's largest economies; they are also the world's largest energy producers and energy consumers. Together, they account for about 40% of annual global greenhouse gas emissions. The bilateral investment in CERC-WET will total $50 million over five years and will target on the emerging issues and cut-edge research on the topics of (1) water use reduction at thermoelectric plants; (2) treatment and management of non-traditional waters; (3) improvements in sustainable hydropower design and operation; (4) climate impact modeling, methods, and scenarios to support improved understanding of energy and water systems; and (5) data and analysis to inform planning and policy.

  3. Climate Prediction Center - Monitoring & Data Index

    Science.gov Websites

    Data North American Monsoon Experiment United States Climate Data & Graphics ENSO Impacts on the United States Previous ENSO Events El Niño Impacts on United States Climate El Niño Impacts State by State La Niña Impacts by Region El Niño's Influence on United States Precipitation Amounts El Niño

  4. Adventure Learning @ Greenland

    NASA Astrophysics Data System (ADS)

    Miller, B. G.; Cox, C. J.; Hougham, J.; Walden, V. P.; Eitel, K.; Albano, A.

    2013-12-01

    Teaching the general public and K-12 communities about scientific research has taken on greater importance as climate change increasingly impacts the world we live in. Science researchers and the educational community have a widening responsibility to produce and deliver curriculum and content that is timely, scientifically sound and engaging. To address this challenge, in the summer of 2012 the Adventure Learning @ Greenland (AL@GL) project, a United States' National Science Foundation (NSF) funded initiative, used hands-on and web-based climate science experiences for high school students to promote climate and science literacy. This presentation will report on an innovative approach to education and outreach for environmental science research known as Adventure Learning (AL). The purpose of AL@GL was to engage high school students in the US, and in Greenland, in atmospheric research that is being conducted in the Arctic to enhance climate and science literacy. Climate and science literacy was explored via three fundamental concepts: radiation, the greenhouse effect, and climate vs. weather. Over the course of the project, students in each location engaged in activities and conducted experiments through the use of scientific instrumentation. Students were taught science research principles associated with an atmospheric observatory at Summit Station, Greenland with the objective of connecting climate science in the Arctic to student's local environments. Summit Station is located on the Greenland Ice Sheet [72°N, 38°W, 3200 m] and was the primary location of interest. Approximately 35 students at multiple locations in Idaho, USA, and Greenland participated in the hybrid learning environments as part of this project. The AL@GL project engaged students in an inquiry-based curriculum with content that highlighted a cutting-edge geophysical research initiative at Summit: the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit (ICECAPS) project (Shupe et al. 2012; http://www.esrl.noaa.gov/psd/arctic/observatories/summit/). ICECAPS is an atmospheric observatory focused on obtaining high temporal resolution measurements of clouds from ground-based remote sensors including radar, lidar, infrared spectra and others. ICECAPS also launches radiosondes twice daily. This large suite of complementary observations are providing an important baseline understanding of cloud and atmospheric conditions over the central Greenland ice sheet and are supporting Arctic climate research on cloud processes and climate model validation. ICECAPS measures parameters that are associated with those identified in student misconceptions, for example, different types of atmospheric radiation, the effect of greenhouse gases, and climate versus weather (see also Haller et al., 2011). Thus, ICECAPS research and the AL@GL project combined to create a learning environment and educational activities that sought to increase climate literacy in high school students as well as communicate important atmospheric research to a broader audience.

  5. The influence of an extended Atlantic hurricane season on inland flooding potential in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Stone, Monica H.; Cohen, Sagy

    2017-03-01

    Recent tropical cyclones, like Hurricane Katrina, have been some of the worst the United States has experienced. Tropical cyclones are expected to intensify, bringing about 20 % more precipitation, in the near future in response to global climate warming. Further, global climate warming may extend the hurricane season. This study focuses on four major river basins (Neches, Pearl, Mobile, and Roanoke) in the southeastern United States that are frequently impacted by tropical cyclones. An analysis of the timing of tropical cyclones that impact these river basins found that most occur during the low-discharge season and thus rarely produce riverine flooding conditions. However, an extension of the current hurricane season of June-November could encroach upon the high-discharge seasons in these basins, increasing the susceptibility for riverine hurricane-induced flooding. Our results indicate that 28-180 % more days would be at risk of flooding from an average tropical cyclone with an extension of the hurricane season to May-December (just 2 months longer). Future research should aim to extend this analysis to all river basins in the United States that are impacted by tropical cyclones in order to provide a bigger picture of which areas are likely to experience the worst increases in flooding risk due to a probable extension of the hurricane season with expected global climate change in the near future.

  6. Developing Models for Predictive Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, John B; Jones, Philip W

    2007-01-01

    The Community Climate System Model results from a multi-agency collaboration designed to construct cutting-edge climate science simulation models for a broad research community. Predictive climate simulations are currently being prepared for the petascale computers of the near future. Modeling capabilities are continuously being improved in order to provide better answers to critical questions about Earth's climate. Climate change and its implications are front page news in today's world. Could global warming be responsible for the July 2006 heat waves in Europe and the United States? Should more resources be devoted to preparing for an increase in the frequency of strongmore » tropical storms and hurricanes like Katrina? Will coastal cities be flooded due to a rise in sea level? The National Climatic Data Center (NCDC), which archives all weather data for the nation, reports that global surface temperatures have increased over the last century, and that the rate of increase is three times greater since 1976. Will temperatures continue to climb at this rate, will they decline again, or will the rate of increase become even steeper? To address such a flurry of questions, scientists must adopt a systematic approach and develop a predictive framework. With responsibility for advising on energy and technology strategies, the DOE is dedicated to advancing climate research in order to elucidate the causes of climate change, including the role of carbon loading from fossil fuel use. Thus, climate science--which by nature involves advanced computing technology and methods--has been the focus of a number of DOE's SciDAC research projects. Dr. John Drake (ORNL) and Dr. Philip Jones (LANL) served as principal investigators on the SciDAC project, 'Collaborative Design and Development of the Community Climate System Model for Terascale Computers.' The Community Climate System Model (CCSM) is a fully-coupled global system that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. The collaborative SciDAC team--including over a dozen researchers at institutions around the country--developed, validated, documented, and optimized the performance of CCSM using the latest software engineering approaches, computational technology, and scientific knowledge. Many of the factors that must be accounted for in a comprehensive model of the climate system are illustrated in figure 1.« less

  7. CAN-DOO: The Climate Action Network through Direct Observations and Outreach

    NASA Astrophysics Data System (ADS)

    Taubman, B.; Sherman, J. P.; Perry, L. B.; Markham, J.; Kelly, G.

    2011-12-01

    The urgency of climate change demands a greater understanding of our climate system, not only by the leaders of today, but by the scientists, policy makers, and citizens of tomorrow. Unfortunately, a large segment of the population currently possesses inadequate knowledge of climate science. In direct response to a need for greater scientific literacy with respect to climate science, researchers from Appalachian State University's Appalachian Atmospheric Interdisciplinary Research (AppalAIR) group, with support from NASA, have developed CAN-DOO: the Climate Action Network through Direct Observations and Outreach. CAN-DOO addresses climate science literacy by 1) Developing the infrastructure for sustaining and expanding public outreach through long-term climate measurements capable of complementing existing NASA measurements, 2) Enhancing public awareness of climate science and NASA's role in advancing our understanding of the Earth System, and 3) Introducing Science, Technology, Engineering, and Mathematics principles to homeschooled, public school, and Appalachian State University students through applied climate science activities. Project partners include the Grandfather Mountain Stewardship Foundation, Pisgah Astronomical Research Institute, and local elementary schools. In partnership with Grandfather Mountain, climate science awareness is promoted through citizen science activities, interactive public displays, and staff training. CAN-DOO engages students by involving them in the entire scientific investigative process as applied to climate science. We introduce local elementary and middle school students, homeschooled students throughout North Carolina, and undergraduate students in a new Global Climate Change course and select other courses at Appalachian State University to instrument assembly, measurement techniques, data collection, hypothesis testing, and drawing conclusions. Results are placed in the proper context via comparisons with other student data products, local research-grade measurements, and NASA measurements. Several educational modules have been developed that address specific topics in climate science. The modules are scalable and have been successfully implemented at levels ranging from 2nd grade through first-year graduate as well as with citizen science groups. They also can be applied in user-desired segments to a variety of Earth Science units. In this paper, we will introduce the project activities and present results from the first year of observations and outreach, with a special emphasis on two of the developed modules, the surface energy balance and aerosol optical depth module.

  8. Climate change, estuaries and anadromous fish habitat in the northeastern United States: models, downscaling and uncertainty

    NASA Astrophysics Data System (ADS)

    Muhling, B.; Gaitan, C. F.; Tommasi, D.; Saba, V. S.; Stock, C. A.; Dixon, K. W.

    2016-02-01

    Estuaries of the northeastern United States provide essential habitat for many anadromous fishes, across a range of life stages. Climate change is likely to impact estuarine environments and habitats through multiple pathways. Increasing air temperatures will result in a warming water column, and potentially increased stratification. In addition, changes to precipitation patterns may alter freshwater inflow dynamics, leading to altered seasonal salinity regimes. However, the spatial resolution of global climate models is generally insufficient to resolve these processes at the scale of individual estuaries. Global models can be downscaled to a regional resolution using a variety of dynamical and statistical methods. In this study, we examined projections of estuarine conditions, and future habitat extent, for several anadromous fishes in the Chesapeake Bay using different statistical downscaling methods. Sources of error from physical and biological models were quantified, and key areas of uncertainty were highlighted. Results suggested that future projections of the distribution and recruitment of species most strongly linked to freshwater flow dynamics had the highest levels of uncertainty. The sensitivity of different life stages to environmental conditions, and the population-level responses of anadromous species to climate change, were identified as important areas for further research.

  9. A Research Study to Develop an Army-Wide Equal Opportunity Training Model. Volume 1

    DTIC Science & Technology

    1979-03-01

    three areas is detailed below. Personal Discrimination Personal racism (or sexism ) is defined in AR 600-21 in terms of " The acting out of prejudices by...example (6) Diagnosing unit climate on racism / sexism issues (a) unit survey (b) informal feedback (c) personal observation (7) Developing...various communities out of which the modem serviceman emerges. • Group Leadership Practicum-to provide the student with the theory and practice in

  10. Perceptions of and Attitudes Toward Climate Change in the Southeastern United States

    Treesearch

    David Himmelfarb; John Schelhas; Sarah Hitchner; Cassandra Johnson Gaither; KathErine Dunbar; J. Peter Brosius

    2014-01-01

    Despite a global scientific consensus on the anthropogenic nature of climate change, the issue remains highly contentious in the United States, stifling public debate and action on the issue. Local perceptions of and attitudes toward climate change-how different groups of people outside of the professional climate science community make sense of changes in climate in...

  11. Global Climate Change Impacts in the United States

    USDA-ARS?s Scientific Manuscript database

    Climate change impacts on the United States vary by region and sector of the economy. Responses to climate change fall into two major categories. Mitigation focuses on the reducing emissions of heat-trapping gases or increasing their uptake to reduce the amount and speed of climate change. Adaptatio...

  12. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment

    EPA Science Inventory

    This assessment strengthens and expands our understanding of climate-related health impacts by providing a more definitive description of climate-related health burdens in the United States. It builds on the 2014 USGCRP National Climate Assessment and reviews and synthesizes key ...

  13. 75 FR 17989 - Bureau of Oceans and International Environmental Scientific Affairs; Climate Action Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... opportunity to submit comments to the draft fifth National Communication on U.S. climate change actions for the United Nations Framework Convention on Climate Change (UNFCCC). In June 1992, the United States... addressing climate change. See SUPPLEMENTARY INFORMATION for instructions on accessing the electronic version...

  14. U.S. - India Collaboration on Air Quality and Climate Research and Education

    EPA Science Inventory

    With partial support from the U.s. National Science Foundation and U.S. Department of Energy, a workshop held March 14 - 24,2011, in India, brought together experts from the United States and India (among other countries) with a common vision for identifying priority areas of res...

  15. WebStart WEPS: Remote data access and model execution functionality added to WEPS

    USDA-ARS?s Scientific Manuscript database

    The Wind Erosion Prediction System (WEPS) is a daily time step, process based wind erosion model developed by the United States Department of Agriculture - Agricultural Research Service (USDA-ARS). WEPS simulates climate and management driven changes to the surface/vegetation/soil state on a daily b...

  16. Carbon pools and flux in U.S. forest products

    Treesearch

    Linda S. Heath; Richard A. Birdsey; Clark Row; Andrew J. Plantinga

    1996-01-01

    Increasing recognition that anthropogenic CO2 and other greenhouse gas emissions may effect climate change has prompted research studies on global carbon (C) budgets and international agreements for action. At the United Nations Conference on Environment and Development in 1992, world leaders and citizens gathered and initiated the Framework...

  17. Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stokes, G.M.; Tichler, J.L.

    The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research strategy to address global climate change and is a direct continuation of DOE's decade-long effort to improve the ability of General Circulation Models (GCMs) to provide reliable simulations of regional, and long-term climate change in response to increasing greenhouse gases. The effort is multi-disciplinary and multi-agency, involving universities, private research organizations and more than a dozen government laboratories. The objective of the ARM Research is to provide an experimental testbed for the studymore » of important atmospheric effects, particularly cloud and radiative processes, and to test parameterizations of these processes for use in atmospheric models. This effort will support the continued and rapid improvement of GCM predictive capability. 2 refs.« less

  18. Put a Frame on It: Contextualizing Climate Change for Museum Visitors

    NASA Astrophysics Data System (ADS)

    Canning, Katharine

    Public opinion polls continue to show that Americans are divided---particularly along political and ideological lines---on whether climate change is real and warrants immediate action. Those in the natural and social sciences have recognized that effective communication is key to closing the gap that exists between scientific and public understanding on this issue. A body of social science research on climate change communication has emerged within the last decade. This field has identified strategies for climate change communicators and educators, emphasizing the importance of framing climate change issues in ways that help it resonate with a wider range of public concerns and values in order to develop a shared belief regarding the necessity of action. Museum exhibits and programs on climate change that were developed within the last five years are likely to have benefitted from this body of work. This qualitative research seeks to examine and analyze the various ways museums in the United States are communicating about climate change related issues to the public. Three case studies of museum exhibits on climate change issues were examined. The scope and purpose of climate change communication in museums, the specific messages that museums are choosing to communicate, and how those messages are being framed for public audiences were explored through these case studies. The findings suggest that museums are considering their audience when framing messages about climate change and have used work from the climate change communication field to inform message development. In particular, museums are making climate change issues more relevant by emphasizing social, economic, and human health concerns, and are considering strategies to counteract fear-fatigue and empower visitors to take action.

  19. Achieving climate connectivity in a fragmented landscape

    PubMed Central

    Lawler, Joshua J.; McRae, Brad H.; Nuñez, Tristan A.; Theobald, David M.

    2016-01-01

    The contiguous United States contains a disconnected patchwork of natural lands. This fragmentation by human activities limits species’ ability to track suitable climates as they rapidly shift. However, most models that project species movement needs have not examined where fragmentation will limit those movements. Here, we quantify climate connectivity, the capacity of landscape configuration to allow species movement in the face of dynamically shifting climate. Using this metric, we assess to what extent habitat fragmentation will limit species movements in response to climate change. We then evaluate how creating corridors to promote climate connectivity could potentially mitigate these restrictions, and we assess where strategies to increase connectivity will be most beneficial. By analyzing fragmentation patterns across the contiguous United States, we demonstrate that only 41% of natural land area retains enough connectivity to allow plants and animals to maintain climatic parity as the climate warms. In the eastern United States, less than 2% of natural area is sufficiently connected. Introducing corridors to facilitate movement through human-dominated regions increases the percentage of climatically connected natural area to 65%, with the most impactful gains in low-elevation regions, particularly in the southeastern United States. These climate connectivity analyses allow ecologists and conservation practitioners to determine the most effective regions for increasing connectivity. More importantly, our findings demonstrate that increasing climate connectivity is critical for allowing species to track rapidly changing climates, reconfiguring habitats to promote access to suitable climates. PMID:27298349

  20. Achieving climate connectivity in a fragmented landscape.

    PubMed

    McGuire, Jenny L; Lawler, Joshua J; McRae, Brad H; Nuñez, Tristan A; Theobald, David M

    2016-06-28

    The contiguous United States contains a disconnected patchwork of natural lands. This fragmentation by human activities limits species' ability to track suitable climates as they rapidly shift. However, most models that project species movement needs have not examined where fragmentation will limit those movements. Here, we quantify climate connectivity, the capacity of landscape configuration to allow species movement in the face of dynamically shifting climate. Using this metric, we assess to what extent habitat fragmentation will limit species movements in response to climate change. We then evaluate how creating corridors to promote climate connectivity could potentially mitigate these restrictions, and we assess where strategies to increase connectivity will be most beneficial. By analyzing fragmentation patterns across the contiguous United States, we demonstrate that only 41% of natural land area retains enough connectivity to allow plants and animals to maintain climatic parity as the climate warms. In the eastern United States, less than 2% of natural area is sufficiently connected. Introducing corridors to facilitate movement through human-dominated regions increases the percentage of climatically connected natural area to 65%, with the most impactful gains in low-elevation regions, particularly in the southeastern United States. These climate connectivity analyses allow ecologists and conservation practitioners to determine the most effective regions for increasing connectivity. More importantly, our findings demonstrate that increasing climate connectivity is critical for allowing species to track rapidly changing climates, reconfiguring habitats to promote access to suitable climates.

  1. National Climate Change and Wildlife Science Center project accomplishments: highlights

    USGS Publications Warehouse

    Holl, Sally

    2011-01-01

    The National Climate Change and Wildlife Science Center (NCCWSC) has invested more than $20M since 2008 to put cutting-edge climate science research in the hands of resource managers across the Nation. With NCCWSC support, more than 25 cooperative research initiatives led by U.S. Geological Survey (USGS) researchers and technical staff are advancing our understanding of habitats and species to provide guidance to managers in the face of a changing climate. Projects focus on quantifying and predicting interactions between climate, habitats, species, and other natural resources such as water. Spatial scales of the projects range from the continent of North America, to a regional scale such as the Pacific Northwest United States, to a landscape scale such as the Florida Everglades. Time scales range from the outset of the 20th century to the end of the 21st century. Projects often lead to workshops, presentations, publications and the creation of new websites, computer models, and data visualization tools. Partnership-building is also a key focus of the NCCWSC-supported projects. New and on-going cooperative partnerships have been forged and strengthened with resource managers and scientists at Federal, tribal, state, local, academic, and non-governmental organizations. USGS scientists work closely with resource managers to produce timely and relevant results that can assist managers and policy makers in current resource management decisions. This fact sheet highlights accomplishments of five NCCWSC projects.

  2. EUPORIAS: plans and preliminary results

    NASA Astrophysics Data System (ADS)

    Buontempo, C.

    2013-12-01

    Recent advances in our understanding and ability to forecast climate variability have meant that skilful predictions are beginning to be routinely made on seasonal to decadal (s2d) timescales. Such forecasts have the potential to be of great value to a wide range of decision-making, where outcomes are strongly influenced by variations in the climate. In 2012 the European Commission funded EUPORIAS, a four year long project to develop prototype end-to-end climate impact prediction services operating on a seasonal to decadal timescale, and assess their value in informing decision-making. EUPORIAS commenced on 1 November 2012, coordinated by the UK Met Office leading a consortium of 24 organisations representing world-class European climate research and climate service centres, expertise in impacts assessments and seasonal predictions, two United Nations agencies, specialists in new media, and commercial companies in climate-vulnerable sectors such as energy, water and tourism. The poster describes the setup of the project, its main outcome and some of the very preliminary results.

  3. Validation of the group nuclear safety climate questionnaire.

    PubMed

    Navarro, M Felisa Latorre; Gracia Lerín, Francisco J; Tomás, Inés; Peiró Silla, José María

    2013-09-01

    Group safety climate is a leading indicator of safety performance in high reliability organizations. Zohar and Luria (2005) developed a Group Safety Climate scale (ZGSC) and found it to have a single factor. The ZGSC scale was used as a basis in this study with the researchers rewording almost half of the items on this scale, changing the referents from the leader to the group, and trying to validate a two-factor scale. The sample was composed of 566 employees in 50 groups from a Spanish nuclear power plant. Item analysis, reliability, correlations, aggregation indexes and CFA were performed. Results revealed that the construct was shared by each unit, and our reworded Group Safety Climate (GSC) scale showed a one-factor structure and correlated to organizational safety climate, formalized procedures, safety behavior, and time pressure. This validation of the one-factor structure of the Zohar and Luria (2005) scale could strengthen and spread this scale and measure group safety climate more effectively. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  4. GLOBAL CHANGE RESEARCH NEWS #16: POTENTIAL HEALTH IMPACTS OF CLIMATE VARIABILITY AND CHANGE FOR THE UNITED STATES, EXECUTIVE SUMMARY OF THE REPORT OF THE HEALTH SECTOR OF THE U.S. NATIONAL ASSESSMENT

    EPA Science Inventory

    The health sector assessment was sponsored by and conducted in partnership with EPA's Global Change Research Program. The report was produced by a Health Sector Work Group, co-chaired by Dr. Jonathan Patz (Johns Hopkins University) and Dr. Michael McGeehin (CDC), and this report ...

  5. Climate and climate variability of the wind power resources in the Great Lakes region of the United States

    Treesearch

    X. Li; S. Zhong; X. Bian; W.E. Heilman

    2010-01-01

    The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...

  6. Climate change indicators in the United States

    DOT National Transportation Integrated Search

    2010-04-01

    The U.S. Environmental Protection Agency (EPA) has published this report, Climate Change Indicators in the United States, to help readers interpret a set of important indicators to better understand climate change. The report presents 24 indicators, ...

  7. Show Me the Evidence: How a Unit Challenge Can Support Middle School Teachers and Students in Investigating Climate Change Using Real-World Data and Science Practices

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Tubman, S.; Grazul, K.; Bluth, G.; Huntoon, J. E.

    2017-12-01

    Michigan Science Teaching and Assessment Reform (Mi-STAR) is developing an NGSS-aligned integrated science middle school curriculum and associated teacher professional learning program that addresses all performance expectations for the 6-8 grade-band. The Mi-STAR instructional model is a unit- and lesson-level model that scaffolds students in using science practices to investigate scientific phenomena and apply engineering principles to address a real-world challenge. Mi-STAR has developed an 8th grade unit on climate change based on the Mi-STAR instructional model and NGSS performance expectations. The unit was developed in collaboration with Michigan teachers, climate scientists, and curriculum developers. The unit puts students in the role of advisers to local officials who need an evidence-based explanation of climate change and recommendations about community-based actions to address it. Students discover puzzling signs of global climate change, ask questions about these signs, and engage in a series of investigations using simulations and real data to develop scientific models for the mechanisms of climate change. Students use their models as the basis for evidence-based arguments about the causes and impacts of climate change and employ engineering practices to propose local actions in their community to address climate change. Dedicated professional learning supports teachers before and during implementation of the unit. Before implementing the unit, all teachers complete an online self-paced "unit primer" during which they assume the role of their students as they are introduced to the unit challenge. During this experience, teachers experience science as a practice by using real data and simulations to develop a model of the causes of climate change, just as their students will later do. During unit implementation, teachers are part of a professional learning community led by a teacher facilitator in their local area or school. This professional learning community serves as a resource both for implementing student-directed pedagogy and for the development of content knowledge. Eight teachers pilot tested the unit with more than 500 students in spring 2017, and teachers who participated in the first professional learning cohort are currently implementing the unit around Michigan.

  8. 76 FR 17962 - Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater Resources of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... Understanding of Climate Change Impacts on Freshwater Resources of the United States AGENCY: U.S. Geological... Scientific Understanding of Climate Change Impacts on Freshwater Resources of the United States''. The report reviews key issues related to freshwater resource data and climate change and identifies next steps to...

  9. Taming Typhon: Advancing Climate Literacy by Coordinating Federal Earth System Science Education Investments Through the U.S. Climate Change Science Program

    NASA Astrophysics Data System (ADS)

    Karsten, J. L.; Niepold, F.; Wei, M.; Waple, A. M.

    2008-12-01

    Thirteen Federal agencies in the United States invest in research, communication, and education activities related to climate and global change. The U.S. Climate Change Science Program (CCSP) works to integrate the research activities of these different agencies, with oversight from the Office of Science and Technology Policy, the Council on Environmental Quality, the National Economic Council and the Office of Management and Budget. The CCSP is the result of a Presidential initative in 2001 to build on the Global Change Research Program, which exists as a result of the Global Change Research Act of 1990. This initiative was to shift the focus of the Program from 'discovery and characterization' to 'differentiation and strategy investigation.' With this shift, CCSP's focus is now on evaluating optimal strategies for addressing climate change risks, improving coordination among the Federal agencies, communicating research results to all stakeholders (including national policy leaders and local resource managers), and improving public debate and decision-making related to global change. Implicit to these activities is the need to educate the general public about the science of climate change and its consequences, as well as coordinate Federal investments related to climate change education. This is no small task, given the variety of missions and approaches of the participating agencies. Recognizing that its Communications Interagency Working Group (CIWG) does not have the expertise or focus to adequately address issues related to science education, the CCSP recently established an ad-hoc Education Interagency Working Group (EIWG), comprising representatives from all 13 agencies, that will work closely with the CIWG to enhance education goals. Its mission is to advance literacy in climate and related sciences and increase informed decision making for the Nation. The EIWG envisions that its primary activities in the near-term will be focused on establishing: (1) a consensus framework to define climate literacy; (2) a protocol and process for vetting, reviewing, and assuring scientific quality of educational materials related to climate change; (3) a Federal network of professionals who can share, access, and identify complementary educational materials; (4) a suite of evaluation tools to gauge effectiveness of interagency programs related to climate change education; (5) a clearinghouse or central repository of climate change education resources and expertise; and (6) professional development resources for educators seeking to improve their understanding of climate change and related Earth system science principles.

  10. The dual threat of urbanisation and climate change in urbanising catchments - integrated science to meet future challenges - a case study of the Thames catchment, United Kingdom.

    NASA Astrophysics Data System (ADS)

    Miller, J.; Hutchins, M.; McGrane, S. J.; Kjeldsen, T. R.; Rowland, C.; Hagen-Zanker, A.; Rickards, N. J.; Fidal, J.; Vesuviano, G.; Hitt, O.

    2016-12-01

    Rapid urbanisation coupled with climate change poses a significant threat of increased flooding in urban locations around the world. In the UK there is a lack of joined up science and monitoring data to support model development and management decisions required for a rapidly growing population. Here, we present the findings from a multi-disciplinary research project entitled POLLCURB involving a combination of both monitoring and modelling approaches, including participatory citizen science, to evaluate impacts of urbanisation and climate change on flooding and water quality in the Thames basin, United Kingdom. Empirical analysis of five years of monitoring data in intensely monitored sub-catchments reveals the degree to which urban land-use impacts upon hydrological and water quality response. Analysis reveals hydrological impacts do not always follow the expected urban gradient due to intra-catchment differences in hydraulic functions. Statistical detection and attribution techniques are used to assess long-term river data, highlighting strong signals of urban growth after climate variability is accounted for. Historical land-use change mapping of the Thames basin using remote sensing shows growth in urban coverage from around 13% (1980's) to 15% (2015) and was used to develop and train a cellular automata model. Projections of a business-as-usual scenario indicates future growth of 12% by 2035. Future potential changes to flooding and water quality are assessed under urbanisation and climate scenarios for the Thames region to provide comparative and cumulative analysis of how these drivers will affect existing and new urban areas within the Thames basin. Results show the relative and cumulative impacts that both urbanisation and climate change have on basin hydrology and water quality, and highlight the improvements in modelling accuracy when utilising high-resolution data. Discussion is made of results in relation to modelling, policy, mitigation options, and implications for further scientific research.

  11. Building International Research Partnerships in the North Atlantic-Arctic Region

    NASA Astrophysics Data System (ADS)

    Benway, Heather M.; Hofmann, Eileen; St. John, Michael

    2014-09-01

    The North Atlantic-Arctic region, which is critical to the health and socioeconomic well being of North America and Europe, is susceptible to climate-driven changes in circulation, biogeochemistry, and marine ecosystems. The need for strong investment in the study of biogeochemical and ecosystem processes and interactions with physical processes over a range of time and space scales in this region was clearly stated in the 2013 Galway Declaration, an intergovernmental statement on Atlantic Ocean cooperation (http://europa.eu/rapid/press-release_IP-13-459_en.htm). Subsequently, a workshop was held to bring together researchers from the United States, Canada, and Europe with expertise across multiple disciplines to discuss an international research initiative focused on key features, processes, and ecosystem services (e.g., Atlantic Meridional Overturning Circulation, spring bloom dynamics, fisheries, etc.) and associated sensitivities to climate changes.

  12. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States.

    PubMed Central

    Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D

    2001-01-01

    Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation. PMID:11359686

  13. A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim

    2014-01-01

    To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VICmore » simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.« less

  14. Walk the Talk: Teachers as Leaders in Climate Change Education

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Bartholow, S.; Larson, A.

    2014-12-01

    The notion of teachers as leaders and communicators is not new but rather it has been limited in scope. Teachers have long served as team leaders, department chairs, and curriculum developers. But what happens when you go beyond these typical roles in professional development? Can teachers become lead communicators beyond the classroom? Can they become leaders of change on important topics like the climate? For nearly a decade, PolarTREC (Teachers and Researchers Exploring and Collaborating), funded by the National Science Foundation, has been teaming teachers with research projects in all fields of polar science. Teachers participate in hands-on field research experiences in the polar regions which focus heavily on climate change and climate science. Administrated by the Arctic Research Consortium of the United States, the goal of PolarTREC is to invigorate polar science education and understanding by bringing K-12 educators and polar researchers together. The program fosters a teacher and researcher network, which accelerates the cross-pollination of knowledge in science practices, findings, and classroom implementation throughout disciplines. Evaluation data exposes a crucial dynamic that increases the potential for a successful climate change science campaign. Data indicates that teachers can tackle challenges such as reframing climate change science to better address the need for a particular campaign, as well as garnering the science project the necessary support through effective, authentic, and tangible communication efforts to policymakers, funders, students, and the public. Researchers reported the value of explaining their science, in-situ, allowed them to reframe and rework the objectives of the science project to attain meaningful outcomes. More than half of the researchers specifically noted that one of the strengths of the PolarTREC project is its benefit to the scientific process. The researchers also viewed PolarTREC as an essential outreach activity and improved the public perception of their scientific endeavors. This presentation will speak to the PolarTREC program's best practice and findings on improved polar science communications as well as how the teachers have become the lead communicators in this time of rapid global change across all disciplines.

  15. Using Dynamically Downscaled Climate Model Outputs to Inform Projections of Extreme Precipitation Events

    NASA Technical Reports Server (NTRS)

    Wobus, Cameron; Reynolds, Lara; Jones, Russell; Horton, Radley; Smith, Joel; Fries, J. Stephen; Tryby, Michael; Spero, Tanya; Nolte, Chris

    2015-01-01

    Many of the storms that generate damaging floods are caused by locally intense, sub-daily precipitation, yet the spatial and temporal resolution of the most widely available climate model outputs are both too coarse to simulate these events. Thus there is often a disconnect between the nature of the events that cause damaging floods and the models used to project how climate change might influence their magnitude. This could be a particular problem when developing scenarios to inform future storm water management options under future climate scenarios. In this study we sought to close this gap, using sub-daily outputs from the Weather Research and Forecasting model (WRF) from each of the nine climate regions in the United States. Specifically, we asked 1) whether WRF outputs projected consistent patterns of change for sub-daily and daily precipitation extremes; and 2) whether this dynamically downscaled model projected different magnitudes of change for 3-hourly vs 24-hourly extreme events. We extracted annual maximum values for 3-hour through 24-hour precipitation totals from an 11-year time series of hindcast (1995-2005) and mid-century (2045-2055) climate, and calculated the direction and magnitude of change for 3-hour and 24-hour extreme events over this timeframe. The model results project that the magnitude of both 3-hour and 24-hour events will increase over most regions of the United States, but there was no clear or consistent difference in the relative magnitudes of change for sub-daily vs daily events.

  16. Associations between perceived crisis mode work climate and poor information exchange within hospitals.

    PubMed

    Patterson, Mark E; Bogart, Miller S; Starr, Kathleen R

    2015-03-01

    Because hospital units operating in crisis mode could create unsafe transitions of care due to miscommunication, our objective was to estimate associations between perceived crisis mode work climate and patient information exchange problems within hospitals. Self-reported data from 247,140 hospital staff members across 884 hospitals were obtained from the 2010 Hospital Survey on Patient Safety Culture. Presence of a crisis mode work climate was defined as respondents agreeing that the hospital unit in which they work tries to do too much too quickly. Presence of patient information exchange problems was defined as respondents agreeing that problems often occur in exchanging patient information across hospital units. Multivariable ordinal regressions estimated the likelihood of perceived problems in exchanging patient information across hospital units, controlling for perceived levels of crisis mode work climate, skill levels, work climate, and hospital infrastructure. Compared to those disagreeing, hospital staff members agreeing that the hospital unit in which they work tries to do too much too quickly were 1.6 times more likely to perceive problems in exchanging patient information across hospital units (odds ratio: 1.6, 95% confidence interval: 1.58-1.65). Hospital staff members perceiving crisis mode work climates within their hospital unit are more likely to perceive problems in exchanging patient information across units, underscoring the need to improve communication during transitions of care. © 2014 Society of Hospital Medicine.

  17. Two Bears Walk Into a Bar…. A Quest to Communicate Climate Change Ends in Puppets and Sketches and Songs

    NASA Astrophysics Data System (ADS)

    Willis, J. K.; O'Brien, R.

    2015-12-01

    Like most colleagues, I struggle to connect with a broad audience about my research. And after years of falling short, I decided to do something about it. So I took a comedy class. And then another. And another. Pretty soon I met a talented director, writer and actor named Rani O'Brien and together we created the Lollygaggers—a sketch comedy musical about climate change for kids of all ages. For 16 weeks in 2014, The Lollygaggers ran in the Second City Studio Theater on Hollywood Blvd, brining laughs and lessons on climate change to a wide audience using puppets, characters and songs. This presentation will focus on how climate change and comedy can unite, how the Lollygaggers came to be, and will include a song from the show.

  18. Water problems in the present trend towards greater aridity

    USGS Publications Warehouse

    Leopold, Luna Bergere; Craig, Harmon

    1957-01-01

    In the past few days we have heard a number of scientists, gathered here at Scripps Institution of Oceanography, discuss research work which, in one manner or another, bears on problems related to water resources. They have been discussing, particularly, problems in the field of climatology, and have speculated on the meaning of the results of this research. One of the problems under discussion was the nature, and possible cause, of the climatic fluctuation which we have experienced in recent decades, and its relation to climatic changes in recent geologic time since the last glaciation. These discussions have given me the courage, or perhaps the recklessness, to indulge in some speculation relative to various aspects of water resource problems in the United States.

  19. Undergraduate Research Collaborations with Government Agencies Involving the Effects of Climate Change

    NASA Astrophysics Data System (ADS)

    Gurtler, G.

    2017-12-01

    We discuss the challenges and achievements that a small HSI college had integrating undergraduate research experiences into an existing natural sciences program. Like most introductory college science courses, our natural science courses used textbooks, PowerPoint presentations, and lectures to illustrate basic scientific concepts. Though a collective decision was made by our science faculty to incorporate undergraduate research projects into various STEM courses, our greatest challenge was incorporating mandatory research courses into the degree plans of our Natural Science program. We found that students made considerable progress in understanding natural science by critically evaluating primary research articles and undertaking small research projects. Many of these student projects were conducted in cooperation with the Albuquerque District of the US Army Corps of Engineers, United States Geological Survey in Denver, and the National Ice Core Laboratory. These projects illustrated the effects of climate change on the water quality, sediment buildup, and biodiversity at local reservoirs. Other projects involved the analysis of ice core samples from Greenland and Antarctica. Students presented research posters at various research venues, including Community College Undergraduate Research Initiative colloquiums.

  20. Climate Change and Arctic Issues in the Marine and Environmental Science Curriculum at the U.S. Coast Guard Academy

    NASA Astrophysics Data System (ADS)

    Vlietstra, L.; McConnell, M. C.; Bergondo, D. L.; Mrakovcich, K. L.; Futch, V.; Stutzman, B. S.; Fleischmann, C. M.

    2016-02-01

    As global climate change becomes more evident, demand will likely increase for experts with a detailed understanding of the scientific basis of climate change, the ocean's role in the earth-atmosphere system, and forecasted impacts, especially in Arctic regions where effects may be most pronounced. As a result, programs in marine and environmental sciences are uniquely poised to prepare graduates for the formidable challenges posed by changing climates. Here we present research evaluating the prevalence and themes of courses focusing on anthropogenic climate change in 125 Marine Science and Environmental Science undergraduate programs at 86 institutions in the United States. These results, in addition to the increasing role of the Coast Guard in the Arctic, led to the development of two new courses in the curriculum. Climate Change Science, a one-credit seminar, includes several student-centered activities supporting key learning objectives. Polar Oceanography, a three-credit course, incorporates a major outreach component to Coast Guard units and members of the scientific community. Given the importance of climate change in Arctic regions in particular, we also propose six essential "Arctic Literacy Principles" around which courses or individual lesson plans may be organized. We show how these principles are incorporated into an additional new three-credit course, Model Arctic Council, which prepares students to participate in a week-long simulation exercise of Arctic Council meetings, held in Fairbanks, Alaska. Students examine the history and mission of the Arctic Council and explore some of the issues on which the council has deliberated. Special attention is paid to priorities of the current U.S. chairmanship of the Arctic Council which include climate change impacts on, and stewardship of, the Arctic Ocean.

  1. Seasonal and decadal information towards climate services: EUPORIAS

    NASA Astrophysics Data System (ADS)

    Buontempo, Carlo; Hewitt, Chris

    2013-04-01

    Societies have always faced challenges and opportunities arising from variations in climate, and have often flourished or collapsed depending on their ability to adapt to such changes. Recent advances in our understanding and ability to forecast climate variability and climate change have meant that skilful predictions are beginning to be routinely made on seasonal to decadal (s2d) timescales. Such forecasts have the potential to be of great value to a wide range of decision-making, where outcomes are strongly influenced by variations in the climate. The European Commission have recently commissioned a major four year long project (EUPORIAS) to develop prototype end-to-end climate impact prediction services operating on a seasonal to decadal timescale, and assess their value in informing decision-making. EUPORIAS commenced on 1 November 2012, coordinated by the UK Met Office leading a consortium of 24 organisations representing world-class European climate research and climate service centres, expertise in impacts assessments and seasonal predictions, two United Nations agencies, specialists in new media, and commercial companies in climate-vulnerable sectors such as energy, water and tourism. The paper describes the setup of the project, its main outcome and some of the very preliminary results.

  2. Bioclimatic predictors for supporting ecological applications in the conterminous United States

    USGS Publications Warehouse

    O'Donnel, Michael S.; Ignizio, Drew A.

    2012-01-01

    The U.S. Geological Survey (USGS) has developed climate indices, referred to as bioclimatic predictors, which highlight climate conditions best related to species physiology. A set of 20 bioclimatic predictors were developed as Geographic Information Systems (GIS) continuous raster surfaces for each year between 1895 and 2009. The Parameter-elevation Regression on Independent Slopes Model (PRISM) and down-scaled PRISM data, which included both averaged multi-year and averaged monthly climate summaries, was used to develop these multi-scale bioclimatic predictors. Bioclimatic predictors capture information about annual conditions (annual mean temperature, annual precipitation, annual range in temperature and precipitation), as well as seasonal mean climate conditions and intra-year seasonality (temperature of the coldest and warmest months, precipitation of the wettest and driest quarters). Examining climate over time is useful when quantifying the effects of climate changes on species' distributions for past, current, and forecasted scenarios. These data, which have not been readily available to scientists, can provide biologists and ecologists with relevant and multi-scaled climate data to augment research on the responses of species to changing climate conditions. The relationships established between species demographics and distributions with bioclimatic predictors can inform land managers of climatic effects on species during decisionmaking processes.

  3. An interoperable research data infrastructure to support climate service development

    NASA Astrophysics Data System (ADS)

    De Filippis, Tiziana; Rocchi, Leandro; Rapisardi, Elena

    2018-02-01

    Accessibility, availability, re-use and re-distribution of scientific data are prerequisites to build climate services across Europe. From this perspective the Institute of Biometeorology of the National Research Council (IBIMET-CNR), aiming at contributing to the sharing and integration of research data, has developed a research data infrastructure to support the scientific activities conducted in several national and international research projects. The proposed architecture uses open-source tools to ensure sustainability in the development and deployment of Web applications with geographic features and data analysis functionalities. The spatial data infrastructure components are organized in typical client-server architecture and interact from the data provider download data process to representation of the results to end users. The availability of structured raw data as customized information paves the way for building climate service purveyors to support adaptation, mitigation and risk management at different scales.

    This work is a bottom-up collaborative initiative between different IBIMET-CNR research units (e.g. geomatics and information and communication technology - ICT; agricultural sustainability; international cooperation in least developed countries - LDCs) that embrace the same approach for sharing and re-use of research data and informatics solutions based on co-design, co-development and co-evaluation among different actors to support the production and application of climate services. During the development phase of Web applications, different users (internal and external) were involved in the whole process so as to better define user needs and suggest the implementation of specific custom functionalities. Indeed, the services are addressed to researchers, academics, public institutions and agencies - practitioners who can access data and findings from recent research in the field of applied meteorology and climatology.

  4. Long-Term Daily and Monthly Climate Records from Stations Across the Contiguous United States (U.S.Historical Climatology Network) (NDP-019)

    DOE Data Explorer

    Menne, M. J. [National Climatic Data Center, National Oceanic and Atmospheric Administration; Williams, Jr., C. N. [National Climatic Data Center, National Oceanic and Atmospheric Administration; Vose, R. S. [National Climatic Data Center, National Oceanic and Atmospheric Administration

    2016-01-01

    The United States Historical Climatology Network (USHCN) is a high-quality data set of daily and monthly records of basic meteorological variables from 1218 observing stations across the 48 contiguous United States. Daily data include observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth; monthly data consist of monthly-averaged maximum, minimum, and mean temperature and total monthly precipitation. Most of these stations are U.S. Cooperative Observing Network stations located generally in rural locations, while some are National Weather Service First-Order stations that are often located in more urbanized environments. The USHCN has been developed over the years at the National Oceanic and Atmospheric Administration's (NOAA) National Climatic Data Center (NCDC) to assist in the detection of regional climate change. Furthermore, it has been widely used in analyzing U.S. climte. The period of record varies for each station. USHCN stations were chosen using a number of criteria including length of record, percent of missing data, number of station moves and other station changes that may affect data homogeneity, and resulting network spatial coverage. Collaboration between NCDC and CDIAC on the USHCN project dates to the 1980s (Quinlan et al. 1987). At that time, in response to the need for an accurate, unbiased, modern historical climate record for the United States, the Global Change Research Program of the U.S. Department of Energy and NCDC chose a network of 1219 stations in the contiguous United States that would become a key baseline data set for monitoring U.S. climate. This initial USHCN data set contained monthly data and was made available free of charge from CDIAC. Since then it has been comprehensively updated several times [e.g., Karl et al. (1990) and Easterling et al. (1996)]. The initial USHCN daily data set was made available through CDIAC via Hughes et al. (1992) and contained a 138-station subset of the USHCN. This product was updated by Easterling et al. (1999) and expanded to include 1062 stations. In 2009 the daily USHCN dataset was expanded to include all 1218 stations in the USHCN.

  5. Climate change projections for lake whitefish (Coregonus clupeaformis) recruitment in the 1836 Treaty Waters of the Upper Great Lakes

    USGS Publications Warehouse

    Lynch, Abigail J.; Taylor, William W.; Beard, T. Douglas; Lofgren, Brent M.

    2015-01-01

    Lake whitefish (Coregonus clupeaformis) is an ecologically, culturally, and economically important species in the Laurentian Great Lakes. Lake whitefish have been a staple food source for thousands of years and, since 1980, have supported the most economically valuable (annual catch value ≈ US$16.6 million) and productive (annual harvest ≈ 7 million kg) commercial fishery in the upper Great Lakes (Lakes Huron, Michigan, and Superior). Climate changes, specifically changes in temperature, wind, and ice cover, are expected to impact the ecology, production dynamics, and value of this fishery because the success of recruitment to the fishery has been linked with these climatic variables. We used linear regression to determine the relationship between fall and spring air temperature indices, fall wind speed, winter ice cover, and lake whitefish recruitment in 13 management units located in the 1836 Treaty Waters of the Upper Great Lakes ceded by the Ottawa and Chippewa nations, a culturally and commercially important region for the lake whitefish fishery. In eight of the 13 management units evaluated, models including one or more climate variables (temperature, wind, ice cover) explained significantly more variation in recruitment than models with only the stock–recruitment relationship, using corrected Akaike's Information Criterion comparisons (ΔAICc > 3). Isolating the climate–recruitment relationship and projecting recruitment with the Coupled Hydrosphere-Atmosphere Research Model (CHARM) indicated the potential for increased lake whitefish recruitment in the majority of the 1836 Treaty Waters management units. These results can inform adaptive management strategies by providing anticipated implications of climate on lake whitefish recruitment.

  6. A Strategy for Nuclear Energy Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralph G. Bennett

    2008-12-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce themore » transportation sector’s dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy’s share will require a coordinated research effort—combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.« less

  7. Acceleration in U.S. Mean Sea Level? A New Insight using Improved Tools

    NASA Astrophysics Data System (ADS)

    Watson, Phil J.

    2016-08-01

    The detection of acceleration in mean sea level around the data-rich margins of the United States has been a keen endeavour of sea-level researchers following the seminal work of Bruce Douglas in 1992. Over the past decade, such investigations have taken on greater prominence given mean sea level remains a key proxy by which to measure a changing climate system. The physics-based climate projection models are forecasting that the current global average rate of mean sea-level rise (≈3 mm/y) might climb to rates in the range of 10020 mm/y by 2100. Most research in this area has centred on reconciling current rates of rise with the significant accelerations required to meet the forecast projections of climate models. The analysis in this paper is based on a recently developed analytical package titled "msltrend," specifically designed to enhance estimates of trend, real-time velocity and acceleration in the relative mean sea-level signal derived from long annual average ocean-water-level time series. Key findings are that at the 95% confidence level, no consistent or substantial evidence (yet) exists that recent rates of rise are higher or abnormal in the context of the historical records available for the United States, nor does any evidence exist that geocentric rates of rise are above the global average. It is likely that a further 20 years of data will identify whether recent increases east of Galveston and along the east coast are evidence of the onset of climate change induced acceleration.

  8. Overview of the Special Issue: A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    EPA Science Inventory

    The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the impacts, economic damages, and risks from climate change in the United States. The primary goal of this framework to estimate how climate change impac...

  9. Climate Change Education as an Integral Part of the United Nations Framework Convention on Climate Change

    ERIC Educational Resources Information Center

    Journal of Education for Sustainable Development, 2012

    2012-01-01

    The United Nations Framework Convention on Climate Change (UNFCCC), through its Article 6, and the Convention's Kyoto Protocol, through its Article 10 (e), call on governments to develop and implement educational programmes on climate change and its effects. In particular, Article 6 of the Convention, which addresses the issue of climate…

  10. Farmers and Climate Change: A Cross-National Comparison of Beliefs and Risk Perceptions in High-Income Countries.

    PubMed

    Prokopy, Linda S; Arbuckle, J G; Barnes, Andrew P; Haden, V R; Hogan, Anthony; Niles, Meredith T; Tyndall, John

    2015-08-01

    Climate change has serious implications for the agricultural industry-both in terms of the need to adapt to a changing climate and to modify practices to mitigate for the impacts of climate change. In high-income countries where farming tends to be very intensive and large scale, it is important to understand farmers' beliefs and concerns about climate change in order to develop appropriate policies and communication strategies. Looking across six study sites-Scotland, Midwestern United States, California, Australia, and two locations in New Zealand-this paper finds that over half of farmers in each location believe that climate change is occurring. However, there is a wide range of beliefs regarding the anthropogenic nature of climate change; only in Australia do a majority of farmers believe that climate change is anthropogenic. In all locations, a majority of farmers believe that climate change is not a threat to local agriculture. The different policy contexts and existing impacts from climate change are discussed as possible reasons for the variation in beliefs. This study compared varying surveys from the different locations and concludes that survey research on farmers and climate change in diverse locations should strive to include common questions to facilitate comparisons.

  11. GLOBAL CHANGE RESEARCH NEWS #3: IPCC SPECIAL REPORT ON "LAND USE, LAND USE CHANGE, AND FORESTRY"

    EPA Science Inventory

    ORD is participating in the development of an Intergovernmental Panel on Climate Change (IPCC) Special Report on "Land Use, Land Use Change and Forestry." Preparation of the Special Report was requested by the Conference of the Parties(COP) to the United Nations Framework Conve...

  12. The Development of a Mentoring Program for University Undergraduate Women

    ERIC Educational Resources Information Center

    Putsche, Laura; Storrs, Debbie; Lewis, Alicia A.; Haylett, Jennifer

    2008-01-01

    The Women's Center at a university in the United States implemented a mentoring program based on feminist and networking models to improve the educational climate for female undergraduate students. Due to a lack of literature detailing how to develop such a program, an interdisciplinary team of researchers collaborated with the Women's Center to…

  13. Future Land-Use Changes and the Potential for Novelty in Ecosystems of the United States

    Treesearch

    Sebastian Martinuzzi; Gregorio I. Gavier-Pizarro; Ariel E. Lugo; Volker C. Radeloff

    2015-01-01

    Rapid global changes due to changing land use, climate, and non-native species are altering environmental conditions, resulting in more novel communities with unprecedented species combinations. Understanding how future anthropogenic changes may affect novelty in ecosystems is important to advance environmental management and ecological research in the Anthropocene....

  14. Science You Can Use Bulletin: Our forests in the [water] balance

    Treesearch

    Megan Matonis; Charles Luce; Zack Holden; Penny Morgan; Emily Heyerdahl

    2013-01-01

    Climate change is not only causing temperatures to rise, it is also altering the amount and type of precipitation that falls across the western United States. Research shows a trend of increasingly dry "dry years," meaning droughts are becoming more severe and streams are flowing lower during these periods.

  15. Mapping loading rates and sources of reactive nitrogen across the United States suggests regional interactions with climate change

    EPA Science Inventory

    Accurate, up-to-date information describing Nr inputs by source is needed for effective Nr management and for guiding Nr research. Here we present a new synthesis of spatial data describing present Nr inputs to terrestrial and aquatic ecosystems across the conterminous US to hel...

  16. Evaluating State Principal Evaluation Plans across the United States

    ERIC Educational Resources Information Center

    Fuller, Edward J.; Hollingworth, Liz; Liu, Jing

    2015-01-01

    Recent federal legislation has created strong incentives for states to adopt principal evaluation systems, many of which include new measures of principal effectiveness such as estimates of student growth and changes in school climate. Yet, there has been little research on principal evaluation systems and no state-by-state analysis of the…

  17. Projecting climate change in the United States: A technical document supporting the Forest Service RPA 2010 Assessment

    Treesearch

    Linda A. Joyce; David T. Price; David P. Coulson; Daniel W. McKenney; R. Martin Siltanen; Pia Papadopol; Kevin Lawrence

    2014-01-01

    A set of climate change projections for the United States was developed for use in the 2010 USDA Forest Service RPA Assessment. These climate projections, along with projections for population dynamics, economic growth, and land use change in the United States, comprise the RPA scenarios and are used in the RPA Assessment to project future renewable resource conditions...

  18. Retrofit of a Multifamily Mass Masonry Building in New England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Kerrigan, P.; Wytrykowska, H.

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goalsmore » but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.« less

  19. Retrofit of a MultiFamily Mass Masonry Building in New England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Kerrigan, P.; Wytrykowska, H.

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goalsmore » but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.« less

  20. Changes in U.S. Regional-Scale Air Quality at 2030 Simulated Using RCP 6.0

    NASA Astrophysics Data System (ADS)

    Nolte, C. G.; Otte, T.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.

    2012-12-01

    Recent improvements in air quality in the United States have been due to significant reductions in emissions of ozone and particulate matter (PM) precursors, and these downward emissions trends are expected to continue in the next few decades. To ensure that planned air quality regulations are robust under a range of possible future climates and to consider possible policy actions to mitigate climate change, it is important to characterize and understand the effects of climate change on air quality. Recent work by several research groups using global and regional models has demonstrated that there is a "climate penalty," in which climate change leads to increases in surface ozone levels in polluted continental regions. One approach to simulating future air quality at the regional scale is via dynamical downscaling, in which fields from a global climate model are used as input for a regional climate model, and these regional climate data are subsequently used for chemical transport modeling. However, recent studies using this approach have encountered problems with the downscaled regional climate fields, including unrealistic surface temperatures and misrepresentation of synoptic pressure patterns such as the Bermuda High. We developed a downscaling methodology and showed that it now reasonably simulates regional climate by evaluating it against historical data. In this work, regional climate simulations created by downscaling the NASA/GISS Model E2 global climate model are used as input for the Community Multiscale Air Quality (CMAQ) model. CMAQ simulations over the continental United States are conducted for two 11-year time slices, one representing current climate (1995-2005) and one following Representative Concentration Pathway 6.0 from 2025-2035. Anthropogenic emissions of ozone and PM precursors are held constant at year 2006 levels for both the current and future periods. In our presentation, we will examine the changes in ozone and PM concentrations, with particular focus on exceedances of the current U.S. air quality standards, and attempt to relate the changes in air quality to the projected changes in regional climate.

  1. Quality and strength of patient safety climate on medical-surgical units.

    PubMed

    Hughes, Linda C; Chang, Yunkyung; Mark, Barbara A

    2009-01-01

    Describing the safety climate in hospitals is an important first step in creating work environments where safety is a priority. Yet, little is known about the patient safety climate on medical-surgical units. Study purposes were to describe quality and strength of the patient safety climate on medical-surgical units and explore hospital and unit characteristics associated with this climate. Data came from a larger organizational study to investigate hospital and unit characteristics associated with organizational, nurse, and patient outcomes. The sample for this study was 3,689 RNs on 286 medical-surgical units in 146 hospitals. Nursing workgroup and managerial commitment to safety were the two most strongly positive attributes of the patient safety climate. However, issues surrounding the balance between job duties and safety compliance and nurses' reluctance to reveal errors continue to be problematic. Nurses in Magnet hospitals were more likely to communicate about errors and participate in error-related problem solving. Nurses on smaller units and units with lower work complexity reported greater safety compliance and were more likely to communicate about and reveal errors. Nurses on smaller units also reported greater commitment to patient safety and participation in error-related problem solving. Nursing workgroup commitment to safety is a valuable resource that can be leveraged to promote a sense of personal responsibility for and shared ownership of patient safety. Managers can capitalize on this commitment by promoting a work environment in which control over nursing practice and active participation in unit decisions are encouraged and by developing channels of communication that increase staff nurse involvement in identifying patient safety issues, prioritizing unit-level safety goals, and resolving day-to-day operational problems the have the potential to jeopardize patient safety.

  2. The impact of SciDAC on US climate change research and the IPCCAR4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehner, Michael

    2005-07-08

    SciDAC has invested heavily in climate change research. We offer a candid opinion as to the impact of the DOE laboratories' SciDAC projects on the upcoming Fourth Assessment Report of the Intergovernmental Panel on Climate Change. As a result of the direct importance of climate change to society, climate change research is highly coordinated at the international level. The Intergovernmental Panel on Climate Change (IPCC) is charged with providing regular reports on the state of climate change research to government policymakers. These reports are the product of thousands of scientists efforts. A series of reviews involving both scientists and policymakersmore » make them among the most reviewed documents produced in any scientific field. The high profile of these reports acts a driver to many researchers in the climate sciences. The Fourth Assessment Report (AR4) is scheduled to be released in 2007. SciDAC sponsored research has enabled the United States climate modeling community to make significant contributions to this report. Two large multi-Laboratory SciDAC projects are directly relevant to the activities of the IPCC. The first, entitled ''Collaborative Design and Development of the Community Climate System Model for Terascale Computers'', has made important software contributions to the recently released third version of the Community Climate System Model (CCSM3.0) developed at the National Center for Atmospheric Research. This is a multi-institutional project involving Los Alamos National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The original principal investigators were Robert Malone and John B. Drake. The current principal investigators are Phil Jones and John B. Drake. The second project, entitled ''Earth System Grid II: Turning Climate Datasets into Community Resources'' aims to facilitate the distribution of the copious amounts of data produced by coupled climate model integrations to the general scientific community. This is also a multi-institutional project involving Argonne National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The principal investigators are Ian Foster, Don Middleton and Dean Williams. Perhaps most significant among the activities of the ''Collaborative Design'', project was the development of an efficient multi-processor coupling package. CCSM3.0 is an extraordinarily complicated physics code. The fully coupled model consists of separate submodels of the atmosphere, ocean, sea ice and land. In addition, comprehensive biogeochemistry and atmospheric chemistry submodels are under intensive current development. Each of these submodels is a large and sophisticated program in its own right. Furthermore, in the coupled model, each of the submodels, including the coupler, is a separate multiprocessor executable program. The coupler package must efficiently coordinate the communication as well as interpolate or aggregate information between these programs. This regridding function is necessary because each major subsystem (air, water or surface) is allowed to have its own independent grid.« less

  3. Global Climate Change, Food Security, and Local Sustainability: Increasing Climate Literacy in Urban Students

    NASA Astrophysics Data System (ADS)

    Boger, R. A.; Low, R.; Gorokhovich, Y.

    2011-12-01

    Three higher education institutions, University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, are working together to share expertise and resources to expand climate change topics offered to undergraduate and graduate students in New York City (NYC). This collaboration combines existing UNL educational learning resources and infrastructure in virtual coursework. It will supply global climate change education and locally-based research experiences to the highly diverse undergraduate students of Brooklyn and Lehman Colleges and to middle and high school teachers in NYC. Through the university partnership, UNL materials are being adapted and augmented to include authentic research experiences for undergraduates and teachers using NASA satellite data, geographic information system (GIS) tools, and/or locally collected microclimate data from urban gardens. Learners download NASA data, apply an Earth system approach, and employ GIS in the analysis of food production landscapes in a dynamically changing climate system. The resulting course will be offered via Blackboard courseware, supported by Web 2.0 technologies designed specifically to support dialogue, data, and web publication sharing between partners, teachers and middle school, high school and undergraduate student researchers. NYC is in the center of the urban farming movement. By exploring water and food topics of direct relevance to students' lives and community, we anticipate that students will be motivated and more empowered to make connections between climate change and potential impacts on the health and happiness of people in their community, in the United States and around the world. Final course will be piloted in 2012.

  4. Climate change : U.S. federal laws and policies related to greenhouse gas reductions

    DOT National Transportation Integrated Search

    2006-02-22

    Climate change is generally viewed as a global issue, but proposed responses generally require action at the national level. In 1992, the United States ratified the United Nations Framework Convention on Climate Change (UNFCCC), which called on in...

  5. Opposites attract or attack? The moderating role of diversity climate in the team diversity-interpersonal aggression relationship.

    PubMed

    Drach-Zahavy, Anat; Trogan, Revital

    2013-10-01

    This study embraced a unit-level diversity perspective to examine interpersonal aggression, as experienced or witnessed by individual team members. Specifically, our aim was to explore the moderating role of a unit's diversity climate in the link between unit-level surface diversity in terms of ethnicity, sex, age, and tenure, and individual-level perceptions of interpersonal aggression. We tested our hypotheses with 30 nursing units using the Mixed-Linear Model procedure appropriate for nested samples. Results demonstrated that diversity climate moderated the relationships between tenure and ethnic unit diversity and interpersonal aggression, experienced or witnessed among individual team members. Moreover, regardless of the level of diversity climate, age diversity was positively linked to interpersonal aggression, whereas sex diversity was negatively linked to it. These findings imply that the unit's context affects interpersonal aggression and provides important theoretical and practical implications to proactively prevent interpersonal aggression.

  6. Introducing the global carbon cycle to middle school students with a 14C research project

    NASA Astrophysics Data System (ADS)

    Brodman Larson, L.; Phillips, C. L.; LaFranchi, B. W.

    2012-12-01

    Global Climate Change (GCC) is currently not part of the California Science Standards for 7th grade. Required course elements, however, such as the carbon cycle, photosynthesis, and cellular respiration could be linked to global climate change. Here we present a lesson plan developed in collaboration with scientists from Lawrence Livermore National Laboratory, to involve 7th grade students in monitoring of fossil fuel emissions in the Richmond/San Pablo area of California. -The lesson plan is a Greenhouse Gas/Global Climate Change Unit, with an embedded research project in which students will collect plant samples from various locals for analysis of 14C, to determine if there is a correlation between location and how much CO2 is coming from fossil fuel combustion. Main learning objectives are for students to: 1) understand how fossil fuel emissions impact the global carbon cycle, 2) understand how scientists estimate fossil CO2 emissions, and 3) engage in hypothesis development and testing. This project also engages students in active science learning and helps to develop responsibility, two key factors for adolescentsWe expect to see a correlation between proximity to freeways and levels of fossil fuel emissions. This unit will introduce important GCC concepts to students at a younger age, and increase their knowledge about fossil fuel emissions in their local environment, as well as the regional and global impacts of fossil emissions.

  7. Parallel computing method for simulating hydrological processesof large rivers under climate change

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, Y.

    2016-12-01

    Climate change is one of the proverbial global environmental problems in the world.Climate change has altered the watershed hydrological processes in time and space distribution, especially in worldlarge rivers.Watershed hydrological process simulation based on physically based distributed hydrological model can could have better results compared with the lumped models.However, watershed hydrological process simulation includes large amount of calculations, especially in large rivers, thus needing huge computing resources that may not be steadily available for the researchers or at high expense, this seriously restricted the research and application. To solve this problem, the current parallel method are mostly parallel computing in space and time dimensions.They calculate the natural features orderly thatbased on distributed hydrological model by grid (unit, a basin) from upstream to downstream.This articleproposes ahigh-performancecomputing method of hydrological process simulation with high speedratio and parallel efficiency.It combinedthe runoff characteristics of time and space of distributed hydrological model withthe methods adopting distributed data storage, memory database, distributed computing, parallel computing based on computing power unit.The method has strong adaptability and extensibility,which means it canmake full use of the computing and storage resources under the condition of limited computing resources, and the computing efficiency can be improved linearly with the increase of computing resources .This method can satisfy the parallel computing requirements ofhydrological process simulation in small, medium and large rivers.

  8. Development and validation of the Survey of Organizational Research Climate (SORC).

    PubMed

    Martinson, Brian C; Thrush, Carol R; Lauren Crain, A

    2013-09-01

    Development and targeting efforts by academic organizations to effectively promote research integrity can be enhanced if they are able to collect reliable data to benchmark baseline conditions, to assess areas needing improvement, and to subsequently assess the impact of specific initiatives. To date, no standardized and validated tool has existed to serve this need. A web- and mail-based survey was administered in the second half of 2009 to 2,837 randomly selected biomedical and social science faculty and postdoctoral fellows at 40 academic health centers in top-tier research universities in the United States. Measures included the Survey of Organizational Research Climate (SORC) as well as measures of perceptions of organizational justice. Exploratory and confirmatory factor analyses yielded seven subscales of organizational research climate, all of which demonstrated acceptable internal consistency (Cronbach's α ranging from 0.81 to 0.87) and adequate test-retest reliability (Pearson r ranging from 0.72 to 0.83). A broad range of correlations between the seven subscales and five measures of organizational justice (unadjusted regression coefficients ranging from 0.13 to 0.95) document both construct and discriminant validity of the instrument. The SORC demonstrates good internal (alpha) and external reliability (test-retest) as well as both construct and discriminant validity.

  9. Development and Validation of the Survey of Organizational Research Climate (SORC)

    PubMed Central

    Martinson, Brian C.; Thrush, Carol R.; Crain, A. Lauren

    2012-01-01

    Background Development and targeting efforts by academic organizations to effectively promote research integrity can be enhanced if they are able to collect reliable data to benchmark baseline conditions, to assess areas needing improvement, and to subsequently assess the impact of specific initiatives. To date, no standardized and validated tool has existed to serve this need. Methods A web- and mail-based survey was administered in the second half of 2009 to 2,837 randomly selected biomedical and social science faculty and postdoctoral fellows at 40 academic health centers in top-tier research universities in the United States. Measures included the Survey of Organizational Research Climate (SORC) as well as measures of perceptions of organizational justice. Results Exploratory and confirmatory factor analyses yielded seven subscales of organizational research climate, all of which demonstrated acceptable internal consistency (Cronbach’s α ranging from 0.81 to 0.87) and adequate test-retest reliability (Pearson r ranging from 0.72 to 0.83). A broad range of correlations between the seven subscales and five measures of organizational justice (unadjusted regression coefficients ranging from .13 to .95) document both construct and discriminant validity of the instrument. Conclusions The SORC demonstrates good internal (alpha) and external reliability (test-retest) as well as both construct and discriminant validity. PMID:23096775

  10. Informing climate change adaptation in the Northeast and Midwest United States: The role of Climate Science Centers

    NASA Astrophysics Data System (ADS)

    Bryan, A. M.; Morelli, T. L.

    2015-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information and tools that managers and other parties interested in land, water, wildlife, and cultural resources can use to anticipate, monitor, and adapt to climate change. The NE CSC partners with other federal agencies, universities, and NGOs to facilitate stakeholder interaction and delivery of scientific products. For example, NE CSC researchers have partnered with the National Park Service to help managers at Acadia National Park adapt their infrastructure, operations, and ecosystems to rising seas and more extreme events. In collaboration with the tribal College of Menominee Nation and Michigan State University, the NE CSC is working with indigenous communities in Michigan and Wisconsin to co-develop knowledge of how to preserve their natural and cultural values in the face of climate change. Recently, in its largest collaborative initiative to date, the NE CSC led a cross-institutional effort to produce a comprehensive synthesis of climate change, its impacts on wildlife and their habitats, and available adaptation strategies across the entire Northeast and Midwest region; the resulting document was used by wildlife managers in 22 states to revise their Wildlife Action Plans (WAPs). Additionally, the NE CSC is working with the Wildlife Conservation Society to help inform moose conservation management. Other research efforts include hydrological modeling to inform culvert sizing under greater rainfall intensity, forest and landscape modeling to inform tree planting that mitigates the spread of invasive species, species and habitat modeling to help identify suitable locations for wildlife refugia. In addition, experimental research is being conducted to improve our understanding of how species such as brook trout are responding to climate change. Interacting with stakeholders during all phases of these projects ensures that the science produced meets their specific needs and allows them to make informed decisions to better adapt to our changing climate.

  11. The Hydrological Response of Snowmelt Dominated Catchments to Climate Change

    NASA Astrophysics Data System (ADS)

    Arrigoni, A. S.; Moore, J. N.

    2007-12-01

    Hydrological systems dominated by snowmelt discharge contribute greater than half the freshwater resource available to the western United States. Globally, the contribution of mountain discharge to total runoff is twice the expected for their geographical coverage. Therefore, snowmelt dominated mountain catchments have proportionally a more prominent role than other systems to our freshwater resource. A changing climate, or even a more variable climate, could have a significant impact on these systems, and consequently on our freshwater resource. Ergo, a better understanding of how changes and variations in climate will influence mountain catchments is a necessity for improving future water management under predicted/proposed climate change. The research presented here is a first order analysis to improve our understanding of these systems by monitoring and analyzing high mountain catchments along the entirety of the Mission Mountain Front, Montana USA. The Mission Mountain Range is an ideal location for conducting this research as it runs directly north to south with elevations progressively increasing from 7600 feet in the northern section, to over 9700 feet at the southern end. The lower elevation catchments will be used as surrogates for variable climate change, while the high elevation catchments will be used as surrogates for a more stable, cooler, climate regime. We use a combination of USGS and Tribal stream gauges, as well as stage gauge loggers in the headwaters of the catchments, SNOTEL datasets, and weather station datasets. This information is used to determine if, how, and why the snowmelt hydrographs vary between catchments, within the catchments between the upper and lower segments, and the dominant driver or drivers of the hydrograph form in relation to changing climatic variables such as temperature and precipitation. This research will improve current comprehension of how mountain catchments respond to climatic variables, and additionally will expand upon the current understanding of general catchment hydrology.

  12. The Contribution to Arctic Climate Change from Countries in the Arctic Council

    NASA Astrophysics Data System (ADS)

    Schultz, T.; MacCracken, M. C.

    2013-12-01

    The conventional accounting frameworks for greenhouse gas (GHG) emissions used today, established under the Kyoto Protocol 25 years ago, exclude short lived climate pollutants (SLCPs), and do not include regional effects on the climate. However, advances in climate science now suggest that mitigation of SLCPs can reduce up to 50% of global warming by 2050. It has also become apparent that regions such as the Arctic have experienced a much greater degree of anthropogenic warming than the globe as a whole, and that efforts to slow this warming could benefit the larger effort to slow climate change around the globe. A draft standard for life cycle assessment (LCA), LEO-SCS-002, being developed under the American National Standards Institute process, has integrated the most recent climate science into a unified framework to account for emissions of all radiatively significant GHGs and SLCPs. This framework recognizes four distinct impacts to the oceans and climate caused by GHGs and SLCPs: Global Climate Change; Arctic Climate Change; Ocean Acidification; and Ocean Warming. The accounting for Arctic Climate Change, the subject of this poster, is based upon the Absolute Regional Temperature Potential, which considers the incremental change to the Arctic surface temperature resulting from an emission of a GHG or SLCP. Results are evaluated using units of mass of carbon dioxide equivalent (CO2e), which can be used by a broad array of stakeholders, including scientists, consumers, policy makers, and NGOs. This poster considers the contribution to Arctic Climate Change from emissions of GHGs and SLCPs from the eight member countries of the Arctic Council; the United States, Canada, Russia, Denmark, Finland, Iceland, Norway, and Sweden. Of this group of countries, the United States was the largest contributor to Arctic Climate Change in 2011, emitting 9600 MMT CO2e. This includes a gross warming of 11200 MMT CO2e (caused by GHGs, black and brown carbon, and warming effects of nitrogen oxides), which is offset by -1600 MMT CO2e in cooling (caused by organic carbon aerosols, sulfate aerosols, and cooling effects of nitrogen oxides). Russia, Canada, and all the Nordic Countries emitted 5300, 1100, and 300 MMT CO2e (net) in 2011, respectively. Emissions of carbon dioxide, methane, and carbonaceous aerosols were the largest contributors overall, though the significance of each varied by country. This work incorporates the research and methods developed by D. Shindell, G. Faluvegi, M. Jacobson, A. Hu, V. Ramanathan, and T. Bond.

  13. Investigation of the climate change within Moscow metropolitan area

    NASA Astrophysics Data System (ADS)

    Varentsov, Mikhail; Trusilova, Kristina; Konstantinov, Pavel; Samsonov, Timofey

    2014-05-01

    As the urbanization continues worldwide more than half of the Earth's population live in the cities (U.N., 2010). Therefore the vulnerability of the urban environment - the living space for millions of people - to the climate change has to be investigated. It is well known that urban features strongly influence the atmospheric boundary layer and determine the microclimatic features of the local environment, such as urban heat island (UHI). Available temperature observations in cities are, however, influenced by the natural climate variations, human-induced climate warming (IPCC, 2007) and in the same time by the growth and structural modification of the urban areas. The relationship between these three factors and their roles in climate changes in the cities are very important for the climatic forecast and requires better understanding. In this study, we made analysis of the air temperature change and urban heat island evolution within Moscow urban area during decades 1970-2010, while this urban area had undergone intensive growth and building modification allowing the population of Moscow to increase from 7 to 12 million people. Analysis was based on the data from several meteorological stations in Moscow region and Moscow city, including meteorological observatory of Lomonosov Moscow State University. Differences in climate change between urban and rural stations, changes of the power and shape of urban heat island and their relationships with changes of building height and density were investigated. Collected data and obtained results are currently to be used for the validation of the regional climate model COSMO-CLM with the purpose to use this model for further more detailed climate research and forecasts for Moscow metropolitan area. References: 1. U.N. (2010), World Urbanization Prospects. The 2009 Revision.Rep., 1-47 pp, United Nations. Department of Economic and Social Affairs. Population Division., New York. 2. IPCC (2007), IPCC Fourth Assessment Report: Climate Change 2007 (AR4) Rep.,Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  14. NOAA's Scientific Data Stewardship Program

    NASA Astrophysics Data System (ADS)

    Bates, J. J.

    2004-12-01

    The NOAA mission is to understand and predict changes in the Earth's environment and conserve and manage coastal and marine resources to meet the Nation's economic, social and environmental needs. NOAA has responsibility for long-term archiving of the United States environmental data and has recently integrated several data management functions into a concept called Scientific Data Stewardship. Scientific Data Stewardship a new paradigm in data management consisting of an integrated suite of functions to preserve and exploit the full scientific value of NOAA's, and the world's, environmental data These functions include careful monitoring of observing system performance for long-term applications, the generation of authoritative long-term climate records from multiple observing platforms, and the proper archival of and timely access to data and metadata. NOAA has developed a conceptual framework to implement the functions of scientific data stewardship. This framework has five objectives: 1) develop real-time monitoring of all satellite observing systems for climate applications, 2) process large volumes of satellite data extending up to decades in length to account for systematic errors and to eliminate artifacts in the raw data (referred to as fundamental climate data records, FCDRs), 3) generate retrieved geophysical parameters from the FCDRs (referred to as thematic climate data records TCDRs) including combining observations from all sources, 4) conduct monitoring and research by analyzing data sets to uncover climate trends and to provide evaluation and feedback for steps 2) and 3), and 5) provide archives of metadata, FCDRs, and TCDRs, and facilitate distribution of these data to the user community. The term `climate data record' and related terms, such as climate data set, have been used for some time, but the climate community has yet to settle on a concensus definition. A recent United States National Academy of Sciences report recommends using the following definition: a climate data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change.

  15. Improving Streamflow Forecasts Using Predefined Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Kalra, A.; Ahmad, S.

    2011-12-01

    With the increasing evidence of climate variability, water resources managers in the western United States are faced with greater challenges of developing long range streamflow forecast. This is further aggravated by the increases in climate extremes such as floods and drought caused by climate variability. Over the years, climatologists have identified several modes of climatic variability and their relationship with streamflow. These climate modes have the potential of being used as predictor in models for improving the streamflow lead time. With this as the motivation, the current research focuses on increasing the streamflow lead time using predefine climate indices. A data driven model i.e. Support Vector Machine (SVM) based on the statistical learning theory is used to predict annual streamflow volume 3-year in advance. The SVM model is a learning system that uses a hypothesis space of linear functions in a Kernel induced higher dimensional feature space, and is trained with a learning algorithm from the optimization theory. Annual oceanic-atmospheric indices, comprising of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), El Niño-Southern Oscillations (ENSO), and a new Sea Surface Temperature (SST) data set of "Hondo" Region for a period of 1906-2005 are used to generate annual streamflow volumes. The SVM model is applied to three gages i.e. Cisco, Green River, and Lees Ferry in the Upper Colorado River Basin in the western United States. Based on the performance measures the model shows very good forecasts, and the forecast are in good agreement with measured streamflow volumes. Previous research has identified NAO and ENSO as main drivers for extending streamflow forecast lead-time in the UCRB. Inclusion of "Hondo Region" SST information further improve the model's forecasting ability. The overall results of this study revealed that the annual streamflow of the UCRB is significantly influenced by predefine climate modes and the proposed SVM modeling technique incorporating oceanic-atmospheric oscillations is expected to be useful to water managers in the long-term management of the water resources within the UCRB.

  16. Association between organizational climate and perceptions and use of an innovation in Swedish primary health care: a prospective study of an implementation.

    PubMed

    Carlfjord, Siw; Festin, Karin

    2015-09-10

    There is a need for new knowledge regarding determinants of a successful implementation of new methods in health care. The role of a receptive context for change to support effective diffusion has been underlined, and could be studied by assessing the organizational climate. The aim of this study was to assess the association between organizational climate when a computer-based lifestyle intervention tool (CLT) was introduced in primary health care (PHC) and the implementation outcome in terms of how the tool was perceived and used after 2 years. The CLT was offered to 32 PHC units in Sweden, of which 22 units agreed to participate in the study. Before the introduction of the CLT, the creative climate at each participating unit was assessed. After 24 months, a follow-up questionnaire was distributed to the staff to assess how the CLT was perceived and how it was used. A question on the perceived need for the CLT was also included. The units were divided into three groups according to the creative climate: high, medium and low. The main finding was that the units identified as having a positive creative climate demonstrated more frequent use and more positive perceptions regarding the new tool than those with the least positive creative climate. More positive perceptions were seen at both individual and unit levels. According to the results from this study there is an association between organizational climate at baseline and implementation outcome after 2 years when a tool for lifestyle intervention is introduced in PHC in Sweden. Further studies are needed before measurement of organizational climate at baseline can be recommended in order to predict implementation outcome.

  17. U.S. Geological Survey Cooperative Fish and Wildlife Research Units Program—2016–2017 Research Abstracts

    USGS Publications Warehouse

    Dennerline, Donald E.; Childs, Dawn E.

    2017-04-20

    The U.S. Geological Survey (USGS) has several strategic goals that focus its efforts on serving the American people. The USGS Ecosystems Mission Area has responsibility for the following objectives under the strategic goal of “Science to Manage and Sustain Resources for Thriving Economies and Healthy Ecosystems”:Understand, model, and predict change in natural systemsConserve and protect wildlife and fish species and their habitatsReduce or eliminate the threat of invasive species and wildlife diseaseThis report provides abstracts of the majority of ongoing research investigations of the USGS Cooperative Fish and Wildlife Research Units program and is intended to complement the 2016 Cooperative Research Units Program Year in Review Circular 1424 (https://doi.org/10.3133/cir1424). The report is organized by the following major science themes that contribute to the objectives of the USGS:Advanced TechnologiesClimate ScienceDecision ScienceEcological FlowsEcosystem ServicesEndangered Species Conservation, Recovery, and Proactive StrategiesEnergyHuman DimensionsInvasive SpeciesLandscape EcologySpecies of Greatest Conservation NeedSpecies Population, Habitat, and Harvest ManagementWildlife Health and Disease

  18. The Impacts of Thawing Permafrost and Climate Change on USAF Infrastructure Within Northern Tier Bases

    NASA Astrophysics Data System (ADS)

    Graboski, A. J.

    2016-12-01

    The Department of Defense (DoD) is planning over $600M in military construction on Eielson Air Force Base (AFB) within the next three fiscal years. Although many studies have been conducted on permafrost and climate change, the future of our climate as well as any impacts on arctic infrastructure, remains unclear. This research focused on future climate predictions to determine likely scenarios for the United States Air Force's Strategic Planners to consider. This research also looked at various construction methods being used by industry to glean best practices to incorporate into future construction in order to determine cost factors to consider when permafrost soils may be encountered. The most recent 2013 International Panel on Climate Change (IPCC) report predicts a 2.2ºC to 7.8ºC temperature rise in Arctic regions by the end of the 21st Century in the Representative Concentration Pathways, (RCP4.5) emissions scenario. A regression model was created using archived surface observations from 1944 to 2016. Initial analysis using regression/forecast techniques show a 1.17ºC temperature increase in the Arctic by the end of the 21st Century. Historical DoD construction data was then used to determine an appropriate cost factor. Applying statistical tests to the adjusted climate predictions supports continued usage of current DoD cost factors of 2.13 at Eielson and 2.97 at Thule AFBs as they should be sufficient when planning future construction projects in permafrost rich areas. These cost factors should allow planners the necessary funds to plan foundation mitigation techniques and prevent further degradation of permafrost soils around airbase infrastructure. This current research focused on Central Alaska while further research is recommended on the Alaskan North Slope and Greenland to determine climate change impacts on critical DoD infrastructure.

  19. The Department of the Interior Southeast Climate Science Center synthesis report 2011–15—Projects, products, and science priorities

    USGS Publications Warehouse

    Varela Minder, Elda; Lascurain, Aranzazu R.; McMahon, Gerard

    2016-09-28

    IntroductionIn 2009, the U.S. Department of the Interior (DOI) Secretary Ken Salazar established a network of eight regional Climate Science Centers (CSCs) that, along with the Landscape Conservation Cooperatives (LCCs), would help define and implement the Department's climate adaptation response. The Southeast Climate Science Center (SE CSC) was established at North Carolina State University (NCSU) in Raleigh, North Carolina, in 2010, under a 5-year cooperative agreement with the U.S. Geological Survey (USGS), to identify and address the regional challenges presented by climate change and variability in the Southeastern United States. All eight regional CSC hosts, including NCSU, were selected through a competitive process.Since its opening, the focus of the SE CSC has been on working with partners in the identification and development of research-based information that can assist managers, including cultural and natural resource managers, in adapting to global change processes, such as climate and land use change, that operate at local to global scales and affect resources important to the DOI mission. The SE CSC was organized to accomplish three goals:Provide co-produced, researched based, actionable science that supports transparent global change adaptation decisions.Convene conversations among decision makers, scientists, and managers to identify key ecosystem adaptation decisions driven by climate and land use change, the values and objectives that will be used to make decisions, and the research-based information needed to assess adaptation options.Build the capacity of natural resource professionals, university faculty, and students to understand and frame natural resource adaptation decisions and develop and use research-based information to make adaptation decisions.This report provides an overview of the SE CSC and the projects developed by the SE CSC since its inception. An important goal of this report is to provide a framework for understanding the evolution of the SE CSC science agenda, which has evolved over the first 5 years of the Center’s operation.

  20. Climate Change Indicators for the United States

    EPA Science Inventory

    EPA’s publishes the Climate Change Indicators for the United States report to communicate information about the science and impacts of climate change, track trends in environmental quality, and inform de¬cision-making. This report presents a set of key indicators to help readers ...

  1. EXAMINING THE IMPACT OF CLIMATE CHANGE ON REGIONAL AIR QUALITY OVER THE UNITED STATES

    EPA Science Inventory

    This presentation summarizes recent results produced in support of the assessment of climate change impacts on ozone and particulate matter over the continental United States. Preliminary findings of climate scenario, meteorologically-drive emissions and air quality simulation a...

  2. Biophysical impacts of climate-smart agriculture in the Midwest United States

    USDA-ARS?s Scientific Manuscript database

    The potential impacts of climate change in the Midwest United States present unprecedented challenges to regional agriculture. In response to these challenges, a variety of climate-smart agricultural methodologies have been proposed to retain or improve crop yields, reduce agricultural greenhouse ga...

  3. Shift climate profiles and correlates in acute psychiatric inpatient units.

    PubMed

    Lewin, Terry J; Carr, Vaughan J; Conrad, Agatha M; Sly, Ketrina A; Tirupati, Srinivasan; Cohen, Martin; Ward, Philip B; Coombs, Tim

    2012-09-01

    Inpatient psychiatric units are dynamic in nature, potentially creating a different treatment experience for each person, which may be difficult to quantify. Among the goals of this multi-centre service evaluation project was an assessment of shift-to-shift changes in unit-level events and their impact on the social-emotional environment. Over 1 year, various nurse-completed logs were used within the 11 participating Australian psychiatric units (n = 5,546 admissions) to record patient- and unit-level events per shift, including ratings of the overall social-emotional climate using a novel shift climate ratings (SCR) scale (n = 8,176 shifts). These were combined with admission-level patient characteristics to investigate shift climate profiles and correlates. Occupancy rates averaged 88% and two-thirds of admissions were involuntary. The psychometric performance of the SCR scale was considered to be satisfactory (e.g., high internal consistency, unidimensional factor structure, and evidence of discriminant and predictive validity). A series of hierarchical regressions revealed considerable variation in SCR total scores, with poorer climates being significantly associated with: day/afternoon shifts; higher occupancy levels; higher proportions of experienced staff, and male, older, or involuntary patients; higher rates of less serious aggressive incidents; reporting of additional staffing demands; and unit location in a stand-alone psychiatric hospital. The day-to-day social-emotional climate can have important consequences for patient engagement and recovery. Improved understanding of the role played by unit, staff and patient characteristics, together with routine monitoring, should facilitate the development and evaluation of targeted interventions to reduce adverse incidents and improve the overall social-emotional climate.

  4. The Dynamic General Vegetation Model MC1 over the United States and Canada at a 5-arcminute resolution: model inputs and outputs

    Treesearch

    Ray Drapek; John B. Kim; Ronald P. Neilson

    2015-01-01

    Land managers need to include climate change in their decisionmaking, but the climate models that project future climates operate at spatial scales that are too coarse to be of direct use. To create a dataset more useful to managers, soil and historical climate were assembled for the United States and Canada at a 5-arcminute grid resolution. Nine CMIP3 future climate...

  5. Crop Yield Simulations Using Multiple Regional Climate Models in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stack, D.; Kafatos, M.; Kim, S.; Kim, J.; Walko, R. L.

    2013-12-01

    Agricultural productivity (described by crop yield) is strongly dependent on climate conditions determined by meteorological parameters (e.g., temperature, rainfall, and solar radiation). California is the largest producer of agricultural products in the United States, but crops in associated arid and semi-arid regions live near their physiological limits (e.g., in hot summer conditions with little precipitation). Thus, accurate climate data are essential in assessing the impact of climate variability on agricultural productivity in the Southwestern United States and other arid regions. To address this issue, we produced simulated climate datasets and used them as input for the crop production model. For climate data, we employed two different regional climate models (WRF and OLAM) using a fine-resolution (8km) grid. Performances of the two different models are evaluated in a fine-resolution regional climate hindcast experiment for 10 years from 2001 to 2010 by comparing them to the North American Regional Reanalysis (NARR) dataset. Based on this comparison, multi-model ensembles with variable weighting are used to alleviate model bias and improve the accuracy of crop model productivity over large geographic regions (county and state). Finally, by using a specific crop-yield simulation model (APSIM) in conjunction with meteorological forcings from the multi-regional climate model ensemble, we demonstrate the degree to which maize yields are sensitive to the regional climate in the Southwestern United States.

  6. Enabling Global Collaboration in the Geosciences

    NASA Astrophysics Data System (ADS)

    Klump, Jens; Allison, Lee; Asch, Kristine; Fox, Peter; Gundersen, Linda; Jackson, Ian; Loewe, Peter; Snyder, Walter S.; Ritschel, Bernd

    2008-12-01

    Geoinformatics 2008; Potsdam, Germany, 11-13 June 2008; Scientists are facing an increasing flood of data and information in the Earth sciences from which they try to distill knowledge. The emerging discipline of geoinformatics brings together the tools necessary to create and make accessible the knowledge needed to respond to society's complex challenges, such as climate change, new energy and mineral resources, new sources of water, and protecting environmental and human health. Globalization of geoinformatics-based research and education in support of meeting societal challenges was the theme for the Geoinformatics 2008 conference, which was held at the German Research Centre for Geosciences, in Potsdam, Germany. Participants came from China, France, Germany, Japan, Netherlands, Russia, Switzerland, the United Kingdom, and the United States, representing academic institutions, national research centers, and government agencies.

  7. Unravelling connections between river flow and large-scale climate: experiences from Europe

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Kingston, D. G.; Lavers, D.; Stagge, J. H.; Tallaksen, L. M.

    2016-12-01

    The United Nations has identified better knowledge of large-scale water cycle processes as essential for socio-economic development and global water-food-energy security. In this context, and given the ever-growing concerns about climate change/ variability and human impacts on hydrology, there is an urgent research need: (a) to quantify space-time variability in regional river flow, and (b) to improve hydroclimatological understanding of climate-flow connections as a basis for identifying current and future water-related issues. In this paper, we draw together studies undertaken at the pan-European scale: (1) to evaluate current methods for assessing space-time dynamics for different streamflow metrics (annual regimes, low flows and high flows) and for linking flow variability to atmospheric drivers (circulation indices, air-masses, gridded climate fields and vapour flux); and (2) to propose a plan for future research connecting streamflow and the atmospheric conditions in Europe and elsewhere. We believe this research makes a useful, unique contribution to the literature through a systematic inter-comparison of different streamflow metrics and atmospheric descriptors. In our findings, we highlight the need to consider appropriate atmospheric descriptors (dependent on the target flow metric and region of interest) and to develop analytical techniques that best characterise connections in the ocean-atmosphere-land surface process chain. We call for the need to consider not only atmospheric interactions, but also the role of the river basin-scale terrestrial hydrological processes in modifying the climate signal response of river flows.

  8. A systematic approach to community resilience that reduces the federal fiscal exposure to climate change

    NASA Astrophysics Data System (ADS)

    Stwertka, C.; Albert, M. R.; White, K. D.

    2016-12-01

    Despite widely available information about the adverse impacts of climate change to the public, including both private sector and federal fiscal exposure, there remain opportunities to effectively translate this knowledge into action. Further delay of climate preparedness and resilience actions imposes a growing toll on American communities and the United States fiscal budget. We hypothesize that a set of four criteria must be met before a community can translate climate disturbances into preparedness action. We examine four case studies to review these proposed criteria, we discuss the critical success factors that can build community resilience, and we define an operational strategy that could support community resilience while reducing the federal fiscal exposure to climate change. This operational strategy defines a community response system that integrates social science research, builds on the strengths of different sectors, values existing resources, and reduces the planning-to-action time. Our next steps are to apply this solution in the field, and to study the dynamics of community engagement and the circular economy.

  9. Estimates of runoff using water-balance and atmospheric general circulation models

    USGS Publications Warehouse

    Wolock, D.M.; McCabe, G.J.

    1999-01-01

    The effects of potential climate change on mean annual runoff in the conterminous United States (U.S.) are examined using a simple water-balance model and output from two atmospheric general circulation models (GCMs). The two GCMs are from the Canadian Centre for Climate Prediction and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HAD). In general, the CCC GCM climate results in decreases in runoff for the conterminous U.S., and the HAD GCM climate produces increases in runoff. These estimated changes in runoff primarily are the result of estimated changes in precipitation. The changes in mean annual runoff, however, mostly are smaller than the decade-to-decade variability in GCM-based mean annual runoff and errors in GCM-based runoff. The differences in simulated runoff between the two GCMs, together with decade-to-decade variability and errors in GCM-based runoff, cause the estimates of changes in runoff to be uncertain and unreliable.

  10. Evolution of body size in the woodrat over the past 25,000 years of climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F.A.; Brown, J.H.; Betancourt, J.L.

    1995-12-22

    Microevolutionary changes in the body size of the bushy-tailed woodrat (Neotoma cinerea) since the last glacial maximum were estimated from measurements of fecal pellets preserved in paleomiddens from the Great Basin and Colorado Plateau of the United States. The changes closely track regional temperature fluctuations simulated by the Community Climate Model of the National Center for Atmospheric Research and also those estimated from deuterium isotope ratios of plant cellulose recovered from paleomiddens. Body size decreased during periods of climatic warming, as predicted from Bergmann`s rule and from physiological responses to temperature stress. Fossil woodrat middens, by providing detailed temporal sequencesmore » of body sizes from many locations, permit precise quantification of responses to climatic change that have occurred in the past and may occur in the future. 24 refs., 3 figs.« less

  11. Climate of Hungary in the twentieth century according to Feddema

    NASA Astrophysics Data System (ADS)

    Ács, Ferenc; Breuer, Hajnalka; Skarbit, Nóra

    2015-01-01

    Feddema's (Physical Geography 26:442-466, 2005) bioclimatic classification scheme is applied to Hungary for the twentieth century using the Climatic Research Unit (CRU) data series. The method is tested in two modes. In the first, its original form is used which is suitable for global scale analysis. In the second, the criteria used in the method are slightly modified for mesoscale classification purposes. In both versions, potential evapotranspiration (PET) is calculated using McKenney and Rosenberg's (Meteorol 64:81-110, 1993) formula. We showed that McKenney and Rosenberg's formula could be applied to Hungary. According to Feddema's global scale application, local climates of the three main geographical regions, the Great Hungarian Plain, the North Hungarian Mountains, and Transdanubia, can be distinguished. However, the spatial distribution pattern within the regions is poorly reproduced, if at all. According to Feddema's mesoscale application, a picture of climatic subregions could be observed.

  12. A 2,000-year reconstruction of the rain-fed maize agricultural niche in the US Southwest.

    PubMed

    Bocinsky, R Kyle; Kohler, Timothy A

    2014-12-04

    Humans experience, adapt to and influence climate at local scales. Paleoclimate research, however, tends to focus on continental, hemispheric or global scales, making it difficult for archaeologists and paleoecologists to study local effects. Here we introduce a method for high-frequency, local climate-field reconstruction from tree-rings. We reconstruct the rain-fed maize agricultural niche in two regions of the southwestern United States with dense populations of prehispanic farmers. Niche size and stability are highly variable within and between the regions. Prehispanic rain-fed maize farmers tended to live in agricultural refugia--areas most reliably in the niche. The timing and trajectory of the famous thirteenth century Pueblo migration can be understood in terms of relative niche size and stability. Local reconstructions like these illuminate the spectrum of strategies past humans used to adapt to climate change by recasting climate into the distributions of resources on which they depended.

  13. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture.

    PubMed

    Boxall, Alistair B A; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D; Haygarth, Philip M; Hutchinson, Thomas; Kovats, R Sari; Leonardi, Giovanni; Levy, Leonard S; Nichols, Gordon; Parsons, Simon A; Potts, Laura; Stone, David; Topp, Edward; Turley, David B; Walsh, Kerry; Wellington, Elizabeth M H; Williams, Richard J

    2009-04-01

    Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes.

  14. Climate change, agriculture and water resources in the Southwestern United States

    USDA-ARS?s Scientific Manuscript database

    In February 2014 the USDA established regional climate hubs across the United States to assist farmers, ranchers and foresters in adapting to the effects of climate change. The Southwest (SW) region encompasses six states which provide highly diverse agricultural crops including cotton, stone fruit ...

  15. Climate Change Professional Development Approaches: Design Considerations, Teacher Enactment, and Student Learning

    NASA Astrophysics Data System (ADS)

    Drewes, A.; Henderson, J.; Mouza, C.

    2017-12-01

    Climate change is one of the most pressing challenges facing society, and climate change educational models are emerging in response. This study investigates the implementation and enactment of a climate change professional development model for science educators and its impact on student learning. Using an intrinsic case study methodology, we focused analytic attention on how one teacher made specific curricular, pedagogical, and content decisions, and the implications of those decisions for student's conceptual learning.The research presented here reports on the instructional design, pedagogical enactment, and subsequent effects on student learning of a climate change professional development (PD) model in the United States. Using anthropological theories of conceptual travel, we traced salient ideas from the PD through instructional delivery and into the evidence of student reasoning. We sought to address the following research questions: 1) How did a middle school teacher integrate climate change concepts into her science curriculum following PD participation? and 2) How did climate change instruction influence student understanding of key climate change constructs?From observation of the classroom instruction, we determined that the teacher effectively integrated new climate change information into her pre-existing schema. Additionally, through retrospective analysis of the PD, we found the design of the PD foregrounded the causes, mechanisms and likely effects of anthropogenic climate change at the expense of mitigation and adaptation strategies, and this differentially shaped how climate change was taught in the teacher's classroom. Analysis of student reasoning evidence showed that students gained an increased understanding of the enhanced greenhouse effect and the implications of human activity on this enhanced effect at statistically significant levels and with moderate effect sizes. However, students demonstrated a limited, though non-significant gain on the likely effects of climate change. Student reasoning on the tangible actions to deal with these problems also remained underdeveloped, reflecting omissions in both professional development and teacher enactment. We discuss implications and considerations for the emerging field of climate change education.

  16. Interactive Development of Regional Climate Web Pages for the Western United States

    NASA Astrophysics Data System (ADS)

    Oakley, N.; Redmond, K. T.

    2013-12-01

    Weather and climate have a pervasive and significant influence on the western United States, driving a demand for information that is ongoing and constantly increasing. In communications with stakeholders, policy makers, researchers, educators, and the public through formal and informal encounters, three standout challenges face users of weather and climate information in the West. First, the needed information is scattered about the web making it difficult or tedious to access. Second, information is too complex or requires too much background knowledge to be immediately applicable. Third, due to complex terrain, there is high spatial variability in weather, climate, and their associated impacts in the West, warranting information outlets with a region-specific focus. Two web sites, TahoeClim and the Great Basin Weather and Climate Dashboard were developed to overcome these challenges to meeting regional weather and climate information needs. TahoeClim focuses on the Lake Tahoe Basin, a region of critical environmental concern spanning the border of Nevada and California. TahoeClim arose out of the need for researchers, policy makers, and environmental organizations to have access to all available weather and climate information in one place. Additionally, TahoeClim developed tools to both interpret and visualize data for the Tahoe Basin with supporting instructional material. The Great Basin Weather and Climate Dashboard arose from discussions at an informal meeting about Nevada drought organized by the USDA Farm Service Agency. Stakeholders at this meeting expressed a need to take a 'quick glance' at various climate indicators to support their decision making process. Both sites were designed to provide 'one-stop shopping' for weather and climate information in their respective regions and to be intuitive and usable by a diverse audience. An interactive, 'co-development' approach was taken with sites to ensure needs of potential users were met. The sites were presented in meetings of target user groups at several stages of development. Feedback was collected by observing people as they used the sites to complete a task as well as through surveys and informal discussion. The resultant web products meet the needs of the target audience and give them a sense of ownership, making them more inclined to utilize the sites. Even with Western Regional Climate Center's considerable experience in the provision of climate services, this proved to be a very fruitful exercise in how to better serve our clientele and revealed opportunities for improving our products. The lessons learned from this 'co-development' process about how people search for, use, and perceive weather and climate data in the West provide valuable insight for others wishing to create an online tool to supply this type of information.

  17. A Survey of Registered Dietitians’ Concern and Actions Regarding Climate Change in the United States

    PubMed Central

    Hawkins, Irana W.; Balsam, Alan L.; Goldman, Robert

    2015-01-01

    Dietary choices are a tool to reduce greenhouse gas emissions. While registered dietitians are on the front lines of food and nutrition recommendations, it is unclear how many are concerned with climate change and take action in practice in the United States. We explored concern about climate change among registered dietitians, and identified factors that may influence practice-related behaviors. Our study population included a random sample of all registered dietitians credentialed in the United States. Primary data were gathered using a cross-sectional survey. Of the 570 survey responses, 75% strongly agreed or agreed that climate change is an important issue while 34% strongly agreed or agreed that dietitians should play a major role in climate change mitigation strategies. Thirty-eight percent engaged in activities that promoted diet as a climate change mitigation strategy. Vegetarian (p = 0.002) and vegan dietitians (p = 0.007) were significantly more likely than non-vegetarian and non-vegan dietitians to engage in activities that promoted diet as a climate change mitigation strategy. Overall, concern for climate change among dietitians varied significantly by the region of the country in which the dietitian resided, and awareness that animal products are implicated in climate change. Registered dietitians in the United States are concerned with climate change. However, there is a discrepancy between concern and practice-based actions. These results suggest the need for educational and experiential opportunities connecting climate change mitigation to dietetics practice. PMID:26217666

  18. Potential impacts of climate change on soil erosion vulnerability across the conterminous United States

    Treesearch

    C. Segura; G. Sun; S. McNulty; Y. Zhang

    2014-01-01

    Rainfall runoff erosivity (R) is one key climate factor that controls water erosion. Quantifying the effects of climate change-induced erosivity change is important for identifying critical regions prone to soil erosion under a changing environment. In this study we first evaluate the changes of R from 1970 to 2090 across the United States under nine climate conditions...

  19. Analysis of potential impacts of climate change on forests of the United States Pacific Northwest

    Treesearch

    Gregory Latta; Hailemariam Temesgen; Darius Adams; Tara Barrett

    2010-01-01

    As global climate changes over the next century, forest productivity is expected to change as well. Using PRISM climate and productivity data measured on a grid of 3356 plots, we developed a simultaneous autoregressive model to estimate the impacts of climate change on potential productivity of Pacific Northwest forests of the United States. The model, coupled with...

  20. Climate change and wildlife in the southern United States: potential effects and management options

    Treesearch

    Cathryn H. Greenberg; Roger W. Perry; Kathleen E. Franzreb; Susan C. Loeb; Daniel Saenz; D. Craig Rudolph; Eric Winters; E.M. Fucik; M.A. Kwiatkowski; B.R. Parresol; J.D. Austin; G.W. Tanner

    2014-01-01

    In the southeastern United States, climate models project a temperature increase of 2-10°C by 2100 (Intergovernmental Panel on Climate Change 2007). Climate change is already evident. Since the 1970s, average temperature has risen by about 1°C, with the greatest seasonal temperature increase during winter. Average precipitation during autumn has increased by 30% since...

  1. Decay hazard (Scheffer) index values calculated from 1971-2000 climate normal data

    Treesearch

    Charles G. Carll

    2009-01-01

    Climate index values for estimating decay hazard to wood exposed outdoors above ground (commonly known as Scheffer index values) were calculated for 280 locations in the United States (270 locations in the conterminous United States) using the most current climate normal data available from the National Climatic Data Center. These were data for the period 1971–2000. In...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng

    Solar reflective “cool roofs” absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofsmore » in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (0.11±0.10 K) and the United States (0.14±0.12 K); India and Europe show statistically insignificant changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (0.0021 ±0.026 K). This counters past research suggesting that cool roofs can reduce, or even increase global mean temperatures. Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.« less

  3. Integrated Assessment of Hadley Centre (HadCM2) Climate Change Projections on Agricultural Productivity and Irrigation Water Supply in the Conterminous United States.I. Climate change scenarios and impacts on irrigation water supply simulated with the HUMUS model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Norman J.; Brown, Robert A.; Izaurralde, R Cesar C.

    This paper describes methodology and results of a study by researchers at PNNL contributing to the water sector study of the U.S. National Assessment of Climate Change. The vulnerability of water resources in the conterminous U.S. to climate change in 10-y periods centered on 2030 and 2095--as projected by the HadCM2 general circulation model--was modeled with HUMUS (Hydrologic Unit Model of the U.S.). HUMUS consists of a GIS that provides data on soils, land use and climate to drive the hydrology model Soil Water Assessment Tool (SWAT). The modeling was done at the scale of the 2101 8-digit USGS hydrologicmore » unit areas (HUA). Results are aggregated to the 4-digit and 2-digit (Major Water Resource Region, MWRR) scales for various purposes. Daily records of temperature and precipitation for 1961-1990 provided the baseline climate. Water yields (WY)--sum of surface and subsurface runoff--increases from the baseline period over most of the U.S. in 2030 and 2095. In 2030, WY increases in the western US and decreases in the central and southeast regions. Notably, WY increases by 139 mm from baseline in the Pacific NW. Decreased WY is projected for the Lower Mississippi and Texas Gulf basins, driven by higher temperatures and reduced precipitation. The HadCM2 2095 scenario projects a climate significantly wetter than baseline, resulting in WY increases of 38%. WY increases are projected throughout the eastern U.S. WY also increases in the western U.S. Climate change also affects the seasonality of the hydrologic cycle. Early snowmelt is induced in western basins, leading to dramatically increased WYs in late winter and early spring. The simulations were run at current (365 ppm) and elevated (560 ppm) atmospheric CO2 concentrations to account for the potential impacts of the CO2-fertilization effect. The effects of climate change scenario were considerably greater than those due to elevated CO2 but the latter, overall, decreased losses and augmented increases in water yield.« less

  4. The influence of the learning climate on learning outcomes from Marte Meo counselling in dementia care.

    PubMed

    Alnes, Rigmor Einang; Kirkevold, Marit; Skovdahl, Kirsti

    2013-01-01

      To identify factors that affected the learning outcomes from Marte Meo counselling (MMC).   Although MMC has shown promising results regarding learning outcomes for staff working in dementia-specific care units, the outcomes differ.   Twelve individual interviews and four focus group interviews with staff who had participated in MMC were analysed through a qualitative content analysis.   The learning climate has considerable significance for the experienced benefit of MMC and indicate that this learning climate depends on three conditions: establishing a common understanding of the content and form of MMC, ensuring staff's willingness to participate and the opportunity to do so, and securing an arena in the unit for discussion and interactions.   Learning outcomes from MMC in dementia-specific care units appear to depend on the learning climate in the unit. Implication for nursing management  The learning climate needs attention from the nursing management when establishing Marte Meo intervention in nursing homes. The learning climate can be facilitated through building common understandings in the units regarding why and how this intervention should take place, and by ensuring clarity in the relationship between the intervention and the organization's objectives. © 2012 Blackwell Publishing Ltd.

  5. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 7. Economic Analysis of Field Crops and Land Use with Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sands, Ronald D.; Edmonds, James A.

    PNNL's Agriculture and Land Use (AgLU) model is used to demonstrate the impact of potential changes in climate on agricultural production and land use in the United States. AgLU simulates production of four crop types in several world regions, in 15-year time steps from 1990 to 2095. Changes in yield of major field crops in the United States, for 12 climate scenarios, are obtained from simulations of the EPIC crop growth model. Results from the HUMUS model are used to constrain crop irrigation, and the BIOME3 model is used to simulate productivity of unmanaged ecosystems. Assumptions about changes in agriculturalmore » productivity outside the United States are treated on a scenario basis, either responding in the same way as in the United States, or not responding to climate.« less

  6. Vulnerability of Coastal Wetlands in the Southeastern United States: Climate Change Research Results, 1992-97.

    DTIC Science & Technology

    1998-01-01

    resource management and use of these public lands . Southeastern coastal wetlands have also been high priority areas for state fish and wildlife agencies...of landscape models and new satellite tech- nology to provide important tools for research and policy purposes that allow for effective land and...transgression. Hence, short- term rates of marsh transgression may be meaningless and may not be useful tools to predict wetland habitat change, at least

  7. Linking Climate Risk, Policy Networks and Adaptation Planning in Public Lands

    NASA Astrophysics Data System (ADS)

    Lubell, M.; Schwartz, M.; Peters, C.

    2014-12-01

    Federal public land management agencies in the United States have engaged a variety of planning efforts to address climate adaptation. A major goal of these efforts is to build policy networks that enable land managers to access information and expertise needed for responding to local climate risks. This paper investigates whether the perceived and modeled climate risk faced by different land managers is leading to larger networks or more participating in climate adaptation. In theory, the benefits of climate planning networks are larger when land managers are facing more potential changes. The basic hypothesis is tested with a survey of public land managers from hundreds of local and regional public lands management units in the Southwestern United States, as well as other stakeholders involved with climate adaptation planning. All survey respondents report their perceptions of climate risk along a variety of dimensions, as well as their participation in climate adaptation planning and information sharing networks. For a subset of respondents, we have spatially explicity GIS data about their location, which will be linked with downscaled climate model data. With the focus on climate change, the analysis is a subset of the overall idea of linking social and ecological systems.

  8. Patient safety climate (PSC) perceptions of frontline staff in acute care hospitals: examining the role of ease of reporting, unit norms of openness, and participative leadership.

    PubMed

    Zaheer, Shahram; Ginsburg, Liane; Chuang, You-Ta; Grace, Sherry L

    2015-01-01

    Increased awareness regarding the importance of patient safety issues has led to the proliferation of theoretical conceptualizations, frameworks, and articles that apply safety experiences from high-reliability industries to medical settings. However, empirical research on patient safety and patient safety climate in medical settings still lags far behind the theoretical literature on these topics. The broader organizational literature suggests that ease of reporting, unit norms of openness, and participative leadership might be important variables for improving patient safety. The aim of this empirical study is to examine in detail how these three variables influence frontline staff perceptions of patient safety climate within health care organizations. A cross-sectional study design was used. Data were collected using a questionnaire composed of previously validated scales. The results of the study show that ease of reporting, unit norms of openness, and participative leadership are positively related to staff perceptions of patient safety climate. Health care management needs to involve frontline staff during the development and implementation stages of an error reporting system to ensure staff perceive error reporting to be easy and efficient. Senior and supervisory leaders at health care organizations must be provided with learning opportunities to improve their participative leadership skills so they can better integrate frontline staff ideas and concerns while making safety-related decisions. Finally, health care management must ensure that frontline staff are able to freely communicate safety concerns without fear of being punished or ridiculed by others.

  9. Some Spatial Aspects of Southeastern United States Climatology.

    ERIC Educational Resources Information Center

    Soule, Peter T.

    1998-01-01

    Focuses on the climatology of an eight-state region in the southern and southeastern United States. Discusses general controls of climate and spatial patterns of various climatic averages. Examines mapped extremes as a means of fostering increased awareness of the variability that exists for climatic conditions in the region. (CMK)

  10. 78 FR 19565 - Call for Expert Reviewers to the U.S. Government Review of the Working Group II Contribution to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... Climate Change (IPCC), Impacts, Adaptation & Vulnerability. SUMMARY: The United States Global Change... on Climate Change (IPCC), Impacts, Adaptation & Vulnerability. The United Nations Environment... socio-economic information for understanding the scientific basis of climate change, potential impacts...

  11. Vulnerability of United States Bridges to Potential Increases in Flooding from Climate Change

    EPA Science Inventory

    This study assesses the potential impacts of increased river flooding from climate change on bridges in the continental United States. Daily precipitation statistics from four climate models and three greenhouse gas (GHG) emissions scenarios (A2, A1B, and B1) are used to capture ...

  12. A Comparison of Faculty Perceptions of Campus Climate at a Predominately White Institution

    ERIC Educational Resources Information Center

    Foster, Devona L.

    2009-01-01

    Research indicates the learning process among others things are influenced by have a diverse faculty. While the population of students in college across the United States is significantly more diverse than ever, diversity among faculty members did not concurrently occur (Smith & Moreno, 2006) and in order to maintain student diversity the…

  13. School Climate, Deployment, and Mental Health among Students in Military-Connected Schools

    ERIC Educational Resources Information Center

    De Pedro, Kris Tunac; Astor, Ron Avi; Gilreath, Tamika D.; Benbenishty, Rami; Berkowitz, Ruth

    2018-01-01

    Research has found that when compared with civilian students, military-connected students in the United States have more negative mental health outcomes, stemming from the stress of military life events (i.e., deployment). To date, studies on military-connected youth have not examined the role of protective factors within the school environment,…

  14. Character Development in Business Education: A Comparison of Coeducational and Single-Sex Environments

    ERIC Educational Resources Information Center

    Davis, James H.; Ruhe, John; Lee, Monle; Rajadhyaksha, Ujvala

    2011-01-01

    This study questions the widely held assumption, particularly in the United States, that coeducation is best. Previous research supports the development of single-sex education for both female and male students. This study examines how the learning climate of the coeducation environment seems to affect the character development of female business…

  15. A dynamic invasive species research vision: Opportunities and priorities 2009-29

    Treesearch

    2010-01-01

    Invasive species significantly impact U.S. ecosystems and are one of the greatest threats to forest, rangeland, and urban forest health. They have contributed to increases in fire frequency and intensity; reduced water resources, forest growth, and timber; and negatively affected native species and their habitats throughout the United States. Global trade, climate...

  16. Salient Ecological Sensitive Regions of Central Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Ramachandra, T. V.; Bharath, Setturu; Subash Chandran, M. D.; Joshi, N. V.

    2018-05-01

    Ecologically sensitive regions (ESRs) are the `ecological units' with the exceptional biotic and abiotic elements. Identification of ESRs considering spatially both ecological and social dimensions of environmental variables helps in ecological and conservation planning as per Biodiversity Act, 2002, Government of India. The current research attempts to integrate ecological and environmental considerations into administration, and prioritizes regions at Panchayat levels (local administrative unit) in Uttara Kannada district, Central Western Ghats, Karnataka state considering attributes (biological, Geo-climatic, Social, etc.) as ESR (1-4) through weightage score metrics. The region has the distinction of having highest forest area (80.48%) in Karnataka State, India and has been undergoing severe anthropogenic pressures impacting biogeochemistry, hydrology, food security, climate and socio-economic systems. Prioritisation of ESRs helps in the implementation of the sustainable developmental framework with the appropriate conservation strategies through the involvement of local stakeholders.

  17. Salient Ecological Sensitive Regions of Central Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Ramachandra, T. V.; Bharath, Setturu; Subash Chandran, M. D.; Joshi, N. V.

    2018-02-01

    Ecologically sensitive regions (ESRs) are the `ecological units' with the exceptional biotic and abiotic elements. Identification of ESRs considering spatially both ecological and social dimensions of environmental variables helps in ecological and conservation planning as per Biodiversity Act, 2002, Government of India. The current research attempts to integrate ecological and environmental considerations into administration, and prioritizes regions at Panchayat levels (local administrative unit) in Uttara Kannada district, Central Western Ghats, Karnataka state considering attributes (biological, Geo-climatic, Social, etc.) as ESR (1-4) through weightage score metrics. The region has the distinction of having highest forest area (80.48%) in Karnataka State, India and has been undergoing severe anthropogenic pressures impacting biogeochemistry, hydrology, food security, climate and socio-economic systems. Prioritisation of ESRs helps in the implementation of the sustainable developmental framework with the appropriate conservation strategies through the involvement of local stakeholders.

  18. Effects of climate change on long-term population growth of pronghorn in an arid environment

    USGS Publications Warehouse

    Gedir, Jay V.; Cain, James W.; Harris, Grant; Turnbull, Trey T.

    2015-01-01

    Climate often drives ungulate population dynamics, and as climates change, some areas may become unsuitable for species persistence. Unraveling the relationships between climate and population dynamics, and projecting them across time, advances ecological understanding that informs and steers sustainable conservation for species. Using pronghorn (Antilocapra americana) as an ecological model, we used a Bayesian approach to analyze long-term population, precipitation, and temperature data from 18 populations in the southwestern United States. We determined which long-term (12 and 24 months) or short-term (gestation trimester and lactation period) climatic conditions best predicted annual rate of population growth (λ). We used these predictions to project population trends through 2090. Projections incorporated downscaled climatic data matched to pronghorn range for each population, given a high and a lower atmospheric CO2 concentration scenario. Since the 1990s, 15 of the pronghorn populations declined in abundance. Sixteen populations demonstrated a significant relationship between precipitation and λ, and in 13 of these, temperature was also significant. Precipitation predictors of λ were highly seasonal, with lactation being the most important period, followed by early and late gestation. The influence of temperature on λ was less seasonal than precipitation, and lacked a clear temporal pattern. The climatic projections indicated that all of these pronghorn populations would experience increased temperatures, while the direction and magnitude of precipitation had high population-specific variation. Models predicted that nine populations would be extirpated or approaching extirpation by 2090. Results were consistent across both atmospheric CO2 concentration scenarios, indicating robustness of trends irrespective of climatic severity. In the southwestern United States, the climate underpinning pronghorn populations is shifting, making conditions increasingly inhospitable to pronghorn persistence. This realization informs and steers conservation and management decisions for pronghorn in North America, while exemplifying how similar research can aid ungulates inhabiting arid regions and confronting similar circumstances elsewhere.

  19. Climate Justice in Rural Southeastern United States: A Review of Climate Change Impacts and Effects on Human Health.

    PubMed

    Gutierrez, Kristie S; LePrevost, Catherine E

    2016-02-03

    Climate justice is a local, national, and global movement to protect at-risk populations who are disproportionately affected by climate change. The social context for this review is the Southeastern region of the United States, which is particularly susceptible to climate change because of the geography of the area and the vulnerabilities of the inhabiting populations. Negative human health effects on variable and vulnerable populations within the Southeast region due to changing climate are concerning, as health threats are not expected to produce parallel effects among all individuals. Vulnerable communities, such as communities of color, indigenous people, the geographically isolated, and those who are socioeconomically disadvantaged and already experiencing poor environmental quality, are least able to respond and adapt to climate change. Focusing on vulnerable populations in the Southeastern United States, this review is a synthesis of the recent (2010 to 2015) literature-base on the health effects connected to climate change. This review also addresses local and regional mitigation and adaptation strategies for citizens and leaders to combat direct and indirect human health effects related to a changing climate.

  20. National Scale Prediction of Soil Carbon Sequestration under Scenarios of Climate Change

    NASA Astrophysics Data System (ADS)

    Izaurralde, R. C.; Thomson, A. M.; Potter, S. R.; Atwood, J. D.; Williams, J. R.

    2006-12-01

    Carbon sequestration in agricultural soils is gaining momentum as a tool to mitigate the rate of increase of atmospheric CO2. Researchers from the Pacific Northwest National Laboratory, Texas A&M University, and USDA-NRCS used the EPIC model to develop national-scale predictions of soil carbon sequestration with adoption of no till (NT) under scenarios of climate change. In its current form, the EPIC model simulates soil C changes resulting from heterotrophic respiration and wind / water erosion. Representative modeling units were created to capture the climate, soil, and management variability at the 8-digit hydrologic unit (USGS classification) watershed scale. The soils selected represented at least 70% of the variability within each watershed. This resulted in 7,540 representative modeling units for 1,412 watersheds. Each watershed was assigned a major crop system: corn, soybean, spring wheat, winter wheat, cotton, hay, alfalfa, corn-soybean rotation or wheat-fallow rotation based on information from the National Resource Inventory. Each representative farm was simulated with conventional tillage and no tillage, and with and without irrigation. Climate change scenarios for two future periods (2015-2045 and 2045-2075) were selected from GCM model runs using the IPCC SRES scenarios of A2 and B2 from the UK Hadley Center (HadCM3) and US DOE PCM (PCM) models. Changes in mean and standard deviation of monthly temperature and precipitation were extracted from gridded files and applied to baseline climate (1960-1990) for each of the 1,412 modeled watersheds. Modeled crop yields were validated against historical USDA NASS county yields (1960-1990). The HadCM3 model predicted the most severe changes in climate parameters. Overall, there would be little difference between the A2 and B2 scenarios. Carbon offsets were calculated as the difference in soil C change between conventional and no till. Overall, C offsets during the first 30-y period (513 Tg C) are predicted to be 36% higher than those predicted during the second period. The climate projections of the PCM model had more positive impact on soil C sequestration than those predicted with the HadCM3 model.

  1. Positive School Climate Is Associated With Lower Body Mass Index Percentile Among Urban Preadolescents

    PubMed Central

    Gilstad-Hayden, Kathryn; Carroll-Scott, Amy; Rosenthal, Lisa; Peters, Susan M.; McCaslin, Catherine; Ickovics, Jeannette R.

    2015-01-01

    BACKGROUND Schools are an important environmental context in children’s lives and are part of the complex web of factors that contribute to childhood obesity. Increasingly, attention has been placed on the importance of school climate (connectedness, academic standards, engagement, and student autonomy) as 1 domain of school environment beyond health policies and education that may have implications for student health outcomes. The purpose of this study is to examine the association of school climate with body mass index (BMI) among urban preadolescents. METHODS Health surveys and physical measures were collected among fifth- and sixth-grade students from 12 randomly selected public schools in a small New England city. School climate surveys were completed district-wide by students and teachers. Hierarchical linear modeling was used to test the association between students’ BMI and schools’ climate scores. RESULTS After controlling for potentially confounding individual-level characteristics, a 1-unit increase in school climate score (indicating more positive climate) was associated with a 7-point decrease in students’ BMI percentile. CONCLUSIONS Positive school climate is associated with lower student BMI percentile. More research is needed to understand the mechanisms behind this relationship and to explore whether interventions promoting positive school climate can effectively prevent and/or reduce obesity. PMID:25040118

  2. Environmental health indicators of climate change for the United States: findings from the State Environmental Health Indicator Collaborative.

    PubMed

    English, Paul B; Sinclair, Amber H; Ross, Zev; Anderson, Henry; Boothe, Vicki; Davis, Christine; Ebi, Kristie; Kagey, Betsy; Malecki, Kristen; Shultz, Rebecca; Simms, Erin

    2009-11-01

    To develop public health adaptation strategies and to project the impacts of climate change on human health, indicators of vulnerability and preparedness along with accurate surveillance data on climate-sensitive health outcomes are needed. We researched and developed environmental health indicators for inputs into human health vulnerability assessments for climate change and to propose public health preventative actions. We conducted a review of the scientific literature to identify outcomes and actions that were related to climate change. Data sources included governmental and nongovernmental agencies and the published literature. Sources were identified and assessed for completeness, usability, and accuracy. Priority was then given to identifying longitudinal data sets that were applicable at the state and community level. We present a list of surveillance indicators for practitioners and policy makers that include climate-sensitive health outcomes and environmental and vulnerability indicators, as well as mitigation, adaptation, and policy indicators of climate change. A review of environmental health indicators for climate change shows that data exist for many of these measures, but more evaluation of their sensitivity and usefulness is needed. Further attention is necessary to increase data quality and availability and to develop new surveillance databases, especially for climate-sensitive morbidity.

  3. Environmental Health Indicators of Climate Change for the United States: Findings from the State Environmental Health Indicator Collaborative

    PubMed Central

    English, Paul B.; Sinclair, Amber H.; Ross, Zev; Anderson, Henry; Boothe, Vicki; Davis, Christine; Ebi, Kristie; Kagey, Betsy; Malecki, Kristen; Shultz, Rebecca; Simms, Erin

    2009-01-01

    Objective To develop public health adaptation strategies and to project the impacts of climate change on human health, indicators of vulnerability and preparedness along with accurate surveillance data on climate-sensitive health outcomes are needed. We researched and developed environmental health indicators for inputs into human health vulnerability assessments for climate change and to propose public health preventative actions. Data sources We conducted a review of the scientific literature to identify outcomes and actions that were related to climate change. Data sources included governmental and nongovernmental agencies and the published literature. Data extraction Sources were identified and assessed for completeness, usability, and accuracy. Priority was then given to identifying longitudinal data sets that were applicable at the state and community level. Data synthesis We present a list of surveillance indicators for practitioners and policy makers that include climate-sensitive health outcomes and environmental and vulnerability indicators, as well as mitigation, adaptation, and policy indicators of climate change. Conclusions A review of environmental health indicators for climate change shows that data exist for many of these measures, but more evaluation of their sensitivity and usefulness is needed. Further attention is necessary to increase data quality and availability and to develop new surveillance databases, especially for climate-sensitive morbidity. PMID:20049116

  4. Positive school climate is associated with lower body mass index percentile among urban preadolescents.

    PubMed

    Gilstad-Hayden, Kathryn; Carroll-Scott, Amy; Rosenthal, Lisa; Peters, Susan M; McCaslin, Catherine; Ickovics, Jeannette R

    2014-08-01

    Schools are an important environmental context in children's lives and are part of the complex web of factors that contribute to childhood obesity. Increasingly, attention has been placed on the importance of school climate (connectedness, academic standards, engagement, and student autonomy) as 1 domain of school environment beyond health policies and education that may have implications for student health outcomes. The purpose of this study is to examine the association of school climate with body mass index (BMI) among urban preadolescents. Health surveys and physical measures were collected among fifth- and sixth-grade students from 12 randomly selected public schools in a small New England city. School climate surveys were completed district-wide by students and teachers. Hierarchical linear modeling was used to test the association between students' BMI and schools' climate scores. After controlling for potentially confounding individual-level characteristics, a 1-unit increase in school climate score (indicating more positive climate) was associated with a 7-point decrease in students' BMI percentile. Positive school climate is associated with lower student BMI percentile. More research is needed to understand the mechanisms behind this relationship and to explore whether interventions promoting positive school climate can effectively prevent and/or reduce obesity. © 2014, American School Health Association.

  5. Nurses' perception of their manager's leadership style and unit climate: are there generational differences?

    PubMed

    Farag, Amany A; Tullai-McGuinness, Susan; Anthony, Mary K

    2009-01-01

    To describe and compare how nurses representing four age cohorts perceive their manager's leadership style and unit climate. The current workforce consists of nurses representing four generational cohorts. Nursing literature suggests that nurses from each age cohort think, behave and approach work differently. Limited empirical evidence, however, exists about how nurses from each age cohort perceive two aspects of their work environment: their managers' leadership style and unit climate. This cross-sectional, descriptive survey was conducted using a convenience sample of 475 registered nurses working in different inpatient units in three community non-magnet hospitals. Only nurses from Boomer and Gen-Xers had sufficient representation to be included in the data analysis. Nurses from the two main age cohorts did not differ in their perceptions of their manager's leadership style. Significant differences were found in two unit climate dimensions. The Gen-Xers had a less favourable perception of their unit climate related to warmth and belonging and administrative support. Nurse manager's might reflect on how they interact with different age cohorts; and to involve nurses from various age cohorts in the development of policies to create a flexible work environment.

  6. A review of the potential effects of climate change on quaking aspen (Populus tremuloides) in the Western United States and a new tool for surveying sudden aspen decline

    Treesearch

    Toni Lyn Morelli; Susan C. Carr

    2011-01-01

    We conducted a literature review of the effects of climate on the distribution and growth of quaking aspen (Populus tremuloides Michx.) in the Western United States. Based on our review, we summarize models of historical climate determinants of contemporary aspen distribution. Most quantitative climate-based models linked aspen presence and growth...

  7. Climate Literacy: Supporting Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Haddad, N.; Ledley, T. S.; Dunlap, C.; Bardar, E.; Youngman, B.; Ellins, K. K.; McNeal, K. S.; Libarkin, J.

    2012-12-01

    Confronting the Challenges of Climate Literacy (CCCL) is an NSF-funded (DRK-12) project that includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at high school teachers and students. The project's evaluation efforts inform and guide all major components of the project. The research effort addresses the question of what interventions are most effective in helping high school students grasp the complexities of the Earth system and climate processes, which occur over a range of spatial and temporal scales. The curriculum unit includes three distinct but related modules: Climate and the Cryosphere; Climate, Weather, and the Biosphere; and Climate and the Carbon Cycle. Climate-related themes that cut across all three modules include the Earth system, with the complexities of its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. The professional development component of the project includes online science resources to support the teaching of the curriculum modules, summer workshops for high school teachers, and a support system for developing the teacher leaders who plan and implement those summer workshops. When completed, the project will provide a model high school curriculum with online support for implementing teachers and a cadre of leaders who can continue to introduce new teachers to the resource. This presentation will introduce the curriculum and the university partnerships that are key to the project's success, and describe how the project addresses the challenge of helping teachers develop their understanding of climate science and their ability to convey climate-related concepts articulated in the Next Generation Science Standards to their students. We will also describe the professional development and support system to develop teacher leaders and explain some of the challenges that accompany this approach of developing teacher leaders in the area of climate literacy.

  8. Teaching Earth System Science Using Climate Educational Modules Based on NASA and NOAA Resources

    NASA Astrophysics Data System (ADS)

    Ramirez, P. C.; LaDochy, S.; Patzert, W. C.; Willis, J. K.

    2011-12-01

    The Earth System Science Education Alliance (ESSEA) recently developed a set of climate related educational modules to be used by K-12 teachers. These modules incorporate recent NASA and NOAA resources in Earth Science education. In the summer of 2011, these modules were tested by in-service teachers in courses held at several college campuses. At California State University, Los Angeles, we reviewed two climate modules: The Great Ocean Conveyer Belt and Abrupt Climate Change (http://essea.strategies.org/module.php?module_id=148) and Sulfur Dioxide: Its Role in Climate Change (http://essea.strategies.org/module.php?module_id=168). For each module, 4-6 teachers formed a cohort to complete assignments and unit assessments and to evaluate the effectiveness of the module for use in their classroom. Each module presented the teachers with a task that enabled them to research and better understand the science behind the climate related topic. For The Great Ocean Conveyer Belt, teachers are tasked with evaluating the impacts of the slowing or stopping of the thermohaline circulation on climate. In the same module teachers are charged with determining the possibilities of an abrupt climate shift during this century such as happened in the past. For the Sulfur Dioxide module teachers investigated the climate implications of the occurrence of several major volcanic eruptions within a short time period, as well as the feasibility of using sulfates to geoengineer climate change. In completing module assignments, teachers must list what they already know about the topic as well as formulate questions that still need to be addressed. Teachers then model the related interactions between spheres comprising the earth system (atmosphere-lithosphere, for example) to evaluate possible environmental impacts. Finally, teachers applied their research results to create lesson plans for their students. At a time when climate change and global warming are important topics in science education, these climate modules provide valuable learning experiences and resources for K-12 teachers.

  9. Our eclectic adventures in the slower eras of photosynthesis: from New England Down Under to biosphere 2 and beyond.

    PubMed

    Osmond, Barry

    2014-01-01

    This is a tale of a career in plant physiological ecology that enjoyed the freedom to address photosynthetic physiology and biochemistry in leaves of plants from diverse environments. It was supported by block funding (now sadly a thing of the past) for research at the Australian National University, by grants during appointments in the United States and in Germany, and by Columbia University. It became a "career experiment" in which long-term, high-trust support for curiosity-driven plant biology in Australia, and at times in the United States, led to surprisingly innovative results. Although the rich diversity of short-term competitive grant opportunities in the United States sustained ongoing research, it proved difficult to mobilize support for more risky long-term projects. A decade after the closure of the Biosphere 2 Laboratory, this article highlights the achievements of colleagues in experimental climate change research from 1998 to 2003.

  10. Species-free species distribution models describe macroecological properties of protected area networks.

    PubMed

    Robinson, Jason L; Fordyce, James A

    2017-01-01

    Among the greatest challenges facing the conservation of plants and animal species in protected areas are threats from a rapidly changing climate. An altered climate creates both challenges and opportunities for improving the management of protected areas in networks. Increasingly, quantitative tools like species distribution modeling are used to assess the performance of protected areas and predict potential responses to changing climates for groups of species, within a predictive framework. At larger geographic domains and scales, protected area network units have spatial geoclimatic properties that can be described in the gap analysis typically used to measure or aggregate the geographic distributions of species (stacked species distribution models, or S-SDM). We extend the use of species distribution modeling techniques in order to model the climate envelope (or "footprint") of individual protected areas within a network of protected areas distributed across the 48 conterminous United States and managed by the US National Park System. In our approach we treat each protected area as the geographic range of a hypothetical endemic species, then use MaxEnt and 5 uncorrelated BioClim variables to model the geographic distribution of the climatic envelope associated with each protected area unit (modeling the geographic area of park units as the range of a species). We describe the individual and aggregated climate envelopes predicted by a large network of 163 protected areas and briefly illustrate how macroecological measures of geodiversity can be derived from our analysis of the landscape ecological context of protected areas. To estimate trajectories of change in the temporal distribution of climatic features within a protected area network, we projected the climate envelopes of protected areas in current conditions onto a dataset of predicted future climatic conditions. Our results suggest that the climate envelopes of some parks may be locally unique or have narrow geographic distributions, and are thus prone to future shifts away from the climatic conditions in these parks in current climates. In other cases, some parks are broadly similar to large geographic regions surrounding the park or have climatic envelopes that may persist into near-term climate change. Larger parks predict larger climatic envelopes, in current conditions, but on average the predicted area of climate envelopes are smaller in our single future conditions scenario. Individual units in a protected area network may vary in the potential for climate adaptation, and adaptive management strategies for the network should account for the landscape contexts of the geodiversity or climate diversity within individual units. Conservation strategies, including maintaining connectivity, assessing the feasibility of assisted migration and other landscape restoration or enhancements can be optimized using analysis methods to assess the spatial properties of protected area networks in biogeographic and macroecological contexts.

  11. Study of Regional Downscaled Climate and Air Quality in the United States

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Fu, J. S.; Drake, J.; Lamarque, J.; Lam, Y.; Huang, K.

    2011-12-01

    Due to the increasing anthropogenic greenhouse gas emissions, the global and regional climate patterns have significantly changed. Climate change has exerted strong impact on ecosystem, air quality and human life. The global model Community Earth System Model (CESM v1.0) was used to predict future climate and chemistry under projected emission scenarios. Two new emission scenarios, Representative Community Pathways (RCP) 4.5 and RCP 8.5, were used in this study for climate and chemistry simulations. The projected global mean temperature will increase 1.2 and 1.7 degree Celcius for the RCP 4.5 and RCP 8.5 scenarios in 2050s, respectively. In order to take advantage of local detailed topography, land use data and conduct local climate impact on air quality, we downscaled CESM outputs to 4 km by 4 km Eastern US domain using Weather Research and Forecasting (WRF) Model and Community Multi-scale Air Quality modeling system (CMAQ). The evaluations between regional model outputs and global model outputs, regional model outputs and observational data were conducted to verify the downscaled methodology. Future climate change and air quality impact were also examined on a 4 km by 4 km high resolution scale.

  12. Diverse Responses of Global Vegetation to Climate Changes: Spatial Patterns and Time-lag Effects

    NASA Astrophysics Data System (ADS)

    Wu, D.; Zhao, X.; Zhou, T.; Huang, K.; Xu, W.

    2014-12-01

    Global climate changes have enormous influences on vegetation growth, meanwhile, response of vegetation to climate express space diversity and time-lag effects, which account for spatial-temporal disparities of climate change and spatial heterogeneity of ecosystem. Revelation of this phenomenon will help us further understanding the impact of climate change on vegetation. Assessment and forecast of global environmental change can be also improved under further climate change. Here we present space diversity and time-lag effects patterns of global vegetation respond to three climate factors (temperature, precipitation and solar radiation) based on quantitative analysis of satellite data (NDVI) and Climate data (Climate Research Unit). We assessed the time-lag effects of global vegetation to main climate factors based on the great correlation fitness between NDVI and the three climate factors respectively among 0-12 months' temporal lags. On this basis, integrated response model of NDVI and the three climate factors was built to analyze contribution of different climate factors to vegetation growth with multiple regression model and partial correlation model. In the result, different vegetation types have distinct temporal lags to the three climate factors. For the precipitation, temporal lags of grasslands are the shortest while the evergreen broad-leaf forests are the longest, which means that grasslands are more sensitive to precipitation than evergreen broad-leaf forests. Analysis of different climate factors' contribution to vegetation reveal that vegetation are dominated by temperature in the high northern latitudes; they are mainly restricted by precipitation in arid and semi-arid areas (Australia, Western America); in humid areas of low and intermediate latitudes (Amazon, Eastern America), vegetation are mainly influenced by solar radiation. Our results reveal the time-lag effects and major driving factors of global vegetation growth and explain the spatiotemporal variations of global vegetation in last 30 years. Significantly, it is as well as in forecasting and assessing the influences of future climate change on the vegetation dynamics. This work was supported by the High Technology Research and Development Program of China (Grant NO.2013AA122801).

  13. Migration in Vulnerable Deltas: A Research Strategy

    NASA Astrophysics Data System (ADS)

    Hutton, C.; Nicholls, R. J.; Allan, A.

    2015-12-01

    C. Hutton1, & R. J. Nicholls1, , 1 University of Southampton, University Road, Southampton, Hampshire, United Kingdom, SO17 1BJ. cwh@geodata. soton.ac.ukAbstractGlobally, deltas contain 500 million people and with rising sea levels often linked to large number of forced migrants are expected in the coming century. However, migration is already a major process in deltas, such as the growth of major cities such as Dhaka and Kolkata. Climate and environmental change interacts with a range of catchment and delta level drivers, which encompass a nexus of sea-level rise, storms, freshwater and sediment supply from the catchment, land degradation, subsidence, agricultural loss and socio-economic stresses. DECCMA (Deltas, Vulnerability and Climate Change: Migration and Adaptation/CARRIA) is investigating migration in the Ganges-Brahmaputra-Meghna (GBM), Mahanadi and Volta Deltas, including the influence of climate change. The research will explore migration from a range of perspectives including governance and stakeholder analysis, demographic analysis, household surveys of sending and receiving areas, macro-economic analysis, and hazards and hotspot analysis both historically and into the future. Migration under climate change will depend on other adaptation in the deltas and this will be examined. Collectively, integrated analysis will be developed to examine migration, other adaptation and development pathways with a particular focus on the implications for the poorest. This will require the development of input scenarios, including expert-derived exogenous scenarios (e.g., climate change) and endogenous scenarios of the delta developed in a participatory manner. This applied research will facilitate decision support methods for the development of deltas under climate change, with a focus on migration and other adaptation strategies.

  14. Water-Related Impacts of Climate Change on Agriculture and Subsequently on Public Health: A Review for Generalists with Particular Reference to Pakistan.

    PubMed

    Ahmed, Toqeer; Scholz, Miklas; Al-Faraj, Furat; Niaz, Wajeeha

    2016-10-27

    Water-related impacts due to change in climatic conditions ranging from water scarcity to intense floods and storms are increasing in developing countries like Pakistan. Water quality and waterborne diseases like hepatitis, cholera, typhoid, malaria and dengue fever are increasing due to chaotic urbanization, industrialization, poor hygienic conditions, and inappropriate water management. The morbidity rate is high due to lack of health care facilities, especially in developing countries. Organizations linked to the Government of Pakistan (e.g., Ministry of Environment, Ministry of Climate Change, Planning and Development, Ministry of Forest, Irrigation and Public Health, Pakistan Meteorological Department, National Disaster Management, Pakistan Agricultural Research Centre, Pakistan Council for Research in Water Resources, and Global Change Impact Study Centre), United Nation organizations, provincial government departments, non-governmental organizations (e.g., Global Facility and Disaster Reduction), research centers linked to universities, and international organizations (International Institute for Sustainable Development, Food and Agriculture, Global Climate Fund and World Bank) are trying to reduce the water-related impacts of climate change, but due to lack of public awareness and health care infrastructure, the death rate is steadily increasing. This paper critically reviews the scientific studies and reports both at national and at international level benefiting generalists concerned with environmental and public health challenges. The article underlines the urgent need for water conservation, risk management, and the development of mitigation measures to cope with the water-related impacts of climate change on agriculture and subsequently on public health. Novel solutions and bioremediation methods have been presented to control environmental pollution and to promote awareness among the scientific community. The focus is on diverse strategies to handle the forthcoming challenges associated with water resources management.

  15. Water-Related Impacts of Climate Change on Agriculture and Subsequently on Public Health: A Review for Generalists with Particular Reference to Pakistan

    PubMed Central

    Ahmed, Toqeer; Scholz, Miklas; Al-Faraj, Furat; Niaz, Wajeeha

    2016-01-01

    Water-related impacts due to change in climatic conditions ranging from water scarcity to intense floods and storms are increasing in developing countries like Pakistan. Water quality and waterborne diseases like hepatitis, cholera, typhoid, malaria and dengue fever are increasing due to chaotic urbanization, industrialization, poor hygienic conditions, and inappropriate water management. The morbidity rate is high due to lack of health care facilities, especially in developing countries. Organizations linked to the Government of Pakistan (e.g., Ministry of Environment, Ministry of Climate Change, Planning and Development, Ministry of Forest, Irrigation and Public Health, Pakistan Meteorological Department, National Disaster Management, Pakistan Agricultural Research Centre, Pakistan Council for Research in Water Resources, and Global Change Impact Study Centre), United Nation organizations, provincial government departments, non-governmental organizations (e.g., Global Facility and Disaster Reduction), research centers linked to universities, and international organizations (International Institute for Sustainable Development, Food and Agriculture, Global Climate Fund and World Bank) are trying to reduce the water-related impacts of climate change, but due to lack of public awareness and health care infrastructure, the death rate is steadily increasing. This paper critically reviews the scientific studies and reports both at national and at international level benefiting generalists concerned with environmental and public health challenges. The article underlines the urgent need for water conservation, risk management, and the development of mitigation measures to cope with the water-related impacts of climate change on agriculture and subsequently on public health. Novel solutions and bioremediation methods have been presented to control environmental pollution and to promote awareness among the scientific community. The focus is on diverse strategies to handle the forthcoming challenges associated with water resources management. PMID:27801802

  16. Climate Science's Globally Distributed Infrastructure

    NASA Astrophysics Data System (ADS)

    Williams, D. N.

    2016-12-01

    The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.

  17. Climate change vulnerability assessment in Georgia

    Treesearch

    Binita KC; J. Marshall Shepherd; Cassandra Johnson Gaither

    2015-01-01

    Climate change is occurring in the Southeastern United States, and one manifestation is changes in frequency and intensity of extreme events. A vulnerability assessment is performed in the state of Georgia (United States) at the county level from 1975 to 2012 in decadal increments. Climate change vulnerability is typically measured as a function of exposure to physical...

  18. RELATIVE EFFECTS OF OBSERVATIONALLY-NUDGED MODEL METEOROLOGY AND DOWN-SCALED GLOBAL CLIMATE MODEL METEOROLOGY ON BIOGENIC EMISSIONS FOR THE UNITED STATES

    EPA Science Inventory

    The United States Environmental Protection Agency (USEPA) and National Oceanic and Atmospheric Administration (NOAA) participate in a multi-agency examination of the effects of climate change through the U.S. Climate Change Science Program (CCSP, 2003). The EPA Global Change Rese...

  19. Delineation of climate regions in the Northeastern United States

    Treesearch

    Arthur T. DeGaetano

    1996-01-01

    Climate is a primary criterion for the development, description and validation of subregional levels of the National Hierarchical Framework of Ecological Units. However, climate information is not currently available in the form or level of detail required for integration with other biophysical factors at the section or subsection levels. In this study, historical...

  20. Generating Arguments about Climate Change

    ERIC Educational Resources Information Center

    Golden, Barry; Grooms, Jonathon; Sampson, Victor; Oliveri, Robin

    2012-01-01

    This unit is a different and fun way to engage students with an extremely important topic, climate change, which cuts across scientific and nonscientific disciplines. While climate change itself may not be listed in the curriculum of every science class, the authors contend that such a unit is appropriate for virtually any science curriculum.…

  1. A Comparison of Institutional Climates in Higher Education in the United States and South Africa

    ERIC Educational Resources Information Center

    Taylor, Juanyce Deanna

    2012-01-01

    Increasing opportunities and access of historically underrepresented populations to higher education in both the United States and South Africa have proved challenging due to institutional climates that are perceived as unwelcoming and unsupportive. The purpose of this study was to investigate factors relating to institutional climates to uncover…

  2. The Consortium for Climate Risk in the Urban Northeast: A NOAA RISA Project

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2011-12-01

    The Consortium for Climate Risk in the Urban Northeast, or CCRUN, was funded in October 2010 under NOAA's Regional Integrated Sciences and Assessments (RISA) program to serve stakeholder needs in assessing and managing risks from climate variability and change. It is currently also the only RISA team with a principal focus on climate change adaptation in urban settings. While CCRUN's initial focus is on the major cities of the urban Northeast corridor (Philadelphia, New York and Boston), its work will ultimately expand to cover small and medium-sized cities in the relevant portions of Massachusetts, Rhode Island, Connecticut, New York, New Jersey and Pennsylvania as well, so that local needs for targeted climate-risk information can be served in a coordinated way. CCRUN is designed to address the complex challenges that are associated with densely populated, highly interconnected urban areas, including such as urban heat island effects; poor air quality; intense coastal development, and multifunctional settlement along inland waterways; complex overlapping institutional jurisdictions; integrated infrastructure systems; and highly diverse, and in some cases, fragile socio-economic communities. These challenges can best be addressed by the stakeholder-driven interdisciplinary approach taken by the CCRUN RISA team. As an important added benefit, the research accomplishments and lessons learned through stakeholder engagement will provide a foundation for managing climate risks in other urban areas in the United States. CCRUN's initial projects are focused in three broad sectors: Water, Coasts, and Health. Research in each of these sectors is linked through the cross-cutting themes of climate change and community vulnerability, the latter of which is especially important in considerations of environmental justice and equity. CCRUN's stakeholder-driven approach to research can therefore support investigations of the impacts of a changing climate, population growth, and urban and economic policies on the social, racial and ethnic dimensions of livelihoods and of communities in the urban Northeast corridor. Disadvantaged socio-economic groups have been particularly underserved in the area of climate change, and one of CCRUN's long-term goals is the building of adaptive capacity among such groups to current and future climate extremes.

  3. Teaching physics using project-based engineering curriculum with a theme of alternative energy

    NASA Astrophysics Data System (ADS)

    Tasior, Bryan

    The Next Generation Science Standards (NGSS) provide a new set of science standards that, if adopted, shift the focus from content knowledge-based to skill-based education. Students will be expected to use science to investigate the natural world and solve problems using the engineering design process. The world also is facing an impending crisis related to climate, energy supply and use, and alternative energy development. Education has an opportunity to help provide the much needed paradigm shift from our current methods of providing the energy needs of society. The purpose of this research was to measure the effectiveness of a unit that accomplishes the following objectives: uses project-based learning to teach the engineering process and standards of the NGSS, addresses required content expectations of energy and electricity from the HSCE's, and provides students with scientific evidence behind issues (both environmental and social/economic) relating to the energy crisis and current dependence of fossil fuels as our primary energy source. The results of the research indicate that a physics unit can be designed to accomplish these objectives. The unit that was designed, implemented and reported here also shows that it was highly effective at improving students' science content knowledge, implementing the engineering design standards of the NGSS, while raising awareness, knowledge and motivations relating to climate and the energy crisis.

  4. Current medical research funding and frameworks are insufficient to address the health risks of global environmental change.

    PubMed

    Ebi, Kristie L; Semenza, Jan C; Rocklöv, Joacim

    2016-11-11

    Three major international agreements signed in 2015 are key milestones for transitioning to more sustainable and resilient societies: the UN 2030 Agenda for Sustainable Development; the Sendai Framework for Disaster Risk Reduction; and the Paris Agreement under the United Nations Framework Convention on Climate Change. Together, these agreements underscore the critical importance of understanding and managing the health risks of global changes, to ensure continued population health improvements in the face of significant social and environmental change over this century. BODY: Funding priorities of major health institutions and organizations in the U.S. and Europe do not match research investments with needs to inform implementation of these international agreements. In the U.S., the National Institutes of Health commit 0.025 % of their annual research budget to climate change and health. The European Union Seventh Framework Programme committed 0.08 % of the total budget to climate change and health; the amount committed under Horizon 2020 was 0.04 % of the budget. Two issues apparently contributing to this mismatch are viewing climate change primarily as an environmental problem, and therefore the responsibility of other research streams; and narrowly framing research into managing the health risks of climate variability and change from the perspective of medicine and traditional public health. This reductionist, top-down perspective focuses on proximate, individual level risk factors. While highly successful in reducing disease burdens, this framing is insufficient to protect health and well-being over a century that will be characterized by profound social and environmental changes. International commitments in 2015 underscored the significant challenges societies will face this century from climate change and other global changes. However, the low priority placed on understanding and managing the associated health risks by national and international research institutions and organizations leaves populations poorly prepared to cope with changing health burdens. Risk-centered, systems approaches can facilitate understanding of the complex interactions and dependencies across environmental, social, and human systems. This understanding is needed to formulate effective interventions targeting socio-environmental factors that are as important for determining health burdens as are individual risk factors.

  5. Climate Variability In The Euro-atlantic Sector As Simulated By Echam4

    NASA Astrophysics Data System (ADS)

    Menezes, I.; Corte-Real, J.; Ramos, A.; Conde, F.

    The atmosphere is a fundamental component of the climate system and its influence in local and global climates results from its composition, structure and motion. The best available tools to simulate future climates are coupled atmosphere-ocean general circulation models (AOGCMs), ECHAM4 (T42 L19)[1] being a very relevant exam- ple of such a model due to its elaborated parametrizations of physical processes. The purpose of this work is twofold : (1) to assess the ability of ECHAM4 in reproducing the reference climate of 1961-1990, over the Euro-Atlantic sector (29N-71N; 67W- 59E) in terms of mean sea level pressure, surface temperature and total precipitation; (2) to evaluate the expected changes of the same climate elements in a warmer world. To attain the first goal the ECHAMSs control run output is compared with observed data obtained from the Climatic Research Unit (CRU data set)[2-5]; to achieve the second objective, the modelSs control run is compared with its transient run forced by greenhouse gases. In both cases, comparisons are made in terms of mean values, variability in space and time and extremes. References [1] E. Roeckner, K. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Dümenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida, 1996: The atmospheric gen- eral circulation model ECHAM4: Model description and simulation of present-day climate. Max Planck Institut für Meteorologie, Report No. 218, Hamburg, Germany, 90 pp. [2] M. Hulme, D. Conway, P.D. Jones, T. Jiang, E.M. Barrow, and C. Turney (1995), Construction of a 1961-90 European climatology for climate change impacts and mod- elling applications, Int. J. Climatol., 15, 1333-1363. [3] M. Hulme (1994), The cost of climate data U a European experience, Weather, 49, 168-175. [4] M. Hulme, and M.G. New (1997), Dependence of large-scale precipitation clima- tologies on temporal and spatial sampling, J. Climate, 10, 1099-1113. 1 [5] C.J. Willmot, S.M. Robeson and M.J. Janis (1996), Comparison of approaches for estimating time-averaged precipitation using data from the United States, Int. J. Cli- matol., 16, 1103-1115. 2

  6. Climate change and skin disease.

    PubMed

    Lundgren, Ashley D

    2018-04-01

    Despite commanding essentially universal scientific consensus, climate change remains a divisive and poorly understood topic in the United States. Familiarity with this subject is not just for climate scientists. The impact of climate change on human morbidity and mortality may be considerable; thus, physicians also should be knowledgeable in this realm. Climate change science can seem opaque and inferential, creating fertile ground for political polemics and undoubtedly contributing to confusion among the general public. This puts physicians in a pivotal position to facilitate a practical understanding of climate change in the public sphere by discussing changes in disease patterns and their possible relationship to a changing climate. This article provides a background on climate change for dermatologists and highlights how climate change may impact the management of skin disease across the United States.

  7. Assessment of nurses' work climate at Alexandria Main University Hospital.

    PubMed

    Emam, Sanaa Abdel-aziz; Nabawy, Zeinab Mohamed; Mohamed, Azzaa Hassan; Sbeira, Walaa Hashem

    2005-01-01

    Work climate is indicative of how well the organization is realizing its full potential. An accurate assessment of work climate can identify the unnecessary obstacles to nurses interfering with their best performance. The present study aims to assess nurses' work climate at Alexandria Main University Hospital. The study sample included all nurses (N=400) who were working in inpatient medical and surgical units at the Alexandria Main University Hospital who were available at the time of data collection. A structured questionnaire was developed to assess nurses' perceptions regarding the dimensions of work climate. Data was collected by individual interview using the structured questionnaire. Results indicated that the highest percentages of nurses in medical and surgical units perceived that their work climate is characterized by good way of performance management, feeling of responsibility, warmth and supportive relationships, quality of communication, morale, organizational clarity and feeling of identity and belongness to the hospital. Nurses perceived that they are lacking work climate conducive to conflict resolution, participation in decision making, opportunity for training and development, fair rewards and recognition, calculated risks, sufficient resources, effective leadership and teamwork. There were no significant difference between nurses perceptions in medical and surgical units regarding all dimensions of work climate. The highest percentage of nurses in all units were satisfied only with the feeling of responsibility, way of performance management, and quality of communication. Conflict and identity were perceived as the most important areas that need improvement in the hospital. Based on the results recommendations were given to enhance work climate through designing compensation and recognition systems, and negotiate their requirements and accomplishment based on established standards and outcomes measures. Also, encouragement of and planning for participative decision making, teamwork, in-service training program and open communication are recommended to be present in the work units.

  8. Climate Change and Air Pollution-Related Health Impacts in the United States: Assessment of Current Findings

    NASA Astrophysics Data System (ADS)

    Kinney, P.; Fann, N.

    2016-12-01

    Ambient air pollution can be affected by climate in a variety of ways, which in turn have important implications for human health. Observed and projected changes in climate lead to modified weather pat­terns and biogenic emissions, which influence the levels and geographic patterns of outdoor air pollutants of health concern, including ground-level ozone (O3) and fine particulate matter (PM2.5). The USGCRP scientific assessment of the human health impacts of climate change concluded with high confidence that climate change will make it harder for any given regulatory approach to reduce ground-level ozone pollution in the future as meteorological conditions become increasingly conducive to forming ozone over most of the United States. Unless offset by additional emissions reductions of ozone precursors, these climate-driven increases in ozone will cause premature deaths, hospital visits, lost school days, and acute respiratory symptoms. The evidence for climate impacts on PM2.5 is less robust than that for ozone. However, one mechanism through which climate change is likely to affect PM2.5 as well as O3 in the United States is via impacts on wildfires. Wildfires emit precursors of both fine particles and O3, which increase the risk of premature death and adverse chronic and acute cardiovascular and respiratory health outcomes. Climate change is projected to increase the number and severity of naturally occurring wildfires in parts of the United States, increasing emissions of particulate matter and ozone precursors and resulting in additional adverse health outcomes. We present the key results and conclusions from a nationwide assessment of O3 health impacts in 2030, as well as new evidence for respiratory health effects of wildfires in the western United States.

  9. Individual employee's perceptions of " Group-level Safety Climate" (supervisor referenced) versus " Organization-level Safety Climate" (top management referenced): Associations with safety outcomes for lone workers.

    PubMed

    Huang, Yueng-Hsiang; Lee, Jin; McFadden, Anna C; Rineer, Jennifer; Robertson, Michelle M

    2017-01-01

    Research has shown that safety climate is among the strongest predictors of safety behavior and safety outcomes in a variety of settings. Previous studies have established that safety climate is a multi-faceted construct referencing multiple levels of management within a company, most generally: the organization level (employee perceptions of top management's commitment to and prioritization of safety) and group level (employee perceptions of direct supervisor's commitment to and prioritization of safety). Yet, no research to date has examined the potential interaction between employees' organization-level safety climate (OSC) and group-level safety climate (GSC) perceptions. Furthermore, prior research has mainly focused on traditional work environments in which supervisors and workers interact in the same location throughout the day. Little research has been done to examine safety climate with regard to lone workers. The present study aims to address these gaps by examining the relationships between truck drivers' (as an example of lone workers) perceptions of OSC and GSC, both potential linear and non-linear relationships, and how these predict important safety outcomes. Participants were 8095 truck drivers from eight trucking companies in the United States with an average response rate of 44.8%. Results showed that employees' OSC and GSC perceptions are highly correlated (r= 0.78), but notable gaps between the two were observed for some truck drivers. Uniquely, both OSC and GSC scores were found to have curvilinear relationships with safe driving behavior, and both scores were equally predictive of safe driving behavior. Results also showed the two levels of climate significantly interacted with one another to predict safety behavior such that if either the OSC or GSC scores were low, the other's contribution to safety behavior became stronger. These findings suggest that OSC and GSC may function in a compensatory manner and promote safe driving behavior even when either OSC or GSC scores are low. The results of this study provide critical insight into the supplementary interaction between perceptions of OSC and GSC. Recommendations for future research, as well as practical recommendations for organizational intervention, are discussed. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Measurement equivalence of patient safety climate in Chinese hospitals: can we compare across physicians and nurses?

    PubMed

    Zhu, Junya

    2018-06-11

    Self-report instruments have been widely used to better understand variations in patient safety climate between physicians and nurses. Research is needed to determine whether differences in patient safety climate reflect true differences in the underlying concepts. This is known as measurement equivalence, which is a prerequisite for meaningful group comparisons. This study aims to examine the degree of measurement equivalence of the responses to a patient safety climate survey of Chinese hospitals and to demonstrate how the measurement equivalence method can be applied to self-report climate surveys for patient safety research. Using data from the Chinese Hospital Survey of Patient Safety Climate from six Chinese hospitals in 2011, we constructed two groups: physicians and nurses (346 per group). We used multiple-group confirmatory factor analyses to examine progressively more stringent restrictions for measurement equivalence. We identified weak factorial equivalence across the two groups. Strong factorial equivalence was found for Organizational Learning, Unit Management Support for Safety, Adequacy of Safety Arrangements, Institutional Commitment to Safety, Error Reporting and Teamwork. Strong factorial equivalence, however, was not found for Safety System, Communication and Peer Support and Staffing. Nevertheless, further analyses suggested that nonequivalence did not meaningfully affect the conclusions regarding physician-nurse differences in patient safety climate. Our results provide evidence of at least partial equivalence of the survey responses between nurses and physicians, supporting mean comparisons of its constructs between the two groups. The measurement equivalence approach is essential to ensure that conclusions about group differences are valid.

  11. [Monitoring evaluation system for high-specialty hospitals].

    PubMed

    Fajardo Dolci, Germán; Aguirre Gas, Héctor G; Robledo Galván, Héctor

    2011-01-01

    Hospital evaluation is a fundamental process to identify medical units' objective compliance, to analyze efficiency of resource use and allocation, institutional values and mission alignment, patient safety and quality standards, contributions to research and medical education, and the degree of coordination among medical units and the health system as a whole. We propose an evaluation system for highly specialized regional hospitals through the monitoring of performance indicators. The following are established as base thematic elements in the construction of indicators: safe facilities and equipment, financial situation, human resources management, policy management, organizational climate, clinical activity, quality and patient safety, continuity of care, patients' and providers' rights and obligations, teaching, research, social responsibility, coordination mechanisms. Monitoring refers to the planned and systematic evaluation of valid and reliable indicators, aimed at identifying problems and opportunity areas. Moreover, evaluation is a powerful tool to strengthen decision-making and accountability in medical units.

  12. Research plan for lands administered by the U.S. Department of the Interior in the Interior Columbia Basin and Snake River Plateau

    USGS Publications Warehouse

    Beever, Erik A.; Pyke, David A.

    2002-01-01

    The research strategy focuses on disturbance processes and events that have been the primary drivers of change, to provide a predictive model for future changes. These drivers include fire, nonnative plants, herbivory, roads and associated human influences, and climate change. Whereas management in the western United States has striven to move from an inefficient species-based approach to a habitat-based approach, the plan focuses on ecosystem function and ecological processes as critical measures of habitat response. Because of the large amount and contiguity of public lands in the western United States, the region presents both a compelling opportunity to implement landscape-level science and a challenge to underst

  13. A Web-Based Polar Firn Model to Motivate Interest in Climate Change

    NASA Astrophysics Data System (ADS)

    Harris, P. D.; Lundin, J.; Stevens, C.; Leahy, W.; Waddington, E. D.

    2013-12-01

    How long would you have to dig straight down in Greenland before you reached solid ice? This is one of many questions that could be answered by a typical high school student using our online firn model. Firn is fallen snow that compacts under its own weight and eventually turns into glacial ice. The Herron and Langway (1980) firn model describes this process. An important component of predicting future climate change is researching past climate change. Some details of our past climate are discovered by analyzing polar ice and the firn process. Firn research can also be useful for understanding how changes in ice surface levels reflect changes in the ice mass. We have produced an online version of the Herron and Langway model that provides a simple way for students to learn how polar snow turns into ice. As a user, you can enter some climatic conditions (accumulation rate, temperature, and surface density) into our graphical user interface and press 'Submit'. We take the numbers you enter in your internet browser, send them to the model written in Python that is running on our server, and provide links to your results, all within seconds. The model produces firn depth, density, and age data. The results appear on the webpage in both text and graphical format. We have developed an example lesson plan appropriate for a high-school physics or environmental science class. The online model offers students an opportunity to apply their scientific knowledge in order to understand real-world physical processes. Additionally, students learn about scientific research and the tools scientists use to conduct it. The model can be used as a standalone lesson or as a part of a larger climate-science unit. The online model was created with funding from the Washington NASA Space Grant Consortium and the National Science Foundation's Partnerships for International Research and Education program.

  14. Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture

    PubMed Central

    Boxall, Alistair B.A.; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D.; Haygarth, Philip M.; Hutchinson, Thomas; Kovats, R. Sari; Leonardi, Giovanni; Levy, Leonard S.; Nichols, Gordon; Parsons, Simon A.; Potts, Laura; Stone, David; Topp, Edward; Turley, David B.; Walsh, Kerry; Wellington, Elizabeth M.H.; Williams, Richard J.

    2009-01-01

    Objective Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes. PMID:19440487

  15. Mitigation/adaptation and health: health policymaking in the global response to climate change and implications for other upstream determinants.

    PubMed

    Wiley, Lindsay F

    2010-01-01

    The time is ripe for innovation in global health governance if we are to achieve global health and development objectives in the face of formidable challenges. Integration of global health concerns into the law and governance of other, related disciplines should be given high priority. This article explores opportunities for health policymaking in the global response to climate change. Climate change and environmental degradation will affect weather disasters, food and water security, infectious disease patterns, and air pollution. Although scientific research has pointed to the interdependence of the global environment and human health, policymakers have been slow to integrate their approaches to environmental and health concerns. A robust response to climate change will require improved integration on two fronts: health concerns must be given higher priority in the response to climate change and threats associated with climate change and environmental degradation must be more adequately addressed by global health law and governance. The mitigation/adaptation response paradigm developing within and beyond the United Nations Framework Convention on Climate Change provides a useful framework for thinking about global health law and governance with respect to climate change, environmental degradation, and possibly other upstream determinants of health as well. © 2010 American Society of Law, Medicine & Ethics, Inc.

  16. Changes in Concurrent Precipitation and Temperature Extremes

    DOE PAGES

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes.more » The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.« less

  17. Impacts of water and nutrient availability on loblolly pine function

    Treesearch

    Maxwell Wightman; Timothy Martin; Eric Jokela; Carlos Gonzalez-Benecke

    2015-01-01

    The impact of climate change on temperature and precipitation patterns in the southeastern United States are likely to have important effects on southern pine systems. A 2009 summary from the U.S. Global Change Research Program indicated that the southeastern U.S. will experience an increase in average temperature of 2.5 to 5 °C by the 2080s.

  18. Visitor preferences for visual changes in bark beetle-impacted forest recreation settings in the United States and Germany

    Treesearch

    Arne Arnberger; Martin Ebenberger; Ingrid E. Schneider; Stuart Cottrell; Alexander C. Schlueter; Eick von Ruschkowski; Robert C. Venette; Stephanie A. Snyder; Paul H. Gobster

    2018-01-01

    Extensive outbreaks of tree-killing insects are increasing across forests in Europe and North America due to climate change and other factors. Yet, little recent research examines visitor response to visual changes in conifer forest recreation settings resulting from forest insect infestations, how visitors weigh trade-offs between physical and social forest...

  19. Issues in evaluating the costs and benefits of fuel treatments to reduce wildfire in the Nation's forests.

    Treesearch

    Jeffrey D. Kline

    2004-01-01

    Wildland fire has been perhaps the most vexing forest management and policy issue in the United States in recent years, stirring both passionate and reasoned debate among managers, policymakers, researchers, and citizens alike. Years of fire suppression and increasing constraints on natural and prescribed burning, possibly along with climate change, have altered...

  20. Science basis for changing forest structure to modify wildfire behavior and severity

    Treesearch

    Russell T. Graham; Sarah McCaffrey; Theresa B. Jain

    2004-01-01

    Fire, other disturbances, physical setting, weather, and climate shape the structure and function of forests throughout the Western United States. More than 80 years of fire research have shown that physical setting, fuels, and weather combine to determine wildfire intensity (the rate at which it consumes fuel) and severity (the effect fire has on vegetation, soils,...

  1. Whole canopy gas exchange among elite loblolly pine families subjected to drought stress

    Treesearch

    Wilson G. Hood; Michael C. Tyree; Dylan N. Dillaway; Michael A. Blazier; Mary Anne Sword Sayer

    2012-01-01

    Future climate change simulations predict that the southeastern United States will experience hydrologic patterns similar to that currently found in the Western Gulf Region, meaning, that planted elite loblolly families may be subject to drier, hotter summers (Ruosteenoja et al. 2003, Field et al. 2007). Currently, there is little research on how these fast-growing...

  2. Successful Strategies for Earth Science Research in Native Communities

    NASA Astrophysics Data System (ADS)

    Redsteer, M. H.; Anderson, D.; Ben, N.; Bitsuie, R.; Blackhorse, A.; Breit, G.; Clifford, A.; Salabye, J.; Semken, S.; Weaver, K.; Yazzie, N.

    2004-12-01

    A small U.S. Geological Survey pilot project utilizes strategies that are successful at involving the Native community in earth science research. This work has ignited the interest of Native students in interdisciplinary geoscience studies, and gained the recognition of tribal community leaders from the conterminous United States, Alaska, and Canada. This study seeks to examine land use, climatic variability, and their related impacts on land-surface conditions in the ecologically sensitive Tsezhin Bii' region of the Navajo Nation. Work conducted by predominantly Native American researchers, includes studies of bedrock geology, surficial processes, soil and water quality, and plant ecology, as well as the history of human habitation. Community involvement that began during the proposal process, has helped to guide research, and has provided tribal members with information that they can use for land use planning and natural resource management. Work by Navajo tribal members who have become involved in research as it has progressed, includes K-12 science curriculum development, community outreach and education on environmental and geologic hazards, drought mitigation, grazing management, and impacts of climate change and land use on medicinal plants.

  3. Arctic Research Plan: FY2017-2021

    USGS Publications Warehouse

    Starkweather, Sandy; Jeffries, Martin O; Stephenson, Simon; Anderson, Rebecca D.; Jones, Benjamin M.; Loehman, Rachel A.; von Biela, Vanessa R.

    2016-01-01

    The United States is an Arctic nation—Americans depend on the Arctic for biodiversity and climate regulation and for natural resources. America’s Arctic—Alaska—is at the forefront of rapid climate, environmental, and socio-economic changes that are testing the resilience and sustainability of communities and ecosystems. Research to increase fundamental understanding of these changes is needed to inform sound, science-based decision- and policy-making and to develop appropriate solutions for Alaska and the Arctic region as a whole. Created by an Act of Congress in 1984, and since 2010 a subcommittee of the National Science and Technology Council (NSTC) in the Executive Office of the President, the Interagency Arctic Research Policy Committee (IARPC) plays a critical role in advancing scientific knowledge and understanding of the changing Arctic and its impacts far beyond the boundaries of the Arctic. Comprising 14 Federal agencies, offices, and departments, IARPC is responsible for the implementation of a 5-year Arctic Research Plan in consultation with the U.S. Arctic Research Commission, the Governor of the State of Alaska, residents of the Arctic, the private sector, and public interest groups.

  4. Implementing climate change adaptation in forested regions of the United States

    Treesearch

    Jessica E. Halofsky; David L. Peterson; Linda A. Joyce; Constance I. Millar; Janine M. Rice; Christopher W. Swanston

    2014-01-01

    Natural resource managers need concrete ways to adapt to the effects of climate change. Science-management partnerships have proven to be an effective means of facilitating climate change adaptation for natural resource management agencies. Here we describe the process and results of several science-management partnerships in different forested regions of the United...

  5. Students' Perceptions of School Climate in the U.S. and China

    ERIC Educational Resources Information Center

    Yang, Chunyan; Bear, George G.; Chen, Fang Fang; Zhang, Wei; Blank, Jessica C.; Huang, Xishan

    2013-01-01

    Although the construct of student climate has been studied extensively in the United States, we know little about how school climate is perceived in other countries. With large class sizes yet higher academic achievement and less disruptive and aggressive student behaviors, schools in China present a contrast to many schools in the United States.…

  6. Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States

    Treesearch

    Donald McKenzie; John T. Abatzoglou; E. Natasha Stavros; Narasimhan K. Larkin

    2014-01-01

    Seasonal changes in the climatic potential for very large wildfires (VLWF >= 50,000 ac~20,234 ha) across the western contiguous United States are projected over the 21st century using generalized linear models and downscaled climate projections for two representative concentration pathways (RCPs). Significant (p

  7. Anthropogenic Climate Change in Undergraduate Marine and Environmental Science Programs in the United States

    ERIC Educational Resources Information Center

    Vlietstra, Lucy S.; Mrakovcich, Karina L.; Futch, Victoria C.; Stutzman, Brooke S.

    2016-01-01

    To develop a context for program-level design decisions pertaining to anthropogenic climate change, the authors studied the prevalence of courses focused on human-induced climate change in undergraduate marine science and environmental science degree programs in the United States. Of the 86 institutions and 125 programs the authors examined, 37%…

  8. 78 FR 42491 - Aluminum Extrusions from the People's Republic of China: Notice of Court Decision Not in Harmony...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ...'') imported by Valeo, Inc., Valeo Engine Cooling Inc., and Valeo Climate Control Corp. (collectively, ``Valeo..., Inc., and Valeo Climate Control Corp. v. United States, Court No. 12-00381 (CIT February 13, 2013).\\2... Remand, Valeo, Inc., Valeo Engine Cooling, Inc., and Valeo Climate Control Corp. v. United States, Court...

  9. Analysis of the Diurnal Cycle and Cloud Effects on the Surface Radiation Budget of the SURFRAD Network

    NASA Astrophysics Data System (ADS)

    Long, C. N.; Augustine, J. A.; McComiskey, A. C.

    2017-12-01

    The NOAA Earth Systems Research Laboratory (ESRL) Global Monitoring Division (GMD) operates a network of seven surface radiation budget sites (SURFRAD) across the continental United States. The SURFRAD network was established in 1993 with the primary objective to support climate research with accurate, continuous, long-term measurements of the surface radiation budget over the United States and is a major contributor to the WMO international Baseline Surface Radiation Network. The data from the SURFRAD sites have been used in many studies including trend analyses of surface solar brightening (Long et al, 2009; Augustine and Dutton, 2013; Gan et al., 2015). These studies have focused mostly on long term aggregate trends. Here we will present results of studies that take a closer look across the years of the cloud influence on the surface radiation budget components partitioned by seasonal and diurnal analyses, and using derived quantities now available from the SURFRAD data archive produced by the Radiative Flux Analysis value added processing. The results show distinct differences between the sites surface radiative energy budgets and cloud radiative effects due to their differing climates and latitudinal locations.

  10. Development and validation of a measure of workplace climate for healthy weight maintenance.

    PubMed

    Sliter, Katherine A

    2013-07-01

    Due to the obesity epidemic, an increasing amount of research is being conducted to better understand the antecedents and consequences of excess employee weight. One construct often of interest to researchers in this area is organizational climate. Unfortunately, a viable measure of climate, as related to employee weight, does not exist. The purpose of this study was to remedy this by developing and validating a concise, psychometrically sound measure of climate for healthy weight. An item pool was developed based on surveys of full-time employees, and a sorting task was used to eliminate ambiguous items. Items were pilot tested by a sample of 338 full-time employees, and the item pool was reduced through item response theory (IRT) and reliability analyses. Finally, the retained 14 items, comprising 3 subscales, were completed by a sample of 360 full-time employees, representing 26 different organizations from across the United States. Multilevel modeling indicated that sufficient variance was explained by group membership to support aggregation, and confirmatory factor analysis (CFA) supported the hypothesized model of 3 subscale factors and an overall climate factor. Nine hypotheses specific to construct validation were tested. Scores on the new scale correlated significantly with individual-level reports of psychological constructs (e.g., health motivation, general leadership support for health) and physiological phenomena (e.g., body mass index [BMI], physical health problems) to which they should theoretically relate, supporting construct validity. Implications for the use of this scale in both applied and research settings are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. Climate Justice in Rural Southeastern United States: A Review of Climate Change Impacts and Effects on Human Health

    PubMed Central

    Gutierrez, Kristie S.; LePrevost, Catherine E.

    2016-01-01

    Climate justice is a local, national, and global movement to protect at-risk populations who are disproportionately affected by climate change. The social context for this review is the Southeastern region of the United States, which is particularly susceptible to climate change because of the geography of the area and the vulnerabilities of the inhabiting populations. Negative human health effects on variable and vulnerable populations within the Southeast region due to changing climate are concerning, as health threats are not expected to produce parallel effects among all individuals. Vulnerable communities, such as communities of color, indigenous people, the geographically isolated, and those who are socioeconomically disadvantaged and already experiencing poor environmental quality, are least able to respond and adapt to climate change. Focusing on vulnerable populations in the Southeastern United States, this review is a synthesis of the recent (2010 to 2015) literature-base on the health effects connected to climate change. This review also addresses local and regional mitigation and adaptation strategies for citizens and leaders to combat direct and indirect human health effects related to a changing climate. PMID:26848673

  12. Great Lakes Integrated Sciences + Assessments: Connecting Users and Generators of Scientific Information to Inform Climate Change Adaptation

    NASA Astrophysics Data System (ADS)

    Baule, W. J.; Briley, L.; Brown, D.; Gibbons, E.

    2014-12-01

    The Great Lakes Integrated Sciences + Assessments (GLISA) is one of eleven NOAA Regional Integrated Sciences and Assessments (RISAs) and is a co-hosted by the University of Michigan and Michigan State University. The Great Lakes region falls between areas that are typically defined as the Midwest and Northeast in the United States and also includes portions of Ontario in Canada. This unique and complex region holds approximately 21% of global surface fresh water and is home to 23 million people on the United States side of the basin alone. GLISA functions as a bridge between climate science researchers and boundary organizations in the Great Lakes region, with the goals of contributing to the long-term sustainability of the region in face of a changing climate and to facilitate smart decision-making backed by sound scientific knowledge. Faculty and staff associated with GLISA implement physical and social science practices in daily operations, which includes but is not limited to: activating the boundary chain model to facilitate the transfer of knowledge through the community, integrating local and historical climate data into decision-making processes, addressing uncertainty and the downscaling of climate information, and implementing network analyses to find key access points to information networks across the Great Lakes region. GLISA also provides funding for projects related to climate and climate change adaptation in the Great Lakes region, as well as expertise to partner organizations through collaborations. Information from boundary organizations, stakeholders, and collaborators also flows back to GLISA to aid in the determination of the physical and social science needs of the region. Recent findings point to GLISA playing a crucial role in the scaling information across scales of government and ensuring that federal agencies and local stakeholders are able to learn from one another and share experiences and knowledge to continue building climate ready sectors and communities across the Great Lakes region.

  13. Projected climate and agronomic implications for corn production in the Northeastern United States.

    PubMed

    Prasad, Rishi; Gunn, Stephan Kpoti; Rotz, Clarence Alan; Karsten, Heather; Roth, Greg; Buda, Anthony; Stoner, Anne M K

    2018-01-01

    Corn has been a pillar of American agriculture for decades and continues to receive much attention from the scientific community for its potential to meet the food, feed and fuel needs of a growing human population in a changing climate. By midcentury, global temperature increase is expected to exceed 2°C where local effects on heat, cold and precipitation extremes will vary. The Northeast United States is a major dairy producer, corn consumer, and is cited as the fastest warming region in the contiguous U.S. It is important to understand how key agronomic climate variables affect corn growth and development so that adaptation strategies can be tailored to local climate changes. We analyzed potential local effects of climate change on corn growth and development at three major dairy locations in the Northeast (Syracuse, New York; State College, Pennsylvania and Landisville, Pennsylvania) using downscaled projected climate data (2000-2100) from nine Global Climate Models under two emission pathways (Representative Concentration Pathways (RCP) 4.5 and 8.5). Our analysis indicates that corn near the end of the 21st century will experience fewer spring and fall freezes, faster rate of growing degree day accumulation with a reduction in time required to reach maturity, greater frequencies of daily high temperature ≥35°C during key growth stages such as silking-anthesis and greater water deficit during reproductive (R1-R6) stages. These agronomic anomalies differ between the three locations, illustrating varying impacts of climate change in the more northern regions vs. the southern regions of the Northeast. Management strategies such as shifting the planting dates based on last spring freeze and irrigation during the greatest water deficit stages (R1-R6) will partially offset the projected increase in heat and drought stress. Future research should focus on understanding the effects of global warming at local levels and determining adaptation strategies that meet local needs.

  14. Drought Risk and Adaptation in the Interior (DRAI)

    NASA Astrophysics Data System (ADS)

    McNeeley, S.; Ojima, D. S.

    2013-12-01

    Drought is part of the normal climate variability in the Great Plains and Intermountain Western United States, but recent severe droughts along with climate change projections have increased the interest and need for better understanding of drought science and decision making. The purpose of this study is to understand how the U.S. Department of the Interior's (DOI) federal land and resource managers and their stakeholders (i.e., National Park Service, Bureau of Land Management, Fish and Wildlife Service, Bureau of Reclamation, Bureau of Indian Affairs and tribes, among others) are experiencing and dealing with drought in their landscapes. The Drought Risk and Adaptation in the Interior (DRAI) project is part of a new DOI-sponsored North Central Climate Science Center (NC CSC) crosscutting science initiative on drought across the Center's three foundational science areas: 1. physical climate, 2. ecosystems impacts and responses, and 3. human adaptation and decision making. The overarching goal is to learn more about drought within the DOI public lands and resource management in order to contribute to both the NC CSC regional science as well as providing managers and other decision makers with the most salient, credible, and legitimate research to support land and resource management decisions. Here we will present the project approach along with some initial insights learned from the research to date along with its utility for climate adaptation.

  15. The impact of climate change and aeroallergens on children's health.

    PubMed

    Schmier, Jordana K; Ebi, Kristie L

    2009-01-01

    There are unequivocal data that climate change is occurring and that there are resulting health impacts. Climate change can affect the prevalence and severity of allergic and respiratory disorders through projected increases in the temporal and spatial distribution and concentrations of some aeroallergens. This study was designed to critique and summarize existing knowledge on asthma-related impacts of aeroallergen exposure on children in the United States and to provide suggestions about reducing the negative impacts of climate change through increasing education, adapting current management strategies, and modifying distribution channels. A review and synthesis of published literature was performed. Five studies identified evaluated the relationship between aeroallergens and particular symptoms and six evaluated use of the emergency department and hospital care for asthma. Little is known about the relationship between aeroallergens and particular asthma symptoms. However, overall, there appears to be evidence that weed pollen is significantly associated with asthma exacerbations and use of emergency and hospital services. Activities that can help mitigate the impact of additional climate change-induced respiratory disease include continued research, physician and patient education, optimizing production and distribution, and actively considering the budgetary impact of increased prevalence and severity of respiratory disease. Although more research is needed on aeroallergens and respiratory disease, existing studies suggest that it will be essential to consider the health impacts on children. Strategies to reduce the impacts should be developed and implemented now.

  16. Performance of the general circulation models in simulating temperature and precipitation over Iran

    NASA Astrophysics Data System (ADS)

    Abbasian, Mohammadsadegh; Moghim, Sanaz; Abrishamchi, Ahmad

    2018-03-01

    General Circulation Models (GCMs) are advanced tools for impact assessment and climate change studies. Previous studies show that the performance of the GCMs in simulating climate variables varies significantly over different regions. This study intends to evaluate the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs in simulating temperature and precipitation over Iran. Simulations from 37 GCMs and observations from the Climatic Research Unit (CRU) were obtained for the period of 1901-2005. Six measures of performance including mean bias, root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), linear correlation coefficient (r), Kolmogorov-Smirnov statistic (KS), Sen's slope estimator, and the Taylor diagram are used for the evaluation. GCMs are ranked based on each statistic at seasonal and annual time scales. Results show that most GCMs perform reasonably well in simulating the annual and seasonal temperature over Iran. The majority of the GCMs have a poor skill to simulate precipitation, particularly at seasonal scale. Based on the results, the best GCMs to represent temperature and precipitation simulations over Iran are the CMCC-CMS (Euro-Mediterranean Center on Climate Change) and the MRI-CGCM3 (Meteorological Research Institute), respectively. The results are valuable for climate and hydrometeorological studies and can help water resources planners and managers to choose the proper GCM based on their criteria.

  17. Climate Change Indicators in the United States, 2016 ...

    EPA Pesticide Factsheets

    EPA partners with over 40 data contributors from various government agencies, academic institutions, and other organizations to compile and communicate key indicators related to the causes and effects of climate change, the significance of these changes, and their possible consequences for people, the environment, and society. This is the fourth edition of the Climate Change Indicators in the United States report. To summarize and communicate key indicators related to the causes and effects of climate change.

  18. US forest response to projected climate-related stress: a tolerance perspective.

    PubMed

    Liénard, Jean; Harrison, John; Strigul, Nikolay

    2016-08-01

    Although it is widely recognized that climate change will require a major spatial reorganization of forests, our ability to predict exactly how and where forest characteristics and distributions will change has been rather limited. Current efforts to predict future distribution of forested ecosystems as a function of climate include species distribution models (for fine-scale predictions) and potential vegetation climate envelope models (for coarse-grained, large-scale predictions). Here, we develop and apply an intermediate approach wherein we use stand-level tolerances of environmental stressors to understand forest distributions and vulnerabilities to anticipated climate change. In contrast to other existing models, this approach can be applied at a continental scale while maintaining a direct link to ecologically relevant, climate-related stressors. We first demonstrate that shade, drought, and waterlogging tolerances of forest stands are strongly correlated with climate and edaphic conditions in the conterminous United States. This discovery allows the development of a tolerance distribution model (TDM), a novel quantitative tool to assess landscape level impacts of climate change. We then focus on evaluating the implications of the drought TDM. Using an ensemble of 17 climate change models to drive this TDM, we estimate that 18% of US ecosystems are vulnerable to drought-related stress over the coming century. Vulnerable areas include mostly the Midwest United States and Northeast United States, as well as high-elevation areas of the Rocky Mountains. We also infer stress incurred by shifting climate should create an opening for the establishment of forest types not currently seen in the conterminous United States. © 2016 John Wiley & Sons Ltd.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, L.

    This paper outlines the following: United Nations` framework convention on climatic change; the United States` climate change action plan; current issues to be resolved (targets/timetables, policies, advancing commitments of all parties, and compliance); and implications for clean coal technologies.

  20. About Climate Neutral Research Campuses | Climate Neutral Research Campuses

    Science.gov Websites

    | NREL About Climate Neutral Research Campuses About Climate Neutral Research Campuses Research an example of climate neutrality. To better understand the concept of climate neutral research

  1. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America: Revisions for all taxa from the United States and Canada and new taxa from the western United States

    USGS Publications Warehouse

    Thompson, Robert S.; Anderson, Katherine H.; Pelltier, Richard T.; Strickland, Laura E.; Shafer, Sarah L.; Bartlein, Patrick J.; McFadden, Andrew K.

    2015-01-01

    This volume of the atlas provides numerous changes, updates, and enhancements from previous volumes. Its geographic coverage is now restricted to Canada and the continental United States, and the source and time period of the climatic data have changed. New variables were added, including monthly values for temperature and precipitation, and measures of interannual variability. The distribution maps for all previously published species were redigitized, some distribution maps were revised, and 148 new species were added from the arid and semiarid western United States. The graphical displays were expanded to illustrate the new climatic variables, and the data tables were modified to provide more detail on the population distributions of plant taxa relative to climatic variables.

  2. Graphics Processing Unit (GPU) Acceleration of the Goddard Earth Observing System Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putnam, Williama

    2011-01-01

    The Goddard Earth Observing System 5 (GEOS-5) is the atmospheric model used by the Global Modeling and Assimilation Office (GMAO) for a variety of applications, from long-term climate prediction at relatively coarse resolution, to data assimilation and numerical weather prediction, to very high-resolution cloud-resolving simulations. GEOS-5 is being ported to a graphics processing unit (GPU) cluster at the NASA Center for Climate Simulation (NCCS). By utilizing GPU co-processor technology, we expect to increase the throughput of GEOS-5 by at least an order of magnitude, and accelerate the process of scientific exploration across all scales of global modeling, including: The large-scale, high-end application of non-hydrostatic, global, cloud-resolving modeling at 10- to I-kilometer (km) global resolutions Intermediate-resolution seasonal climate and weather prediction at 50- to 25-km on small clusters of GPUs Long-range, coarse-resolution climate modeling, enabled on a small box of GPUs for the individual researcher After being ported to the GPU cluster, the primary physics components and the dynamical core of GEOS-5 have demonstrated a potential speedup of 15-40 times over conventional processor cores. Performance improvements of this magnitude reduce the required scalability of 1-km, global, cloud-resolving models from an unfathomable 6 million cores to an attainable 200,000 GPU-enabled cores.

  3. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) "reasons for concern".

    PubMed

    Smith, Joel B; Schneider, Stephen H; Oppenheimer, Michael; Yohe, Gary W; Hare, William; Mastrandrea, Michael D; Patwardhan, Anand; Burton, Ian; Corfee-Morlot, Jan; Magadza, Chris H D; Füssel, Hans-Martin; Pittock, A Barrie; Rahman, Atiq; Suarez, Avelino; van Ypersele, Jean-Pascal

    2009-03-17

    Article 2 of the United Nations Framework Convention on Climate Change [United Nations (1992) http://unfccc.int/resource/docs/convkp/conveng.pdf. Accessed February 9, 2009] commits signatory nations to stabilizing greenhouse gas concentrations in the atmosphere at a level that "would prevent dangerous anthropogenic interference (DAI) with the climate system." In an effort to provide some insight into impacts of climate change that might be considered DAI, authors of the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) identified 5 "reasons for concern" (RFCs). Relationships between various impacts reflected in each RFC and increases in global mean temperature (GMT) were portrayed in what has come to be called the "burning embers diagram." In presenting the "embers" in the TAR, IPCC authors did not assess whether any single RFC was more important than any other; nor did they conclude what level of impacts or what atmospheric concentrations of greenhouse gases would constitute DAI, a value judgment that would be policy prescriptive. Here, we describe revisions of the sensitivities of the RFCs to increases in GMT and a more thorough understanding of the concept of vulnerability that has evolved over the past 8 years. This is based on our expert judgment about new findings in the growing literature since the publication of the TAR in 2001, including literature that was assessed in the IPCC Fourth Assessment Report (AR4), as well as additional research published since AR4. Compared with results reported in the TAR, smaller increases in GMT are now estimated to lead to significant or substantial consequences in the framework of the 5 "reasons for concern."

  4. The effects of climate change on instream nitrogen transport in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Alam, M. J.; Goodall, J. L.

    2011-12-01

    Excessive nitrogen loading has caused significant environmental impacts such as eutrophication and hypoxia in waterbodies around the world. Nitrogen loading is largely dependent on nonpoint source pollution and nitrogen transport from nonpoint source pollution is greatly impacted by climate conditions. For example, increased precipitation leads to more runoff and a higher nitrogen yield. However, higher temperatures also impact nitrogen transport in that higher temperatures increase denitrification and therefore reduce nitrogen yield. The purpose of this research is to quantify potential changes in nitrogen yield for the contiguous United States under predicted climate change scenarios, specifically changes in precipitation and air temperature. The analysis was performed for high (A2) and low (B1) emission scenarios and for the year 2030, 2050 and 2090. We used 11 different IPCC (The Intergovernmental Panel on Climate Change) models predicted precipitation and temperature estimates to capture uncertainty. The SPARROW model was calibrated using historical nitrogen loading data and used to predict nitrogen yields for future climate conditions. We held nitrogen source data constant in order to isolate the impact of predicted precipitation and temperature changes for each model scenario. Preliminary results suggest an overall decrease in nitrogen yield if climate change impacts are considered in isolation. For the A2 scenario, the model results indicated an overall incremental nitrogen yield decrease of 2-17% by the year 2030, 4-26% by the year 2050, and 11-45% by the year 2090. The B1 emission scenario also indicated an incremental yield decrease, but at lesser amounts of 2-18%, 5-21% and 10-38% by the years 2030, 2050, and 2090, respectively. This decrease is mainly due to higher predicted temperatures that result in increased denitrification rates.

  5. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”

    PubMed Central

    Smith, Joel B.; Schneider, Stephen H.; Oppenheimer, Michael; Yohe, Gary W.; Hare, William; Mastrandrea, Michael D.; Patwardhan, Anand; Burton, Ian; Corfee-Morlot, Jan; Magadza, Chris H. D.; Füssel, Hans-Martin; Pittock, A. Barrie; Rahman, Atiq; Suarez, Avelino; van Ypersele, Jean-Pascal

    2009-01-01

    Article 2 of the United Nations Framework Convention on Climate Change [United Nations (1992) http://unfccc.int/resource/docs/convkp/conveng.pdf. Accessed February 9, 2009] commits signatory nations to stabilizing greenhouse gas concentrations in the atmosphere at a level that “would prevent dangerous anthropogenic interference (DAI) with the climate system.” In an effort to provide some insight into impacts of climate change that might be considered DAI, authors of the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) identified 5 “reasons for concern” (RFCs). Relationships between various impacts reflected in each RFC and increases in global mean temperature (GMT) were portrayed in what has come to be called the “burning embers diagram.” In presenting the “embers” in the TAR, IPCC authors did not assess whether any single RFC was more important than any other; nor did they conclude what level of impacts or what atmospheric concentrations of greenhouse gases would constitute DAI, a value judgment that would be policy prescriptive. Here, we describe revisions of the sensitivities of the RFCs to increases in GMT and a more thorough understanding of the concept of vulnerability that has evolved over the past 8 years. This is based on our expert judgment about new findings in the growing literature since the publication of the TAR in 2001, including literature that was assessed in the IPCC Fourth Assessment Report (AR4), as well as additional research published since AR4. Compared with results reported in the TAR, smaller increases in GMT are now estimated to lead to significant or substantial consequences in the framework of the 5 “reasons for concern.” PMID:19251662

  6. Climate Change and Public Health Surveillance: Toward a Comprehensive Strategy.

    PubMed

    Moulton, Anthony Drummond; Schramm, Paul John

    Climate change poses a host of serious threats to human health that robust public health surveillance systems can help address. It is unknown, however, whether existing surveillance systems in the United States have adequate capacity to serve that role, nor what actions may be needed to develop adequate capacity. Our goals were to review efforts to assess and strengthen the capacity of public health surveillance systems to support health-related adaptation to climate change in the United States and to determine whether additional efforts are warranted. Building on frameworks issued by the Intergovernmental Panel on Climate Change and the Centers for Disease Control and Prevention, we specified 4 core components of public health surveillance capacity relevant to climate change health threats. Using standard methods, we next identified and analyzed multiple assessments of the existing, relevant capacity of public health surveillance systems as well as attempts to improve that capacity. We also received information from selected national public health associations. Multiple federal, state, and local public health agencies, professional associations, and researchers have made valuable, initial efforts to assess and strengthen surveillance capacity. These efforts, however, have been made by entities working independently and without the benefit of a shared conceptual framework or strategy. Their principal focus has been on identifying suitable indicators and data sources largely to the exclusion of other core components of surveillance capacity. A more comprehensive and strategic approach is needed to build the public health surveillance capacity required to protect the health of Americans in a world of rapidly evolving climate change. Public health practitioners and policy makers at all levels can use the findings and issues reviewed in this article as they lead design and execution of a coordinated, multisector strategic plan to create and sustain that capacity.

  7. Climate Change and Public Health Surveillance: Toward a Comprehensive Strategy

    PubMed Central

    Moulton, Anthony Drummond; Schramm, Paul John

    2017-01-01

    Context Climate change poses a host of serious threats to human health that robust public health surveillance systems can help address. It is unknown, however, whether existing surveillance systems in the United States have adequate capacity to serve that role, nor what actions may be needed to develop adequate capacity. Objective Our goals were to review efforts to assess and strengthen the capacity of public health surveillance systems to support health-related adaptation to climate change in the United States and to determine whether additional efforts are warranted. Methods Building on frameworks issued by the Intergovernmental Panel on Climate Change and the Centers for Disease Control and Prevention, we specified 4 core components of public health surveillance capacity relevant to climate change health threats. Using standard methods, we next identified and analyzed multiple assessments of the existing, relevant capacity of public health surveillance systems as well as attempts to improve that capacity. We also received information from selected national public health associations. Findings Multiple federal, state, and local public health agencies, professional associations, and researchers have made valuable, initial efforts to assess and strengthen surveillance capacity. These efforts, however, have been made by entities working independently and without the benefit of a shared conceptual framework or strategy. Their principal focus has been on identifying suitable indicators and data sources largely to the exclusion of other core components of surveillance capacity. Conclusions A more comprehensive and strategic approach is needed to build the public health surveillance capacity required to protect the health of Americans in a world of rapidly evolving climate change. Public health practitioners and policy makers at all levels can use the findings and issues reviewed in this article as they lead design and execution of a coordinated, multisector strategic plan to create and sustain that capacity. PMID:28169865

  8. Weathercasters' views on climate change: A state-of-the-community review

    NASA Astrophysics Data System (ADS)

    Timm, K.; Perkins, D. R., IV; Myers, T.; Maibach, E.

    2017-12-01

    As a community of practice, TV weathercasters are positioned at a crucial intersection between climate scientists and the general public. Weathercasters have the opportunity to use their scientific training and public communication skills to educate viewers about climate change. Though early research found high rates of skepticism about climate change among TV weathercasters, the most current and comprehensive analysis to date of TV weathercasters' views on climate change suggests that their views have evolved in several important ways. Surveys of all working TV weathercasters in the United States conducted in 2015, 2016 and 2017 show that the weathercaster community now holds views of climate change that are similar to that of climate scientists—in particular, that human-caused climate change is happening today and it is impacting American communities in many harmful ways. Ninety-five percent of TV weathercasters now believe that climate change (as defined by the American Meteorological Society) is occurring, and certainty in that belief has grown. Nearly 50% of TV weathercasters believe the climate change that has occurred over the past 50 years has been caused mostly (34%), or largely to entirely (15%), by human activity. Additionally, surveys suggest that weathercasters tend to underestimate the scientific consensus on climate change. Weathercasters, on average, estimate 75% of climate scientists believe humans have caused the majority of recent climate change as compared to the actual value of 97%. Despite convergence in weathercasters' climate change beliefs, this analysis suggests that opportunities remain for building climate literacy among America's TV weathercasters. Increasing this personal knowledge of climate change is one of several factors that empower weathercasters to become public climate educators to increase understanding of climate change causes in communities around the country.

  9. a System Dynamics Approach for Looking at the Human and Environmental Interactions of Community-Based Irrigation Systems in New Mexico

    NASA Astrophysics Data System (ADS)

    Ochoa, C. G.; Tidwell, V. C.

    2012-12-01

    In the arid southwestern United States community water management systems have adapted to cope with climate variability and with socio-cultural and economic changes that have occurred since the establishment of these systems more than 300 years ago. In New Mexico, the community-based irrigation systems were established by Spanish settlers and have endured climate variability in the form of low levels of precipitation and have prevailed over important socio-political changes including the transfer of territory between Spain and Mexico, and between Mexico and the United States. Because of their inherent nature of integrating land and water use with society involvement these community-based systems have multiple and complex economic, ecological, and cultural interactions. Current urban population growth and more variable climate conditions are adding pressure to the survival of these systems. We are conducting a multi-disciplinary research project that focuses on characterizing these intrinsically complex human and natural interactions in three community-based irrigation systems in northern New Mexico. We are using a system dynamics approach to integrate different hydrological, ecological, socio-cultural and economic aspects of these three irrigation systems. Coupled with intensive field data collection, we are building a system dynamics model that will enable us to simulate important linkages and interactions between environmental and human elements occurring in each of these water management systems. We will test different climate variability and population growth scenarios and the expectation is that we will be able to identify critical tipping points of these systems. Results from this model can be used to inform policy recommendations relevant to the environment and to urban and agricultural land use planning in the arid southwestern United States.

  10. Quantifying uncertainty in future floods and drought conditions in the Northeastern United States using regionally downscaled climate projections

    NASA Astrophysics Data System (ADS)

    Siddique, R.; Wu, C.; Karmalkar, A.; Bradley, R. S.; Palmer, R. N.

    2017-12-01

    Northeastern region (NER) of the United States (US) has been projected to be a place where climate change can have the most severe impacts. These impacts include, but are not limited to, increases in the following: extreme precipitation events, temperature, flood magnitudes, flood frequencies, droughts, and sea level rise. In this study, we estimate the frequency of hydrological extremes under different climate change scenarios using regionally downscaled climate projections from a limited number of selected models from the fifth phase of Coupled Model Intercomparison Project (CMIP5). The models are chosen to minimize the loss of key climate information relevant to the NER. Precipitation and temperature from the selected models are forced into a distributed hydrological model called Hydrology Laboratory - Research Distributed Hydrological Model (HL-RDHM) to obtain streamflows for two different time regimes, near-term (20-50 years out) and long-term (50-80 years out). For this, two climate emission scenarios will be considered: RCP 4.5 and RCP 8.5. The impacts of the climate projections on the streamflows are then evaluated across different watershed scales in the NER. Among different metrics, we employ: 1) Flood Events - return period of 1 year, 10 year, 20 year, 50 year, and 100 year flood events and 2) Drought Events -low flow events associated with the 7-day 10 year low flow, number of days per month that will be below the historic monthly average, number of days per month that will be below the 25 percentile monthly historic average, changes in the 30-day and 60-day cumulative summer flows, and the timing and magnitude of spring run-off. For estimates of the climate impacts on low and high flows, only the unregulated watersheds are taken into consideration. Ensembles of streamflows obtained by forcing different climate projections are used to quantify and account for the associated uncertainties. Thus, the outcomes of this study are expected to guide regional decision makers on potential impacts of climate change on hydrological extreme events and water resources across different spatial scales within NER of the US.

  11. A Brazilian Vulnerability Index Towards Natural Disasters and Climatic Change - Flashfloods and Landslides.

    NASA Astrophysics Data System (ADS)

    Debortoli, N. S.; Camarinha, P. I., Sr.; Marengo, J. A.; Rodrigues, R.

    2015-12-01

    There are some evidences that hydrological climate extremes events have become more frequent an intense in the last decades due to climatic change. In Brazil, flashfloods and landslides were responsible for 74% of the deaths related to natural disasters in 1991-2010 period. In this sense, climate change could be considered a threat which can further increase these numbers, if actions of adaptation and reducing vulnerability are not taken. To evaluate Brazil's vulnerability hotspots to these disasters, two vulnerability indexes were developed using three sets of variables: (1) climate, with IPCC climate extreme indexes; (2) environmental, including land use, drainage systems, relief map, slope, road density and hydrography variables; (3) socioeconomic, including Gini coefficient, HDI (Human Development Index), housing conditions and poverty-related index. The variables were normalized on a scale between 0 to 1 and related using Map Algebra technique (ArcGIS). As part of the effort to contribute to the elaboration of the Third National Communication to the United Nations Framework Convention on Climate Change (UNFCCC), and to contribute to the assessment of impacts on strategic country's issues, simulations at higher resolution were carried out using Eta-20km RCM (Regional Climate Model) nested with two global climate models: HadGEM ES and MIROC 5 (INPE Brazilian National Institute for Space Research). For the baseline period of 1961-1990, the vulnerability indexes were adjusted by an iterative process, which was validated by comparing it to the Brazilian National Disasters Data. The same indexes found at baseline were used to estimate the vulnerability until the end of the XXI century, using the 4.5 and 8.5 IPCC/AR5 RCP (Representative Concentration Pathways) scenarios. The results indicate a large increase in Brazil's vulnerability to landslides mainly in coastal zone, southern states, high lands of southeast states, and along the Amazon River due to climatic aspects only, not considering other factors such as increase in population size, etc. Flashfloods vulnerability, on the other hand, increases mostly in the south/southeast regions, the northeast coastal zone and parts of the Amazon basin. Funded by: Ministry of Science and Technology of Brazil and the United Nations Development Program in Brazil.

  12. Changing climate, changing forests: the impacts of climate change on forests of the northeastern United States and eastern Canada

    USGS Publications Warehouse

    Rustad, Lindsey; Campbell, John; Dukes, Jeffrey S.; Huntington, Thomas; Lambert, Kathy Fallon; Mohan, Jacqueline; Rodenhouse, Nicholas

    2012-01-01

    Decades of study on climatic change and its direct and indirect effects on forest ecosystems provide important insights for forest science, management, and policy. A synthesis of recent research from the northeastern United States and eastern Canada shows that the climate of the region has become warmer and wetter over the past 100 years and that there are more extreme precipitation events. Greater change is projected in the future. The amount of projected future change depends on the emissions scenarios used. Tree species composition of northeast forests has shifted slowly in response to climate for thousands of years. However, current human-accelerated climate change is much more rapid and it is unclear how forests will respond to large changes in suitable habitat. Projections indicate significant declines in suitable habitat for spruce-fir forests and expansion of suitable habitat for oak-dominated forests. Productivity gains that might result from extended growing seasons and carbon dioxide and nitrogen fertilization may be offset by productivity losses associated with the disruption of species assemblages and concurrent stresses associated with potential increases in atmospheric deposition of pollutants, forest fragmentation, and nuisance species. Investigations of links to water and nutrient cycling suggest that changes in evapotranspiration, soil respiration, and mineralization rates could result in significant alterations of key ecosystem processes. Climate change affects the distribution and abundance of many wildlife species in the region through changes in habitat, food availability, thermal tolerances, species interactions such as competition, and susceptibility to parasites and disease. Birds are the most studied northeastern taxa. Twenty-seven of the 38 bird species for which we have adequate long-term records have expanded their ranges predominantly in a northward direction. There is some evidence to suggest that novel species, including pests and pathogens, may be more adept at adjusting to changing climatic conditions, enhancing their competitive ability relative to native species. With the accumulating evidence of climate change and its potential effects, forest stewardship efforts would benefit from integrating climate mitigation and adaptation options in conservation and management plans.

  13. A relational leadership perspective on unit-level safety climate.

    PubMed

    Thompson, Debra N; Hoffman, Leslie A; Sereika, Susan M; Lorenz, Holly L; Wolf, Gail A; Burns, Helen K; Minnier, Tamra E; Ramanujam, Rangaraj

    2011-11-01

    This study compared nursing staff perceptions of safety climate in clinical units characterized by high and low ratings of leader-member exchange (LMX) and explored characteristics that might account for differences. Frontline nursing leaders' actions are critical to ensure patient safety. Specific leadership behaviors to achieve this goal are underexamined. The LMX perspective has shown promise in nonhealthcare settings as a means to explain safety climate perceptions. Cross-sectional survey of staff (n = 711) and unit directors from 34 inpatient units in an academic medical center was conducted. Significant differences were found between high and low LMX scoring units on supervisor safety expectations, organizational learning-continuous improvement, total communication, feedback and communication about errors, and nonpunitive response to errors. The LMX perspective can be used to identify differences in perceptions of safety climate among nursing staff. Future studies are needed to identify strategies to improve staff safety attitudes and behaviors. Copyright © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

  14. The evolution of the Brewer-Dobson Circulation from 1960-2100 in simulations with the Chemistry Climate Model EMAC

    NASA Astrophysics Data System (ADS)

    Oberländer, Sophie; Langematz, Ulrike; Kubin, Anne; Abalichin, Janna; Meul, Stefanie; Jöckel, Patrick; Brühl, Christoph

    2010-05-01

    First results of research performed within the new DFG Research Unit Stratospheric Change and its Role for Climate Prediction (SHARP) will be presented. SHARP investigates past and future changes in stratospheric dynamics and composition to improve the understanding of global climate change and the accuracy of climate change predictions. SHARP combines the efforts of eight German research institutes and expertise in state-of-the-art climate modelling and observations. Within the scope of the scientific sub-project SHARP-BDC (Brewer-Dobson-Circulation) the past and future evolution of the BDC in an atmosphere with changing composition will be analysed. Radiosonde data show an annual mean cooling of the tropical lower stratosphere over the past few decades (Thompson and Solomon, 2005). Several independent model simulations indicate an acceleration of the BDC due to higher greenhouse gas (GHG) concentrations with direct impact on the exchange of air masses between the troposphere and stratosphere (e.g., Butchart et al, 2006). In contrast, from balloon-born measurements no significant acceleration in the BDC could be identified (Engel et al, 2008). This disagreement between observations and model analyses motivates further studies. For the future, expected changes in planetary wave generation and propagation in an atmosphere with increasing GHG concentrations are a major source of uncertainty for predicting future levels of stratospheric composition. To analyse and interpret the past and future evolution of the BDC, results from a transient multi-decadal simulation with the Chemistry-Climate Model (CCM) EMAC will be presented. The model has been integrated from 1960 to 2100 following the SCN2d scenario recommendations of the SPARC CCMVal initiative for the temporal evolution of GHGs, ozone depleting substances and sea surface temperatures as well as sea ice. The role of increasing GHG concentrations for the BDC will be assessed by comparing the SCN2d-results with a ‘non-climate change' (NCC) simulation, in which greenhouse gases have been kept fixed at their 1960 concentrations.

  15. Landscape units of Puerto Rico: influence of climate, substrate, and topography

    Treesearch

    William A. Gould; Michael E. Jimenez; Gary Potts; Maya Quinones

    2008-01-01

    The landscape units map of Puerto Rico represents climatic, substrate, and topographic variation by integrating six climatic zones (Ewel and Whitmore 1973), six distinct substrates (Bawiec 2001, USGS 2005), five topographic positions or landforms (Martinuzzi et al. 2007), and prominent lakes and rivers (USGS 2005). Substrates were a simplified set of Bawiec’s (2001)...

  16. Contribution of Increasing CO2 and Climate to Carbon Storage by Ecosystems in the United States

    Treesearch

    David Schimel; Jerry Melillo; Hanqin Tian; A. David McGuire; David Kicklighter; Timothy Kittel; Nan Rosenbloom; Steven Running; Peter Thorton; Dennis Ojima; William Parton; Robin Kelly; Martin Sykes; Ron Neilson; Brian Rizzo

    2000-01-01

    The effects of increasing carbon dioxide (CO2) and climate on net carbon storage in terrestrial ecosystems of the conterminous United States for the period 1895-1993 were modeled with new, detailed historical climate information. For the period 1980-1993, results from an ensemble of three models agree within 25%, simulating a land carbon sink...

  17. Multi-scalar influence of weather and climate on very large-fires in the Eastern United States

    Treesearch

    John T. Abatzoglou; Renaud Barbero; Crystal A. Kolden; Katherine C. Hegewisch; Narasimhan K. Larkin; Harry Podschwit

    2014-01-01

    A majority of area burned in the Eastern United States (EUS) results from a limited number of exceptionally large wildfires. Relationships between climatic conditions and the occurrence of very large-fires (VLF) in the EUS were examined using composite and climate-niche analyses that consider atmospheric factors across inter-annual, sub-seasonal and synoptic temporal...

  18. Climate-induced changes in vulnerability to biological threats in the southern United States

    Treesearch

    Rabiu Olatinwo; Qinfeng Guo; Songlin Fei; William Otrosina; Kier Klepzig; Douglas Streett

    2014-01-01

    Forest land managers face the challenges of preparing their forests for the impacts of climate change. However, climate change adds a new dimension to the task of developing and testing science-based management options to deal with the effects of stressors on forest ecosystems in the southern United States. The large spatial scale and complex interactions make...

  19. Emerging Forms of Climate Protection Governance: Urban Initiatives in the European Union

    NASA Astrophysics Data System (ADS)

    Rosenthal, J. K.; Brunner, E.

    2006-12-01

    Changes in climate patterns are expected to pose increasing challenges for cities in the following decades, with adverse impacts on urban populations currently stressed by poverty, health and economic inequities. Simultaneously, a strong global trend towards urbanization of poverty exists, with increased challenges for local governments to protect and sustain the well-being of growing cities. In the context of these two overarching trends, interdisciplinary research at the city scale is prioritized for understanding the social impacts of climate change and variability and for the evaluation of strategies in the built environment that might serve as adaptive and mitigative responses to climate change. Urban managers, and transnational networks of municipalities and non-state actors, have taken an increasingly active role in climate protection, through research, policies, programs and agreements on adaptation and mitigation strategies. Concerns for urban impacts of climate change include the potential increase in frequency and intensity of damaging extreme weather events, such as heat waves, hurricanes, heavy rainfall or drought, and coastal flooding and erosion, and potentially adverse impacts on infrastructure, energy systems, and public health. Higher average summertime temperatures in temperate zone cities are also associated with environmental and public health liabilities such as decreased air quality and increased peak electrical demand. We review municipal climate protection programs, generally categorized as approaches based on technological innovation (e.g., new materials); changes in behavior and public education (e.g., use of cooling centers); and improvements in urban design (e.g., zoning for mixed land-use; the use of water, vegetation and plazas to reduce the urban heat island effect). Climate protection initiatives in three European cities are assessed within the context of the global collective efforts enacted by the Kyoto Protocol and United Nations Framework Convention on Climate Change. Initiatives in Stockholm, London and Milan provide evidence that local actions are inevitable and of central importance to mitigate and adapt to the adverse impacts of climate change, the urban heat island effect, and extreme weather events.

  20. On Dangerous Anthropogenic Interference and Climate Change Risk (Invited)

    NASA Astrophysics Data System (ADS)

    Mann, M. E.

    2009-12-01

    The United Nations Framework Convention on Climate Change (UNFCCC) commits signatory nations (which includes all major nations including the United States) to stabilizing greenhouse gas concentrations at levels short of Dangerous Anthropogenic Interference (“ DAI”) with the climate. To properly define DAI, one must take into account issues that are not only scientific, but, economic, political, and ethical in nature. Defining DAI is furthermore complicated by the inter-generational and regionally-disaggregated nature of the risks associated with climate change. In this talk, I will explore the nature of anthropogenic climate change risks and the notion of DAI.

  1. Linking climate projections to performance: A yield-based decision scaling assessment of a large urban water resources system

    NASA Astrophysics Data System (ADS)

    Turner, Sean W. D.; Marlow, David; Ekström, Marie; Rhodes, Bruce G.; Kularathna, Udaya; Jeffrey, Paul J.

    2014-04-01

    Despite a decade of research into climate change impacts on water resources, the scientific community has delivered relatively few practical methodological developments for integrating uncertainty into water resources system design. This paper presents an application of the "decision scaling" methodology for assessing climate change impacts on water resources system performance and asks how such an approach might inform planning decisions. The decision scaling method reverses the conventional ethos of climate impact assessment by first establishing the climate conditions that would compel planners to intervene. Climate model projections are introduced at the end of the process to characterize climate risk in such a way that avoids the process of propagating those projections through hydrological models. Here we simulated 1000 multisite synthetic monthly streamflow traces in a model of the Melbourne bulk supply system to test the sensitivity of system performance to variations in streamflow statistics. An empirical relation was derived to convert decision-critical flow statistics to climatic units, against which 138 alternative climate projections were plotted and compared. We defined the decision threshold in terms of a system yield metric constrained by multiple performance criteria. Our approach allows for fast and simple incorporation of demand forecast uncertainty and demonstrates the reach of the decision scaling method through successful execution in a large and complex water resources system. Scope for wider application in urban water resources planning is discussed.

  2. Managing United States public lands in response to climate change: a view from the ground up.

    PubMed

    Ellenwood, Mikaela S; Dilling, Lisa; Milford, Jana B

    2012-05-01

    Federal land managers are faced with the task of balancing multiple uses and goals when making decisions about land use and the activities that occur on public lands. Though climate change is now well recognized by federal agencies and their local land and resource managers, it is not yet clear how issues related to climate change will be incorporated into on-the-ground decision making within the framework of multiple use objectives. We conducted a case study of a federal land management agency field office, the San Juan Public Lands Center in Durango, CO, U.S.A., to understand from their perspective how decisions are currently made, and how climate change and carbon management are being factored into decision making. We evaluated three major management sectors in which climate change or carbon management may intersect other use goals: forests, biofuels, and grazing. While land managers are aware of climate change and eager to understand more about how it might affect land resources, the incorporation of climate change considerations into everyday decision making is currently quite limited. Climate change is therefore on the radar screen, but remains a lower priority than other issues. To assist the office in making decisions that are based on sound scientific information, further research is needed into how management activities influence carbon storage and resilience of the landscape under climate change.

  3. Developing research about extreme events and impacts to support international climate policy

    NASA Astrophysics Data System (ADS)

    Otto, Friederike; James, Rachel; Parker, Hannah; Boyd, Emily; Jones, Richard; Allen, Myles; Mitchell, Daniel; Cornforth, Rosalind

    2015-04-01

    Climate change is expected to have some of its most significant impacts through changes in the frequency and severity of extreme events. There is a pressing need for policy to support adaptation to changing climate risks, and to deal with residual loss and damage from climate change. In 2013, the Warsaw International Mechanism was established by the United Nations Framework Convention on Climate Change (UNFCCC) to address loss and damage in developing countries. Strategies to help vulnerable regions cope with losses from extreme events will presumably require information about the influence of anthropogenic forcing on extreme weather. But what kind of scientific evidence will be most useful for the Warsaw Mechanism? And how can the scientific communities working on extreme events and impacts develop their research to support the advance of this important policy? As climate scientists conducting probabilistic event attribution studies, we have been working with social scientists to investigate these questions. Our own research seeks to examine the role of external drivers, including greenhouse gas emissions, on the risk of extreme weather events such as heatwaves, flooding, and drought. We use large ensembles of climate models to compute the probability of occurrence of extreme events under current conditions and in a world which might have been without anthropogenic interference. In cases where the models are able to simulate extreme weather, the analysis allows for conclusions about the extent to which climate change may have increased, decreased, or made no change to the risk of the event occurring. These results could thus have relevance for the UNFCCC negotiations on loss and damage, and we have been communicating with policymakers and observers to the policy process to better understand how we can develop our research to support their work; by attending policy meetings, conducting interviews, and using a participatory game developed with the Red Cross/Red Crescent Climate Centre. This presentation is an opportunity to share some of our findings from this stakeholder engagement with a wider community of scientists working on extreme events. Discussing the use of scientific evidence in UNFCCC loss and damage policy has not been straightforward, since this is a very controversial topic. However, the UNFCCC has now approved a workplan for the next two years and there will be windows of opportunity for interaction between scientists and policymakers. Currently it is not clear what kind of evidence of loss and damage will be required for the Warsaw Mechanism, and in fact, there has been no official discussion under the UNFCCC about what defines loss and damage. One possibility would be to attempt to define loss and damage from climate change from a scientific perspective, and to identify the research gaps which might be addressed to support this. In the presentation we will make a proposal for future research directions, including the development of an inventory of impacts from climate change.

  4. The Impact of Climate Change on the United States Economy

    NASA Astrophysics Data System (ADS)

    Mendelsohn, Robert; Neumann, James E.

    2004-08-01

    Understanding the impacts of climate change on economic behaviour is an important aspect of deciding when to take policy actions to prevent or mitigate its consequences. This book applies advanced new economics methodologies to assess impacts on potentially vulnerable aspects of the US economy: agriculture, timber, coastal resources, energy expenditure, fishing, outdoor recreation. It is intended to provide improved understanding of key issues raised in the recent Intergovernmental Panel on Climate Change (IPCC) reports. It concludes that some climate change may produce economic gains in the agriculture and forestry sectors, whereas energy, coastal structures, and water sectors may be harmed. The book will serve as an important reference for the scientific, economic, and policy community, and will also be of interest to natural resource/environmental economists as an example of economic valuation techniques. The volume will clearly be of main importance to researchers and policymakers in the US, but will also be influential as a model for assessment of impacts on economies worldwide.

  5. The Value of Seasonal Climate Forecasts in Managing Energy Resources.

    NASA Astrophysics Data System (ADS)

    Brown Weiss, Edith

    1982-04-01

    Research and interviews with officials of the United States energy industry and a systems analysis of decision making in a natural gas utility lead to the conclusion that seasonal climate forecasts would only have limited value in fine tuning the management of energy supply, even if the forecasts were more reliable and detailed than at present.On the other hand, reliable forecasts could be useful to state and local governments both as a signal to adopt long-term measures to increase the efficiency of energy use and to initiate short-term measures to reduce energy demand in anticipation of a weather-induced energy crisis.To be useful for these purposes, state governments would need better data on energy demand patterns and available energy supplies, staff competent to interpret climate forecasts, and greater incentive to conserve. The use of seasonal climate forecasts is not likely to be constrained by fear of legal action by those claiming to be injured by a possible incorrect forecast.

  6. The ideological divide and climate change opinion: "top-down" and "bottom-up" approaches.

    PubMed

    Jacquet, Jennifer; Dietrich, Monica; Jost, John T

    2014-01-01

    The United States wields disproportionate global influence in terms of carbon dioxide emissions and international climate policy. This makes it an especially important context in which to examine the interplay among social, psychological, and political factors in shaping attitudes and behaviors related to climate change. In this article, we review the emerging literature addressing the liberal-conservative divide in the U.S. with respect to thought, communication, and action concerning climate change. Because of its theoretical and practical significance, we focus on the motivational basis for skepticism and inaction on the part of some, including "top-down" institutional forces, such as corporate strategy, and "bottom-up" psychological factors, such as ego, group, and system justification. Although more research is needed to elucidate fully the social, cognitive, and motivational bases of environmental attitudes and behavior, a great deal has been learned in just a few years by focusing on specific ideological factors in addition to general psychological principles.

  7. The ideological divide and climate change opinion: “top-down” and “bottom-up” approaches

    PubMed Central

    Jacquet, Jennifer; Dietrich, Monica; Jost, John T.

    2014-01-01

    The United States wields disproportionate global influence in terms of carbon dioxide emissions and international climate policy. This makes it an especially important context in which to examine the interplay among social, psychological, and political factors in shaping attitudes and behaviors related to climate change. In this article, we review the emerging literature addressing the liberal-conservative divide in the U.S. with respect to thought, communication, and action concerning climate change. Because of its theoretical and practical significance, we focus on the motivational basis for skepticism and inaction on the part of some, including “top-down” institutional forces, such as corporate strategy, and “bottom-up” psychological factors, such as ego, group, and system justification. Although more research is needed to elucidate fully the social, cognitive, and motivational bases of environmental attitudes and behavior, a great deal has been learned in just a few years by focusing on specific ideological factors in addition to general psychological principles. PMID:25566136

  8. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach.

    PubMed

    Zhai, Shiyan; Song, Genxin; Qin, Yaochen; Ye, Xinyue; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.

  9. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach

    PubMed Central

    Qin, Yaochen; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention. PMID:28950027

  10. Putting climate impact estimates to work: the empirical approach of the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Jina, A.; Hsiang, S. M.; Kopp, R. E., III; Rasmussen, D.; Rising, J.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assesses climate risks posed to the United States' economy in a number of sectors [1]. Four of these - crop yield, crime, labor productivity, and mortality - draw upon research which identifies social impacts using contemporary variability in climate. We first identify a group of rigorous studies that use climate variability to identify responses to temperature and precipitation, while controlling for unobserved differences between locations. To incorporate multiple studies from a single sector, we employ a meta-analytical approach that draws on Bayesian methods commonly used in medical research and previously implemented in [2]. We generate a series of aggregate response functions for each sector using this meta-analytical method. We combine response functions with downscaled physical climate projections to estimate climate impacts out to the end of the century, incorporating uncertainty from statistical estimates, weather, climate models, and different emissions scenarios. Incorporating multiple studies in a single estimation framework allows us to directly compare impacts across the economy. We find that increased mortality has the largest effect on the US economy, followed by costs associated with decreased labor productivity. Agricultural losses and increases in crime contribute lesser but nonetheless substantial costs, and agriculture, notably, shows many areas benefitting from projected climate changes. The ACP also presents results throughout the 21stcentury. The dynamics of each of the impact categories differs, with, for example, mortality showing little change until the end of the century, but crime showing a monotonic increase from the present day. The ACP approach can expand to include new findings in current sectors, new sectors, and new geographical areas of interest. It represents an analytical framework that can incorporate empirical studies into a broad characterization of climate impacts across an economy, ensuring that each individual study can contribute to guiding policy priorities on climate change. References: [1] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org. [2] Hsiang, Burke, and Miguel (2013), Science.

  11. Impacts of climate change on forest phenology and implications for streamflow in the central Appalachian Mountains region, United States

    NASA Astrophysics Data System (ADS)

    Zegre, N.; Gaertner, B. A.; Fernandez, R.

    2016-12-01

    The timing of phenological parameters such as spring onset and autumn senescence are important controls on the partitioning of water into evaporation and streamflow. Climate largely drives seasonal characteristics of plants and changes in phenological timing can be used to detect the impacts of climate change on water balance controls. However, limited phenological research is available for regions dominated by forest cover such as the central Appalachian Mountains region of the United States. To quantify the impacts of climate change on phenological timing and streamflow in this region, we used GIMMS AVHRR NDVI 13g data from 1982-2012 and the TIMESAT program to extract seasonality parameters. Results show that spring onset has advanced by 9 days, autumn senescence has been delayed by 11 days, and growing season has lengthened by 20 days. Above 500 m elevation, spring onset occurs 2-3 days later; fall senescence arrives 1-2 days earlier, and growing season shortens by 3-5 days. Streamflow has decreased during the growing season over the 31-year study period throughout the region, with the most pronounced effects for the Tennessee River watershed, the southernmost reach of the study area. The elevation patterns are in general agreement with Hopkins law, which states a one-day delay in spring onset for every 30-meter increase in elevation. Streamflow patterns suggest that the southern central Appalachian region is sensitive to changes in climate and are becoming drier, having important implications for drinking water supply, forest ecosystem management, ecosystem services including drinking water supply, and overall forest health.

  12. Nonhydrostatic nested climate modeling: A case study of the 2010 summer season over the western United States

    NASA Astrophysics Data System (ADS)

    Lebassi-Habtezion, Bereket; Diffenbaugh, Noah S.

    2013-10-01

    potential importance of local-scale climate phenomena motivates development of approaches to enable computationally feasible nonhydrostatic climate simulations. To that end, we evaluate the potential viability of nested nonhydrostatic model approaches, using the summer climate of the western United States (WUSA) as a case study. We use the Weather Research and Forecast (WRF) model to carry out five simulations of summer 2010. This suite allows us to test differences between nonhydrostatic and hydrostatic resolutions, single and multiple nesting approaches, and high- and low-resolution reanalysis boundary conditions. WRF simulations were evaluated against station observations, gridded observations, and reanalysis data over domains that cover the 11 WUSA states at nonhydrostatic grid spacing of 4 km and hydrostatic grid spacing of 25 km and 50 km. Results show that the nonhydrostatic simulations more accurately resolve the heterogeneity of surface temperature, precipitation, and wind speed features associated with the topography and orography of the WUSA region. In addition, we find that the simulation in which the nonhydrostatic grid is nested directly within the regional reanalysis exhibits the greatest overall agreement with observational data. Results therefore indicate that further development of nonhydrostatic nesting approaches is likely to yield important insights into the response of local-scale climate phenomena to increases in global greenhouse gas concentrations. However, the biases in regional precipitation, atmospheric circulation, and moisture flux identified in a subset of the nonhydrostatic simulations suggest that alternative nonhydrostatic modeling approaches such as superparameterization and variable-resolution global nonhydrostatic modeling will provide important complements to the nested approaches tested here.

  13. Climate control: United States weather modification in the cold war and beyond.

    PubMed

    Harper, Kristine C

    2008-03-01

    Rainmaking, hail busting, fog lifting, snowpack enhancing, lightning suppressing, hurricane snuffing...weather control. At the lunatic fringe of scientific discussion in the early twentieth century--and the subject of newspaper articles with tones ranging from skeptical titters to awestruck wonder--weather modification research became more serious after World War II. In the United States, the 'seeds' of silver iodide and dry ice purported to enhance rainfall and bust hailstorms soon became seeds of controversy from which sprouted attempts by federal, state and local government to control the controllers and exploit 'designer weather' for their own purposes.

  14. Brazilian canine hepatozoonosis.

    PubMed

    O'Dwyer, Lucia Helena

    2011-01-01

    The genus Hepatozoon includes hundreds of species that infect birds, reptiles, amphibians and mammals, in all continents with tropical and subtropical climates. Two species have been described in domestic dogs: H. canis, reported in Europe, Asia, Africa, South America and the United States; and H. americanum, which so far has only been diagnosed in the United States. In Brazil, the only species found infecting dogs is H. canis. The objective of this review was to detail some aspects of canine hepatozoonosis, caused by H. canis, and the main points of its biology, transmission, pathogenicity, symptoms, epidemiology and diagnostic methods, with emphasis on research developed in Brazil.

  15. Scenarios and US National Climate Assessments: Where have they been and where could they go?

    NASA Astrophysics Data System (ADS)

    Leidner, A. K.

    2015-12-01

    U.S. National Climate Assessments (NCA), conducted under the auspices of the U.S. Global Change Research Program, analyze the effects of global change on the United States and examine current and projected changes out to 100 years. Scenarios of global change have been incorporated in all NCAs to date, although such scenarios have typically been developed late in the assessment cycle, limiting the depth of their use in regional and sectoral assessments. This lack of use is particularly notable for scenarios focused on aspects other than climate and associated projections of temperature and precipitation. Here, we review how scenarios have been incorporated in previous NCAs and present potential options for both the development and inclusion of a wider range of scenarios topics in future quadrennial NCA reports and other sustained assessment activities within USGCRP and federal agencies. Incorporating a broad range of U.S. scenarios will present both intellectual and programmatic challenges, as scenario developers from relatively disparate communities will need to come together to create internally consistent assumptions within each type of scenario (e.g. climate, land cover and land use, population) for sub-national scales. As USGCRP moves forward with a sustained assessment process, a richer set of scenarios can serve as a bridge between the research community, decision makers, and practitioners.

  16. Vulnerability to extreme heat and climate change: is ethnicity a factor?

    PubMed

    Hansen, Alana; Bi, Linda; Saniotis, Arthur; Nitschke, Monika

    2013-07-29

    With a warming climate, it is important to identify sub-populations at risk of harm during extreme heat. Several international studies have reported that individuals from ethnic minorities are at increased risk of heat-related illness, for reasons that are not often discussed. The aim of this article is to investigate the underpinning reasons as to why ethnicity may be associated with susceptibility to extreme heat, and how this may be relevant to Australia's population. Drawing upon literary sources, the authors provide commentary on this important, yet poorly understood area of heat research. Social and economic disparities, living conditions, language barriers, and occupational exposure are among the many factors contributing to heat-susceptibility among minority ethnic groups in the United States. However, there is a knowledge gap about socio-cultural influences on vulnerability in other countries. More research needs to be undertaken to determine the effects of heat on tourists, migrants, and refugees who are confronted with a different climatic environment. Thorough epidemiological investigations of the association between ethnicity and heat-related health outcomes are required, and this could be assisted with better reporting of nationality data in health statistics. Climate change adaptation strategies in Australia and elsewhere need to be ethnically inclusive and cognisant of an upward trend in the proportion of the population who are migrants and refugees.

  17. Hospital safety climate surveys: measurement issues.

    PubMed

    Jackson, Jeanette; Sarac, Cakil; Flin, Rhona

    2010-12-01

    Organizational safety culture relates to behavioural norms in the workplace and is usually assessed by safety climate surveys. These can be a diagnostic indicator on the state of safety in a hospital. This review examines recent studies using staff surveys of hospital safety climate, focussing on measurement issues. Four questionnaires (hospital survey on patient safety culture, safety attitudes questionnaire, patient safety climate in healthcare organizations, hospital safety climate scale), with acceptable psychometric properties, are now applied across countries and clinical settings. Comparisons for benchmarking must be made with caution in case of questionnaire modifications. Increasing attention is being paid to the unit and hospital level wherein distinct cultures may be located, as well as to associated measurement and study design issues. Predictive validity of safety climate is tested against safety behaviours/outcomes, with some relationships reported, although effects may be specific to professional groups/units. Few studies test the role of intervening variables that could influence the effect of climate on outcomes. Hospital climate studies are becoming a key component of healthcare safety management systems. Large datasets have established more reliable instruments that allow a more focussed investigation of the role of culture in the improvement and maintenance of staff's safety perceptions within units, as well as within hospitals.

  18. Adaptation with climate uncertainty: An examination of agricultural land use in the United States

    USGS Publications Warehouse

    Mu, Jianhong E.; McCarl, Bruce A.; Sleeter, Benjamin M.; Abatzoglou, John T.; Zhang, Hongliang

    2018-01-01

    This paper examines adaptation responses to climate change through adjustment of agricultural land use. The climate drivers we examine are changes in long-term climate normals (e.g., 10-year moving averages) and changes in inter-annual climate variability. Using US county level data over 1982 to 2012 from Census of Agriculture, we find that impacts of long-term climate normals are as important as that of inter-annual climate variability. Projecting into the future, we find projected climate change will lead to an expansion in crop land share across the northern and interior western United States with decreases in the south. We also find that grazing land share increases in southern regions and Inland Pacific Northwest and declines in the northern areas. However, the extent to which the adaptation potential would be is dependent on the climate model, emission scenario and time horizon under consideration.

  19. An Agenda for Climate Impacts Science

    NASA Astrophysics Data System (ADS)

    Kaye, J. A.

    2009-12-01

    The report Global Change Impacts in the United States released by the US Global Change Research Program in June 2009 identifies a number of areas in which inadequate information or understanding hampers our ability to estimate likely future climate change and its impacts. In this section of the report, the focus is on those areas of climate science that could contribute most towards advancing our knowledge of climate change impacts and those aspects of climate change responsible for these impacts in order to continue to guide decision making. The Report identifies the six most important gaps in knowledge and offers some thoughts on how to address those gaps: 1. Expand our understanding of climate change impacts. There is a clear need to increase understanding of how ecosystems, social and economic systems, human health, and the built environment will be affected by climate change in the context of other stresses. 2. Refine ability to project climate change, including extreme events, at local scales. While climate change is a global issue, it has a great deal of regional variability. There is an indisputable need to improve understanding of climate system effects at these smaller scales, because these are often the scales of decision-making in society. This includes advances in modeling capability and observations needed to address local scales and high-impact extreme events. 3. Expand capacity to provide decision makers and the public with relevant information on climate change and its impacts. Significant potential exists in the US to create more comprehensive measurement, archive, and data-access systems that could provide great benefit to society, which requires defining needed information, gathering it, expanding capacity to deliver it, and improving tools by which decision makers use it to best advantage. 4. Improve understanding of thresholds likely to lead to abrupt changes in climate or ecosystems. Potential areas of research include thresholds that could lead to rapid changes in ice-sheet dynamics that could impact future sea-level rise and tipping points in biological systems (including those that may be associated with ocean acidification). 5. Improve understanding of the most effective ways to reduce the rate and magnitude of climate change, as well as unintended consequences of such actions. Research will help to identify the desired mix of mitigation options necessary to control the rate and magnitude of climate change, and to examine possible unintended consequences of mitigation options. 6. Enhance understanding of how society can adapt to climate change. There is currently limited knowledge about the ability of communities, regions, and sectors to adapt to future climate change. It is important to improve understanding of how to enhance society’s capacity to adapt to a changing climate in the context of other environmental stresses.

  20. Reconstructed Historical Land Cover and Biophysical Parameters for Studies of Land-Atmosphere Interactions within the Eastern United States

    NASA Technical Reports Server (NTRS)

    Steyaert, Louis T.; Knox, Robert G.

    2007-01-01

    The local environment where we live within the Earth's biosphere is often taken for granted. This environment can vary depending on whether the land cover is a forest, grassland, wetland, water body, bare soil, pastureland, agricultural field, village, residential suburb, or an urban complex with concrete, asphalt, and large buildings. In general, the type and characteristics of land cover influence surface temperatures, sunlight exposure and duration, relative humidity, wind speed and direction, soil moisture amount, plant life, birds, and other wildlife in our backyards. The physical and biological properties (biophysical characteristics) of land cover help to determine our surface environment because they directly affect surface radiation, heat, and soil moisture processes, and also feedback to regional weather and climate. Depending on the spatial scale and land use intensity, land cover changes can have profound impacts on our local and regional environment. Over the past 350 years, the eastern half of the United States, an area extending from the grassland prairies of the Great Plains to the Gulf and Atlantic coasts, has experienced extensive land cover and land use changes that began with land clearing in the 1600s, led to extensive deforestation and intensive land use practices by 1920, and then evolved to the present-day landscape. Determining the consequences of such land cover changes on regional and global climate is a major research issue. Such research requires detailed historical land cover data and modeling experiments simulating historical climates. Given the need to understand the effects of historical land cover changes in the eastern United States, some questions include: - What were the most important land cover transformations and how did they alter biophysical characteristics of the land cover at key points in time since the mid-1600s? - How have land cover and land use changes over the past 350 years affected the land surface environment including surface weather, hydrologic, and climatic variability? - How do the potential effects of regional human-induced land cover change on the environment compare to similar changes that are caused by the natural variations of the Earth's climate system? To help answer these questions, we reconstructed a fractional land cover and biophysical parameter dataset for the eastern United States at 1650, 1850, 1920, and 1992 time-slices. Each land cover fraction is associated with a biophysical parameter class, a suite of parameters defining the biophysical characteristics of that kind of land cover. This new dataset is designed for use in computer models of land-atmosphere interactions, to understand and quantify the effects of historical land cover changes on the water, energy, and carbon cycles

  1. Reconstruction of Past Climatic Variability

    DTIC Science & Technology

    1976-03-01

    Research Projects Agency/IPT 1400 Wilson Boulevard 7$ 10 . PROGRAM ELEMENT, PROJECT, TASK AREA S WORK UNIT NUMBERS 62706E AO 2221-3 Mr WCPOWT...Conclusions " II. INTRODUCTION 8 III. COLLECTIONS 10 A. North American Temperate Sites 10 B. North American Arctic Sites 10 C. European...Work Time Required to Collect and Process a ^ ^ 200- to 400-Year Ring-Width Chronology Statistics for 10 Tree-Ring Chronologies

  2. Differences in wildfires among ecoregions and land management agencies in the Sierra Nevada region, California, USA

    Treesearch

    Jay D. Miller; Brandom M. Collins; James A. Lutz; Scott L. Stephens; Jan W. van Wagtendonk; Donald A. Yasuda

    2012-01-01

    Recent research has indicated that in most of the western United States, fire size is increasing, large fires are becoming more frequent, and in at least some locations percentage of high-severity fire is also increasing. These changes in the contemporary fire regime are largely attributed to both changing climate and land management practices, including suppression of...

  3. How do you know things are getting better (or not?) Assessing resource conditions in National Parks and Protected Areas

    Treesearch

    James D. Nations

    2011-01-01

    The National Parks Conservation Association’s Center for State of the Parks uses an easily explained, fact-based methodology to determine the condition of natural and cultural resources in the United States National Park System. Researchers assess and numerically score natural resources that include water quality and quantity, climate change impacts, forest...

  4. Building Eco-Informatics: Examining the Dynamics of Eco-Feedback Design and Peer Networks to Achieve Sustainable Reductions in Energy Consumption

    ERIC Educational Resources Information Center

    Jain, Rishee K.

    2013-01-01

    The built environment accounts for a substantial portion of energy consumption in the United States and in many parts of the world. Due to concerns over rising energy costs and climate change, researchers and practitioners have started exploring the area of eco-informatics to link information from the human, natural and built environments.…

  5. Projecting water yield and ecosystem productivity across the United States by linking an ecohydrological model to WRF dynamically downscaled climate data

    Treesearch

    Shanlei Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter V. Caldwell; Kai Duan; Yang Zhang

    2016-01-01

    Quantifying the potential impacts of climatechange on water yield and ecosystem productivity is essential to developing sound watershed restoration plans, andecosystem adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and StressIndex, WaSSI) with WRF (Weather Research and Forecasting Model) using dynamically downscaled...

  6. National climate policies across Europe and their impacts on cities strategies.

    PubMed

    Heidrich, O; Reckien, D; Olazabal, M; Foley, A; Salvia, M; de Gregorio Hurtado, S; Orru, H; Flacke, J; Geneletti, D; Pietrapertosa, F; Hamann, J J-P; Tiwary, A; Feliu, E; Dawson, R J

    2016-03-01

    Globally, efforts are underway to reduce anthropogenic greenhouse gas emissions and to adapt to climate change impacts at the local level. However, there is a poor understanding of the relationship between city strategies on climate change mitigation and adaptation and the relevant policies at national and European level. This paper describes a comparative study and evaluation of cross-national policy. It reports the findings of studying the climate change strategies or plans from 200 European cities from Austria, Belgium, Estonia, Finland, France, Germany, Ireland, Italy, Netherlands, Spain and the United Kingdom. The study highlights the shared responsibility of global, European, national, regional and city policies. An interpretation and illustration of the influences from international and national networks and policy makers in stimulating the development of local strategies and actions is proposed. It was found that there is no archetypical way of planning for climate change, and multiple interests and motivations are inevitable. Our research warrants the need for a multi-scale approach to climate policy in the future, mainly ensuring sufficient capacity and resource to enable local authorities to plan and respond to their specific climate change agenda for maximising the management potentials for translating environmental challenges into opportunities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Longitudinal Analysis of Quality of Diabetes Care and Relational Climate in Primary Care.

    PubMed

    Soley-Bori, Marina; Benzer, Justin K; Burgess, James F

    2018-04-01

    To assess the influence of relational climate on quality of diabetes care. The study was conducted at the Department of Veterans Affairs (VA). The VA All Employee Survey (AES) was used to measure relational climate. Patient and facility characteristics were gathered from VA administrative datasets. Multilevel panel data (2008-2012) with patients nested into clinics. Diabetic patients were identified using ICD-9 codes and assigned to the clinic with the highest frequency of primary care visits. Multiple quality indicators were used, including an all-or-none process measure capturing guideline compliance, the actual number of tests and procedures, and three intermediate continuous outcomes (cholesterol, glycated hemoglobin, and blood pressure). The study sample included 327,805 patients, 212 primary care clinics, and 101 parent facilities in 2010. Across all study years, there were 1,568,180 observations. Clinics with the highest relational climate were 25 percent more likely to provide guideline-compliant care than those with the lowest relational climate (OR for a 1-unit increase: 1.02, p-value <.001). Among insulin-dependent diabetic veterans, this effect was twice as large. Contrary to that expected, relational climate did not influence intermediate outcomes. Relational climate is positively associated with tests and procedures provision, but not with intermediate outcomes of diabetes care. © Health Research and Educational Trust.

  8. Experimental effects of climate messages vary geographically

    NASA Astrophysics Data System (ADS)

    Zhang, Baobao; van der Linden, Sander; Mildenberger, Matto; Marlon, Jennifer R.; Howe, Peter D.; Leiserowitz, Anthony

    2018-05-01

    Social science scholars routinely evaluate the efficacy of diverse climate frames using local convenience or nationally representative samples1-5. For example, previous research has focused on communicating the scientific consensus on climate change, which has been identified as a `gateway' cognition to other key beliefs about the issue6-9. Importantly, although these efforts reveal average public responsiveness to particular climate frames, they do not describe variation in message effectiveness at the spatial and political scales relevant for climate policymaking. Here we use a small-area estimation method to map geographical variation in public responsiveness to information about the scientific consensus as part of a large-scale randomized national experiment (n = 6,301). Our survey experiment finds that, on average, public perception of the consensus increases by 16 percentage points after message exposure. However, substantial spatial variation exists across the United States at state and local scales. Crucially, responsiveness is highest in more conservative parts of the country, leading to national convergence in perceptions of the climate science consensus across diverse political geographies. These findings not only advance a geographical understanding of how the public engages with information about scientific agreement, but will also prove useful for policymakers, practitioners and scientists engaged in climate change mitigation and adaptation.

  9. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    Treesearch

    Jie Zhu; Ge Sun; Wenhong Li; Yu Zhang; Guofang Miao; Asko Noormets; Steve G. McNulty; John S. King; Mukesh Kumar; Xuan Wang

    2017-01-01

    The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, ground- water recharge, and wildlife habitat. However, these wet- land ecosystems are dependent on local climate and hydrol- ogy, and are therefore at risk due to climate and land use change. This study develops site-...

  10. Introduction to climate change adaptation and mitigation management options

    Treesearch

    James M. Vose; Kier D. Klepzig

    2014-01-01

    Climate is a critical factor shaping the structure and function of forest ecosystems in the Southern United States. Human induced changes in climate systems have resulted in an increase in the global average air temperature of about 0.8°C since the 1900s (Pachuri and Reisinger 2007). Data from long-term weather stations show that overall, the continental United States...

  11. Post Milestone B Funding Climate and Cost Growth in Major Defense Acquisition Programs

    DTIC Science & Technology

    2017-03-01

    by P-5126 supposes that most of the growth in unit cost shown by programs that pass MS B in a bust funding climate is “ baked into” the baselines...that most of the growth in unit cost shown by programs that pass MS B in a bust funding climate is “ baked into” the baselines established at MS B

  12. A growing importance of large fires in conterminous United States during 1984-2012

    Treesearch

    Jia Yang; Hanqin Tian; Bo Tao; Wei Ren; Shufen Pan; Yongqiang Liu; Yuhang Wang

    2015-01-01

    Fire frequency, extent, and size exhibit a strong linkage with climate conditions and play a vital role in the climate system. Previous studies have shown that the frequency of large fires in the western United States increased significantly since the mid-1980s due to climate warming and frequent droughts. However, less work has been conducted to examine burned area...

  13. Influence of winter season climate variability on snow-precipitation ratio in the western United States

    Treesearch

    Mohammad Safeeq; Shraddhanand Shukla; Ivan Arismendi; Gordon E. Grant; Sarah L. Lewis; Anne Nolin

    2015-01-01

    In the western United States, climate warming poses a unique threat to water and snow hydrology because much of the snowpack accumulates at temperatures near 0 °C. As the climate continues to warm, much of the region's precipitation is expected to switch from snow to rain, causing flashier hydrographs, earlier inflow to reservoirs, and reduced spring and summer...

  14. Public perceptions of climate change as a human health risk: surveys of the United States, Canada and Malta.

    PubMed

    Akerlof, Karen; Debono, Roberto; Berry, Peter; Leiserowitz, Anthony; Roser-Renouf, Connie; Clarke, Kaila-Lea; Rogaeva, Anastasia; Nisbet, Matthew C; Weathers, Melinda R; Maibach, Edward W

    2010-06-01

    We used data from nationally representative surveys conducted in the United States, Canada and Malta between 2008 and 2009 to answer three questions: Does the public believe that climate change poses human health risks, and if so, are they seen as current or future risks? Whose health does the public think will be harmed? In what specific ways does the public believe climate change will harm human health? When asked directly about the potential impacts of climate change on health and well-being, a majority of people in all three nations said that it poses significant risks; moreover, about one third of Americans, one half of Canadians, and two-thirds of Maltese said that people are already being harmed. About a third or more of people in the United States and Canada saw themselves (United States, 32%; Canada, 67%), their family (United States, 35%; Canada, 46%), and people in their community (United States, 39%; Canada, 76%) as being vulnerable to at least moderate harm from climate change. About one third of Maltese (31%) said they were most concerned about the risk to themselves and their families. Many Canadians said that the elderly (45%) and children (33%) are at heightened risk of harm, while Americans were more likely to see people in developing countries as being at risk than people in their own nation. When prompted, large numbers of Canadians and Maltese said that climate change can cause respiratory problems (78-91%), heat-related problems (75-84%), cancer (61-90%), and infectious diseases (49-62%). Canadians also named sunburn (79%) and injuries from extreme weather events (73%), and Maltese cited allergies (84%). However, climate change appears to lack salience as a health issue in all three countries: relatively few people answered open-ended questions in a manner that indicated clear top-of-mind associations between climate change and human health risks. We recommend mounting public health communication initiatives that increase the salience of the human health consequences associated with climate change.

  15. Public Perceptions of Climate Change as a Human Health Risk: Surveys of the United States, Canada and Malta

    PubMed Central

    Akerlof, Karen; DeBono, Roberto; Berry, Peter; Leiserowitz, Anthony; Roser-Renouf, Connie; Clarke, Kaila-Lea; Rogaeva, Anastasia; Nisbet, Matthew C.; Weathers, Melinda R.; Maibach, Edward W.

    2010-01-01

    We used data from nationally representative surveys conducted in the United States, Canada and Malta between 2008 and 2009 to answer three questions: Does the public believe that climate change poses human health risks, and if so, are they seen as current or future risks? Whose health does the public think will be harmed? In what specific ways does the public believe climate change will harm human health? When asked directly about the potential impacts of climate change on health and well-being, a majority of people in all three nations said that it poses significant risks; moreover, about one third of Americans, one half of Canadians, and two-thirds of Maltese said that people are already being harmed. About a third or more of people in the United States and Canada saw themselves (United States, 32%; Canada, 67%), their family (United States, 35%; Canada, 46%), and people in their community (United States, 39%; Canada, 76%) as being vulnerable to at least moderate harm from climate change. About one third of Maltese (31%) said they were most concerned about the risk to themselves and their families. Many Canadians said that the elderly (45%) and children (33%) are at heightened risk of harm, while Americans were more likely to see people in developing countries as being at risk than people in their own nation. When prompted, large numbers of Canadians and Maltese said that climate change can cause respiratory problems (78–91%), heat-related problems (75–84%), cancer (61–90%), and infectious diseases (49–62%). Canadians also named sunburn (79%) and injuries from extreme weather events (73%), and Maltese cited allergies (84%). However, climate change appears to lack salience as a health issue in all three countries: relatively few people answered open-ended questions in a manner that indicated clear top-of-mind associations between climate change and human health risks. We recommend mounting public health communication initiatives that increase the salience of the human health consequences associated with climate change. PMID:20644690

  16. The effect of executive walk rounds on nurse safety climate attitudes: A randomized trial of clinical units

    PubMed Central

    Thomas, Eric J; Sexton, J Bryan; Neilands, Torsten B; Frankel, Allan; Helmreich, Robert L

    2005-01-01

    Background Executive walk rounds (EWRs) are a widely used but unstudied activity designed to improve safety culture in hospitals. Therefore, we measured the impact of EWRs on one important part of safety culture – provider attitudes about the safety climate in the institution. Methods Randomized study of EWRs for 23 clinical units in a tertiary care teaching hospital. All providers except physicians participated. EWRs were conducted at each unit by one of six hospital executives once every four weeks for three visits. Providers were asked about their concerns regarding patient safety and what could be done to improve patient safety. Suggestions were tabulated and when possible, changes were made. Provider attitudes about safety climate measured by the Safety Climate Survey before and after EWRs. We report mean scores, percent positive scores (percentage of providers who responded four or higher on a five point scale (agree slightly or agree strongly), and the odds of EWR participants agreeing with individual survey items when compared to non-participants. Results Before EWRs the mean safety climate scores for nurses were similar in the control units and EWR units (78.97 and 76.78, P = 0.458) as were percent positive scores (64.6% positive and 61.1% positive). After EWRs the mean safety climate scores were not significantly different for all providers nor for nurses in the control units and EWR units (77.93 and 78.33, P = 0.854) and (56.5% positive and 62.7% positive). However, when analyzed by exposure to EWRs, nurses in the control group who did not participate in EWRs (n = 198) had lower safety climate scores than nurses in the intervention group who did participate in an EWR session (n = 85) (74.88 versus 81.01, P = 0.02; 52.5% positive versus 72.9% positive). Compared to nurses who did not participate, nurses in the experimental group who reported participating in EWRs also responded more favorably to a majority of items on the survey. Conclusion EWRs have a positive effect on the safety climate attitudes of nurses who participate in the walk rounds sessions. EWRs are a promising tool to improve safety climate and the broader construct of safety culture. PMID:15823204

  17. Detecting Evidence of Climate Change in the Forests of the Eastern United States

    USGS Publications Warehouse

    Jones, John W.; Osborne, Jesse D.

    2008-01-01

    Changes in land use or disturbances such as defoliation by insects, disease, or fire all affect the composition and amount of tree canopy in a forest. These changes are easy to detect. Noticing and understanding the complex ways that global or regional-scale climate change combines with these disturbances to affect forest growth patterns and succession is difficult. This is particularly true for regions where changes in climate are not the most extreme, such as the mid-latitude forests of the Eastern United States. If land and water resources are to be managed responsibly, it is important to know how well the impacts of climate change on these forests can be measured in order to provide the best information possible to respond to any future changes. The goal of this study is to test whether climate-induced changes in forests in the Eastern United States can be detected and characterized using satellite imagery.

  18. Relationship between ethical work climate and nurses' perception of organizational support, commitment, job satisfaction and turnover intent.

    PubMed

    Abou Hashish, Ebtsam Aly

    2017-03-01

    Healthcare organizations are now challenged to retain nurses' generation and understand why they are leaving their nursing career prematurely. Acquiring knowledge about the effect of ethical work climate and level of perceived organizational support can help organizational leaders to deal effectively with dysfunctional behaviors and make a difference in enhancing nurses' dedication, commitment, satisfaction, and loyalty to their organization. This study aims to determine the relationship between ethical work climate, and perceived organizational support and nurses' organizational commitment, job satisfaction, and turnover intention. A descriptive correlational research design was conducted in all inpatient care units at three major hospitals affiliated to different health sectors at Alexandria governorate. All nurses working in these previous hospitals were included in the study (N = 500). Ethical Climate Questionnaire, Survey of Perceived Organizational Support, Organizational Commitment Questionnaire, Index of Job Satisfaction, and Intention to Turnover scale were used to measure study variables. Ethical considerations: Approval was obtained from Ethics Committee at Faculty of Nursing, Alexandria University. Privacy and confidentiality of data were maintained and assured by obtaining subjects' informed consent to participate in the research before data collection. The result revealed positive significant correlations between nurses' perception of overall ethical work climate and each of perceived organizational support, commitment, as well as their job satisfaction. However, negative significant correlations were found between nurses' turnover intention and each of these variables. Also, approximately 33% of the explained variance of turnover intention is accounted by ethical work climate, organizational support, organizational commitment, and job satisfaction, and these variables independently contributed significantly in the prediction of turnover intention. Strategies to foster and enhance ethical and supportive work climates as well as job-related benefits are considered significant factors in increasing nurses' commitment and satisfaction and decreasing their turnover intention.

  19. A Multidisciplinary Research Framework on Green Schools: Infrastructure, Social Environment, Occupant Health, and Performance.

    PubMed

    Magzamen, Sheryl; Mayer, Adam P; Barr, Stephanie; Bohren, Lenora; Dunbar, Brian; Manning, Dale; Reynolds, Stephen J; Schaeffer, Joshua W; Suter, Jordan; Cross, Jennifer E

    2017-05-01

    Sustainable school buildings hold much promise to reducing operating costs, improve occupant well-being and, ultimately, teacher and student performance. However, there is a scarcity of evidence on the effects of sustainable school buildings on health and performance indicators. We sought to create a framework for a multidisciplinary research agenda that links school facilities, health, and educational outcomes. We conducted a nonsystematic review of peer review publications, government documents, organizational documents, and school climate measurement instruments. We found that studies on the impact of physical environmental factors (air, lighting, and thermal comfort) on health and occupant performance are largely independent of research on the social climate. The current literature precludes the formation of understanding the causal relation among school facilities, social climate, occupant health, and occupant performance. Given the average age of current school facilities in the United States, construction of new school facilities or retrofits of older facilities will be a major infrastructure investment for many municipalities over the next several decades. Multidisciplinary research that seeks to understand the impact of sustainable design on the health and performance of occupants will need to include both an environmental science and social science perspective to inform best practices and quantification of benefits that go beyond general measures of costs savings from energy efficiencies. © 2017, American School Health Association.

  20. A closer look at associations between hospital leadership walkrounds and patient safety climate and risk reduction: a cross-sectional study.

    PubMed

    Schwendimann, René; Milne, Judy; Frush, Karen; Ausserhofer, Dietmar; Frankel, Allan; Sexton, J Bryan

    2013-01-01

    Leadership walkrounds (WRs) are widely used in health care organizations to improve patient safety. This retrospective, cross-sectional study evaluated the association between WRs and caregiver assessments of patient safety climate and patient safety risk reduction across 49 hospitals in a nonprofit health care system. Linear regression analyses using units' participation in WRs were conducted. Survey results from 706 hospital units revealed that units with ≥ 60% of caregivers reporting exposure to at least 1 WR had a significantly higher safety climate, greater patient safety risk reduction, and a higher proportion of feedback on actions taken as a result of WRs compared with those units with <60% of caregivers reporting exposure to WRs. WR participation at the unit level reflects a frequency effect as a function of units with none/low, medium, and high leadership WR exposure.

  1. A Study of the Climate Change during 21st Century over Peninsular Malaysia Watersheds

    NASA Astrophysics Data System (ADS)

    Kavvas, M. L.; Ercan, A.; Ishida, K.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.

    2016-12-01

    15 coarse-resolution (150 - 300 km) climate projections for the 21st century by 3 different coupled land-atmosphere-ocean GCMs (ECHAM5 of the Max Planck Institute of Meteorology of Germany, CCSM3 of the National Center for Atmospheric Research (NCAR) of the United States, and MRI-CGCM2.3.2 of the Meteorological Research Institute of Japan) under 4 different greenhouse gas emission scenarios (B1, A1B, A2, A1FI) were dynamically downscaled at hourly intervals by a regional hydro-climate model of Peninsular Malaysia (RegHCM-PM) that consisted of Regional Atmospheric Model MM5 that was coupled with WEHY watershed hydrology model over Peninsular Malaysia (PM), at the scale of the hillslopes of 13 selected watersheds (Batu Pahat, Johor, Muda, Kelang, Kelantan, Linggi, Muar, Pahang, Perak, Selangor, Dungun, Kemaman and Kuantan) and 12 selected intervening coastal regions in order to assess the impact of climate change on the climate conditions at the selected watersheds and coastal regions of PM. From the downscaled climate projections it can be concluded that the mean annual precipitation gradually increases toward the end of the 21st century over each of the 13 watersheds and the 12 coastal regions. The basin-average mean annual temperature increases in the range of 2.50C - 2.950C over PM during the 2010 -2100 period when compared to the 1970-2000 historical period. The ensemble average basin-average annual potential evapotranspiration increases gradually throughout the 21st century over all watersheds.

  2. Linking Excessive Heat with Daily Heat-Related Mortality over the Coterminous United States

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.

    2014-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981- 2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a 'heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km) much finer than that of GCMs, to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices, and a new heat stress variable developed as part of this research that gives an integrated measure of heat stress (and relief) over the course of a day. Comparisons are made between projected (2040 and 2090) and past (1990) heat stress statistics. Outputs are aggregated to the county level, which is a popular scale of analysis for public health interests. County-level statistics are made available to public health researchers by the Centers for Disease Control and Prevention (CDC) via the Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This addition of heat stress measures to CDC WONDER allows decision and policy makers to assess the impact of alternative approaches to optimize the public health response to EHEs. Through CDC WONDER, users are able to spatially and temporally query public health and heat-related data sets and create county-level maps and statistical charts of such data across the coterminous U.S.

  3. δ15Nbulk oscillations linked to monsoon-induced denitrification during the past 1 m.y. in the Eastern Arabian Sea (IODP Exp. 355 Site U1456)

    NASA Astrophysics Data System (ADS)

    Khim, B. K.; Kim, J. E.; Lee, J.; Ikehara, M.; Clift, P. D.; Pandey, D.; Kulhanek, D. K.; Science Party, E.

    2016-12-01

    The Arabian Sea is characterized by a large pool of denitrifying water at intermediate water depths, which plays an important role in the marine nitrogen cycle and resultant response to climate change. A growing body of research emphasizes strong linkage between denitrification strength in the Arabian Sea and climate change at both orbital and millennial timescales. Drilling by International Ocean Discovery Program Expedition 355 was conducted at Site U1456 in the Laxmi Basin, Eastern Arabian Sea, 475 km from the Indian coastline and 820 km south of the modern Indus River Delta. Four lithologic units are defined onboard at the Site U1456. A total of 282 samples were collected from a composite section of Unit I consisting of Holes U1456A and U1456C. Unit I is composed mostly of nannofossil ooze and/or foraminifer-rich nannofossil ooze with interbedded clay, silt, and sand layers. Oxygen isotope measurements of planktonic foraminifera (G. ruber and G. sacculifer), together with shipboard biostratigraphic and paleomagnetic data, constrain the age of Unit I to younger than about 1.2 Ma. The δ15Nbulk values fluctuate from 4.5‰ to 9.6‰ with a mean of 7.3(±0.95)‰. Higher δ15Nbulk values coincide with interglacial intervals whereas lower δ15Nbulk values correspond to glacial intervals, representing clear glacial-interglacial cyclicity. These variations demonstrate the distinct climatic linkage with the degree of denitrification at orbital timescales, in association with changes in hydrography and productivity. The relation between denitrification and monsoon intensity, previously reported for the continental margins of the Arabian Sea, is also recorded in the deep water sediments.

  4. Elder Abuse in Nursing Homes: Do Special Care Units Make a Difference? A Secondary Data Analysis of the Swiss Nursing Homes Human Resources Project.

    PubMed

    Blumenfeld Arens, Olivia; Fierz, Katharina; Zúñiga, Franziska

    2017-01-01

    In special care units (SCUs) for residents with advanced dementia, both personnel and organizations are adapted to the needs of residents. However, whether these adaptations have a preventive effect on elder abuse has not yet been explored. To describe the prevalence of observed emotional abuse, neglect, and physical abuse in Swiss nursing homes, to compare SCUs with non-SCUs concerning the frequency of observed emotional abuse, neglect, and physical abuse, and to explore how resident-related characteristics, staff outcomes/characteristics, and organizational/environmental factors relate to observed elder abuse. This is a secondary data analysis of the Swiss Nursing Homes Human Resources Project (SHURP), a cross-sectional multicenter study. Data were collected from 2012 to 2013 and are based on observed rather than perpetrated elder abuse. We performed multilevel mixed-effects logistic regressions taking into account the hierarchical structure of the data with personnel nested within units and facilities. Of 4,599 care workers in 400 units and 156 facilities, 50.8% observed emotional abuse, 23.7% neglect, and 1.4% physical abuse. There was no significant difference between SCUs and non-SCUs regarding observed emotional abuse and neglect. Higher scores for 'workload' and sexual aggression towards care workers were associated with higher rates of emotional abuse and neglect. Verbal and physical resident aggression, however, were only associated with higher rates of emotional abuse. Negative associations were found between 'teamwork and resident safety climate' and both forms of abuse. Improving teamwork and the safety climate and reducing work stressors might be promising points of intervention to reduce elder abuse. More specific research about elder abuse in SCUs and the interaction between work climate and elder abuse is required. © 2016 S. Karger AG, Basel.

  5. Schools as Vehicles to Assess Experiences, Improve Outcomes, and Effect Social Change.

    PubMed

    McMahon, Susan Dvorak

    2018-06-01

    Schools are important settings that can be utilized to yield a positive impact on youth and the many issues our society faces. In this Presidential Address, I identify key issues and directions for the field, advocating that we need to expand our ecological focus, improve school climate, and collaborate with schools to effect change. To illustrate these key themes, findings from four projects with k-12 youth and educators in the United States are described, and these projects have the following foci: protective factors for youth exposed to violence, teacher-directed violence as part of an APA Task Force, school climate and neighborhood factors in relation to academic outcomes, and school transitions for students with disabilities. Challenges and future directions to build upon community psychology theory, research, practice, and policy are discussed. © Society for Community Research and Action 2018.

  6. New marine science organization formed

    NASA Astrophysics Data System (ADS)

    Wooster, Warren S.

    A new international organization, the North Pacific Marine Science Organization (PICES) will be established to promote and coordinate marine scientific research in the northern North Pacific Ocean and the Berlin Sea. This was decided in Ottawa on December 12, 1990, when a draft convention was approved by representatives of Canada, China, Japan, the United States, and the Soviet Union. PICES will focus on research on the ocean environment and its interactions with land and atmosphere, its role and response to global weather and climate change, its flora, fauna and ecosystems, its uses and resources, and impacts upon it from human activities. Such studies relate not only to the effects of fishing and environmental change on fish stocks but also to such issues as the impacts of oil spills and other forms of pollution and the eventual consequences of climate change for uses of the ocean and its resources.

  7. Utilizing Objective Drought Thresholds to Improve Drought Monitoring with the SPI

    NASA Astrophysics Data System (ADS)

    Leasor, Z. T.; Quiring, S. M.

    2017-12-01

    Drought is a prominent climatic hazard in the south-central United States. Droughts are frequently monitored using the severity categories determined by the U.S. Drought Monitor (USDM). This study uses the Standardized Precipitation Index (SPI) to conduct a drought frequency analysis across Texas, Oklahoma, and Kansas using PRISM precipitation data from 1900-2015. The SPI is shown to be spatiotemporally variant across the south-central United States. In particular, utilizing the default USDM severity thresholds may underestimate drought severity in arid regions. Objective drought thresholds were implemented by fitting a CDF to each location's SPI distribution. This approach results in a more homogeneous distribution of drought frequencies across each severity category. Results also indicate that it may be beneficial to develop objective drought thresholds for each season and SPI timescale. This research serves as a proof-of-concept and demonstrates how drought thresholds should be objectively developed so that they are appropriate for each climatic region.

  8. Dangerous climate change and the importance of adaptation for the Arctic's Inuit population

    NASA Astrophysics Data System (ADS)

    Ford, James D.

    2009-04-01

    The Arctic's climate is changing rapidly, to the extent that 'dangerous' climate change as defined by the United Nations Framework on Climate Change might already be occurring. These changes are having implications for the Arctic's Inuit population and are being exacerbated by the dependence of Inuit on biophysical resources for livelihoods and the low socio-economic-health status of many northern communities. Given the nature of current climate change and projections of a rapidly warming Arctic, climate policy assumes a particular importance for Inuit regions. This paper argues that efforts to stabilize and reduce greenhouse gas emissions are urgent if we are to avoid runaway climate change in the Arctic, but unlikely to prevent changes which will be dangerous for Inuit. In this context, a new policy discourse on climate change is required for Arctic regions—one that focuses on adaptation. The paper demonstrates that states with Inuit populations and the international community in general has obligations to assist Inuit to adapt to climate change through international human rights and climate change treaties. However, the adaptation deficit, in terms of what we know and what we need to know to facilitate successful adaptation, is particularly large in an Arctic context and limiting the ability to develop response options. Moreover, adaptation as an option of response to climate change is still marginal in policy negotiations and Inuit political actors have been slow to argue the need for adaptation assistance. A new focus on adaptation in both policy negotiations and scientific research is needed to enhance Inuit resilience and reduce vulnerability in a rapidly changing climate.

  9. Groundwater level response to low-frequency (interannual to multidecadal) climate variability: an overview across Portugal

    NASA Astrophysics Data System (ADS)

    Neves, M. L.

    2017-12-01

    The impact of climate variability on groundwater systems is central to the successful management and sustainability of water resources. In Portugal, strong changes in the seasonal distribution of precipitation, with a concentration of rainfall during the winter season and an increase in the frequency and intensity of droughts, in conjunction with warming, are expected to have a profound impact on water resources. Nonetheless, there is still limited knowledge on the impact of climate variability on aquifer systems across the country. The primary goal of this study is to provide a national-scale assessment of the relative contribution of climate to the temporal and spatial variance of groundwater recharge across the four main hydrogeological units in which the country is divided. Monthly hydrological data sets spanning a common 30 year period include groundwater levels from the Portuguese National System for Water Research Information and precipitation data from both meteorological stations and ERA-Interim global atmospheric reanalysis. The links between large-scale climatic patterns, precipitation, and groundwater levels are explored using singular spectral analysis, wavelet coherence and lag correlation methods. Hydrologic time-series sampling diverse geographic regions and aquifer types have common non-stationary oscillatory components, which can be associated with the leading modes of atmospheric circulation in the western north Atlantic, namely the North Atlantic (NAO) and the Eastern Atlantic (EA) oscillations. Maps of the spatial distribution of the relative contribution of each mode of variability to the total variance of the groundwater levels illustrate which atmospheric mode impacts the most a particular aquifer. The results display the links between groundwater recharge and climate teleconnections but also emphasize the distinctive types of modulation of the climate signals among the several hydrogeological units and aquifer systems under consideration. This work is supported by FCT- project UID/GEO/50019/2013 - IDL.

  10. Forecast Mekong: navigating changing waters

    USGS Publications Warehouse

    Powell, Janine

    2011-01-01

    The U.S. Geological Survey (USGS) is using research and data from the Mekong River Delta in Southeast Asia to compare restoration, conservation, and management efforts there with those done in other major river deltas, such as the Mississippi River Delta in the United States. The project provides a forum to engage regional partners in the Mekong Basin countries to share data and support local research efforts. Ultimately, Forecast Mekong will lead to more informed decisions about how to make the Mekong and Mississippi Deltas resilient in the face of climate change, economic stresses, and other impacts.

  11. The effect of nurses' ethical leadership and ethical climate perceptions on job satisfaction.

    PubMed

    Özden, Dilek; Arslan, Gülşah Gürol; Ertuğrul, Büşra; Karakaya, Salih

    2017-01-01

    The development of ethical leadership approaches plays an important role in achieving better patient care. Although studies that analyze the impact of ethical leadership on ethical climate and job satisfaction have gained importance in recent years, there is no study on ethical leadership and its relation to ethical climate and job satisfaction in our country. This descriptive and cross-sectional study aimed to determine the effect of nurses' ethical leadership and ethical climate perceptions on their job satisfaction. The study sample is composed of 285 nurses who agreed to participate in this research and who work at the internal, surgical, and intensive care units of a university hospital and a training and research hospital in İzmir, Turkey. Data were collected using Ethical Leadership Scale, Hospital Ethical Climate Scale, and Minnesota Satisfaction Scale. While the independent sample t-test, analysis of variance, Mann-Whitney U test, and Kruskal-Wallis test were used to analyze the data, the correlation analysis was used to determine the relationship between the scales. Ethical considerations: The study proposal was approved by the ethics committee of the Faculty of Medicine, Dokuz Eylül University. The nurses' mean scores were 59.05 ± 14.78 for the ethical leadership, 92.62 ± 17 for the ethical climate, and 62.15 ± 13.46 for the job satisfaction. The correlation between the nurses' ethical leadership and ethical climate mean scores was moderately positive and statistically significant (r = +0.625, p = 0.000), was weak but statistically significant between their ethical leadership and job satisfaction mean scores (r = +0.461, p = 0.000), and was moderately positive and statistically significant between their ethical climate and job satisfaction mean scores (r = +0.603, p = 0.000). The nurses' ethical leadership, ethical climate, and job satisfaction levels are moderate, and there is a positive relationship between them. The nurses' perceptions of ethical leadership are influenced by their educational status, workplace, and length of service.

  12. Urban Climate Change Resilience as a Teaching Tool for a STEM Summer Bridge Program

    NASA Astrophysics Data System (ADS)

    Rosenzweig, B.; Vorosmarty, C. J.; Socha, A.; Corsi, F.

    2015-12-01

    Community colleges have been identified as important gateways for the United States' scientific workforce development. However, students who begin their higher education at community colleges often face barriers to developing the skills needed for higher-level STEM careers, including basic training in mathematics, programming, analytical problem solving, and cross-disciplinary communication. As part of the Business Higher Education Forum's Undergraduate STEM Interventions in Industry (USI2) Consortium, we are developing a summer bridge program for students in STEM fields transferring from community college to senior (4-year) colleges at the City University of New York. Our scientific research on New York City climate change resilience will serve as the foundation for the bridge program curriculum. Students will be introduced to systems thinking and improve their analytical skills through guided problem-solving exercises using the New York City Climate Change Resilience Indicators Database currently being developed by the CUNY Environmental Crossroads Initiative. Students will also be supported in conducting an introductory, independent research project using the database. The interdisciplinary nature of climate change resilience assessment will allow students to explore topics related to their STEM field of interest (i.e. engineering, chemistry, and health science), while working collaboratively across disciplines with their peers. We hope that students that participate in the bridge program will continue with their research projects through their tenure at senior colleges, further enhancing their academic training, while actively contributing to the study of urban climate change resilience. The effectiveness of this approach will be independently evaluated by NORC at the University of Chicago, as well as through internal surveying and long-term tracking of participating student cohorts.

  13. The CSAICLAWPS project: a multi-scalar, multi-data source approach to providing climate services for both modelling of climate change impacts on crop yields and development of community-level adaptive capacity for sustainable food security

    NASA Astrophysics Data System (ADS)

    Forsythe, N. D.; Fowler, H. J.

    2017-12-01

    The "Climate-smart agriculture implementation through community-focused pursuit of land and water productivity in South Asia" (CSAICLAWPS) project is a research initiative funded by the (UK) Royal Society through its Challenge Grants programme which is part of the broader UK Global Challenges Research Fund (GCRF). CSAICLAWPS has three objectives: a) development of "added-value" - bias assessed, statistically down-scaled - climate projections for selected case study sites across South Asia; b) investigation of crop failure modes under both present (observed) and future (projected) conditions; and c) facilitation of developing local adaptive capacity and resilience through stakeholder engagement. At AGU we will be presenting both next steps and progress to date toward these three objectives: [A] We have carried out bias assessments of a substantial multi-model RCM ensemble (MME) from the CORDEX South Asia (CORDEXdomain for case studies in three countries - Pakistan, India and Sri Lanka - and (stochastically) produced synthetic time-series for these sites from local observations using a Python-based implementation of the principles underlying the Climate Research Unit Weather Generator (CRU-WG) in order to enable probabilistic simulation of current crop yields. [B] We have characterised present response of local crop yields to climate variability in key case study sites using AquaCrop simulations parameterised based on input (agronomic practices, soil conditions, etc) from smallholder farmers. [C] We have implemented community-based hydro-climatological monitoring in several case study "revenue villages" (panchayats) in the Nainital District of Uttarakhand. The purpose of this is not only to increase availability of meteorological data, but also has the aspiration of, over time, leading to enhanced quantitative awareness of present climate variability and potential future conditions (as projected by RCMs). Next steps in our work will include: 1) future crop yield simulations driven by "perturbation" of synthetic time-series using "change factors from the CORDEX-SA MME; 2) stakeholder dialogues critically evaluating potential strategies at the grassroots (implementation) level to mitigate impacts of climate variability and change on crop yields.

  14. The Integration of Climate Science and Collaborative Processes in Building Regional Climate Resiliency in Southeast Florida

    NASA Astrophysics Data System (ADS)

    Jurado, J.

    2016-12-01

    Southeast Florida is widely recognized as one of the most vulnerable regions in the United States to the impacts of climate change, especially sea level rise. Dense urban populations, low land elevations, flat topography, complex shorelines and a porous geology all contribute to the region's challenges. Regional and local governments have been working collaboratively to address shared climate mitigation and adaptation concerns as part of the four-county Southeast Florida Regional Climate Change Compact (Compact). This partnership has emphasized, in part, the use of climate data and the development of advanced technical tools and visualizations to help inform decision-making, improve communications, and guide investments. Prominent work products have included regional vulnerability maps and assessments, a unified sea level rise projection for southeast Florida, the development and application of hydrologic models in scenario planning, interdisciplinary resilient redesign planning workshops, and the development of regional climate indicators. Key to the Compact's efforts has been the engagement and expertise of academic and agency partners, including a formal collaboration between the Florida Climate Institute and the Compact to improve research and project collaborations focused on southeast Florida. This presentation will focus on the collaborative processes and work products that have served to accelerate resiliency planning and investments in southeast Florida, with specific examples of how local governments are using these work products to modernize agency processes, and build support among residents and business leaders.

  15. Modeling potential climate change impacts on the trees of the northeastern United States

    Treesearch

    Louis Iverson; Anantha Prasad; Stephen Matthews

    2008-01-01

    We evaluated 134 tree species from the eastern United States for potential response to several scenarios of climate change, and summarized those responses for nine northeastern United States. We modeled and mapped each species individually and show current and potential future distributions for two emission scenarios (A1fi [higher emission] and B1 [lower emission]) and...

  16. Lilac and honeysuckle phenology data 1956-2014.

    PubMed

    Rosemartin, Alyssa H; Denny, Ellen G; Weltzin, Jake F; Lee Marsh, R; Wilson, Bruce E; Mehdipoor, Hamed; Zurita-Milla, Raul; Schwartz, Mark D

    2015-01-01

    The dataset is comprised of leafing and flowering data collected across the continental United States from 1956 to 2014 for purple common lilac (Syringa vulgaris), a cloned lilac cultivar (S. x chinensis 'Red Rothomagensis') and two cloned honeysuckle cultivars (Lonicera tatarica 'Arnold Red' and L. korolkowii 'Zabeli'). Applications of this observational dataset range from detecting regional weather patterns to understanding the impacts of global climate change on the onset of spring at the national scale. While minor changes in methods have occurred over time, and some documentation is lacking, outlier analyses identified fewer than 3% of records as unusually early or late. Lilac and honeysuckle phenology data have proven robust in both model development and climatic research.

  17. The Role of Emotion in Global Warming Policy Support and Opposition

    PubMed Central

    Smith, Nicholas; Leiserowitz, Anthony

    2014-01-01

    Prior research has found that affect and affective imagery strongly influence public support for global warming. This article extends this literature by exploring the separate influence of discrete emotions. Utilizing a nationally representative survey in the United States, this study found that discrete emotions were stronger predictors of global warming policy support than cultural worldviews, negative affect, image associations, or sociodemographic variables. In particular, worry, interest, and hope were strongly associated with increased policy support. The results contribute to experiential theories of risk information processing and suggest that discrete emotions play a significant role in public support for climate change policy. Implications for climate change communication are also discussed. PMID:24219420

  18. The role of emotion in global warming policy support and opposition.

    PubMed

    Smith, Nicholas; Leiserowitz, Anthony

    2014-05-01

    Prior research has found that affect and affective imagery strongly influence public support for global warming. This article extends this literature by exploring the separate influence of discrete emotions. Utilizing a nationally representative survey in the United States, this study found that discrete emotions were stronger predictors of global warming policy support than cultural worldviews, negative affect, image associations, or sociodemographic variables. In particular, worry, interest, and hope were strongly associated with increased policy support. The results contribute to experiential theories of risk information processing and suggest that discrete emotions play a significant role in public support for climate change policy. Implications for climate change communication are also discussed. © 2013 Society for Risk Analysis.

  19. Climate controls the distribution of a widespread invasive species: Implications for future range expansion

    USGS Publications Warehouse

    McDowell, W.G.; Benson, A.J.; Byers, J.E.

    2014-01-01

    1. Two dominant drivers of species distributions are climate and habitat, both of which are changing rapidly. Understanding the relative importance of variables that can control distributions is critical, especially for invasive species that may spread rapidly and have strong effects on ecosystems. 2. Here, we examine the relative importance of climate and habitat variables in controlling the distribution of the widespread invasive freshwater clam Corbicula fluminea, and we model its future distribution under a suite of climate scenarios using logistic regression and maximum entropy modelling (MaxEnt). 3. Logistic regression identified climate variables as more important than habitat variables in controlling Corbicula distribution. MaxEnt modelling predicted Corbicula's range expansion westward and northward to occupy half of the contiguous United States. By 2080, Corbicula's potential range will expand 25–32%, with more than half of the continental United States being climatically suitable. 4. Our combination of multiple approaches has revealed the importance of climate over habitat in controlling Corbicula's distribution and validates the climate-only MaxEnt model, which can readily examine the consequences of future climate projections. 5. Given the strong influence of climate variables on Corbicula's distribution, as well as Corbicula's ability to disperse quickly and over long distances, Corbicula is poised to expand into New England and the northern Midwest of the United States. Thus, the direct effects of climate change will probably be compounded by the addition of Corbicula and its own influences on ecosystem function.

  20. Mid-21st- century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States

    Treesearch

    Karin L. Riley; Rachel A. Loehman

    2016-01-01

    Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st- century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains....

Top