Sample records for climate sensitive sectors

  1. Health-sector responses to address the impacts of climate change in Nepal.

    PubMed

    Dhimal, Meghnath; Dhimal, Mandira Lamichhane; Pote-Shrestha, Raja Ram; Groneberg, David A; Kuch, Ulrich

    2017-09-01

    Nepal is highly vulnerable to global climate change, despite its negligible emission of global greenhouse gases. The vulnerable climate-sensitive sectors identified in Nepal's National Adaptation Programme of Action (NAPA) to Climate Change 2010 include agriculture, forestry, water, energy, public health, urbanization and infrastructure, and climate-induced disasters. In addition, analyses carried out as part of the NAPA process have indicated that the impacts of climate change in Nepal are not gender neutral. Vector-borne diseases, diarrhoeal diseases including cholera, malnutrition, cardiorespiratory diseases, psychological stress, and health effects and injuries related to extreme weather are major climate-sensitive health risks in the country. In recent years, research has been done in Nepal in order to understand the changing epidemiology of diseases and generate evidence for decision-making. Based on this evidence, the experience of programme managers, and regular surveillance data, the Government of Nepal has mainstreamed issues related to climate change in development plans, policies and programmes. In particular, the Government of Nepal has addressed climate-sensitive health risks. In addition to the NAPA report, several policy documents have been launched, including the Climate Change Policy 2011; the Nepal Health Sector Programme - Implementation Plan II (NHSP-IP 2) 2010-2015; the National Health Policy 2014; the National Health Sector Strategy 2015-2020 and its implementation plan (2016-2021); and the Health National Adaptation Plan (H-NAP): climate change and health strategy and action plan (2016-2020). However, the translation of these policies and plans of action into tangible action on the ground is still in its infancy in Nepal. Despite this, the health sector's response to addressing the impact of climate change in Nepal may be taken as a good example for other low- and middle-income countries.

  2. Climate services to improve public health.

    PubMed

    Jancloes, Michel; Thomson, Madeleine; Costa, María Mánez; Hewitt, Chris; Corvalan, Carlos; Dinku, Tufa; Lowe, Rachel; Hayden, Mary

    2014-04-25

    A high level expert panel discussed how climate and health services could best collaborate to improve public health. This was on the agenda of the recent Third International Climate Services Conference, held in Montego Bay, Jamaica, 4-6 December 2013. Issues and challenges concerning a demand led approach to serve the health sector needs, were identified and analysed. Important recommendations emerged to ensure that innovative collaboration between climate and health services assist decision-making processes and the management of climate-sensitive health risk. Key recommendations included: a move from risk assessment towards risk management; the engagement of the public health community with both the climate sector and development sectors, whose decisions impact on health, particularly the most vulnerable; to increase operational research on the use of policy-relevant climate information to manage climate- sensitive health risks; and to develop in-country capacities to improve local knowledge (including collection of epidemiological, climate and socio-economic data), along with institutional interaction with policy makers.

  3. Climate change and nutrition: creating a climate for nutrition security.

    PubMed

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC), and policies and actions formulated by the UN Framework Convention on Climate Change (UNFCCC). Improved multi-sectoral coordination and political will is required to integrate nutrition-sensitive actions into climate-resilient sustainable development efforts in the UNFCCC work and in the post 2015 development agenda. Placing human rights at the center of strategies to mitigate and adapt to the impacts of climate change and international solidarity is essential to advance sustainable development and to create a climate for nutrition security.

  4. Sensitivity of health sector indicators' response to climate change in Ghana.

    PubMed

    Dovie, Delali B K; Dzodzomenyo, Mawuli; Ogunseitan, Oladele A

    2017-01-01

    There is accumulating evidence that the emerging burden of global climate change threatens the fidelity of routine indicators for disease detection and management of risks to public health. The threat partially reflects the conservative character of the health sector and the reluctance to adopt new indicators, despite the growing awareness that existing environmental health indicators were developed to respond to risks that may no longer be relevant, and are too simplistic to also act as indicators for newer global-scale risk factors. This study sought to understand the scope of existing health indicators, while aiming to discover new indicators for building resilience against three climate sensitive diseases (cerebro spinal meningitis, malaria and diarrhea). Therefore, new potential indicators derived from human and biophysical origins were developed to complement existing health indicators, thereby creating climate-sensitive battery of robust composite indices of resilience in health planning. Using Ghana's health sector as a case study systematic international literature review, national expert consultation, and focus group outcomes yielded insights into the relevance, sensitivity and impacts of 45 indicators in 11 categories in responding to climate change. In total, 65% of the indicators were sensitive to health impacts of climate change; 24% acted directly; 31% synergistically; and 45% indirectly, with indicator relevance strongly associated with type of health response. Epidemiological indicators (e.g. morbidity) and health demographic indicators (e.g. population structure) require adjustments with external indicators (e.g. biophysical, policy) to be resilient to climate change. Therefore, selective integration of social and ecological indicators with existing public health indicators improves the fidelity of the health sector to adopt more robust planning of interdependent systems to build resilience. The study highlights growing uncertainties in translating research into protective policies when new indicators associated with non-health sources are needed to complement existing health indicators that are expected to respond to climate change. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Assessing the vulnerability of economic sectors to climate variability to improve the usability of seasonal to decadal climate forecasts in Europe - a preliminary concept

    NASA Astrophysics Data System (ADS)

    Funk, Daniel

    2015-04-01

    Climate variability poses major challenges for decision-makers in climate-sensitive sectors. Seasonal to decadal (S2D) forecasts provide potential value for management decisions especially in the context of climate change where information from present or past climatology loses significance. However, usable and decision-relevant tailored climate forecasts are still sparse for Europe and successful examples of application require elaborate and individual producer-user interaction. The assessment of sector-specific vulnerabilities to critical climate conditions at specific temporal scale will be a great step forward to increase the usability and efficiency of climate forecasts. A concept for a sector-specific vulnerability assessment (VA) to climate variability is presented. The focus of this VA is on the provision of usable vulnerability information which can be directly incorporated in decision-making processes. This is done by developing sector-specific climate-impact-decision-pathways and the identification of their specific time frames using data from both bottom-up and top-down approaches. The structure of common VA's for climate change related issues is adopted which envisages the determination of exposure, sensitivity and coping capacity. However, the application of the common vulnerability components within the context of climate service application poses some fundamental considerations: Exposure - the effect of climate events on the system of concern may be modified and delayed due to interconnected systems (e.g. catchment). The critical time-frame of a climate event or event sequence is dependent on system-internal thresholds and initial conditions. But also on decision-making processes which require specific lead times of climate information to initiate respective coping measures. Sensitivity - in organizational systems climate may pose only one of many factors relevant for decision making. The scope of "sensitivity" in this concept comprises both the potential physical response of the system of concern as well as the criticality of climate-related decision-making processes. Coping capacity - in an operational context coping capacity can only reduce vulnerability if it can be applied purposeful. With respect to climate vulnerabilities this refers to the availability of suitable, usable and skillful climate information. The focus for this concept is on existing S2D climate service products and their match with user needs. The outputs of the VA are climate-impact-decision-pathways which characterize critical climate conditions, estimate the role of climate in decision-making processes and evaluate the availability and potential usability of S2D climate forecast products. A classification scheme is developed for each component of the impact-pathway to assess its specific significance. The systemic character of these schemes enables a broad application of this VA across sectors where quantitative data is limited. This concept is developed and will be tested within the context of the EU-FP7 project "European Provision Of Regional Impacts Assessments on Seasonal and Decadal Timescales" EUPORIAS.

  6. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strzepek, K.; Neumann, Jim; Smith, Joel

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  7. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE PAGES

    Strzepek, K.; Neumann, Jim; Smith, Joel; ...

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  8. Water-Constrained Electric Sector Capacity Expansion Modeling Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Cohen, S. M.; Macknick, J.; Miara, A.; Vorosmarty, C. J.; Averyt, K.; Meldrum, J.; Corsi, F.; Prousevitch, A.; Rangwala, I.

    2015-12-01

    Over 80% of U.S. electricity generation uses a thermoelectric process, which requires significant quantities of water for power plant cooling. This water requirement exposes the electric sector to vulnerabilities related to shifts in water availability driven by climate change as well as reductions in power plant efficiencies. Electricity demand is also sensitive to climate change, which in most of the United States leads to warming temperatures that increase total cooling-degree days. The resulting demand increase is typically greater for peak demand periods. This work examines the sensitivity of the development and operations of the U.S. electric sector to the impacts of climate change using an electric sector capacity expansion model that endogenously represents seasonal and local water resource availability as well as climate impacts on water availability, electricity demand, and electricity system performance. Capacity expansion portfolios and water resource implications from 2010 to 2050 are shown at high spatial resolution under a series of climate scenarios. Results demonstrate the importance of water availability for future electric sector capacity planning and operations, especially under more extreme hotter and drier climate scenarios. In addition, region-specific changes in electricity demand and water resources require region-specific responses that depend on local renewable resource availability and electricity market conditions. Climate change and the associated impacts on water availability and temperature can affect the types of power plants that are built, their location, and their impact on regional water resources.

  9. Climate services in the tourism sector - examples and market research

    NASA Astrophysics Data System (ADS)

    Damm, Andrea; Köberl, Judith; Prettenthaler, Franz; Kortschak, Dominik; Hofer, Marianne; Winkler, Claudia

    2017-04-01

    Tourism is one of the most weather-sensitive sectors. Hence, dealing with weather and climate risks is an important part of operational risk management. WEDDA® (WEather Driven Demand Analysis), developed by Joanneum Research, represents a comprehensive and flexible toolbox for managing weather and climate risks. Modelling the demand for products or services of a particular economic sector or company and its weather and climate sensitivity usually forms the starting and central point of WEDDA®. Coupling the calibrated demand models to either long-term climate scenarios or short-term weather forecasts enables the use of WEDDA® for the following areas of application: (i) implementing short-term forecasting systems for the prediction of the considered indicator; (ii) quantifying the weather risk of a particular economic sector or company using parameters from finance (e.g. Value-at-Risk); (iii) assessing the potential impacts of changing climatic conditions on a particular economic sector or company. WEDDA® for short-term forecasts on the demand for products or services is currently used by various tourism businesses, such as open-air swimming pools, ski areas, and restaurants. It supports tourism and recreation facilities to better cope with (increasing) weather variability by optimizing the disposability of staff, resources and merchandise according to expected demand. Since coping with increasing weather variability forms one of the challenges with respect to climate change, WEDDA® may become an important component within a whole pool of weather and climate services designed to support tourism and recreation facilities to adapt to climate change. Climate change impact assessments at European scale, as conducted in the EU-FP7 project IMPACT2C, provide basic information of climate change impacts on tourism demand not only for individual tourism businesses, but also for regional and national tourism planners and policy makers interested in benchmarks for the vulnerability of their tourism destination. In this project we analysed the impacts of +2 °C global warming on winter tourism demand in ski tourism related regions in Europe. In order to achieve the climate targets, tailored climate information services - for individual businesses as well as at the regional and national level - play an important role. The current market, however, is still in the early stages. In the ongoing H2020 projects EU-MACS (www.eu-macs.eu) and MARCO (www.marco-h2020.eu) (Nov 2016 - Oct 2018) Joanneum Research explores the climate services market in the tourism sector. The current use of climate services is reviewed in detail and in an interactive process key market barriers and enablers will be identified in close collaboration with stakeholders from the tourism industry. The analysis and co-development of new climate services concepts for the tourism sector aims to reduce the gaps between climate services supply and demand.

  10. Global Impacts and Regional Actions: Preparing for the 1997-98 El Niño.

    NASA Astrophysics Data System (ADS)

    Buizer, James L.; Foster, Josh; Lund, David

    2000-09-01

    It has been estimated that severe El Niño-related flooding and droughts in Africa, Latin America, North America, and Southeast Asia resulted in more than 22 000 lives lost and in excess of $36 billion in damages during 1997-98. As one of the most severe events this century, the 1997-98 El Niño was unique not only in terms of physical magnitude, but also in terms of human response. This response was made possible by recent advances in climate-observing and forecasting systems, creation and dissemination of forecast information by institutions such as the International Research Institute for Climate Prediction and NOAA's Climate Prediction Center, and individuals in climate-sensitive sectors willing to act on forecast information by incorporating it into their decision-making. The supporting link between the forecasts and their practical application was a product of efforts by several national and international organizations, and a primary focus of the United States National Oceanic and Atmospheric Administration Office of Global Programs (NOAA/OGP).NOAA/OGP over the last decade has supported pilot projects in Latin America, the Caribbean, the South Pacific, Southeast Asia, and Africa to improve transfer of forecast information to climate sensitive sectors, study linkages between climate and human health, and distribute climate information products in certain areas. Working with domestic and international partners, NOAA/OGP helped organize a total of 11 Climate Outlook Fora around the world during the 1997-98 El Niño. At each Outlook Forum, climatologists and meteorologists created regional, consensus-based, seasonal precipitation forecasts and representatives from climate-sensitive sectors discussed options for applying forecast information. Additional ongoing activities during 1997-98 included research programs focused on the social and economic impacts of climate change and the regional manifestations of global-scale climate variations and their effect on decision-making in climate-sensitive sectors in the United States.The overall intent of NOAA/OGP's activities was to make experimental forecast information broadly available to potential users, and to foster a learning process on how seasonal-to-interannual forecasts could be applied in sectors susceptible to climate variability. This process allowed users to explore the capabilities and limitations of climate forecasts currently available, and forecast producers to receive feedback on the utility of their products. Through activities in which NOAA/OGP and its partners were involved, it became clear that further application of forecast information will be aided by improved forecast accuracy and detail, creation of common validation techniques, continued training in forecast generation and application, alternate methods for presenting forecast information, and a systematic strategy for creation and dissemination of forecast products.The overall intent of NOAA/OGP's activities was to make experimental forecast information broadly available to potential users, and to foster a learning process on how seasonal-to-interannual forecasts could be applied in sectors susceptible to climate variability. This process allowed users to explore the capabilities and limitations of climate forecasts currently available, and forecast producers to receive feedback on the utility of their products. Through activities in which NOAA/OGP and its partners were involved, it became clear that further application of forecast information will be aided by improved forecast accuracy and detail, creation of common validation techniques, continued training in forecast generation and application, alternate methods for presenting forecast information, and a systematic strategy for creation and dissemination of forecast products.

  11. A multi-paradigm framework to assess the impacts of climate change on end-use energy demand.

    PubMed

    Nateghi, Roshanak; Mukherjee, Sayanti

    2017-01-01

    Projecting the long-term trends in energy demand is an increasingly complex endeavor due to the uncertain emerging changes in factors such as climate and policy. The existing energy-economy paradigms used to characterize the long-term trends in the energy sector do not adequately account for climate variability and change. In this paper, we propose a multi-paradigm framework for estimating the climate sensitivity of end-use energy demand that can easily be integrated with the existing energy-economy models. To illustrate the applicability of our proposed framework, we used the energy demand and climate data in the state of Indiana to train a Bayesian predictive model. We then leveraged the end-use demand trends as well as downscaled future climate scenarios to generate probabilistic estimates of the future end-use demand for space cooling, space heating and water heating, at the individual household and building level, in the residential and commercial sectors. Our results indicated that the residential load is much more sensitive to climate variability and change than the commercial load. Moreover, since the largest fraction of the residential energy demand in Indiana is attributed to heating, future warming scenarios could lead to reduced end-use demand due to lower space heating and water heating needs. In the commercial sector, the overall energy demand is expected to increase under the future warming scenarios. This is because the increased cooling load during hotter summer months will likely outpace the reduced heating load during the more temperate winter months.

  12. A multi-paradigm framework to assess the impacts of climate change on end-use energy demand

    PubMed Central

    Nateghi, Roshanak

    2017-01-01

    Projecting the long-term trends in energy demand is an increasingly complex endeavor due to the uncertain emerging changes in factors such as climate and policy. The existing energy-economy paradigms used to characterize the long-term trends in the energy sector do not adequately account for climate variability and change. In this paper, we propose a multi-paradigm framework for estimating the climate sensitivity of end-use energy demand that can easily be integrated with the existing energy-economy models. To illustrate the applicability of our proposed framework, we used the energy demand and climate data in the state of Indiana to train a Bayesian predictive model. We then leveraged the end-use demand trends as well as downscaled future climate scenarios to generate probabilistic estimates of the future end-use demand for space cooling, space heating and water heating, at the individual household and building level, in the residential and commercial sectors. Our results indicated that the residential load is much more sensitive to climate variability and change than the commercial load. Moreover, since the largest fraction of the residential energy demand in Indiana is attributed to heating, future warming scenarios could lead to reduced end-use demand due to lower space heating and water heating needs. In the commercial sector, the overall energy demand is expected to increase under the future warming scenarios. This is because the increased cooling load during hotter summer months will likely outpace the reduced heating load during the more temperate winter months. PMID:29155862

  13. Detection and Attribution of Anthropogenic Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Neofotis, Peter

    2013-01-01

    Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.

  14. Enhancing the usability of seasonal to decadal (S2D) climate information - an evidence-based framework for the identification and assessment of sector-specific vulnerabilities

    NASA Astrophysics Data System (ADS)

    Funk, Daniel

    2016-04-01

    The successful provision of from seasonal to decadal (S2D) climate service products to sector-specific users is dependent on specific problem characteristics and individual user needs and decision-making processes. Climate information requires an impact on decision making to have any value (Rodwell and Doblas-Reyes, 2006). For that reason the knowledge of sector-specific vulnerabilities to S2D climate variability is very valuable information for both, climate service producers and users. In this context a concept for a vulnerability assessment framework was developed to (i) identify climate events (and especially their temporal scales) critical for sector-specific problems to assess the basic requirements for an appropriate climate-service product development; and to (ii) assess the potential impact or value of related climate information for decision-makers. The concept was developed within the EUPORIAS project (European Provision of Regional Impacts Assessments on Seasonal and Decadal Timescales) based on ten project-related case-studies from different sectors all over Europe. In the prevalent stage the framework may be useful as preliminary assessment or 'quick-scan' of the vulnerability of specific systems to climate variability in the context of S2D climate service provision. The assessment strategy of the framework is user-focused, using predominantly a bottom-up approach (vulnerability as state) but also a top-down approach (vulnerability as outcome) generally based on qualitative data (surveys, interviews, etc.) and literature research for system understanding. The starting point of analysis is a climate-sensitive 'critical situation' of the considered system which requires a decision and is defined by the user. From this basis the related 'critical climate conditions' are assessed and 'climate information needs' are derived. This mainly refers to the critical period of time of the climate event or sequence of events. The relevant period of time of problem-specific critical climate conditions may be assessed by the resilience of the system of concern, the response time of an interconnected system (i.e. top-down approach using a bottom-up methodology) or alternatively, by the critical time-frame of decision-making processes (bottom-up approach). This approach counters the challenges for a vulnerability assessment of economic sectors to S2D climate events which originate from the inherent role of climate for economic sectors: climate may affect economic sectors as hazard, resource, production- or regulation factor. This implies, that climate dependencies are often indirect and nonlinear. Consequently, climate events which are critical for affected systems do not necessarily correlate with common climatological extremes. One important output of the framework is a classification system of 'climate-impact types' which classifies sector-specific problems in a systemic way. This system proves to be promising because (i) it reflects and thus differentiates the cause for the climate relevance of a specific problem (compositions of buffer factors); (ii) it integrates decision-making processes which proved to be a significant factor; (iii) it indicates a potential usability of S2D climate service products and thus integrates coping options, and (vi) it is a systemic approach which goes beyond the established 'snap-shot' of vulnerability assessments.

  15. Overview of the Special Issue: A Multi-Model Framework to ...

    EPA Pesticide Factsheets

    The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the impacts, economic damages, and risks from climate change in the United States. The primary goal of this framework to estimate how climate change impacts and damages in the United States are avoided or reduced due to global greenhouse gas (GHG) emissions mitigation scenarios. Scenarios are designed to explore key uncertainties around the measurement of these changes. The modeling exercise presented in this Special Issue includes two integrated assessment models and 15 sectoral models encompassing six broad impacts sectors - water resources, electric power, infrastructure, human health, ecosystems, and forests. Three consistent emissions scenarios are used to analyze the benefits of global GHG mitigation targets: a reference and two policy scenarios, with total radiative forcing in 2100 of 10.0W/m2, 4.5W/m2, and 3.7W/m2. A range of climate sensitivities, climate models, natural variability measures, and structural uncertainties of sectoral models are examined to explore the implications of key uncertainties. This overview paper describes the motivations, goals, design, and academic contribution of the CIRA modeling exercise and briefly summarizes the subsequent papers in this Special Issue. A summary of results across impact sectors is provided showing that: GHG mitigation provides benefits to the United States that increase over

  16. Incorporating Fundamentals of Climate Monitoring into Climate Indicators at the National Climatic Data Center

    NASA Astrophysics Data System (ADS)

    Arndt, D. S.

    2014-12-01

    In recent years, much attention has been dedicated to the development, testing and implementation of climate indicators. Several Federal agencies and academic groups have commissioned suites of indicators drawing upon and aggregating information available across the spectrum of climate data stewards and providers. As a long-time participant in the applied climatology discipline, NOAA's National Climatic Data Center (NCDC) has generated climate indicators for several decades. Traditionally, these indicators were developed for sectors with long-standing relationships with, and needs of, the applied climatology field. These have recently been adopted and adapted to meet the needs of sectors who have newfound sensitivities to climate and needs for climate data. Information and indices from NOAA's National Climatic Data Center have been prominent components of these indicator suites, and in some cases have been drafted in toto by these aggregators, often with improvements to the communicability and aesthetics of the indicators themselves. Across this history of supporting needs for indicators, NCDC climatologists developed a handful of practical approaches and philosophies that inform a successful climate monitoring product. This manuscript and presentation will demonstrate the utility this set of practical applications that translate raw data into useful information.

  17. Evaluating the effects of climate change on US agricultural systems: sensitivity to regional impact and trade expansion scenarios

    NASA Astrophysics Data System (ADS)

    Baker, Justin S.; Havlík, Petr; Beach, Robert; Leclère, David; Schmid, Erwin; Valin, Hugo; Cole, Jefferson; Creason, Jared; Ohrel, Sara; McFarland, James

    2018-06-01

    Agriculture is one of the sectors that is expected to be most significantly impacted by climate change. There has been considerable interest in assessing these impacts and many recent studies investigating agricultural impacts for individual countries and regions using an array of models. However, the great majority of existing studies explore impacts on a country or region of interest without explicitly accounting for impacts on the rest of the world. This approach can bias the results of impact assessments for agriculture given the importance of global trade in this sector. Due to potential impacts on relative competitiveness, international trade, global supply, and prices, the net impacts of climate change on the agricultural sector in each region depend not only on productivity impacts within that region, but on how climate change impacts agricultural productivity throughout the world. In this study, we apply a global model of agriculture and forestry to evaluate climate change impacts on US agriculture with and without accounting for climate change impacts in the rest of the world. In addition, we examine scenarios where trade is expanded to explore the implications for regional allocation of production, trade volumes, and prices. To our knowledge, this is one of the only attempts to explicitly quantify the relative importance of accounting for global climate change when conducting regional assessments of climate change impacts. The results of our analyses reveal substantial differences in estimated impacts on the US agricultural sector when accounting for global impacts vs. US-only impacts, particularly for commodities where the United States has a smaller share of global production. In addition, we find that freer trade can play an important role in helping to buffer regional productivity shocks.

  18. Two Case Studies to Quantify Resilience across Food-Energy-Water Systems: the Columbia River Treaty and Adaptation in Yakima River Basin Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Malek, K.; Adam, J. C.; Richey, A.; Rushi, B. R.; Stockle, C.; Yoder, J.; Barik, M.; Lee, S. Y.; Rajagopalan, K.; Brady, M.; Barber, M. E.; Boll, J.; Padowski, J.

    2017-12-01

    The U.S. Pacific Northwest (PNW) plays a significant role in meeting agricultural and hydroelectric demands nationwide. Climatic and anthropogenic stressors, however, potentially threaten the productivity, resilience, and environmental health of the region. Our objective is to understand how resilience of each Food-Energy-Water (FEW) sector, and the combined Nexus, respond to exogenous perturbations and the extent to which technological and institutional advances can buffer these perturbations. In the process of taking information from complex integrated models and assessing resilience across FEW sectors, we start with two case studies: 1) Columbia River Treaty (CRT) with Canada that determines how multiple reservoirs in the Columbia River basin (CRB) are operated, and 2) climate change adaptation actions in the Yakima River basin (YRB). We discuss these case studies in terms of the similarities and contrasts related to FEW sectors and management complexities. Both the CRB and YBP systems are highly sensitive to climate change (they are both snowmelt-dominant) and already experience water conflict. The CRT is currently undergoing renegotiation; a new CRT will need to consider a much more comprehensive approach, e.g., treating environmental flows explicitly. The YRB also already experiences significant water conflict and thus the comprehensive Yakima Basin Integrated Plan (YBIP) is being pursued. We apply a new modeling framework that mechanistically captures the interactions between the FEW sectors to quantify the impacts of CRT and YBIP planning (as well as adaptation decisions taken by individuals, e.g., irrigators) on resilience in each sector. Proposed modification to the CRT may relieve impacts to multiple sectors. However, in the YRB, irrigators' actions to adapt to climate change (through investing in more efficient irrigation technology) could reduce downstream water availability for other users. Developing a process to quantify resilience to perturbations, such as climate change, will enable innovative solutions that co-balance benefits, and ultimately increase resilience, across all FEW sectors.

  19. A National Energy-Water System Assessment Framework (NEWS): Synopsis of Stage 1 Research Strategy and Results

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C. J.; Miara, A.; Macknick, J.; Newmark, R. L.; Cohen, S.; Sun, Y.; Tidwell, V. C.; Corsi, F.; Melillo, J. M.; Fekete, B. M.; Proussevitch, A. A.; Glidden, S.; Suh, S.

    2017-12-01

    The focus of this talk is on climate adaptation and the reliability of power supply infrastructure when viewed through the lens of strategic water issues. Power supply is critically dependent upon water resources, particularly to cool thermoelectric plants, making the sector particularly sensitive to any shifts in the geography or seasonality of water supply. We report on results from an NSF-Funded Water Sustainability and Climate effort aimed at uncovering key energy and economic system vulnerabilities. We have developed the National Energy-Water System assessment framework (NEWS) to systematically evaluate: a) the performance of the nation's electricity sector under multiple climate scenarios; b) the feasibility of alternative pathways to improve climate adaptation; and, c) the impacts of energy technology and investment tradeoffs on the economic productivity, water availability and aquatic ecosystem condition. Our project combines core engineering and geophysical models (ReEDS [Regional Energy Deployment System], TP2M [Thermoelectric Power and Thermal Pollution], and WBM [Water Balance]) through unique digital "handshake" protocols that operate across different institutions and modeling platforms. Combined system outputs are fed into a regional-to-national scale economic input/output model to evaluate economic consequences of climate constraints, technology choices, and environmental regulation. The impact assessments in NEWS are carried out through a series of climate/energy policy scenario studies to 2050. We find that despite significant climate-water impacts on individual plants, the current US power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. However, the magnitude and implications of climate-water impacts vary depending on the configuration of the future power sector. To evaluate future power supply performance, we model alternative electricity sector pathways in combination with varying climate-water conditions. Further, water-linked disruptions in electricity supply yield substantial impacts on regional economies yet system-level shocks can be attenuated through different technology mixes and infrastructure.

  20. A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    NASA Astrophysics Data System (ADS)

    Sarofim, M. C.; Martinich, J.; Waldhoff, S.; DeAngelo, B. J.; McFarland, J.; Jantarasami, L.; Shouse, K.; Crimmins, A.; Li, J.

    2014-12-01

    The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the physical impacts, economic damages, and risks from climate change. The primary goal of this framework is to estimate the degree to which climate change impacts and damages in the United States are avoided or reduced in the 21st century under multiple greenhouse gas (GHG) emissions mitigation scenarios. The first phase of the CIRA project is a modeling exercise that included two integrated assessment models and 15 sectoral models encompassing five broad impacts sectors: water resources, electric power, infrastructure, human health, and ecosystems. Three consistent socioeconomic and climate scenarios are used to analyze the benefits of global GHG mitigation targets: a reference scenario and two policy scenarios with total radiative forcing targets in 2100 of 4.5 W/m2 and 3.7 W/m2. In this exercise, the implications of key uncertainties are explored, including climate sensitivity, climate model, natural variability, and model structures and parameters. This presentation describes the motivations and goals of the CIRA project; the design and academic contribution of the first CIRA modeling exercise; and briefly summarizes several papers published in a special issue of Climatic Change. The results across impact sectors show that GHG mitigation provides benefits to the United States that increase over time, the effects of climate change can be strongly influenced by near-term policy choices, adaptation can reduce net damages, and impacts exhibit spatial and temporal patterns that may inform mitigation and adaptation policy discussions.

  1. Relating health and climate impacts to grid-scale emissions using adjoint sensitivity modeling for the Climate and Clean Air Coalition

    NASA Astrophysics Data System (ADS)

    Henze, D. K.; Lacey, F.; Seltzer, M.; Vallack, H.; Kuylenstierna, J.; Bowman, K. W.; Anenberg, S.; Sasser, E.; Lee, C. J.; Martin, R.

    2013-12-01

    The Climate and Clean Air Coalition (CCAC) was initiated in 2012 to develop, understand and promote measures to reduce short lived climate forcers such as aerosol, ozone and methane. The Coalition now includes over 30 nations, and as a service to these nations is committed to providing a decision support toolkit that allows member nations to explore the benefits of a range of emissions mitigation measures in terms of the combined impacts on air quality and climate and so help in the development of their National Action Plans. Here we will present recent modeling work to support the development of the CCAC National Action Plans toolkit. Adjoint sensitivity analysis is presented as a means of efficiently relating air quality, climate and crop impacts back to changes in emissions from each species, sector and location at the grid-scale resolution of typical global air quality model applications. The GEOS-Chem adjoint model is used to estimate the damages per ton of emissions of PM2.5 related mortality, the impacts of ozone precursors on crops and ozone-related health effects, and the combined impacts of these species on regional surface temperature changes. We show how the benefits-per-emission vary spatially as a function of the surrounding environment, and how this impacts the overall benefit of sector-specific control strategies. We present initial findings for Bangladesh, as well as Mexico, Ghana and Colombia, some of the first countries to join the CCAC, and discuss general issues related to adjoint-based metrics for quantifying air quality and climate co-benefits.

  2. The value of seasonal forecasting and crop mix adaptation to climate variability for agriculture under climate change

    NASA Astrophysics Data System (ADS)

    Choi, H. S.; Schneider, U.; Schmid, E.; Held, H.

    2012-04-01

    Changes to climate variability and frequency of extreme weather events are expected to impose damages to the agricultural sector. Seasonal forecasting and long range prediction skills have received attention as an option to adapt to climate change because seasonal climate and yield predictions could improve farmers' management decisions. The value of seasonal forecasting skill is assessed with a crop mix adaptation option in Spain where drought conditions are prevalent. Yield impacts of climate are simulated for six crops (wheat, barely, cotton, potato, corn and rice) with the EPIC (Environmental Policy Integrated Climate) model. Daily weather data over the period 1961 to 1990 are used and are generated by the regional climate model REMO as reference period for climate projection. Climate information and its consequent yield variability information are given to the stochastic agricultural sector model to calculate the value of climate information in the agricultural market. Expected consumers' market surplus and producers' revenue is compared with and without employing climate forecast information. We find that seasonal forecasting benefits not only consumers but also producers if the latter adopt a strategic crop mix. This mix differs from historical crop mixes by having higher shares of crops which fare relatively well under climate change. The corresponding value of information is highly sensitive to farmers' crop mix choices.

  3. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies

    NASA Technical Reports Server (NTRS)

    Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.; hide

    2012-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with rising temperatures. Wheat model simulations with midcentury climate scenarios project a slight decline in absolute yields that is more sensitive to selection of crop model than to global climate model, emissions scenario, or climate scenario downscaling method. A comparison of regional and national-scale economic simulations finds a large sensitivity of projected yield changes to the simulations' resolved scales. Finally, a global economic model intercomparison example demonstrates that improvements in the understanding of agriculture futures arise from integration of the range of uncertainty in crop, climate, and economic modeling results in multi-model assessments.

  4. Air pollution radiative forcing from specific emissions sectors at 2030

    NASA Astrophysics Data System (ADS)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2008-01-01

    Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.

  5. New perspectives for European climate services: HORIZON2020

    NASA Astrophysics Data System (ADS)

    Bruning, Claus; Tilche, Andrea

    2014-05-01

    The developing of new end-to-end climate services was one of the core priorities of 7th Framework for Research and Technological Development of the European Commission and will become one of the key strategic priorities of Societal Challenge 5 of HORIZON2020 (the new EU Framework Programme for Research and Innovation 2014-2020). Results should increase the competitiveness of European businesses, and the ability of regional and national authorities to make effective decisions in climate-sensitive sectors. In parallel, the production of new tailored climate information should strengthen the resilience of the European society to climate change. In this perspective the strategy to support and foster the underpinning science for climate services in HORIZON2020 will be presented.

  6. Sensitivity of climate mitigation strategies to natural disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Page, Yannick LB; Hurtt, George; Thomson, Allison M.

    2013-02-19

    The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon12 efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because ofmore » potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and on the global economy. Understanding the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies« less

  7. Climate change adaptation & mitigation strategies for Water-Energy-Land Nexus management in Mediterranean region: Case study of Catalunya (Spain).

    NASA Astrophysics Data System (ADS)

    Kumar, Vikas; Schuhmacher, Marta

    2016-04-01

    Water-Energy-Land (WEL) Nexus management is one of those complex decision problems where holistic approach to supply-demand management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. On the other hand, climate adaptation and mitigation need to be integrated, and resource sensitive regions like Mediterranean provide ample opportunities towards that end. While the water sector plays a key role in climate adaptation, mitigation focuses on the energy and agriculture sector. Recent studies on the so-called WEL nexus confirm the potential synergies to be derived from mainstreaming climate adaptation in the water sector, while simultaneously addressing opportunities for co-management with energy (and also land use). Objective of this paper is to develop scenarios for the future imbalances in water & energy supply and demand for a water stressed Mediterranean area of Northern Spain (Catalonia) and to test the scenario based climate adaptation & mitigation strategy for WEL management policies. Resource sensitive area of Catalonia presents an interesting nexus problem to study highly stressed water demand scenario (representing all major demand sectors), very heterogeneous land use including intensive agriculture to diversified urban and industrial uses, and mixed energy supply including hydro, wind, gas turbine to nuclear energy. Different energy sectors have different water and land requirements. Inter-river basin water transfer is another factor which is considered for this area. The water-energy link is multifaceted. Energy production can affect water quality, while energy is used in water treatment and to reduce pollution. Similarly, hydropower - producing energy from water - and desalination - producing freshwater using energy - both play important role in economic growth by supplying large and secure amounts of 'green' energy or water where it is a scarce resource. Linkage of water & Energy to the land has been established through irrigated agriculture which has seen an increasing trend in the case study area. A detail scenario planning for regional water-energy demand and supply in conjunction with different climate change and economic growth scenarios are considered. For each future scenario of climate change, the goal is to obtain a ranking of a set of possible actions with regards to different types of indicators (costs, environmental etc.). The analytical method used is based on outranking models for decision aid with hierarchical structures of criteria and ranking alternatives using partial preorders based on pairwise preference relations. The proposed method has several advantages such as the management of heterogeneous scales of measurement without requiring any artificial transformation and the management of uncertainty by means of comparisons at a qualitative level in terms of the decision maker preferences. Result shows that such an integrated ("nexus") approach is likely to build resilience and reduces vulnerability to the combination of pressures acting upon the Mediterranean region's water systems, including climate-related shocks.

  8. Impact of Climate Change on Energy Demand in the Midwestern USA

    NASA Astrophysics Data System (ADS)

    Yan, M. B.; Zhang, F.; Franklin, M.; Kotamarthi, V. R.

    2008-12-01

    The impact of climate change on energy demand and use is a significant issue for developing future GHG emission scenarios and developing adaptation and mitigation strategies. A number of studies have evaluated the increase in GHG emissions as a result of changes in energy production from fossil fuels, but the consequences of climate change on energy consumption have not been the focus of many studies. Here we focus on the impacts of climate change on energy use at a regional scale using the Midwestern USA as a test. The paper presents results of analyzing energy use in response to ambient temperature changes in a 17-year period from 1989 to 2006 and projection of energy use under future climate scenarios (2010-2061). This study consisted of a two-step procedure. In the first step, sensitivity of historic energy demand, specifically electricity and natural gas in residential and commercial sectors (42% of end-use energy), with respect to many climatic and non-climatic variables was examined. State-specific regression models were developed to quantify the relationship between energy use and climatic variables using degree days. We found that model parameters and base temperatures for estimating heating and cooling days varied by state and energy sector, mainly depending on climate conditions, infrastructure, economic factors, and seasonal change in energy use. In the second step, we applied these models to predict future energy demand using output data generated by the Community Climate System Model (CCSM) for the SRES A1B scenario used in the IPCC AR-4. The annual demands of electricity and natural gas were predicted for each state from 2010 to 2061. The model results indicate that the average annual electricity demand will increase 3%-5% for the southern states and 1%-3% for the northern states in the region by 2061 and that the demand for natural gas is expected to be reduced in all states. A seasonal analysis of energy distribution in response to climate variables identifies a significant peak in demand in July-August (11%-16% in southern states and 6%-10% in the northern states). These findings suggest that the energy sector is vulnerable to climate change even in the northern Midwest region of the US. Furthermore, we demonstrate that a state-level assessment can help to better identify adaptation strategies for future regional energy sector changes.

  9. Communicating uncertainty in seasonal and interannual climate forecasts in Europe.

    PubMed

    Taylor, Andrea L; Dessai, Suraje; de Bruin, Wändi Bruine

    2015-11-28

    Across Europe, organizations in different sectors are sensitive to climate variability and change, at a range of temporal scales from the seasonal to the interannual to the multi-decadal. Climate forecast providers face the challenge of communicating the uncertainty inherent in these forecasts to these decision-makers in a way that is transparent, understandable and does not lead to a false sense of certainty. This article reports the findings of a user-needs survey, conducted with 50 representatives of organizations in Europe from a variety of sectors (e.g. water management, forestry, energy, tourism, health) interested in seasonal and interannual climate forecasts. We find that while many participating organizations perform their own 'in house' risk analysis most require some form of processing and interpretation by forecast providers. However, we also find that while users tend to perceive seasonal and interannual forecasts to be useful, they often find them difficult to understand, highlighting the need for communication formats suitable for both expert and non-expert users. In addition, our results show that people tend to prefer familiar formats for receiving information about uncertainty. The implications of these findings for both the providers and users of climate information are discussed. © 2015 The Authors.

  10. Communicating uncertainty in seasonal and interannual climate forecasts in Europe

    PubMed Central

    Taylor, Andrea L.; Dessai, Suraje; de Bruin, Wändi Bruine

    2015-01-01

    Across Europe, organizations in different sectors are sensitive to climate variability and change, at a range of temporal scales from the seasonal to the interannual to the multi-decadal. Climate forecast providers face the challenge of communicating the uncertainty inherent in these forecasts to these decision-makers in a way that is transparent, understandable and does not lead to a false sense of certainty. This article reports the findings of a user-needs survey, conducted with 50 representatives of organizations in Europe from a variety of sectors (e.g. water management, forestry, energy, tourism, health) interested in seasonal and interannual climate forecasts. We find that while many participating organizations perform their own ‘in house’ risk analysis most require some form of processing and interpretation by forecast providers. However, we also find that while users tend to perceive seasonal and interannual forecasts to be useful, they often find them difficult to understand, highlighting the need for communication formats suitable for both expert and non-expert users. In addition, our results show that people tend to prefer familiar formats for receiving information about uncertainty. The implications of these findings for both the providers and users of climate information are discussed. PMID:26460115

  11. Drought disaster vulnerability mapping of agricultural sector in Bringin District, Semarang Regency

    NASA Astrophysics Data System (ADS)

    Lestari, D. R.; Pigawati, B.

    2018-02-01

    Agriculture sector is a sector that is directly affected by drought. The phenomenon of drought disaster on agriculture sector has occurred in Semarang regency. One of districts in Semarang which is affected by drought is Bringin district. Bringin district is a productive agricultural area. However, the district experienced the most severe drought in 2015. The question research of this study is, “How is the spatial distribution of drought vulnerability on agriculture sector in Bringin district, Semarang regency?” The purpose of this study is to determine the spatial distribution of drought vulnerability on agriculture sector to village units in Bringin district. This study investigated drought vulnerability based on Intergovernmental Panel on Climate Change (IPCC) by analyzing exposure, sensitivity, and adaptive capacity through mapping process. This study used quantitative approach. There were formulation analysis, scoring analysis, and overlay analysis. Drought vulnerability on agriculture sector in Bringin district was divided into three categories: low, medium, and high.

  12. Service Center for Climate Change Adaptation in Agriculture - an initiative of the University of West Hungary

    NASA Astrophysics Data System (ADS)

    Matyas, Cs.; Berki, I.; Drüszler, A.; Eredics, A.; Galos, B.; Moricz, N.; Rasztovits, E.

    2012-04-01

    In whole Central Europe agricultural production is highly vulnerable and sensitive to impacts of projected climatic changes. The low-elevation regions of the Carpathian Basin (most of the territory of Hungary), where precipitation is the minimum factor of production, are especially exposed to climatic extremes, especially to droughts. Rainfed agriculture, animal husbandry on nature-close pastures and nature-close forestry are the most sensitive sectors due to limited possibilities to counterbalance moisture supply constraints. These sectors have to be best prepared to frequency increase of extreme events, disasters and economic losses. So far, there is a lack of information about the middle and long term consequences on regional and local level. Therefore the importance of complex, long term management planning and of land use optimation is increasing. The aim of the initiative is to set up a fine-scale, GIS-based, complex, integrated system for the definition of the most important regional and local challenges and tasks of climate change adaptation and mitigation in agriculture, forestry, animal husbandry and also nature protection. The Service Center for Climate Change Adaptation in Agriculture is planned to provide the following services: § Complex, GIS-supported database, which integrates the basic information about present and projected climates, extremes, hydrology and soil conditions; § Evaluation of existing satellite-based and earth-based monitoring systems; § GIS-supported information about the future trends of climate change impacts on the agroecological potential and sensitivity status on regional and local level (e.g. land cover/use and expectable changes, production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.) in fine-scale horizontal resolution, based first of all on natural produce, including also social and economic consequences; § Complex decision supporting system on regional and local scale for middle- and long term adaptation and mitigation strategies, providing information on optimum technologies and energy balances. Cooperation with already existing Climate Service Centres and national and international collaboration in monitoring and research are important elements of the activity of the Centre. In the future, the Centre is planned to form part of a national information system on climate change adaptation and mitigation, supported by the Ministry of Development. Keywords: climate change impacts, forestry, rainfed agriculture, animal husbandry

  13. Implications of climate change damage for agriculture: sectoral evidence from Pakistan.

    PubMed

    Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem

    2016-10-01

    This paper gives a projection of the possible damage of climate change on the agriculture sector of Pakistan for the period 2012-2037, based on a dynamic approach, using an environment-related applied computable general equilibrium model (CGE). Climate damage projections depict an upward trend for the period of review and are found to be higher than the global average. Further, the damage to the agricultural sector exceeds that for the overall economy. By sector, climatic damage disproportionately affects the major and minor crops, livestock and fisheries. The largest losses following climate change, relative to the other agricultural sectors, are expected for livestock. The reason for this is the orthodox system of production for livestock, with a low adaptability to negative shocks of climate change. Overall, the findings reveal the high exposure of the agriculture sector to climate damage. In this regard, policymakers in Pakistan should take seriously the effects of climate change on agriculture and consider suitable technology to mitigate those damages.

  14. Development and Performance of Alternative Electricity Sector Pathways Subject to Multiple Climate and Water Projections

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Vorosmarty, C. J.; Miara, A.; Cohen, S.; Macknick, J.; Sun, Y.; Corsi, F.; Fekete, B. M.; Tidwell, V. C.

    2017-12-01

    Climate change impacts on air temperatures and water availability have the potential to alter future electricity sector investment decisions as well as the reliability and performance of the power sector. Different electricity sector configurations are more or less vulnerable to climate-induced changes. For example, once-through cooled thermal facilities are the most cost-effective and efficient technologies under cooler and wetter conditions, but can be substantially affected by and vulnerable to warmer and drier conditions. Non-thermal renewable technologies, such as PV and wind, are essentially "drought-proof" but have other integration and reliability challenges. Prior efforts have explored the impacts of climate change on electric sector development for a limited set of climate and electricity scenarios. Here, we provide a comprehensive suite of scenarios that evaluate how different electricity sector pathways could be affected by a range of climate and water resource conditions. We use four representative concentration pathway (RCP) scenarios under five global circulation models (GCM) as climate drivers to a Water Balance Model (WBM), to provide twenty separate future climate-water conditions. These climate-water conditions influence electricity sector development from present day to 2050 as determined using the Regional Energy Deployment Systems (ReEDS) model. Four unique electricity sector pathways will be considered, including business-as-usual, carbon cap, high renewable energy technology costs, and coal reliance scenarios. The combination of climate-water and electricity sector pathway scenarios leads to 80 potential future cases resulting in different national and regional electricity infrastructure configurations. The vulnerability of these configurations in relation to climate change (including in-stream thermal pollution impacts and environmental regulations) is evaluated using the Thermoelectric Power and Thermal Pollution (TP2M) model, providing quantitative estimates of the power sector's ability to meet loads, given changes in air temperature, water temperature, and water availability.

  15. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe.

    PubMed

    Fraga, Helder; García de Cortázar Atauri, Iñaki; Malheiro, Aureliano C; Santos, João A

    2016-11-01

    Viticulture is a key socio-economic sector in Europe. Owing to the strong sensitivity of grapevines to atmospheric factors, climate change may represent an important challenge for this sector. This study analyses viticultural suitability, yield, phenology, and water and nitrogen stress indices in Europe, for present climates (1980-2005) and future (2041-2070) climate change scenarios (RCP4.5 and 8.5). The STICS crop model is coupled with climate, soil and terrain databases, also taking into account CO 2 physiological effects, and simulations are validated against observational data sets. A clear agreement between simulated and observed phenology, leaf area index, yield and water and nitrogen stress indices, including the spatial differences throughout Europe, is shown. The projected changes highlight an extension of the climatic suitability for grapevines up to 55°N, which may represent the emergence of new winemaking regions. Despite strong regional heterogeneity, mean phenological timings (budburst, flowering, veraison and harvest) are projected to undergo significant advancements (e.g. budburst/harvest can be >1 month earlier), with implications also in the corresponding phenophase intervals. Enhanced dryness throughout Europe is also projected, with severe water stress over several regions in southern regions (e.g. southern Iberia and Italy), locally reducing yield and leaf area. Increased atmospheric CO 2 partially offsets dryness effects, promoting yield and leaf area index increases in central/northern Europe. Future biomass changes may lead to modifications in nitrogen demands, with higher stress in northern/central Europe and weaker stress in southern Europe. These findings are critical decision support systems for stakeholders from the European winemaking sector. © 2016 John Wiley & Sons Ltd.

  16. Ecosystems Vulnerability Challenge and Prize Competition

    NASA Astrophysics Data System (ADS)

    Smith, J. H.; Frame, M. T.; Ferriter, O.; Recker, J.

    2014-12-01

    Stimulating innovation and private sector entrepreneurship is an important way to advance the preparedness of communities, businesses and individuals for the impacts of climate change on certain aspects of ecosystems, such as: fire regimes; water availability; carbon sequestration; biodiversity conservation; weather-related hazards, and the spread of invasive species. The creation of tools is critical to help communities and natural resource managers better understand the impacts of climate change on ecosystems and the potential resulting implications for ecosystem services and conservation efforts. The Department of the Interior is leading an interagency effort to develop the Ecosystems Vulnerability theme as part of the President's Climate Action Plan. This effort will provide seamless access to relevant datasets that can help address such issues as: risk of wildfires to local communities and federal lands; water sensitivity to climate change; and understanding the role of ecosystems in a changing climate. This session will provide an overview of the proposed Ecosystem Vulnerability Challenge and Prize Competition, outlining the intended audience, scope, goals, and overall timeline. The session will provide an opportunity for participants to offer new ideas. Through the Challenge, access will be made available to critical datasets for software developers, engineers, scientists, students, and researchers to develop and submit applications addressing critical science issues facing our Nation today. Application submission criteria and guidelines will also be discussed. The Challenge will be open to all sectors and organizations (i.e. federal, non-federal, private sector, non-profits, and universities) within the United States. It is anticipated the Challenge will run from early January 2015 until spring of 2015.

  17. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    NASA Technical Reports Server (NTRS)

    Henze, Daven K.; Shindell, Drew Todd; Akhtar, Farhan; Spurr, Robert J. D.; Pinder, Robert W.; Loughlin, Dan; Kopacz, Monika; Singh, Kumaresh; Shim, Changsub

    2012-01-01

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary to assess realistic policy options. To address this challenge, here we show how adjoint model sensitivities can be used to provide highly spatially resolved estimates of the DRF from emissions of black carbon (BC), primary organic carbon (OC), sulfur dioxide (SO2), and ammonia (NH3), using the example of emissions from each sector and country following multiple Representative Concentration Pathway (RCPs). The radiative forcing efficiencies of many individual emissions are found to differ considerably from regional or sectoral averages for NH3, SO2 from the power sector, and BC from domestic, industrial, transportation and biomass burning sources. Consequently, the amount of emissions controls required to attain a specific DRF varies at intracontinental scales by up to a factor of 4. These results thus demonstrate both a need and means for incorporating spatially refined aerosol DRF into analysis of future emissions scenario and design of air quality and climate change mitigation policies.

  18. Energy demand of the German and Dutch residential building stock under climate change

    NASA Astrophysics Data System (ADS)

    Olonscheck, Mady; Holsten, Anne; Walther, Carsten; Kropp, Jürgen P.

    2014-05-01

    In order to mitigate climate change, extraordinary measures are necessary in the future. The building sector, in particular, offers considerable potential for transformation to lower energy demand. On a national level, however, successful and far-reaching measures will likely be taken only if reliable estimates regarding future energy demand from different scenarios are available. The energy demand for space heating and cooling is determined by a combination of behavioral, climatic, constructional, and demographic factors. For two countries, namely Germany and the Netherlands, we analyze the combined effect of future climate and building stock changes as well as renovation measures on the future energy demand for room conditioning of residential buildings until 2060. We show how much the heating energy demand will decrease in the future and answer the question of whether the energy decrease will be exceeded by an increase in cooling energy demand. Based on a sensitivity analysis, we determine those influencing factors with the largest impact on the future energy demand from the building stock. Both countries have national targets regarding the reduction of the energy demand for the future. We provide relevant information concerning the annual renovation rates that are necessary to reach these targets. Retrofitting buildings is a win-win option as it not only helps to mitigate climate change and to lower the dependency on fossil fuels but also transforms the buildings stock into one that is better equipped for extreme temperatures that may occur more frequently with climate change. For the Netherlands, the study concentrates not only on the national, but also the provincial level, which should facilitate directed policy measures. Moreover, the analysis is done on a monthly basis in order to ascertain a deeper understanding of the future seasonal energy demand changes. Our approach constitutes an important first step towards deeper insights into the internal dynamics of the building sector and its climate sensitivity.

  19. Climate Change and Human Health Impacts in the United States: An Update on the Results of the U.S. National Assessment

    PubMed Central

    Ebi, Kristie L.; Mills, David M.; Smith, Joel B.; Grambsch, Anne

    2006-01-01

    The health sector component of the first U.S. National Assessment, published in 2000, synthesized the anticipated health impacts of climate variability and change for five categories of health outcomes: impacts attributable to temperature, extreme weather events (e.g., storms and floods), air pollution, water- and food-borne diseases, and vector- and rodent-borne diseases. The Health Sector Assessment (HSA) concluded that climate variability and change are likely to increase morbidity and mortality risks for several climate-sensitive health outcomes, with the net impact uncertain. The objective of this study was to update the first HSA based on recent publications that address the potential impacts of climate variability and change in the United States for the five health outcome categories. The literature published since the first HSA supports the initial conclusions, with new data refining quantitative exposure–response relationships for several health end points, particularly for extreme heat events and air pollution. The United States continues to have a very high capacity to plan for and respond to climate change, although relatively little progress has been noted in the literature on implementing adaptive strategies and measures. Large knowledge gaps remain, resulting in a substantial need for additional research to improve our understanding of how weather and climate, both directly and indirectly, can influence human health. Filling these knowledge gaps will help better define the potential health impacts of climate change and identify specific public health adaptations to increase resilience. PMID:16966082

  20. Agricultural climate impacts assessment for economic modeling and decision support

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a mitigation level of 3.7 W/m2, as well as consideration of different levels of climate sensitivity (2, 3, 4.5 and 6oC) and different initial conditions for addressing uncertainty. Since the CMIP 3 and CMIP5 protocols did not include this mitigation level or consider alternative levels of climate sensitivity, additional climate projections were required. These two cases will be discussed to illustrate some of the trade-offs made in development of methodologies for climate impact assessments that are intended for a specific user or audience, and oriented towards addressing a specific topic of interest and providing useable results. This involvement of stakeholders from the design phase of climate impacts methodology serves to both define the appropriate method for the question at hand and also to engage and inform the stakeholders of the myriad options and uncertainties associated with different methodology choices. This type of engagement should benefit decision making in the long run through greater stakeholder understanding of the science of future climate model projections, scenarios, the climate impacts sector models and the types of outputs that can be generated by each along with the respective uncertainties at each step of the climate impacts assessment process.

  1. Instantaneous Linkages between Clouds and Large-Scale Meteorology over the Southern Ocean in Observations and a Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Casey J.; Hartmann, Dennis L.; Ma, Po-Lun

    Instantaneous, coincident, footprint-level satellite observations of cloud properties and radiation taken during austral summer over the Southern Ocean are used to study relationships between clouds and large-scale meteorology. Cloud properties are very sensitive to the strength of vertical motion in the middle-troposphere, and low-cloud properties are sensitive to estimated inversion strength, low-level temperature advection, and sea surface temperature. These relationships are quantified. An index for the meteorological anomalies associated with midlatitude cyclones is presented, and it is used to reveal the sensitivity of clouds to the meteorology within the warm- and cold-sector of cyclones. The observed relationships between clouds andmore » meteorology are compared to those in the Community Atmosphere Model version 5 (CAM5) using satellite simulators. Low-clouds simulated by CAM5 are too few, too bright, and contain too much ice, and low-clouds located in the cold-sector of cyclones are too sensitive to variations in the meteorology. The latter two biases are dramatically reduced when CAM5 is coupled with an updated boundary layer parameterization know as Cloud Layers Unified by Binormals (CLUBB). More generally, this study demonstrates that examining the instantaneous timescale is a powerful approach to understanding the physical processes that control clouds and how they are represented in climate models. Such an evaluation goes beyond the cloud climatology and exposes model bias under various meteorological conditions.« less

  2. Towards a climate service for the Tunisian tourism industry

    NASA Astrophysics Data System (ADS)

    Henia, Latifa; Hlaoui, Zouhaier

    2013-04-01

    Until today's Tunisia, there is little communication between generators of meteorological or climatological data and stakeholders in the tourism sector. However: - A recent survey shows that professionals in the tourism sector are aware of the importance of integrating relevant climate information in their tourism management and development strategies. - Tunisia has expertise in the field of meteorology and climatology which meets the demand of the tourism sector in relevant climate information. The program CLIM RUN has created a framework allowing the introduction of a climate service in the Tunisian tourism sector. It identified the needs of the sector in climate information as well as examined together with specialized services and trained researchers the possibility of responding to these needs. The "GREVACHOT" research unit based at the University of Tunis and partner of the CLIM RUN program has developed one of the products for which great demand was formulated by tourism stakeholders: this is climate-tourism comfort indices (ICT) at regional and local scales. We here present: - The Tunisian experience in identifying climate information needs of the tourism sector, - The approach method to the development, study, mapping of ICT and results.

  3. Climate change impact modelling needs to include cross-sectoral interactions

    NASA Astrophysics Data System (ADS)

    Harrison, Paula A.; Dunford, Robert W.; Holman, Ian P.; Rounsevell, Mark D. A.

    2016-09-01

    Climate change impact assessments often apply models of individual sectors such as agriculture, forestry and water use without considering interactions between these sectors. This is likely to lead to misrepresentation of impacts, and consequently to poor decisions about climate adaptation. However, no published research assesses the differences between impacts simulated by single-sector and integrated models. Here we compare 14 indicators derived from a set of impact models run within single-sector and integrated frameworks across a range of climate and socio-economic scenarios in Europe. We show that single-sector studies misrepresent the spatial pattern, direction and magnitude of most impacts because they omit the complex interdependencies within human and environmental systems. The discrepancies are particularly pronounced for indicators such as food production and water exploitation, which are highly influenced by other sectors through changes in demand, land suitability and resource competition. Furthermore, the discrepancies are greater under different socio-economic scenarios than different climate scenarios, and at the sub-regional rather than Europe-wide scale.

  4. Modeling technical change in climate analysis: evidence from agricultural crop damages.

    PubMed

    Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem

    2017-05-01

    This study accounts for the Hicks neutral technical change in a calibrated model of climate analysis, to identify the optimum level of technical change for addressing climate changes. It demonstrates the reduction to crop damages, the costs to technical change, and the net gains for the adoption of technical change for a climate-sensitive Pakistan economy. The calibrated model assesses the net gains of technical change for the overall economy and at the agriculture-specific level. The study finds that the gains of technical change are overwhelmingly higher than the costs across the agriculture subsectors. The gains and costs following technical change differ substantially for different crops. More importantly, the study finds a cost-effective optimal level of technical change that potentially reduces crop damages to a minimum possible level. The study therefore contends that the climate policy for Pakistan should consider the role of technical change in addressing climate impacts on the agriculture sector.

  5. Climate change and adaptation of the health sector: The case of infectious diseases.

    PubMed

    Confalonieri, Ulisses E C; Menezes, Júlia Alves; Margonari de Souza, Carina

    2015-01-01

    Infectious diseases form a group of health problems highly susceptible to the influences of climate. Adaptation to protect human population health from the changes in infectious disease epidemiology expected to occur as a consequence of climate change involve actions in the health systems as well as in other non-health sectors. In the health sector strategies such as enhanced and targeted epidemiological and entomological surveillance and the development of epidemic early warning systems informed by climate scenarios are needed. Measures in other sectors such as meteorology, civil defense and environmental sanitation will also contribute to a reduction in the risk of infection under climate change.

  6. Famine Early Warning Systems Network (FEWS NET) Contributions to Strengthening Resilience and Sustainability for the East African Community

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Galu, G.; Funk, C. C.; Verdin, J. P.; Rowland, J.

    2014-12-01

    The Planning for Resilience in East Africa through Policy, Adaptation, Research, and Economic Development (PREPARED) is a multi-organizational project aimed at mainstreaming climate-resilient development planning and program implementation into the East African Community (EAC). The Famine Early Warning Systems Network (FEWS NET) has partnered with the PREPARED project to address three key development challenges for the EAC; 1) increasing resiliency to climate change, 2) managing trans-boundary freshwater biodiversity and conservation and 3) improving access to drinking water supply and sanitation services. USGS FEWS NET has been instrumental in the development of gridded climate data sets that are the fundamental building blocks for climate change adaptation studies in the region. Tools such as the Geospatial Climate Tool (GeoCLIM) have been developed to interpolate time-series grids of precipitation and temperature values from station observations and associated satellite imagery, elevation data, and other spatially continuous fields. The GeoCLIM tool also allows the identification of anomalies and assessments of both their frequency of occurrence and directional trends. A major effort has been put forth to build the capacities of local and regional institutions to use GeoCLIM to integrate their station data (which is not typically available to the public) into improved national and regional gridded climate data sets. In addition to the improvements and capacity building activities related to geospatial analysis tools, FEWS NET will assist in two other areas; 1) downscaling of climate change scenarios and 2) vulnerability impact assessments. FEWS NET will provide expertise in statistical downscaling of Global Climate Model output fields and work with regional institutions to assess results of other downscaling methods. Completion of a vulnerability impact assessment (VIA) involves the examination of sectoral consequences in identified climate "hot spots". FEWS NET will lead the VIA for the agriculture and food security sector, but will also provide key geospatial layers needed by multiple sectors in the areas of exposure, sensitivity, and adaptive capacity. Project implementation will strengthen regional coordination in policy-making, planning, and response to climate change issues.

  7. Uncertainty in temperature response of current consumption-based emissions estimates

    NASA Astrophysics Data System (ADS)

    Karstensen, J.; Peters, G. P.; Andrew, R. M.

    2014-09-01

    Several studies have connected emissions of greenhouse gases to economic and trade data to quantify the causal chain from consumption to emissions and climate change. These studies usually combine data and models originating from different sources, making it difficult to estimate uncertainties in the end results. We estimate uncertainties in economic data, multi-pollutant emission statistics and metric parameters, and use Monte Carlo analysis to quantify contributions to uncertainty and to determine how uncertainty propagates to estimates of global temperature change from regional and sectoral territorial- and consumption-based emissions for the year 2007. We find that the uncertainties are sensitive to the emission allocations, mix of pollutants included, the metric and its time horizon, and the level of aggregation of the results. Uncertainties in the final results are largely dominated by the climate sensitivity and the parameters associated with the warming effects of CO2. The economic data have a relatively small impact on uncertainty at the global and national level, while much higher uncertainties are found at the sectoral level. Our results suggest that consumption-based national emissions are not significantly more uncertain than the corresponding production based emissions, since the largest uncertainties are due to metric and emissions which affect both perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to changes of pollutant compositions. We find global sectoral consumption uncertainties in the range of ±9-±27% using the global temperature potential with a 50 year time horizon, with metric uncertainties dominating. National level uncertainties are similar in both perspectives due to the dominance of CO2 over other pollutants. The consumption emissions of the top 10 emitting regions have a broad uncertainty range of ±9-±25%, with metric and emissions uncertainties contributing similarly. The Absolute global temperature potential with a 50 year time horizon has much higher uncertainties, with considerable uncertainty overlap for regions and sectors, indicating that the ranking of countries is uncertain.

  8. The Role of Technology for Achieving Climate Policy Objectives: Overview of the EMF 27 Study on Technology Strategies and Climate Policy Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriegler, Elmar; Weyant, John; Blanford, Geoffrey J.

    2014-04-01

    This article presents the synthesis of results from the Stanford Energy Modeling Forum Study 27, an inter-comparison of 19 energy-economy and integrated assessment models. The study investigated the value of individual mitigation technologies such as energy intensity improvements, carbon capture and sequestration (CCS), nuclear power, solar and wind power and bioenergy for climate mitigation. Achieving atmospheric greenhouse gas concentration targets at 450 and 550 ppm CO2 equivalent requires massive greenhouse gas emissions reductions. A fragmented policy approach at the level of current ambition is inconsistent with these targets. The availability of a negative emissions technology, in most models biofuels withmore » CCS, proved to be a key element for achieving the climate targets. Robust characteristics of the transformation of the energy system are increased energy intensity improvements and the electrification of energy end use coupled with a fast decarbonization of the electricity sector. Non-electric energy end use is hardest to decarbonize, particularly in the transport sector. Technology is a key element of climate mitigation. Versatile technologies such as CCS and bioenergy have largest value, due in part to their combined ability to produce negative emissions. The individual value of low-carbon power technologies is more limited due to the many alternatives in the sector. The scale of the energy transformation is larger for the 450 ppm than for the 550 ppm CO2e target. As a result, the achievability and the costs of the 450 ppm target are more sensitive to variations in technology variability. Mitigation costs roughly double when moving from 550 ppm to 450 ppm CO2e, but remain below 3% of GDP for most models.« less

  9. Assessing Inter-Sectoral Climate Change Risks: The Role of ISIMIP

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Arnell, Nigel W.; Ebi, Kristie L.; Lotze-Campen, Hermann; Raes, Frank; Rapley, Chris; Smith, Mark Stafford; Cramer, Wolfgang; Frieler, Katja; Reyer, Christopher P. O.; hide

    2017-01-01

    The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socioeconomic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.

  10. An integrated assessment of climate change impacts for Athens- relevance to stakeholders and policy makers

    NASA Astrophysics Data System (ADS)

    Giannakopoulos, C.; Hatzaki, M.; Kostopoulou, E.; Varotsos, K.

    2010-09-01

    Analysing climate change and its impact needs a production of relevant elements for policy making that can be very different from the parameters considered by climate experts. In the framework of EU project CIRCE, a more realistic approach to match stakeholders and policy-makers demands is attempted. For this reason, within CIRCE selected case studies have been chosen that will provide assessments that can be integrated in practical decision making. In this work, an integrated assessment of climate change impacts on several sectors for the urban site of Athens in Greece is presented. The Athens urban case study has been chosen since it provides excellent opportunities for using an integrated approach across multiple temporal and spatial scales and sectors. In the spatial dimension, work extends from the inner city boundaries to the surrounding mountains and forests. In the temporal dimension, research ranges from the current observed time period (using available meteorological and sector data) to future time periods using data from several climate change projections. In addition, a multi-sector approach to climate change impacts is adopted. Impacts sectors covered range from direct climate impacts on natural ecosystems (such as flash floods, air pollution and forest fire risk) to indirect impacts resulting from combined climate-social-economic linkages (such as energy demand, tourism and health). Discussion of impact sector risks and adaptation measures are also exploited. Case-study work on impact sector risk to climate change is of particular interest to relevant policy makers and stakeholders, communication with who is ensured through a series of briefing notes and information sheets and through regional workshops.

  11. Climate Change: Modeling the Human Response

    NASA Astrophysics Data System (ADS)

    Oppenheimer, M.; Hsiang, S. M.; Kopp, R. E.

    2012-12-01

    Integrated assessment models have historically relied on forward modeling including, where possible, process-based representations to project climate change impacts. Some recent impact studies incorporate the effects of human responses to initial physical impacts, such as adaptation in agricultural systems, migration in response to drought, and climate-related changes in worker productivity. Sometimes the human response ameliorates the initial physical impacts, sometimes it aggravates it, and sometimes it displaces it onto others. In these arenas, understanding of underlying socioeconomic mechanisms is extremely limited. Consequently, for some sectors where sufficient data has accumulated, empirically based statistical models of human responses to past climate variability and change have been used to infer response sensitivities which may apply under certain conditions to future impacts, allowing a broad extension of integrated assessment into the realm of human adaptation. We discuss the insights gained from and limitations of such modeling for benefit-cost analysis of climate change.

  12. Assessment of Projected Temperature Impacts from Climate Change on the U.S. Electric Power Sector Using the Integrated Planning Model

    EPA Science Inventory

    The energy sector is considered to be one of the most vulnerable to climate change. This study is a first-order analysis of the potential climate change impacts on the U.S. electric power sector, measuring the energy, environmental, and economic impacts of power system changes du...

  13. Use of Foodomics for Control of Food Processing and Assessing of Food Safety.

    PubMed

    Josić, D; Peršurić, Ž; Rešetar, D; Martinović, T; Saftić, L; Kraljević Pavelić, S

    Food chain, food safety, and food-processing sectors face new challenges due to globalization of food chain and changes in the modern consumer preferences. In addition, gradually increasing microbial resistance, changes in climate, and human errors in food handling remain a pending barrier for the efficient global food safety management. Consequently, a need for development, validation, and implementation of rapid, sensitive, and accurate methods for assessment of food safety often termed as foodomics methods is required. Even though, the growing role of these high-throughput foodomic methods based on genomic, transcriptomic, proteomic, and metabolomic techniques has yet to be completely acknowledged by the regulatory agencies and bodies. The sensitivity and accuracy of these methods are superior to previously used standard analytical procedures and new methods are suitable to address a number of novel requirements posed by the food production sector and global food market. © 2017 Elsevier Inc. All rights reserved.

  14. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework

    PubMed Central

    Warszawski, Lila; Frieler, Katja; Huber, Veronika; Piontek, Franziska; Serdeczny, Olivia; Schewe, Jacob

    2014-01-01

    The Inter-Sectoral Impact Model Intercomparison Project offers a framework to compare climate impact projections in different sectors and at different scales. Consistent climate and socio-economic input data provide the basis for a cross-sectoral integration of impact projections. The project is designed to enable quantitative synthesis of climate change impacts at different levels of global warming. This report briefly outlines the objectives and framework of the first, fast-tracked phase of Inter-Sectoral Impact Model Intercomparison Project, based on global impact models, and provides an overview of the participating models, input data, and scenario set-up. PMID:24344316

  15. Stakeholders’ perspectives towards effective climate change adaptation on the Mongolian livestock sector

    NASA Astrophysics Data System (ADS)

    Batbaatar, A.; Apichayakul, P.; Tantanee, S.

    2018-03-01

    Climate change is one of the greatest threats that world is facing today, and having significant deleterious effects on natural and human systems. Recent climate-induced extreme events and their impacts demand timely adaptation actions to the changing odds of their occurrence. The great phenomenon is already being felt in the Mongolian plateau, especially on the livestock sector. The sector provides the main income and livelihood for one-third of the population of about three million people. A high number of livestock is lost due to a unique phenomenon is known as a “dzud”. This paper examines the key stakeholders’ perspectives in the implementation of climate change adaptation and identifies its barriers, with a focus on the livestock sector. In order to meet the objectives, this research used a semi-structured interview with organizations related to the livestock sector and climate change. The extent of stakeholders’ perspectives might be depending on the way they share information, stakeholder engagement, and their experiences with extreme events, as well as their location and level in government. The research findings will indicate an understanding of climate change perspectives, adaptation, and level of capacity of organizations, which can be used as a guideline for organizations to develop climate change adaptation policies related to the livestock sector in Mongolia.

  16. Climate Leadership in the Financial Sector Webinar

    EPA Pesticide Factsheets

    Financial sector winners from the 2015 Climate Leadership Awards discuss best practices and challenges faced by their corporations based on their experience of attempting to reduce greenhouse gas emissions and address climate risk.

  17. Escalating impacts of climate extremes on critical infrastructures in Europe.

    PubMed

    Forzieri, Giovanni; Bianchi, Alessandra; Silva, Filipe Batista E; Marin Herrera, Mario A; Leblois, Antoine; Lavalle, Carlo; Aerts, Jeroen C J H; Feyen, Luc

    2018-01-01

    Extreme climatic events are likely to become more frequent owing to global warming. This may put additional stress on critical infrastructures with typically long life spans. However, little is known about the risks of multiple climate extremes on critical infrastructures at regional to continental scales. Here we show how single- and multi-hazard damage to energy, transport, industrial, and social critical infrastructures in Europe are likely to develop until the year 2100 under the influence of climate change. We combine a set of high-resolution climate hazard projections, a detailed representation of physical assets in various sectors and their sensitivity to the hazards, and more than 1100 records of losses from climate extremes in a prognostic modelling framework. We find that damages could triple by the 2020s, multiply six-fold by mid-century, and amount to more than 10 times present damage of €3.4 billion per year by the end of the century due only to climate change. Damage from heatwaves, droughts in southern Europe, and coastal floods shows the most dramatic rise, but the risks of inland flooding, windstorms, and forest fires will also increase in Europe, with varying degrees of change across regions. Economic losses are highest for the industry, transport, and energy sectors. Future losses will not be incurred equally across Europe. Southern and south-eastern European countries will be most affected and, as a result, will probably require higher costs of adaptation. The findings of this study could aid in prioritizing regional investments to address the unequal burden of impacts and differences in adaptation capacities across Europe.

  18. Accounting for health in climate change policies: a case study of Fiji.

    PubMed

    Morrow, Georgina; Bowen, Kathryn

    2014-01-01

    Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes.

  19. Responding to climate change in New York State: the ClimAID integrated assessment for effective climate change adaptation in New York State. Final report.

    PubMed

    2011-12-01

    Climate change is already beginning to affect New York State, and these impacts are projected to grow. At the same time, the state has the ability to develop adaptation strategies to prepare for and respond to climate risks now and in the future. The ClimAID assessment provides information on climate change impacts and adaptation for eight sectors in New York State: water resources, coastal zones, ecosystems, agriculture, energy, transportation,telecommunications, and public health. Observed climate trends and future climate projections were developed for seven regions across the state. Within each of the sectors, climate risks, vulnerabilities, and adaptation strategies are identified. Integrating themes across all of the sectors are equity and environmental justice and economics.Case studies are used to examine specific vulnerabilities and potential adaptation strategies in each of the eight sectors. These case studies also illustrate the linkages among climate vulnerabilities, risks, and adaptation, and demonstrate specific monitoring needs. Stakeholder participation was critical to the ClimAID assessment process to ensure relevance to decision makers across the state.

  20. Assessing Climate Change Perceptions, Management Strategies, and Information Needs for Indiana Agricultural and Forestry Sectors

    NASA Astrophysics Data System (ADS)

    Cherkauer, K. A.; Chin, N.

    2016-12-01

    The agricultural and forestry sectors in the state of Indiana are highly dependent on climate and, subsequently, highly vulnerable to the impacts of climate change. Higher temperatures, shifts in precipitation patterns, more widespread prevalence of pests and pathogens, and increased frequency and severity of extreme weather events could all have negative effects on these two sectors in the future. Agricultural and forest producers are already modifying their management strategies in response to perceptions of changes in climate risk, but such responses have been primarily reactive in nature and, in many cases, demonstrate a disconnect between scientific findings and stakeholder perceptions of the greatest climate risks. This research has been conducted to help improve understanding of climate change risks to agriculture and forestry in Indiana; stakeholder perceptions of climate risks and their current management strategies; and the effectiveness of these management strategies for dealing with current and future climate risk. Sector-specific focus groups, expert panel assessments and surveys have all been utilized in this work, which will also contribute to the new Indiana Climate Change Impacts Assessment report.

  1. A multi-layered governance framework for incorporating social science insights into adapting to the health impacts of climate change.

    PubMed

    Bowen, Kathryn J; Ebi, Kristie; Friel, Sharon; McMichael, Anthony J

    2013-09-10

    Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change.

  2. A multi-layered governance framework for incorporating social science insights into adapting to the health impacts of climate change

    PubMed Central

    Bowen, Kathryn J.; Ebi, Kristie; Friel, Sharon; McMichael, Anthony J.

    2013-01-01

    Background Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. Objectives To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. Design A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. Results A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Conclusion Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change. PMID:24028938

  3. Bridging Climate Change Resilience and Mitigation in the Electricity Sector Through Renewable Energy and Energy Efficiency: Emerging Climate Change and Development Topics for Energy Sector Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sarah L; Hotchkiss, Elizabeth L; Bilello, Daniel E

    Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growingmore » electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.« less

  4. Informing the NCA: EPA's Climate Change Impact and Risk Analysis Framework

    NASA Astrophysics Data System (ADS)

    Sarofim, M. C.; Martinich, J.; Kolian, M.; Crimmins, A. R.

    2017-12-01

    The Climate Change Impact and Risk Analysis (CIRA) framework is designed to quantify the physical impacts and economic damages in the United States under future climate change scenarios. To date, the framework has been applied to 25 sectors, using scenarios and projections developed for the Fourth National Climate Assessment. The strength of this framework has been in the use of consistent climatic, socioeconomic, and technological assumptions and inputs across the impact sectors to maximize the ease of cross-sector comparison. The results of the underlying CIRA sectoral analyses are informing the sustained assessment process by helping to address key gaps related to economic valuation and risk. Advancing capacity and scientific literature in this area has created opportunity to consider future applications and strengthening of the framework. This presentation will describe the CIRA framework, present results for various sectors such as heat mortality, air & water quality, winter recreation, and sea level rise, and introduce potential enhancements that can improve the utility of the framework for decision analysis.

  5. Climate change and health: Why should India be concerned?

    PubMed

    Majra, J P; Gur, A

    2009-04-01

    Overwhelming evidence shows that climate change presents growing threats to public health security - from extreme weather-related disasters to wider spread of such vector-borne diseases as malaria and dengue. The impacts of climate on human health will not be evenly distributed around the world. The Third Assessment Report (Intergovernmental Panel on Climate Change-2001) concluded that vulnerability to climate change is a function of exposure, sensitivity, and adaptive capacity. Developing country populations, particularly in small island states, arid and high mountain zones, and in densely populated coastal areas are considered to be particularly vulnerable. India is a large developing country, with the Great Himalayas, the world's third largest ice mass in the north, 7500 km long, and densely populated coast line in the south. Nearly 700 million of her over one billion population living in rural areas directly depends on climate-sensitive sectors (agriculture, forests, and fisheries) and natural resources (such as water, biodiversity, mangroves, coastal zones, grasslands) for their subsistence and livelihoods. Heat wave, floods (land and coastal), and draughts occur commonly. Malaria, malnutrition, and diarrhea are major public health problems. Any further increase, as projected in weather-related disasters and related health effects, may cripple the already inadequate public health infrastructure in the country. Hence, there is an urgent need to respond to the situation. Response options to protect health from effects of climate change include mitigation as well as adaptation. Both can complement each other and together can significantly reduce the risks of climate change.

  6. Vulnerability of Agriculture to Climate Change as Revealed by Relationships between Simulated Crop Yield and Climate Change Indices

    NASA Astrophysics Data System (ADS)

    King, A. W.; Absar, S. M.; Nair, S.; Preston, B. L.

    2012-12-01

    The vulnerability of agriculture is among the leading concerns surrounding climate change. Agricultural production is influenced by drought and other extremes in weather and climate. In regions of subsistence farming, worst case reductions in yield lead to malnutrition and famine. Reduced surplus contributes to poverty in agrarian economies. In more economically diverse and industrialized regions, variations in agricultural yield can influence the regional economy through market mechanisms. The latter grows in importance as agriculture increasingly services the energy market in addition to markets for food and fiber. Agriculture is historically a highly adaptive enterprise and will respond to future changes in climate with a variety of adaptive mechanisms. Nonetheless, the risk, if not expectation, of increases in climate extremes and hazards exceeding historical experience motivates scientifically based anticipatory assessment of the vulnerability of agriculture to climate change. We investigate the sensitivity component of that vulnerability using EPIC, a well established field-scale model of cropping systems that includes the simulation of economic yield. The core of our analysis is the relationship between simulated yield and various indices of climate change, including the CCI/CLIVAR/JCOM ETCCDI indices, calculated from weather inputs to the model. We complement this core with analysis using the DSSAT cropping system model and exploration of relationships between historical yield statistics and climate indices calculated from weather records. Our analyses are for sites in the Southeast/Gulf Coast region of the United States. We do find "tight" monotonic relationships between annual yield and climate for some indices, especially those associated with available water. More commonly, however, we find an increase in the variability of yield as the index value becomes more extreme. Our findings contribute to understanding the sensitivity of crop yield as part of vulnerability analysis. They also contribute to considerations of adaptation, focusing attention on adapting to increased variability in yield rather than just reductions in yield. For example, in the face of increased variability or reduced reliability, hedging and risk spreading strategies may be more important than technological innovations such as drought-resistant crops or other optimization strategies. Our findings also have implications for the choice and application of climate extreme indices, demands on models used to project climate change and the development of next generation integrated assessment models (IAM) that incorporate the agricultural sector, and especially adaption within that sector, in energy and broader more general markets.

  7. Global Framework for Climate Services (GFCS): status of implementation

    NASA Astrophysics Data System (ADS)

    Lucio, Filipe

    2015-04-01

    The World Climate Conference-3 (Geneva 2009) unanimously decided to establish the Global Framework for Climate Services (GFCS), a UN-led initiative spearheaded by WMO to guide the development and application of science-based climate information and services in support of decision-making in climate sensitive sectors. By promoting science-based decision-making, the GFCS is empowering governments, communities and companies to build climate resilience, reduce vulnerabilities and adapt to impacts. The initial priority areas of GFCS are Agriculture and Food Security; Disaster Risk Reduction; Health; and Water Resources. The implementation of GFCS is well underway with a governance structure now fully established. The governance structure of GFCS includes the Partner Advisory Committee (PAC), which is GFCS's stakeholder engagement mechanism. The membership of the PAC allows for a broad participation of stakeholders. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the European Commission (EC), the Food and Agriculture Organization of the UN (FAO), the Global Water Partnership (GWP), the International Federation of Red Cross and Red Crescent Societies (IFRC), the International Union of Geodesy and Geophysics (IUGG), United Nations Environment Programme (UNEP), the United Nations Institute for Training and Research (UNITAR), the World Business Council for Sustainable Development (WBCSD), the World Food Programme (WFP) and WMO have already joined the PAC. Activities are being implemented in various countries in Africa, the Caribbean, Asia and Pacific Small Islands Developing States through flagship projects and activities in the four priority areas of GFCS to enable the development of a Proof of Concept. The focus at national level is on strengthening institutional capacities needed for development of capacities for co-design and co-production of climate services and their application in support of decision-making in climate sensitive sectors. Establishment of regional capacities through climate centres to support national institutional capacities is a major focus. The Proof of Concept will be replicated in other parts of the world to ensure worldwide improvements in climate services for the four priority areas to facilitate the reduction of society's vulnerability to climate-related hazards and the advancement of the key global development goals. To streamline and harness climate research and knowledge in support of GFCS implementation, regional research plans or agendas are being shaped in different regions. For example, a Climate Research for Development Agenda for Africa (CR4D) is being developed under the leadership of the World Climate Research Programme (WCRP) and in cooperation with the African Union Commission and other partners. Similarly, regional climate research priorities are being developed for Latin America and the Caribbean, following the WCRP Conference for Latin America and the Caribbean (Montevideo, March 2014). Availability of regional research plans or agendas would ensure more effective research and involvement of national experts in climate research activities.

  8. Climate Change and its Impacts on Tourism and Livelihood in Manaslu Conservation Area, Nepal

    NASA Astrophysics Data System (ADS)

    K C, A.

    2017-12-01

    The Hindukush Himalayan region including Nepal, a country reliant on tourism, is particularly sensitive to climate change. It had impact on different sectors of the environment including tourism and livelihood. There are very few researches focused on tourism, livelihood and climate change in Nepal. The present research assesses the impact of climate change on tourism and livelihood in the Manaslu Conservation Area (MCA) of Nepal. In this study, the empirical data collected at the field was complemented by secondary data on climate and tourism. For primary data collection, seventy-six households were interviewed followed by three focus group discussions and five key informant interviews. Correlation, regression and graphical analysis was carried out for the presentation of data. Local people perceived that temperature and rainfall have been increasing in the study site as a result of climate change. Change in usual pattern of temperature and rainfall had affected tourism sector. Socioeconomic variables such as marital status, size of household, education and landholding status had positive effect on tourism participation while livestock-holding status and occupation of the household had negative effect on tourism participation. Number of visitors is increasing in MCA in recent years, and tourism participation is helping local people to earn more money and improve their living standard. In response to gradually warming temperature and decreasing snowfall, there seems an urgent need for tourism promotional activities in the study area. Also awareness and education related to tourism, gender empowerment of women, advertisement and publicity on tourism promotion, adequate subsidy and training on ecotourism and skill development trainings on handicraft are recommended.

  9. Perceptions of climate-related risk among water sector professionals in Africa-Insights from the 2016 African Water Association Congress.

    PubMed

    Connolly, Katherine; Mbutu, Mwaura; Bartram, Jamie; Fuente, David

    2018-06-01

    The ability of water and wastewater utilities to provide safe and reliable water and sanitation services now and in the future will be determined, in part, by their resilience to climate change. Investment in infrastructure, planning, and operational practices that increase resilience are affected, in turn, by how water sector professionals perceive the risks posed to utilities by climate change and its related impacts. We surveyed water sector professionals at the 2016 African Water Association's Congress in Nairobi, Kenya to assess their perceptions of climate-specific and general risks that may disrupt utility service. We find that water sector professionals are most concerned about climate-specific and general risks that affect utility water supplies (quantity), followed by adequacy of utility infrastructure. We also find that professionals tend to rank climate-specific risks as less concerning than general risks facing utilities. Furthermore, non-utility professionals are more concerned about climate-specific risks and climate change in general than utility professionals. These findings highlight the multiple, competing risks utilities face and the need for adaptation strategies that simultaneously address climate-specific and general concerns of utilities. Copyright © 2018 Elsevier GmbH. All rights reserved.

  10. Climate-Change Impacts on Major Societal and Environmental Sectors: a National View

    NASA Astrophysics Data System (ADS)

    Melillo, J. M.

    2009-05-01

    The U.S. Climate Change Science Program's Unified Synthesis Product reports on extant and possible future impacts of climate change for seven sectors at the national level - water resources, energy supply and use, transportation, agriculture, ecosystems, human health and society. The sectoral analyses provide an integrated national picture of the climate-change consequences, now and in the future, for society and the environment, albeit a picture with regional texture. Major report findings for each sector will be presented. In addition to the specific sectoral findings, several overarching messages emerge from this component of the synthesis activity. First, it is important to think about interactions between and among sectors with regard to climate impacts. For example, the projected changes in the timing and amount of precipitation, and hence water supply, will very likely have significant implications for other sectors considered in the report. Changes in water supply have the potential to affect hydropower generation, river transportation, crop timing and management, in-stream ecosystem services including fish habitat, and human health issues related to links between heavy rains ad water-borne diseases. Second, the report concludes that climate-change impacts on the sectors must be considered in the context of a range of environmental and social factors including pollution, population growth, over use of resources, and urbanization. The multi-factor analysis provides insight into our understanding of where, when and how climate change combines with other environmental and social changes to affect the sectors. It also provides some understanding of how these interactions can either amplify or dampen climate-change impacts. This message has profound implications for the design of research programs and information systems at the national, regional and local levels. Furthermore, it demands that a true partnership be forged between the natural and social sciences to more adequately conduct assessments and seek solutions that address the complex challenges that multiple stresses pose. Third, the report notes that the United States is connected to a world that is unevenly vulnerable to climate change and thus will be affected by impacts globally. One example is agriculture. The degree to which climate change affects food production across the globe will affect the demand for our agricultural products and so the profitability of this sector. Fourth, the report highlights the importance of considering the unintended consequences of adaptation measures designed to avert or minimize negative impacts of climate change on various sectors. For example, the "hardening" of coastlines with sea walls and other structures to protect transportation infrastructure against storm surge and sea-level rise eliminates the ability of coastal ecosystems to adapt to these aspects of climate change by inward migration. While this "tradeoff" may be essential, it must be understood that with the loss of coastal ecosystems such as marshlands, comes the loss of the services they provide to society such as their function as nurseries for juvenile fish stocks that are essential for the sustainability of coastal fisheries. The general message about unintended consequences is that system-level analyses must be part of developing intelligent adaptation strategies to meet the challenges of climate change.

  11. Accounting for health in climate change policies: a case study of Fiji

    PubMed Central

    Morrow, Georgina; Bowen, Kathryn

    2014-01-01

    Background Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. Objective The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. Design The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. Results The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. Conclusions The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes. PMID:24836442

  12. Impacts of climate change on the global forest sector

    USGS Publications Warehouse

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors that strongly influence the effects of climate change on the global forest sector.

  13. Visualizing interconnections among climate risks

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.

    2015-12-01

    It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is therefore imperative to improve our understanding on how climate change may induce a chain of impacts. Our study is a first step toward this goal by mapping out climate risks and their cause-effect relationships based on current literature.

  14. Uncertainty in temperature response of current consumption-based emissions estimates

    NASA Astrophysics Data System (ADS)

    Karstensen, J.; Peters, G. P.; Andrew, R. M.

    2015-05-01

    Several studies have connected emissions of greenhouse gases to economic and trade data to quantify the causal chain from consumption to emissions and climate change. These studies usually combine data and models originating from different sources, making it difficult to estimate uncertainties along the entire causal chain. We estimate uncertainties in economic data, multi-pollutant emission statistics, and metric parameters, and use Monte Carlo analysis to quantify contributions to uncertainty and to determine how uncertainty propagates to estimates of global temperature change from regional and sectoral territorial- and consumption-based emissions for the year 2007. We find that the uncertainties are sensitive to the emission allocations, mix of pollutants included, the metric and its time horizon, and the level of aggregation of the results. Uncertainties in the final results are largely dominated by the climate sensitivity and the parameters associated with the warming effects of CO2. Based on our assumptions, which exclude correlations in the economic data, the uncertainty in the economic data appears to have a relatively small impact on uncertainty at the national level in comparison to emissions and metric uncertainty. Much higher uncertainties are found at the sectoral level. Our results suggest that consumption-based national emissions are not significantly more uncertain than the corresponding production-based emissions since the largest uncertainties are due to metric and emissions which affect both perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to changes of pollutant compositions. We find global sectoral consumption uncertainties in the range of ±10 to ±27 % using the Global Temperature Potential with a 50-year time horizon, with metric uncertainties dominating. National-level uncertainties are similar in both perspectives due to the dominance of CO2 over other pollutants. The consumption emissions of the top 10 emitting regions have a broad uncertainty range of ±9 to ±25 %, with metric and emission uncertainties contributing similarly. The absolute global temperature potential (AGTP) with a 50-year time horizon has much higher uncertainties, with considerable uncertainty overlap for regions and sectors, indicating that the ranking of countries is uncertain.

  15. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles

    NASA Astrophysics Data System (ADS)

    Vergara-Temprado, Jesús; Miltenberger, Annette K.; Furtado, Kalli; Grosvenor, Daniel P.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Field, Paul R.; Murray, Benjamin J.; Carslaw, Ken S.

    2018-03-01

    Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions.

  16. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles

    PubMed Central

    Miltenberger, Annette K.; Furtado, Kalli; Grosvenor, Daniel P.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Field, Paul R.

    2018-01-01

    Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions. PMID:29490918

  17. Earth as humans’ habitat: global climate change and the health of populations

    PubMed Central

    McMichael, Anthony J

    2014-01-01

    Human-induced climate change, with such rapid and continuing global-scale warming, is historically unprecedented and signifies that human pressures on Earth’s life-supporting natural systems now exceed the planet’s bio-geo-capacity. The risks from climate change to health and survival in populations are diverse, as are the social and political ramifications. Although attributing observed health changes in a population to the recent climatic change is difficult, a coherent pattern of climate- and weather-associated changes is now evident in many regions of the world. The risks impinge unevenly, especially on poorer and vulnerable regions, and are amplified by pre-existing high rates of climate-sensitive diseases and conditions. If, as now appears likely, the world warms by 3-5oC by 2100, the health consequences, directly and via massive social and economic disruption, will be severe. The health sector has an important message to convey, comparing the health risks and benefits of enlightened action to avert climate change and to achieve sustainable ways of living versus the self-interested or complacent inaction. PMID:24596901

  18. Emissions pathways, climate change, and impacts on California

    USGS Publications Warehouse

    Hayhoe, K.; Cayan, D.; Field, C.B.; Frumhoff, P.C.; Maurer, E.P.; Miller, N.L.; Moser, S.C.; Schneider, S.H.; Cahill, K.N.; Cleland, E.E.; Dale, L.; Drapek, R.; Hanemann, R.M.; Kalkstein, L.S.; Lenihan, J.; Lunch, C.K.; Neilson, R.P.; Sheridan, S.C.; Verville, J.H.

    2004-01-01

    The magnitude of future climate change depends substantially on the greenhouse gas emission pathways we choose. Here we explore the implications of the highest and lowest Intergovernmental Panel on Climate Change emissions pathways for climate change and associated impacts in California. Based on climate projections from two state-of-the-art climate models with low and medium sensitivity (Parallel Climate Model and Hadley Centre Climate Model, version 3, respectively), we find that annual temperature increases nearly double from the lower B1 to the higher A1fi emissions scenario before 2100. Three of four simulations also show greater increases in summer temperatures as compared with winter. Extreme heat and the associated impacts on a range of temperature-sensitive sectors are substantially greater under the higher emissions scenario, with some interscenario differences apparent before midcentury. By the end of the century under the B1 scenario, heatwaves and extreme heat in Los Angeles quadruple in frequency while heat-related mortality increases two to three times; alpine/subalpine forests are reduced by 50-75%; and Sierra snowpack is reduced 30-70%. Under A1fi, heatwaves in Los Angeles are six to eight times more frequent, with heat-related excess mortality increasing five to seven times; alpine/subalpine forests are reduced by 75-90%; and snowpack declines 73-90%, with cascading impacts on runoff and streamflow that, combined with projected modest declines in winter precipitation, could fundamentally disrupt California's water rights system. Although interscenario differences in climate impacts and costs of adaptation emerge mainly in the second half of the century, they are strongly dependent on emissions from preceding decades.

  19. Climate, weather, socio-economic and electricity usage data for the residential and commercial sectors in FL, U.S.

    PubMed

    Mukhopadhyay, Sayanti; Nateghi, Roshanak

    2017-08-01

    This paper presents the data that is used in the article entitled "Climate sensitivity of end-use electricity consumption in the built environment: An application to the state of Florida, United States" (Mukhopadhyay and Nateghi, 2017) [1]. The data described in this paper pertains to the state of Florida (during the period of January 1990 to November 2015). It can be classified into four categories of (i) state-level electricity consumption data; (ii) climate data; (iii) weather data; and (iv) socio-economic data. While, electricity consumption data and climate data are obtained at monthly scale directly from the source, the weather data was initially obtained at daily-level, and then aggregated to monthly level for the purpose of analysis. The time scale of socio-economic data varies from monthly-level to yearly-level. This dataset can be used to analyze the influence of climate and weather on the electricity demand as described in Mukhopadhyay and Nateghi (2017) [1].

  20. European scale climate information services for water use sectors

    NASA Astrophysics Data System (ADS)

    van Vliet, Michelle T. H.; Donnelly, Chantal; Strömbäck, Lena; Capell, René; Ludwig, Fulco

    2015-09-01

    This study demonstrates a climate information service for pan-European water use sectors that are vulnerable to climate change induced hydrological changes, including risk and safety (disaster preparedness), agriculture, energy (hydropower and cooling water use for thermoelectric power) and environment (water quality). To study the climate change impacts we used two different hydrological models forced with an ensemble of bias-corrected general circulation model (GCM) output for both the lowest (2.6) and highest (8.5) representative concentration pathways (RCP). Selected indicators of water related vulnerability for each sector were then calculated from the hydrological model results. Our results show a distinct north-south divide in terms of climate change impacts; in the south the water availability will reduce while in the north water availability will increase. Across different climate models precipitation and streamflow increase in northern Europe and decrease in southern Europe, but the latitude at which this change occurs varies depending on the GCM. Hydrological extremes are increasing over large parts of Europe. The agricultural sector will be affected by reduced water availability (in the south) and increased drought. Both streamflow and soil moistures droughts are projected to increase in most parts of Europe except in northern Scandinavia and the Alps. The energy sector will be affected by lower hydropower potential in most European countries and reduced cooling water availability due to higher water temperatures and reduced summer river flows. Our results show that in particular in the Mediterranean the pressures are high because of increasing drought which will have large impacts on both the agriculture and energy sectors. In France and Italy this is combined with increased flood hazards. Our results show important impacts of climate change on European water use sectors indicating a clear need for adaptation.

  1. Attribution of climate forcing to economic sectors.

    PubMed

    Unger, Nadine; Bond, Tami C; Wang, James S; Koch, Dorothy M; Menon, Surabi; Shindell, Drew T; Bauer, Susanne

    2010-02-23

    A much-cited bar chart provided by the Intergovernmental Panel on Climate Change displays the climate impact, as expressed by radiative forcing in watts per meter squared, of individual chemical species. The organization of the chart reflects the history of atmospheric chemistry, in which investigators typically focused on a single species of interest. However, changes in pollutant emissions and concentrations are a symptom, not a cause, of the primary driver of anthropogenic climate change: human activity. In this paper, we suggest organizing the bar chart according to drivers of change-that is, by economic sector. Climate impacts of tropospheric ozone, fine aerosols, aerosol-cloud interactions, methane, and long-lived greenhouse gases are considered. We quantify the future evolution of the total radiative forcing due to perpetual constant year 2000 emissions by sector, most relevant for the development of climate policy now, and focus on two specific time points, near-term at 2020 and long-term at 2100. Because sector profiles differ greatly, this approach fosters the development of smart climate policy and is useful to identify effective opportunities for rapid mitigation of anthropogenic radiative forcing.

  2. Attribution of climate forcing to economic sectors

    PubMed Central

    Unger, Nadine; Bond, Tami C.; Wang, James S.; Koch, Dorothy M.; Menon, Surabi; Shindell, Drew T.; Bauer, Susanne

    2010-01-01

    A much-cited bar chart provided by the Intergovernmental Panel on Climate Change displays the climate impact, as expressed by radiative forcing in watts per meter squared, of individual chemical species. The organization of the chart reflects the history of atmospheric chemistry, in which investigators typically focused on a single species of interest. However, changes in pollutant emissions and concentrations are a symptom, not a cause, of the primary driver of anthropogenic climate change: human activity. In this paper, we suggest organizing the bar chart according to drivers of change—that is, by economic sector. Climate impacts of tropospheric ozone, fine aerosols, aerosol-cloud interactions, methane, and long-lived greenhouse gases are considered. We quantify the future evolution of the total radiative forcing due to perpetual constant year 2000 emissions by sector, most relevant for the development of climate policy now, and focus on two specific time points, near-term at 2020 and long-term at 2100. Because sector profiles differ greatly, this approach fosters the development of smart climate policy and is useful to identify effective opportunities for rapid mitigation of anthropogenic radiative forcing. PMID:20133724

  3. Overview of the Special Issue: A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldhoff, Stephanie T.; Martinich, Jeremy; Sarofim, Marcus

    2015-07-01

    The Climate Change Impacts and Risk Analysis (CIRA) modeling exercise is a unique contribution to the scientific literature on climate change impacts, economic damages, and risk analysis that brings together multiple, national-scale models of impacts and damages in an integrated and consistent fashion to estimate climate change impacts, damages, and the benefits of greenhouse gas (GHG) mitigation actions in the United States. The CIRA project uses three consistent socioeconomic, emissions, and climate scenarios across all models to estimate the benefits of GHG mitigation policies: a Business As Usual (BAU) and two policy scenarios with radiative forcing (RF) stabilization targets ofmore » 4.5 W/m2 and 3.7 W/m2 in 2100. CIRA was also designed to specifically examine the sensitivity of results to uncertainties around climate sensitivity and differences in model structure. The goals of CIRA project are to 1) build a multi-model framework to produce estimates of multiple risks and impacts in the U.S., 2) determine to what degree risks and damages across sectors may be lowered from a BAU to policy scenarios, 3) evaluate key sources of uncertainty along the causal chain, and 4) provide information for multiple audiences and clearly communicate the risks and damages of climate change and the potential benefits of mitigation. This paper describes the motivations, goals, and design of the CIRA modeling exercise and introduces the subsequent papers in this special issue.« less

  4. Climate Change Adaptation Practices in Various Countries

    NASA Astrophysics Data System (ADS)

    Tanik, A.; Tekten, D.

    2017-08-01

    The paper will be a review work on the recent strategies of EU in general, and will underline the inspected sectoral based adaptation practices and action plans of 7 countries; namely Germany, France, Spain, Italy, Denmark, USA and Kenya from Africa continent. Although every countries’ action plan have some similarities on sectoral analysis, each country in accordance with the specific nature of the problem seems to create its own sectoral analysis. Within this context, green and white documents of EU adaptation to climate change, EU strategy on climate change, EU targets of 2020 on climate change and EU adaptation support tools are investigated.

  5. Climate change impacts and adaptation in forestry: responses by trees and markets.

    Treesearch

    Ralph Alig; Darius Adams; Linda Joyce; Brent Sohngen

    2004-01-01

    The forest sector-forestry and forest industries-plays an important role in the global climate change debate. The sector influences the global carbon cycle through the sequestration of atmospheric carbon in forests and is in turn influenced by global climate change through its impacts on the rates of forest growth and climate-induced changes in natural disturbances...

  6. Modeling climate change impacts on the forest sector

    Treesearch

    John R. Mills; Ralph Alig; Richard W. Haynes; Darius M. Adams

    2000-01-01

    The forest sector has had a relatively long history of applying sectorial models to estimate the effects of atmospheric issues such as acid rain, climate change, and the forestry impacts of reduced atmospheric ozone. The models of the forest sector vary in scope and complexity but share a number of common features and databases.

  7. 78 FR 69104 - Second Allocation, Waivers, and Alternative Requirements for Grantees Receiving Community...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... analyses of risks to infrastructure sectors from climate change and other hazards, such as the Northeast... interdependencies within and across communities and infrastructure sectors; changes to climate and development... biodiversity, and conserve natural resources in the face of a changing climate . . .'' h. HUD Review of Covered...

  8. What is the difference between a 2, 3, 4, or 5 °C world and how good are we at telling this difference? Results from ISI-MIP the first Inter-Sectoral Impact Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Frieler, K.; Huber, V.; Piontek, F.; Schewe, J.; Serdeczny, O.; Warszawski, L.

    2012-12-01

    The Inter-sectoral Impact Model Intercomparison Project (ISI-MIP) aims to synthesize the state-of-the-art knowledge of climate change impacts at different levels of global warming. Over 25 climate impact modelling teams from around the world, working within the agriculture, water, biomes, infrastructure and health sectors, are collaborating to find answers to the question "What is the difference between a 2, 3, 4, or 5 °C world and how good are we at telling this difference?". The analysis is based on common, bias-corrected climate projections, and socio-economic pathways. The first, fast-tracked phase of the ISI-MIP has a focus on global impact models. The project's experimental design is formulated to distinguish the uncertainty introduced by the impact models themselves, from the inherent uncertainty in the climate projections and the variety of plausible socio-economic futures. Novel metrics, developed to emphasize societal impacts, will be used to identify regional 'hot-spots' of climate change impacts, as well as to quantify the cross-sectoral impact of the increasing frequency of extreme events in future climates. We present here first results from the Fast-Track phase of the project covering impact simulations in the biomes, agriculture and water sectors, in which the societal impacts of climate change are quantified for different levels of global warming. We also discuss the design of the scenario set-up and impact indicators chosen to suit the unique cross-sectoral, multi-model nature of the project.

  9. Climate and Southern Africa's Water-Energy-Food Nexus

    NASA Astrophysics Data System (ADS)

    Conway, D.; Osborn, T.; Dorling, S.; Ringler, C.; Lankford, B.; Dalin, C.; Thurlow, J.; Zhu, T.; Deryng, D.; Landman, W.; Archer van Garderen, E.; Krueger, T.; Lebek, K.

    2014-12-01

    Numerous challenges coalesce to make Southern Africa emblematic of the connections between climate and the water-energy-food nexus. Rainfall and river flows in the region show high levels of variability across a range of spatial and temporal scales. Physical and socioeconomic exposure to climate variability and change is high, for example, the contribution of electricity produced from hydroelectric sources is over 30% in Madagascar and Zimbabwe and almost 100% in the DRC, Lesotho, Malawi, and Zambia. The region's economy is closely linked with that of the rest of the African continent and climate-sensitive food products are an important item of trade. Southern Africa's population is concentrated in regions exposed to high levels of hydro-meteorological variability, and will increase rapidly over the next four decades. The capacity to manage the effects of climate variability tends, however, to be low. Moreover, with climate change annual precipitation levels, soil moisture and runoff are likely to decrease and rising temperatures will increase evaporative demand. Despite high levels of hydro-meteorological variability, the sectoral and cross-sectoral water-energy-food linkages with climate in Southern Africa have not been considered in detail. Lack of data and questionable reliability are compounded by complex dynamic relationships. We review the role of climate in Southern Africa's nexus, complemented by empirical analysis of national level data on climate, water resources, crop and energy production, and economic activity. Our aim is to examine the role of climate variability as a driver of production fluctuations in the nexus, and to improve understanding of the magnitude and temporal dimensions of their interactions. We first consider national level exposure of food, water and energy production to climate in aggregate economic terms and then examine the linkages between interannual and multi-year climate variability and economic activity, focusing on food and hydropower production. We then review the potential for connecting areas with robust seasonal climate forecasting skill with key precursors of economic output and conclude by identifying knowledge gaps in our understanding of regional and national economic linkages in the climate and water-energy-food nexus.

  10. Directional Analysis of Sub-Antarctic Climate Change on South Georgia 1905-2009

    NASA Astrophysics Data System (ADS)

    Sakamoto Ferranti, Emma Jayne; Solera Garcia, Maria Angeles; Timmis, Roger James; Gerrard McKenna, Paul; Whyatt, James Duncan

    2010-05-01

    Directional analysis has been used to study changes in the sub-polar climate of the mountainous and glacierised sub-Antarctic island of South Georgia (54-55°S, 36-38°W). Significantly for climate change studies, South Georgia lies in the Scotia Sea between polar and temperate latitudes, and approximately 1000 km northeast and downwind of the Antarctic Peninsula - one of the fastest-warming regions on Earth (Vaughan et al., 2001). South Georgia was chosen for directional analysis because its climate is substantially advected by predominantly westerly circulations, and because it has a long (since 1905) meteorological record from King Edward Point (KEP) on its eastern side. Additional shorter records from Bird Island at the northwest tip of South Georgia allow comparison between windward (Bird Island) and leeward (KEP) climate regimes. The variation of mountain barrier heights with direction from KEP allows climate changes to be studied under different amounts of orographic influence (from ~700 m to ~2200 m). Records of glacier advance and retreat provide further independent evidence of climate change for comparison with the meteorological record. Directional climate analysis is based on a series of monthly-mean pressure fields defining the orientation and strength of synoptic-scale air-mass advection over the Scotia Sea. These fields are used to define directional climatologies for six 30° sectors with bearings from 150-180° to 300-330°; these sectors encompass 99% of recorded months since 1905. The climatologies summarise the frequencies of air masses from each sector, and the accompanying temperatures and precipitation. The 6 sectors can be broadly associated with 4 air-mass types and source regions: (i) sectors 150-210° advect cold polar maritime air that originated over the Antarctic continent before passing over the Weddell Sea, (ii) sectors 210-270° advect warmer, more stable polar maritime air from the Bellingshausen Sea/Antarctic Peninsula region, (iii) sector 270-300° has warmer, drier returning polar maritime circulated from the Bellingshausen Sea and across the Andes, and (iv) sector 300-330° has warm, humid tropical maritime air from the South Atlantic High. Detailed climatologies are compared for 4 distinct time periods covering: glacier advance (1920-1951), glacier retreat (1951-82), the latest decade (2000-2009), and a reference period (1905-1982). The comparisons show how climate changes between periods are composed of alterations in (i) air-mass frequency from different sectors, and (ii) temperature and precipitation within sectors. The ability of directional analysis to explain climate-change processes is confirmed by comparing directional results for the periods of glacier advance and glacier retreat. Specifically, during the ‘advance' period the air masses came 20% more frequently from the 4 colder, southerly sectors and correspondingly less frequently from the 2 warmer, northerly sectors. Moreover, the temperature of air coming from each sector was 0.1-0.8°C cooler than during the ‘retreat' period. Further directional analysis will compare records from the latest decade with previous periods to investigate recent sub-polar climate change, and particularly any advected warming from the Antarctic Peninsula. Directional analysis and advection climatologies can be used to test climate model performance and to examine atmospheric processes under changing climates. Previous directional analyses in an upland region of northwest England have detected changes in its mid-latitude temperate climate that were masked by directionally unsorted data (Malby et al., 2007, Ferranti et al., 2009); the South Georgia study now shows how similar methods can give insights into sub-polar climate change. FERRANTI, E. J. S., WHYATT, J. D. & TIMMIS, R. J. (2009) Development and application of topographic descriptors for conditional analysis of rainfall. Atmospheric Science Letters, 10, 177-184. MALBY, A. R., WHYATT, J. D., TIMMIS, R. J., WILBY, R. L. & ORR, H. G. (2007) Long-term variations in orographic rainfall: analysis and implications for upland catchments. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 52, 276-291. VAUGHAN, D. G., MARSHALL, G. J., CONNOLLEY, W. M., KING, J. C. & MULVANEY, R. (2001) CLIMATE CHANGE: Devil in the Detail. Science, 293, 1777-1779.

  11. Vulnerability of Thai rice production to simultaneous climate and socioeconomic changes: a double exposure analysis

    NASA Astrophysics Data System (ADS)

    Sangpenchan, R.

    2011-12-01

    This research explores the vulnerability of Thai rice production to simultaneous exposure by climate and socioeconomic change -- so-called "double exposure." Both processes influence Thailand's rice production system, but the vulnerabilities associated with their interactions are unknown. To understand this double exposure, I adopts a mixed-method, qualitative-quantitative analytical approach consisting of three phases of analysis involving a Vulnerability Scoping Diagram, a Principal Component Analysis, and the EPIC crop model using proxy datasets collected from secondary data sources at provincial scales.The first and second phases identify key variables representing each of the three dimensions of vulnerability -- exposure, sensitivity, and adaptive capacity indicating that the greatest vulnerability in the rice production system occurs in households and areas with high exposure to climate change, high sensitivity to climate and socioeconomic stress, and low adaptive capacity. In the third phase, the EPIC crop model simulates rice yields associated with future climate change projected by CSIRO and MIROC climate models. Climate change-only scenarios project the decrease in yields by 10% from the current productivity during 2016-2025 and 30% during 2045-2054. Scenarios applying both climate change and improved technology and management practices show that a 50% increase in rice production is possible, but requires strong collaboration between sectors to advance agricultural research and technology and requires strong adaptive capacity in the rice production system characterized by well-developed social capital, social networks, financial capacity, and infrastructure and household mobility at the local scale. The vulnerability assessment and climate and crop adaptation simulations used here provide useful information to decision makers developing vulnerability reduction plans in the face of concurrent climate and socioeconomic change.

  12. Climate change impact assessment on food security in Indonesia

    NASA Astrophysics Data System (ADS)

    Ettema, Janneke; Aldrian, Edvin; de Bie, Kees; Jetten, Victor; Mannaerts, Chris

    2013-04-01

    As Indonesia is the world's fourth most populous country, food security is a persistent challenge. The potential impact of future climate change on the agricultural sector needs to be addressed in order to allow early implementation of mitigation strategies. The complex island topography and local sea-land-air interactions cannot adequately be represented in large scale General Climate Models (GCMs) nor visualized by TRMM. Downscaling is needed. Using meteorological observations and a simple statistical downscaling tool, local future projections are derived from state-of-the-art, large-scale GCM scenarios, provided by the CMIP5 project. To support the agriculture sector, providing information on especially rainfall and temperature variability is essential. Agricultural production forecast is influenced by several rain and temperature factors, such as rainy and dry season onset, offset and length, but also by daily and monthly minimum and maximum temperatures and its rainfall amount. A simple and advanced crop model will be used to address the sensitivity of different crops to temperature and rainfall variability, present-day and future. As case study area, Java Island is chosen as it is fourth largest island in Indonesia but contains more than half of the nation's population and dominates it politically and economically. The objective is to identify regions at agricultural risk due to changing patterns in precipitation and temperature.

  13. Climate information for public health: the role of the IRI climate data library in an integrated knowledge system.

    PubMed

    del Corral, John; Blumenthal, M Benno; Mantilla, Gilma; Ceccato, Pietro; Connor, Stephen J; Thomson, Madeleine C

    2012-09-01

    Public health professionals are increasingly concerned about the potential impact of climate variability and change on health outcomes. Protecting public health from the vagaries of climate requires new working relationships between the public health sector and the providers of climate data and information. The Climate Information for Public Health Action initiative at the International Research Institute for Climate and Society (IRI) is designed to increase the public health community's capacity to understand, use and demand appropriate climate data and climate information to mitigate the public health impacts of the climate. Significant challenges to building the capacity of health professionals to use climate information in research and decision-making include the difficulties experienced by many in accessing relevant and timely quality controlled data and information in formats that can be readily incorporated into specific analysis with other data sources. We present here the capacities of the IRI climate data library and show how we have used it to build an integrated knowledge system in the support of the use of climate and environmental information in climate-sensitive decision-making with respect to health. Initiated as an aid facilitating exploratory data analysis for climate scientists, the IRI climate data library has emerged as a powerful tool for interdisciplinary researchers focused on topics related to climate impacts on society, including health.

  14. Using social network analysis to evaluate health-related adaptation decision-making in Cambodia.

    PubMed

    Bowen, Kathryn J; Alexander, Damon; Miller, Fiona; Dany, Va

    2014-01-30

    Climate change adaptation in the health sector requires decisions across sectors, levels of government, and organisations. The networks that link these different institutions, and the relationships among people within these networks, are therefore critical influences on the nature of adaptive responses to climate change in the health sector. This study uses social network research to identify key organisational players engaged in developing health-related adaptation activities in Cambodia. It finds that strong partnerships are reported as developing across sectors and different types of organisations in relation to the health risks from climate change. Government ministries are influential organisations, whereas donors, development banks and non-government organisations do not appear to be as influential in the development of adaptation policy in the health sector. Finally, the study highlights the importance of informal partnerships (or 'shadow networks') in the context of climate change adaptation policy and activities. The health governance 'map' in relation to health and climate change adaptation that is developed in this paper is a novel way of identifying organisations that are perceived as key agents in the decision-making process, and it holds substantial benefits for both understanding and intervening in a broad range of climate change-related policy problems where collaboration is paramount for successful outcomes.

  15. Using Social Network Analysis to Evaluate Health-Related Adaptation Decision-Making in Cambodia

    PubMed Central

    Bowen, Kathryn J.; Alexander, Damon; Miller, Fiona; Dany, Va

    2014-01-01

    Climate change adaptation in the health sector requires decisions across sectors, levels of government, and organisations. The networks that link these different institutions, and the relationships among people within these networks, are therefore critical influences on the nature of adaptive responses to climate change in the health sector. This study uses social network research to identify key organisational players engaged in developing health-related adaptation activities in Cambodia. It finds that strong partnerships are reported as developing across sectors and different types of organisations in relation to the health risks from climate change. Government ministries are influential organisations, whereas donors, development banks and non-government organisations do not appear to be as influential in the development of adaptation policy in the health sector. Finally, the study highlights the importance of informal partnerships (or ‘shadow networks’) in the context of climate change adaptation policy and activities. The health governance ‘map’ in relation to health and climate change adaptation that is developed in this paper is a novel way of identifying organisations that are perceived as key agents in the decision-making process, and it holds substantial benefits for both understanding and intervening in a broad range of climate change-related policy problems where collaboration is paramount for successful outcomes. PMID:24487452

  16. Socio-economic impacts of climate change on rural United States

    Treesearch

    Pankaj Lal; Janaki R.R. Alavalapati; Evan Mercer

    2011-01-01

    Directly or indirectly, positively or negatively, climate change will affect all sectors and regions of the United States. The impacts, however, will not be homogenous across regions, sectors, population groups or time. The literature specifically related to how climate change will affect rural communities, their resilience, and adaptive capacity in the United States (...

  17. 76 FR 55364 - Request for Information: Technical Inputs and Assessment Capacity Related to Regional, Sectoral...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ..., and Cross-Cutting Assessments for the 2013 U.S. National Climate Assessment (NCA) Report and the... Climate Assessment (NCA) regional, sectoral, and cross-cutting topics proposed for the 2013 NCA report and... report outline, and information about the National Climate Assessment Development and Advisory Committee...

  18. How the Timing of Climate Change Policy Affects Infrastructure Turnover in the Electricity Sector: Engineering, Economic and Policy Considerations

    NASA Astrophysics Data System (ADS)

    Izard, Catherine Finlay

    The electricity sector is responsible for producing 35% of US greenhouse gas (GHG) emissions. Estimates suggest that ideally, the electricity sector would be responsible for approximately 85% of emissions abatement associated with climate polices such as America's Clean Energy and Security Act (ACES). This is equivalent to ˜50% cumulative emissions reductions below projected cumulative business-as-usual (BAU) emissions. Achieving these levels of emissions reductions will require dramatic changes in the US electricity generating infrastructure: almost all of the fossil-generation fleet will need to be replaced with low-carbon sources and society is likely to have to maintain a high build rate of new capacity for decades. Unfortunately, the inertia in the electricity sector means that there may be physical constraints to the rate at which new electricity generating capacity can be built. Because the build rate of new electricity generating capacity may be limited, the timing of regulation is critical---the longer the U.S. waits to start reducing GHG emissions, the faster the turnover in the electricity sector must occur in order to meet the same target. There is a real, and thus far unexplored, possibility that the U.S. could delay climate change policy implementation for long enough that it becomes infeasible to attain the necessary rate of turnover in the electricity sector. This dissertation investigates the relationship between climate policy timing and infrastructure turnover in the electricity sector. The goal of the dissertation is to answer the question: How long can we wait before constraints on infrastructure turnover in the electricity sector make achieving our climate goals impossible? Using the Infrastructure Flow Assessment Model, which was developed in this work, this dissertation shows that delaying climate change policy increases average retirements rates by 200-400%, increases average construction rates by 25-85% and increases maximum construction rates by 50-300%. It also shows that delaying climate policy has little effect on the age of retired plants or the stranded costs associated with premature retirement. In order for the electricity sector to reduce emissions to a level required by ACES while limiting construction rates to within achievable levels, it is necessary to start immediately. Delaying the process of decarbonization means that more abatement will be necessary from other sectors or geoengineering. By not starting emissions abatement early, therefore, the US forfeits its most accessible abatement potential and increases the challenge of climate change mitigation unnecessarily.

  19. Climate Local Information over the Mediterranean to Respond User Needs

    NASA Astrophysics Data System (ADS)

    Ruti, P.

    2012-12-01

    CLIM-RUN aims at developing a protocol for applying new methodologies and improved modeling and downscaling tools for the provision of adequate climate information at regional to local scale that is relevant to and usable by different sectors of society (policymakers, industry, cities, etc.). Differently from current approaches, CLIM-RUN will develop a bottom-up protocol directly involving stakeholders early in the process with the aim of identifying well defined needs at the regional to local scale. The improved modeling and downscaling tools will then be used to optimally respond to these specific needs. The protocol is assessed by application to relevant case studies involving interdependent sectors, primarily tourism and energy, and natural hazards (wild fires) for representative target areas (mountainous regions, coastal areas, islands). The region of interest for the project is the Greater Mediterranean area, which is particularly important for two reasons. First, the Mediterranean is a recognized climate change hot-spot, i.e. a region particularly sensitive and vulnerable to global warming. Second, while a number of countries in Central and Northern Europe have already in place well developed climate service networks (e.g. the United Kingdom and Germany), no such network is available in the Mediterranean. CLIM-RUN is thus also intended to provide the seed for the formation of a Mediterranean basin-side climate service network which would eventually converge into a pan-European network. The general time horizon of interest for the project is the future period 2010-2050, a time horizon that encompasses the contributions of both inter-decadal variability and greenhouse-forced climate change. In particular, this time horizon places CLIM-RUN within the context of a new emerging area of research, that of decadal prediction, which will provide a strong potential for novel research.

  20. Vulnerability Assessment, Climate Change Impacts and Adaptation Measures in Slovenia

    NASA Astrophysics Data System (ADS)

    Cegnar, T.

    2010-09-01

    In relation to the priority tasks of the climate change measures, the Republic of Slovenia estimates that special attention needs to be devoted to the following sectors in general: - sectors that currently indicate a strong vulnerability for the current climate variability (for instance, agriculture), - sectors where the vulnerability for climate change is increased by current trends (for instance, urban development, use of space), - sectors where the adaptation time is the longest and the subsequent development changes are connected with the highest costs (for instance, use of space, infrastructural objects, forestry, urban development, building stock). Considering the views of Slovenia to the climate change problem in Europe and Slovenia, priority measures and emphasis on future adaptation to climate change, the Republic of Slovenia has especially exposed the following action areas: - sustainable and integrated management of water sources for water power production, prevention of floods, provision of water for the enrichment of low flow rates, and preservation of environmental function as well as provision of water for other needs; - sustainable management of forest ecosystems, adjusted to changes, for the provision of their environmental function as well as being a source of biomass, wood for products for the conservation of carbon, and carbon sinks; - spatial planning as one of the important preventive instruments for the adaptation to climate change through the processes of integral planning of spatial and urban development; - sustainable use and preservation of natural wealth and the preservation of biodiversity as well as ecosystem services with measures and policies that enable an enhanced resistance of ecosystems to climate change, and the role of biological diversity in integral adaptation measures; - informing and awareness on the consequences of climate change and adaptation possibilities. For years, the most endangered sectors have been agriculture and forestry; therefore, they are also the only sectors for which a national adaptation strategy was adopted.

  1. Reduction emissions from transport sector - EU action against climate change

    DOT National Transportation Integrated Search

    2009-08-01

    This paper explores and discusses the initiation and development of the EU's policies and strategies against climate change and the share experiences in the EU transport sector to reduce CO2 emission.

  2. Emissions pathways, climate change, and impacts on California

    PubMed Central

    Hayhoe, Katharine; Cayan, Daniel; Field, Christopher B.; Frumhoff, Peter C.; Maurer, Edwin P.; Miller, Norman L.; Moser, Susanne C.; Schneider, Stephen H.; Cahill, Kimberly Nicholas; Cleland, Elsa E.; Dale, Larry; Drapek, Ray; Hanemann, R. Michael; Kalkstein, Laurence S.; Lenihan, James; Lunch, Claire K.; Neilson, Ronald P.; Sheridan, Scott C.; Verville, Julia H.

    2004-01-01

    The magnitude of future climate change depends substantially on the greenhouse gas emission pathways we choose. Here we explore the implications of the highest and lowest Intergovernmental Panel on Climate Change emissions pathways for climate change and associated impacts in California. Based on climate projections from two state-of-the-art climate models with low and medium sensitivity (Parallel Climate Model and Hadley Centre Climate Model, version 3, respectively), we find that annual temperature increases nearly double from the lower B1 to the higher A1fi emissions scenario before 2100. Three of four simulations also show greater increases in summer temperatures as compared with winter. Extreme heat and the associated impacts on a range of temperature-sensitive sectors are substantially greater under the higher emissions scenario, with some interscenario differences apparent before midcentury. By the end of the century under the B1 scenario, heatwaves and extreme heat in Los Angeles quadruple in frequency while heat-related mortality increases two to three times; alpine/subalpine forests are reduced by 50–75%; and Sierra snowpack is reduced 30–70%. Under A1fi, heatwaves in Los Angeles are six to eight times more frequent, with heat-related excess mortality increasing five to seven times; alpine/subalpine forests are reduced by 75–90%; and snowpack declines 73–90%, with cascading impacts on runoff and streamflow that, combined with projected modest declines in winter precipitation, could fundamentally disrupt California's water rights system. Although interscenario differences in climate impacts and costs of adaptation emerge mainly in the second half of the century, they are strongly dependent on emissions from preceding decades. PMID:15314227

  3. The Effect of Mitigation Policy on Regional Climate Impacts on the U.S. Electric Sector

    NASA Astrophysics Data System (ADS)

    Cohen, S. M.; Sun, Y.; Strzepek, K.; McFarland, J.; Boehlert, B.; Fant, C.

    2017-12-01

    Climate change can influence the U.S. electricity sector in many ways, the nature of which can be shaped by energy and environmental policy choices. Changing temperatures affect electricity demand largely through heating and cooling needs, and temperatures also affect generation and transmission system performance. Altered precipitation patterns affect the regional and seasonal distribution of surface water runoff, which changes hydropower operation and thermal cooling water availability. The extent to which these stimuli influence U.S. power sector operation and planning will depend to some extent on whether or not proactive policies are enacted to mitigate these impacts. Mitigation policies such as CO2 emissions limits or technology restrictions can change the makeup of the electricity system while reducing the extent of climate change itself. We use the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS), a U.S. electric sector capacity expansion model, to explore electric sector evolution through 2050 under alternative climate and policy assumptions. The model endogenously represents climate impacts on load, power system performance, cooling water availability, and hydropower, allowing internally consistent system responses to climate change along with projected technology, market, and policy conditions. We compare climate impacts across 5 global circulation models for a 8.5 W/m2 representative concentration pathway (RCP) without a climate mitigation policy and a 4.5 W/m2 RCP with climate mitigation. Climate drivers affect the capacity and generation mix at the national and regional levels, with relative growth of wind, solar, and natural gas-based technologies depending on local electricity system characteristics. These differences affect regional economic impacts, measured here as changes to electricity price and system costs. Mitigation policy reduces the economic and system impacts of climate change largely by moderating temperature-induced load but also by lessening water- and temperature-based performance constraints. Policy impacts are nuanced and region-specific, and this analysis underscores the importance of climate mitigation policy to regional electricity system planning decisions.

  4. Implications of climate change for economic development in northern Canada: energy, resource, and transportation sectors.

    PubMed

    Prowse, Terry D; Furgal, Chris; Chouinard, Rebecca; Melling, Humfrey; Milburn, David; Smith, Sharon L

    2009-07-01

    Northern Canada is projected to experience major changes to its climate, which will have major implications for northern economic development. Some of these, such as mining and oil and gas development, have experienced rapid expansion in recent years and are likely to expand further, partly as the result of indirect effects of changing climate. This article reviews how a changing climate will affect several economic sectors including the hydroelectric, oil and gas, and mining industries as well as infrastructure and transportation, both marine and freshwater. Of particular importance to all sectors are projected changes in the cryosphere, which will create both problems and opportunities. Potential adaptation strategies that could be used to minimize the negative impacts created by a climate change are also reviewed.

  5. Visualisation and communication of probabilistic climate forecasts to renewable-energy policy makers

    NASA Astrophysics Data System (ADS)

    Steffen, Sophie; Lowe, Rachel; Davis, Melanie; Doblas-Reyes, Francisco J.; Rodó, Xavier

    2014-05-01

    Despite the strong dependence on weather and climate variability of the renewable-energy industry, and the existence of several initiatives towards demonstrating the added benefits of integrating probabilistic forecasts into energy decision-making processes, weather and climate forecasts are still under-utilised within the sector. Improved communication is fundamental to stimulate the use of climate forecast information within decision-making processes, in order to adapt to a highly climate dependent renewable-energy industry. This work focuses on improving the visualisation of climate forecast information, paying special attention to seasonal time scales. This activity is central to enhance climate services for renewable energy and to optimise the usefulness and usability of inherently complex climate information. In the realm of the Global Framework for Climate Services (GFCS) initiative, and subsequent European projects: Seasonal-to-Decadal Climate Prediction for the Improvement of European Climate Service (SPECS) and the European Provision of Regional Impacts Assessment in Seasonal and Decadal Timescales (EUPORIAS), this paper investigates the visualisation and communication of seasonal forecasts with regards to their usefulness and usability, to enable the development of a European climate service. The target end user is the group of renewable-energy policy makers, who are central to enhance climate services for the energy industry. The overall objective is to promote the wide-range dissemination and exchange of actionable climate information based on seasonal forecasts from Global Producing Centres (GPCs). It examines the existing main barriers and deficits. Examples of probabilistic climate forecasts from different GPC's are used to make a catalogue of current approaches, to assess their advantages and limitations and, finally, to recommend better alternatives. Interviews have been conducted with renewable-energy stakeholders to receive feedback for the improvement of existing visualisation techniques of forecasts. The overall aim is to establish a communication protocol for the visualisation of probabilistic climate forecasts, which does not currently exist. GPCs show their own probabilistic forecasts with limited consistency in their communication across different centres, which complicates the understanding for the end user. The recommended communication protocol for both the visualisation and description of climate forecasts can help to introduce a standard format and message to end users from several climate-sensitive sectors, such as energy, tourism, agriculture and health.

  6. Evaluating the Impacts of Climate Change on the Operations and Future Development of the U.S. Electricity System

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Cohen, S. M.; Averyt, K.; Macknick, J.; Meldrum, J.; Sullivan, P.

    2014-12-01

    Climate change has the potential to exacerbate reliability concerns for the power sector through changes in water availability and air temperatures. The power sector is responsible for 41% of U.S. freshwater withdrawals, primarily for power plant cooling needs, and any changes in the water available for the power sector, given increasing competition among water users, could affect decisions about new power plant builds and reliable operations for existing generators. Similarly, increases in air temperatures can reduce power plant efficiencies, which in turn increases fuel consumption as well as water withdrawal and consumption rates. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory's (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water runoff projections from Coupled Model Intercomparison Project 5 (CMIP5) data are applied to surface water available to generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water availability for the 134 electricity balancing regions in the ReEDS model. In addition, air temperature changes are considered for their impacts on electricity load, transmission capacity, and power plant efficiencies and water use rates. Mean climate projections have only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water access to offset climate impacts. Climate impacts are notable in southwestern states, which experience reduced water access purchases and a greater share of water acquired from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

  7. Quantifying co-benefits of source-specific CO2 emission reductions in Canada and the US: An adjoint sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Soltanzadeh, M.; Pappin, A. J.; Hakami, A.; Turner, M. D.; Capps, S.; Henze, D. K.; Percell, P.; Bash, J. O.; Napelenok, S. L.; Pinder, R. W.; Russell, A. G.; Nenes, A.; Baek, J.; Carmichael, G. R.; Stanier, C. O.; Chai, T.; Byun, D.; Fahey, K.; Resler, J.; Mashayekhi, R.

    2016-12-01

    Scenario-based studies evaluate air quality co-benefits by adopting collective measures introduced under a climate policy scenario cannot distinguish between benefits accrued from CO2 reductions among sources of different types and at different locations. Location and sector dependencies are important factors that can be captured in an adjoint-based analysis of CO2 reduction co-benefits. The present study aims to quantify how the ancillary benefits of reducing criteria co-pollutants vary spatially and by sector. The adjoint of USEPA's CMAQ was applied to quantify the health benefits associated with emission reduction of criteria pollutants (NOX) in on-road mobile, Electric Generation Units (EGUs), and other select sectors on a location-by-location basis across the US and Canada. These health benefits are then converted to CO2 emission reduction co-benefits by accounting for source-specific emission rates of criteria pollutants in comparison to CO2. We integrate the results from the adjoint of CMAQ with emission estimates from 2011 NEI at the county level, and point source data from EPA's Air Markets Program Data and National Pollutant Release Inventory (NPRI) for Canada. Our preliminary results show that the monetized health benefits (due to averted chronic mortality) associated with reductions of 1 ton of CO2 emissions is up to 65/ton in Canada and 200/ton in US for mobile on-road sector. For EGU sources, co-benefits are estimated at up to 100/ton and 10/ton for the US and Canada respectively. For Canada, the calculated co-benefits through gaseous pollutants including NOx is larger than those through PM2.5 due to the official association between NO2 exposure and chronic mortality. Calculated co-benefits show a great deal of spatial variability across emission locations for different sectors and sub-sectors. Implications of such spatial variability in devising control policy options that effectively address both climate and air quality objectives will be discussed.

  8. Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, S. M.; Macknick, J.; Averyt, K.

    2014-05-01

    Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact onmore » national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.« less

  9. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic.

    PubMed

    Beaugrand, Grégory; Edwards, Martin; Brander, Keith; Luczak, Christophe; Ibanez, Frederic

    2008-11-01

    Warming of the global climate is now unequivocal and its impact on Earth' functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt ecosystem shifts seen across multiple trophic levels. This large-scale boundary is located in regions where abrupt ecosystem shifts have been reported in the North Atlantic sector and thereby allows us to link these shifts by a global common phenomenon. We show that these changes alter the biodiversity and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod in order to minimize social and economic consequences.

  10. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles.

    PubMed

    Vergara-Temprado, Jesús; Miltenberger, Annette K; Furtado, Kalli; Grosvenor, Daniel P; Shipway, Ben J; Hill, Adrian A; Wilkinson, Jonathan M; Field, Paul R; Murray, Benjamin J; Carslaw, Ken S

    2018-03-13

    Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions. Copyright © 2018 the Author(s). Published by PNAS.

  11. Information and communication technology and climate change adaptation: Evidence from selected mining companies in South Africa

    PubMed Central

    Nhamo, Godwell

    2016-01-01

    The mining sector is a significant contributor to the gross domestic product of many global economies. Given the increasing trends in climate-induced disasters and the growing desire to find lasting solutions, information and communication technology (ICT) has been introduced into the climate change adaptation mix. Climate change-induced extreme weather events such as flooding, drought, excessive fog, and cyclones have compounded the environmental challenges faced by the mining sector. This article presents the adoption of ICT innovation as part of the adaptation strategies towards reducing the mining sector’s vulnerability and exposure to climate change disaster risks. Document analysis and systematic literature review were adopted as the methodology. Findings from the study reflect how ICT intervention orchestrated changes in communication patterns which are tailored towards the reduction in climate change vulnerability and exposure. The research concludes with a proposition that ICT intervention must be part of the bigger and ongoing climate change adaptation agenda in the mining sector.

  12. Global forest sector modeling: application to some impacts of climate change

    Treesearch

    Joseph Buongiorno

    2016-01-01

    This paper explored the potential long-term effects of a warming climate on the global wood sector, based on Way and Oren's synthesis (Tree Physiology 30,669-688) indicating positive responses of tree growth to higher temperature in boreal and temperative climates, and negative responses in the topics. Changes in forest productivity were introduced in the Global...

  13. Climate change: The challenges for public health preparedness and response- An Indian case study.

    PubMed

    Patil, Rajan R; Deepa, T M

    2007-09-01

    Extremes weather changes surpassing their usual statistical ranges and tumbling records in India could be an early warning bell of global warming. Extreme weather events like the recent record setting in western Indian city of Mumbai or all time high fatalities due to the heat wave in southern Indian states or increasing vulnerability of easten Indian states to flood could all be a manifestation of climate change in the Asian subcontinent. While the skeptics may be inclined to dismiss these events as simple local aberrations, when viewed in an epidemiological paradigm in terms of person, time and space couple with frequency, intensity and fatalities, it could well be an early manifestation of climate change. Global warming poses serious challenge to the health sector and hence warrants emergency health preparedness and response. Climate-sensitive diseases are among the largest global killers, hence major brunt of global climate change in terms of adverse health impact will be mostly borne by poor and developing countries in Asia, given the levels of poverty, nutional levels and poor public health infrastructure.

  14. Putting climate impact estimates to work: the empirical approach of the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Jina, A.; Hsiang, S. M.; Kopp, R. E., III; Rasmussen, D.; Rising, J.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assesses climate risks posed to the United States' economy in a number of sectors [1]. Four of these - crop yield, crime, labor productivity, and mortality - draw upon research which identifies social impacts using contemporary variability in climate. We first identify a group of rigorous studies that use climate variability to identify responses to temperature and precipitation, while controlling for unobserved differences between locations. To incorporate multiple studies from a single sector, we employ a meta-analytical approach that draws on Bayesian methods commonly used in medical research and previously implemented in [2]. We generate a series of aggregate response functions for each sector using this meta-analytical method. We combine response functions with downscaled physical climate projections to estimate climate impacts out to the end of the century, incorporating uncertainty from statistical estimates, weather, climate models, and different emissions scenarios. Incorporating multiple studies in a single estimation framework allows us to directly compare impacts across the economy. We find that increased mortality has the largest effect on the US economy, followed by costs associated with decreased labor productivity. Agricultural losses and increases in crime contribute lesser but nonetheless substantial costs, and agriculture, notably, shows many areas benefitting from projected climate changes. The ACP also presents results throughout the 21stcentury. The dynamics of each of the impact categories differs, with, for example, mortality showing little change until the end of the century, but crime showing a monotonic increase from the present day. The ACP approach can expand to include new findings in current sectors, new sectors, and new geographical areas of interest. It represents an analytical framework that can incorporate empirical studies into a broad characterization of climate impacts across an economy, ensuring that each individual study can contribute to guiding policy priorities on climate change. References: [1] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org. [2] Hsiang, Burke, and Miguel (2013), Science.

  15. Perceptions of climate change across the Canadian forest sector: The key factors of institutional and geographical environment.

    PubMed

    Ameztegui, Aitor; Solarik, Kevin A; Parkins, John R; Houle, Daniel; Messier, Christian; Gravel, Dominique

    2018-01-01

    Assessing the perception of key stakeholders within the forest sector is critical to evaluating their readiness to engage in adapting to climate change. Here, we report the results of the most comprehensive survey carried out in the Canadian forestry sector to date regarding perceptions of climate change. A total of 1158 individuals, representing a wide range of stakeholders across the five most important forestry provinces in Canada, were asked about climate change, its impact on forest ecosystems, and the suitability of current forest management for addressing future impacts. Overall, we found that respondents were more concerned about climate change than the general population. More than 90% of respondents agreed with the anthropogenic origins of climate change, and > 50% considered it a direct threat to their welfare. Political view was the main driver of general beliefs about the causes of climate change and its future consequences, while the province of origin proved to be the best predictor of perceived current impacts on forest ecosystems and its associated risks; and type of stakeholder was the main driver of perceived need for adaptation. Industrial stakeholders were the most skeptical about the anthropogenic cause(s) of climate change (18% disagreed with this statement, compared to an average of 8% in the other stakeholders), its impacts on forest ecosystems (28% for industry vs. 10% for other respondents), and the need for new management practices (18% vs. 7%). Although the degree of awareness and the willingness to implement adaptive practices were high even for the most skeptical groups, our study identified priority sectors or areas for action when designing awareness campaigns. We suggest that the design of a strategic framework for implementing climate adaptation within the Canadian forest sector should focus on the relationship between climate change and changes in disturbance regimes, and above all on the economic consequences of these changes, but it should also take into account the positions shown by each of the actors in each province.

  16. Perceptions of climate change across the Canadian forest sector: The key factors of institutional and geographical environment

    PubMed Central

    Parkins, John R.; Houle, Daniel; Messier, Christian; Gravel, Dominique

    2018-01-01

    Assessing the perception of key stakeholders within the forest sector is critical to evaluating their readiness to engage in adapting to climate change. Here, we report the results of the most comprehensive survey carried out in the Canadian forestry sector to date regarding perceptions of climate change. A total of 1158 individuals, representing a wide range of stakeholders across the five most important forestry provinces in Canada, were asked about climate change, its impact on forest ecosystems, and the suitability of current forest management for addressing future impacts. Overall, we found that respondents were more concerned about climate change than the general population. More than 90% of respondents agreed with the anthropogenic origins of climate change, and > 50% considered it a direct threat to their welfare. Political view was the main driver of general beliefs about the causes of climate change and its future consequences, while the province of origin proved to be the best predictor of perceived current impacts on forest ecosystems and its associated risks; and type of stakeholder was the main driver of perceived need for adaptation. Industrial stakeholders were the most skeptical about the anthropogenic cause(s) of climate change (18% disagreed with this statement, compared to an average of 8% in the other stakeholders), its impacts on forest ecosystems (28% for industry vs. 10% for other respondents), and the need for new management practices (18% vs. 7%). Although the degree of awareness and the willingness to implement adaptive practices were high even for the most skeptical groups, our study identified priority sectors or areas for action when designing awareness campaigns. We suggest that the design of a strategic framework for implementing climate adaptation within the Canadian forest sector should focus on the relationship between climate change and changes in disturbance regimes, and above all on the economic consequences of these changes, but it should also take into account the positions shown by each of the actors in each province. PMID:29897977

  17. Emerging Climate-data Needs in the Air Transport Sector

    NASA Astrophysics Data System (ADS)

    Thompson, T. R.

    2014-12-01

    This paper addresses the nature of climate information needed within the air-transport sector. Air transport is not a single economic sector with uniform needs for climate data: airport, airline, and air-navigation services are the principal sub-sectors, each with their own particular climate-related decision contexts. For example, airports function as fixed infrastructure that is primarily affected by probabilities of extreme events that could hamper runway/taxiway operations, interfere with worker availability, or impede travel to and from the airport by passengers. Airlines, in contrast, are more concerned with changes in atmospheric conditions (upper-air turbulence, convective weather events, etc.) that might require consideration in long-term decisions related to flight-planning processes and aircraft equipage. Air-navigation service providers have needs that are primarily concerned with assurance of safe spatial separation of aircraft via sensor data and communications links. In addition to present-day commercial air transport, we discuss what climate data may be needed for new types of air transport that may emerge in the next couple of decades. These include, for example, small aircraft provided on-demand to non-pilot travelers, high-altitude supersonic business and commercial jets, and very large numbers of un-manned aircraft. Finally, we give examples relating to key technical challenges in providing decision-relevant climate data to the air-transport sector. These include: (1) identifying what types of climate data are most relevant the different decisions facing the several segments of this industry; (2) determining decision-appropriate time horizons for forecasts of this data; and (3) coupling the uncertainties inherent in these forecasts to the decision process.

  18. Developing a Process for Sustained Climate Assessment in the US Southwest Region

    NASA Astrophysics Data System (ADS)

    Duncan, B.; Rick, U. K.; McNie, E. C.

    2017-12-01

    Climate information needs often vary across states, regions, and sectors. While a national assessment provides foundational guidance about the science and impacts of climate change, there is also value in an ongoing climate assessment process with a more targeted regional geographic scale and sectoral focus. Such a process could provide timely and relevant climate information that is sometimes more detailed than what can be included in a national assessment, while also providing a foundation of knowledge and relationships that can be drawn on in larger-scale assessment processes. In the Sustained Climate Assessment in the Southwest project, researchers are investigating opportunities for sustained assessment in the US Southwest National Climate Assessment (NCA) region - an area that consists of Arizona, California, Colorado, Nevada, New Mexico, and Utah. This work is focused on identifying key elements of an ongoing climate assessment process for the region in collaboration with climate service providers and users, with the goal of connecting providers and users to increase access to information and understanding of climate impacts in decision-making contexts. It is focused on four key sectors that represent a range of existing capacity in the region: water, oceans and coasts, agriculture, and transportation. Recommendations for an ongoing assessment process may vary by sector - a reflection of the capacity and opportunity associated with each. In this presentation, we will share case studies of particularly useful or successful existing assessment activities and identify common characteristics across the case studies. We will also share preliminary recommendations for a regional sustained climate assessment process that draws on the broad existing capacity for climate assessment in the region and complements national-scale assessment processes.

  19. Challenges and Opportunities for Advancing Work on Climate Change and Public Health.

    PubMed

    Gould, Solange; Rudolph, Linda

    2015-12-09

    Climate change poses a major threat to public health. Strategies that address climate change have considerable potential to benefit health and decrease health inequities, yet public health engagement at the intersection of public health, equity, and climate change has been limited. This research seeks to understand the barriers to and opportunities for advancing work at this nexus. We conducted semi-structured in-depth interviews (N = 113) with public health and climate change professionals and thematic analysis. Barriers to public health engagement in addressing climate change include individual perceptions that climate change is not urgent or solvable and insufficient understanding of climate change's health impacts and programmatic connections. Institutional barriers include a lack of public health capacity, authority, and leadership; a narrow framework for public health practice that limits work on the root causes of climate change and health; and compartmentalization within and across sectors. Opportunities include integrating climate change into current public health practice; providing inter-sectoral support for climate solutions with health co-benefits; and using a health frame to engage and mobilize communities. Efforts to increase public health sector engagement should focus on education and communications, building leadership and funding, and increasing work on the shared root causes of climate change and health inequities.

  20. Challenges and Opportunities for Advancing Work on Climate Change and Public Health

    PubMed Central

    Gould, Solange; Rudolph, Linda

    2015-01-01

    Climate change poses a major threat to public health. Strategies that address climate change have considerable potential to benefit health and decrease health inequities, yet public health engagement at the intersection of public health, equity, and climate change has been limited. This research seeks to understand the barriers to and opportunities for advancing work at this nexus. We conducted semi-structured in-depth interviews (N = 113) with public health and climate change professionals and thematic analysis. Barriers to public health engagement in addressing climate change include individual perceptions that climate change is not urgent or solvable and insufficient understanding of climate change’s health impacts and programmatic connections. Institutional barriers include a lack of public health capacity, authority, and leadership; a narrow framework for public health practice that limits work on the root causes of climate change and health; and compartmentalization within and across sectors. Opportunities include integrating climate change into current public health practice; providing inter-sectoral support for climate solutions with health co-benefits; and using a health frame to engage and mobilize communities. Efforts to increase public health sector engagement should focus on education and communications, building leadership and funding, and increasing work on the shared root causes of climate change and health inequities. PMID:26690194

  1. Climate Vulnerability and Human Migration in Global Perspective.

    PubMed

    Grecequet, Martina; DeWaard, Jack; Hellmann, Jessica J; Abel, Guy J

    2017-05-01

    The relationship between climate change and human migration is not homogenous and depends critically on the differential vulnerability of population and places. If places and populations are not vulnerable, or susceptible, to climate change, then the climate-migration relationship may not materialize. The key to understanding and, from a policy perspective, planning for whether and how climate change will impact future migration patterns is therefore knowledge of the link between climate vulnerability and migration. However, beyond specific case studies, little is known about this association in global perspective. We therefore provide a descriptive, country-level portrait of this relationship. We show that the negative association between climate vulnerability and international migration holds only for countries least vulnerable to climate change, which suggests the potential for trapped populations in more vulnerable countries. However, when analyzed separately by life supporting sector (food, water, health, ecosystem services, human habitat, and infrastructure) and vulnerability dimension (exposure, sensitivity, and adaptive capacity), we detect evidence of a relationship among more, but not the most, vulnerable countries. The bilateral (i.e., country-to-country) migration show that, on average, people move from countries of higher vulnerability to lower vulnerability, reducing global risk by 15%. This finding is consistent with the idea that migration is a climate adaptation strategy. Still, ~6% of bilateral migration is maladaptive with respect to climate change, with some movement toward countries with greater climate change vulnerability.

  2. Spatio-temporal optimization of agricultural practices to achieve a sustainable development at basin level; framework of a case study in Colombia

    NASA Astrophysics Data System (ADS)

    Uribe, Natalia; corzo, Gerald; Solomatine, Dimitri

    2016-04-01

    The flood events present during the last years in different basins of the Colombian territory have raised questions on the sensitivity of the regions and if this regions have common features. From previous studies it seems important features in the sensitivity of the flood process were: land cover change, precipitation anomalies and these related to impacts of agriculture management and water management deficiencies, among others. A significant government investment in the outreach activities for adopting and promoting the Colombia National Action Plan on Climate Change (NAPCC) is being carried out in different sectors and regions, having as a priority the agriculture sector. However, more information is still needed in the local environment in order to assess were the regions have this sensitivity. Also the continuous change in one region with seasonal agricultural practices have been pointed out as a critical information for optimal sustainable development. This combined spatio-temporal dynamics of crops cycle in relation to climate change (or variations) has an important impact on flooding events at basin areas. This research will develop on the assessment and optimization of the aggregated impact of flood events due to determinate the spatio-temporal dynamic of changes in agricultural management practices. A number of common best agricultural practices have been identified to explore their effect in a spatial hydrological model that will evaluate overall changes. The optimization process consists on the evaluation of best performance in the agricultural production, without having to change crops activities or move to other regions. To achieve this objectives a deep analysis of different models combined with current and future climate scenarios have been planned. An algorithm have been formulated to cover the parametric updates such that the optimal temporal identification will be evaluated in different region on the case study area. Different hydroinformatics techniques for optimization and uncertainty analysis are included in a framework that will solve partially the computational load found in the pre-runs of the case study. The work will focus on the region Fuquene basin in Colombia but this will not limit the scope of this study to have general methodological applications to other areas. Key words Modelling, WFlow_sbm, agriculture practices, climate change, optimization, flooding, spatial and temporal analysis

  3. Agricultural response functions to changes in carbon, temperature, and water based on the C3MP data set

    NASA Astrophysics Data System (ADS)

    Snyder, A.; Ruane, A. C.; Phillips, M.; Calvin, K. V.; Clarke, L.

    2017-12-01

    Agricultural yields vary depending on temperature, precipitation/irrigation conditions, fertilizer application, and CO2 concentration. The Coordinated Climate-Crop Modeling Project (C3MP), conducted as a component of the Agricultural Model Intercomparison and Improvement Project (AgMIP), organized a sensitivity experiments across carbon-temperature-water (CTW) space across 1100 management conditions in 50+ countries, sampling 15 crop species and 20 crop models. Such coordinated sensitivity tests allow for the building of emulators of yield response to changes in CTW values, allowing rapid estimation of yield changes from the types of climate changes projected by the climate modeling community. The resulting emulator may be used to supply agricultural responses to climate change in any user-defined scenario, rather than the restriction to the RCPs in many past works. We present the resulting emulators built from the C3MP output data set for use in the Global Change Assessment Model (GCAM) integrated assessment model that allows for the co-evolution of socioeconomic development, greenhouse gas emissions, climate change, and agricultural sector ramifications. C3MP-based emulators may be of use in designing agricultural impact studies in other IAMs, and we place them in the context of past crop modeling efforts, including the Challinor et al. Meta-analysis, the AgMIP Wheat team results, the AgMIP Global Gridded Crop Model Intercomparison (GGCMI) fast-track modeling results, and the MACSUR impact response surface results.

  4. Time series GHG emission estimates for residential, commercial, agriculture and fisheries sectors in India

    NASA Astrophysics Data System (ADS)

    Mohan, Riya Rachel

    2018-04-01

    Green House Gas (GHG) emissions are the major cause of global warming and climate change. Carbon dioxide (CO2) is the main GHG emitted through human activities, at the household level, by burning fuels for cooking and lighting. As per the 2006 methodology of the Inter-governmental Panel on Climate Change (IPCC), the energy sector is divided into various sectors like electricity generation, transport, fugitive, 'other' sectors, etc. The 'other' sectors under energy include residential, commercial, agriculture and fisheries. Time series GHG emission estimates were prepared for the residential, commercial, agriculture and fisheries sectors in India, for the time period 2005 to 2014, to understand the historical emission changes in 'other' sector. Sectoral activity data, with respect to fuel consumption, were collected from various ministry reports like Indian Petroleum and Natural Gas Statistics, Energy Statistics, etc. The default emission factor(s) from IPCC 2006 were used to calculate the emissions for each activity and sector-wise CO2, CH4, N2O and CO2e emissions were compiled. It was observed that the residential sector generates the highest GHG emissions, followed by the agriculture/fisheries and commercial sector. In the residential sector, LPG, kerosene, and fuelwood are the major contributors of emissions, whereas diesel is the main contributor to the commercial, agriculture and fisheries sectors. CO2e emissions have been observed to rise at a cumulative annual growth rate of 0.6%, 9.11%, 7.94% and 5.26% for the residential, commercial, agriculture and fisheries sectors, respectively. In addition to the above, a comparative study of the sectoral inventories from the national inventories, published by Ministry of Environment, Forest and Climate Change, for 2007 and 2010 was also performed.

  5. Stakeholder-based evaluation categories for regional climate services - a case study at the German Baltic Sea coast

    NASA Astrophysics Data System (ADS)

    Meinke, Insa

    2017-08-01

    In this study, categories, dimensions, and criteria for evaluating regional climate services are derived by a participatory approach with potential service users at the German Baltic Sea coast. The development is carried out within nine face-to-face interviews conducted with decision makers, working in climate sensitive sectors at the German Baltic Sea coast. Three main groups of categories were localized which seem to matter most to the considered stakeholders and which seem to be crucial evaluation categories for regional climate services: (1) credibility, (2) relevance, and (3) appropriateness. For each of these evaluation categories several dimensions emerged, indicating certain perspectives of stakeholder demands. When summarizing these evaluation categories and their dimensions, 13 evaluation criteria for regional climate services can be derived (see Table 1). The results show that stakeholders do mainly address components other than those found in the literature (e.g. inputs, process, outputs, outcomes, and impacts). This might indicate that an evaluation, following solely literature-based (non-participative) components, is not sufficient to localize deficiencies or efficiencies within a regional climate service, since it might lead to results which are not relevant for potential users.

  6. The American Climate Prospectus: a risk-centered analysis of the economic impacts of climate change

    NASA Astrophysics Data System (ADS)

    Jina, A.; Houser, T.; Hsiang, S. M.; Kopp, R. E., III; Delgado, M.; Larsen, K.; Mohan, S.; Rasmussen, D.; Rising, J.; Wilson, P. S.; Muir-Wood, R.

    2014-12-01

    The American Climate Prospectus (ACP), the analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in six sectors - crop yields, energy demand, coastal property, crime, labor productivity, and mortality [1]. The ACP is unique in its characterization of the full probability distribution of economic impacts of climate change throughout the 21st century, making it an extremely useful basis for risk assessments. Three key innovations allow for this characterization. First, climate projections from CMIP5 models are scaled to a temperature probability distribution derived from a coarser climate model (MAGICC). This allows a more accurate representation of the whole distribution of future climates (in particular the tails) than a simple ensemble average. These are downscaled both temporally and spatially. Second, a set of local sea level rise and tropical cyclone projections are used in conjunction with the most detailed dataset of coastal property in the US in order to capture the risks of rising seas and storm surge. Third, we base many of our sectors on empirically-derived responses to temperature and precipitation. Each of these dose-response functions is resampled many times to populate a statistical distribution. Combining these with uncertainty in emissions scenario, climate model, and weather, we create the full probability distribution of climate impacts from county up to national levels, as well as model the effects upon the economy as a whole. Results are presented as likelihood ranges, as well as changes to return intervals of extreme events. The ACP analysis allows us to compare between sectors to understand the magnitude of required policy responses, and also to identify risks through time. Many sectors displaying large impacts at the end of the century, like those of mortality, have smaller changes in the near-term, due to non-linearities in the response functions. Other sectors, like coastal damages, have monotonically increasing costs throughout the 21st century. Taken together, the results from the ACP presents a unique and novel view of the short-, medium-, and long-term economic risks of climate change in the US. References: [1] T. Houser et al (2014), American Climate Prospectus, www.climateprospectus.org.

  7. A Multi-Sector Assessment of the Effects of Climate Change at the Energy-Water-Land Nexus in the US

    NASA Astrophysics Data System (ADS)

    McFarland, J.; Sarofim, M. C.; Martinich, J.

    2017-12-01

    Rising temperatures and changing precipitation patterns due to climate change are projected to alter many sectors of the US economy. A growing body of research has examined these effects in the energy, water, and agricultural sectors. Rising summer temperatures increase the demand for electricity. Changing precipitation patterns effect the availability of water for hydropower generation, thermo-electric cooling, irrigation, and municipal and industrial consumption. A combination of changes to temperature and precipitation alter crop yields and cost-effective farming practices. Although a significant body of research exists on analyzing impacts to individual sectors, fewer studies examine the effects using a common set of assumptions (e.g., climatic and socio-economic) within a coupled modeling framework. The present analysis uses a multi-sector, multi-model framework with common input assumptions to assess the projected effects of climate change on energy, water, and land-use in the United States. The analysis assesses the climate impacts for across 5 global circulation models for representative concentration pathways (RCP) of 8.5 and 4.5 W/m2. The energy sector models - Pacific Northwest National Lab's Global Change Assessment Model (GCAM) and the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) - show the effects of rising temperature on energy and electricity demand. Electricity supply in ReEDS is also affected by the availability of water for hydropower and thermo-electric cooling. Water availability is calculated from the GCM's precipitation using the US Basins model. The effects on agriculture are estimated using both a process-based crop model (EPIC) and an agricultural economic model (FASOM-GHG), which adjusts water supply curves based on information from US Basins. The sectoral models show higher economic costs of climate change under RCP 8.5 than RCP 4.5 averaged across the country and across GCM's.

  8. ISI-MIP: The Inter-Sectoral Impact Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Huber, V.; Dahlemann, S.; Frieler, K.; Piontek, F.; Schewe, J.; Serdeczny, O.; Warszawski, L.

    2013-12-01

    The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) aims to synthesize the state-of-the-art knowledge of climate change impacts at different levels of global warming. The project's experimental design is formulated to distinguish the uncertainty introduced by the impact models themselves, from the inherent uncertainty in the climate projections and the variety of plausible socio-economic futures. The unique cross-sectoral scope of the project provides the opportunity to study cascading effects of impacts in interacting sectors and to identify regional 'hot spots' where multiple sectors experience extreme impacts. Another emphasis lies on the development of novel metrics to describe societal impacts of a warmer climate. We briefly outline the methodological framework, and then present selected results of the first, fast-tracked phase of ISI-MIP. The fast track brought together 35 global impact models internationally, spanning five sectors across human society and the natural world (agriculture, water, natural ecosystems, health and coastal infrastructure), and using the latest generation of global climate simulations (RCP projections from the CMIP5 archive) and socioeconomic drivers provided within the SSP process. We also introduce the second phase of the project, which will enlarge the scope of ISI-MIP by encompassing further impact sectors (e.g., forestry, fisheries, permafrost) and regional modeling approaches. The focus for the next round of simulations will be the validation and improvement of models based on historical observations and the analysis of variability and extreme events. Last but not least, we discuss the longer-term objective of ISI-MIP to initiate a coordinated, ongoing impact assessment process, driven by the entire impact community and in parallel with well-established climate model intercomparisons (CMIP).

  9. Estimating farmers' willingness to pay for climate change adaptation: the case of the Malaysian agricultural sector.

    PubMed

    Masud, Muhammad Mehedi; Junsheng, Ha; Akhtar, Rulia; Al-Amin, Abul Quasem; Kari, Fatimah Binti

    2015-02-01

    This paper estimates Malaysian farmers' willingness to pay (WTP) for a planned adaptation programme for addressing climate issues in the Malaysian agricultural sector. We used the contingent valuation method (CVM) for a monetary valuation of farmers' preferences for a planned adaptation programme by ascertaining the value attached to address climatic issues in the Malaysian agricultural sector. Structured questionnaires were distributed among the sampled farmers. The study found that 74 % of respondents were willing to pay for a planned adaptation programme and that several socioeconomic and motivation factors have greater influence on their WTP. This paper clearly specifies the steps needed for all institutional bodies to better address issues in climate change. The outcomes of this paper will support policy makers to better design an efficient adaptation framework for adapting to the adverse impacts of climate change.

  10. Climate Vulnerability and Human Migration in Global Perspective

    PubMed Central

    Grecequet, Martina; DeWaard, Jack; Hellmann, Jessica J.; Abel, Guy J.

    2018-01-01

    The relationship between climate change and human migration is not homogenous and depends critically on the differential vulnerability of population and places. If places and populations are not vulnerable, or susceptible, to climate change, then the climate–migration relationship may not materialize. The key to understanding and, from a policy perspective, planning for whether and how climate change will impact future migration patterns is therefore knowledge of the link between climate vulnerability and migration. However, beyond specific case studies, little is known about this association in global perspective. We therefore provide a descriptive, country-level portrait of this relationship. We show that the negative association between climate vulnerability and international migration holds only for countries least vulnerable to climate change, which suggests the potential for trapped populations in more vulnerable countries. However, when analyzed separately by life supporting sector (food, water, health, ecosystem services, human habitat, and infrastructure) and vulnerability dimension (exposure, sensitivity, and adaptive capacity), we detect evidence of a relationship among more, but not the most, vulnerable countries. The bilateral (i.e., country-to-country) migration show that, on average, people move from countries of higher vulnerability to lower vulnerability, reducing global risk by 15%. This finding is consistent with the idea that migration is a climate adaptation strategy. Still, ~6% of bilateral migration is maladaptive with respect to climate change, with some movement toward countries with greater climate change vulnerability. PMID:29707262

  11. Effects of global climate change on the US forest sector: response functions derived from a dynamic resource and market simulator.

    Treesearch

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; Diana Burton; Chi-Chung. Chen

    2000-01-01

    A multiperiod, regional, mathematical programming economic model is used to evaluate the potential economic impacts of global climatic change on the US forest sector. A wide range of scenarios for the biological response of forests to climate change are developed, ranging from small to large changes in forest growth rates. These scenarios are simulated in the economic...

  12. Exploring climate change vulnerability across sectors and scenarios using indicators of impacts and coping capacity.

    PubMed

    Dunford, R; Harrison, P A; Jäger, J; Rounsevell, M D A; Tinch, R

    Addressing climate change vulnerability requires an understanding of both the level of climate impacts and the capacity of the exposed population to cope. This study developed a methodology for allowing users to explore vulnerability to changes in ecosystem services as a result of climatic and socio-economic changes. It focuses on the vulnerability of Europe across multiple sectors by combining the outputs of a regional integrated assessment (IA) model, the CLIMSAVE IA Platform, with maps of coping capacity based on the five capitals approach. The presented methodology enables stakeholder-derived socio-economic futures to be represented within a quantitative integrated modelling framework in a way that changes spatially and temporally with the socio-economic storyline. Vulnerability was mapped for six key ecosystem services in 40 combined climate and socio-economic scenarios. The analysis shows that, whilst the north and west of Europe are generally better placed to cope with climate impacts than the south and east, coping could be improved in all areas. Furthermore, whilst the lack of coping capacity in dystopian scenarios often leads to greater vulnerability, there are complex interactions between sectors that lead to patterns of vulnerability that vary spatially, with scenario and by sector even within the more utopian futures.

  13. Detecting climate change oriented and human induced changes in stream temperature across the Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Voisin, N.; Cheng, Y.; Niemeyer, R. J.; Nijssen, B.; Yearsley, J. R.; Zhou, T.

    2017-12-01

    In many areas, climate change is expected to alter the flow regime and increase stream temperature, especially during summer low flow periods. During these low flow periods, water management increases flows in order to sustain human activities such as water for irrigation and hydroelectric power generation. Water extraction from rivers during warm season can increase stream temperature while reservoir regulation may cool downstream river temperatures by releasing cool water from deep layers. Thus, it is reasonable to hypothesize that water management changes the sensitivity of the stream temperature regime to climate change when compared to unmanaged resources. The time of emergence of change refers to the point in time when observations, or model simulations, show statistically significant changes from a given baseline period, i.e. above natural variability. Here we aim to address two questions by investigating the time of emergence of changes in stream temperature in the southeastern United States: what is the sensitivity of stream temperature under regulated flow conditions to climate change and what is the contribution of water management in increasing or decreasing stream temperature sensitivity to climate change. We simulate regulated flow by using runoff from the Variable Infiltration Capacity (VIC) macroscale hydrological model as input into a large scale river routing and reservoir model MOSART-WM. The River Basin Model (RBM), a distributed stream temperature model, includes a two-layer thermal stratification module to simulate stream temperature in regulated river systems. We evaluate the timing of emergence of changes in flow and stream temperature based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We analyze the difference in emergence of change between natural and regulated streamflow. Insights will be provided toward applications for multiple sectors of activities including electrical resources adequacy studies over the southeastern U.S.

  14. Air Quality, Human Health and Climate Implications of China's Synthetic Natural Gas Development

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Mauzerall, D. L.; Wagner, F.; Smith, K. R.; Peng, W.; Yang, J.; Zhu, T.

    2016-12-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government is planning an enormous increase in synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases carbon dioxide (CO2) emissions and thus worsens climate change. Primarily due to variation in air pollutant and CO2 emission factors as well as energy efficiencies across sectors and regions, the replacement of coal with SNG results in varying degrees of air quality and adverse climate impacts. Here we conduct an integrated assessment to estimate the air quality, human health, and adverse climate impacts of various sectoral and regional SNG substitution strategies for coal in China in 2020. We find that using all planned production of SNG in the residential sector results in an annual decrease of approximately 43,000 (22,000 to 63,000) outdoor-air-pollution-associated Chinese premature mortalities, with ranges determined by the low and high estimates of relative risks. If changes in indoor/household air pollution were also included the decrease would be larger. By comparison, this is a 10 and 60 times greater reduction in premature mortalities than obtained when the SNG displaces coal in the industrial or power sectors, respectively. Deploying SNG as a coal replacement in the industrial or power sectors also has a 4-5 times higher carbon penalty than utilization in the residential sector due to inefficiencies in current household coal use. If carbon capture and storage (CCS) is used in SNG production, substituting SNG for coal can provide both air quality and climate co-benefits in all scenarios. However, even with CCS, SNG emits 22-40% (depending on end-use) more CO2 than the same amount of conventional gas. For existing SNG projects, we find displacing coal with SNG in the residential sector provides the largest air quality and health benefits with the smallest carbon penalties of deployment in any sector.

  15. Climatic and geologic controls on the piezometry of the Querença-Silves karst aquifer, Algarve (Portugal)

    NASA Astrophysics Data System (ADS)

    Neves, Maria C.; Costa, Luis; Monteiro, José P.

    2016-06-01

    Karst aquifers in semi-arid regions, like Querença-Silves (Portugal), are particularly vulnerable to climate variability. For the first time in this region, the temporal structure of a groundwater-level time series (1985-2010) was explored using the continuous wavelet transform. The investigation focused on a set of four piezometers, two at each side of the S. Marcos-Quarteira fault, to demonstrate how each of the two sectors of the aquifer respond to climate-induced patterns. Singular spectral analysis applied to an extended set of piezometers enabled identification of several quasi-periodic modes of variability, with periods of 6.5, 4.3, 3.2 and 2.6 years, which can be explained by low-frequency climate patterns. The geologic forcing accounts for ~15 % of the differential variability between the eastern and western sectors of the aquifer. The western sector displays spatially homogenous piezometric variations, large memory effects and low-pass filtering characteristics, which are consistent with relatively large and uniform values of water storage capacity and transmissivity properties. In this sector, the 6.5-year mode of variability accounts for ~70 % of the total variance of the groundwater levels. The eastern sector shows larger spatial and temporal heterogeneity, is more reactive to short-term variations, and is less influenced by the low-frequency components related to climate patterns.

  16. Is "the perfect model" really needed? - Analysis of the quality level of climate information necessary for supporting adaptation in agriculture and forestry

    NASA Astrophysics Data System (ADS)

    Gálos, Borbála; Ostler, Wolf-Uwe; Csáki, Péter; Bidló, András; Panferov, Oleg

    2016-04-01

    Recent results of climate science (e.g. IPCC AR5, 2013) and statements of climate policy (e.g. Paris Agreement) confirm that climate change is an ongoing issue. The consequences will be noticeable for a long time even if the 2 Degree goal is reached. Therefore, action plans are necessary for adaptation and mitigation on national and international level. Forestry and agriculture are especially threatened by the probable increase of the frequency and/or intensity of climate extremes. Severe impacts of recurrent droughts/heat waves that were observed in the last decades in the sensitive and vulnerable ecosystems and regions are very likely to occur with increasing probability throughout the 21st century. For the adequate climate impact assessments, for adaptation strategies as well as for supporting decisions in the above mentioned sectors the reliable information on the long-term climate tendencies and on ecosystem responses are required. Here are the two major problems: on the one hand the information on current climate and future climate developments are highly uncertain. On the other hand, due to limited knowledge on ecosystem responses, it is difficult to define how certain or accurate the provided climate data should be for the plausible application in agricultural/forestry research and practice. Considering agriculture and forestry, our research is focusing on the following questions: • What is the climate information demand of practice and impact research in the two sectors? • What quality level of climate information is necessary for adaptation support? • How does the accuracy of climate input affect the results of the climate impact assessments? The agriculture and forestry operate at two very different time scales and have a different reaction times and adaptation capacities. Agriculture requires short-term information on current conditions and short-/medium-term weather forecast. To assess the degree of information accuracy required by practical agriculture a questionnaire has been carried out among 180 farms of different sizes and specializations (mostly arable farming and viniculture) in Reinland-Palatine, Germany. The results show that almost all farmers use the weather information daily and are in need of weather forecast. More than a half requires also the forecast on extreme events. However the farmers require more qualitative (e.g. temperature coarser than 1°C) than high-precision quantitative information in short and medium-term forecasts. Forestry requires long-term (30-100 years) climate projections. For the assessment of climate change impacts on forest distribution, production and tree species selection, monthly temperature means and precipitation sums are sufficient. Based on the results of regional climate models it will be shown how the bias, the spread and spatial resolution of the simulation results are affecting the accuracy of impact assessments. Our analyses can help to fill the gap between climate services and the needs of impact researchers and end users in agriculture and forestry. User-relevant climate information can contribute to appropriate adaptation support services and management options in the two sectors. Keywords: regional climate projections, climate impact assessment, agriculture, forestry, adaptation support, accuracy of climate information Funding: The research is supported by the "Agroclimate-2" (VKSZ_12-1-2013-0034) joint EU-national research project.

  17. Overview of the Implementation of the Climate Data Initiative

    NASA Astrophysics Data System (ADS)

    Tilmes, C.; Goodman, H. M.; Privette, A. P.

    2014-12-01

    One of the efforts described in the President's Climate Action Plan is the Climate Data Initiative, a broad effort to leverage the federal government's extensive, freely-available climate-relevant data resources data to spur innovation and private-sector entrepreneurship in order to advance awareness of and preparedness for the impacts of climate change. The Climate Data Initiative, launched in March 2014, leverages commitments from government and the private sector to unleash data and make it accessible in ways that can be used by communities and companies to prepare for climate change. It builds on the White House's other Open Data Initiatives—in areas such as health, education, and safety. The Climate Data Initiative unleashes federal data relevant to addressing climate-related risks and vulnerabilities through the Climate.Data.gov web site. This talk will describe the Climate Data Initiative and its support and interactions with the Climate Resilience Toolkit.

  18. Carbon-Temperature-Water Change Analysis for Peanut Production Under Climate Change: A Prototype for the AgMIP Coordinated Climate-Crop Modeling Project (C3MP)

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; McDermid, Sonali; Rosenzweig, Cynthia; Baigorria, Guillermo A.; Jones, James W.; Romero, Consuelo C.; Cecil, L. DeWayne

    2014-01-01

    Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) to engage a global network of crop modelers to explore the impacts of climate change via an investigation of crop responses to changes in carbon dioxide concentration ([CO2]), temperature, and water. As a demonstration of the C3MP protocols and enabled analyses, we apply the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Peanut crop model for Henry County, Alabama, to evaluate responses to the range of plausible [CO2], temperature changes, and precipitation changes projected by climate models out to the end of the 21st century. These sensitivity tests are used to derive crop model emulators that estimate changes in mean yield and the coefficient of variation for seasonal yields across a broad range of climate conditions, reproducing mean yields from sensitivity test simulations with deviations of ca. 2% for rain-fed conditions. We apply these statistical emulators to investigate how peanuts respond to projections from various global climate models, time periods, and emissions scenarios, finding a robust projection of modest (<10%) median yield losses in the middle of the 21st century accelerating to more severe (>20%) losses and larger uncertainty at the end of the century under the more severe representative concentration pathway (RCP8.5). This projection is not substantially altered by the selection of the AgMERRA global gridded climate dataset rather than the local historical observations, differences between the Third and Fifth Coupled Model Intercomparison Project (CMIP3 and CMIP5), or the use of the delta method of climate impacts analysis rather than the C3MP impacts response surface and emulator approach.

  19. A probabilistic approach to emissions from transportation sector in the coming decades

    NASA Astrophysics Data System (ADS)

    Yan, F.; Winijkul, E.; Bond, T. C.; Streets, D. G.

    2010-12-01

    Future emission estimates are necessary for understanding climate change, designing national and international strategies for air quality control and evaluating mitigation policies. Emission inventories are uncertain and future projections even more so. Most current emission projection models are deterministic; in other words, there is only single answer for each scenario. As a result, uncertainties have not been included in the estimation of climate forcing or other environmental effects, but it is important to quantify the uncertainty inherent in emission projections. We explore uncertainties of emission projections from transportation sector in the coming decades by sensitivity analysis and Monte Carlo simulations. These projections are based on a technology driven model: the Speciated Pollutants Emission Wizard (SPEW)-Trend, which responds to socioeconomic conditions in different economic and mitigation scenarios. The model contains detail about technology stock, including consumption growth rates, retirement rates, timing of emission standards, deterioration rates and transition rates from normal vehicles to vehicles with extremely high emission factors (termed “superemitters”). However, understanding of these parameters, as well as relationships with socioeconomic conditions, is uncertain. We project emissions from transportation sectors under four different IPCC scenarios (A1B, A2, B1, and B2). Due to the later implementation of advanced emission standards, Africa has the highest annual growth rate (1.2-3.1%) from 2010 to 2050. Superemitters begin producing more than 50% of global emissions around year 2020. We estimate uncertainties from the relationships between technological change and socioeconomic conditions and examine their impact on future emissions. Sensitivities to parameters governing retirement rates are highest, causing changes in global emissions from-26% to +55% on average from 2010 to 2050. We perform Monte Carlo simulations to examine how these uncertainties will affect total emissions if any input parameter that has inherent the uncertainties is substituted by a range of values-probability distribution and varies at the same time; the 95% confidence interval of global emission annual growth rate is -1.9% to +0.2% per year.

  20. Sectoral contributions to surface water stress in the coterminous United States

    NASA Astrophysics Data System (ADS)

    Averyt, K.; Meldrum, J.; Caldwell, P.; Sun, G.; McNulty, S.; Huber-Lee, A.; Madden, N.

    2013-09-01

    Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model which considers regional trends in both water supply and demand. A snapshot of contemporary annual water demand is compared against different water supply regimes, including current average supplies, current extreme-year supplies, and projected future average surface water flows under a changing climate. In addition, we investigate the contributions of different water demand sectors to current water stress. On average, water supplies are stressed, meaning that demands for water outstrip natural supplies in over 9% of the 2103 watersheds examined. These watersheds rely on reservoir storage, conveyance systems, and groundwater to meet current water demands. Overall, agriculture is the major demand-side driver of water stress in the US, whereas municipal stress is isolated to southern California. Water stress introduced by cooling water demands for power plants is punctuated across the US, indicating that a single power plant has the potential to stress water supplies at the watershed scale. On the supply side, watersheds in the western US are particularly sensitive to low flow events and projected long-term shifts in flow driven by climate change. The WaSSI results imply that not only are water resources in the southwest in particular at risk, but that there are also potential vulnerabilities to specific sectors, even in the ‘water-rich’ southeast.

  1. Climate impacts on hydropower and consequences for global electricity supply investment needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Sean W. D.; Hejazi, Mohamad; Kim, Son H.

    Recent progress in global scale hydrological and dam modeling has allowed for the study of climate change impacts on global hydropower production. Here we explore the possible consequences of these impacts for the electricity supply sector. Regional hydropower projections are developed for two emissions scenarios by forcing a coupled global hydrological and dam model with downscaled, bias-corrected climate realizations derived from sixteen general circulation models. Consequent impacts on power sector composition and associated emissions and investment costs are explored using the Global Change Assessment Model (GCAM). Changes in hydropower generation resulting from climate change can shift power demands onto andmore » away from carbon intensive technologies, resulting in significant impacts on power sector CO2 emissions for certain world regions—primarily those located in Latin America, as well as Canada and parts of Europe. Reduced impacts of climate change on hydropower production under a low emissions scenario coincide with increased costs of marginal power generating capacity—meaning impacts on power sector investment costs are similar for high and low emissions scenarios. Individual countries where impacts on investment costs imply significant risks or opportunities are identified.« less

  2. Impacts of climate change on peanut yield in China simulated by CMIP5 multi-model ensemble projections

    NASA Astrophysics Data System (ADS)

    Xu, Hanqing; Tian, Zhan; Zhong, Honglin; Fan, Dongli; Shi, Runhe; Niu, Yilong; He, Xiaogang; Chen, Maosi

    2017-09-01

    Peanut is one of the major edible vegetable oil crops in China, whose growth and yield are very sensitive to climate change. In addition, agriculture climate resources are expected to be redistributed under climate change, which will further influence the growth, development, cropping patterns, distribution and production of peanut. In this study, we used the DSSAT-Peanut model to examine the climate change impacts on peanut production, oil industry and oil food security in China. This model is first calibrated using site observations including 31 years' (1981-2011) climate, soil and agronomy data. This calibrated model is then employed to simulate the future peanut yield based on 20 climate scenarios from 5 Global Circulation Models (GCMs) developed by the InterSectoral Impact Model Intercomparison Project (ISIMIP) driven by 4 Representative Concentration Pathways (RCPs). Results indicate that the irrigated peanut yield will decrease 2.6% under the RCP 2.6 scenario, 9.9% under the RCP 4.5 scenario and 29% under the RCP 8.5 scenario, respectively. Similarly, the rain-fed peanut yield will also decrease, with a 2.5% reduction under the RCP 2.6 scenario, 11.5% reduction under the RCP 4.5 scenario and 30% reduction under the RCP 8.5 scenario, respectively.

  3. The visualisation and communication of probabilistic climate forecasts to renewable energy policy makers

    NASA Astrophysics Data System (ADS)

    Doblas-Reyes, F.; Steffen, S.; Lowe, R.; Davis, M.; Rodó, X.

    2013-12-01

    Despite the strong dependence of weather and climate variability on the renewable energy industry, and several initiatives towards demonstrating the added benefits of integrating probabilistic forecasts into energy decision making process, they are still under-utilised within the sector. Improved communication is fundamental to stimulate the use of climate forecast information within decision-making processes, in order to adapt to a highly climate dependent renewable energy industry. This paper focuses on improving the visualisation of climate forecast information, paying special attention to seasonal to decadal (s2d) timescales. This is central to enhance climate services for renewable energy, and optimise the usefulness and usability of inherently complex climate information. In the realm of the Global Framework for Climate Services (GFCS) initiative, and subsequent European projects: Seasonal-to-Decadal Climate Prediction for the Improvement of European Climate Service (SPECS) and the European Provision of Regional Impacts Assessment in Seasonal and Decadal Timescales (EUPORIAS), this paper investigates the visualisation and communication of s2d forecasts with regards to their usefulness and usability, to enable the development of a European climate service. The target end user will be renewable energy policy makers, who are central to enhance climate services for the energy industry. The overall objective is to promote the wide-range dissemination and exchange of actionable climate information based on s2d forecasts from Global Producing Centres (GPC's). Therefore, it is crucial to examine the existing main barriers and deficits. Examples of probabilistic climate forecasts from different GPC's were used to prepare a catalogue of current approaches, to assess their advantages and limitations and finally to recommend better alternatives. In parallel, interviews were conducted with renewable energy stakeholders to receive feedback for the improvement of existing visualisation techniques of forecasts. The overall aim is to establish a communication protocol for the visualisation of probabilistic climate forecasts, which does not currently exist. Global Producing Centres show their own probabilistic forecasts with limited consistency in their communication across different centres, which complicates the understanding for the end user. A communication protocol for both the visualisation and description of climate forecasts can help to introduce a standard format and message to end users from several climate-sensitive sectors, such as energy, tourism, agriculture and health. It is hoped that this work will facilitate the improvement of decision-making processes relying on forecast information and enable their wide-range dissemination based on a standardised approach.

  4. The Moving Target of Climate Mitigation: Examples from the Energy Sector in California

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2016-12-01

    In response to the concerns of climate change-induced impacts on human health, environmental integrity, and the secure operation of resource supply infrastructures, strategies to reduce greenhouse gas (GHG) emissions of major societal sectors have been in development. In the energy sector, these strategies are based in low carbon primary energy deployment, increased energy efficiency, and implementing complementary technologies for operational resilience. While these strategies are aimed at climate mitigation, a degree of climate change-induced impacts will occur by the time of their deployment, and many of these impacts can compromise the effectiveness of these climate mitigation strategies. In order to develop climate mitigation strategies that will achieve their GHG reduction and other goals, the impact that climate change-induced conditions can have on different components of climate mitigation strategies must be understood. This presentation will highlight three examples of how climate change-induced conditions affect components of climate mitigation strategies in California: through impacts on 1) hydropower generation, 2) renewable potential for geothermal and solar thermal resources to form part of the renewable resource portfolio, and 3) the magnitudes and shapes of the electric load demand that must be met sustainably. These studies are part of a larger, overarching project to understand how climate change impacts the energy system and how to develop a sustainable energy infrastructure that is resilient against these impacts.

  5. User needs for climate change scenarios in Switzerland

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Liniger, Mark; Flückiger Knutti, Jacqueline

    2017-04-01

    In the framework of the recently founded National Center for Climate Services (NCCS) new climate change scenarios for Switzerland are currently under development that will be released in 2018 ("CH2018 scenarios"). An important component herein is the consideration of user needs in order to ensure that the new scenarios are user tailored and hence find a wide applicability in different sectors in Switzerland. A comprehensive market research was conducted to get a better overview of who the users of climate scenarios are and what they need. The survey targeted the most climate relevant sectors, and involved representatives from administration, research and private companies across Switzerland. The survey comprised several qualitative group interviews with key stakeholders, a written questionaire, answered by more than one hundred users and two specific workshops gathering the needs in dissemination. Additionally, the survey results were consolidated at a national symposium with around 150 participants from research, administration and practice. The results of the survey show the necessity to classify the users of climate scenarios according to their level of usage and according to the different sectors. It turns out that the less intensive the usage of the climate scenarios is, the more important becomes the need of comprehensibility, clarity and support when disseminating new climate scenarios. According to the survey it is especially the non-experts that should be better addressed in the new cycle of national climate scenarios. In terms of content, the survey reveals strongest needs for quantitative information on changes in extremes, an aspect that was handled in a qualitative way only in the predecessor climate scenario suite CH2011. Another cross-sectoral need are physically consistent data in time, space and between several variables. For instance, in agriculture the combination of heat and dryness is an important aspect, while the same is true in the energy sector for the combination of wind speed and global radiation. Furthermore, the survey reveals that the incorporation of provided uncertainty depends on the user type: while intensive users often can handle uncertainties, there are a lot of other users that either cannot or purposely do not make use of the uncertainty. For the development of new Swiss climate scenarios the survey results on end-user needs are considered as a starting point for further interactions with users. This is accomplished with the establishment of a sounding board accompagning the project throught its time span. Furthermore, explicit stakeholder-dialogues with key users of different sectors will be carried during the project phase.

  6. Identifying and Reconciling Risk Across Sectors: The implications of differing views of risk in climate policy, environmental conservation, and the finance sector

    NASA Astrophysics Data System (ADS)

    Johns, T.; Henderson, I.; Thoumi, G.

    2014-12-01

    The presence and valuation of risk are commonalities that link the diverse fields of climate change science and policy, environmental conservation, and the financial/investment sector. However, the definition and perception of risks vary widely across these critically linked fields. The "Stranded Asset" concept developed by organizations like the Carbon Tracker Initiative begins to elucidate the links between climate change risk and financial risk. Stranded assets are those that may lose some or all value from climate disruption, changes in demand-side dynamics and/or a more stringent regulatory environment. In order to shift financial flows toward climate change mitigation, emissions-heavy activities that present finance and investment opportunities must also be assessed for their GHG-asset risk attributes in terms of their contribution and vulnerability to climate disruption, as well as other environmental externalities. Until the concept of GHG-asset risk in investment is reconciled with the risks of climate change and environmental conservation, it will not be possible to shift business and financial practices, and unlock private sector resources to address the climate change and conservation challenge. UNEP-FI is researching the application of the concept of Value-atRisk (VaR) to explore links between the financial sector and deforestation/REDD+. The research will test the hypothesis that climate risk is a financial risk, and propose tools to identify and quantify risks associated with unsustainable land-use investments. The tools developed in this research will help investors, managers and governments assess their exposures to the material REDD-related risks in their portfolios. This will inform the development of 'zero net deforestation' investment indices to allow investors to lower the 'deforestation' exposure of 'benchmark' financial indices used by many of the largest money managers. A VaR analysis will be performed, combining the notion of externality with the traditional approach of external (exogenous) risk analysis. The VaR component introduces probabilities for different scenarios and may ultimately lead to a full distribution for the holistic losses. These distributions are non-parametric and non-linear since climate change is an "event-risk".

  7. Climate Change and a Global City: An Assessment of the Metropolitan East Coast Region

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Solecki, William

    1999-01-01

    The objective of the research is to derive an assessment of the potential climate change impacts on a global city - in this case the 31 county region that comprises the New York City metropolitan area. This study comprises one of the regional components that contribute to the ongoing U.S. National Assessment: The Potential Consequences of Climate Variability and Change and is an application of state-of-the-art climate change science to a set of linked sectoral assessment analyses for the Metro East Coast (MEC) region. We illustrate how three interacting elements of global cities react and respond to climate variability and change with a broad conceptual model. These elements include: people (e.g., socio- demographic conditions), place (e.g., physical systems), and pulse (e.g., decision-making and economic activities). The model assumes that a comprehensive assessment of potential climate change can be derived from examining the impacts within each of these elements and at their intersections. Thus, the assessment attempts to determine the within-element and the inter-element effects. Five interacting sector studies representing the three intersecting elements are evaluated. They include the Coastal Zone, Infrastructure, Water Supply, Public Health, and Institutional Decision-making. Each study assesses potential climate change impacts on the sector and on the intersecting elements, through the analysis of the following parts: 1. Current conditions of sector in the region; 2. Lessons and evidence derived from past climate variability; 3. Scenario predictions affecting sector; potential impacts of scenario predictions; 4. Knowledge/information gaps and critical issues including identification of additional research questions, effectiveness of modeling efforts, equity of impacts, potential non-local interactions, and policy recommendations; and 5. Identification of coping strategies - i.e., resilience building, mitigation strategies, new technologies, education that affects decision-making, and better preparedness for contingencies.

  8. Climate of the Arctic marine environment.

    PubMed

    Walsh, John E

    2008-03-01

    The climate of the Arctic marine environment is characterized by strong seasonality in the incoming solar radiation and by tremendous spatial variations arising from a variety of surface types, including open ocean, sea ice, large islands, and proximity to major landmasses. Interannual and decadal-scale variations are prominent features of Arctic climate, complicating the distinction between natural and anthropogenically driven variations. Nevertheless, climate models consistently indicate that the Arctic is the most climatically sensitive region of the Northern Hemisphere, especially near the sea ice margins. The Arctic marine environment has shown changes over the past several decades, and these changes are part of a broader global warming that exceeds the range of natural variability over the past 1000 years. Record minima of sea ice coverage during the past few summers and increased melt from Greenland have important implications for the hydrographic regime of the Arctic marine environment. The recent changes in the atmosphere (temperature, precipitation, pressure), sea ice, and ocean appear to be a coordinated response to systematic variations of the large-scale atmospheric circulation, superimposed on a general warming that is likely associated with increasing greenhouse gases. The changes have been sufficiently large in some sectors (e.g., the Bering/Chukchi Seas) that consequences for marine ecosystems appear to be underway. Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050. However, the warming is seasonal (largest in autumn and winter), spatially variable, and closely associated with further retreat of sea ice. Additional changes predicted for 2050 are a general decrease of sea level pressure (largest in the Bering sector) and an increase of precipitation. While predictions of changes in storminess cannot be made with confidence, the predicted reduction of sea ice cover will almost certainly lead to increased oceanic mixing, ocean wave generation, and coastal flooding.

  9. Integrated assessment of water-power grid systems under changing climate

    NASA Astrophysics Data System (ADS)

    Yan, E.; Zhou, Z.; Betrie, G.

    2017-12-01

    Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. In this presentation, we are focusing on recent improvement in model development of thermoelectric power plant water use simulator, power grid operation and cost optimization model, and model integration that facilitate interaction among water and electricity generation under extreme climate events. A process based thermoelectric power water use simulator includes heat-balance, climate, and cooling system modules that account for power plant characteristics, fuel types, and cooling technology. The model is validated with more than 800 power plants of fossil-fired, nuclear and gas-turbine power plants with different cooling systems. The power grid operation and cost optimization model was implemented for a selected regional in the Midwest. The case study will be demonstrated to evaluate the sensitivity and resilience of thermoelectricity generation and power grid under various climate and hydrologic extremes and potential economic consequences.

  10. User-tailored seasonal forecasts for agriculture - creating socio-economic benefit through climate services in the Andes

    NASA Astrophysics Data System (ADS)

    De Ventura, Sara; Avalos, Grinia; Rossa, Andrea; Flubacher, Moritz; Gubler, Stefanie; Sedlmeier, Katrin; Dapozzo, Marlene; Garcia, Teresa; Quevedo, Karim; Liniger, Mark; Spirig, Christoph; Rosas, Gabriela; Schwierz, Cornelia

    2017-04-01

    The project Climandes is a twinning project between the Peruvian National Meteorological and Hydrological Service (SENAMHI) and the Federal Office of Meteorology and Climatology of Switzerland (MeteoSwiss) aiming at improving climate services for the Andean Region. It was launched in 2012 as a pilot project of the Global Framework for Climate Services (GFCS) of WMO. In 2016 a second phase of the project has started. Until now, Peru as all the Andean countries has had only a limited access to climate services, and the few instruments already in place have mostly not been developed in concordance with the user needs. Due to this mismatch, the opportunity to achieve veritable socio-economic benefits (SEB) has been overlooked so far. An additional difficulty is the lack of trained and experienced climatology and meteorology professionals able to develop and provide high quality climate services. Furthermore, the importance of climate information and its far-reaching benefits has not yet been fully acknowledged and embraced by the political decision-makers. The overall goals of the Climandes project are the following:. • Provision of user-tailored climate services for the Andean Region to improve socio- economic benefits for the agricultural sector and for society at large. • Improvement of the capacities of the meteorological service of Peru to generate user-tailored climate services in the agricultural sector. These goals are elaborated within three mutually dependent modules: The first one comprises user-tailored climate products for the agricultural sector in the Peruvian Andes. This includes drought and precipitation monitoring as well as the development of a prototype seasonal prediction system for the region including indices tailored to the agricultural sector. The second module focuses on capacity building, enabling climatology-related professionals and students to develop high-quality climate services for Peru and the Andean Region. Training courses as well as E-learning tools covering the knowledge needed for the elaboration and use of climate services (e.g. monitoring, seasonal prediction of precipitation) are developed and implemented. The third module aims at raising the awareness of political stakeholders of the SEB of SENAMHI's sector-specific climate services underpinned by a case study to quantify the SEB of drought and precipitation information platform for selected crops. This contribution will give an overview of the project and highlights some of the results of the first year of Climandes 2.

  11. Hydroclimatic trends in simulations over the CORDEX North America region

    NASA Astrophysics Data System (ADS)

    Arritt, Raymond; Groisman, Pavel; Daniel, Ariele; Schillerberg, Tayler

    2015-04-01

    An increase in the occurrence of heavy precipitation has been one of the most pronounced climate change signals for the central United States. We study this trend by using the RegCM4 regional climate model to dynamically downscale CMIP5 global projections for 1950-2099 over the CORDEX North America domain. We examine the robustness of the results by driving the regional model with two different global models, by performing simulations at both 50 km and 25 km grid spacing, and by using different convective parameterizations in RegCM4. The global models sample the range of climate sensitivity in CMIP5: HadGEM2-ES has the highest equilibrium climate sensitivity of the CMIP5 models, while GFDL-ESM2M has one of the lowest sensitivities. RegCM4 results show increases in heavy precipitation (> 50 mm/day) over the central United States for the period 1951-2005 similar to observed trends. This trend is predicted to accelerate so that by the end of the 21st century incidence of heavy precipitation increases by a factor of 2 to 3. The trend is robust in that it is produced regardless of the driving global model or the configuration of the regional model. Results also show a modest increase in the number of dry days and a marked increase in the number of long runs of dry days (16 or more consecutive dry days). The combination of heavier events and longer runs of dry days has implications for sectors such as agriculture and water quality. This research was sponsored by USDA NIFA under the Earth System Modeling program and as part of a regional collaborative project.

  12. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation

    PubMed Central

    Holmner, Åsa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on ‘green information and communication technology (ICT)’ are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies. PMID:22679398

  13. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation.

    PubMed

    Holmner, Asa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on 'green information and communication technology (ICT)' are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies.

  14. From Extraction to Renewal: A Global Campaign for Healthy Energy.

    PubMed

    Wang, Jennifer S; Euripidou, Rico; Armstrong, Fiona; Jensen, Génon K; Karliner, Josh; Guinto, Renzo R; Zhao, Ang; Narayanan, Divya; Orris, Peter

    2016-02-01

    A global movement is emerging in the health sector to engage in discourse and advocacy on the health impacts and health costs of energy choices--specifically the health harms of extractive, climate-disrupting energy sources such as coal and gas. Individuals and organizations in the health sector have begun to address climate and energy issues at multiple levels of engagement, including with others in the health sector, with pollution-affected communities, with policy makers, and with the media. We present recent examples of health sector advocacy and leadership on the health impacts of energy choices and opportunities for broadening and deepening the movement. © The Author(s) 2016.

  15. Response to droughts and heat waves of the productivity of natural and agricultural ecosystems in Europe within ISI-MIP2 historical simulations

    NASA Astrophysics Data System (ADS)

    François, Louis; Henrot, Alexandra-Jane; Dury, Marie; Jacquemin, Ingrid; Munhoven, Guy; Friend, Andrew; Rademacher, Tim T.; Hacket Pain, Andrew J.; Hickler, Thomas; Tian, Hanqin; Morfopoulos, Catherine; Ostberg, Sebastian; Chang, Jinfeng; Rafique, Rashid; Nishina, Kazuya

    2016-04-01

    According to the projections of climate models, extreme events such as droughts and heat waves are expected to become more frequent and more severe in the future. Such events are known to severely impact the productivity of both natural and agricultural ecosystems, and hence to affect ecosystem services such as crop yield and ecosystem carbon sequestration potential. Dynamic vegetation models are conventional tools to evaluate the productivity and carbon sequestration of ecosystems and their response to climate change. However, how far are these models able to correctly represent the sensitivity of ecosystems to droughts and heat waves? How do the responses of natural and agricultural ecosystems compare to each other, in terms of drought-induced changes in productivity and carbon sequestration? In this contribution, we use ISI-MIP2 model historical simulations from the biome sector to tentatively answer these questions. Nine dynamic vegetation models have participated in the biome sector intercomparison of ISI-MIP2: CARAIB, DLEM, HYBRID, JULES, LPJ-GUESS, LPJml, ORCHIDEE, VEGAS and VISIT. We focus the analysis on well-marked droughts or heat waves that occured in Europe after 1970, such as the 1976, 2003 and 2010 events. For most recent studied events, the model results are compared to the response observed at several eddy covariance sites in Europe, and, at a larger scale, to the changes in crop productivities reported in national statistics or to the drought impacts on gross primary productivity derived from satellite data (Terra MODIS instrument). The sensitivity of the models to the climatological dataset used in the simulations, as well as to the inclusion or not of anthropogenic land use, is also analysed within the studied events. Indeed, the ISI-MIP simulations have been run with four different historical climatic forcings, as well as for several land use/land cover configurations (natural vegetation, fixed land use and variable land use).

  16. Spatiotemporal analysis of projected impacts of climate change on the major C3 and C4 crop yield under representative concentration pathway 4.5: Insight from the coasts of Tamil Nadu, South India

    PubMed Central

    A, Ramachandran; Praveen, Dhanya; R, Jaganathan; D, RajaLakshmi; K, Palanivelu

    2017-01-01

    India's dependence on a climate sensitive sector like agriculture makes it highly vulnerable to its impacts. However, agriculture is highly heterogeneous across the country owing to regional disparities in exposure, sensitivity, and adaptive capacity. It is essential to know and quantify the possible impacts of changes in climate on crop yield for successful agricultural management and planning at a local scale. The Hadley Centre Global Environment Model version 2-Earth System (HadGEM-ES) was employed to generate regional climate projections for the study area using the Regional Climate Model (RCM) RegCM4.4. The dynamics in potential impacts at the sub-district level were evaluated using the Representative Concentration Pathway 4.5 (RCPs). The aim of this study was to simulate the crop yield under a plausible change in climate for the coastal areas of South India through the end of this century. The crop simulation model, the Decision Support System for Agrotechnology Transfer (DSSAT) 4.5, was used to understand the plausible impacts on the major crop yields of rice, groundnuts, and sugarcane under the RCP 4.5 trajectory. The findings reveal that under the RCP 4.5 scenario there will be decreases in the major C3 and C4 crop yields in the study area. This would affect not only the local food security, but the livelihood security as well. This necessitates timely planning to achieve sustainable crop productivity and livelihood security. On the other hand, this situation warrants appropriate adaptations and policy intervention at the sub-district level for achieving sustainable crop productivity in the future. PMID:28753605

  17. Spatiotemporal analysis of projected impacts of climate change on the major C3 and C4 crop yield under representative concentration pathway 4.5: Insight from the coasts of Tamil Nadu, South India.

    PubMed

    A, Ramachandran; Praveen, Dhanya; R, Jaganathan; D, RajaLakshmi; K, Palanivelu

    2017-01-01

    India's dependence on a climate sensitive sector like agriculture makes it highly vulnerable to its impacts. However, agriculture is highly heterogeneous across the country owing to regional disparities in exposure, sensitivity, and adaptive capacity. It is essential to know and quantify the possible impacts of changes in climate on crop yield for successful agricultural management and planning at a local scale. The Hadley Centre Global Environment Model version 2-Earth System (HadGEM-ES) was employed to generate regional climate projections for the study area using the Regional Climate Model (RCM) RegCM4.4. The dynamics in potential impacts at the sub-district level were evaluated using the Representative Concentration Pathway 4.5 (RCPs). The aim of this study was to simulate the crop yield under a plausible change in climate for the coastal areas of South India through the end of this century. The crop simulation model, the Decision Support System for Agrotechnology Transfer (DSSAT) 4.5, was used to understand the plausible impacts on the major crop yields of rice, groundnuts, and sugarcane under the RCP 4.5 trajectory. The findings reveal that under the RCP 4.5 scenario there will be decreases in the major C3 and C4 crop yields in the study area. This would affect not only the local food security, but the livelihood security as well. This necessitates timely planning to achieve sustainable crop productivity and livelihood security. On the other hand, this situation warrants appropriate adaptations and policy intervention at the sub-district level for achieving sustainable crop productivity in the future.

  18. Major advance of South Georgia glaciers during the Antarctic Cold Reversal following extensive sub-Antarctic glaciation

    PubMed Central

    Graham, Alastair G. C.; Kuhn, Gerhard; Meisel, Ove; Hillenbrand, Claus-Dieter; Hodgson, Dominic A.; Ehrmann, Werner; Wacker, Lukas; Wintersteller, Paul; dos Santos Ferreira, Christian; Römer, Miriam; White, Duanne; Bohrmann, Gerhard

    2017-01-01

    The history of glaciations on Southern Hemisphere sub-polar islands is unclear. Debate surrounds the extent and timing of the last glacial advance and termination on sub-Antarctic South Georgia in particular. Here, using sea-floor geophysical data and marine sediment cores, we resolve the record of glaciation offshore of South Georgia through the transition from the Last Glacial Maximum to Holocene. We show a sea-bed landform imprint of a shelf-wide last glacial advance and progressive deglaciation. Renewed glacier resurgence in the fjords between c. 15,170 and 13,340 yr ago coincided with a period of cooler, wetter climate known as the Antarctic Cold Reversal, revealing a cryospheric response to an Antarctic climate pattern extending into the Atlantic sector of the Southern Ocean. We conclude that the last glaciation of South Georgia was extensive, and the sensitivity of its glaciers to climate variability during the last termination more significant than implied by previous studies. PMID:28303885

  19. Risky Business and the American Climate Prospectus: Economic Risks of Climate Change in the United States"

    NASA Astrophysics Data System (ADS)

    Gordon, K.; Houser, T.; Kopp, R. E., III; Hsiang, S. M.; Larsen, K.; Jina, A.; Delgado, M.; Muir-Wood, R.; Rasmussen, D.; Rising, J.; Mastrandrea, M.; Wilson, P. S.

    2014-12-01

    The United States faces a range of economic risks from global climate change - from increased flooding and storm damage, to climate-driven changes in crop yields and labor productivity, to heat-related strains on energy and public health systems. The Risky Business Project commissioned a groundbreaking new analysis of these and other climate risks by region of the country and sector of the economy. The American Climate Prospectus (ACP) links state-of-the-art climate models with econometric research of human responses to climate variability and cutting edge private sector risk assessment tools, the ACP offers decision-makers a data driven assessment of the specific risks they face. We describe the challenge, methods, findings, and policy implications of the national risk analysis, with particular focus on methodological innovations and novel insights.

  20. Development, malaria and adaptation to climate change: a case study from India.

    PubMed

    Garg, Amit; Dhiman, R C; Bhattacharya, Sumana; Shukla, P R

    2009-05-01

    India has reasons to be concerned about climate change. Over 650 million people depend on climate-sensitive sectors, such as rain-fed agriculture and forestry, for livelihood and over 973 million people are exposed to vector borne malarial parasites. Projection of climatic factors indicates a wider exposure to malaria for the Indian population in the future. If precautionary measures are not taken and development processes are not managed properly some developmental activities, such as hydro-electric dams and irrigation canal systems, may also exacerbate breeding grounds for malaria. This article integrates climate change and developmental variables in articulating a framework for integrated impact assessment and adaptation responses, with malaria incidence in India as a case study. The climate change variables include temperature, rainfall, humidity, extreme events, and other secondary variables. Development variables are income levels, institutional mechanisms to implement preventive measures, infrastructure development that could promote malarial breeding grounds, and other policies. The case study indicates that sustainable development variables may sometimes reduce the adverse impacts on the system due to climate change alone, while it may sometimes also exacerbate these impacts if the development variables are not managed well and therefore they produce a negative impact on the system. The study concludes that well crafted and well managed developmental policies could result in enhanced resilience of communities and systems, and lower health impacts due to climate change.

  1. Development, Malaria and Adaptation to Climate Change: A Case Study from India

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Dhiman, R. C.; Bhattacharya, Sumana; Shukla, P. R.

    2009-05-01

    India has reasons to be concerned about climate change. Over 650 million people depend on climate-sensitive sectors, such as rain-fed agriculture and forestry, for livelihood and over 973 million people are exposed to vector borne malarial parasites. Projection of climatic factors indicates a wider exposure to malaria for the Indian population in the future. If precautionary measures are not taken and development processes are not managed properly some developmental activities, such as hydro-electric dams and irrigation canal systems, may also exacerbate breeding grounds for malaria. This article integrates climate change and developmental variables in articulating a framework for integrated impact assessment and adaptation responses, with malaria incidence in India as a case study. The climate change variables include temperature, rainfall, humidity, extreme events, and other secondary variables. Development variables are income levels, institutional mechanisms to implement preventive measures, infrastructure development that could promote malarial breeding grounds, and other policies. The case study indicates that sustainable development variables may sometimes reduce the adverse impacts on the system due to climate change alone, while it may sometimes also exacerbate these impacts if the development variables are not managed well and therefore they produce a negative impact on the system. The study concludes that well crafted and well managed developmental policies could result in enhanced resilience of communities and systems, and lower health impacts due to climate change.

  2. Climate change-induced salinity variation impacts on a stenoecious mangrove species in the Indian Sundarbans.

    PubMed

    Banerjee, Kakoli; Gatti, Roberto Cazzolla; Mitra, Abhijit

    2017-05-01

    The alterations in the salinity profile are an indirect, but potentially sensitive, indicator for detecting changes in precipitation, evaporation, river run-off, glacier retreat, and ice melt. These changes have a high impact on the growth of coastal plant species, such as mangroves. Here, we present estimates of the variability of salinity and the biomass of a stenoecious mangrove species (Heritiera fomes, commonly referred to as Sundari) in the aquatic subsystem of the lower Gangetic delta based on a dataset from 2004 to 2015. We highlight the impact of salinity alteration on the change in aboveground biomass of this endangered species that, due to different salinity profile in the western and central sectors of the lower Gangetic plain, shows an increase only in the former sector, where the salinity is dropping and low growth in the latter, where the salinity is increasing.

  3. ClimateImpactsOnline: A web platform for regional climate impacts

    NASA Astrophysics Data System (ADS)

    Nocke, Thomas

    2013-04-01

    Climate change is widely known but there is often uncertainty about the specific effects. One of the key tasks is - beyond discussing climate change and its impacts in specialist groups - to present these to a wider audience. In that respect, decision-makers in the public sector as well as directly affected professional groups require to obtain easy-to-understand information. These groups are not made up of specialist scientists. This gives rise to two challenges: (1) the complex information must be presented such that it is commonly understood, and (2) access to the information must be easy. Interested parties do not have time to familiarize themselves over a lengthy period, but rather want to immediately work with the information. Beside providing climate information globally, regional information become of increasing interest for local decision making regarding awareness building and adaptation options. In addition, current web portals mainly focus on climate information, considering climate impacts on different sectors only implicitly. As solution, Potsdam Institute for Climate Impact Research and WetterOnline have jointly developed an Internet portal that is easy to use, groups together interesting information about climate impacts and offers it in a directly usable form. This new web portal ClimateImpactsOnline.com provides detailed information, combining multiple sectors for the test case of Germany. For this region, numerous individual studies on climate change have been prepared by various institutions. These studies differ in terms of their aim, region and time period of interest. Thus, the goal of ClimateImpactsOnline.com is to present a synthesized view on regional impacts of global climate change on hydrology, agriculture, forest, energy, tourism and health sector. The climate and impact variables are available on a decadal time resolution for the period from 1901-2100, combining observed data and future projections. Detailed information are presented threefold: (1) color maps of absolute and difference values to consider parameter variations, (2) textual tables for individual decades including uncertainties (bandwidth), and (3) time series graphs visualizing the temporal parameter development. Tables and time series graphs are available for administrative units at three aggregation levels (nation, federal state, district). We executed a larger test study with German public institutions and are currently improving functionalities due to appr. 50 user feedbacks. In the talk/poster, we present the scientific basics, graphical user interface in combination with the visual representations and the feedback from the public sector institutions and portal users.

  4. Market-oriented ethanol and corn-trade policies can reduce climate-induced US corn price volatility

    NASA Astrophysics Data System (ADS)

    Verma, Monika; Hertel, Thomas; Diffenbaugh, Noah

    2014-05-01

    Agriculture is closely affected by climate. Over the past decade, biofuels have emerged as another important factor shaping the agricultural sector. We ask whether the presence of the US ethanol sector can play a role in moderating increases in US corn price variability, projected to occur in response to near-term global warming. Our findings suggest that the answer to this question depends heavily on the underlying forces shaping the ethanol industry. If mandate-driven, there is little doubt that the presence of the corn-ethanol sector will exacerbate price volatility. However, if market-driven, then the emergence of the corn-ethanol sector can be a double-edged sword for corn price volatility, possibly cushioning the impact of increased climate driven supply volatility, but also inheriting volatility from the newly integrated energy markets via crude oil price fluctuations. We find that empirically the former effect dominates, reducing price volatility by 27%. In contrast, mandates on ethanol production increase future price volatility by 54% in under future climate after 2020. We also consider the potential for liberalized international corn trade to cushion corn price volatility in the US. Our results suggest that allowing corn to move freely internationally serves to reduce the impact of near-term climate change on US corn price volatility by 8%.

  5. Successful Coproduction in Water Management and Climate Science

    NASA Astrophysics Data System (ADS)

    Kaatz, L.

    2017-12-01

    Frequently described as the "canary in the coal mine," the water sector has been one of the first to experience and begin preparing for the impacts of climate change. Water utilities have lead the way in developing and testing climate information in practice with the end goal of building resiliency and avoiding catastrophic disasters. A key aspect of this leadership is strong, collaborative partnerships resulting in the coproduction of knowledge and actionable science. In this session we will hear from the decision-maker perspective regarding what effective partnerships in real-world applications look like using examples from the Water Utility Climate Alliances (WUCA), and the experience and outcomes of a unique decade-long partnership between Denver Water and the National Center for Atmospheric Research. The lessons learned and challenges encountered in these examples of coproduction are not unique to WUCA, Denver Water nor the water sector, rather they are applicable across sectors and may inform future coproduction efforts.

  6. Transportation Resilience Tools from the U.S. Department of Transportation

    NASA Astrophysics Data System (ADS)

    Snow, C.; Rodehorst, B.; Miller, R.; Choate, A.; Hyman, R.; Kafalenos, R.; Beucler, B.

    2014-12-01

    The U.S. Department of Transportation (U.S. DOT) and ICF International have been working to develop tools and resources to help state departments of transportation (DOTs) and metropolitan planning organizations (MPOs) prepare for the impacts of climate change. U.S. DOT recently released a set of climate change and extreme weather tools for state DOTs and MPOs that address key challenges they have faced in increasing their climate change resilience. The tools were developed under the U.S. DOT Gulf Coast Study, Phase 2. The CMIP Climate Data Processing Tool provides an easy way for users to gather and process downscaled climate model data at the local level, and "translates" that data into information relevant to transportation engineers and planners. The Vulnerability Assessment Scoring Tool (VAST), provides a step-by-step approach for users to assess their vulnerability to climate change in a transparent, cost-effective way. The Transportation Climate Change Sensitivity Matrix provides detailed information on how 11 different climate stressors may affect transportation infrastructure and operations. These tools significantly advance the state of the practice for transportation agencies to respond to climate change impacts, and beta-versions have been used successfully by several state DOTs and MPOs. This presentation will focus on these tools, examples of how they can be applied within transportation agencies, and opportunities to apply the lessons learned from the tools—or even the tools themselves—beyond the transportation sector, including as part of the national Climate Resilience Toolkit.

  7. Climate change impacts and adaptive strategies: lessons from the grapevine.

    PubMed

    Mosedale, Jonathan R; Abernethy, Kirsten E; Smart, Richard E; Wilson, Robert J; Maclean, Ilya M D

    2016-11-01

    The cultivation of grapevines for winemaking, known as viticulture, is widely cited as a climate-sensitive agricultural system that has been used as an indicator of both historic and contemporary climate change. Numerous studies have questioned the viability of major viticulture regions under future climate projections. We review the methods used to study the impacts of climate change on viticulture in the light of what is known about the effects of climate and weather on the yields and quality of vineyard harvests. Many potential impacts of climate change on viticulture, particularly those associated with a change in climate variability or seasonal weather patterns, are rarely captured. Key biophysical characteristics of viticulture are often unaccounted for, including the variability of grapevine phenology and the exploitation of microclimatic niches that permit successful cultivation under suboptimal macroclimatic conditions. We consider how these same biophysical characteristics permit a variety of strategies by which viticulture can adapt to changing climatic conditions. The ability to realize these strategies, however, is affected by uneven exposure to risks across the winemaking sector, and the evolving capacity for decision-making within and across organizational boundaries. The role grape provenance plays in shaping perceptions of wine value and quality illustrates how conflicts of interest influence decisions about adaptive strategies within the industry. We conclude by considering what lessons can be taken from viticulture for studies of climate change impacts and the capacity for adaptation in other agricultural and natural systems. © 2016 John Wiley & Sons Ltd.

  8. Water-centric nexus for response to climate change on agriculture and forest sector: The case of the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Lim, C. H.; Choi, Y.; Jeon, S. W.; Lee, W. K.

    2017-12-01

    Given their complexity and the number of stakeholders involved, it is difficult to solve social issues or problems based on an analysis that focuses on a single dimension. In particular, research surrounding climate change is inherently multidisciplinary and there is a need for highly pluralistic nexuses that can be used as a framework for policy decisions. Here, we suggest to water-centric nexus on agriculture and forest sector to improve response to climate change. The nexus is composed agricultural water demand and forest water supply to enhancing water-related adaptation to climate change in the Korean Peninsula. Agricultural productivity and water use related variables was estimating by EPIC crop model, and InVEST model applied for estimation of forest water supply. Results under two climate change scenarios (RCP4.5 and 8.5) and time period (2050s and 2070s), the forest water supply for the all future climate scenarios will increase significantly. In case of agriculture, irrigated crops experienced only the benefits of climate change, but rainfed crops were negatively impacted. It was also found that crop irrigation demand in the future is expected to be around twice as high as baseline levels, thus making irrigation more difficult to successfully implement. These hydrological threats have the potential to greatly reduce food security. In the nexus perspectives, the drop in the productivity of rainfed crops and the increase in irrigation demand in the agriculture sector can be resolved through interconnections with the forest sector. Appropriate management of the water supply in future climatic conditions characterized by increasing precipitation can maintain and expand agricultural areas through irrigation. To achieve this, a time-series water supply versus demand analysis must be performed so that an accurate balance between supply and demand can be established. Water-centric interactions of the agriculture and forest are the basis of nexus-based adaptation and they can suggest effective climate change responses for the Korean peninsula. In particular, this approach will be effective in transforming sectors that experience trade-offs into ones that promote synergies.

  9. U.S. Global Climate Change Impacts Report, Overview of Sectors

    NASA Astrophysics Data System (ADS)

    Wuebbles, D.

    2009-12-01

    The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts by sector, including water resources, energy supply and use, transportation, agriculture, ecosystems, human health and society. The resulting findings for the climate change impacts on these sectors are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Widespread climate-related impacts are occurring now and are expected to increase. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Crop and livestock production will be increasingly challenged. Agriculture is considered one of the sectors most adaptable to changes in climate. However, increased heat, pests, water stress, diseases, and weather extremes will pose adaptation challenges for crop and livestock production. Coastal areas are at increasing risk from sea-level rise and storm surge. Sea-level rise and storm surge place many U.S. coastal areas at increasing risk. Energy and transportation infrastructure and other property in coastal areas are very likely to be adversely affected. Threats to human health will increase. Health impacts of climate change are related to heat stress, waterborne diseases, poor air quality, extreme weather events, and diseases transmitted by insects and rodents. Robust public health infrastructure can reduce the potential for negative impacts. Climate change will interact with many social and environmental stresses. Climate change will combine with pollution, population growth, overuse of resources, urbanization, and other social, economic, and environmental stresses to create larger impacts than from any of these factors alone. Thresholds will be crossed, leading to large changes in climate and ecosystems. There are a variety of thresholds in the climate system and ecosystems. These thresholds determine, for example, the presence of sea ice and permafrost, and the survival of species, from fish to insect pests, with implications for society. With further climate change, the crossing of additional thresholds is expected. These and many other findings will be discussed in the presentation.

  10. Empirically Estimating the Potential for Farm-Level Adaptation to Climate Change in Western European Agriculture

    NASA Astrophysics Data System (ADS)

    Moore, F. C.; Lobell, D. B.

    2013-12-01

    Agriculture is one of the economic sectors most exposed to climate change and estimating the sensitivity of food production to these changes is critical for determining the severity of climate change impacts and for informing both adaptation and mitigation policy. While climate change might have adverse effects in many areas, it has long been recognized that farmers have a suite of adaptation options at their disposal including, inter alia, changing planting date, varieties, crops, or the mix and quantity of inputs applied. These adaptations may significantly reduce the adverse impacts of climate change but the potential effectiveness of these options and the speed with which farmers will adopt them remain uncertain. We estimate the sensitivity of crop yields and farm profits in western Europe to climate change with and without the adoption of on-farm adaptations. We use cross-sectional variation across farms to define the long-run response function that includes adaptation and inter-annual variation within farms to define the short-run response function without adaptation. The difference between these can be interpreted as the potential for adaptation. We find that future warming will have a large adverse impact on wheat and barley yields and that adaptation will only be able to mitigate a small fraction of this. Maize, oilseed and sugarbeet yields are more modestly affected and adaptation is more effective for these crops. Farm profits could increase slightly under moderate amounts of warming if adaptations are adopted but will decline in the absence of adaptation. A decomposition of variance gives the relative importance of different sources of uncertainty in projections of climate change impacts. We find that in most cases uncertainty over future adaptation pathways (whether farmers will or will not adopt beneficial adaptations) is the most important source of uncertainty in projecting the effect of temperature changes on crop yields and farm profits. This source of uncertainty dominates both uncertainty over temperature projections (climate uncertainty) and uncertainty over how sensitive crops or profits are to changes in temperature (response uncertainty). Therefore, constraining how quickly farmers are likely to adapt will be essential for improving our understanding of how climate change will affect food production over the next few decades.

  11. Experimental climate information services in support of risk management

    NASA Astrophysics Data System (ADS)

    Webb, R. S.; Pulwarty, R. S.; Davidson, M. A.; Shea, E. E.; Nierenberg, C.; Dole, R. M.

    2009-12-01

    Climate variability and change impact national and local economies and environments. Developing and communicating climate and climate impacts information to inform decision making requires an understanding of context, societal objectives, and identification of factors important to the management of risk. Information sensitive to changing baselines or extremes is a critical emergent need. Meeting this need requires timely production and delivery of useful climate data, information and knowledge within familiar pathways. We identify key attributes for a climate service , and the network and infrastructure to develop and coordinate the resulting services based on lessons learned in experimental implementations of climate services. "Service-type" activities already exist in many settings within federal, state, academic, and private sectors. The challenge for a climate service is to find effective implementation strategies for improving decision quality (not just meeting user needs). These strategies include upfront infrastructure investments, learning from event to event, coordinated innovation and diffusion, and highlighting common adaptation interests. Common to these strategies is the production of reliable and accessible data, analyses of emergent conditions and needs, and deliberative processes to identify appropriate entry points and uses for improved knowledge. Experimental climate services show that the development of well-structured paths among observations, projections, risk assessments and usable information requires sustained participation in “knowledge management systems” for early warning across temporal and spatial scales. Central to these systems is a collaborative framework between research and management to ensure anticipatory coordination between decision makers and information providers, allowing for emerging research findings and their attendant uncertainties to be considered. Early warnings in this context are not simply forecasts or predictions but information on potential “futures” derived from past records, expert judgments, scenarios, and availability of mechanisms and capacity to use such information. Effective experimental climate services facilitate ongoing appraisals of knowledge needs for informing adaptation and mitigation options across sectors and across scenarios of near and longer-term future climates. Analyses show that climate service experiments drawing on data, applied research and prototyping functions of activities such as RISAs and RCCs are critical to developing the learning needed to inform and structure the flow of knowledge and understanding from problem definition and applications research to information delivery, use and evaluation. These activities effectively serve to inform services implementation when overarching cross-agency coordination, knowledge management, and innovation diffusion mechanisms such as afforded by NIDIS and the Coastal Services Center are engaged. We also demonstrate the importance of positioning climate research to engage and inform the decision-making process as society anticipates and responds to climate and its impacts.

  12. The role of non-CO2 mitigation within the dairy sector in pursuing climate goals

    NASA Astrophysics Data System (ADS)

    Rolph, K.; Forest, C. E.

    2017-12-01

    Mitigation of non-CO2 climate forcing agents must complement the mitigation of carbon dioxide (CO2) to achieve long-term temperature and climate policy goals. By using multi-gas mitigation strategies, society can limit the rate of temperature change on decadal timescales and reduce the cost of implementing policies that only consider CO2 mitigation. The largest share of global non-CO2 greenhouse gas emissions is attributed to agriculture, with activities related to dairy production contributing the most in this sector. Approximately 4% of global anthropogenic greenhouse gas emissions is released from the dairy sub-sector, primarily through enteric fermentation, feed production, and manure management. Dairy farmers can significantly reduce their emissions by implementing better management practices. This study assesses the potential mitigation of projected climate change if greenhouse gases associated with the dairy sector were reduced. To compare the performance of several mitigation measures under future climate change, we employ a fully coupled earth system model of intermediate complexity, the MIT Integrated Global System Model (IGSM). The model includes an interactive carbon-cycle capable of addressing important feedbacks between the climate and terrestrial biosphere. Mitigation scenarios are developed using estimated emission reductions of implemented management practices studied by the USDA-funded Sustainable Dairy Project (Dairy-CAP). We examine pathways to reach the US dairy industry's voluntary goal of reducing dairy emissions 25% by 2020. We illustrate the importance of ongoing mitigation efforts in the agricultural industry to reduce non-CO2 greenhouse gas emissions towards established climate goals.

  13. The Challenges of Creating Climate Change Education Cross-Sector Partnerships

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.

    2017-12-01

    Communities will have to address the impacts of climate change on their environment whether it is for adaptation - to build resilience and establish preparedness, or for mitigation - to migrate to cleaner energy sources and reduce energy use. To effectively address these impacts community leaders and professionals will need to develop an understanding of and solutions to the problems that result from climate change. The effort will need to be conducted with a cross-sector approach as all members of a community (individuals and organizations/businesses/ groups) will be impacted. Students should be involved in this effort to help them develop the critical thinking and data analysis skills they will need in the future to make responsible decisions for themselves, their community, and professionally. However, engaging businesses, organizations, and government in a coherent aligned partnership that addresses short and long term local impacts of climate change as well as the longer-term goal of preparing the future climate ready workforce has multiple challenges. Each business, organization and government agency has it own mission and goals, and metrics of achieving them. In creating an effective cross-sector partnership it is essential to determine for each partner where their mission, services, products, and activities can benefit the partnership and where the partnership can help them improve their multiple bottom lines (financial, social, envionmental) and show the value of their participation to their boards and leadership. Cross-sector partnerships have begun to form in many communities, however, financing them is difficult and most do not include education, a critical leverage element, for either the future workforce or to support current decision makers. In this presentation we will examine community partnerships that are working to address local climate issues and explore the obstacles to integrating education in these cross-sector climate change partnerships and how to overcome them.

  14. Beyond Quarterly Earnings: Preparing the Business Community for Long-term Climate Risks

    NASA Astrophysics Data System (ADS)

    Carlson, C.; Goldman, G. T.

    2014-12-01

    The business community stands to be highly impacted by climate change. In both short and long-term timescales, climate change presents material and financial risks to companies in diverse economic sectors. How the private sector accounts for long-term risks while making short-term decisions about operations is a complex challenge. Companies are accountable to shareholders and must report performance to them on a quarterly basis. At the same time, company investors are exposed to long-term climate-related risks and face losses if companies fail to prepare for climate impacts. The US Securities and Exchange Commission (SEC) obligates publicly traded companies to discuss risks that might materially affect their business and since 2010, the agency recommends that companies consider and discuss any significant risks to their business from climate change. Some companies have complied with this guidance and comprehensively analyze potential climate change impacts, yet others fail to consider climate change at all. Such omissions leave companies without plans for addressing future risks and expose investors and the public to potential catastrophic events from climate change impacts. Climate risk projections can inform companies about the vulnerability of their facilities, supply chains, transportation pathways, and other assets. Such projections can help put climate-related risks in terms of material costs for companies and their investors. Focusing on the vulnerability of coastal facilities, we will use climate change impact projections to demonstrate the economic impacts of climate change faced by the private sector. These risks are then compared to company disclosures to the SEC to assess the degree to which companies have considered their vulnerability to climate change. Finally, we will discuss ways that companies can better assess and manage long-term climate risks.

  15. 'Weather Value at Risk': A uniform approach to describe and compare sectoral income risks from climate change.

    PubMed

    Prettenthaler, Franz; Köberl, Judith; Bird, David Neil

    2016-02-01

    We extend the concept of 'Weather Value at Risk' - initially introduced to measure the economic risks resulting from current weather fluctuations - to describe and compare sectoral income risks from climate change. This is illustrated using the examples of wheat cultivation and summer tourism in (parts of) Sardinia. Based on climate scenario data from four different regional climate models we study the change in the risk of weather-related income losses between some reference (1971-2000) and some future (2041-2070) period. Results from both examples suggest an increase in weather-related risks of income losses due to climate change, which is somewhat more pronounced for summer tourism. Nevertheless, income from wheat cultivation is at much higher risk of weather-related losses than income from summer tourism, both under reference and future climatic conditions. A weather-induced loss of at least 5% - compared to the income associated with average reference weather conditions - shows a 40% (80%) probability of occurrence in the case of wheat cultivation, but only a 0.4% (16%) probability of occurrence in the case of summer tourism, given reference (future) climatic conditions. Whereas in the agricultural example increases in the weather-related income risks mainly result from an overall decrease in average wheat yields, the heightened risk in the tourism example stems mostly from a change in the weather-induced variability of tourism incomes. With the extended 'Weather Value at Risk' concept being able to capture both, impacts from changes in the mean and the variability of the climate, it is a powerful tool for presenting and disseminating the results of climate change impact assessments. Due to its flexibility, the concept can be applied to any economic sector and therefore provides a valuable tool for cross-sectoral comparisons of climate change impacts, but also for the assessment of the costs and benefits of adaptation measures. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effects of climate change on the delivery of soil-mediated ecosystem services within the primary sector in temperate ecosystems: a review and New Zealand case study.

    PubMed

    Orwin, Kate H; Stevenson, Bryan A; Smaill, Simeon J; Kirschbaum, Miko U F; Dickie, Ian A; Clothier, Brent E; Garrett, Loretta G; van der Weerden, Tony J; Beare, Michael H; Curtin, Denis; de Klein, Cecile A M; Dodd, Michael B; Gentile, Roberta; Hedley, Carolyn; Mullan, Brett; Shepherd, Mark; Wakelin, Steven A; Bell, Nigel; Bowatte, Saman; Davis, Murray R; Dominati, Estelle; O'Callaghan, Maureen; Parfitt, Roger L; Thomas, Steve M

    2015-08-01

    Future human well-being under climate change depends on the ongoing delivery of food, fibre and wood from the land-based primary sector. The ability to deliver these provisioning services depends on soil-based ecosystem services (e.g. carbon, nutrient and water cycling and storage), yet we lack an in-depth understanding of the likely response of soil-based ecosystem services to climate change. We review the current knowledge on this topic for temperate ecosystems, focusing on mechanisms that are likely to underpin differences in climate change responses between four primary sector systems: cropping, intensive grazing, extensive grazing and plantation forestry. We then illustrate how our findings can be applied to assess service delivery under climate change in a specific region, using New Zealand as an example system. Differences in the climate change responses of carbon and nutrient-related services between systems will largely be driven by whether they are reliant on externally added or internally cycled nutrients, the extent to which plant communities could influence responses, and variation in vulnerability to erosion. The ability of soils to regulate water under climate change will mostly be driven by changes in rainfall, but can be influenced by different primary sector systems' vulnerability to soil water repellency and differences in evapotranspiration rates. These changes in regulating services resulted in different potentials for increased biomass production across systems, with intensively managed systems being the most likely to benefit from climate change. Quantitative prediction of net effects of climate change on soil ecosystem services remains a challenge, in part due to knowledge gaps, but also due to the complex interactions between different aspects of climate change. Despite this challenge, it is critical to gain the information required to make such predictions as robust as possible given the fundamental role of soils in supporting human well-being. © 2015 John Wiley & Sons Ltd.

  17. Understanding the Uncertainties in Consequences of Climate Change for the United States Power Sector Infrastructure when Considering a Realistic Mitigation Pace and Adaptation Needs.

    NASA Astrophysics Data System (ADS)

    Anderson, N. J.; Whiteford, E. J.; Jones, V.; Fritz, S. C.; Yang, H.; Appleby, P.; Bindler, R.

    2014-12-01

    In order to overcome the potential damages associated with climate change, a massive reduction in greenhouse gas emissions is necessary. Achieving these levels of emissions reductions will require dramatic changes in the U.S. electricity generating infrastructure: almost all of the fossil-generation fleet will need to be replaced with low-carbon sources and society would have to maintain a high build rate of new capacity for decades. Because the build rate of new electricity generating capacity may be limited, the timing of regulation is critical—the longer the U.S. waits to start reducing emissions, the faster the turnover in the electricity sector must occur in order to meet the same target. We investigate the relationship between climate policy timing and infrastructure turnover in the electricity sector. How long can we wait before constraints on infrastructure turnover in the electricity sector make achieving our climate goals impossible? We show that delaying climate change policy increases average construction rates by 25% to 85% and increases maximum construction rates by 50% to 300%. We also show that delaying climate policy has little effect on the age of retired plants or the stranded costs associated with premature retirement. We show that as we delay policy action, some goals won't be possible for attain. For example, unless we enable emissions reductions today, reducing cumulative emissions between now and 2040 by 50% when compared to a no-policy scenario is not possible.

  18. Planning for Production of Freshwater Fish Fry in a Variable Climate in Northern Thailand.

    PubMed

    Uppanunchai, Anuwat; Apirumanekul, Chusit; Lebel, Louis

    2015-10-01

    Provision of adequate numbers of quality fish fry is often a key constraint on aquaculture development. The management of climate-related risks in hatchery and nursery management operations has not received much attention, but is likely to be a key element of successful adaptation to climate change in the aquaculture sector. This study explored the sensitivities and vulnerability of freshwater fish fry production in 15 government hatcheries across Northern Thailand to climate variability and evaluated the robustness of the proposed adaptation measures. This study found that hatcheries have to consider several factors when planning production, including: taking into account farmer demand; production capacity of the hatchery; availability of water resources; local climate and other area factors; and, individual species requirements. Nile tilapia is the most commonly cultured species of freshwater fish. Most fry production is done in the wet season, as cold spells and drought conditions disrupt hatchery production and reduce fish farm demand in the dry season. In the wet season, some hatcheries are impacted by floods. Using a set of scenarios to capture major uncertainties and variability in climate, this study suggests a couple of strategies that should help make hatchery operations more climate change resilient, in particular: improving hatchery operations and management to deal better with risks under current climate variability; improving monitoring and information systems so that emerging climate-related risks are known sooner and understood better; and, research and development on alternative species, breeding programs, improving water management and other features of hatchery operations.

  19. Impact of warmer weather on electricity sector emissions due to building energy use

    NASA Astrophysics Data System (ADS)

    Meier, Paul; Holloway, Tracey; Patz, Jonathan; Harkey, Monica; Ahl, Doug; Abel, David; Schuetter, Scott; Hackel, Scott

    2017-06-01

    Most US energy consumption occurs in buildings, with cooling demands anticipated to increase net building electricity use under warmer conditions. The electricity generation units that respond to this demand are major contributors to sulfur dioxide (SO2) and nitrogen oxides (NOx), both of which have direct impacts on public health, and contribute to the formation of secondary pollutants including ozone and fine particulate matter. This study quantifies temperature-driven changes in power plant emissions due to increased use of building air conditioning. We compare an ambient temperature baseline for the Eastern US to a model-calculated mid-century scenario with summer-average temperature increases ranging from 1 C to 5 C across the domain. We find a 7% increase in summer electricity demand and a 32% increase in non-coincident peak demand. Power sector modeling, assuming only limited changes to current generation resources, calculated a 16% increase in emissions of NOx and an 18% increase in emissions of SO2. There is a high level of regional variance in the response of building energy use to climate, and the response of emissions to associated demand. The East North Central census region exhibited the greatest sensitivity of energy demand and associated emissions to climate.

  20. Climate Change Impacts on Crop Production in Nigeria

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have a wide variety of possible climate projections for the impact analysis. Multiple combinations of soil and climate conditions and crop management and varieties were considered for each Agro-Ecological Zone (AEZ) of Nigeria. A sensitivity analysis was made to evaluate the model response to changes in precipitation and temperature. The climate impact assessment was made by comparing the yield obtained with the climate data for the present period and the yield obtainable under future climate conditions. The results were analyzed at state, AEZ and country levels. The analysis shows a general reduction in crop yields in particular in the dryer regions of northern Nigeria.

  1. NOAA/NCEI/Regional Climate Services: Working with Partners and Stakeholders across a Wide Network

    NASA Astrophysics Data System (ADS)

    Mecray, E. L.

    2015-12-01

    Federal agencies all require plans to be prepared at the state level that outline the implementation of funding to address wildlife habitat, human health, transportation infrastructure, coastal zone management, environmental management, emergency management, and others. These plans are now requiring the consideration of changing climate conditions. So where does a state turn to discuss lessons learned, obtain tools and information to assess climate conditions, and to work with other states in their region? Regional networks and collaboratives are working to deliver this sector by sector. How do these networks work? Do they fit together in any way? What similarities and differences exist? Is anyone talking across these lines to find common climate information requirements? A sketch is forming that links these efforts, not by blending the sectors, but by finding the areas where coordination is critical, where information needs are common, and where delivery mechanisms can be streamlined. NOAA/National Centers for Environmental Information's Regional Climate Services Directors have been working at the interface of stakeholder-driven information delivery since 2010. This talk will outline the regional climate services delivery framework for the Eastern Region, with examples of regional products and information.

  2. An approach for assessing the sensitivity of floods to regional climate change

    NASA Astrophysics Data System (ADS)

    Hughes, James P.; Lettenmaier, Dennis P.; Wood, Eric F.

    1992-06-01

    A high visibility afforded climate change issues is recent years has led to conflicts between and among decision makers and scientists. Decision makers inevitably feel pressure to assess the effect of climate change on the public welfare, while most climate modelers are, to a greater or lesser degree, concerned about the extent to which known inaccuracies in their models limit or preclude the use of modeling results for policy making. The water resources sector affords a good example of the limitations of the use of alternative climate scenarios derived from GCMs for decision making. GCM simulations of precipitation agree poorly between GCMs, and GCM predictions of runoff and evapotranspiration are even more uncertain. Further, water resources managers must be concerned about hydrologic extremes (floods and droughts) which are much more difficult to predict than ``average'' conditions. Most studies of the sensitivity of water resource systems and operating policies to climate change to data have been based on simple perturbations of historic hydroclimatological time series to reflect the difference between large area GCM simulations for an altered climate (e.g., CO2 doubling) and a GCM simulation of present climate. Such approaches are especially limited for assessment of the sensitivity of water resources systems under extreme conditions, conditions, since the distribution of storm inter-arrival times, for instance, is kept identical to that observed in the historic past. Further, such approaches have generally been based on the difference between the GCM altered and present climates for a single grid cell, primarily because the GCM spatial scale is often much larger than the scale at which climate interpretations are desired. The use of single grid cell GCM results is considered inadvisable by many GCM modelers, who feel the spatial scale for which interpretation of GCM results is most reasonable is on the order of several grid cells. In this paper, we demonstrate an alternative approach to assessing the implications of altered climates as predicted by GCMs for extreme (flooding) conditions. The approach is based on the characterization of regional atmospheric circulation patterns through a weather typing procedure, from which a stochastic model of the weather class occurrences is formulated. Weather types are identified through a CART (Classification and Regression Tree) approach. Precipitation occurence/non-occurence at multiple precipitation station is then predicted through a second stage stochastic model. Precipitation amounts are predicted conditional on the weather class identified from the large area circulation information.

  3. Psychosocial safety climate: a multilevel theory of work stress in the health and community service sector.

    PubMed

    Dollard, M F; McTernan, W

    2011-12-01

    Work stress is widely thought to be a significant problem in the health and community services sector. We reviewed evidence from a range of different data sources that confirms this belief. High levels of psychosocial risk factors, psychological health problems and workers compensation claims for stress are found in the sector. We propose a multilevel theoretical model of work stress to account for the results. Psychosocial safety climate (PSC) refers to a climate for psychological health and safety. It reflects the balance of concern by management about psychological health v. productivity. By extending the health erosion and motivational paths of the Job Demands-Resources model we propose that PSC within work organisations predicts work conditions and in turn psychological health and engagement. Over and above this, however, we expect that the external environment of the sector particularly government policies, driven by economic rationalist ideology, is increasing work pressure and exhaustion. These conditions are likely to lead to a reduced quality of service, errors and mistakes.

  4. Climate impacts on human livelihoods: where uncertainty matters in projections of water availability

    NASA Astrophysics Data System (ADS)

    Lissner, T. K.; Reusser, D. E.; Schewe, J.; Lakes, T.; Kropp, J. P.

    2014-03-01

    Climate change will have adverse impacts on many different sectors of society, with manifold consequences for human livelihoods and well-being. However, a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable, making it difficult to determine the extent of such impacts. Climate impact analyses are often limited to individual sectors (e.g. food or water) and employ sector-specific target-measures, while systematic linkages to general livelihood conditions remain unexplored. Further, recent multi-model assessments have shown that uncertainties in projections of climate impacts deriving from climate and impact models as well as greenhouse gas scenarios are substantial, posing an additional challenge in linking climate impacts with livelihood conditions. This article first presents a methodology to consistently measure Adequate Human livelihood conditions for wEll-being And Development (AHEAD). Based on a transdisciplinary sample of influential concepts addressing human well-being, the approach measures the adequacy of conditions of 16 elements. We implement the method at global scale, using results from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to show how changes in water availability affect the fulfilment of AHEAD at national resolution. In addition, AHEAD allows identifying and differentiating uncertainty of climate and impact model projections. We show how the approach can help to put the substantial inter-model spread into the context of country-specific livelihood conditions by differentiating where the uncertainty about water scarcity is relevant with regard to livelihood conditions - and where it is not. The results indicate that in many countries today, livelihood conditions are compromised by water scarcity. However, more often, AHEAD fulfilment is limited through other elements. Moreover, the analysis shows that for 44 out of 111 countries, the water-specific uncertainty ranges are outside relevant thresholds for AHEAD, and therefore do not contribute to the overall uncertainty about climate change impacts on livelihoods. The AHEAD method presented here, together with first results, forms an important step towards making scientific results more applicable for policy-decisions.

  5. Climate impacts on human livelihoods: where uncertainty matters in projections of water availability

    NASA Astrophysics Data System (ADS)

    Lissner, T. K.; Reusser, D. E.; Schewe, J.; Lakes, T.; Kropp, J. P.

    2014-10-01

    Climate change will have adverse impacts on many different sectors of society, with manifold consequences for human livelihoods and well-being. However, a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable, making it difficult to determine the extent of such impacts. Climate impact analyses are often limited to individual sectors (e.g. food or water) and employ sector-specific target measures, while systematic linkages to general livelihood conditions remain unexplored. Further, recent multi-model assessments have shown that uncertainties in projections of climate impacts deriving from climate and impact models, as well as greenhouse gas scenarios, are substantial, posing an additional challenge in linking climate impacts with livelihood conditions. This article first presents a methodology to consistently measure what is referred to here as AHEAD (Adequate Human livelihood conditions for wEll-being And Development). Based on a trans-disciplinary sample of concepts addressing human well-being and livelihoods, the approach measures the adequacy of conditions of 16 elements. We implement the method at global scale, using results from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to show how changes in water availability affect the fulfilment of AHEAD at national resolution. In addition, AHEAD allows for the uncertainty of climate and impact model projections to be identified and differentiated. We show how the approach can help to put the substantial inter-model spread into the context of country-specific livelihood conditions by differentiating where the uncertainty about water scarcity is relevant with regard to livelihood conditions - and where it is not. The results indicate that livelihood conditions are compromised by water scarcity in 34 countries. However, more often, AHEAD fulfilment is limited through other elements. The analysis shows that the water-specific uncertainty ranges of the model output are outside relevant thresholds for AHEAD for 65 out of 111 countries, and therefore do not contribute to the overall uncertainty about climate change impacts on livelihoods. In 46 of the countries in the analysis, water-specific uncertainty is relevant to AHEAD. The AHEAD method presented here, together with first results, forms an important step towards making scientific results more applicable for policy decisions.

  6. Observations to support adaptation: Principles, scales and decision-making

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.

    2012-12-01

    As has been long noted, a comprehensive, coordinated observing system is the backbone of any Earth information system. Demands are increasingly placed on earth observation and prediction systems and attendant services to address the needs of economically and environmentally vulnerable sectors and investments, including energy, water, human health, transportation, agriculture, fisheries, tourism, biodiversity, and national security. Climate services include building capacity to interpret information and recognize standards and limitations of data in the promotion of social and economic development in a changing climate. This includes improving the understanding of climate in the context of a variety of temporal and spatial scales (including the influence of decadal scale forcings and land surface feedbacks on seasonal forecast reliability). Climate data and information are central for developing decision options that are sensitive to climate-related uncertainties and the design of flexible adaptation pathways. Ideally monitoring should be action oriented to support climate risk assessment and adaptation including informing robust decision making to multiple risks over the long term. Based on the experience of global observations programs and empirical research we outline- Challenges in developing effective monitoring and climate information systems to support adaptation. The types of observations of critical importance needed for sector planning to enhance food, water and energy security, and to improve early warning for disaster risk reduction Observations needed for ecosystem-based adaptation including the identification of thresholds, maintenance of biological diversity and land degradation The benefits and limits of linking regional model output to local observations including analogs and verification for adaptation planning To support these goals a robust systems of integrated observations are needed to characterize the uncertainty surrounding emergent risks including overcoming unrealistically precise information demands. While monitoring systems design and operation should be guided by the standards and requirements of management, those who provide information to the system (e.g. hydromet services) should also derive benefits. Drawing on identified information needs to support climate risk management (in drought, water resources and other areas) we outline principles of effective monitoring and develop preliminary strategic guidance for information systems being developed through the GEO, GCOS and Global and national frameworks for climate services. The efficacy of such services are improved by a problem-solving orientation, participatory planning, extension management and improvements in the use and value of existing data to legitimize new investments.

  7. Linking research, education and public engagement in geoscience: Leadership and strategic partnerships (invited)

    NASA Astrophysics Data System (ADS)

    Harcourt, P.

    2017-12-01

    Addressing the urgent issue of climate change requires mitigation and adaptation actions on individual to global scales, and appropriate action must be based upon geoscience literacy across population sectors. The NSF-funded MADE CLEAR (Maryland and Delaware Climate Change Education, Assessment, and Research) project provides a coordinated approach to embed climate change into education programs at the university level, in formal K12 classrooms, and among informal educators. We have worked with state agencies, university systems, non-profit organizations, and community groups to establish and support research-based education about climate change. In this panel I will describe how MADE CLEAR approached the task of infusing climate change education across sectors in the highly diverse states of Delaware and Maryland. I will share the characteristics of our strongest alliances, an analysis of significant barriers to climate change education, and our perspective on the outlook for the future of climate change education.

  8. Enhancing seasonal climate prediction capacity for the Pacific countries

    NASA Astrophysics Data System (ADS)

    Kuleshov, Y.; Jones, D.; Hendon, H.; Charles, A.; Cottrill, A.; Lim, E.-P.; Langford, S.; de Wit, R.; Shelton, K.

    2012-04-01

    Seasonal and inter-annual climate variability is a major factor in determining the vulnerability of many Pacific Island Countries to climate change and there is need to improve weekly to seasonal range climate prediction capabilities beyond what is currently available from statistical models. In the seasonal climate prediction project under the Australian Government's Pacific Adaptation Strategy Assistance Program (PASAP), we describe a comprehensive project to strengthen the climate prediction capacities in National Meteorological Services in 14 Pacific Island Countries and East Timor. The intent is particularly to reduce the vulnerability of current services to a changing climate, and improve the overall level of information available assist with managing climate variability. Statistical models cannot account for aspects of climate variability and change that are not represented in the historical record. In contrast, dynamical physics-based models implicitly include the effects of a changing climate whatever its character or cause and can predict outcomes not seen previously. The transition from a statistical to a dynamical prediction system provides more valuable and applicable climate information to a wide range of climate sensitive sectors throughout the countries of the Pacific region. In this project, we have developed seasonal climate outlooks which are based upon the current dynamical model POAMA (Predictive Ocean-Atmosphere Model for Australia) seasonal forecast system. At present, meteorological services of the Pacific Island Countries largely employ statistical models for seasonal outlooks. Outcomes of the PASAP project enhanced capabilities of the Pacific Island Countries in seasonal prediction providing National Meteorological Services with an additional tool to analyse meteorological variables such as sea surface temperatures, air temperature, pressure and rainfall using POAMA outputs and prepare more accurate seasonal climate outlooks.

  9. Health Impacts of Climate Change in Pacific Island Countries: A Regional Assessment of Vulnerabilities and Adaptation Priorities.

    PubMed

    McIver, Lachlan; Kim, Rokho; Woodward, Alistair; Hales, Simon; Spickett, Jeffery; Katscherian, Dianne; Hashizume, Masahiro; Honda, Yasushi; Kim, Ho; Iddings, Steven; Naicker, Jyotishma; Bambrick, Hilary; McMichael, Anthony J; Ebi, Kristie L

    2016-11-01

    Between 2010 and 2012, the World Health Organization Division of Pacific Technical Support led a regional climate change and health vulnerability assessment and adaptation planning project, in collaboration with health sector partners, in 13 Pacific island countries-Cook Islands, Federated States of Micronesia, Fiji, Kiribati, Marshall Islands, Nauru, Niue, Palau, Samoa, Solomon Islands, Tonga, Tuvalu, and Vanuatu. We assessed the vulnerabilities of Pacific island countries to the health impacts of climate change and planned adaptation strategies to minimize such threats to health. This assessment involved a combination of quantitative and qualitative techniques. The former included descriptive epidemiology, time series analyses, Poisson regression, and spatial modeling of climate and climate-sensitive disease data, in the few instances where this was possible; the latter included wide stakeholder consultations, iterative consensus building, and expert opinion. Vulnerabilities were ranked using a "likelihood versus impact" matrix, and adaptation strategies were prioritized and planned accordingly. The highest-priority climate-sensitive health risks in Pacific island countries included trauma from extreme weather events, heat-related illnesses, compromised safety and security of water and food, vector-borne diseases, zoonoses, respiratory illnesses, psychosocial ill-health, non-communicable diseases, population pressures, and health system deficiencies. Adaptation strategies relating to these climate change and health risks could be clustered according to categories common to many countries in the Pacific region. Pacific island countries are among the most vulnerable in the world to the health impacts of climate change. This vulnerability is a function of their unique geographic, demographic, and socioeconomic characteristics combined with their exposure to changing weather patterns associated with climate change, the health risks entailed, and the limited capacity of the countries to manage and adapt in the face of such risks. Citation: McIver L, Kim R, Woodward A, Hales S, Spickett J, Katscherian D, Hashizume M, Honda Y, Kim H, Iddings S, Naicker J, Bambrick H, McMichael AJ, Ebi KL. 2016. Health impacts of climate change in Pacific island countries: a regional assessment of vulnerabilities and adaptation priorities. Environ Health Perspect 124:1707-1714; http://dx.doi.org/10.1289/ehp.1509756.

  10. Health Impacts of Climate Change in Pacific Island Countries: A Regional Assessment of Vulnerabilities and Adaptation Priorities

    PubMed Central

    McIver, Lachlan; Kim, Rokho; Woodward, Alistair; Hales, Simon; Spickett, Jeffery; Katscherian, Dianne; Hashizume, Masahiro; Honda, Yasushi; Kim, Ho; Iddings, Steven; Naicker, Jyotishma; Bambrick, Hilary; McMichael, Anthony J.; Ebi, Kristie L.

    2015-01-01

    Background: Between 2010 and 2012, the World Health Organization Division of Pacific Technical Support led a regional climate change and health vulnerability assessment and adaptation planning project, in collaboration with health sector partners, in 13 Pacific island countries—Cook Islands, Federated States of Micronesia, Fiji, Kiribati, Marshall Islands, Nauru, Niue, Palau, Samoa, Solomon Islands, Tonga, Tuvalu, and Vanuatu. Objective: We assessed the vulnerabilities of Pacific island countries to the health impacts of climate change and planned adaptation strategies to minimize such threats to health. Methods: This assessment involved a combination of quantitative and qualitative techniques. The former included descriptive epidemiology, time series analyses, Poisson regression, and spatial modeling of climate and climate-sensitive disease data, in the few instances where this was possible; the latter included wide stakeholder consultations, iterative consensus building, and expert opinion. Vulnerabilities were ranked using a “likelihood versus impact” matrix, and adaptation strategies were prioritized and planned accordingly. Results: The highest-priority climate-sensitive health risks in Pacific island countries included trauma from extreme weather events, heat-related illnesses, compromised safety and security of water and food, vector-borne diseases, zoonoses, respiratory illnesses, psychosocial ill-health, non-communicable diseases, population pressures, and health system deficiencies. Adaptation strategies relating to these climate change and health risks could be clustered according to categories common to many countries in the Pacific region. Conclusion: Pacific island countries are among the most vulnerable in the world to the health impacts of climate change. This vulnerability is a function of their unique geographic, demographic, and socioeconomic characteristics combined with their exposure to changing weather patterns associated with climate change, the health risks entailed, and the limited capacity of the countries to manage and adapt in the face of such risks. Citation: McIver L, Kim R, Woodward A, Hales S, Spickett J, Katscherian D, Hashizume M, Honda Y, Kim H, Iddings S, Naicker J, Bambrick H, McMichael AJ, Ebi KL. 2016. Health impacts of climate change in Pacific island countries: a regional assessment of vulnerabilities and adaptation priorities. Environ Health Perspect 124:1707–1714; http://dx.doi.org/10.1289/ehp.1509756 PMID:26645102

  11. Modeling climate change impact in hospitality sector, using building resources consumption signature

    NASA Astrophysics Data System (ADS)

    Pinto, Armando; Bernardino, Mariana; Silva Santos, António; Pimpão Silva, Álvaro; Espírito Santo, Fátima

    2016-04-01

    Hotels are one of building types that consumes more energy and water per person and are vulnerable to climate change because in the occurrence of extreme events (heat waves, water stress) same failures could compromise the hotel services (comfort) and increase energy cost or compromise the landscape and amenities due to water use restrictions. Climate impact assessments and the development of adaptation strategies require the knowledge about critical climatic variables and also the behaviour of building. To study the risk and vulnerability of buildings and hotels to climate change regarding resources consumption (energy and water), previous studies used building energy modelling simulation (BEMS) tools to study the variation in energy and water consumption. In general, the climate change impact in building is evaluated studying the energy and water demand of the building for future climate scenarios. But, hotels are complex buildings, quite different from each other and assumption done in simplified BEMS aren't calibrated and usually neglect some important hotel features leading to projected estimates that do not usually match hotel sector understanding and practice. Taking account all uncertainties, the use of building signature (statistical method) could be helpful to assess, in a more clear way, the impact of Climate Change in the hospitality sector and using a broad sample. Statistical analysis of the global energy consumption obtained from bills shows that the energy consumption may be predicted within 90% confidence interval only with the outdoor temperature. In this article a simplified methodology is presented and applied to identify the climate change impact in hospitality sector using the building energy and water signature. This methodology is applied to sixteen hotels (nine in Lisbon and seven in Algarve) with four and five stars rating. The results show that is expect an increase in water and electricity consumption (manly due to the increase in cooling) and a decrease in gas consumption (for heating). The hotels in Algarve are more vulnerable than Lisbon hotels.

  12. Adaptation to climate change in the Ontario public health sector

    PubMed Central

    2012-01-01

    Background Climate change is among the major challenges for health this century, and adaptation to manage adverse health outcomes will be unavoidable. The risks in Ontario – Canada’s most populous province – include increasing temperatures, more frequent and intense extreme weather events, and alterations to precipitation regimes. Socio-economic-demographic patterns could magnify the implications climate change has for Ontario, including the presence of rapidly growing vulnerable populations, exacerbation of warming trends by heat-islands in large urban areas, and connectedness to global transportation networks. This study examines climate change adaptation in the public health sector in Ontario using information from interviews with government officials. Methods Fifty-three semi-structured interviews were conducted, four with provincial and federal health officials and 49 with actors in public health and health relevant sectors at the municipal level. We identify adaptation efforts, barriers and opportunities for current and future intervention. Results Results indicate recognition that climate change will affect the health of Ontarians. Health officials are concerned about how a changing climate could exacerbate existing health issues or create new health burdens, specifically extreme heat (71%), severe weather (68%) and poor air-quality (57%). Adaptation is currently taking the form of mainstreaming climate change into existing public health programs. While adaptive progress has relied on local leadership, federal support, political will, and inter-agency efforts, a lack of resources constrains the sustainability of long-term adaptation programs and the acquisition of data necessary to support effective policies. Conclusions This study provides a snapshot of climate change adaptation and needs in the public health sector in Ontario. Public health departments will need to capitalize on opportunities to integrate climate change into policies and programs, while higher levels of government must improve efforts to support local adaptation and provide the capacity through which local adaptation can succeed. PMID:22712716

  13. Impacts of Rising Air Temperatures and Emissions Mitigation on Electricity Demand and Supply in the United States. A Multi-Model Comparison

    DOE PAGES

    McFarland, James; Zhou, Yuyu; Clarke, Leon; ...

    2015-06-10

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effectsmore » of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.« less

  14. Economic modeling of effects of climate change on the forest sector and mitigation options: a compendium of briefing papers

    Treesearch

    Ralph J. Alig

    2010-01-01

    This report is a compilation of six briefing papers based on literature reviews and syntheses, prepared for U.S. Department of Agriculture, Forest Service policy analysts and decisionmakers about specific questions pertaining to climate change. The main topics addressed here are economic effects on the forest sector at the national and global scales, costs of forest...

  15. Strategic responses to CO2 emission reduction targets drive shift in U.S. electric sector water use

    EPA Science Inventory

    The reliance of the U.S. electric sector on water makes this sector vulnerable to climate change and variability. We use the EPAUS9r MARKAL model to investigate changes in U.S. electric sector water withdrawal and consumption through 2055 under alternative energy system-wide CO2...

  16. IMPACT2C: Quantifying projected impacts under 2°C warming

    NASA Astrophysics Data System (ADS)

    Jacob, D.; Kotova, L.; Impact2C Team

    2012-04-01

    Political discussions on the European goal to limit global warming to 2°C demand, that information is provided to society by the best available science on projected impacts and possible benefits. The new project IMPACT2C is supported by the European Commission's 7th Framework Programme as a 4 year large-scale integrating project. IMPACT2C is coordinated by the Climate Service Center, Helmholtz-Zentrum Geesthacht. IMPACT2C enhances knowledge, quantifies climate change impacts, and adopts a clear and logical structure, with climate and impacts modelling, vulnerabilities, risks and economic costs, as well as potential responses, within a pan-European sector based analysis. The project utilises a range of models within a multi-disciplinary international expert team and assesses effects on water, energy, infrastructure, coasts, tourism, forestry, agriculture, ecosystems services, and health and air quality-climate interactions. IMPACT2C introduces key innovations. First, harmonised socio-economic assumptions/scenarios will be used, to ensure that both individual and cross-sector assessments are aligned to the 2°C (1.5°C) scenario for both impacts and adaptation, e.g. in relation to land-use pressures between agriculture and forestry. Second, it has a core theme of uncertainty, and will develop a methodological framework integrating the uncertainties within and across the different sectors, in a consistent way. In so doing, analysis of adaptation responses under uncertainty will be enhanced. Finally, a cross-sectoral perspective is adopted to complement the sector analysis. A number of case studies will be developed for particularly vulnerable areas, subject to multiple impacts (e.g. the Mediterranean), with the focus being on cross-sectoral interactions (e.g. land use competition) and cross-cutting themes (e.g. cities). The project also assesses climate change impacts in some of the world's most vulnerable regions: Bangladesh, Africa (Nile and Niger basins), and the Maldives. An overview about the scientific goals and the structure of IMPACT2C will be presented.

  17. A Marginal Cost Based "Social Cost of Carbon" Provides Inappropriate Guidance in a World That Needs Rapid and Deep Decarbonization

    NASA Astrophysics Data System (ADS)

    Morgan, M. G.; Vaishnav, P.; Azevedo, I. L.; Dowlatabadi, H.

    2016-12-01

    Rising temperatures and changing precipitation patterns due to climate change are projected to alter many sectors of the US economy. A growing body of research has examined these effects in the energy, water, and agricultural sectors. Rising summer temperatures increase the demand for electricity. Changing precipitation patterns effect the availability of water for hydropower generation, thermo-electric cooling, irrigation, and municipal and industrial consumption. A combination of changes to temperature and precipitation alter crop yields and cost-effective farming practices. Although a significant body of research exists on analyzing impacts to individual sectors, fewer studies examine the effects using a common set of assumptions (e.g., climatic and socio-economic) within a coupled modeling framework. The present analysis uses a multi-sector, multi-model framework with common input assumptions to assess the projected effects of climate change on energy, water, and land-use in the United States. The analysis assesses the climate impacts for across 5 global circulation models for representative concentration pathways (RCP) of 8.5 and 4.5 W/m2. The energy sector models - Pacific Northwest National Lab's Global Change Assessment Model (GCAM) and the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) - show the effects of rising temperature on energy and electricity demand. Electricity supply in ReEDS is also affected by the availability of water for hydropower and thermo-electric cooling. Water availability is calculated from the GCM's precipitation using the US Basins model. The effects on agriculture are estimated using both a process-based crop model (EPIC) and an agricultural economic model (FASOM-GHG), which adjusts water supply curves based on information from US Basins. The sectoral models show higher economic costs of climate change under RCP 8.5 than RCP 4.5 averaged across the country and across GCM's.

  18. Impacts of Climate Policy on Regional Air Quality, Health, and Air Quality Regulatory Procedures

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.; Selin, N. E.

    2011-12-01

    Both the changing climate, and the policy implemented to address climate change can impact regional air quality. We evaluate the impacts of potential selected climate policies on modeled regional air quality with respect to national pollution standards, human health and the sensitivity of health uncertainty ranges. To assess changes in air quality due to climate policy, we couple output from a regional computable general equilibrium economic model (the US Regional Energy Policy [USREP] model), with a regional air quality model (the Comprehensive Air Quality Model with Extensions [CAMx]). USREP uses economic variables to determine how potential future U.S. climate policy would change emissions of regional pollutants (CO, VOC, NOx, SO2, NH3, black carbon, and organic carbon) from ten emissions-heavy sectors of the economy (electricity, coal, gas, crude oil, refined oil, energy intensive industry, other industry, service, agriculture, and transportation [light duty and heavy duty]). Changes in emissions are then modeled using CAMx to determine the impact on air quality in several cities in the Northeast US. We first calculate the impact of climate policy by using regulatory procedures used to show attainment with National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter. Building on previous work, we compare those results with the calculated results and uncertainties associated with human health impacts due to climate policy. This work addresses a potential disconnect between NAAQS regulatory procedures and the cost/benefit analysis required for and by the Clean Air Act.

  19. Optimization of Water Resources and Agricultural Activities for Economic Benefit in Colorado

    NASA Astrophysics Data System (ADS)

    LIM, J.; Lall, U.

    2017-12-01

    The limited water resources available for irrigation are a key constraint for the important agricultural sector of Colorado's economy. As climate change and groundwater depletion reshape these resources, it is essential to understand the economic potential of water resources under different agricultural production practices. This study uses a linear programming optimization at the county spatial scale and annual temporal scales to study the optimal allocation of water withdrawal and crop choices. The model, AWASH, reflects streamflow constraints between different extraction points, six field crops, and a distinct irrigation decision for maize and wheat. The optimized decision variables, under different environmental, social, economic, and physical constraints, provide long-term solutions for ground and surface water distribution and for land use decisions so that the state can generate the maximum net revenue. Colorado, one of the largest agricultural producers, is tested as a case study and the sensitivity on water price and on climate variability is explored.

  20. Intersects between Land, Energy, Water and the Climate System

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.; Skaggs, R.; Wilson, T.

    2012-12-01

    Climate change affects water, and land resources, and with growing human activity, each of these sectors relies increasingly on the others for critical resources. Events such as drought across the South Central U.S. during 2011 demonstrate that climatic impacts within each of these sectors can cascade through interactions between sectors. Energy, water, and land resources are each vulnerable to impacts on either of the other two sectors. For example, energy systems inherently require land and water. Increased electricity demands to contend with climate change can impose additional burdens on overly subscribed water resources. Within this environment, energy systems compete for water with agriculture, human consumption, and other needs. In turn, climate driven changes in landscape attributes and land use affect water quality and availability as well as energy demands. Diminishing water quality and availability impose additional demands for energy to access and purify water, and for land to store and distribute water. In some situations, interactions between water, energy, and land resources make options for reducing greenhouse gas emissions vulnerable to climate change. Energy options such as solar power or biofuel use can reduce net greenhouse gas emissions as well as U.S. dependence on foreign resources. As a result, the U.S. is expanding renewable energy systems. Advanced technology such as carbon dioxide capture with biofuels may offer a means of removing CO2 from the atmosphere. But as with fossil fuels, renewable energy sources can impose significant demands for water and land. For example, solar power mayrequire significant land to site facilities and water for cooling or to produce steam. Raising crops to produce biofuels uses arable land and water that might otherwise be available for food production. Thus, warmer and drier climate can compromise these renewable energy resources, and drought can stress water supplies creating competition between energy production and agriculture. These kinds of stresses often initiate innovated technological developments, such as dry cooling to reduce water demands in the U.S. Southwest for utility-scalesolar development, however, the need for large areas of land remain, and often, large land tracts in this region are under Federal ownership and used as conservation or wildlife refuges. Conflicting stakeholder views, institutional commitments, and international concerns can constrain options for reducing vulnerability to climate change, and interactions among water, energy, and land resource sectors can intensify such constraints. While management decisions may focus primarily on one of these resource sectors, where the three sectors are tightly coupled, options for mitigating or adapting to climate change may be limited more than expected. For example, the Columbia River Treaty between Canada and the U.S. emphasizes hydroelectric power and flood control, but with warmer temperatures and drier summers projected for the Northwest, diminishing water supplies will result in increased pumping for resource production (i.e., deeper groundwater) and transmission. Finally, coordinated water management for agriculture, ecosystem services, and hydropower will be an important aspect of adaptation not necessarily accommodated by the Treaty.

  1. What we know, do not know, and need to know about climate change vulnerability in the western Canadian Arctic: a systematic literature review

    NASA Astrophysics Data System (ADS)

    Ford, James D.; Pearce, Tristan

    2010-01-01

    This letter systematically reviews and synthesizes scientific and gray literature publications (n = 420) to identify and characterize the nature of climate change vulnerability in the Inuvialuit Settlement Region of the western Canadian Arctic and identify gaps in understanding. The literature documents widespread evidence of climate change, with implications for human and biophysical systems. Adaptations are being employed to manage changing conditions and are indicative of a high adaptive capacity. However, barriers to adaptation are evident and are expected to constrain adaptive capacity to future climate change. Continued climate change is predicted for the region, with differential exposure sensitivity for communities, groups and sectors: a function of social-economic-biophysical characteristics and projected future climatic conditions. Existing climate risks are expected to increase in magnitude and frequency, although the interaction between projected changes and socio-economic-demographic trends has not been assessed. The capacity for adapting to future climate change has also not been studied. The review identifies the importance of targeted vulnerability research that works closely with community members and other stakeholders to address research needs. Importantly, the fully categorized list of reviewed references accompanying this letter will be a valuable resource for those working or planning to work in the region, capturing climate change research published since 1990. At a broader level, the systematic review methodology offers a promising tool for climate/environmental change studies in general where there is a large and emerging body of research but limited understanding of research gaps and needs.

  2. Effect of Climate Change on Mediterranean Winter Ranges of Two Migratory Passerines.

    PubMed

    Tellería, José L; Fernández-López, Javier; Fandos, Guillermo

    2016-01-01

    We studied the effect of climate change on the distribution of two insectivorous passerines (the meadow pipit Anthus pratensis and the chiffchaff Phylloscopus collybita) in wintering grounds of the Western Mediterranean basin. In this region, precipitation and temperature can affect the distribution of these birds through direct (thermoregulation costs) or indirect effects (primary productivity). Thus, it can be postulated that projected climate changes in the region will affect the extent and suitability of their wintering grounds. We studied pipit and chiffchaff abundance in several hundred localities along a belt crossing Spain and Morocco and assessed the effects of climate and other geographical and habitat predictors on bird distribution. Multivariate analyses reported a positive effect of temperature on the present distribution of the two species, with an additional effect of precipitation on the meadow pipit. These climate variables were used with Maxent to model the occurrence probabilities of species using ring recoveries as presence data. Abundance and occupancy of the two species in the study localities adjusted to the distribution models, with more birds in sectors of high climate suitability. After validation, these models were used to forecast the distribution of climate suitability according to climate projections for 2050-2070 (temperature increase and precipitation reduction). Results show an expansion of climatically suitable sectors into the highlands by the effect of warming on the two species, and a retreat of the meadow pipit from southern sectors related to rain reduction. The predicted patterns show a mean increase in climate suitability for the two species due to the warming of the large highland expanses typical of the western Mediterranean.

  3. Added value of dynamical downscaling of winter seasonal forecasts over North America

    NASA Astrophysics Data System (ADS)

    Tefera Diro, Gulilat; Sushama, Laxmi

    2017-04-01

    Skillful seasonal forecasts have enormous potential benefits for socio-economic sectors that are sensitive to weather and climate conditions, as the early warning routines could reduce the vulnerability of such sectors. In this study, individual ensemble members of the ECMWF global ensemble seasonal forecasts are dynamically downscaled to produce ensemble of regional seasonal forecasts over North America using the fifth generation Canadian Regional Climate Model (CRCM5). CRCM5 forecasts are initialized on November 1st of each year and are integrated for four months for the 1991-2001 period at 0.22 degree resolution to produce a one-month lead-time forecast. The initial conditions for atmospheric variables are obtained from ERA-Interim reanalysis, whereas the initial conditions for land surface are obtained from a separate ERA-interim driven CRCM5 simulation with spectral nudging applied to the interior domain. The global and regional ensemble forecasts were then verified to investigate the skill and economic benefits of dynamical downscaling. Results indicate that both the global and regional climate models produce skillful precipitation forecast over the southern Great Plains and eastern coasts of the U.S and skillful temperature forecasts over the northern U.S. and most of Canada. In comparison to ECMWF forecasts, CRCM5 forecasts improved the temperature forecast skill over most part of the domain, but the improvements for precipitation is limited to regions with complex topography, where it improves the frequency of intense daily precipitation. CRCM5 forecast also yields a better economic value compared to ECMWF precipitation forecasts, for users whose cost to loss ratio is smaller than 0.5.

  4. Assessing climate change impact on complementarity between solar and hydro power in areas affected by glacier shrinkage

    NASA Astrophysics Data System (ADS)

    Diah Puspitarini, Handriyanti; François, Baptiste; Zoccatelli, Davide; Brown, Casey; Creutin, Jean-Dominique; Zaramella, Mattia; Borga, Marco

    2017-04-01

    Variable Renewable Energy (VRE) sources such as wind, solar and runoff sources are variable in time and space, following their driving weather variables. In this work we aim to analyse optimal mixes of energy sources, i.e. mixes of sources which minimize the deviation between energy load and generation, for a region in the Upper Adige river basin (Eastern Italian Alps) affected by glacier shrinking. The study focuses on hydropower (run of the river - RoR) and solar energy, and analyses the current situation as well different climate change scenarios. Changes in glacier extent in response to climate warming and/or altered precipitation regimes have the potential to substantially alter the magnitude and timing, as well as the spatial variation of watershed-scale hydrologic fluxes. This may change the complementarity with solar power as well. In this study, we analyse the climate change impact on complementarity between RoR and solar using the Decision Scaling approach (Brown et al. 2012). With this approach, the system vulnerability is separated from the climatic hazard that can come from any set of past or future climate conditions. It departs from conventional top-down impact studies because it explores the sensitivity of the system response to a plausible range of climate variations rather than its sensitivity to the time-varying outcome of individual GCM projections. It mainly relies on the development of Climate Response Functions that bring together i) the sensitivity of some system success and/or failure indicators to key external drivers (i.e. mean features of regional climate) and ii) the future values of these drivers as simulated from climate simulation chains. The main VRE sources used in the study region are solar- and hydro-power (with an important fraction of run-of-the river hydropower). The considered indicator of success is the 'energy penetration' coefficient, defined as the long-run percentage of energy demand naturally met by the VRE on an hourly basis. Climate response functions, developed in a 2D climate change space (change in mean temperature and precipitation), are built from multiple hydro-climatic scenarios obtained by perturbing the observed weather time series with the change factor method, and considering given glacier storage states. Climate experiments are further used for assessing these change factors from different emission scenarios, climate models and future prediction lead times. Their positioning on the Climate Response Function allows discussing the risk/opportunities pertaining to changes in VRE penetration in the future. Results show i) the large impact of glacier shrinkage on the complementarity between solar and RoR energy sources and ii) that the impact is decreasing with time, with the main alterations to be expected in the coming 30 years. Brown, C., Ghile, Y., Laverty, M., Li, K., (2012). Decision scaling: Linking bottom up vulnerability analysis with climate projections in the water sector. Water Resour Res 48. 515 doi:10.1029/2011WR011212

  5. Evaluating Urban Resilience to Climate Change: A Multi-Sector Approach (External Review Draft)

    EPA Science Inventory

    Climate change impacts are diverse, long-term, and not easily predictable. Adapting to climate change requires making context specific and forward-looking decisions regarding a variety of climate change impacts and vulnerabilities when the future is highly uncertain. EPA scientis...

  6. Mixed Messages on Climate Science

    NASA Astrophysics Data System (ADS)

    Grifo, F.; Gutman, B. L.; Veysey, D.; El Gamal, A.

    2011-12-01

    While the private sector has a strong interest in climate science, and much at stake as the world comes to terms with the impacts of climate change, their legacy of climate denial has left the public confused. A few companies openly reject the basic science that ties emissions of greenhouse gases from human activities to warming temperatures and other consequences. Many companies play into the confusion by boasting of their green strategies while lobbying against climate bills. Still others joined pro-climate coalitions while donating heavily to politicians who openly reject the science of climate change. Many companies stand to see their business greatly affected by regulations to control greenhouse gas emissions or directly by changing weather patterns, rising sea levels, and varying water availability. Public statements, political activity, and corporate affiliations reveal inconsistent corporate postures. Congress, individuals, and the private sector can all play critical roles in holding corporate America to a higher standard bringing more clarity to science based climate policy discussions.

  7. Decadal climate prediction in the large ensemble limit

    NASA Astrophysics Data System (ADS)

    Yeager, S. G.; Rosenbloom, N. A.; Strand, G.; Lindsay, K. T.; Danabasoglu, G.; Karspeck, A. R.; Bates, S. C.; Meehl, G. A.

    2017-12-01

    In order to quantify the benefits of initialization for climate prediction on decadal timescales, two parallel sets of historical simulations are required: one "initialized" ensemble that incorporates observations of past climate states and one "uninitialized" ensemble whose internal climate variations evolve freely and without synchronicity. In the large ensemble limit, ensemble averaging isolates potentially predictable forced and internal variance components in the "initialized" set, but only the forced variance remains after averaging the "uninitialized" set. The ensemble size needed to achieve this variance decomposition, and to robustly distinguish initialized from uninitialized decadal predictions, remains poorly constrained. We examine a large ensemble (LE) of initialized decadal prediction (DP) experiments carried out using the Community Earth System Model (CESM). This 40-member CESM-DP-LE set of experiments represents the "initialized" complement to the CESM large ensemble of 20th century runs (CESM-LE) documented in Kay et al. (2015). Both simulation sets share the same model configuration, historical radiative forcings, and large ensemble sizes. The twin experiments afford an unprecedented opportunity to explore the sensitivity of DP skill assessment, and in particular the skill enhancement associated with initialization, to ensemble size. This talk will highlight the benefits of a large ensemble size for initialized predictions of seasonal climate over land in the Atlantic sector as well as predictions of shifts in the likelihood of climate extremes that have large societal impact.

  8. Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene-Oligocene transition.

    PubMed

    Kennedy, A T; Farnsworth, A; Lunt, D J; Lear, C H; Markwick, P J

    2015-11-13

    The glaciation of Antarctica at the Eocene-Oligocene transition (approx. 34 million years ago) was a major shift in the Earth's climate system, but the mechanisms that caused the glaciation, and its effects, remain highly debated. A number of recent studies have used coupled atmosphere-ocean climate models to assess the climatic effects of Antarctic glacial inception, with often contrasting results. Here, using the HadCM3L model, we show that the global atmosphere and ocean response to growth of the Antarctic ice sheet is sensitive to subtle variations in palaeogeography, using two reconstructions representing Eocene and Oligocene geological stages. The earlier stage (Eocene; Priabonian), which has a relatively constricted Tasman Seaway, shows a major increase in sea surface temperature over the Pacific sector of the Southern Ocean in response to the ice sheet. This response does not occur for the later stage (Oligocene; Rupelian), which has a more open Tasman Seaway. This difference in temperature response is attributed to reorganization of ocean currents between the stages. Following ice sheet expansion in the earlier stage, the large Ross Sea gyre circulation decreases in size. Stronger zonal flow through the Tasman Seaway allows salinities to increase in the Ross Sea, deep-water formation initiates and multiple feedbacks then occur amplifying the temperature response. This is potentially a model-dependent result, but it highlights the sensitive nature of model simulations to subtle variations in palaeogeography, and highlights the need for coupled ice sheet-climate simulations to properly represent and investigate feedback processes acting on these time scales. © 2015 The Author(s).

  9. Analysis of Costs and Time Frame for Reducing CO2 Emissions by 70% in the U.S. Auto and Energy Sectors by 2050.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2017-10-03

    Using a least-cost optimization framework, it is shown that unless emissions reductions beyond those already in place begin at the latest by 2025 (±2 years) for the U.S. automotive sector, and by 2026 (-3 years) for the U.S. electric sector, 2050 targets to achieve necessary within-sector preventative CO 2 emissions reductions of 70% or more relative to 2010 will be infeasible. The analysis finds no evidence to justify delaying climate action in the name of reducing technological costs. Even without considering social and environmental damage costs, delaying aggressive climate action does not reduce CO 2 abatement costs even under the most optimistic trajectories for improvements in fuel efficiencies, demand, and technology costs in the U.S. auto and electric sectors. In fact, the abatement cost for both sectors is found to increase sharply with every year of delay beyond 2020. When further considering reasonable limits to technology turnover, retirements, and new capacity additions, these costs would be higher, and the feasible time frame for initiating successful climate action on the 70% by 2050 target would be shorter, perhaps having passed already. The analysis also reveals that optimistic business-as-usual scenarios in the U.S. will, conservatively, release 79-108 billion metric tons of CO 2 . This could represent up to 13% of humanity's remaining carbon budget through 2050.

  10. Climate impacts on hydropower and consequences for global electricity supply investment needs

    DOE PAGES

    Turner, Sean W. D.; Hejazi, Mohamad; Kim, Son H.; ...

    2017-11-15

    Climate change is projected to increase hydropower generation in some parts of the world and decrease it in others. Here we explore the possible consequences of these impacts for the electricity supply sector at the global scale. Regional hydropower projections are developed by forcing a coupled global hydrological and dam model with downscaled, bias-corrected climate realizations. Consequent impacts on power sector composition and associated emissions and investment costs are explored using the Global Change Assessment Model (GCAM). We find that climate-driven changes in hydropower generation may shift power demands onto and away from carbon intensive technologies. This then causes significantlymore » altered power sector CO 2 emissions in several hydro-dependent regions, although the net global impact is modest. For drying regions, we estimate a global, cumulative investment need of approximately one trillion dollars (±$500 billion) this century to make up for deteriorated hydropower generation caused by climate change. Total investments avoided are of a similar magnitude across regions projected to experience increased precipitation. Investment risks and opportunities are concentrated in hydro-dependent countries for which significant climate change is expected. Various countries throughout the Balkans, Latin America and Southern Africa are most vulnerable, whilst Norway, Canada, and Bhutan emerge as clear beneficiaries.« less

  11. Transmission of climate risks across sectors and borders.

    PubMed

    Challinor, Andy J; Adger, W Neil; Benton, Tim G; Conway, Declan; Joshi, Manoj; Frame, Dave

    2018-06-13

    Systemic climate risks, which result from the potential for cascading impacts through inter-related systems, pose particular challenges to risk assessment, especially when risks are transmitted across sectors and international boundaries. Most impacts of climate variability and change affect regions and jurisdictions in complex ways, and techniques for assessing this transmission of risk are still somewhat limited. Here, we begin to define new approaches to risk assessment that can account for transboundary and trans-sector risk transmission, by presenting: (i) a typology of risk transmission that distinguishes clearly the role of climate versus the role of the social and economic systems that distribute resources; (ii) a review of existing modelling, qualitative and systems-based methods of assessing risk and risk transmission; and (iii) case studies that examine risk transmission in human displacement, food, water and energy security. The case studies show that policies and institutions can attenuate risks significantly through cooperation that can be mutually beneficial to all parties. We conclude with some suggestions for assessment of complex risk transmission mechanisms: use of expert judgement; interactive scenario building; global systems science and big data; innovative use of climate and integrated assessment models; and methods to understand societal responses to climate risk. These approaches aim to inform both research and national-level risk assessment. © 2018 The Author(s).

  12. Transmission of climate risks across sectors and borders

    NASA Astrophysics Data System (ADS)

    Challinor, Andy J.; Adger, W. Neil; Benton, Tim G.; Conway, Declan; Joshi, Manoj; Frame, Dave

    2018-06-01

    Systemic climate risks, which result from the potential for cascading impacts through inter-related systems, pose particular challenges to risk assessment, especially when risks are transmitted across sectors and international boundaries. Most impacts of climate variability and change affect regions and jurisdictions in complex ways, and techniques for assessing this transmission of risk are still somewhat limited. Here, we begin to define new approaches to risk assessment that can account for transboundary and trans-sector risk transmission, by presenting: (i) a typology of risk transmission that distinguishes clearly the role of climate versus the role of the social and economic systems that distribute resources; (ii) a review of existing modelling, qualitative and systems-based methods of assessing risk and risk transmission; and (iii) case studies that examine risk transmission in human displacement, food, water and energy security. The case studies show that policies and institutions can attenuate risks significantly through cooperation that can be mutually beneficial to all parties. We conclude with some suggestions for assessment of complex risk transmission mechanisms: use of expert judgement; interactive scenario building; global systems science and big data; innovative use of climate and integrated assessment models; and methods to understand societal responses to climate risk. These approaches aim to inform both research and national-level risk assessment.

  13. Climate impacts on hydropower and consequences for global electricity supply investment needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Sean W. D.; Hejazi, Mohamad; Kim, Son H.

    Climate change is projected to increase hydropower generation in some parts of the world and decrease it in others. Here we explore the possible consequences of these impacts for the electricity supply sector at the global scale. Regional hydropower projections are developed by forcing a coupled global hydrological and dam model with downscaled, bias-corrected climate realizations. Consequent impacts on power sector composition and associated emissions and investment costs are explored using the Global Change Assessment Model (GCAM). We find that climate-driven changes in hydropower generation may shift power demands onto and away from carbon intensive technologies. This then causes significantlymore » altered power sector CO 2 emissions in several hydro-dependent regions, although the net global impact is modest. For drying regions, we estimate a global, cumulative investment need of approximately one trillion dollars (±$500 billion) this century to make up for deteriorated hydropower generation caused by climate change. Total investments avoided are of a similar magnitude across regions projected to experience increased precipitation. Investment risks and opportunities are concentrated in hydro-dependent countries for which significant climate change is expected. Various countries throughout the Balkans, Latin America and Southern Africa are most vulnerable, whilst Norway, Canada, and Bhutan emerge as clear beneficiaries.« less

  14. An exploration of workplace social capital as an antecedent of occupational safety and health climate and outcomes in the Chinese education sector.

    PubMed

    Tang, Jessica Janice; Leka, Stavroula; Hunt, Nigel; MacLennan, Sara

    2014-07-01

    It is widely acknowledged that teachers are at greater risk of work-related health problems. At the same time, employee perceptions of different dimensions of organizational climate can influence their attitudes, performance, and well-being at work. This study applied and extended a safety climate model in the context of the education sector in Hong Kong. Apart from safety considerations alone, the study included occupational health considerations and social capital and tested their relationships with occupational safety and health (OSH) outcomes. Seven hundred and four Hong Kong teachers completed a range of questionnaires exploring social capital, OSH climate, OSH knowledge, OSH performance (compliance and participation), general health, and self-rated health complaints and injuries. Structural equation modeling (SEM) was used to analyze the relationships between predictive and outcome variables. SEM analysis revealed a high level of goodness of fit, and the hypothesized model including social capital yielded a better fit than the original model. Social capital, OSH climate, and OSH performance were determinants of both positive and negative outcome variables. In addition, social capital not only significantly predicted general health directly, but also had a predictive effect on the OSH climate-behavior-outcome relationship. This study makes a contribution to the workplace social capital and OSH climate literature by empirically assessing their relationship in the Chinese education sector.

  15. Extreme Events and Energy Providers: Science and Innovation

    NASA Astrophysics Data System (ADS)

    Yiou, P.; Vautard, R.

    2012-04-01

    Most socio-economic regulations related to the resilience to climate extremes, from infrastructure or network design to insurance premiums, are based on a present-day climate with an assumption of stationarity. Climate extremes (heat waves, cold spells, droughts, storms and wind stilling) affect in particular energy production, supply, demand and security in several ways. While national, European or international projects have generated vast amounts of climate projections for the 21st century, their practical use in long-term planning remains limited. Estimating probabilistic diagnostics of energy user relevant variables from those multi-model projections will help the energy sector to elaborate medium to long-term plans, and will allow the assessment of climate risks associated to those plans. The project "Extreme Events for Energy Providers" (E3P) aims at filling a gap between climate science and its practical use in the energy sector and creating in turn favourable conditions for new business opportunities. The value chain ranges from addressing research questions directly related to energy-significant climate extremes to providing innovative tools of information and decision making (including methodologies, best practices and software) and climate science training for the energy sector, with a focus on extreme events. Those tools will integrate the scientific knowledge that is developed by scientific communities, and translate it into a usable probabilistic framework. The project will deliver projection tools assessing the probabilities of future energy-relevant climate extremes at a range of spatial scales varying from pan-European to local scales. The E3P project is funded by the Knowledge and Innovation Community (KIC Climate). We will present the mechanisms of interactions between academic partners, SMEs and industrial partners for this project. Those mechanisms are elementary bricks of a climate service.

  16. A climate stress-test of the financial system

    NASA Astrophysics Data System (ADS)

    Battiston, Stefano; Mandel, Antoine; Monasterolo, Irene; Schütze, Franziska; Visentin, Gabriele

    2017-03-01

    The urgency of estimating the impact of climate risks on the financial system is increasingly recognized among scholars and practitioners. By adopting a network approach to financial dependencies, we look at how climate policy risk might propagate through the financial system. We develop a network-based climate stress-test methodology and apply it to large Euro Area banks in a `green' and a `brown' scenario. We find that direct and indirect exposures to climate-policy-relevant sectors represent a large portion of investors' equity portfolios, especially for investment and pension funds. Additionally, the portion of banks' loan portfolios exposed to these sectors is comparable to banks' capital. Our results suggest that climate policy timing matters. An early and stable policy framework would allow for smooth asset value adjustments and lead to potential net winners and losers. In contrast, a late and abrupt policy framework could have adverse systemic consequences.

  17. Impact of climate change on electricity systems and markets

    NASA Astrophysics Data System (ADS)

    Chandramowli, Shankar N.

    Climate change poses a serious threat to human welfare. There is now unequivocal scientific evidence that human actions are the primary cause of climate change. The principal climate forcing factor is the increasing accumulation of atmospheric carbon dioxide (CO2) due to combustion of fossil fuels for transportation and electricity generation. Generation of electricity account for nearly one-third of the greenhouse (GHG) emissions globally (on a CO2-equivalent basis). Any kind of economy-wide mitigation or adaptation effort to climate change must have a prominent focus on the electric power sector. I have developed a capacity expansion model for the power sector called LP-CEM (Linear Programming based Capacity Expansion Model). LP-CEM incorporates both the long-term climate change effects and the state/regional-level macroeconomic trends. This modeling framework is demonstrated for the electric power system in the Northeast region of United States. Some of the methodological advances introduced in this research are: the use of high-resolution temperature projections in a power sector capacity expansion model; the incorporation of changes in sectoral composition of electricity demand over time; the incorporation of the effects of climate change and variability on both the demand and supply-side of power sector using parameters estimated in the literature; and an inter-model coupling link with a macroeconomic model to account for price elasticity of demand and other effects on the broader macro-economy. LP-CEM-type models can be of use to state/regional level policymakers to plan for future mitigation and adaptation measures for the electric power sector. From the simulation runs, it is shown that scenarios with climate change effects and with high economic growth rates have resulted in higher capacity addition, optimal supply costs, wholesale/retail prices and total ratepayers' costs. LP-CEM is also adapted to model the implications of the proposed Clean Power Plan (Section 111 (d)) rules for the U.S. Northeast region. This dissertation applies an analytical model and an optimization model to investigate the implications of co-implementing an emission cap and an RPS policy for this region. A simplified analytical model of LP-CEM is specified and the first order optimality conditions are derived. The results from this analytical model are corroborated by running LP-CEM simulations under different carbon cap and RPS policy assumptions. A combination of these policies is shown to have a long-term beneficial effect for the final ratepayers in the region. This research conceptually explores the future implications of climate change and extreme weather events on the regional electricity market framework. The significant findings from this research and future policy considerations are discussed in the conclusion chapter.

  18. Assessing the vulnerability of infrastructure to climate change on the Islands of Samoa

    NASA Astrophysics Data System (ADS)

    Fakhruddin, S. H. M.

    2015-03-01

    Pacific Islanders have been exposed to risks associated with climate change. Samoa as one of the Pacific Islands are prone to climatic hazards that will likely increase in coming decades, affecting coastal communities and infrastructure around the islands. Climate models do not predict a reduction of such disaster events in the future in Samoa; indeed, most predict an increase in such events. This paper identifies key infrastructure and their functions and status in order to provide an overall picture of relative vulnerability to climate-related stresses of such infrastructure on the island. By reviewing existing reports as well as holding a series of consultation meetings, a list of critical infrastructures were developed and shared with stakeholders for their consideration. An indicator-based vulnerability model (SIVM) was developed in collaboration with stakeholders to assess the vulnerability of selected infrastructure systems on the Samoan Islands. Damage costs were extracted from the Evan cyclone recovery needs document. On the other hand, criticality and capacity to repair data were collected from stakeholders. Having stakeholder perspectives on these two issues was important because (a) criticality of a given infrastructure could be viewed differently among different stakeholders, and (b) stakeholders were the best available source (in this study) to estimate the capacity to repair non-physical damage to such infrastructure. Analysis of the results suggested rankings from most vulnerable to least vulnerable sectors are the transportation sector, the power sector, the water supply sector and the sewerage system.

  19. Assessing the vulnerability of infrastructure to climate change on the Islands of Samoa

    NASA Astrophysics Data System (ADS)

    Fakhruddin, S. H. M.; Babel, M. S.; Kawasaki, A.

    2015-06-01

    Pacific Islanders have been exposed to risks associated with climate change. Samoa, as one of the Pacific Islands, is prone to climatic hazards that will likely increase in the coming decades, affecting coastal communities and infrastructure around the islands. Climate models do not predict a reduction of such disaster events in the future in Samoa; indeed, most predict an increase. This paper identifies key infrastructure and their functions and status in order to provide an overall picture of relative vulnerability to climate-related stresses of such infrastructure on the island. By reviewing existing reports as well as holding a series of consultation meetings, a list of critical infrastructure was developed and shared with stakeholders for their consideration. An indicator-based vulnerability model (SIVM) was developed in collaboration with stakeholders to assess the vulnerability of selected infrastructure systems on the Samoan Islands. Damage costs were extracted from the Cyclone Evan recovery needs document. Additionally, data on criticality and capacity to repair damage were collected from stakeholders. Having stakeholder perspectives on these two issues was important because (a) criticality of a given infrastructure could be viewed differently among different stakeholders, and (b) stakeholders were the best available source (in this study) to estimate the capacity to repair non-physical damage to such infrastructure. Analysis of the results suggested a ranking of sectors from the most vulnerable to least vulnerable are: the transportation sector, the power sector, the water supply sector and the sewerage system.

  20. A problem-oriented approach to understanding adaptation: lessons learnt from Alpine Shire, Victoria Australia.

    NASA Astrophysics Data System (ADS)

    Roman, Carolina

    2010-05-01

    Climate change is gaining attention as a significant strategic issue for localities that rely on their business sectors for economic viability. For businesses in the tourism sector, considerable research effort has sought to characterise the vulnerability to the likely impacts of future climate change through scenarios or ‘end-point' approaches (Kelly & Adger, 2000). Whilst useful, there are few demonstrable case studies that complement such work with a ‘start-point' approach that seeks to explore contextual vulnerability (O'Brien et al., 2007). This broader approach is inclusive of climate change as a process operating within a biophysical system and allows recognition of the complex interactions that occur in the coupled human-environmental system. A problem-oriented and interdisciplinary approach was employed at Alpine Shire, in northeast Victoria Australia, to explore the concept of contextual vulnerability and adaptability to stressors that include, but are not limited to climatic change. Using a policy sciences approach, the objective was to identify factors that influence existing vulnerabilities and that might consequently act as barriers to effective adaptation for the Shire's business community involved in the tourism sector. Analyses of results suggest that many threats, including the effects climate change, compete for the resources, strategy and direction of local tourism management bodies. Further analysis of conditioning factors revealed that many complex and interacting factors define the vulnerability and adaptive capacity of the Shire's tourism sector to the challenges of global change, which collectively have more immediate implications for policy and planning than long-term future climate change scenarios. An approximation of the common interest, i.e. enhancing capacity in business acumen amongst tourism operators, would facilitate adaptability and sustainability through the enhancement of social capital in this business community. Kelly, P. M., & Adger, W. N. (2000). Theory and practice in assessing vulnerability to climatic change and facilitating adaptation. Climatic Change, 47, 325-352. O'Brien, K., Eriksen, S., Nygaard, L. P., & Schjolden, A. (2007). Why different interpretations of vulnerability matter in climate change discourses. Climate Policy, 7, 73-88.

  1. Advancing national climate change risk assessment to deliver national adaptation plans

    NASA Astrophysics Data System (ADS)

    Warren, R. F.; Wilby, R. L.; Brown, K.; Watkiss, P.; Betts, Richard A.; Murphy, James M.; Lowe, Jason A.

    2018-06-01

    A wide range of climate vulnerability and risk assessments have been implemented using different approaches at different scales, some with a broad multi-sectoral scope and others focused on single risks or sectors. This paper describes the novel approach to vulnerability and risk assessment which was designed and put into practice in the United Kingdom's Second Climate Change Risk Assessment (CCRA2) so as to build upon its earlier assessment (CCRA1). First, we summarize and critique the CCRA1 approach, and second describe the steps taken in the CCRA2 approach in detail, providing examples of how each was applied in practice. Novel elements of the approach include assessment of both present day and future vulnerability, a focus on the urgency of adaptation action, and a structure focused around systems of receptors rather than conventional sectors. Both stakeholders and reviewers generally regarded the approach as successful in providing advice on current risks and future opportunities to the UK from climate change, and the fulfilment of statutory duty. The need for a well-supported and open suite of impact indicators going forward is highlighted. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  2. Impacts of Changing Climate on Agricultural Variability: Implications for Smallholder Farmers in India

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Jain, M.; DeFries, R. S.; Galford, G. L.; Small, C.

    2013-12-01

    Agriculture is the largest employment sector in India, where food productivity, and thus food security, is highly dependent on seasonal rainfall and temperature. Projected increase in temperature, along with less frequent but intense rainfall events, will have a negative impact on crop productivity in India in the coming decades. These changes, along with continued ground water depletion, could have serious implications for Indian smallholder farmers, who are among some of the most vulnerable communities to climatic and economic changes. Hence baseline information on agricultural sensitivity to climate variability is important for strategies and policies that promote adaptation to climate variability. This study examines how cropping patterns in different agro-ecological zones in India respond to variations in precipitation and temperature. We specifically examine: a) which climate variables most influence crop cover for monsoon and winter crops? and b) how does the sensitivity of crop cover to climate variability vary in different agro-ecological regions with diverse socio-economic factors? We use remote sensing data (2000-01 - 2012-13) for cropping patterns (developed using MODIS satellite data), climate parameters (derived from MODIS and TRMM satellite data) and agricultural census data. We initially assessed the importance of these climate variables in two agro-ecoregions: a predominantly groundwater irrigated, cash crop region in western India, and a region in central India primarily comprised of rain-fed or surface water irrigated subsistence crops. Seasonal crop cover anomaly varied between -25% and 25% of the 13-year mean in these two regions. Predominantly climate-dependent region in central India showed high anomalies up to 200% of the 13-year crop cover mean, especially during winter season. Winter daytime mean temperature is overwhelmingly the most important climate variable for winter crops irrespective of the varied biophysical and socio-economic conditions across the study regions. Despite access to groundwater irrigation, crop cover in the western Indian study region showed substantial fluctuations during monsoon, probably due to changing planting strategies. This region is less sensitive to precipitation compared to the central Indian study region with predominantly climate-dependent irrigation from surface water. In western Indian study region a greater number of rainy days, increased intensity of rainfall, and cooler daytime and nighttime temperatures lead to increased crop cover during monsoon season, compared to in the central Indian study region where monsoon timing and amount of total rainfall are the most important factors of crop cover. Our findings indicate that different regions respond differently to climate, since socio-economic factors, such as irrigation access, market influences, demography, and policies play critical role in agricultural production. In the wake of projected precipitation and temperature changes, better access to irrigation and heat-tolerant high-yielding crop varieties will be crucial for future food production.

  3. Exploring the sensitivity of global ocean circulation to future ice loss from Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Condron, Alan

    The sensitivity of the global ocean circulation and climate to large increases in iceberg calving and meltwater discharges from the Antarctic Ice Sheet (AIS) are rarely studied and poorly understood. The requirement to investigate this topic is heightened by growing evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse on multidecadal-to-centennial timescales. Observations collected over the last 30 years indicate that the WAIS is now losing mass at an accelerated and that a collapse may have already begun in the Amundsen Sea sector. In addition, some recent future model simulations of the AIS showmore » the potential for rapid ice sheet retreat in the next 50 – 300 years. Such a collapse would be associated with the discharge of enormous volumes of ice and meltwater to the Southern Ocean. This project funds PI Condron to begin assessing the sensitivity of the global ocean circulation to projected increases in meltwater discharge and iceberg calving from the AIS for the next 50 – 100 years. A series of climate model simulations will determine changes in ocean circulation and temperature at the ice sheet grounding line, the role of mesoscale ocean eddies in mixing and transporting freshwater away from the continent to deep water formation regions, and the likely impact on the northward transport of heat to Europe and North America.« less

  4. Identifying Decision Support Tools to Bridge Climate and Agricultural Needs in the Midwest

    NASA Astrophysics Data System (ADS)

    Hall, B. L.; Kluck, D. R.; Hatfield, J.; Black, C.; Kellner, O.; Woloszyn, M.; Timlin, M. S.

    2015-12-01

    Climate monitoring tools designed to help stakeholders reduce climate impacts have been developed for the primary Midwest field crops of corn and soybean. However, the region also produces vital livestock and specialty crops that currently lack similar climate monitoring and projection tools. In autumn 2015, the National Oceanic and Atmospheric Administration's (NOAA's) National Integrated Drought Information System (NIDIS) and Midwestern Regional Climate Center (MRCC) partnered with the US Department of Agriculture's Midwest Climate Hub to convene agriculture stakeholders, climate scientists, and climate service specialists to discuss climate impacts and needs for these two, often under-represented, sectors. The goals of this workshop were to (1) identify climate impacts that specialty crops and livestock producers face within the Midwest, (2) develop an understanding of the types of climate and weather information and tools currently available in the Midwest that could be applied to decision making, and (3) discover the types of climate and weather information and tools needed to address concerns of specialty crop and livestock commodities across the Midwest. This presentation will discuss the workshop and provide highlights of the outcomes that developed into strategic plans for the future to better serve these sectors of agriculture in the Midwest.

  5. Analysis of Alaska transportation sectors to assess energy use and impacts of price shocks and climate change legislation.

    DOT National Transportation Integrated Search

    2013-04-01

    We analyzed the use of energy by Alaskas transportation sectors to assess the impact of sudden fuel prices changes. : We conducted three types of analysis: 1) Development of broad energy use statistics for each transportation sector, : including t...

  6. Adaptation to Climatic Hazards in the Savannah Ecosystem: Improving Adaptation Policy and Action

    NASA Astrophysics Data System (ADS)

    Yiran, Gerald A. B.; Stringer, Lindsay C.

    2017-10-01

    People in Ghana's savannah ecosystem have historically experienced a range of climatic hazards that have affected their livelihoods. In view of current climate variability and change, and projected increases in extreme events, adaptation to climate risks is vital. Policies have been put in place to enhance adaptation across sub-Saharan Africa in accordance with international agreements. At the same time, local people, through experience, have learned to adapt. This paper examines current policy actions and their implementation alongside an assessment of barriers to local adaptation. In doing so it links adaptation policy and practice. Policy documents were analysed that covered key livelihood sectors, which were identified as climate sensitive. These included agriculture, water, housing and health policies, as well as the National Climate Change Policy. In-depth interviews and focus group discussions were also held with key stakeholders in the Upper East Region of Ghana. Analyses were carried using thematic content analysis. Although policies and actions complement each other, their integration is weak. Financial, institutional, social, and technological barriers hinder successful local implementation of some policy actions, while lack of local involvement in policy formulation also hinders adaptation practice. Integration of local perspectives into policy needs to be strengthened in order to enhance adaptation. Coupled with this is a need to consider adaptation to climate change in development policies and to pursue efforts to reduce or remove the key barriers to implementation at the local level.

  7. Climate change vulnerability to agrarian ecosystem of small Island: evidence from Sagar Island, India

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Satpati, L. N.; Choudhury, B. U.; Sadhu, S.

    2018-04-01

    The present study assessed climate change vulnerability in agricultural sector of low-lying Sagar Island of Bay of Bengal. Vulnerability indices were estimated using spatially aggregated biophysical and socio-economic parameters by applying principal component analysis and equal weight method. The similarities and differences of outputs of these two methods were analysed across the island. From the integration of outputs and based on the severity of vulnerability, explicit vulnerable zones were demarcated spatially. Results revealed that life subsistence agriculture in 11.8% geographical area (2829 ha) of the island along the western coast falls under very high vulnerable zone (VHVZ VI of 84-99%) to climate change. Comparatively higher values of exposure (0.53 ± 0.26) and sensitivity (0.78 ± 0.14) subindices affirmed that the VHV zone is highly exposed to climate stressor with very low adaptive capacity (ADI= 0.24 ± 0.16) to combat vulnerability to climate change. Hence, food security for a population of >22 thousands comprising >3.7 thousand agrarian households are highly exposed to climate change. Another 17% area comprising 17.5% population covering 20% villages in north-western and eastern parts of the island also falls under high vulnerable (VI= 61%-77%) zone. Findings revealed large spatial heterogeneity in the degree of vulnerability across the island and thus, demands devising area specific planning (adaptation and mitigation strategies) to address the climate change impact implications both at macro and micro levels.

  8. Performance and Economic Modeling of Horizontally Drilled Ground-Source Heat Pumps in Select California Climates

    NASA Astrophysics Data System (ADS)

    Wiryadinata, Steven

    Service life modeling was performed to gage the viability of unitary 3.5 kWt, ground-source terminal heat pumps (GTHP) employing horizontal directionally drilled geothermal heat exchangers (GHX) over air-source terminal heat pumps (PTHP) in hotels and motels and residential apartment building sectors in California's coastal and inland climates. Results suggest the GTHP can reduce hourly peak demand for the utility by 7%-25% compared to PTHP, depending on the climate and building type. The annual energy savings, which range from -1% to 5%, are highly dependent on the GTHP pump energy use relative to the energy savings attributed to the difference in ground and air temperatures (DeltaT). In mild climates with small ?T, the pump energy use may overcome any advantage to utilizing a GHX. The majority of total levelized cost savings - ranging from 0.18/ft2 to 0.3/ft 2 - are due to reduced maintenance and lifetime capital cost normally associated with geothermal heat pump systems. Without these reductions (not validated for the GTHP system studied), the GTHP technology does not appear to offer significant advantages over PTHP in the climate zones studied here. The GTHP levelized cost was most sensitive to variations in installed cost and in some cases, energy use (influenced by climate zone choice), which together highlights the importance of climate selection for installation, and the need for larger market penetration of ground-source systems in order to bring down installed costs as the technology matures.

  9. Climate Change Education for Mitigation and Adaptation

    ERIC Educational Resources Information Center

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  10. Global Climate Change Impacts in the United States

    USDA-ARS?s Scientific Manuscript database

    Climate change impacts on the United States vary by region and sector of the economy. Responses to climate change fall into two major categories. Mitigation focuses on the reducing emissions of heat-trapping gases or increasing their uptake to reduce the amount and speed of climate change. Adaptatio...

  11. The Copernicus Climate Change Service (C3S): A European Answer to Climate Change

    NASA Astrophysics Data System (ADS)

    Thepaut, Jean-Noel

    2016-04-01

    Copernicus is the European Commission's flagship Earth observation programme that delivers freely accessible operational data and information services. ECMWF has been entrusted to operate two key parts of the Copernicus programme, which will bring a consistent standard to the measurement, forecasting and prediction of atmospheric conditions and climate change: • The Copernicus Atmosphere Monitoring Service, CAMS, provides daily forecasts detailing the makeup composition of the atmosphere from the ground up to the stratosphere. • The Copernicus Climate Change Service (C3S) (in development) will routinely monitor and analyse more than 20 essential climate variables to build a global picture of our climate, from the past to the future, as well as developing customisable climate indicators for relevant economic sectors, such as energy, water management, agriculture, insurance, health…. C3S has now taken off and a number of proof-of-concept sectoral climate services have been initiated. This paper will focus on the description and expected outcome of these proof-of-concept activities as well as the definition of a roadmap towards a fully operational European Climate Change Service.

  12. Strategic Response to Energy-Related Security Threats in the US Department of Defense

    DTIC Science & Technology

    2014-10-15

    generation in the United States are fossil fuels . These include coal, natural gas, and oil . In some cases solar, wind, geothermal, and hydroelectric...and findings. The research addressed engagement on climate change and energy security issues by DoD across various tiers and sectors of the...on climate change and energy security issues by DoD across various tiers and sectors of the organization. Specifically, a tripartite analysis

  13. Anthropogenic Climate Change in Asia: Key Challenges

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.

    2009-12-01

    The energy, agricultural, and water sectors in Asia, a vast continent that comprises more than half of the world's population, are crucially vulnerable to shifts in climate. The acceleration of economic development in Asia over the past few decades, the dependence of its huge agricultural economy on rainfall, and its growing energy demands have thrust climate change and its impacts squarely into important sectors of the Asian society. Further, it is likely that there has been significant anthropogenic warming over the past 50 years averaged over the Asian continent (Intergovernmental Panel on Climate Change (IPCC) [2007]; see Figure 1a). Asian megacities are already witnessing stresses in food, water, transportation, health, and air quality. The situation could become even worse with projected changes in temperature and rainfall in the 21st century, coupled with the likelihood that climate change will exacerbate extremes.

  14. Climate and Water Vulnerability of the US Electricity Grid Under High Penetrations of Renewable Energy

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.

    2017-12-01

    The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and reliability of different configurations of the US electric grid subject to changing climate conditions.

  15. Effect of Climate Change on Mediterranean Winter Ranges of Two Migratory Passerines

    PubMed Central

    Tellería, José L.; Fernández-López, Javier; Fandos, Guillermo

    2016-01-01

    We studied the effect of climate change on the distribution of two insectivorous passerines (the meadow pipit Anthus pratensis and the chiffchaff Phylloscopus collybita) in wintering grounds of the Western Mediterranean basin. In this region, precipitation and temperature can affect the distribution of these birds through direct (thermoregulation costs) or indirect effects (primary productivity). Thus, it can be postulated that projected climate changes in the region will affect the extent and suitability of their wintering grounds. We studied pipit and chiffchaff abundance in several hundred localities along a belt crossing Spain and Morocco and assessed the effects of climate and other geographical and habitat predictors on bird distribution. Multivariate analyses reported a positive effect of temperature on the present distribution of the two species, with an additional effect of precipitation on the meadow pipit. These climate variables were used with Maxent to model the occurrence probabilities of species using ring recoveries as presence data. Abundance and occupancy of the two species in the study localities adjusted to the distribution models, with more birds in sectors of high climate suitability. After validation, these models were used to forecast the distribution of climate suitability according to climate projections for 2050–2070 (temperature increase and precipitation reduction). Results show an expansion of climatically suitable sectors into the highlands by the effect of warming on the two species, and a retreat of the meadow pipit from southern sectors related to rain reduction. The predicted patterns show a mean increase in climate suitability for the two species due to the warming of the large highland expanses typical of the western Mediterranean. PMID:26761791

  16. Data Sparsity Considerations in Climate Impact Analysis for the Water Sector (Invited)

    NASA Astrophysics Data System (ADS)

    Asante, K. O.; Khimsara, P.; Chan, A.

    2013-12-01

    Scientists and planners are helping governments and communities around the world to prepare for climate change by performing local impact studies and developing adaptation plans. Most studies begin by analyzing global climate models outputs to estimate the magnitude of projected change, assessing vulnerabilities and proposing adaptation measures. In these studies, climate projections from the Intergovernmental Panel on Climate Change (IPCC) Data Distribution Centre (DDC) are either used directly or downscaled using regional models. Since climate projections cover the entire global, climate change analysis can be performed for any location. However, selection of climate projections for use in historically data sparse regions presents special challenges. Key questions arise about the impact of historical data sparsity on quality of climate projections, spatial consistency of results and suitability for applications such as water resource planning. In this paper, a water-sector climate study conducted in a data-rich setting in California is compared to a similar study conducted a data-sparse setting in Mozambique. The challenges of selecting projections, performing analysis and interpreting the results for climate adaption planning are compared to illustrate the decision process and challenges encountered in these two very different settings.

  17. CIRUN: Climate Information Responding to User Needs

    NASA Astrophysics Data System (ADS)

    Busalacchi, A. J.

    2009-12-01

    The Earth System will experience real climate change over the next 50 years, exceeding the scope of natural climate variability. A paramount question facing society is how to adapt to this certainty of climate variability and change. In response, OSTP and NOAA are considering how comprehensive climate services would best inform decisions about adaptation. Similarly, NASA is considering the optimal configuration of the next generation of Earth, environmental, and climate observations to be deployed over the coming 10-20 years. Moreover, much of the added-value information for specific climate-related decisions will be provided by private, academic and non-governmental organizations. In this context, over the past several years the University of Maryland has established the CIRUN (Climate Information: Responding to User Needs) initiative to identify the nature of national needs for climate information and services from a decision support perspective. To date, CIRUN has brought together decisionmakers in a number of sectors to help understand their perspectives on climate with the goal of improving the usefulness of climate information, observations and prediction products to specific user communities. CIRUN began with a major workshop in October 2007 that convened 430 participants in agriculture, parks and recreation, terrestrial ecosystems, insurance/investment, energy, national security, state/local/municipal, water, human health, commerce and manufacturing, transportation, and coastal/marine sectors. Plenary speakers such as Norman Augustine, R. James Woolsey, James Mahoney, and former Senator Joseph Tydings, breakout panel sessions, and participants provided input based on the following: - How would you characterize the exposure or vulnerability to climate variability or change impacting your organization? - Does climate variability and/or change currently factor into your organization's objectives or operations? - Are any of your existing plans being affected by climate or projections of climate change? - Is your organization developing a plan for adapting to climate change? - What are your needs for climate observations, predictions, and services? Please cite one or more specific examples when possible. - Do you currently have access to the climate information your organization needs? - What next steps are needed to assure effective use of climate services in your decision making? As a result, a dialogue with various user communities and a subsequent series of more sector specific workshops has been established regarding how significantly enhanced climate observations, data management, modeling, and predictions can provide valuable decision support for business and policy decisions. In particular, CIRUN has helped - To identify how users, stakeholders, and decision makers are influenced by climate on time scales from seasons to decades - To identify the needs and requirements of users, stakeholders, and decision makers for climate information, observations, predictions, and services from global to local scales - To identify what adaptation measures are being considered in the private and public sectors, and how this might result in new classes of information for decision support - To recommend principal elements of the path forward toward more effective use of climate services in decision making.

  18. The state of climate change adaptation in the Arctic

    NASA Astrophysics Data System (ADS)

    Ford, James D.; McDowell, Graham; Jones, Julie

    2014-10-01

    The Arctic climate is rapidly changing, with wide ranging impacts on natural and social systems. A variety of adaptation policies, programs and practices have been adopted to this end, yet our understanding of if, how, and where adaptation is occurring is limited. In response, this paper develops a systematic approach to characterize the current state of adaptation in the Arctic. Using reported adaptations in the English language peer reviewed literature as our data source, we document 157 discrete adaptation initiatives between 2003 and 2013. Results indicate large variations in adaptation by region and sector, dominated by reporting from North America, particularly with regards to subsistence harvesting by Inuit communities. Few adaptations were documented in the European and Russian Arctic, or have a focus on the business and economy, or infrastructure sectors. Adaptations are being motivated primarily by the combination of climatic and non-climatic factors, have a strong emphasis on reducing current vulnerability involving incremental changes to existing risk management processes, and are primarily initiated and led at the individual/community level. There is limited evidence of trans-boundary adaptations or initiatives considering potential cross-scale/sector impacts.

  19. Developing a National Climate Indicators System to Track Climate Changes, Impacts, Vulnerabilities, and Preparedness

    NASA Astrophysics Data System (ADS)

    Kenney, M. A.; Janetos, A. C.; Arndt, D.; Chen, R. S.; Pouyat, R.; Anderson, S. M.

    2013-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. Part of the vision, which is now under development, for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks, Atmospheric Composition, Physical Climate Variability and Change, Sectors and Resources of Concern, and Adaptation and Mitigation Responses. This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at spatial scales that are the most relevant for their intended use. National decision-makers may find indicators of national greenhouse gas emissions to be informative; however, state or local decision-makers have the freedom in this framework to define indicators of state, regional, or local greenhouse emissions that are more relevant to their concerns. The framework is also independent of time scale and topics within the broad categories. It therefore allows indicators of different sectors to be developed, and allows the consideration of both indicators of current state, past trends, and leading indicators. In this talk we will discuss the general conceptual model for the system, the sector specific conceptual models, and indicators that will be included in the prototype end-to-end indicator system.

  20. Deglaciation of Fennoscandia

    NASA Astrophysics Data System (ADS)

    Stroeven, Arjen P.; Hättestrand, Clas; Kleman, Johan; Heyman, Jakob; Fabel, Derek; Fredin, Ola; Goodfellow, Bradley W.; Harbor, Jonathan M.; Jansen, John D.; Olsen, Lars; Caffee, Marc W.; Fink, David; Lundqvist, Jan; Rosqvist, Gunhild C.; Strömberg, Bo; Jansson, Krister N.

    2016-09-01

    To provide a new reconstruction of the deglaciation of the Fennoscandian Ice Sheet, in the form of calendar-year time-slices, which are particularly useful for ice sheet modelling, we have compiled and synthesized published geomorphological data for eskers, ice-marginal formations, lineations, marginal meltwater channels, striae, ice-dammed lakes, and geochronological data from radiocarbon, varve, optically-stimulated luminescence, and cosmogenic nuclide dating. This is summarized as a deglaciation map of the Fennoscandian Ice Sheet with isochrons marking every 1000 years between 22 and 13 cal kyr BP and every hundred years between 11.6 and final ice decay after 9.7 cal kyr BP. Deglaciation patterns vary across the Fennoscandian Ice Sheet domain, reflecting differences in climatic and geomorphic settings as well as ice sheet basal thermal conditions and terrestrial versus marine margins. For example, the ice sheet margin in the high-precipitation coastal setting of the western sector responded sensitively to climatic variations leaving a detailed record of prominent moraines and other ice-marginal deposits in many fjords and coastal valleys. Retreat rates across the southern sector differed between slow retreat of the terrestrial margin in western and southern Sweden and rapid retreat of the calving ice margin in the Baltic Basin. Our reconstruction is consistent with much of the published research. However, the synthesis of a large amount of existing and new data support refined reconstructions in some areas. For example, the LGM extent of the ice sheet in northwestern Russia was located far east and it occurred at a later time than the rest of the ice sheet, at around 17-15 cal kyr BP. We also propose a slightly different chronology of moraine formation over southern Sweden based on improved correlations of moraine segments using new LiDAR data and tying the timing of moraine formation to Greenland ice core cold stages. Retreat rates vary by as much as an order of magnitude in different sectors of the ice sheet, with the lowest rates on the high-elevation and maritime Norwegian margin. Retreat rates compared to the climatic information provided by the Greenland ice core record show a general correspondence between retreat rate and climatic forcing, although a close match between retreat rate and climate is unlikely because of other controls, such as topography and marine versus terrestrial margins. Overall, the time slice reconstructions of Fennoscandian Ice Sheet deglaciation from 22 to 9.7 cal kyr BP provide an important dataset for understanding the contexts that underpin spatial and temporal patterns in retreat of the Fennoscandian Ice Sheet, and are an important resource for testing and refining ice sheet models.

  1. Reduction of Multi-pollutant Emissions from Industrial Sectors: The U.S. Cement Industry – A Case Study

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge Carbon dioxide (CO2) accounts for more than 90% of worldwide CO2-eq green-house gas (GHG) emissions from industrial sectors other than power generation. Amongst these sectors, the cement industry is one ...

  2. Physical and economic consequences of climate change in Europe.

    PubMed

    Ciscar, Juan-Carlos; Iglesias, Ana; Feyen, Luc; Szabó, László; Van Regemorter, Denise; Amelung, Bas; Nicholls, Robert; Watkiss, Paul; Christensen, Ole B; Dankers, Rutger; Garrote, Luis; Goodess, Clare M; Hunt, Alistair; Moreno, Alvaro; Richards, Julie; Soria, Antonio

    2011-02-15

    Quantitative estimates of the economic damages of climate change usually are based on aggregate relationships linking average temperature change to loss in gross domestic product (GDP). However, there is a clear need for further detail in the regional and sectoral dimensions of impact assessments to design and prioritize adaptation strategies. New developments in regional climate modeling and physical-impact modeling in Europe allow a better exploration of those dimensions. This article quantifies the potential consequences of climate change in Europe in four market impact categories (agriculture, river floods, coastal areas, and tourism) and one nonmarket impact (human health). The methodology integrates a set of coherent, high-resolution climate change projections and physical models into an economic modeling framework. We find that if the climate of the 2080s were to occur today, the annual loss in household welfare in the European Union (EU) resulting from the four market impacts would range between 0.2-1%. If the welfare loss is assumed to be constant over time, climate change may halve the EU's annual welfare growth. Scenarios with warmer temperatures and a higher rise in sea level result in more severe economic damage. However, the results show that there are large variations across European regions. Southern Europe, the British Isles, and Central Europe North appear most sensitive to climate change. Northern Europe, on the other hand, is the only region with net economic benefits, driven mainly by the positive effects on agriculture. Coastal systems, agriculture, and river flooding are the most important of the four market impacts assessed.

  3. Mapping Climate Change Vulnerabilities to Infectious Diseases in Europe

    PubMed Central

    Suk, Jonathan E.; Estevez, Virginia; Ebi, Kristie L.; Lindgren, Elisabet

    2011-01-01

    Background: The incidence, outbreak frequency, and distribution of many infectious diseases are generally expected to change as a consequence of climate change, yet there is limited regional information available to guide decision making. Objective: We surveyed government officials designated as Competent Bodies for Scientific Advice concerning infectious diseases to examine the degree to which they are concerned about potential effects of climate change on infectious diseases, as well as their perceptions of institutional capacities in their respective countries. Methods: In 2007 and 2009/2010, national infectious disease experts from 30 European Economic Area countries were surveyed about recent and projected infectious disease patterns in relation to climate change in their countries and the national capacity to cope with them. Results: A large majority of respondents agreed that climate change would affect vector-borne (86% of country representatives), food-borne (70%), water-borne (68%), and rodent-borne (68%) diseases in their countries. In addition, most indicated that institutional improvements are needed for ongoing surveillance programs (83%), collaboration with the veterinary sector (69%), management of animal disease outbreaks (66%), national monitoring and control of climate-sensitive infectious diseases (64%), health services during an infectious disease outbreak (61%), and diagnostic support during an epidemic (54%). Conclusions: Expert responses were generally consistent with the peer-reviewed literature regarding the relationship between climate change and vector- and water-borne diseases, but were less so for food-borne diseases. Shortcomings in institutional capacity to manage climate change vulnerability, identified in this assessment, should be addressed in impact, vulnerability, and adaptation assessments. PMID:22113877

  4. Physical and economic consequences of climate change in Europe

    PubMed Central

    Ciscar, Juan-Carlos; Iglesias, Ana; Feyen, Luc; Szabó, László; Van Regemorter, Denise; Amelung, Bas; Nicholls, Robert; Watkiss, Paul; Christensen, Ole B.; Dankers, Rutger; Garrote, Luis; Goodess, Clare M.; Hunt, Alistair; Moreno, Alvaro; Richards, Julie; Soria, Antonio

    2011-01-01

    Quantitative estimates of the economic damages of climate change usually are based on aggregate relationships linking average temperature change to loss in gross domestic product (GDP). However, there is a clear need for further detail in the regional and sectoral dimensions of impact assessments to design and prioritize adaptation strategies. New developments in regional climate modeling and physical-impact modeling in Europe allow a better exploration of those dimensions. This article quantifies the potential consequences of climate change in Europe in four market impact categories (agriculture, river floods, coastal areas, and tourism) and one nonmarket impact (human health). The methodology integrates a set of coherent, high-resolution climate change projections and physical models into an economic modeling framework. We find that if the climate of the 2080s were to occur today, the annual loss in household welfare in the European Union (EU) resulting from the four market impacts would range between 0.2–1%. If the welfare loss is assumed to be constant over time, climate change may halve the EU's annual welfare growth. Scenarios with warmer temperatures and a higher rise in sea level result in more severe economic damage. However, the results show that there are large variations across European regions. Southern Europe, the British Isles, and Central Europe North appear most sensitive to climate change. Northern Europe, on the other hand, is the only region with net economic benefits, driven mainly by the positive effects on agriculture. Coastal systems, agriculture, and river flooding are the most important of the four market impacts assessed. PMID:21282624

  5. Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m2, with the largest contribution from the direct effect (-0.5 W/m2). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m2) and semidirect effects (-0.10 W/m2) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m2), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.

  6. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.

  7. A Professional Development Climate Course for Sustainable Agriculture in Australia

    ERIC Educational Resources Information Center

    George, David; Clewett, Jeff; Birch, Colin; Wright, Anthony; Allen, Wendy

    2009-01-01

    There are few professional development courses in Australia for the rural sector concerned with climate variability, climate change and sustainable agriculture. The lack of educators with a sound technical background in climate science and its applications in agriculture prevents the delivery of courses either stand-alone or embedded in other…

  8. Introduction of Energy and Climate Mitigation Policy Issues in Energy - Environment Model of Latvia

    NASA Astrophysics Data System (ADS)

    Klavs, G.; Rekis, J.

    2016-12-01

    The present research is aimed at contributing to the Latvian national climate policy development by projecting total GHG emissions up to 2030, by evaluating the GHG emission reduction path in the non-ETS sector at different targets set for emissions reduction and by evaluating the obtained results within the context of the obligations defined by the EU 2030 policy framework for climate and energy. The method used in the research was bottom-up, linear programming optimisation model MARKAL code adapted as the MARKAL-Latvia model with improvements for perfecting the integrated assessment of climate policy. The modelling results in the baseline scenario, reflecting national economic development forecasts and comprising the existing GHG emissions reduction policies and measures, show that in 2030 emissions will increase by 19.1 % compared to 2005. GHG emissions stabilisation and reduction in 2030, compared to 2005, were researched in respective alternative scenarios. Detailed modelling and analysis of the Latvian situation according to the scenario of non-ETS sector GHG emissions stabilisation and reduction in 2030 compared to 2005 have revealed that to implement a cost effective strategy of GHG emissions reduction first of all a policy should be developed that ensures effective absorption of the available energy efficiency potential in all consumer sectors. The next group of emissions reduction measures includes all non-ETS sectors (industry, services, agriculture, transport, and waste management).

  9. The 2008 California climate change assessment

    NASA Astrophysics Data System (ADS)

    Franco, G.

    2008-12-01

    In 2005, Governor Arnold Schwarzenegger signed Executive Order S-03-05, which laid the foundation for California's ambitious greenhouse gas mitigation reduction efforts. The 2020 goal is now codified in state law requiring bringing 2020 emissions to the 1990 levels. The Executive Order also mandates the preparation of biennial updates on the latest climate change science, potential impacts, and assessment of the state's efforts to manage its climate change risks through various adaptation options. In 2006, the first of these mandated scientific assessments (The Governor's Scenarios Report) was released. Based on new scientific studies conducted in the interim, the next assessment, the '2008 Governor's Scenarios Report' is currently in preparation. It has three principal goals: (1) to improve the assessment of climate changes for California and associated impacts on key physical and biological indicators; (2) to begin to translate these physical and biological impacts into sectoral economic impacts; and (3) to begin to develop and evaluate strategies for key sectors or regions for adapting to climate changes already underway. Contributors to this session will present some of this new research to the scientific community. Among the most exciting new insights are impacts assessments for the all-important water and agricultural sectors, coastal areas, public health and related air quality and environmental justice issues, the forestry and energy sectors. This presentation will give an overview of the overall effort which will result in about 35 scientific papers from different research institutions in California. All of the studies are interlinked in such a way as to produce a consistent overall assessment.

  10. Climate research priorities for policy-makers, practitioners, and scientists in Georgia, USA.

    PubMed

    Rudd, Murray A; Moore, Althea F P; Rochberg, Daniel; Bianchi-Fossati, Lisa; Brown, Marilyn A; D'Onofrio, David; Furman, Carrie A; Garcia, Jairo; Jordan, Ben; Kline, Jennifer; Risse, L Mark; Yager, Patricia L; Abbinett, Jessica; Alber, Merryl; Bell, Jesse E; Bhedwar, Cyrus; Cobb, Kim M; Cohen, Juliet; Cox, Matt; Dormer, Myriam; Dunkley, Nyasha; Farley, Heather; Gambill, Jill; Goldstein, Mindy; Harris, Garry; Hopkinson, Melissa; James, Jean-Ann; Kidd, Susan; Knox, Pam; Liu, Yang; Matisoff, Daniel C; Meyer, Michael D; Mitchem, Jamie D; Moore, Katherine; Ono, Aspen J; Philipsborn, Jon; Sendall, Kerrie M; Shafiei, Fatemeh; Shepherd, Marshall; Teebken, Julia; Worley, Ashby N

    2018-05-23

    Climate change has far-reaching effects on human and ecological systems, requiring collaboration across sectors and disciplines to determine effective responses. To inform regional responses to climate change, decision-makers need credible and relevant information representing a wide swath of knowledge and perspectives. The southeastern U. S. State of Georgia is a valuable focal area for study because it contains multiple ecological zones that vary greatly in land use and economic activities, and it is vulnerable to diverse climate change impacts. We identified 40 important research questions that, if answered, could lay the groundwork for effective, science-based climate action in Georgia. Top research priorities were identified through a broad solicitation of candidate research questions (180 were received). A group of experts across sectors and disciplines gathered for a workshop to categorize, prioritize, and filter the candidate questions, identify missing topics, and rewrite questions. Participants then collectively chose the 40 most important questions. This cross-sectoral effort ensured the inclusion of a diversity of topics and questions (e.g., coastal hazards, agricultural production, ecosystem functioning, urban infrastructure, and human health) likely to be important to Georgia policy-makers, practitioners, and scientists. Several cross-cutting themes emerged, including the need for long-term data collection and consideration of at-risk Georgia citizens and communities. Workshop participants defined effective responses as those that take economic cost, environmental impacts, and social justice into consideration. Our research highlights the importance of collaborators across disciplines and sectors, and discussing challenges and opportunities that will require transdisciplinary solutions.

  11. Assessing the Impacts of Climate Change on Tourism-Dependent Communities in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Chin, N.; Day, J.; Sydnor, S.; Cherkauer, K. A.

    2013-12-01

    Tourism is an essential element of the Laurentian Great Lakes economy as well as one of the sectors expected to be affected most by climate change, particularly through extreme weather events. While studies looking at climate change impacts on the Great Lakes tourism, specifically, are limited, the results of other studies suggest that both summer tourism activities, such as beach-going, and winter tourism activities, such as skiing and snowboarding, could feel the effects of a changing climate. The purpose of this study was to determine how existing data and models might be used to predict the potential impacts of climate change on tourism-dependent communities at the local scale. Future climate projections and variable infiltration capacity (VIC) model simulations based on historical climate data were used to quantify trends in environmental metrics with a potential influence on tourism for several tourism-dependent Great Lakes communities. The results of this research show that the potential impacts of climate change vary at the local scale and could require different adaptation strategies for different communities and for different sectors of the tourism industry. For example, communities in the northern parts of the Great Lakes may find benefit in a greater diversification of their tourism industries, given that warming temperatures could be beneficial for summer tourism activities, while communities in the southern parts of the Great Lakes may have to find other ways to cope with climate conditions that are less conducive to summer tourism activities. Stakeholder input could also help inform the process of producing scientific information that is useful to policymakers when it comes to tourism sector-related decision making.

  12. Developing country finance in a post-2020 global climate agreement

    NASA Astrophysics Data System (ADS)

    Hannam, Phillip M.; Liao, Zhenliang; Davis, Steven J.; Oppenheimer, Michael

    2015-11-01

    A central task for negotiators of the post-2020 global climate agreement is to construct a finance regime that supports low-carbon development in developing economies. As power sector investments between developing countries grow, the climate finance regime should incentivize the decarbonization of these major sources of finance by integrating them as a complement to the commitments of developed nations. The emergence of the Asian Infrastructure Investment Bank, South-South Cooperation Fund and other nascent institutions reveal the fissures that exist in rules and norms surrounding international finance in the power sector. Structuring the climate agreement in Paris to credit qualified finance from the developing world could have several advantages, including: (1) encouraging low-carbon cooperation between developing countries; (2) incentivizing emerging investors to prefer low-carbon investments; and (3) enabling more cost-effective attainment of national and global climate objectives. Failure to coordinate on standards now could hinder low-carbon development in the decades to come.

  13. Exploring factors influencing farmers' willingness to pay (WTP) for a planned adaptation programme to address climatic issues in agricultural sectors.

    PubMed

    Ahmed, Adeel; Masud, Muhammad Mehedi; Al-Amin, Abul Quasem; Yahaya, Siti Rohani Binti; Rahman, Mahfuzur; Akhtar, Rulia

    2015-06-01

    This study empirically estimates farmers' willingness to pay (WTP) for a planned adaptation programme for addressing climate issues in Pakistan's agricultural sectors. The contingent valuation method (CVM) was employed to determine a monetary valuation of farmers' preferences for a planned adaptation programme by ascertaining the value attached to address climatic issues. The survey was conducted by distributing structured questionnaires among Pakistani farmers. The study found that 67 % of respondents were willing to pay for a planned adaptation programme. However, several socioeconomic and motivational factors exert greater influence on their willingness to pay (WTP). This paper specifies the steps needed for all institutional bodies to better address issues in climate change. The outcomes of this paper will support attempts by policy makers to design an efficient adaptation framework for mitigating and adapting to the adverse impacts of climate change.

  14. Managing protected areas under climate change: challenges and priorities.

    PubMed

    Rannow, Sven; Macgregor, Nicholas A; Albrecht, Juliane; Crick, Humphrey Q P; Förster, Michael; Heiland, Stefan; Janauer, Georg; Morecroft, Mike D; Neubert, Marco; Sarbu, Anca; Sienkiewicz, Jadwiga

    2014-10-01

    The implementation of adaptation actions in local conservation management is a new and complex task with multiple facets, influenced by factors differing from site to site. A transdisciplinary perspective is therefore required to identify and implement effective solutions. To address this, the International Conference on Managing Protected Areas under Climate Change brought together international scientists, conservation managers, and decision-makers to discuss current experiences with local adaptation of conservation management. This paper summarizes the main issues for implementing adaptation that emerged from the conference. These include a series of conclusions and recommendations on monitoring, sensitivity assessment, current and future management practices, and legal and policy aspects. A range of spatial and temporal scales must be considered in the implementation of climate-adapted management. The adaptation process must be area-specific and consider the ecosystem and the social and economic conditions within and beyond protected area boundaries. However, a strategic overview is also needed: management at each site should be informed by conservation priorities and likely impacts of climate change at regional or even wider scales. Acting across these levels will be a long and continuous process, requiring coordination with actors outside the "traditional" conservation sector. To achieve this, a range of research, communication, and policy/legal actions is required. We identify a series of important actions that need to be taken at different scales to enable managers of protected sites to adapt successfully to a changing climate.

  15. Parametric sensitivity analysis of an agro-economic model of management of irrigation water

    NASA Astrophysics Data System (ADS)

    El Ouadi, Ihssan; Ouazar, Driss; El Menyari, Younesse

    2015-04-01

    The current work aims to build an analysis and decision support tool for policy options concerning the optimal allocation of water resources, while allowing a better reflection on the issue of valuation of water by the agricultural sector in particular. Thus, a model disaggregated by farm type was developed for the rural town of Ait Ben Yacoub located in the east Morocco. This model integrates economic, agronomic and hydraulic data and simulates agricultural gross margin across in this area taking into consideration changes in public policy and climatic conditions, taking into account the competition for collective resources. To identify the model input parameters that influence over the results of the model, a parametric sensitivity analysis is performed by the "One-Factor-At-A-Time" approach within the "Screening Designs" method. Preliminary results of this analysis show that among the 10 parameters analyzed, 6 parameters affect significantly the objective function of the model, it is in order of influence: i) Coefficient of crop yield response to water, ii) Average daily gain in weight of livestock, iii) Exchange of livestock reproduction, iv) maximum yield of crops, v) Supply of irrigation water and vi) precipitation. These 6 parameters register sensitivity indexes ranging between 0.22 and 1.28. Those results show high uncertainties on these parameters that can dramatically skew the results of the model or the need to pay particular attention to their estimates. Keywords: water, agriculture, modeling, optimal allocation, parametric sensitivity analysis, Screening Designs, One-Factor-At-A-Time, agricultural policy, climate change.

  16. Remarkable separability of the circulation response to Arctic sea ice loss and greenhouse gas forcing

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.

    2017-12-01

    Arctic sea ice loss has an important effect on local climate through increases in ocean to atmosphere heat flux and associated feedbacks, and may influence midlatitude climate by changing large-scale circulation that can enhance or counter changes that are due to greenhouse gases. The extent to which climate change in a warming world can be understood as greenhouse gas-induced changes that are modulated by Arctic sea ice loss depends on how additive the responses to the separate influences are. Here we use a novel sea ice nudging methodology in the Canadian Earth System Model, which has a fully coupled ocean, to isolate the effects of Arctic sea ice loss and doubled atmospheric carbon dioxide (CO2) to determine their additivity and sensitivity to mean state. We find that the separate effects of Arctic sea ice loss and doubled CO2 are remarkably additive and relatively insensitive to mean climate state. This separability is evident in several thermodynamic and dynamic fields throughout most of the year, from hemispheric to synoptic scales. The extent to which the regional response to sea ice loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. In this model, Arctic sea ice loss enhances the CO2-induced surface air temperature changes nearly everywhere and zonal wind changes over the Pacific sector, whereas sea ice loss counters CO2-induced sea level pressure changes nearly everywhere over land and zonal wind changes over the Atlantic sector. This separability of the response to Arctic sea ice loss from the response to CO2 doubling gives credence to the body of work in which Arctic sea ice loss is isolated from the forcing that modified it, and might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.

  17. Advancing national climate change risk assessment to deliver national adaptation plans.

    PubMed

    Warren, R F; Wilby, R L; Brown, K; Watkiss, P; Betts, Richard A; Murphy, James M; Lowe, Jason A

    2018-06-13

    A wide range of climate vulnerability and risk assessments have been implemented using different approaches at different scales, some with a broad multi-sectoral scope and others focused on single risks or sectors. This paper describes the novel approach to vulnerability and risk assessment which was designed and put into practice in the United Kingdom's Second Climate Change Risk Assessment (CCRA2) so as to build upon its earlier assessment (CCRA1). First, we summarize and critique the CCRA1 approach, and second describe the steps taken in the CCRA2 approach in detail, providing examples of how each was applied in practice. Novel elements of the approach include assessment of both present day and future vulnerability, a focus on the urgency of adaptation action, and a structure focused around systems of receptors rather than conventional sectors. Both stakeholders and reviewers generally regarded the approach as successful in providing advice on current risks and future opportunities to the UK from climate change, and the fulfilment of statutory duty. The need for a well-supported and open suite of impact indicators going forward is highlighted.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).

  18. Shaping climate change in the North Atlantic sector: The role of the atmospheric response to local SST changes vs. large-scale changes

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Greatbatch, Richard; Bader, Jürgen

    2017-04-01

    Climate change simulations robustly show a warming hole in the sub-polar North Atlantic that results from slowing of the AMOC countering the global warming signal. Here we investigate how the distinct SST spatial structures, which include a sharpening of the Gulf Stream SST gradients, influence climate change in the NA sector in winter. For this we analyse the RCP8.5 scenario simulation of the MPI Earth System Model. Additional sensitivity experiments with the atmospheric model component, ECHAM5, are performed to deconstruct the effect of the local spatial structure of the SST change from those arising from large-scale warming of the ocean, remote SST pattern changes and changed radiative forcings. The MPI model simulation shows a signifcant decrease in precipitation to the south of the GS extension region in the future, despite a strong increase in underlying SST. While directly to the north there is a significant increase in precipitation. These distinct features in the precipitation response over the North Atlantic result from the local SST. Over the Gulf Stream, the differential structure of the precipitation changes reflects the changes of the local SST gradients there. Over the subpolar gyre the increase in precipitation is partly suppressed. In this region the Subpolar Gyre the weakened AMOC causes a SST warming, that is much weaker than the warming other regions of the ocean show at the same latitude. The large-scale response, which includes the overall increase in precipitation over the NA is due to the overall warming, remote SSTs and/or directly connected to the radiative forcing.

  19. Riverine ecosystem services and the thermoelectric sector: strategic issues facing the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Miara, A.; Vorosmarty, C. J.; Stewart, R.; Wollheim, W. M.; Rosenzweig, B.

    2013-12-01

    Major strategic issues facing the global thermoelectric sector include environmental regulation, climate change and increasing electricity demand. We have addressed such issues by modeling thermoelectric generation in the Northeastern United States that is reliant on cooling under five sensitivity tests to evaluate losses/gains in power production, thermal pollution and suitable aquatic habitat, comparing the contemporary baseline (2000-2010) with potential future states. Integral to the analysis, we developed a methodology to quantify river water availability for cooling, which we define as an ecosystem service. Projected climate conditions reduce river water available for efficient power plant operations and the river's capacity to absorb waste heat, causing a loss of regional thermoelectric generation (RTG) (2.5%) in some summers that, compared to the contemporary baseline, is equal to the summertime electricity consumption of 1.3 million Northeastern US homes. Vulnerabilities to warm temperatures and thermal pollution can be alleviated through the use of more efficient natural gas (NG) power plants that have a reduced reliance on cooling water. Conversion of once-through (OT) to cooling tower (CT) systems and the Clean Water Act (CWA) temperature limit regulation, both of which reduce efficiencies at the single plant level, show potential to yield beneficial increases in RTG. This is achieved by obviating the need for large volumes of river water, thereby reducing plant-to-plant interferences through lowering the impact of upstream thermal pollution and preserving a minimum standard of cooling water. The results and methodology framework presented here, which can be extrapolated to other regional assessments with contrasting climates and thermoelectric profiles, can identify opportunities and support decision-making to achieve more efficient energy systems and riverine ecosystem protection.

  20. Riverine ecosystem services and the thermoelectric sector: strategic issues facing the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Miara, Ariel; Vörösmarty, Charles J.; Stewart, Robert J.; Wollheim, Wilfred M.; Rosenzweig, Bernice

    2013-06-01

    Major strategic issues facing the global thermoelectric sector include environmental regulation, climate change and increasing electricity demand. We have addressed such issues by modeling thermoelectric generation in the Northeastern United States that is reliant on cooling under five sensitivity tests to evaluate losses/gains in power production, thermal pollution and suitable aquatic habitat, comparing the contemporary baseline (2000-2010) with potential future states. Integral to the analysis, we developed a methodology to quantify river water availability for cooling, which we define as an ecosystem service. Projected climate conditions reduce river water available for efficient power plant operations and the river’s capacity to absorb waste heat, causing a loss of regional thermoelectric generation (RTG) (2.5%) in some summers that, compared to the contemporary baseline, is equal to the summertime electricity consumption of 1.3 million Northeastern US homes. Vulnerabilities to warm temperatures and thermal pollution can be alleviated through the use of more efficient natural gas (NG) power plants that have a reduced reliance on cooling water. Conversion of once-through (OT) to cooling tower (CT) systems and the Clean Water Act (CWA) temperature limit regulation, both of which reduce efficiencies at the single plant level, show potential to yield beneficial increases in RTG. This is achieved by obviating the need for large volumes of river water, thereby reducing plant-to-plant interferences through lowering the impact of upstream thermal pollution and preserving a minimum standard of cooling water. The results and methodology framework presented here, which can be extrapolated to other regional assessments with contrasting climates and thermoelectric profiles, can identify opportunities and support decision-making to achieve more efficient energy systems and riverine ecosystem protection.

  1. Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia.

    PubMed

    Mereu, Simone; Sušnik, Janez; Trabucco, Antonio; Daccache, Andre; Vamvakeridou-Lyroudia, Lydia; Renoldi, Stefano; Virdis, Andrea; Savić, Dragan; Assimacopoulos, Dionysis

    2016-02-01

    Many (semi-) arid locations globally, and particularly islands, rely heavily on reservoirs for water supply. Some reservoirs are particularly vulnerable to climate and development changes (e.g. population change, tourist growth, hydropower demands). Irregularities and uncertainties in the fluvial regime associated with climate change and the continuous increase in water demand by different sectors will add new challenges to the management and to the resilience of these reservoirs. The resilience of vulnerable reservoirs must be studied in detail to prepare for and mitigate potential impacts of these changes. In this paper, a reservoir balance model is developed and presented for the Pedra e' Othoni reservoir in Sardinia, Italy, to assess resilience to climate and development changes. The model was first calibrated and validated, then forced with extensive ensemble climate data for representative concentration pathways (RCPs) 4.5 and 8.5, agricultural data, and with four socio-economic development scenarios. Future projections show a reduction in annual reservoir inflow and an increase in demand, mainly in the agricultural sector. Under no scenario is reservoir resilience significantly affected, the reservoir always achieves refill. However, this occurs at the partial expenses of hydropower production with implications for the production of renewable energy. There is also the possibility of conflict between the agricultural sector and hydropower sector for diminishing water supply. Pedra e' Othoni reservoir shows good resilience to future change mostly because of the disproportionately large basin feeding it. However this is not the case of other Sardinian reservoirs and hence a detailed resilience assessment of all reservoirs is needed, where development plans should carefully account for the trade-offs and potential conflicts among sectors. For Sardinia, the option of physical connection between reservoirs is available, as are alternative water supply measures. Those reservoirs at risk to future change should be identified, and mitigating measures investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Power politics: National energy strategies of the nuclear newly independent states of Armenia, Lithuania and Ukraine

    NASA Astrophysics Data System (ADS)

    Sabonis-Chafee, Theresa Marie

    The successor states of Armenia, Lithuania and Ukraine arrived at independence facing extraordinary challenges in their energy sectors. Each state was a net importer, heavily dependent on cheap energy supplies, mostly from Russia. Each state also inherited a nuclear power complex over which it had not previously exercised full control. In the time period 1991--1996, each state attempted to impose coherence on the energy sector, selecting a new course for the pieces it had inherited from a much larger, highly integrated energy structure. Each state attempted to craft national energy policies in the midst of severe supply shocks and price shocks. Each state developed institutions to govern its nuclear power sector. The states' challenges were made even greater by the fact that they had few political or economic structures necessary for energy management, and sought to create those structures at the same time. This dissertation is a systematic, non-quantitative examination of how each state's energy policies developed during the 1991--1996 time period. The theoretical premise of the analysis (drawn from Statist realism) is that systemic variables---regional climate and energy vulnerability---provide the best explanations for the resulting energy policy decisions. The dependent variable is defined as creation and reform of energy institutions. The independent variables include domestic climate, regional climate, energy vulnerability and transnational assistance. All three states adopted rhetoric and legislation declaring energy a strategic sector. The evidence suggests that two of the states, Armenia and Lithuania, which faced tense regional climates and high levels of energy vulnerability, succeeded in actually treating energy strategically, approaching energy as a matter of national security or "high politics." The third state, Ukraine, failed to do so. The evidence presented suggests that the systemic variables (regional climate and energy vulnerability) provided a more favorable environment for Ukraine, one in which the state attempted reform of the sector, but not as a concerted national security issue.

  3. Applying a systems approach to assess carbon emission reductions from climate change mitigation in Mexico’s forest sector

    NASA Astrophysics Data System (ADS)

    Olguin, Marcela; Wayson, Craig; Fellows, Max; Birdsey, Richard; Smyth, Carolyn E.; Magnan, Michael; Dugan, Alexa J.; Mascorro, Vanessa S.; Alanís, Armando; Serrano, Enrique; Kurz, Werner A.

    2018-03-01

    The Paris Agreement of the United Nation Framework Convention on Climate Change calls for a balance of anthropogenic greenhouse emissions and removals in the latter part of this century. Mexico indicated in its Intended Nationally Determined Contribution and its Climate Change Mid-Century Strategy that the land sector will contribute to meeting GHG emission reduction goals. Since 2012, the Mexican government through its National Forestry Commission, with international financial and technical support, has been developing carbon dynamics models to explore climate change mitigation options in the forest sector. Following a systems approach, here we assess the biophysical mitigation potential of forest ecosystems, harvested wood products and their substitution benefits (i.e. the change in emissions resulting from substitution of wood for more emissions-intensive products and fossil fuels), for policy alternatives considered by the Mexican government, such as a net zero deforestation rate and sustainable forest management. We used available analytical frameworks (Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model), parameterized with local input data in two contrasting Mexican states. Using information from the National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data), we demonstrate that activities aimed at reaching a net-zero deforestation rate can yield significant CO2e mitigation benefits by 2030 and 2050 relative to a baseline scenario (‘business as usual’), but if combined with increasing forest harvest to produce long-lived products and substitute more energy-intensive materials, emissions reductions could also provide other co-benefits (e.g. jobs, illegal logging reduction). We concluded that the relative impact of mitigation activities is locally dependent, suggesting that mitigation strategies should be designed and implemented at sub-national scales. We were also encouraged about the ability of the modeling framework to effectively use Mexico’s data, and showed the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation.

  4. Great plains regional climate assessment technical report

    USDA-ARS?s Scientific Manuscript database

    The Great Plains region (GP) plays important role in providing food and energy to the economy of the United States. Multiple climatic and non-climatic stressors put multiple sectors, livelihoods and communities at risk, including agriculture, water, ecosystems and rural and tribal communities. The G...

  5. Quantification of climate tourism potential of Croatia based on measured data and regional modeling.

    PubMed

    Brosy, Caroline; Zaninovic, Ksenija; Matzarakis, Andreas

    2014-08-01

    Tourism is one of the most important economic sectors in Croatia. The Adriatic coast is a popular travel destination for tourists, especially during the summer months. During their activities, tourists are affected by atmospheric conditions and therefore by weather and climate. Therefore, it is important to have reliable information about thermal conditions as well as their impacts on human beings. Here, the climate tourism potential of Croatia is presented and quantified on the basis of three selected stations in different climatic regions. The physiologically equivalent temperature is used for analysis as well as other climatic parameters relevant for tourism and recreation. The results already point to hot conditions for outdoor activities in summer during afternoons, especially along the coast but also for continental regions, resulting in a reduction of the climate tourism potential. In the future, this trend looks set to increase, possibly leading to a changing tourism sector in Croatia requiring adaptation and new strategies.

  6. Climate and southern Africa's water-energy-food nexus

    NASA Astrophysics Data System (ADS)

    Conway, Declan; van Garderen, Emma Archer; Deryng, Delphine; Dorling, Steve; Krueger, Tobias; Landman, Willem; Lankford, Bruce; Lebek, Karen; Osborn, Tim; Ringler, Claudia; Thurlow, James; Zhu, Tingju; Dalin, Carole

    2015-09-01

    In southern Africa, the connections between climate and the water-energy-food nexus are strong. Physical and socioeconomic exposure to climate is high in many areas and in crucial economic sectors. Spatial interdependence is also high, driven, for example, by the regional extent of many climate anomalies and river basins and aquifers that span national boundaries. There is now strong evidence of the effects of individual climate anomalies, but associations between national rainfall and gross domestic product and crop production remain relatively weak. The majority of climate models project decreases in annual precipitation for southern Africa, typically by as much as 20% by the 2080s. Impact models suggest these changes would propagate into reduced water availability and crop yields. Recognition of spatial and sectoral interdependencies should inform policies, institutions and investments for enhancing water, energy and food security. Three key political and economic instruments could be strengthened for this purpose: the Southern African Development Community, the Southern African Power Pool and trade of agricultural products amounting to significant transfers of embedded water.

  7. Yinong Sun | NREL

    Science.gov Websites

    integration Impacts of climate change on energy system evolution Energy policy analysis Education M.E.M. in . Electric Sector Climate Impacts. International Energy Workshop, Maryland. View all NREL publications for

  8. Long-Term Analysis and Appropriate Metrics of Climate Change in Mongolia

    ERIC Educational Resources Information Center

    Jamiyansharav, Khishigbayar

    2010-01-01

    This study addresses three important issues related to long-term climate change study in Mongolia. Mongolia is one of the biggest land-locked countries in Asia and 75--80 percent of the land is rangeland, which is highly vulnerable to climate change. Climate will affect many sectors critical to the country's economic, social, and ecological…

  9. Global climate change impacts on forests and markets

    Treesearch

    Xiaohui Tian; Brent Sohngen; John B Kim; Sara Ohrel; Jefferson Cole

    2016-01-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, theMC2model. The results suggest that climate change will cause forest outputs (such as timber) to increase...

  10. Climate Change Education in the Context of Education for Sustainable Development: Rationale and Principles

    ERIC Educational Resources Information Center

    Mochizuki, Yoko; Bryan, Audrey

    2015-01-01

    Although the role of education in addressing the challenges of climate change is increasingly recognized, the education sector remains underutilized as a strategic resource to mitigate and adapt to climate change. Education stakeholders in many countries have yet to develop a coherent framework for climate change education (CCE). This article…

  11. Climate, Water and Energy in the Nordic Countries

    NASA Astrophysics Data System (ADS)

    Snorrason, A.; Jonsdottir, J. F.

    2003-04-01

    In light of the recent IPCC Climate Change Assessment and recent progress made in meteorological and hydrological modelling, the directors of the Nordic hydrological institutes (CHIN) initiated a research project "Climate, Water and Energy" (CWE) with funding from the Nordic Energy Research and the Nordic Council of Ministers focusing on climatic impact assessment in the energy sector. Climatic variability and change affect the hydrological systems, which in turn affect the energy sector, this will increase the risk associated with the development and use of water resources in the Nordic countries. Within the CWE project four thematic groups work on this issue of climatic change and how changes in precipitation and temperature will have direct influences on runoff. A primary aim of the CWE climate group is to derive a common scenario or a "best-guess" estimate of climate change in northern Europe and Greenland, based on recent regional climate change experiments and representing the change from 1990 to 2050 under the IPCC SRES B2 emission scenario. A data set, along with the most important information for using the scenario is available at the project web site. The glacier group has chosen 8 glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. The long time series group has reported on the status of time series analysis in the Nordic countries. The group will select and quality control time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. The hydrological modelling group has reported on "Climate change impacts on water resources in the Nordic countries - State of the art and discussion of principles". The group will compare different hydrological models and discuss uncertainties in models and climate scenarios, while production of new results based on the composite scenario from the CWE-climate group depends on other projects. The product of the project will be an in-depth analysis of the present status of research and know-how in the sphere of climatic and hydrological research in the Nordic countries. It will be a synthesis and integration of present research with focus on the needs of the energy sector. It will also identify and prioritise key future research areas that are of benefit to the energy sector.

  12. Simulating the Impacts of Climate Extremes Across Sectors: The Case of the 2003 European Heat Wave

    NASA Astrophysics Data System (ADS)

    Schewe, J.; Zhao, F.; Reyer, C.; Breuer, L.; Coll, M.; Deryng, D.; Eddy, T.; Elliott, J. W.; Francois, L. M.; Friend, A. D.; Gerten, D.; Gosling, S.; Gudmundsson, L.; Huber, V.; Kim, H.; Lotze, H. K.; Orth, R.; Seneviratne, S. I.; Tittensor, D.; Vautard, R.; van Vliet, M. T. H.; Wada, Y.

    2017-12-01

    Increased occurrence of extreme climate or weather events is one of the most damaging consequences of global climate change today and in the future. Estimating the impacts of such extreme events across different human and natural systems is crucial for quantifying overall risks from climate change. Are current models fit for this task? Here we use the 2003 European heat wave and drought (EHW) as a historical analogue for comparable events in the future, and evaluate how accurately its impacts are reproduced by a multi-sectoral "super-ensemble" of state-of-the-art impacts models. Our study combines, for the first time, impacts on agriculture, freshwater resources, terrestrial and marine ecosystems, energy, and human health in a consistent multi-model framework. We identify key impacts of the 2003 EHW reported in the literature and/or recorded in publicly available databases, and examine how closely the models reproduce those impacts, applying the same measure of impact magnitude across different sectors. Preliminary results are mixed: While the EHW's impacts on water resources (streamflow) are reproduced well by most global hydrological models, not all crop and natural vegetation models reproduce the magnitude of impacts on agriculture and ecosystem productivity, respectively, and their performance varies by country or region. A hydropower capacity model matches reported hydropower generation anomalies only in some countries, and estimates of heat-related excess mortality from a set of statistical models are consistent with literature reports only for some of the cities investigated. We present a synthesis of simulated and observed impacts across sectors, and reflect on potential improvements in modeling and analyzing cross-sectoral impacts.

  13. Physical, Ecological, and Societal Indicators for the National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Kenney, Melissa A.; Chen, Robert; Baptista, Sandra R.; Quattrochi, Dale; O'Brien, Sheila

    2011-01-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation s activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: How do we know that there is a changing climate and how is it expected to change in the future? Are important climate impacts and opportunities occurring or predicted to occur in the future? Are we adapting successfully? What are the vulnerabilities and resiliencies given a changing climate? Are we preparing adequately for extreme events? It is not expected that the NCA societal indicators would be linked directly to a single decision or portfolio of decisions, but subsets of indicators, or the data supporting the indicator, might be used to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region.

  14. Project Ukko - Design of a climate service visualisation interface for seasonal wind forecasts

    NASA Astrophysics Data System (ADS)

    Hemment, Drew; Stefaner, Moritz; Makri, Stephann; Buontempo, Carlo; Christel, Isadora; Torralba-Fernandez, Veronica; Gonzalez-Reviriego, Nube; Doblas-Reyes, Francisco; de Matos, Paula; Dykes, Jason

    2016-04-01

    Project Ukko is a prototype climate service to visually communicate probabilistic seasonal wind forecasts for the energy sector. In Project Ukko, an interactive visualisation enhances the accessibility and readability to the latests advances in seasonal wind speed predictions developed as part of the RESILIENCE prototype of the EUPORIAS (EC FP7) project. Climate services provide made-to-measure climate information, tailored to the specific requirements of different users and industries. In the wind energy sector, understanding of wind conditions in the next few months has high economic value, for instance, for the energy traders. Current energy practices use retrospective climatology, but access to reliable seasonal predictions based in the recent advances in global climate models has potential to improve their resilience to climate variability and change. Despite their potential benefits, a barrier to the development of commercially viable services is the complexity of the probabilistic forecast information, and the challenge of communicating complex and uncertain information to decision makers in industry. Project Ukko consists of an interactive climate service interface for wind energy users to explore probabilistic wind speed predictions for the coming season. This interface enables fast visual detection and exploration of interesting features and regions likely to experience unusual changes in wind speed in the coming months.The aim is not only to support users to better understand the future variability in wind power resources, but also to bridge the gap between practitioners' traditional approach and the advanced prediction systems developed by the climate science community. Project Ukko is presented as a case study of cross-disciplinary collaboration between climate science and design, for the development of climate services that are useful, usable and effective for industry users. The presentation will reflect on the challenge of developing a climate service for industry users in the wind energy sector, the background to this challenge, our approach, and the evaluation of the visualisation interface.

  15. Physical, Ecological, and Societal Indicators for the National Climate Assessment

    NASA Astrophysics Data System (ADS)

    O'Brien, S.; Kenney, M.; Chen, R. S.; Baptista, S. R.; Quattrochi, D. A.

    2011-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation's activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: -How do we know that there is a changing climate and how is it expected to change in the future? -Are important climate impacts and opportunities occurring or predicted to occur in the future? -Are we adapting successfully? -What are the vulnerabilities and resiliencies given a changing climate? -Are we preparing adequately for extreme events? It is not expected that the NCA indicators would be linked directly to a single decision or portfolio of decisions, but subsets of indicators, or the data supporting the indicator, might be used to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region.

  16. Reflections on science and the communication sector

    NASA Astrophysics Data System (ADS)

    Raes, Frank

    2015-04-01

    Reflections on science and the communication sector. In this contribution I will reflect about successes and failures in communicating climate change and air pollution sciences to the general public. These communication efforts included writing popular articles, giving public presentations, working with people from the social scientists and artists. Giving the fact that communication is a very important (economic) sector on its own, the question is to what extent scientists should enter that sector, whether scientists are at all accepted in that sector, whether they should use the expertise in that sector, or whether they should merely provide the knowledge to be used by that sector.

  17. Relationships between visual field sensitivity and spectral absorption properties of the neuroretinal rim in glaucoma by multispectral imaging.

    PubMed

    Denniss, Jonathan; Schiessl, Ingo; Nourrit, Vincent; Fenerty, Cecilia H; Gautam, Ramesh; Henson, David B

    2011-11-07

    To investigate the relationship between neuroretinal rim (NRR) differential light absorption (DLA, a measure of spectral absorption properties) and visual field (VF) sensitivity in primary open-angle glaucoma (POAG). Patients diagnosed with (n = 22) or suspected of having (n = 7) POAG were imaged with a multispectral system incorporating a modified digital fundus camera, 250-W tungsten-halogen lamp, and fast-tuneable liquid crystal filter. Five images were captured sequentially within 1.0 second at wavelengths selected according to absorption properties of hemoglobin (range, 570-610 nm), and a Beer-Lambert law model was used to produce DLA maps of residual NRR from the images. Patients also underwent VF testing. Differences in NRR DLA in vertically opposing 180° and 45° sectors either side of the horizontal midline were compared with corresponding differences in VF sensitivity on both decibel and linear scales by Spearman's rank correlation. The decibel VF sensitivity scale showed significant relationships between superior-inferior NRR DLA difference and sensitivity differences between corresponding VF areas in 180° NRR sectors (Spearman ρ = 0.68; P < 0.0001), superior-/inferior-temporal 45° NRR sectors (ρ = 0.57; P < 0.002), and superior-/inferior-nasal 45° NRR sectors (ρ = 0.59; P < 0.001). Using the linear VF sensitivity scale significant relationships were found for 180° NRR sectors (ρ = 0.62; P < 0.0002) and superior-inferior-nasal 45° NRR sectors (ρ = 0.53; P < 0.002). No significant difference was found between correlations using the linear or decibel VF sensitivity scales. Residual NRR DLA is related to VF sensitivity in POAG. Multispectral imaging may provide clinically important information for the assessment and management of POAG.

  18. Relationships between Visual Field Sensitivity and Spectral Absorption Properties of the Neuroretinal Rim in Glaucoma by Multispectral Imaging

    PubMed Central

    Denniss, Jonathan; Schiessl, Ingo; Nourrit, Vincent; Fenerty, Cecilia H.; Gautam, Ramesh; Henson, David B.

    2011-01-01

    Purpose. To investigate the relationship between neuroretinal rim (NRR) differential light absorption (DLA, a measure of spectral absorption properties) and visual field (VF) sensitivity in primary open-angle glaucoma (POAG). Methods. Patients diagnosed with (n = 22) or suspected of having (n = 7) POAG were imaged with a multispectral system incorporating a modified digital fundus camera, 250-W tungsten-halogen lamp, and fast-tuneable liquid crystal filter. Five images were captured sequentially within 1.0 second at wavelengths selected according to absorption properties of hemoglobin (range, 570–610 nm), and a Beer-Lambert law model was used to produce DLA maps of residual NRR from the images. Patients also underwent VF testing. Differences in NRR DLA in vertically opposing 180° and 45° sectors either side of the horizontal midline were compared with corresponding differences in VF sensitivity on both decibel and linear scales by Spearman's rank correlation. Results. The decibel VF sensitivity scale showed significant relationships between superior–inferior NRR DLA difference and sensitivity differences between corresponding VF areas in 180° NRR sectors (Spearman ρ = 0.68; P < 0.0001), superior-/inferior-temporal 45° NRR sectors (ρ = 0.57; P < 0.002), and superior-/inferior-nasal 45° NRR sectors (ρ = 0.59; P < 0.001). Using the linear VF sensitivity scale significant relationships were found for 180° NRR sectors (ρ = 0.62; P < 0.0002) and superior–inferior–nasal 45° NRR sectors (ρ = 0.53; P < 0.002). No significant difference was found between correlations using the linear or decibel VF sensitivity scales. Conclusions. Residual NRR DLA is related to VF sensitivity in POAG. Multispectral imaging may provide clinically important information for the assessment and management of POAG. PMID:21980002

  19. Assessing the impacts of 1.5 °C global warming - simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Lange, Stefan; Piontek, Franziska; Reyer, Christopher P. O.; Schewe, Jacob; Warszawski, Lila; Zhao, Fang; Chini, Louise; Denvil, Sebastien; Emanuel, Kerry; Geiger, Tobias; Halladay, Kate; Hurtt, George; Mengel, Matthias; Murakami, Daisuke; Ostberg, Sebastian; Popp, Alexander; Riva, Riccardo; Stevanovic, Miodrag; Suzuki, Tatsuo; Volkholz, Jan; Burke, Eleanor; Ciais, Philippe; Ebi, Kristie; Eddy, Tyler D.; Elliott, Joshua; Galbraith, Eric; Gosling, Simon N.; Hattermann, Fred; Hickler, Thomas; Hinkel, Jochen; Hof, Christian; Huber, Veronika; Jägermeyr, Jonas; Krysanova, Valentina; Marcé, Rafael; Müller Schmied, Hannes; Mouratiadou, Ioanna; Pierson, Don; Tittensor, Derek P.; Vautard, Robert; van Vliet, Michelle; Biber, Matthias F.; Betts, Richard A.; Bodirsky, Benjamin Leon; Deryng, Delphine; Frolking, Steve; Jones, Chris D.; Lotze, Heike K.; Lotze-Campen, Hermann; Sahajpal, Ritvik; Thonicke, Kirsten; Tian, Hanqin; Yamagata, Yoshiki

    2017-11-01

    In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a special report in 2018 on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5 °C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).

  20. Estimation of the possible influence of future climate changes on biodiversity in terrestrial ecosystem

    NASA Astrophysics Data System (ADS)

    Noda, H. M.; Nishina, K.; Ito, A.

    2015-12-01

    In recent decades, climate change has progressed worldwide and their influences on ecosystem structure and function that provide various goods and services to humans' well-being are of the greatest concerns. The ecosystem function and services are tightly coupled with the biodiversity, particularly via food web and biogeochemical cycles and here carbon is one of the central elements. The photosynthetic carbon fixation by plants, which forms the basis of the food web, is known to be highly sensitive to meteorological changes including radiation, temperature, precipitation and CO2 concentration. Thus an analysis of the effect of future climate change on the carbon cycle processes including photosynthetic production in a biogeographical region, which is important from the viewpoint of the biodiversity conservation, such as "biodiversity hotspot", might enable us to discuss the relevance between climate change and biodiversity.In ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) phase 1, we have estimated NPP (net primary production), plant biomass and soil organic carbon by seven global biome models under climate conditions from 1901 to 2100 based on four RCPs (Representative Concentration Pathways for 2.6, 4.5, 6.0, and 8.5 W m-2 stabilization targets) and five global climate models. In the present study, we analyzed these outputs to reveal the effects of changes on NPP, plant biomass and soil organic carbon in 20 biodiversity hotspots in various climatic regions. Although NPP of whole world tended to increase under RCP 8.5 W m-2 scenario, some biome models have shown that NPP of the hotspots in tropical regions decrease.

  1. How can a climate change perspective be integrated into public health surveillance?

    PubMed

    Pascal, M; Viso, A C; Medina, S; Delmas, M C; Beaudeau, P

    2012-08-01

    Climate change may be considered as a key factor for environmental change, exposure to health risks and pathogens, consequently impairing the state of health among populations. Efficient health surveillance systems are required to support adaptation to climate change. However, despite a growing awareness, the public health surveillance sector has had very little involvement in the drafting of adaptation plans. This paper proposes a method to raise awareness about climate change in the public health community, to identify possible health risks and to assess the needs for reinforced health surveillance systems. A working group was set up comprising surveillance experts in the following fields: environmental health; chronic diseases and; infectious diseases. Their goal was to define common objectives, to propose a framework for risk analysis, and to apply it to relevant health risks in France. The framework created helped to organize available information on climate-sensitive health risks, making a distinction between three main determinants as follows: (1) environment; (2) individual and social behaviours; and (3) demography and health status. The process is illustrated using two examples: heatwaves and airborne allergens. Health surveillance systems can be used to trigger early warning systems, to create databases which improve scientific knowledge about the health impacts of climate change, to identify and prioritize needs for intervention and adaptation measures, and to evaluate these measures. Adaptation requires public health professionals to consider climate change as a concrete input parameter in their studies and to create partnerships with professionals from other disciplines. Copyright © 2012 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  2. Will current probabilistic climate change information, as such, improve adaptation?

    NASA Astrophysics Data System (ADS)

    Lopez, A.; Smith, L. A.

    2012-04-01

    Probabilistic climate scenarios are currently being provided to end users, to employ as probabilities in adaptation decision making, with the explicit suggestion that they quantify the impacts of climate change relevant to a variety of sectors. These "probabilities" are, however, rather sensitive to the assumptions in, and the structure of the modelling approaches used to generate them. It is often argued that stakeholders require probabilistic climate change information to adequately evaluate and plan adaptation pathways. On the other hand, some circumstantial evidence suggests that on the ground decision making rarely uses well defined probability distributions of climate change as inputs. Nevertheless it is within this context of probability distributions of climate change that we discuss possible drawbacks of supplying information that, while presented as robust and decision relevant, , is in fact unlikely to be so due to known flaws both in the underlying models and in the methodology used to "account for" those known flaws. How might one use a probability forecast that is expected to change in the future, not due to a refinement in our information but due to fundamental flaws in its construction? What then are the alternatives? While the answer will depend on the context of the problem at hand, a good approach will be strongly informed by the timescale of the given planning decision, and the consideration of all the non-climatic factors that have to be taken into account in the corresponding risk assessment. Using a water resources system as an example, we illustrate an alternative approach to deal with these challenges and make robust adaptation decisions today.

  3. Analysis of long-term climate change on per capita water demand in urban versus suburban areas in the Portland metropolitan area, USA

    NASA Astrophysics Data System (ADS)

    Parandvash, G. Hossein; Chang, Heejun

    2016-07-01

    We investigated the impacts of long-term climate variability and change on per capita water demand in urban and suburban service areas that have different degrees of development density in the Portland metropolitan area, USA. Together with historical daily weather and water production data, socioeconomic data such as population and unemployment rate were used to estimate daily per capita water demand in the two service areas. The structural time series regression model results show that the sensitivity of per capita water demand to both weather and unemployment rate variables is higher in suburban areas than in urban areas. This is associated with relatively higher proportional demand by the residential sector in the suburban area. The estimated coefficients of the historical demand model were used to project the mid-21st century (2035-2064) per capita water demand under three climate change scenarios that represent high (HadGEM2-ES), medium (MIROC5), and low (GFDL) climate changes. Without climate adaptation, compared to the historical period between 1983 and 2012, per capita water demand is projected to increase by 10.6% in the 2035-2064 period under the HadGEM2-ES in suburban areas, while per capita demand is projected to increase by 4.8% under the same scenario in urban areas. Our findings have implications for future urban water resource management and land use planning in the context of climate variability and change. A tight integration between water resource management and urban planning is needed for preparing for climate adaptation in municipal water planning and management.

  4. Air quality, health, and climate implications of China’s synthetic natural gas development

    PubMed Central

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Yang, Junnan; Zhu, Tong; Mauzerall, Denise L.

    2017-01-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ∼32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties. PMID:28438993

  5. Air quality, health, and climate implications of China's synthetic natural gas development.

    PubMed

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Peng, Wei; Yang, Junnan; Zhu, Tong; Smith, Kirk R; Mauzerall, Denise L

    2017-05-09

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO 2 emissions. Due to variations in air pollutant and CO 2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ∼32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today's technology, SNG emits 22 to 40% more CO 2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties.

  6. Air quality, health, and climate implications of China's synthetic natural gas development

    NASA Astrophysics Data System (ADS)

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Peng, Wei; Yang, Junnan; Zhu, Tong; Smith, Kirk R.; Mauzerall, Denise L.

    2017-05-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ˜32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties.

  7. The AgMIP Coordinated Climate-Crop Modeling Project (C3MP): Methods and Protocols

    NASA Technical Reports Server (NTRS)

    Shukla, Sonali P.; Ruane, Alexander Clark

    2014-01-01

    Climate change is expected to alter a multitude of factors important to agricultural systems, including pests, diseases, weeds, extreme climate events, water resources, soil degradation, and socio-economic pressures. Changes to carbon dioxide concentration ([CO2]), temperature, and water (CTW) will be the primary drivers of change in crop growth and agricultural systems. Therefore, establishing the CTW-change sensitivity of crop yields is an urgent research need and warrants diverse methods of investigation. Crop models provide a biophysical, process-based tool to investigate crop responses across varying environmental conditions and farm management techniques, and have been applied in climate impact assessment by using a variety of methods (White et al., 2011, and references therein). However, there is a significant amount of divergence between various crop models' responses to CTW changes (Rotter et al., 2011). While the application of a site-based crop model is relatively simple, the coordination of such agricultural impact assessments on larger scales requires consistent and timely contributions from a large number of crop modelers, each time a new global climate model (GCM) scenario or downscaling technique is created. A coordinated, global effort to rapidly examine CTW sensitivity across multiple crops, crop models, and sites is needed to aid model development and enhance the assessment of climate impacts (Deser et al., 2012). To fulfill this need, the Coordinated Climate-Crop Modeling Project (C3MP) (Ruane et al., 2014) was initiated within the Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013). The submitted results from C3MP Phase 1 (February 15, 2013-December 31, 2013) are currently being analyzed. This chapter serves to present and update the C3MP protocols, discuss the initial participation and general findings, comment on needed adjustments, and describe continued and future development. AgMIP aims to improve substantially the climate, crop, and economic simulation tools that are used to characterize the agricultural sector, to assess future world food security under changing climate conditions, and to enhance adaptation capacity both globally and regionally. To understand better and improve the modeled crop responses, AgMIP has conducted detailed crop model intercomparisons at closely observed field sites for wheat (Asseng et al., 2013), rice (Li et al., in review), maize (Bassu et al., 2014), and sugarcane (Singels et al., 2013). A coordinated modeling exercise was one of the original motivations for AgMIP, and C3MP provides rapid estimation of crop responses to CO2, water, and temperature (CTW) changes, adding dimension and insight into the crop model intercomparisons, while facilitating interactions within the global community of modelers. C3MP also contributes a fast-track, multi-model climate sensitivity assessment for the AgMIP climate and crop modeling teams on Research Track 2 (Fig. 1), which seeks to understand the impact of projected climatic changes on crop production and food security (Rosenzweig et al., 2013; Ruane et al., 2014).

  8. Nurses' perceptions of climate and environmental issues: a qualitative study.

    PubMed

    Anåker, Anna; Nilsson, Maria; Holmner, Åsa; Elf, Marie

    2015-08-01

    The aim of this study was to explore nurses' perceptions of climate and environmental issues and examine how nurses perceive their role in contributing to the process of sustainable development. Climate change and its implications for human health represent an increasingly important issue for the healthcare sector. According to the International Council of Nurses Code of Ethics, nurses have a responsibility to be involved and support climate change mitigation and adaptation to protect human health. This is a descriptive, explorative qualitative study. Nurses (n = 18) were recruited from hospitals, primary care and emergency medical services; eight participated in semi-structured, in-depth individual interviews and 10 participated in two focus groups. Data were collected from April-October 2013 in Sweden; interviews were transcribed verbatim and analysed using content analysis. Two main themes were identified from the interviews: (i) an incongruence between climate and environmental issues and nurses' daily work; and (ii) public health work is regarded as a health co-benefit of climate change mitigation. While being green is not the primary task in a lifesaving, hectic and economically challenging context, nurses' perceived their profession as entailing responsibility, opportunities and a sense of individual commitment to influence the environment in a positive direction. This study argues there is a need for increased awareness of issues and methods that are crucial for the healthcare sector to respond to climate change. Efforts to develop interventions should explore how nurses should be able to contribute to the healthcare sector's preparedness for and contributions to sustainable development. © 2015 The Authors. Journal of Advanced Nursing published by John Wiley & Sons Ltd.

  9. A Review of Pacific Interdecadal Climate Variability: Possible Mechanisms and Surface Climate Signatures in the Pacific Sector

    NASA Astrophysics Data System (ADS)

    Mantua, N. J.

    2004-12-01

    Many investigators have examined historical surface climate records from the Pacific sector and identified a relatively small number of spatial patterns varying at decadal to interdecadal time scales. "Pacific Decadal Variability" (PDV) is a label that has been used to describe this family of climate variations. Some patterns of PDV are contained completely within the northern extratropics, while others have signatures throughout the Pacific hemisphere on both sides of the equator. Mechanisms for observed patterns of PDV are not yet known, though a wide variety of hypotheses have been proposed. Various ocean-atmosphere mechanisms for PDV are contained within the extratropics, others within the tropics, while others involve tropical-extratropical interactions. Some investigators have proposed external forcing (solar, lunar, or volcanic) as potentially important for driving PDV. A relatively simple hypothesis couples ENSO forcing with upper ocean heat storage for extratropical PDV, and it suggests PDV predictability may be limited to ~2 year lead times. Paleo-PDV reconstructions have been based on materials throughout the Pacific sector using such things as extratropical tree-rings, tropical corals, extratropical clam shell growth rings, and ice cores. These different proxy records have generally provided different perspectives on paleo-PDV behavior.

  10. Impacts of pending federal greenhouse gas legislation on the Texas transportation sector.

    DOT National Transportation Integrated Search

    2010-05-01

    This 2010 study, funded by the Southwest Region University Transportation Center, assesses current regulatory : attempts to mitigate climate change and how such proposed action would impact the Texas transportation sector : economically. Social and p...

  11. Review of Climate Change and Health in Ethiopia: Status and Gap Analysis.

    PubMed

    Simane, Belay; Beyene, Hunachew; Deressa, Wakgari; Kumie, Abera; Berhane, Kiros; Samet, Jonathan

    2016-01-01

    This review assessed Ethiopia's existing situation on issues related to the environment, climate change and health, and identifies gaps and needs that can be addressed through research, training, and capacity building. The research was conducted through a comprehensive review of available secondary data and interviewing key informants in various national organizations involved in climate change adaptation and mitigation activities. Climate change-related health problems, such as mortality and morbidity due to floods and heat waves, vector-borne diseases, water-borne diseases, meningitis, and air pollution-related respiratory diseases are increasing in Ethiopia. Sensitive systems such as agriculture, health, and water have been affected, and the effects of climate change will continue to magnify without the right adaptation and mitigation measures. Currently, research on climate change and health is not adequately developed in Ethiopia. Research and other activities appear to be fragmented and uncoordinated. As a result, very few spatially detailed and methodologically consistent studies have been made to assess the impact of climate in the country. There has often been a lack of sufficient collaboration among organizations on the planning and execution of climate change and health activities, and the lack of trained professionals who can perform climate change and health-related research activities at various levels. Firstly, there is a lack of organized structure in the various organizations. Secondly, there is inadequate level of inter-sectoral collaboration and poor coordination and communication among different stakeholders. Thirdly, there are no reliable policy guidelines and programs among organizations, agencies and offices that target climate change and health. Fourth, the existing policies fail to consider the gender and community-related dimensions of climate change. Fifth, the monitoring and evaluation efforts exerted on climate change and health activities are not strong enough to address the climate change and health issues in the country.

  12. Review of Climate Change and Health in Ethiopia: Status and Gap Analysis

    PubMed Central

    Simane, Belay; Beyene, Hunachew; Deressa, Wakgari; Kumie, Abera; Berhane, Kiros; Samet, Jonathan

    2017-01-01

    Background This review assessed Ethiopia’s existing situation on issues related to the environment, climate change and health, and identifies gaps and needs that can be addressed through research, training, and capacity building. Methods The research was conducted through a comprehensive review of available secondary data and interviewing key informants in various national organizations involved in climate change adaptation and mitigation activities. Results Climate change-related health problems, such as mortality and morbidity due to floods and heat waves, vector-borne diseases, water-borne diseases, meningitis, and air pollution-related respiratory diseases are increasing in Ethiopia. Sensitive systems such as agriculture, health, and water have been affected, and the effects of climate change will continue to magnify without the right adaptation and mitigation measures. Currently, research on climate change and health is not adequately developed in Ethiopia. Research and other activities appear to be fragmented and uncoordinated. As a result, very few spatially detailed and methodologically consistent studies have been made to assess the impact of climate in the country. There has often been a lack of sufficient collaboration among organizations on the planning and execution of climate change and health activities, and the lack of trained professionals who can perform climate change and health-related research activities at various levels. Conclusion Firstly, there is a lack of organized structure in the various organizations. Secondly, there is inadequate level of inter-sectoral collaboration and poor coordination and communication among different stakeholders. Thirdly, there are no reliable policy guidelines and programs among organizations, agencies and offices that target climate change and health. Fourth, the existing policies fail to consider the gender and community-related dimensions of climate change. Fifth, the monitoring and evaluation efforts exerted on climate change and health activities are not strong enough to address the climate change and health issues in the country. PMID:28867919

  13. Capital investment requirements for greenhouse gas emissions mitigation in power generation on near term to century time scales and global to regional spatial scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaturvedi, Vaibhav; Clarke, Leon E.; Edmonds, James A.

    Electrification plays a crucial role in cost-effective greenhouse gas emissions mitigation strategies. Such strategies in turn carry implications for financial capital markets. This paper explores the implication of climate mitigation policy for capital investment demands by the electric power sector on decade to century time scales. We go further to explore the implications of technology performance and the stringency of climate policy for capital investment demands by the power sector. Finally, we discuss the regional distribution of investment demands. We find that stabilizing GHG emissions will require additional investment in the electricity generation sector over and above investments that wouldmore » be need in the absence of climate policy, in the range of 16 to 29 Trillion US$ (60-110%) depending on the stringency of climate policy during the period 2015 to 2095 under default technology assumptions. This increase reflects the higher capital intensity of power systems that control emissions. Limits on the penetration of nuclear and carbon capture and storage technology could increase costs substantially. Energy efficiency improvements can reduce the investment requirement by 8 to21 Trillion US$ (default technology assumptions), depending on climate policy scenario with higher savings being obtained under the most stringent climate policy. The heaviest investments in power generation were observed in the China, India, SE Asia and Africa regions with the latter three regions dominating in the second half of the 21st century.« less

  14. Carbon footprint of electronic devices

    NASA Astrophysics Data System (ADS)

    Sloma, Marcin

    2013-07-01

    Paper assesses the greenhouse gas emissions related to the electronic sectors including information and communication technology and media sectors. While media often presents the carbon emission problem of other industries like petroleum industry, the airlines and automobile sectors, plastics and steel manufacturers, the electronics industry must include the increasing carbon footprints caused from their applications like media and entertainment, computers and cooling devices, complex telecommunications networks, cloud computing and powerful mobile phones. In that sense greenhouse gas emission of electronics should be studied in a life cycle perspective, including regular operational electricity use. Paper presents which product groups or processes are major contributors in emission. From available data and extrapolation of existing information we know that the information and communication technology sector produced 1.3% and media sector 1.7% of global gas emissions within production cycle, using the data from 2007.In the same time global electricity use of that sectors was 3.9% and 3.2% respectively. The results indicate that for both sectors operation leads to more gas emissions than manufacture, although impacts from the manufacture is significant, especially in the supply chain. Media electronics led to more emissions than PCs (manufacture and operation). Examining the role of electronics in climate change, including disposal of its waste, will enable the industry to take internal actions, leading to lowering the impact on the climate change within the sector itself.

  15. Diagnosing Geospatial Uncertainty Visualization Challenges in Seasonal Temperature and Precipitation Forecasts

    NASA Astrophysics Data System (ADS)

    Speciale, A.; Kenney, M. A.; Gerst, M.; Baer, A. E.; DeWitt, D.; Gottschalk, J.; Handel, S.

    2017-12-01

    The uncertainty of future weather and climate conditions is important for many decisions made in communities and economic sectors. One tool that decision-makers use in gauging this uncertainty is forecasts, especially maps (or visualizations) of probabilistic forecast results. However, visualizing geospatial uncertainty is challenging because including probability introduces an extra variable to represent and probability is often poorly understood by users. Using focus group and survey methods, this study seeks to understand the barriers to using probabilistic temperature and precipitation visualizations for specific decisions in the agriculture, energy, emergency management, and water resource sectors. Preliminary results shown here focus on findings of emergency manager needs. Our experimental design uses National Oceanic and Atmospheric Administration (NOAA's) Climate Prediction Center (CPC) climate outlooks, which produce probabilistic temperature and precipitation forecast visualizations at the 6-10 day, 8-14 day, 3-4 week, and 1 and 3 month timeframes. Users were asked to complete questions related to how they use weather information, how uncertainty is represented, and design elements (e.g., color, contour lines) of the visualizations. Preliminary results from the emergency management sector indicate there is significant confusion on how "normal" weather is defined, boundaries between probability ranges, and meaning of the contour lines. After a complete understandability diagnosis is made using results from all sectors, we will collaborate with CPC to suggest modifications to the climate outlook visualizations. These modifications will then be retested in similar focus groups and web-based surveys to confirm they better meet the needs of users.

  16. Impacts of Residential Biofuel Emissions on Air Quality and Climate

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Unger, N.; Harper, K.; Storelvmo, T.

    2016-12-01

    The residential biofuel sector is defined as fuelwood, agricultural residues and dung used for household cooking and heating. Aerosol emissions from this human activity play an important role affecting local, regional and global air quality, climate and public health. However, there are only few studies available that evaluate the net impacts and large uncertainties persist. Here we use the Community Atmosphere Model version 5.3 (CAM v5.3) within the Community Earth System Model version 1.2.2, to quantify the impacts of cook-stove biofuel emissions on air quality and climate. The model incorporates a novel advanced treatment of black carbon (BC) effects on mixed-phase/ice clouds. We update the global anthropogenic emission inventory in CAM v5.3 to a state-of-the-art emission inventory from the Greenhouse Gas-Air Pollution Interactions and Synergies integrated assessment model. Global in-situ and aircraft campaign observations for BC and organic carbon are used to evaluate and validate the model performance. Sensitivity simulations are employed to assess the impacts of residential biofuel emissions on regional and global direct and indirect radiative forcings in the contemporary world. We focus the analyses on several key regions including India, China and Sub-Saharan Africa.

  17. Impacts of Climate Trends and Variability on Livestock Production in Brazil

    NASA Astrophysics Data System (ADS)

    Cohn, A.; Munger, J.; Gibbs, H.

    2015-12-01

    Cattle systems of Brazil are of major economic and environmental importance. They occupy ¼ of the land surface of the country, account for over 15 billion USD of annual revenue through the sale of beef, leather, and milk, are closely associated with deforestation, and have been projected to substantially grow in the coming decades. Sustainable intensification of production in the sector could help to limit environmental harm from increased production, but productivity growth could be inhibited by climate change. Gauging the potential future impacts of climate change on the Brazilian livestock sector can be aided by examining past evidence of the link between climate and cattle production and productivity. We use statistical techniques to investigate the contribution of climate variability and climate change to variability in cattle system output in Brazil's municipalities over the period 1974 to 2013. We find significant impacts of both temperature and precipitation variability and temperature trends on municipality-level exports and the production of both milk and beef. Pasture productivity, represented by a vegetation index, also varies significantly with climate shocks. In some regions, losses from exposure to climate trends were of comparable magnitude to technology and/or market-driven productivity gains over the study period.

  18. Decomposing climate-induced temperature and water effects on the expansion and operation of the US electricity system

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Eurek, K.; Macknick, J.; Steinberg, D. C.; Averyt, K.; Badger, A.; Livneh, B.

    2017-12-01

    Climate change has the potential to affect the supply and demands of the U.S. power sector. Rising air temperatures can affect the seasonal and total demand for electricity, alter the thermal efficiency of power plants, and lower the maximum capacity of electric transmission lines. Changes in hydrology can affect seasonal and total availability of water used for power plant operations. Prior studies have examined some climate impacts on the electricity sector, but there has been no systematic study quantifying and comparing the importance of these climate-induced effects in isolation and in combination. Here, we perform a systematic assessment using the Regional Energy Deployment System (ReEDS) electricity sector model in combination with downscaled climate results from four models in the CMIP5 archive that provide contrasting temperature and precipitation trends for key regions in the U.S. The ReEDS model captures dynamic climate and hydrological resource data .when choosing the cost optimal mix of generation resources necessary to balance supply and demand for electricity. We examine how different climate-induced changes in air temperature and water availability, considered in isolation and in combination, may affect energy and economic outcomes at a regional and national level from the present through 2050. Results indicate that temperature-induced impacts on electricity consumption show consistent trends nationwide across all climate scenarios. Hydrological impacts and variability differ by model and tend to have a minor effect on national electricity trends, but can be important determinants regionally. Taken together, this suggests that isolated climate change impacts on the electricity system depend on the geographic scale of interest - the effect of rising temperatures on demand, which is qualitatively robust to the choice of climate model, largely determines impacts on generation, capacity and cost at the national level, whereas other impact pathways may dominate at regional level.

  19. GCMs and MDGs: can climate science reduce poverty?

    NASA Astrophysics Data System (ADS)

    Thomson, M. C.; Connor, S. J.

    2004-12-01

    Sub-Saharan Africa, the birthplace of humankind, is seen by many, both as the least developed region of the world, and the region where the processes of globalization and sustainable development are most difficult to set in motion. Sub-Saharan African countries invariably appear en masse at the bottom of the annual UNDP Human Development Report rankings with development indicators such as life expectancy and basic nutrition levels in decline. The poorer communities are most vulnerable to adverse impacts of climate fluctuations and seen as the least able to cope with current climate variability. Sub-Saharan Africa has a population of approximately 625 million, with more than two thirds of the people dependant on rain-fed agriculture. The vast majority of the population lack access to clean water and sanitation and sub-Saharan Africa currently bears the highest burden of infectious diseases such as HIV-AIDS, TB and Malaria to be found anywhere in the world. With almost half of the region's population living on less than US$1 per day, sub-Saharan Africa accounts for one quarter of the world's poor. The rural poor are often considered to have no voice and therefore form a very weak political constituency. International development targets such as the recently articulated UN Millennium Development Goals are seen as one means of giving voice to this large but disenfranchised population. Improved management of climate sensitive sectors is essential to achieving a number of the MDgs: Poverty-Hunger, Disease, Water and sanitation. Climate information is also essential to measuring that achievement, as climate often acts as a confounder in any analysis of interventions. Here we present work on how climate science, including state of the art - multi-model ensemble seasonal climate forecasting models, are being used in support of achieving the MDGs in Africa.

  20. Separating sensitivity from exposure in assessing extinction risk from climate change.

    PubMed

    Dickinson, Maria G; Orme, C David L; Suttle, K Blake; Mace, Georgina M

    2014-11-04

    Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk.

  1. Separating sensitivity from exposure in assessing extinction risk from climate change

    PubMed Central

    Dickinson, Maria G.; Orme, C. David L.; Suttle, K. Blake; Mace, Georgina M.

    2014-01-01

    Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk. PMID:25367429

  2. The challenges of climate for energy markets

    DOT National Transportation Integrated Search

    2009-09-01

    Among the many complex issues of technology, governance, and market design affecting the : electricity sector, climate policy has become dominant. From the perspective of a nonspecialist looking at this changing dominance, a quiz illuminates some of ...

  3. On the use and potential use of seasonal to decadal climate predictions for decision-making in Europe

    NASA Astrophysics Data System (ADS)

    Soares, Marta Bruno; Dessai, Suraje

    2014-05-01

    The need for climate information to help inform decision-making in sectors susceptible to climate events and impacts is widely recognised. In Europe, developments in the science and models underpinning the study of climate variability and change have led to an increased interest in seasonal to decadal climate predictions (S2DCP). While seasonal climate forecasts are now routinely produced operationally by a number of centres around the world, decadal climate predictions are still in its infancy restricted to the realm of research. Contrary to other regions of the world, where the use of these types of forecasts, particularly at seasonal timescales, has been pursued in recent years due to higher levels of predictability, little is known about the uptake and climate information needs of end-users regarding S2DCP in Europe. To fill this gap we conducted in-depth interviews with experts and decision-makers across a range of European sectors, a workshop with European climate services providers, and a systematic literature review on the use of S2DCP in Europe. This study is part of the EUropean Provision Of Regional Impact Assessment on a Seasonal-to-decadal timescale (EUPORIAS) project which aims to develop semi-operational prototypes of impact prediction systems in Europe on seasonal to decadal timescales. We found that the emerging landscape of users and potential users of S2DCP in Europe is complex and heterogeneous. Differences in S2DCP information needs across and within organisations and sectors are largely underpinned by factors such as the institutional and regulatory context of the organisations, the plethora of activities and decision-making processes involved, the level of expertise and capacity of the users, and the availability of resources within the organisations. In addition, although the use of S2DCP across Europe is still fairly limited, particular sectors such as agriculture, health, energy, water, (re)insurance, and transport are taking the lead on the use of seasonal forecasts. The potential to use decadal predictions across European sectors was also noted although these are currently not used due to the limitations of the science and the experimental nature of existing predictions. Despite the limited use of these types of climate predictions there is a general understanding that information on the uncertainty of such predictions is a fundamental component of S2DCP although approaches for dealing with such uncertainty also tend to differ across organisations. Perceived barriers to the uptake of these types of climate predictions are mainly associated with low skill and reliability of the models but also with other factors such as relevance, usability, and accessibility of S2DCP by end-users. Potential solutions to overcome such barriers include the potential to explore existing 'windows of opportunity' in Europe, improve current understanding of users' needs, and increase accessibility and awareness of users to available S2DCP in Europe. This paper will present findings from our analysis and consider some of the broader issues raised by the emergence of S2DCP for climate services in Europe.

  4. The Role of Water Governance and Irrigation Technologies in Regional-Scale Water Use and Consumption in the US West

    NASA Astrophysics Data System (ADS)

    Lammers, R. B.; Grogan, D. S.; Frolking, S. E.; Proussevitch, A. A.; Zuidema, S.; Fowler, L.; Caccese, R. T.; Peklak, D. L.; Fisher-Vanden, K.

    2017-12-01

    Water management in the Western USA is challenged by the demands of an increased population, ecological needs and changing values for water use, and a broadening of variability in climate, which together have created physical limits on water availability. The management of scarce water resources in this region is strictly constrained by the current legal structure (prior appropriation water rights) on one hand, and on the other assisted by the development of new, efficient water delivery and application technologies. Therefore, critical components for a complete understanding of the hydrological landscape include the institutions governing water rights, the technologies used for the highly water consumptive agricultural sector, and the role institutions and technologies play in altering when and where water is used and consumed by humans or reserved for the environment. To explore the sensitivities of water availability within the human-physical system, we present a method to incorporate water rights allocated under the prior appropriation doctrine for the western U.S. into the University of New Hampshire macro-scale Water Balance Model to capture the essential structure of these rights and their impacts on different economic sectors in Idaho and across the US West. In addition to legal structures, new irrigation technologies also alter the efficiency and timing of water use. We assess the impacts of a variety of technologies for both the delivery of water to the agricultural fields and the application methods for bringing water to the crops on consumptive and non-consumptive agricultural water use. We explore the impacts relative to natural climate variability, investigate the role that return flows from different agricultural technologies have on regional water balance, and examine the sensitivity of the entire system to extremes such as extended drought. These methods are sufficiently generalizable to be used by other hydrological models.

  5. Global exposure and vulnerability to multi-sector development and climate change hotspots

    NASA Astrophysics Data System (ADS)

    Byers, Edward; Gidden, Matthew; Leclère, David; Balkovic, Juraj; Burek, Peter; Ebi, Kristie; Greve, Peter; Grey, David; Havlik, Petr; Hillers, Astrid; Johnson, Nils; Kahil, Taher; Krey, Volker; Langan, Simon; Nakicenovic, Nebjosa; Novak, Robert; Obersteiner, Michael; Pachauri, Shonali; Palazzo, Amanda; Parkinson, Simon; Rao, Narasimha D.; Rogelj, Joeri; Satoh, Yusuke; Wada, Yoshihide; Willaarts, Barbara; Riahi, Keywan

    2018-05-01

    Understanding the interplay between multiple climate change risks and socioeconomic development is increasingly required to inform effective actions to manage these risks and pursue sustainable development. We calculate a set of 14 impact indicators at different levels of global mean temperature (GMT) change and socioeconomic development covering water, energy and land sectors from an ensemble of global climate, integrated assessment and impact models. The analysis includes changes in drought intensity and water stress index, cooling demand change and heat event exposure, habitat degradation and crop yield, amongst others. To investigate exposure to multi-sector climate impacts, these are combined with gridded socioeconomic projections of population and those ‘vulnerable to poverty’ from three Shared Socioeconomic Pathways (SSP) (income <10/day, currently 4.2 billion people). We show that global exposure to multi-sector risks approximately doubles between 1.5 °C and 2 °C GMT change, doubles again with 3 °C GMT change and is ~6x between the best and worst cases (SSP1/1.5 °C vs SSP3/3 °C, 0.8–4.7bi). For populations vulnerable to poverty, the exposure is an order of magnitude greater (8–32x) in the high poverty and inequality scenarios (SSP3) compared to sustainable socioeconomic development (SSP1). Whilst 85%–95% of global exposure falls to Asian and African regions, they have 91%–98% of the exposed and vulnerable population (depending on SSP/GMT combination), approximately half of which in South Asia. In higher warming scenarios, African regions have growing proportion of the global exposed and vulnerable population, ranging from 7%–17% at 1.5 °C, doubling to 14%–30% at 2 °C and again to 27%–51% at 3 °C. Finally, beyond 2 °C and at higher risk thresholds, the world’s poorest are disproportionately impacted, particularly in cases (SSP3) of high inequality in Africa and southern Asia. Sustainable development that reduces poverty, mitigates emissions and meets targets in the water, energy and land sectors has the potential for order-of-magnitude scale reductions in multi-sector climate risk for the most vulnerable.

  6. Toward a consistent modeling framework to assess multi-sectoral climate impacts.

    PubMed

    Monier, Erwan; Paltsev, Sergey; Sokolov, Andrei; Chen, Y-H Henry; Gao, Xiang; Ejaz, Qudsia; Couzo, Evan; Schlosser, C Adam; Dutkiewicz, Stephanie; Fant, Charles; Scott, Jeffery; Kicklighter, David; Morris, Jennifer; Jacoby, Henry; Prinn, Ronald; Haigh, Martin

    2018-02-13

    Efforts to estimate the physical and economic impacts of future climate change face substantial challenges. To enrich the currently popular approaches to impact analysis-which involve evaluation of a damage function or multi-model comparisons based on a limited number of standardized scenarios-we propose integrating a geospatially resolved physical representation of impacts into a coupled human-Earth system modeling framework. Large internationally coordinated exercises cannot easily respond to new policy targets and the implementation of standard scenarios across models, institutions and research communities can yield inconsistent estimates. Here, we argue for a shift toward the use of a self-consistent integrated modeling framework to assess climate impacts, and discuss ways the integrated assessment modeling community can move in this direction. We then demonstrate the capabilities of such a modeling framework by conducting a multi-sectoral assessment of climate impacts under a range of consistent and integrated economic and climate scenarios that are responsive to new policies and business expectations.

  7. A systematic approach to community resilience that reduces the federal fiscal exposure to climate change

    NASA Astrophysics Data System (ADS)

    Stwertka, C.; Albert, M. R.; White, K. D.

    2016-12-01

    Despite widely available information about the adverse impacts of climate change to the public, including both private sector and federal fiscal exposure, there remain opportunities to effectively translate this knowledge into action. Further delay of climate preparedness and resilience actions imposes a growing toll on American communities and the United States fiscal budget. We hypothesize that a set of four criteria must be met before a community can translate climate disturbances into preparedness action. We examine four case studies to review these proposed criteria, we discuss the critical success factors that can build community resilience, and we define an operational strategy that could support community resilience while reducing the federal fiscal exposure to climate change. This operational strategy defines a community response system that integrates social science research, builds on the strengths of different sectors, values existing resources, and reduces the planning-to-action time. Our next steps are to apply this solution in the field, and to study the dynamics of community engagement and the circular economy.

  8. How does the sensitivity of climate affect stratospheric solar radiation management?

    NASA Astrophysics Data System (ADS)

    Ricke, K.; Rowlands, D. J.; Ingram, W.; Keith, D.; Morgan, M. G.

    2011-12-01

    If implementation of proposals to engineer the climate through solar radiation management (SRM) ever occurs, it is likely to be contingent upon climate sensitivity. Despite this, no modeling studies have examined how the effectiveness of SRM forcings differs between the typical Atmosphere-Ocean General Circulation Models (AOGCMs) with climate sensitivities close to the Coupled Model Intercomparison Project (CMIP) mean and ones with high climate sensitivities. Here, we use a perturbed physics ensemble modeling experiment to examine variations in the response of climate to SRM under different climate sensitivities. When SRM is used as a substitute for mitigation its ability to maintain the current climate state gets worse with increased climate sensitivity and with increased concentrations of greenhouse gases. However, our results also demonstrate that the potential of SRM to slow climate change, even at the regional level, grows with climate sensitivity. On average, SRM reduces regional rates of temperature change by more than 90 percent and rates of precipitation change by more than 50 percent in these higher sensitivity model configurations. To investigate how SRM might behave in models with high climate sensitivity that are also consistent with recent observed climate change we perform a "perturbed physics" ensemble (PPE) modelling experiment with the climateprediction.net (cpdn) version of the HadCM3L AOGCM. Like other perturbed physics climate modelling experiments, we simulate past and future climate scenarios using a wide range of model parameter combinations that both reproduce past climate within a specified level of accuracy and simulate future climates with a wide range of climate sensitivities. We chose 43 members ("model versions") from a subset of the 1,550 from the British Broadcasting Corporation (BBC) climateprediction.net project that have data that allow restarts. We use our results to explore how much assessments of SRM that use best-estimate models, and so near-median climate sensitivity, may be ignoring important contingencies associated with implementing SRM in reality. A primary motivation for studying SRM via the injection of aerosols in the stratosphere is to evaluate its potential effectiveness as "insurance" in the case of higher-than-expected climate response to global warming. We find that this is precisely when SRM appears to be least effective in returning regional climates to their baseline states and reducing regional rates of precipitation change. On the other hand, given the very high regional temperature anomalies associated with rising greenhouse gas concentrations in high sensitivity models, it is also where SRM is most effective in reducing rates of change relative to a no SRM alternative.

  9. Using Scenario Development to Encourage Tourism Business Resilience in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Chin, N.; Day, J.; Sydnor, S.; Cherkauer, K. A.

    2015-12-01

    Tourism is an economic sector anticipated to be greatly affected by climate change, but the potential impacts of climate change on tourism have rarely been examined in detail in existing research. Past research has shown, however, that the small and medium businesses that dominate the tourism sector could be greatly impacted by climate change. We have presented global climate and hydrologic model research results to pre-selected coastal tourism business owners in the Great Lakes region to determine the best methods for delivering user-friendly future climate scenarios, given that existing research suggests that climate change adaptive behaviors and resilience increase with information (message) clarity. Model output analyses completed for this work have focused on temperature, precipitation, and extreme weather events due to their economic impact on tourism activities. We have also experimented with the development and use of infographics because of their ability to present information quickly and clearly. Initial findings of this work will be presented as well as lessons learned from stakeholder interactions. Two main results include that (1) extreme weather events may have more meaning to tourism business owners than general trends in climate and (2) long-term planning for climate is extremely difficult for tourism business owners because they operate on a much shorter planning timeline than those generally used for climate change analyses.

  10. Role of the Freight Sector in Future Climate Change Mitigation Scenarios

    DOE PAGES

    Muratori, Matteo; Smith, Steven J.; Kyle, Page; ...

    2017-02-27

    The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that applymore » a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. Finally, by contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.« less

  11. Role of the Freight Sector in Future Climate Change Mitigation Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratori, Matteo; Smith, Steven J.; Kyle, Page

    The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that applymore » a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. Finally, by contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.« less

  12. Role of the Freight Sector in Future Climate Change Mitigation Scenarios.

    PubMed

    Muratori, Matteo; Smith, Steven J; Kyle, Page; Link, Robert; Mignone, Bryan K; Kheshgi, Haroon S

    2017-03-21

    The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that apply a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. By contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.

  13. Combating Climate Change through Quality Education. Policy Brief 2010-03

    ERIC Educational Resources Information Center

    Anderson, Allison

    2010-01-01

    Climate change threatens to undo and even reverse the progress made toward meeting the Millennium Development Goals (MDGs) and poses one of the most serious challenges to reducing global poverty for the international community. However, the education sector offers a currently untapped opportunity to combat climate change. There is a clear…

  14. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2011 - part 2)

    EPA Pesticide Factsheets

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - estimating impacts and valuing damages on a sectoral basis.

  15. Interdisciplinarity and Knowledge Networking: Co-Production of Climate-Authoritative Knowledge in Southern South America

    ERIC Educational Resources Information Center

    Hidalgo, Cecilia

    2016-01-01

    Interdisciplinarity and knowledge networking are at the core of current global, regional, and national initiatives concerning climate. Both scientifc knowledge and public participation are essential to enhance the capacity of different sectors and governments to respond to challenges posed by climate variability and change. Exchange and bridge…

  16. More than a Game: Learning about Climate Change through Role-Play

    ERIC Educational Resources Information Center

    Paschall, Melissa; Wustenhagen, Rolf

    2012-01-01

    Educating management students on the connections between business and climate change is essential both to their careers and to society's ability to solve the climate challenge. To impart deep and lasting learning on this topic, the authors developed a multischool negotiation simulation that is unique in its intensiveness, cross-sector design, and…

  17. 76 FR 41217 - Technical Inputs and Assessment Capacity on Topics Related to 2013 U.S. National Climate Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ...-01] Technical Inputs and Assessment Capacity on Topics Related to 2013 U.S. National Climate... Capacity Related to Regional, Sectoral, and Cross-Cutting Assessments for the 2013 U.S. National Climate... if applicable, institutional affiliation(s) if applicable). In addition, it is recommended that EOIs...

  18. Chapter 2: Effects of climatic variability and change. In Effects of Climate Variability and Change on Forest Ecosystems: A Comprehensive Science Synthesis for the U.S. Forest Sector; General Technical Report PNW-GTR-870, Washington DC

    EPA Science Inventory

    Climate profoundly shapes forests. Forest species composition, productivity, availability of goods and services, disturbance regimes, and location on the landscape are all regulated by climate. Much research attention has focused on the problem of predicting the response of fores...

  19. A Sensitivity-Based Approach to Quantifying the Costs of Weather and Climate Impacts: A Case Study of the Southern Pennsylvania Transportation Authority Adaptation Pilot Project

    NASA Astrophysics Data System (ADS)

    Casola, J.; Johanson, E.; Groth, P.; Snow, C.; Choate, A.

    2012-12-01

    Southeastern Pennsylvania Transportation Authority (SEPTA), with support from the Federal Transit Administration, has been investigating its agency's vulnerability to weather-related disruption and damages as a way to inform an overall adaptation strategy for climate variability and change. Exploiting daily rail service records maintained by SEPTA and observations from nearby weather stations, we have developed a methodology for quantifying the sensitivity of SEPTA's Manayunk/Norristown rail line to various weather events (e.g., snow storms, heat waves, heavy rainfall and flooding, tropical storms). For each type of event, sensitivity is equated to the frequency and extent of service disruptions associated with the event, and includes the identification of thresholds beyond which impacts are observed. In addition, we have estimated the monetary costs associated with repair and replacement of infrastructure following these events. Our results have facilitated discussions with SEPTA operational staff, who have outlined the institutional aspects of their preparation and response processes for these weather events. We envision the methodology as being useful for resource and infrastructure managers across the public and private sector, and potentially scalable to smaller or larger operations. There are several advantageous aspects of the method: 1) the quantification of sensitivity, and the coupling of that sensitivity to cost information, provides credible input to SEPTA decision-makers as they establish the priorities and level of investment associated with their adaptation actions for addressing extreme weather; 2) the method provides a conceptual foundation for estimating the magnitude, frequency, and costs of potential future impacts at a local scale, especially with regard to heat waves; 3) the sensitivity information serves as an excellent discussion tool, enabling further research and information gathering about institutional relationships and procedures. These relationships and procedures are critical to the effectiveness of preparation for and responses to extreme weather events, but are often not explicitly documented.

  20. Beyond equilibrium climate sensitivity

    NASA Astrophysics Data System (ADS)

    Knutti, Reto; Rugenstein, Maria A. A.; Hegerl, Gabriele C.

    2017-10-01

    Equilibrium climate sensitivity characterizes the Earth's long-term global temperature response to increased atmospheric CO2 concentration. It has reached almost iconic status as the single number that describes how severe climate change will be. The consensus on the 'likely' range for climate sensitivity of 1.5 °C to 4.5 °C today is the same as given by Jule Charney in 1979, but now it is based on quantitative evidence from across the climate system and throughout climate history. The quest to constrain climate sensitivity has revealed important insights into the timescales of the climate system response, natural variability and limitations in observations and climate models, but also concerns about the simple concepts underlying climate sensitivity and radiative forcing, which opens avenues to better understand and constrain the climate response to forcing. Estimates of the transient climate response are better constrained by observed warming and are more relevant for predicting warming over the next decades. Newer metrics relating global warming directly to the total emitted CO2 show that in order to keep warming to within 2 °C, future CO2 emissions have to remain strongly limited, irrespective of climate sensitivity being at the high or low end.

  1. Interhemispheric ice-sheet synchronicity during the last glacial maximum

    USGS Publications Warehouse

    Weber, Michael E.; Clark, Peter U.; Ricken, Werner; Mitrovica, Jerry X.; Hostetler, Steven W.; Kuhn, Gerhard

    2011-01-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  2. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum.

    PubMed

    Weber, Michael E; Clark, Peter U; Ricken, Werner; Mitrovica, Jerry X; Hostetler, Steven W; Kuhn, Gerhard

    2011-12-02

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  3. Decision- rather than scenario-centred downscaling: Towards smarter use of climate model outputs

    NASA Astrophysics Data System (ADS)

    Wilby, Robert L.

    2013-04-01

    Climate model output has been used for hydrological impact assessments for at least 25 years. Scenario-led methods raise awareness about risks posed by climate variability and change to the security of supplies, performance of water infrastructure, and health of freshwater ecosystems. However, it is less clear how these analyses translate into actionable information for adaptation. One reason is that scenario-led methods typically yield very large uncertainty bounds in projected impacts at regional and river catchment scales. Consequently, there is growing interest in vulnerability-based frameworks and strategies for employing climate model output in decision-making contexts. This talk begins by summarising contrasting perspectives on climate models and principles for testing their utility for water sector applications. Using selected examples it is then shown how water resource systems may be adapted with varying levels of reliance on climate model information. These approaches include the conventional scenario-led risk assessment, scenario-neutral strategies, safety margins and sensitivity testing, and adaptive management of water systems. The strengths and weaknesses of each approach are outlined and linked to selected water management activities. These cases show that much progress can be made in managing water systems without dependence on climate models. Low-regret measures such as improved forecasting, better inter-agency co-operation, and contingency planning, yield benefits regardless of the climate outlook. Nonetheless, climate model scenarios are useful for evaluating adaptation portfolios, identifying system thresholds and fixing weak links, exploring the timing of investments, improving operating rules, or developing smarter licensing regimes. The most problematic application remains the climate change safety margin because of the very low confidence in extreme precipitation and river flows generated by climate models. In such cases, it is necessary to understand the trade-offs that exist between the additional costs of a scheme and the level of risk that is accommodated.

  4. Climate Change Impacts on Rivers and Implications for Electricity Generation in the United States

    NASA Astrophysics Data System (ADS)

    Miara, A.; Vorosmarty, C. J.; Macknick, J.; Corsi, F.; Cohen, S. M.; Tidwell, V. C.; Newmark, R. L.; Prousevitch, A.

    2015-12-01

    The contemporary power sector in the United States is heavily reliant on water resources to provide cooling water for thermoelectric generation. Efficient thermoelectric plant operations require large volumes of water at sufficiently cool temperatures for their cooling process. The total amount of water that is withdrawn or consumed for cooling and any potential declines in efficiencies are determined by the sector's fuel mix and cooling technologies. As such, the impact of climate change, and the extent of impact, on the power sector is shaped by the choice of electricity generation technologies that will be built over the coming decades. In this study, we model potential changes in river discharge and temperature in the contiguous US under a set of climate scenarios to year 2050 using the Water Balance Model-Thermoelectric Power and Thermal Pollution Model (WBM-TP2M). Together, these models quantify, in high-resolution (3-min), river temperatures, discharge and power plant efficiency losses associated with changes in available cooling water that incorporates climate, hydrology, river network dynamics and multi-plant impacts, on both single power plant and regional scales. Results are used to assess the aptness and vulnerability of contemporary and alternative electricity generation pathways to changes in climate and water availability for cooling purposes, and the concomitant impacts on power plant operating efficiencies. We assess the potential impacts by comparing six regions (Northeast, Southeast, Midwest, Great Plains, Southwest, Northwest as in the National Climate Assessment (2014)) across the US. These experiments allow us to assess tradeoffs among electricity-water-climate to provide useful insight for decision-makers managing regional power production and aquatic environments.

  5. Building Training Curricula for Accelerating the Use of NOAA Climate Products and Tools

    NASA Astrophysics Data System (ADS)

    Timofeyeva-Livezey, M. M.; Meyers, J. C.; Stevermer, A.; Abshire, W. E.; Beller-Simms, N.; Herring, D.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) plays a leading role in U.S. intergovernmental efforts on the Climate Data Initiative and the Climate Resilience Toolkit (CRT). CRT (http://toolkit.climate.gov/) is a valuable resource that provides tools, information, and subject matter expertise to decision makers in various sectors, such as agriculture, water resources and transportation, to help them build resilience to our changing climate. In order to make best use of the toolkit and all the resources within it, a training component is critical. The training section helps building users' understanding of the data, science, and impacts of climate variability and change. CRT identifies five steps in building resilience that includes use of appropriate tools to support decision makers depending on their needs. One tool that can be potentially integrated into CRT is NOAA's Local Climate Analysis Tool (LCAT), which provides access to trusted NOAA data and scientifically-sound analysis techniques for doing regional and local climate studies on climate variability and climate change. However, in order for LCAT to be used effectively, we have found an iterative learning approach using specific examples to train users. For example, for LCAT application in analysis of water resources, we use existing CRT case studies for Arizona and Florida water supply users. The Florida example demonstrates primary sensitivity to climate variability impacts, whereas the Arizona example takes into account longer- term climate change. The types of analyses included in LCAT are time series analysis of local climate and the estimated rate of change in the local climate. It also provides a composite analysis to evaluate the relationship between local climate and climate variability events such as El Niño Southern Oscillation, the Pacific North American Index, and other modes of climate variability. This paper will describe the development of a training module for use of LCAT and its integration into CRT. An iterative approach was used that incorporates specific examples of decision making while working with subject matter experts within the water supply community. The recommended strategy is to use a "stepping stone" learning structure to build users knowledge of best practices for use of LCAT.

  6. Applications of monsoon research: Opportunities to inform decisionmaking and reduce regional vulnerability

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Garfin, G. M.; Wilder, M.; Lenart, M.; Vásquez-León, M.; Comrie, A. C.

    2007-05-01

    This presentation will describe ongoing efforts to understand interactions between the North American Monsoon and society, in order to develop applications for monsoon research in a highly complex, multicultural and binational region. The North American Monsoon is an annual precipitation regime that begins in early June in Mexico and progresses northward to the southwestern United States. The region includes stakeholders in large urban complexes, productive agricultural areas, and sparsely populated arid and semi-arid ecosystems. The political, cultural, and socioeconomic divisions between the U.S. and Mexico create a broad range of sensitivities to climate variability as well as capacities to use forecasts and other information to cope with climate. We will highlight methodologies to link climate science with society and analyze opportunities for monsoon science to benefit society in four sectors: natural hazards management, agriculture, public health, and water management. We present a synthesized list of stakeholder needs and a calendar of decisions to help scientists link user needs to potential forecasts and products. To ensure usability of forecasts and other research products, we recommend iterative scientist-stakeholder interactions, through integrated assessments. These knowledge- exchange interactions can improve the capacity for stakeholders to use forecasts thoughtfully and inform the development of research, and for the research community to obtain feedback on climate-related products and receive insights to guide research direction. We expect that integrated assessments can capitalize on the opportunities for monsoon science to inform decisionmaking, in the best instances, reduce regional climate vulnerabilities and enhance regional sustainability

  7. A method for screening climate change-sensitive infectious diseases.

    PubMed

    Wang, Yunjing; Rao, Yuhan; Wu, Xiaoxu; Zhao, Hainan; Chen, Jin

    2015-01-14

    Climate change is a significant and emerging threat to human health, especially where infectious diseases are involved. Because of the complex interactions between climate variables and infectious disease components (i.e., pathogen, host and transmission environment), systematically and quantitatively screening for infectious diseases that are sensitive to climate change is still a challenge. To address this challenge, we propose a new statistical indicator, Relative Sensitivity, to identify the difference between the sensitivity of the infectious disease to climate variables for two different climate statuses (i.e., historical climate and present climate) in non-exposure and exposure groups. The case study in Anhui Province, China has demonstrated the effectiveness of this Relative Sensitivity indicator. The application results indicate significant sensitivity of many epidemic infectious diseases to climate change in the form of changing climatic variables, such as temperature, precipitation and absolute humidity. As novel evidence, this research shows that absolute humidity has a critical influence on many observed infectious diseases in Anhui Province, including dysentery, hand, foot and mouth disease, hepatitis A, hemorrhagic fever, typhoid fever, malaria, meningitis, influenza and schistosomiasis. Moreover, some infectious diseases are more sensitive to climate change in rural areas than in urban areas. This insight provides guidance for future health inputs that consider spatial variability in response to climate change.

  8. A Method for Screening Climate Change-Sensitive Infectious Diseases

    PubMed Central

    Wang, Yunjing; Rao, Yuhan; Wu, Xiaoxu; Zhao, Hainan; Chen, Jin

    2015-01-01

    Climate change is a significant and emerging threat to human health, especially where infectious diseases are involved. Because of the complex interactions between climate variables and infectious disease components (i.e., pathogen, host and transmission environment), systematically and quantitatively screening for infectious diseases that are sensitive to climate change is still a challenge. To address this challenge, we propose a new statistical indicator, Relative Sensitivity, to identify the difference between the sensitivity of the infectious disease to climate variables for two different climate statuses (i.e., historical climate and present climate) in non-exposure and exposure groups. The case study in Anhui Province, China has demonstrated the effectiveness of this Relative Sensitivity indicator. The application results indicate significant sensitivity of many epidemic infectious diseases to climate change in the form of changing climatic variables, such as temperature, precipitation and absolute humidity. As novel evidence, this research shows that absolute humidity has a critical influence on many observed infectious diseases in Anhui Province, including dysentery, hand, foot and mouth disease, hepatitis A, hemorrhagic fever, typhoid fever, malaria, meningitis, influenza and schistosomiasis. Moreover, some infectious diseases are more sensitive to climate change in rural areas than in urban areas. This insight provides guidance for future health inputs that consider spatial variability in response to climate change. PMID:25594780

  9. Fifth IPCC Assessment Report Now Out

    NASA Astrophysics Data System (ADS)

    Kundzewicz, Zbigniew W.

    2014-01-01

    The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) is now available. It provides policymakers with an assessment of information on climate change, its impacts and possible response options (adaptation and mitigation). Summaries for policymakers of three reports of IPCC working groups and of the Synthesis Report have now been approved by IPCC plenaries. This present paper reports on the most essential findings in AR5. It briefly informs on the contents of reports of all IPCC working groups. It discusses the physical science findings, therein observed changes (ubiquitous warming, shrinking cryosphere, sea level rise, changes in precipitation and extremes, and biogeochemical cycles). It deals with the drivers of climate change, progress in climate system understanding (evaluation of climate models, quantification of climate system responses), and projections for the future. It reviews impacts, adaptation and vulnerability, including observed changes, key risks, key reasons for concern, sectors and systems, and managing risks and building resilience. Finally, mitigation of climate change is discussed, including greenhouse gas emissions in the past, present and future, and mitigation in sectors. It is hoped that the present article will encourage the readership of this journal to dive into the AR5 report that provides a wealth of useful information.

  10. Climate, Companies, and Public Policy: How Transparent Is the Private Sector in Reporting Climate Policy Influence?

    NASA Astrophysics Data System (ADS)

    Goldman, G. T.; Carlson, C.

    2014-12-01

    To enact effective policies to address climate change, decision makers need both scientific and political support. One major barrier to U.S. climate policy enactment has been the opposition of private sector actors to proposed policies and to climate science itself. Increasingly, the public and investors are holding companies accountable for their actions around climate change—including political activies, affiliations with trade groups, and involvement with climate science. However, this accountability is inhibited by the prominent role that trade associations have played in climate policy debates in recent years. The opaque nature of such groups is problematic, as it inhibits the public from understanding who is obstructing progress on addressing climate change, and in some cases, impedes the public's climate literacy. Voluntary climate reporting can yield some information on companies' climate engagement and demonstrates the need for greater transparency in corporate political activities around climate change. We analyze CDP climate reporting data from 1,824 companies to assess the degree to which corporate actors disclosed their political influence on climate policies through their trade associations. Results demonstrate the limitations of voluntary reporting and the extent to which companies utilize their trade associations to influence climate change policy debates without being held accountable for these positions. Notably, many companies failed to acknowledge their board seat on trade groups with significant climate policy engagement. Of those that did acknowledge their board membership, some claimed not to agree with their trade associations' positions on climate change. These results raise questions about who trade groups are representing when they challenge the science or obstruct policies to address climate change. Recommendations for overcoming this barrier to informed decision making to address climate change will be discussed.

  11. Preparing for Future Water Resources Conflicts through Climate Change Adaptation Planning: A Case Study in Eastern Europe and Central Asia

    NASA Astrophysics Data System (ADS)

    Boehlert, B. B.; Neumann, J. E.; Strzepek, K.; Sutton, W.; Srivastava, J.

    2011-12-01

    Uncertainties posed by climate change and rapidly rising global water demand suggest that existing conflicts over water resources are likely to be exacerbated and new conflicts will appear where little or no conflict occurs today. Successfully planning for and preventing conflicts first requires a sound scientific understanding of the timing, location, and magnitude of water resource shortfalls, identification of the most appropriate climate adaptation options based on multiple criteria, and development of broad, multi-level consensus within the affected community. We recently applied this approach in a World Bank-funded adaptation assessment for the agricultural sectors of four countries in Eastern Europe and Central Asia-Albania, Macedonia, Moldova, and Uzbekistan. For each major basin, we first used a hydrological model to project changes in water availability through 2050 under country-specific high, medium, and low climate impact scenarios. Next, under the three climate scenarios, we projected changes in agricultural water demand using a crop model (i.e., AquaCrop and DSSAT), and changes in water demand in other sectors based on population projections and sectoral forecasts of changes in per capita use. We incorporated these water availability and demand projections-along with other characteristics of the water system such as water supply priorities, environmental and transboundary flow requirements, irrigation efficiency, and reservoir locations and volumes-into a monthly integrated water resource planning tool (the Water Evaluation And Planning tool, or WEAP) to generate projected unmet water demand under each climate scenario and to each sector through 2050. The findings suggest that the agricultural sector in each country (except the relatively water-rich Albania) would experience significant unmet water demands, up to 52 percent in the Syr Darya and Amu Darya River basins of Uzbekistan. Potential adaptation responses to address unmet water demands-such as improving farm and basin-level irrigation efficiency -were evaluated using multiple approaches, including participatory farmer consultations, modeling of net economic benefits, and expert assessment. Recommendations were further refined through consensus building discussions among stakeholders at National Conferences. By using sound analytical approaches to evaluate the impacts of climate change, and by consulting government ministries, in-country scientific and academic institutions, and farmers, the final sets of recommendations have gained wide support within the countries and have become strong candidates for multilateral investment. The work also provides a starting point for resolving transboundary conflicts between countries, including the existing disputes over the Amu Darya River between Uzbekistan and upstream Tajikistan, and between Macedonia and downstream Greece over the Vardar-Axios River.

  12. Inhomogeneous Forcing and Transient Climate Sensitivity

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.

    2014-01-01

    Understanding climate sensitivity is critical to projecting climate change in response to a given forcing scenario. Recent analyses have suggested that transient climate sensitivity is at the low end of the present model range taking into account the reduced warming rates during the past 10-15 years during which forcing has increased markedly. In contrast, comparisons of modelled feedback processes with observations indicate that the most realistic models have higher sensitivities. Here I analyse results from recent climate modelling intercomparison projects to demonstrate that transient climate sensitivity to historical aerosols and ozone is substantially greater than the transient climate sensitivity to CO2. This enhanced sensitivity is primarily caused by more of the forcing being located at Northern Hemisphere middle to high latitudes where it triggers more rapid land responses and stronger feedbacks. I find that accounting for this enhancement largely reconciles the two sets of results, and I conclude that the lowest end of the range of transient climate response to CO2 in present models and assessments (less than 1.3 C) is very unlikely.

  13. Marine nitrous oxide emissions: An unknown liability for the international water sector

    EPA Science Inventory

    Reliable estimates of anthropogenic greenhouse gas (GHG) emissions are essential for setting effective climate policy at both the sector and national level. Current IPCC Guidelines for calculating nitrous oxide (N2O) emissions from sewage management are both highly uncertain and ...

  14. A Web-Based Modelling Platform for Interactive Exploration of Regional Responses to Global Change

    NASA Astrophysics Data System (ADS)

    Holman, I.

    2014-12-01

    Climate change adaptation is a complex human-environmental problem that is framed by the uncertainty in impacts and the adaptation choices available, but is also bounded by real-world constraints such as future resource availability and environmental and institutional capacities. Educating the next generation of informed decision-makers that will be able to make knowledgeable responses to global climate change impacts requires them to have access to information that is credible, accurate, easy to understand, and appropriate. However, available resources are too often produced by inaccessible models for scenario simulations chosen by researchers hindering exploration and enquiry. This paper describes the interactive exploratory web-based CLIMSAVE Integrated Assessment (IA) Platform (www.climsave.eu/iap) that aims to democratise climate change impacts, adaptation and vulnerability modelling. The regional version of the Platform contain linked simulation models (of the urban, agriculture, forestry, water and biodiversity sectors), probabilistic climate scenarios and socio-economic scenarios, that enable users to select their inputs (climate and socioeconomic), rapidly run the models using their input variable settings and view their chosen outputs. The interface of the CLIMSAVE IA Platform is designed to facilitate a two-way iterative process of dialogue and exploration of "what if's" to enable a wide range of users to improve their understanding surrounding impacts, adaptation responses and vulnerability of natural resources and ecosystem services under uncertain futures. This paper will describe the evolution of the Platform and demonstrate how using its holistic framework (multi sector / ecosystem service; cross-sectoral, climate and socio-economic change) will help to assist learning around the challenging concepts of responding to global change.

  15. Beyond the Continent: Creating an Independent Scientific Assessment Process for the Hawai`i and U.S. Affiliated Pacific Islands Region

    NASA Astrophysics Data System (ADS)

    Grecni, Z. N.; Keener, V. W.

    2017-12-01

    An external evaluation found that the inclusion of users of climate information and diverse regional experts in developing the 2012 Pacific Islands Regional Climate Assessment was a key factor in the report's perceived credibility and usefulness (Moser 2013). The 2012 assessment is seen as a foundational summary for Hawai`i and the U.S.-Affiliated Pacific Islands and is still used in vulnerability assessments and to support decisions by public- and private-sector actors. Recently, lessons learned from the 2012 assessment process were applied in engaging technical experts and potential future users in developing a chapter for the U.S. National Climate Assessment, as a regional update that builds on previous assessment activities. In the absence of downscaled climate projection scenarios and products available to the contiguous U.S., the Pacific Islands chapter continued to draw on projections from regional climate models and extensive user engagement. Through surveys, webinars, technical sectoral workshops, and peer review networks, the regional author team received input from a range of stakeholders. In particular, engagement aimed to identify key risks in sectors of importance to the Hawai`i and U.S.-Affiliated Pacific Islands region and cases in which stakeholder groups are already implementing measures toward resilience and adaptation. Data collection began during the chapter development process and will continue at the release of the 4th National Climate Assessment in 2018, with the aim of evaluating how stakeholder engagement affects the assessment's usefulness in assisting island communities to understand risks and vulnerabilities and review potential adaptation strategies.

  16. Climate Sensitivity, Sea Level, and Atmospheric Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-01-01

    Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3+/-1deg C for a 4 W/sq m CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3-4deg C for a 4 W/sq m CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.

  17. Facilitating a stakeholder-led approach to the development of Mediterranean climate services: co-ordinating the CLIM-RUN case studies

    NASA Astrophysics Data System (ADS)

    Goodess, C. M.

    2012-04-01

    The CLIM-RUN case studies provide a real-world context for bringing together experts on the demand and supply side of climate services. They are essential to the CLIM-RUN objective of using iterative and bottom-up (i.e., stakeholder led) approaches for optimizing the two-way information transfer between climate experts and stakeholders. The region of interest for CLIM-RUN is the Mediterranean, which is a recognised climate change hotspot (i.e., a region particularly sensitive and vulnerable to global warming) and which does not currently have developed climate service networks such as exist in a number of Central and Northern European countries. The case studies focus on the energy and tourism sectors, but also include a cross-cutting study on wild fires (an issue of increasing concern in the Mediterranean) as well as a cross-sectorial integrated case study for the Venice lagoon. They span coastal (e.g., Tunisia and Croatia), island (e.g., Cyprus) and mountain (e.g., Savoie) environments, the eastern (e.g., Greece) to western (e.g., Spain, Morocco) Mediterranean regions, and regional to local foci. Stakeholder involvement has been critical from the start of the project in March 2011, with a series of targeted workshops helping to define the framework for each case study. Two specific workshop objectives were to (i) better understand who are the climate services stakeholders and (ii) what they need/want from climate services (both in terms of data products and broader knowledge). Many of the workshops were held in local languages to maximise stakeholder participation, with expert knowledge provided by the CLIM-RUN climate and stakeholder expert teams (the CET and SET). Following the workshops, CET members are 'translating' the user needs into specific requirements from climate observations and models and identifying areas where additional modelling and analysis are required. As part of the central co-ordination of the case studies, a perception and data needs questionnaire was produced to solicit information about stakeholder institutions and organisations, risk perception and current use of climate/weather information, perspectives on climate services, data requirements and handling uncertainties. The questionnaire was designed to be used in a very flexible way, adapted to individual case studies. It has been circulated via email, during and after workshops, made available in on-line form and has also provided the basis for structured interviews with stakeholders. From the preliminary CLIM-RUN work, it is evident that the different sectorial requirements and contexts, including differences in stakeholder expertise and perspectives and the importance of non-climatic considerations in decision making, support the tailored, bottom-up approach adopted. For instance, the energy sector is more keen to use detailed present-day climate information, while tourist stakeholders, although less constrained by climate issues, prefer seasonal timescale information. At the same time, these differences provide a challenge in terms of developing common methodologies and identifying priorities for the provision of climate services. Other challenges relate to the differences in stakeholder engagement across the case studies.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Aalst, M.

    Climate change is already taking place, and further changes are inevitable. Developing countries, and particularly the poorest people in these countries, are most at risk. The impacts result not only from gradual changes in temperature and sea level but also, in particular, from increased climate variability and extremes, including more intense floods, droughts, and storms. These changes are already having major impacts on the economic performance of developing countries and on the lives and livelihoods of millions of poor people around the world. Climate change thus directly affects the World Bank Group's mission of eradicating poverty. It also puts atmore » risk many projects in a wide range of sectors, including infrastructure, agriculture, human health, water resources, and environment. The risks include physical threats to the investments, potential underperformance, and the possibility that projects will indirectly contribute to rising vulnerability by, for example, triggering investment and settlement in high-risk areas. The way to address these concerns is not to separate climate change adaptation from other priorities but to integrate comprehensive climate risk management into development planning, programs, and projects. While there is a great need to heighten awareness of climate risk in Bank work, a large body of experience on climate risk management is already available, in analytical work, in country dialogues, and in a growing number of investment projects. This operational experience highlights the general ingredients for successful integration of climate risk management into the mainstream development agenda: getting the right sectoral departments and senior policy makers involved; incorporating risk management into economic planning; engaging a wide range of nongovernmental actors (businesses, nongovernmental organizations, communities, and so on); giving attention to regulatory issues; and choosing strategies that will pay off immediately under current climate conditions. There are several ways in which the World Bank Group can continue helping its clients better manage climate risks to poverty reduction and sustainable development: Integrating climate risk management into the project cycle, by adopting early risk identification (for instance by applying a quick and simple risk-screening tool) and following up throughout the design process if necessary. Integrating climate risk management into country and sector dialogues, especially in countries and sectors that are particularly vulnerable. Enhancing internal support for and coordination of climate risk management by, for example, expanding analytical work and capacity for cross-support by the Global Climate Change Team and the Hazard Management Unit of the World Bank and by actively developing climate risk management activities within regional departments. Supporting the establishment of proper financing mechanisms for adaptation, using, for example, the Investment Framework for Clean Energy and Development. New funding mechanisms created under the United Nations Framework Convention on Climate Change (UNFCCC) and being made operational by the Global Environment Facility (GEF), as well as the Kyoto Protocol, should be used to leverage maximum adaptation results within the Bank's broad range of development activities and investments. By enhancing climate risk management, the World Bank Group will be able to address the growing risks from climate change and, at the same time, make current development investments more resilient to climate variability and extreme weather events. In that way, climate risk management will not only guard the Bank's investments in a changing climate but will also improve the impact of development efforts right now.« less

  19. Phenological sensitivity to climate across taxa and trophic levels.

    PubMed

    Thackeray, Stephen J; Henrys, Peter A; Hemming, Deborah; Bell, James R; Botham, Marc S; Burthe, Sarah; Helaouet, Pierre; Johns, David G; Jones, Ian D; Leech, David I; Mackay, Eleanor B; Massimino, Dario; Atkinson, Sian; Bacon, Philip J; Brereton, Tom M; Carvalho, Laurence; Clutton-Brock, Tim H; Duck, Callan; Edwards, Martin; Elliott, J Malcolm; Hall, Stephen J G; Harrington, Richard; Pearce-Higgins, James W; Høye, Toke T; Kruuk, Loeske E B; Pemberton, Josephine M; Sparks, Tim H; Thompson, Paul M; White, Ian; Winfield, Ian J; Wanless, Sarah

    2016-07-14

    Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average).

  20. The Effects of Climate Sensitivity and Carbon Cycle Interactions on Mitigation Policy Stringency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Katherine V.; Bond-Lamberty, Benjamin; Edmonds, James A.

    2015-07-01

    Climate sensitivity and climate-carbon cycle feedbacks interact to determine how global carbon and energy cycles will change in the future. While the science of these connections is well documented, their economic implications are not well understood. Here we examine the effect of climate change on the carbon cycle, the uncertainty in climate outcomes inherent in any given policy target, and the economic implications. We examine three policy scenarios—a no policy “Reference” (REF) scenario, and two policies that limit total radiative forcing—with four climate sensitivities using a coupled integrated assessment model. Like previous work, we find that, within a given scenario,more » there is a wide range of temperature change and sea level rise depending on the realized climate sensitivity. We expand on this previous work to show that temperature-related feedbacks on the carbon cycle result in more mitigation required as climate sensitivity increases. Thus, achieving a particular radiative forcing target becomes increasingly expensive as climate sensitivity increases.« less

  1. Characterizing the Vertical and Spatial Distribution of Black Carbon on the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J., III; Feng, Y.; Biraud, S.; Springston, S. R.

    2016-12-01

    The Polar Regions are recognized for their pronounced sensitivity to changes in radiative forcing. Indeed, the Cryosphere is often referred to as the `canary in the coalmine' for climate change in the popular literature. It is this sensitivity that provides both motivation and need for targeted measurement campaigns to test the behavior and predictive capabilities of current climate models to so as to improve our understanding of which factors are most important in Arctic climate change. One class of under measured radiative forcing agents in the Polar Region is the absorbing aerosol - black carbon and brown carbon. In particular, the paucity of vertical profile information of BC is partly responsible for the difficulty of reducing uncertainty in model assessment of aerosol radiative impact at high latitudes. During the summer of 2015, a Single-Particle Soot Photometer (SP2) was deployed aboard the DOE Gultstream-1 (G-1) aircraft to measure refractory BC (rBC) concentrations as part of the DOE-sponsored ACME-V (ARM Airborne Carbon Measurements) campaign. This campaign was conducted from June through to mid-September along the North Slope of Alaska and was punctuated by vertical profiling over 5 sites (Atquasuk, Barrow, Ivotuk, Oliktok, and Toolik). In addition, measurement of CO, CO2 and CH4 were also taken to provide information on the spatial and seasonal differences in GHG sources and how these sources correlate with BC. Comparisons between observations and a global climate model (CAM5) simulations will be shown along with a discussion on the ability of the model to capture observed monthly mean profiles of BC and stratified aerosol layers. Additionally, the capability of the SP2 to partition rBC-containing particles into nascent or aged allows an evaluation of how well the CAM5 model captures long distant transported aged carbonaceous aerosols. Finally model sensitivity studies will be presented that investigated the relative importance of the different emission sectors to the summer Arctic BC loadings at different altitudes and the implications of these emissions on the radiation budget.

  2. Is there a need for government interventions to adapt energy infrastructures to climate change? A German case study

    NASA Astrophysics Data System (ADS)

    Groth, Markus; Cortekar, Jörg

    2015-04-01

    The option of adapting to climate change is becoming more and more important in climate change policy. Hence, responding to climate change now involves both mitigation to address the cause and adaptation as a response to already ongoing and expected changes. These changes also have relevance for the current and future energy sector in Germany. An energy sector that in the course of the German Energiewende also has to deal with a fundamental shift in energy supply from fossil fuel to renewable energies in the next decades. Thereby it needs to be considered that the energy sector is one critical infrastructure in the European Union that needs to be protected. Critical infrastructures can be defined as organisations or facilities of special importance for the country and its people where failure or functional impairment would lead to severe supply bottlenecks, significant disturbance of public order or other dramatic consequences. Regarding the adaptation to climate change, the main question is, whether adaptation options will be implemented voluntarily by companies or not. This will be the case, when the measure is considered a private good and is economically beneficial. If, on the contrary, the measure is considered a public good, additional incentives are needed. Based on a synthesis of the current knowledge regarding the possible impacts of climate change on the German energy sector along its value-added chain, the paper points out, that the power distribution and the grid infrastructure is consistently attributed the highest vulnerability. Direct physical impacts and damages to the transmission and distribution grids, utility poles, power transformers, and relay stations are expected due to more intense extreme weather events like storms, floods or thunderstorms. Furthermore fundaments of utility poles can be eroded and relay stations or power transformers can be flooded, which might cause short circuits etc. Besides these impacts causing damage to the physical infrastructure, there might also occur efficiency losses in electricity transmission due to very high or very low temperatures. While vulnerabilities in power generation primarily result in efficiency losses, interferences on the grid level could cause power outages with cascade effects influencing other sectors of society and economy. The paper argues that these possible impacts of a changing climate should be taken into account in the upcoming infrastructure projects in the course of the Energiewende. Therefore governmental intervention - like legal obligations or incentives by the use of economic instruments - are for example justifiable regarding measures to adapt the grid infrastructure as a critical infrastructure that needs to be protected against current and future impacts of climate change.

  3. GLOBAL CHANGE RESEARCH NEWS #16: POTENTIAL HEALTH IMPACTS OF CLIMATE VARIABILITY AND CHANGE FOR THE UNITED STATES, EXECUTIVE SUMMARY OF THE REPORT OF THE HEALTH SECTOR OF THE U.S. NATIONAL ASSESSMENT

    EPA Science Inventory

    The health sector assessment was sponsored by and conducted in partnership with EPA's Global Change Research Program. The report was produced by a Health Sector Work Group, co-chaired by Dr. Jonathan Patz (Johns Hopkins University) and Dr. Michael McGeehin (CDC), and this report ...

  4. Integrated Climate Change Impacts Assessment in California

    NASA Astrophysics Data System (ADS)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  5. A high-resolution, empirical approach to climate impact assessment for regulatory analysis

    NASA Astrophysics Data System (ADS)

    Delgado, M.; Simcock, J. G.; Greenstone, M.; Hsiang, S. M.; Kopp, R. E.; Carleton, T.; Hultgren, A.; Jina, A.; Rising, J. A.; Nath, I.; Yuan, J.; Rode, A.; Chong, T.; Dobbels, G.; Hussain, A.; Wang, J.; Song, Y.; Mohan, S.; Larsen, K.; Houser, T.

    2017-12-01

    Recent breakthroughs in computing, data availability, and methodology have precipitated significant advances in the understanding of the relationship between climate and socioeconomic outcomes [1]. And while the use of estimates of the global marginal costs of greenhouse gas emissions (e.g. the SCC) are a mandatory component of regulatory policy in many jurisdictions, existing SCC-IAMs have lagged advances in impact assessment and valuation [2]. Recent work shows that incorporating high spatial and temporal resolution can significantly affect the observed relationships of economic outcomes to climate and socioeconomic factors [3] and that maintaining this granularity is critical to understanding the sensitivity of aggregate measures of valuation to inequality and risk adjustment methodologies [4]. We propose a novel framework that decomposes uncertainty in the SCC along multiple sources, including aggregate climate response parameters, the translation of global climate into local weather, the effect of weather on physical and economic systems, human and macro-economic responses, and impact valuation methodologies. This work extends Hsiang et al. (2017) [4] to directly estimate local response functions for multiple sectors in each of 24,378 global regions and to estimate impacts at this resolution daily, incorporating endogenous, empirically-estimated adaptation and costs. The goal of this work is to provide insight into the heterogeneity of climate impacts and to work with other modeling teams to enhance the empirical grounding of integrated climate impact assessment in more complex energy-environment-economics models. [1] T. Carleton and S. Hsiang (2016), DOI: 10.1126/science.aad9837. [2] National Academies of Sciences, Engineering, and Medicine (2017), DOI: 10.17226/24651. [3] Burke, M., S. Hsiang, and E. Miguel (2015), DOI: 10.1038/nature15725. [4] S. Hsiang et al. (2017), DOI: 10.1126/science.aal4369.

  6. Participatory Approach to Long-Term Socio-Economic Scenarios as Building Block of a Local Vulnerability and Risk Assessment Tool - The Case Study Lienz (East-Tyrol)

    NASA Astrophysics Data System (ADS)

    Meyer, Ina; Eder, Brigitte; Hama, Michiko; Leitner, Markus

    2016-04-01

    Risks associated with climate change are mostly still understood and analyzed in a sector- or hazard-specific and rarely in a systemic, dynamic and scenario-based manner. In addition, socio-economic trends are often neglected in local vulnerability and risk assessments although they represent potential key determinants of risk and vulnerability. The project ARISE (Adaptation and Decision Support via Risk Management Through Local Burning Embers) aims at filling this gap by applying a participatory approach to socio-economic scenario building as building block of a local vulnerability assessment and risk management tool. Overall, ARISE aims at developing a decision support system for climate-sensitive iterative risk management as a key adaptation tool for the local level using Lienz in the East-Tyrol as a test-site City. One central building block is participatory socio-economic scenario building that - together with regionalized climate change scenarios - form a centrepiece in the process-oriented assessment of climate change risks and vulnerability. Major vulnerabilities and risks may stem from the economic performance, the socio-economic or socio-demographic developments or changes in asset exposition and not from climate change impacts themselves. The IPCC 5th assessment report underlines this and states that for most economic sectors, the impact of climate change may be small relative to the impacts of other driving forces such as changes in population growth, age, income, technology, relative prices, lifestyle, regulation, governance and many other factors in the socio-economy (Arent et al., 2014). The paper presents the methodology, process and results with respect to the building of long-term local socio-economic scenarios for the City of Lienz and the surrounding countryside. Scenarios were developed in a participatory approach using a scenario workshop that involved major stakeholders from the region. Participatory approaches are increasingly recognized as an important element in management and decision-making as problems in today's world are complex and require knowledge from many different domains and disciplines. Participation is also said to be a process of collective learning that changes the way people think and act which is a relevant point in forming appropriate region-specific climate adaptation strategies. The scenarios are based on an analysis of data on recent states and trends in major local sector developments concerning absolute and relative employment and value creation as well as on distinct socio-demographic developments in the region. Categories discussed in the scenario workshop cover inter alia institutions and governance, demographics, production and demand, markets, value-chains and trade, scientific and technological innovations, education and health. The derived stakeholder-based socio-economic scenarios were, in a second step, matched with the Shared Socio-economic reference Pathways (SSPs) in order to frame the locally produced scenarios with global narratives. Both strains were, in a third step, combined and backed-up by scientific literature in order to build the local socio-economic scenarios that served as background information in the analysis of risks, vulnerability and appropriate adaptation measures in the case-study region.

  7. Adaptation to Interannual and Interdecadal Climate Variability in Agricultural Production Systems of the Argentine Pampas

    NASA Astrophysics Data System (ADS)

    Podestá, G. P.; Bert, F.; Weber, E.; Laciana, C.; Rajagopalan, B.; Letson, D.

    2007-05-01

    Agricultural ecosystems play a central role in world food production and food security, and involve one of the most climate-sensitive sectors of society-agriculture. We focus on crop production in the Argentine Pampas, one of the world's major agricultural regions. Climate of the Pampas shows marked variability at both interannual and decadal time scales. We explored the scope for adaptive management in response to climate information on interannual scales. We show that different assumptions about what decision makers are trying to achieve (i.e., their objective functions) may change what actions are considered as "optimal" for a given climate context. Optimal actions also were used to estimate the economic value of forecasts of an ENSO phase. Decision constraints (e.g., crop rotations) have critical influence on value of the forecasting system. Gaps in knowledge or misconceptions about climate variability were identified in open-ended "mental model" interviews. Results were used to design educational interventions. A marked increase in precipitation since the 1970s, together with new production technologies, led to major changes in land use patterns in the Pampas. Continuous cropping has widely replaced agriculture-pasture rotations. Nevertheless, production systems that evolved partly in response to increased rainfall may not be viable if climate reverts to a drier epoch. We use historical data to define a range of plausible climate trajectories 20-30 years hence. Regional scenarios are downscaled using semi-parametric weather generators to produce multiple realizations of daily weather consistent with decadal scenarios. Finally, we use the synthetic climate, crop growth models, and realistic models of decision-making under risk to compute risk metrics (e.g., probability of yields or profits being below a threshold). Climatically optimal and marginal locations show differential responses: probabilities of negative economic results are much higher in currently marginal areas if precipitations decrease.

  8. A review of Thailand`s strategies for global climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boonchalermkit, S.

    Thailand is greatly concerned about global climate change, which is caused primarily by the burning of fossil fuels, deforestation and the release of chlorofluorocarbons. The country itself is not currently a major contributor to global climate change. However, as Thailand`s economy expands and its burning of fossil fuels increases, the country`s contribution to global climate change could increase. Thailand`s use of primary energy supplies grew at an average rate of 13.4 percent per year in the period 1985 to 1990. The rapid, sustained growth was due to the overall pace of growth in the economy and the expansion of industrial,more » construction, and transportation activities. The primary energy demand was approximately 31,600 kilotons of oil equivalent (KTOE) in 1990. The transportation sector accounted for the largest proportion of energy demand at 30 percent. Within the next 15 years, the power sector is expected to overtake the transportation sector as the largest consumer of energy. Petroleum is currently the predominant source of energy in Thailand, accounting for 56 percent of the primary energy demand. Thailand recognizes that it has an important part to play in finding solutions to minimizing emissions of greenhouse gases and identifying viable response strategies. Thus, in this paper the authors will present several policy strategies relevant to climate change in Thailand and discuss how they have been implemented and enforced. Policies concerning forestry, energy, and environment are reviewed in detail in this paper.« less

  9. Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives

    DOE PAGES

    Bauer, Nico; Calvin, Katherine; Emmerling, Johannes; ...

    2016-08-23

    Energy is crucial for supporting basic human needs, development and well-being. The future evolution of the scale and character of the energy system will be fundamentally shaped by socioeconomic conditions and drivers, available energy resources, technologies of energy supply and transformation, and end-use energy demand. However, because energy-related activities are significant sources of greenhouse gas (GHG) emissions and other environmental and social externalities, energy system development will also be influenced by social acceptance and strategic policy choices. All of these uncertainties have important implications for many aspects of economic and environmental sustainability, and climate change in particular. In the Shared-Socioeconomicmore » Pathway (SSP) framework these uncertainties are structured into five narratives, arranged according to the challenges to climate change mitigation and adaptation. In this study we explore future energy sector developments across the five SSPs using Integrated Assessment Models (IAMs), and we also provide summary output and analysis for selected scenarios of global emissions mitigation policies. The mitigation challenge strongly corresponds with global baseline energy sector growth over the 21st century, which varies between 40% and 230% depending on final energy consumer behavior, technological improvements, resource availability and policies. The future baseline CO 2-emission range is even larger, as the most energy-intensive SSP also incorporates a comparatively high share of carbon-intensive fossil fuels, and vice versa. Inter-regional disparities in the SSPs are consistent with the underlying socioeconomic assumptions; these differences are particularly strong in the SSPs with large adaptation challenges, which have little inter-regional convergence in long-term income and final energy demand levels. The scenarios presented do not include feedbacks of climate change on energy sector development. The energy sector SSPs with and without emissions mitigation policies are introduced and analyzed here in order to contribute to future research in climate sciences, mitigation analysis, and studies on impacts, adaptation and vulnerability.« less

  10. Transportation planning, policy and climate change : making the long-term connection.

    DOT National Transportation Integrated Search

    2011-03-01

    Climate change and variability will have significant impacts on the future mobility of the population in this : country. Previous research has found that the transportation sector is not considering adaptation as a : solution to these potential impac...

  11. Developing the Learning Climate in Public Sector Training Programs.

    ERIC Educational Resources Information Center

    Sims, Ronald R.

    1992-01-01

    A psychological contract is a set of unwritten reciprocal expectations between trainee and training program. Public agency trainers must establish and manage psychological contracts through clearly defined objectives and development of a learning climate that leads to effective training. (SK)

  12. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    PubMed

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables measured suggests that tree carbon allocation to coarse roots is independent of annual climate variability. The greater number of missing rings in branches highlights the fact that canopy development is a low priority for carbon allocation during poor growing conditions.

  13. Climate Sensitivity in the Anthropocene

    NASA Technical Reports Server (NTRS)

    Previdi, M.; Liepert, B. G.; Peteet, Dorothy M.; Hansen, J.; Beerling, D. J.; Broccoli, A. J.; Frolking, S.; Galloway, J. N.; Heimann, M.; LeQuere, C.; hide

    2014-01-01

    Climate sensitivity in its most basic form is defined as the equilibrium change in global surface temperature that occurs in response to a climate forcing, or externally imposed perturbation of the planetary energy balance. Within this general definition, several specific forms of climate sensitivity exist that differ in terms of the types of climate feedbacks they include. Based on evidence from Earth's history, we suggest here that the relevant form of climate sensitivity in the Anthropocene (e.g. from which to base future greenhouse gas (GHG) stabilization targets) is the Earth system sensitivity including fast feedbacks from changes in water vapour, natural aerosols, clouds and sea ice, slower surface albedo feedbacks from changes in continental ice sheets and vegetation, and climate-GHG feedbacks from changes in natural (land and ocean) carbon sinks. Traditionally, only fast feedbacks have been considered (with the other feedbacks either ignored or treated as forcing), which has led to estimates of the climate sensitivity for doubled CO2 concentrations of about 3 C. The 2×CO2 Earth system sensitivity is higher than this, being approx. 4-6 C if the ice sheet/vegetation albedo feedback is included in addition to the fast feedbacks, and higher still if climate-GHG feedbacks are also included. The inclusion of climate-GHG feedbacks due to changes in the natural carbon sinks has the advantage of more directly linking anthropogenic GHG emissions with the ensuing global temperature increase, thus providing a truer indication of the climate sensitivity to human perturbations. The Earth system climate sensitivity is difficult to quantify due to the lack of palaeo-analogues for the present-day anthropogenic forcing, and the fact that ice sheet and climate-GHG feedbacks have yet to become globally significant in the Anthropocene. Furthermore, current models are unable to adequately simulate the physics of ice sheet decay and certain aspects of the natural carbon and nitrogen cycles. Obtaining quantitative estimates of the Earth system sensitivity is therefore a high priority for future work.

  14. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions

    PubMed Central

    Zeebe, Richard E.

    2013-01-01

    Climate sensitivity measures the response of Earth’s surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth’s climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000–165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene–Eocene Thermal Maximum. PMID:23918402

  15. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.

    PubMed

    Zeebe, Richard E

    2013-08-20

    Climate sensitivity measures the response of Earth's surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth's climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000-165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene-Eocene Thermal Maximum.

  16. Climate sensitivity, sea level and atmospheric carbon dioxide

    PubMed Central

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-01-01

    Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3±1°C for a 4 W m−2 CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3–4°C for a 4 W m−2 CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change. PMID:24043864

  17. Climate sensitivity, sea level and atmospheric carbon dioxide.

    PubMed

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-10-28

    Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3±1(°)C for a 4 W m(-2) CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3-4(°)C for a 4 W m(-2) CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.

  18. Carbon footprint of telemedicine solutions--unexplored opportunity for reducing carbon emissions in the health sector.

    PubMed

    Holmner, Asa; Ebi, Kristie L; Lazuardi, Lutfan; Nilsson, Maria

    2014-01-01

    The healthcare sector is a significant contributor to global carbon emissions, in part due to extensive travelling by patients and health workers. To evaluate the potential of telemedicine services based on videoconferencing technology to reduce travelling and thus carbon emissions in the healthcare sector. A life cycle inventory was performed to evaluate the carbon reduction potential of telemedicine activities beyond a reduction in travel related emissions. The study included two rehabilitation units at Umeå University Hospital in Sweden. Carbon emissions generated during telemedicine appointments were compared with care-as-usual scenarios. Upper and lower bound emissions scenarios were created based on different teleconferencing solutions and thresholds for when telemedicine becomes favorable were estimated. Sensitivity analyses were performed to pinpoint the most important contributors to emissions for different set-ups and use cases. Replacing physical visits with telemedicine appointments resulted in a significant 40-70 times decrease in carbon emissions. Factors such as meeting duration, bandwidth and use rates influence emissions to various extents. According to the lower bound scenario, telemedicine becomes a greener choice at a distance of a few kilometers when the alternative is transport by car. Telemedicine is a potent carbon reduction strategy in the health sector. But to contribute significantly to climate change mitigation, a paradigm shift might be required where telemedicine is regarded as an essential component of ordinary health care activities and not only considered to be a service to the few who lack access to care due to geography, isolation or other constraints.

  19. State-dependent climate sensitivity in past warm climates and its implications for future climate projections.

    PubMed

    Caballero, Rodrigo; Huber, Matthew

    2013-08-27

    Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow "Earth system" feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or "Charney" climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature.

  20. Developing a System of National Climate Assessment Indicators to Track Climate Change Impacts, Vulnerabilities, and Preparedness

    NASA Astrophysics Data System (ADS)

    Janetos, A. C.; Kenney, M. A.; Chen, R. S.; Arndt, D.

    2012-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years (http://globalchange.gov/what-we-do/assessment/). Part of the vision for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks Atmospheric Composition Physical Climate Variability and Change Sectors and Resources of Concern Adaptation and Mitigation Responses This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at spatial scales that are the most relevant for their intended use. National decision-makers may find indicators of national greenhouse gas emissions to be informative; however, state or local decision-makers have the freedom in this framework to define indicators of state, regional, or local greenhouse emissions that are more relevant to their concerns. The framework is also independent of time scale and topics within the broad categories. It therefore allows indicators of different sectors to be developed, and allows the consideration of both indicators of current state, past trends, and leading indicators. In this talk we will discuss a number of existing candidate indicators that could be included in this framework as well as the research needed to fully develop an end-to-end indicator system.

  1. Atlantic Meridional Overturning Circulation Influence on North Atlantic Sector Surface Air Temperature and its Predictability in the Kiel Climate Model

    NASA Astrophysics Data System (ADS)

    Latif, M.

    2017-12-01

    We investigate the influence of the Atlantic Meridional Overturning Circulation (AMOC) on the North Atlantic sector surface air temperature (SAT) in two multi-millennial control integrations of the Kiel Climate Model (KCM). One model version employs a freshwater flux correction over the North Atlantic, while the other does not. A clear influence of the AMOC on North Atlantic sector SAT only is simulated in the corrected model that depicts much reduced upper ocean salinity and temperature biases in comparison to the uncorrected model. Further, the model with much reduced biases depicts significantly enhanced multiyear SAT predictability in the North Atlantic sector relative to the uncorrected model. The enhanced SAT predictability in the corrected model is due to a stronger and more variable AMOC and its enhanced influence on North Atlantic sea surface temperature (SST). Results obtained from preindustrial control integrations of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) support the findings obtained from the KCM: models with large North Atlantic biases tend to have a weak AMOC influence on SST and exhibit a smaller SAT predictability over the North Atlantic sector.

  2. Climate Impacts in Europe Under +1.5°C Global Warming

    NASA Astrophysics Data System (ADS)

    Jacob, Daniela; Kotova, Lola; Teichmann, Claas; Sobolowski, Stefan P.; Vautard, Robert; Donnelly, Chantal; Koutroulis, Aristeidis G.; Grillakis, Manolis G.; Tsanis, Ioannis K.; Damm, Andrea; Sakalli, Abdulla; van Vliet, Michelle T. H.

    2018-02-01

    The Paris Agreement of the United Nations Framework Convention on Climate Change aims not only at avoiding +2°C warming (and even limit the temperature increase further to +1.5°C), but also sets long-term goals to guide mitigation. Therefore, the best available science is required to inform policymakers on the importance of and the adaptation needs in a +1.5°C warmer world. Seven research institutes from Europe and Turkey integrated their competencies to provide a cross-sectoral assessment of the potential impacts at a pan-European scale. The initial findings of this initiative are presented and key messages communicated. The approach is to select periods based on global warming thresholds rather than the more typical approach of selecting time periods (e.g., end of century). The results indicate that the world is likely to pass the +1.5°C threshold in the coming decades. Cross-sectoral dimensions are taken into account to show the impacts of global warming that occur in parallel in more than one sector. Also, impacts differ across sectors and regions. Alongside the negative impacts for certain sectors and regions, some positive impacts are projected. Summer tourism in parts of Western Europe may be favored by climate change; electricity demand decreases outweigh increases over most of Europe and catchment yields in hydropower regions will increase. However, such positive findings should be interpreted carefully as we do not take into account exogenous factors that can and will influence Europe such as migration patterns, food production, and economic and political instability.

  3. Quantifying the water-energy nexus in Greece

    NASA Astrophysics Data System (ADS)

    Ziogou, Isidoros; Zachariadis, Theodoros

    2017-11-01

    In this paper we provide an assessment of the water-energy nexus for Greece. More specifically, the amount of freshwater consumed per unit of energy produced is determined: for both conventional (lignite, diesel and fuel oil-fired) and advanced (combined operation of gas turbine) thermal power plants in the electricity generation sector; for extraction and refining activities in the primary energy production sector; and for the production of biodiesel that is used as a blend in the ultimately delivered automotive diesel fuel. In addition, the amount of electricity consumed for the purposes of water supply and sewerage is presented. In view of the expected effects of climate change in the Mediterranean region, the results of this study highlight the need for authorities to prepare a national strategy that will ensure climate resilience in both energy and water sectors of the country.

  4. Impact of Climate Change on Energy Production, Distribution, and Consumption in Russia

    NASA Astrophysics Data System (ADS)

    Klimenko, V. V.; Klimenko, A. V.; Tereshin, A. G.; Fedotova, E. V.

    2018-05-01

    An assessment of the overall impact of the observed and expected climatic changes on energy production, distribution, and consumption in Russia is presented. Climate model results of various complexity and evaluation data on the vulnerability of various energy production sectors to climate change are presented. It is shown that, due to the increase of air temperature, the efficiency of electricity production at thermal and nuclear power plants declines. According to the climate model results, the production of electricity at TPPs and NPPs by 2050 could be reduced by 6 billion kW h due to the temperature increase. At the same time, as a result of simulation, the expected increase in the rainfall amount and river runoff in Russia by 2050 could lead to an increase in the output of HPP by 4-6% as compared with the current level, i.e., by 8 billion kW h. For energy transmission and distribution, the climate warming will mean an increase in transmission losses, which, according to estimates, may amount to approximately 1 billion kW h by 2050. The increase of air temperature in summer will require higher energy consumption for air conditioning, which will increase by approximately 6 billion kW h by 2050. However, in total, the optimal energy consumption in Russia, corresponding to the postindustrial level, will decrease by 2050 by approximately 150 billion kW h as a result of climate- induced changes. The maximum global warming impact is focused on the heat demand sector. As a result of a decrease in the heating degree-days by 2050, the need for space heating is expected to fall by 10-15%, which will cause a fuel conservation sufficient for generating approximately 140 billion kW h of electricity. Hence, a conclusion about the positive direct impact of climate change on the Russia's energy sector follows, which is constituted in the additional available energy resource of approximately 300 billion kW h per year.

  5. High-resolution integration of water, energy, and climate models to assess electricity grid vulnerabilities to climate change

    NASA Astrophysics Data System (ADS)

    Meng, M.; Macknick, J.; Tidwell, V. C.; Zagona, E. A.; Magee, T. M.; Bennett, K.; Middleton, R. S.

    2017-12-01

    The U.S. electricity sector depends on large amounts of water for hydropower generation and cooling thermoelectric power plants. Variability in water quantity and temperature due to climate change could reduce the performance and reliability of individual power plants and of the electric grid as a system. While studies have modeled water usage in power systems planning, few have linked grid operations with physical water constraints or with climate-induced changes in water resources to capture the role of the energy-water nexus in power systems flexibility and adequacy. In addition, many hydrologic and hydropower models have a limited representation of power sector water demands and grid interaction opportunities of demand response and ancillary services. A multi-model framework was developed to integrate and harmonize electricity, water, and climate models, allowing for high-resolution simulation of the spatial, temporal, and physical dynamics of these interacting systems. The San Juan River basin in the Southwestern U.S., which contains thermoelectric power plants, hydropower facilities, and multiple non-energy water demands, was chosen as a case study. Downscaled data from three global climate models and predicted regional water demand changes were implemented in the simulations. The Variable Infiltration Capacity hydrologic model was used to project inflows, ambient air temperature, and humidity in the San Juan River Basin. Resulting river operations, water deliveries, water shortage sharing agreements, new water demands, and hydroelectricity generation at the basin-scale were estimated with RiverWare. The impacts of water availability and temperature on electric grid dispatch, curtailment, cooling water usage, and electricity generation cost were modeled in PLEXOS. Lack of water availability resulting from climate, new water demands, and shortage sharing agreements will require thermoelectric generators to drastically decrease power production, as much as 50% during intensifying drought scenarios, which can have broader electricity sector system implications. Results relevant to stakeholder and power provider interests highlight the vulnerabilities in grid operations driven by water shortage agreements and changes in the climate.

  6. The End-to-end Demonstrator for improved decision making in the water sector in Europe (EDgE)

    NASA Astrophysics Data System (ADS)

    Wood, Eric; Wanders, Niko; Pan, Ming; Sheffield, Justin; Samaniego, Luis; Thober, Stephan; Kumar, Rohinni; Prudhomme, Christel; Houghton-Carr, Helen

    2017-04-01

    High-resolution simulations of water resources from hydrological models are vital to supporting important climate services. Apart from a high level of detail, both spatially and temporally, it is important to provide simulations that consistently cover a range of timescales, from historical reanalysis to seasonal forecast and future projections. In the new EDgE project commissioned by the ECMWF (C3S) we try to fulfill these requirements. EDgE is a proof-of-concept project which combines climate data and state-of-the-art hydrological modelling to demonstrate a water-oriented information system implemented through a web application. EDgE is working with key European stakeholders representative of private and public sectors to jointly develop and tailor approaches and techniques. With these tools, stakeholders are assisted in using improved climate information in decision-making, and supported in the development of climate change adaptation and mitigation policies. Here, we present the first results of the EDgE modelling chain, which is divided into three main processes: 1) pre-processing and downscaling; 2) hydrological modelling; 3) post-processing. Consistent downscaling and bias corrections for historical simulations, seasonal forecasts and climate projections ensure that the results across scales are robust. The daily temporal resolution and 5km spatial resolution ensure locally relevant simulations. With the use of four hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), uncertainty between models is properly addressed, while consistency is guaranteed by using identical input data for static land surface parameterizations. The forecast results are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs) that have been created in collaboration with the end-user community of the EDgE project. The final product of this project is composed of 15 years of seasonal forecast and 10 climate change projections, all combined with four hydrological models. These unique high-resolution climate information simulations in the EDgE project provide an unprecedented information system for decision-making over Europe.

  7. Land Use and Management Change in the U.S. with Adaptation and Mitigation under Climate Change

    NASA Astrophysics Data System (ADS)

    Mu, J. E.; McCarl, B.

    2011-12-01

    Land use and management change interact with climate change. Land uses such as forestry, cropping and grazing depend on specific ecosystems that will be affected by climate change. Furthermore, this change will not be uniform across land uses or regions. Consequently, land use productivity will change as will the mix of land uses (Mendelsohn and Dinar 2009). On the other hand, land use has been a major contributor to greenhouse gas emissions (IPCC 2007). Therefore, research focusing on land use change, climate change and greenhouse gas mitigation should consider the interaction between these effects. The research to be reported in this presentation investigates how agricultural and forestry land use and management decisions change across the coterminous U.S. under climate change with and without adaptation plus how a carbon price policy influences decisions, mitigates GHG emissions and alters carbon sequestration. Our approach is to simulate behavior under climate scenarios by 2030 using data from alternative two climate and two vegetation models while allowing for adaptive responses and imposing carbon prices. To do this, we use the Forest and Agricultural Optimization model with Greenhouse Gases (FASOMGHG) (Adams et al. 2005). In total, 16 scenarios are considered involving climate change and GHG prices relative to a base case with no climate change and no adaptation or mitigation. After analyzing results across regions and sectors, our findings include: 1.More land is converted to forestry use and less land is used for agricultural purposes under both the adaptation and mitigation strategies. 2. Harvest rotation of hardwood is lengthened and harvest of softwood and hardwood are reduced when a carbon price is included. However, such management changes were insignificant when only the adaptation strategy is used. 3. The total GHG emissions from agricultural and forestry sector are increased by 2-3 millions tones CO2 equivalent under climate change and adaptation in the absence of GHG prices, but when those prices are introduced emissions are reduced by 6 millions tones CO2 equivalent. Similarly, under climate change, GHG prices stimulate a gain in carbon sequestration in the agricultural and forestry sectors. 4. Forest sector welfare and crop producer surplus is reduced under the adaption policy by a small amount, that is -0.02 and 0.14-0.2 billion dollars respectively. However, forest welfare, agricultural welfare, crop producer surplus and livestock producer surplus all increased, by 0.62, 0.67, 0.84 and 1.48 billion dollars, respectively when GHG prices are introduced. References Adams DM, Alig RJ, McCarl BA et al., 2005. FASOMGHG conceptual structure, and specification: documentation. Texas A&M University, (http://agecon2.tamu.edu/people/faculty/mccarl-bruce/papers/ 1212FASOMGHG_doc.pdf) IPCC (Intergovernmental Panel on Climate Change), 2007. Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, UK Mendelsohn R, Dinar A. 2009. Land Use and Climate Change Interactions. Annual Review of Resource Economics. 1: 309-332.

  8. GLOBAL CHANGE RESEARCH NEWS #5: HEALTH SECTOR ASSESSMENT

    EPA Science Inventory

    The Health Sector Assessment is one of the three levels of the assessment process that is intended to answer four questions: (1) What is the current status of the nation's health, and what are current stresses on our health? (2) How might climate change affect the country's healt...

  9. Measuring Systemic and Climate Diversity in Ontario's University Sector

    ERIC Educational Resources Information Center

    Piché, Pierre Gilles

    2015-01-01

    This article proposes a methodology for measuring institutional diversity and applies it to Ontario's university sector. This study first used hierarchical cluster analysis, which suggested there has been very little change in diversity between 1994 and 2010 as universities were clustered in three groups for both years. However, by adapting…

  10. Automated canopy estimator (ACE): Enhancing crop modelling and decision making in agriculture

    USDA-ARS?s Scientific Manuscript database

    The Caribbean agriculture sector is dominated by small holdings, which are overly reliant on rainfall and highly dependent on manual means of optimization. The sector is therefore very vulnerable to the vagaries of climate variability and change, with rainfall variations being of particular concern...

  11. Cultural Complicities: Elitism, Heteronormativity and Violence in the Education Marketplace

    ERIC Educational Resources Information Center

    Saltmarsh, Sue

    2007-01-01

    Educational discourse in Australia has been dramatically altered in recent decades as neoliberal choice policies favouring an increasingly marketized, tiered educational landscape have witnessed a burgeoning of private sector schooling. In this climate, many perceive private sector schooling as providing moral, social and academic benefits beyond…

  12. The US economic impacts of climate change and the costs of inaction : a review and assessment by the Center for Integrative Environmental Research (CIER) at the University of Maryland

    DOT National Transportation Integrated Search

    2007-10-01

    This report presents a review of economic studies for the United States and relates them to predicted impacts of climate change. The summary findings are organized by region and identify the key sectors likely affected by climate change, the main imp...

  13. Adaptation pathways: ecoregion and land ownership influences on climate adaptation decision-making in forest management

    Treesearch

    Todd A. Ontl; Chris Swanston; Leslie A. Brandt; Patricia R. Butler; Anthony W. D’Amato; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon

    2018-01-01

    Climate adaptation planning and implementation are likely to increase rapidly within the forest sector not only as climate continues to change but also as we intentionally learn from real-world examples. We sought to better understand how adaptation is being incorporated in land management decision-making across diverse land ownership types in the Midwest by evaluating...

  14. How will climate change affect spatial planning in agricultural and natural environments? Examples from three Dutch case study regions

    NASA Astrophysics Data System (ADS)

    Blom-Zandstra, Margaretha; Paulissen, Maurice; Agricola, Herman; Schaap, Ben

    2009-11-01

    Climate change will place increasing pressure on the functioning of agricultural and natural areas in the Netherlands. Strategies to adapt these areas to stress are likely to require changes in landscape structure and management. In densely populated countries such as the Netherlands, the increased pressure of climate change on agricultural and natural areas will inevitably lead, through the necessity of spatial adaptation measures, to spatial conflicts between the sectors of agriculture and nature. An integrated approach to climate change adaptation may therefore be beneficial in limiting such sectoral conflicts. We explored the conflicting and synergistic properties of different climate adaptation strategies for agricultural and natural environments in the Netherlands. To estimate the feasibility and effectiveness of the strategies, we focussed on three case study regions with contrasting landscape structural, natural and agricultural characteristics. For each region, we estimated the expected climate-related threats and associated trade-offs for arable farming and natural areas for 2040. We describe a number of spatial and integrated adaptation strategies to mitigate these threats. Formulating adaptation strategies requires consultation of different stakeholders and deliberation between different interests. We discuss some trade-offs involved in this decision-making.

  15. Improved attribution of climate forcing to emissions by pollutant and sector

    NASA Astrophysics Data System (ADS)

    Shindell, D. T.

    2009-12-01

    Evaluating multi-component climate change mitigation strategies requires knowledge of the diverse direct and indirect effects of emissions. Methane, ozone and aerosols are linked through atmospheric chemistry so that emissions of a single pollutant can affect several species. I will show new calculations of atmospheric composition changes, radiative forcing, and the global warming potential (GWP) for increased emissions of tropospheric ozone and aerosol precursors in a coupled composition-climate model. The results demonstrate that gas-aerosol interactions substantially alter the relative importance of the various emissions, suggesting revisions to the GWPs used in international carbon trading. Additionally, I will present results showing how the net climate impact of particular activities depends strongly upon non-CO2 forcing agents for some sectors. These results will be highlighted by discussing the interplay between air quality emissions controls and climate for the case of emissions from coal-fired power plants. The changing balance between CO2 and air quality pollutants from coal plants may have contributed to the 20th century spatial and temporal patterns of climate change, and is likely to continue to do so as more and more plants are constructed in Asia.

  16. Developing rural community health risk assessments for climate change: a Tasmanian pilot study.

    PubMed

    Bell, Erica J; Turner, Paul; Meinke, Holger; Holbrook, Neil J

    2015-01-01

    This article examines the development and pilot implementation of an approach to support local community decision-makers to plan health adaptation responses to climate change. The approach involves health and wellbeing risk assessment supported through the use of an electronic tool. While climate change is a major foreseeable public health threat, the extent to which health services are prepared for, or able to adequately respond to, climate change impact-related risks remains unclear. Building health decision-support mechanisms in order to involve and empower local stakeholders to help create the basis for agreement on these adaptive actions is an important first step. The primary research question was 'What can be learned from pilot implementation of a community health and well-being risk assessment (CHWRA) information technology-based tool designed to support understanding of, and decision-making on, local community challenges and opportunities associated with health risks posed by climate change? The article examines the complexity of climate change science to adaptation translational processes, with reference to existing research literature on community development. This is done in the context of addressing human health risks for rural and remote communities in Tasmania, Australia. This process is further examined through the pilot implementation of an electronic tool designed to support the translation of physically based climate change impact information into community-level assessments of health risks and adaptation priorities. The procedural and technical nature of the CHWRA tool is described, and the implications of the data gathered from stakeholder workshops held at three rural Tasmanian local government sites are considered and discussed. Bushfire, depression and waterborne diseases were identified by community stakeholders as being potentially 'catastrophic' health effects 'likely' to 'almost certain' to occur at one or more Tasmanian rural sites - based on an Intergovernmental Panel on Climate Change style of assessment. Consensus statements from stakeholders also suggested concern with health sector adaptation capacity and community resilience, and what community stakeholders defined as 'last straw' climate effects in already stressed communities. Preventative action and community engagement were also seen as important, especially with regard to managing the ways that climate change can multiply socioeconomic and health outcome inequality. Above all, stakeholder responses emphasised the importance of an applied, complexity-oriented understanding of how climate and climate change impacts affect local communities and local services to compromise the overall quality of human health in these communities. Complex community-level assessments about climate change and related health risks and responses can be captured electronically in ways that offer potentially actionable information about priorities for health sector adaptation, as a first step in planning. What is valuable about these community judgements is the creation of shared values and commitments. Future iteration of the IT tool could include decision-support modules to support best practice health sector adaptation scenarios, providing participants with opportunities to develop their know-how about health sector adaptation to climate change. If managed carefully, such tools could work within a balanced portfolio of measures to help reduce the rising health burden from climate change.

  17. Climate, Land-, Energy-, Water-use simulations (CLEWs) in Mauritius - an integrated optimisation approach

    NASA Astrophysics Data System (ADS)

    Alfstad, Thomas; Howells, Mark; Rogner, Holger; Ramos, Eunice; Zepeda, Eduardo

    2016-04-01

    The Climate, Land, Energy and Water (CLEW) framework is a set of methodologies for integrated assessment of resource systems. It was developed to provide a means to simultaneously address matters pertaining to energy, water and food security. This is done while both considering the impact that the utilization of these resources have on our climate, as well as how our ability to continue using these resources could be impacted by climate change. CLEW is being applied in Mauritius to provide policy relevant analysis for sustainable development. The work aims to explore the interplay among the different elements of a national sustainable development strategy. A driving motivation is to address issues pertaining to policy cohesion, by exploring cross-sectoral impacts of individual policies and measures. The analysis explores how policies and actions intended to promote sustainability, have ramifications beyond the sector of the economy where it is applied. A primary concern is to ensure that efforts undertaken in pursuit of one policy goal do not inadvertently compromise progress towards attaining goals in other areas. Conversely there may be instances where an action has multiple benefits across various areas. Identifying such trade-offs and synergies can provide additional insights into development policy and support formulation of robust sustainable development strategies. The agreed sustainable development goals clearly illustrate the multi-faceted and multi-dimensional nature of the development challenge, with many overlapping and interlinked concerns. This work focuses on the link between food, energy, water and climate policy, which has shown to be particularly closely intertwined. In Mauritius, the highly interlinked and interdependent nature of the energy and sugar industries for example, highlights the need for coherent and integrated assessment of the role of these sectors in support of sustainable development in the country. Promoting energy self-sufficiency, cutting carbon emissions, adapting to climate change and supporting incomes in the agricultural sector for instance are not separate goals, but interlinked ones, and a holistic and inclusive view of policy formulation is likely to lead to more sustainable outcomes. This presentation will share the findings and lessons learned from this work. .

  18. The Data Platform for Climate Research and Action: Introducing Climate Watch

    NASA Astrophysics Data System (ADS)

    Hennig, R. J.; Ge, M.; Friedrich, J.; Lebling, K.; Carlock, G.; Arcipowska, A.; Mangan, E.; Biru, H.; Tankou, A.; Chaudhury, M.

    2017-12-01

    The Paris Agreement, adopted through Decision 1/CP.21, brings all nations together to take on ambitious efforts to combat climate change. Open access to climate data supporting climate research, advancing knowledge, and informing decision making is key to encourage and strengthen efforts of stakeholders at all levels to address and respond to effects of climate change. Climate Watch is a robust online data platform developed in response to the urgent needs of knowledge and tools to empower climate research and action, including those of researchers, policy makers, the private sector, civil society, and all other non-state actors. Building on the rapid growing technology of open data and information sharing, Climate Watch is equipped with extensive amount of climate data, informative visualizations, concise yet efficient user interface, and connection to resources users need to gather insightful information on national and global progress towards delivering on the objective of the Convention and the Paris Agreement. Climate Watch brings together hundreds of quantitative and qualitative indicators for easy explore, visualize, compare, download at global, national, and sectoral levels: Greenhouse gas (GHG) emissions for more than 190 countries over the1850-2014 time period, covering all seven Kyoto Gases following IPCC source/sink categories; Structured information on over 150 NDCs facilitating the clarity, understanding and transparency of countries' contributions to address climate change; Over 6500 identified linkages between climate actions in NDCs across the 169 targets of the sustainable development goals (SDG); Over 200 indicators describing low carbon pathways from models and scenarios by integrated assessment models (IAMs) and national sources; and Data on vulnerability and risk, policies, finance, and many more. Climate Watch platform is developed as part of the broader efforts within the World Resources Institute, the NDC Partnership, and in collaboration with GIZ, UNFCCC, World Bank, and Climate Analytics.

  19. Public Health Adaptation to Climate Change in OECD Countries

    PubMed Central

    Austin, Stephanie E.; Biesbroek, Robbert; Berrang-Ford, Lea; Ford, James D.; Parker, Stephen; Fleury, Manon D.

    2016-01-01

    Climate change is a major challenge facing public health. National governments play a key role in public health adaptation to climate change, but there are competing views on what responsibilities and obligations this will—or should—include in different nations. This study aims to: (1) examine how national-level public health adaptation is occurring in Organization for Economic Cooperation and Development (OECD) countries; (2) examine the roles national governments are taking in public health adaptation; and (3) critically appraise three key governance dimensions of national-level health adaptation—cross-sectoral collaboration, vertical coordination and national health adaptation planning—and identify practical examples suited to different contexts. We systematically reviewed publicly available public health adaptation to climate change documents and webpages by national governments in ten OECD countries using systematic web searches, assessment of self-reporting, and content analysis. Our findings suggest national governments are primarily addressing infectious disease and heat-related risks posed by climate change, typically emphasizing capacity building or information-based groundwork initiatives. We find national governments are taking a variety of approaches to public health adaptation to climate change that do not follow expected convergence and divergence by governance structure. We discuss practical options for incorporating cross-sectoral collaboration, vertical coordination and national health adaptation planning into a variety of contexts and identify leaders national governments can look to to inform their public health adaptation planning. Following the adoption of the Paris Agreement and subsequent increased momentum for adaptation, research tracking adaptation is needed to define what health adaptation looks like in practice, reveal insights that can be taken up across states and sectors, and ensure policy orientated learning. PMID:27618074

  20. Regional Water System Vulnerabilities and Strengths for Unavoidable Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.; Palaniappan, M.; Christian-Smith, J.; Cooley, H.

    2011-12-01

    A wide range of options are available to help water systems prepare and adapt for unavoidable climate impacts, but these options vary depending on region, climatic conditions, economic status, and technical infrastructure in place. Drawing on case studies from the United States, India, and elsewhere, and from both urban and agricultural water systems, risks to water supply and quality are evaluated and summarized and categories of responses to help improve the effectiveness of adaptation policies are reviewed. Among the issues to be discussed are characteristics unique to developing country cities, such as the predominance of informal actors in the water sector. The formal, or government sector, which often exclusively manages water access and distribution in developed country cities, is only one among many players in the water sector in developing country cities. Informal access to water includes direct access by individuals through private groundwater systems, private water markets using vendors or sales of bottled water, and rainwater harvesting systems on individual homes. In this environment, with already existing pressures on water availability and use, the impacts of climate change on water will be strongly felt. This complicates planning for water supply and demand and risks increasing already prevalent water insecurity, especially for urban poor. In wealthier countries, any planning for water-related climate impacts tends to take the form of "business as usual" responses, such as efforts to expand supply with new infrastructure, manage demand through conservation programs, or simply put off addressing the problem to the next generation of managers and users. These approaches can be effective, but also risk missing unusual, non-linear, or threshold impacts. Examples of more informed and innovative efforts to substantively address climate change risks will be presented.

  1. Public Health Adaptation to Climate Change in OECD Countries.

    PubMed

    Austin, Stephanie E; Biesbroek, Robbert; Berrang-Ford, Lea; Ford, James D; Parker, Stephen; Fleury, Manon D

    2016-09-07

    Climate change is a major challenge facing public health. National governments play a key role in public health adaptation to climate change, but there are competing views on what responsibilities and obligations this will-or should-include in different nations. This study aims to: (1) examine how national-level public health adaptation is occurring in Organization for Economic Cooperation and Development (OECD) countries; (2) examine the roles national governments are taking in public health adaptation; and (3) critically appraise three key governance dimensions of national-level health adaptation-cross-sectoral collaboration, vertical coordination and national health adaptation planning-and identify practical examples suited to different contexts. We systematically reviewed publicly available public health adaptation to climate change documents and webpages by national governments in ten OECD countries using systematic web searches, assessment of self-reporting, and content analysis. Our findings suggest national governments are primarily addressing infectious disease and heat-related risks posed by climate change, typically emphasizing capacity building or information-based groundwork initiatives. We find national governments are taking a variety of approaches to public health adaptation to climate change that do not follow expected convergence and divergence by governance structure. We discuss practical options for incorporating cross-sectoral collaboration, vertical coordination and national health adaptation planning into a variety of contexts and identify leaders national governments can look to to inform their public health adaptation planning. Following the adoption of the Paris Agreement and subsequent increased momentum for adaptation, research tracking adaptation is needed to define what health adaptation looks like in practice, reveal insights that can be taken up across states and sectors, and ensure policy orientated learning.

  2. Substantial air quality and climate co-benefits achievable now with sectoral mitigation strategies in China.

    PubMed

    Peng, Wei; Yang, Junnan; Wagner, Fabian; Mauzerall, Denise L

    2017-11-15

    China is the world's top carbon emitter and suffers from severe air pollution. We examine near-term air quality and CO 2 co-benefits of various current sector-based policies in China. Using a 2015 base case, we evaluate the potential benefits of four sectoral mitigation strategies. All scenarios include a 20% increase in conventional air pollution controls as well as the following sector-specific fuel switching or technology upgrade strategies. Power sector (POW): 80% replacement of small coal power plants with larger more efficient ones; Industry sector (IND): 10% improvement in energy efficiency; Transport sector (TRA): replacement of high emitters with average vehicle fleet emissions; and Residential sector (RES): replacement of 20% of coal-based stoves with stoves using liquefied petroleum gas (LPG). Conducting an integrated assessment using the regional air pollution model WRF-Chem, we find that the IND scenario reduces national air-pollution-related deaths the most of the four scenarios examined (27,000, 24,000, 13,000 and 23,000 deaths reduced annually in IND, POW, TRA and RES, respectively). In addition, the IND scenario reduces CO 2 emissions more than 8times as much as any other scenario (440, 53, 0 and 52Mt CO 2 reduced in IND, POW, TRA and RES, respectively). We also examine the benefits of an industrial efficiency improvement of just 5%. We find the resulting air quality and health benefits are still among the largest of the sectoral scenarios, while the carbon mitigation benefits remain more than 3 times larger than any other scenario. Our analysis hence highlights the importance of even modest industrial energy efficiency improvements and air pollution control technology upgrades for air quality, health and climate benefits in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. State-dependent climate sensitivity in past warm climates and its implications for future climate projections

    PubMed Central

    Caballero, Rodrigo; Huber, Matthew

    2013-01-01

    Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow “Earth system” feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or “Charney” climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature. PMID:23918397

  4. Estimating the extent of Antarctic summer sea ice during the Heroic Age of Antarctic Exploration

    NASA Astrophysics Data System (ADS)

    Edinburgh, Tom; Day, Jonathan J.

    2016-11-01

    In stark contrast to the sharp decline in Arctic sea ice, there has been a steady increase in ice extent around Antarctica during the last three decades, especially in the Weddell and Ross seas. In general, climate models do not to capture this trend and a lack of information about sea ice coverage in the pre-satellite period limits our ability to quantify the sensitivity of sea ice to climate change and robustly validate climate models. However, evidence of the presence and nature of sea ice was often recorded during early Antarctic exploration, though these sources have not previously been explored or exploited until now. We have analysed observations of the summer sea ice edge from the ship logbooks of explorers such as Robert Falcon Scott, Ernest Shackleton and their contemporaries during the Heroic Age of Antarctic Exploration (1897-1917), and in this study we compare these to satellite observations from the period 1989-2014, offering insight into the ice conditions of this period, from direct observations, for the first time. This comparison shows that the summer sea ice edge was between 1.0 and 1.7° further north in the Weddell Sea during this period but that ice conditions were surprisingly comparable to the present day in other sectors.

  5. Modeling Electricity Sector Vulnerabilities and Costs Associated with Water Temperatures Under Scenarios of Climate Change

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Miara, A.; Brinkman, G.; Ibanez, E.; Newmark, R. L.

    2014-12-01

    The reliability of the power sector is highly vulnerable to variability in the availability and temperature of water resources, including those that might result from potential climatic changes or from competition from other users. In the past decade, power plants throughout the United States have had to shut down or curtail generation due to a lack of available water or from elevated water temperatures. These disruptions in power plant performance can have negative impacts on energy security and can be costly to address. Analysis of water-related vulnerabilities requires modeling capabilities with high spatial and temporal resolution. This research provides an innovative approach to energy-water modeling by evaluating the costs and reliability of a power sector region under policy and climate change scenarios that affect water resource availability and temperatures. This work utilizes results from a spatially distributed river water temperature model coupled with a thermoelectric power plant model to provide inputs into an electricity production cost model that operates on a high spatial and temporal resolution. The regional transmission organization ISO-New England, which includes six New England states and over 32 Gigawatts of power capacity, is utilized as a case study. Hydrological data and power plant operations are analyzed over an eleven year period from 2000-2010 under four scenarios that include climate impacts on water resources and air temperatures as well as strict interpretations of regulations that can affect power plant operations due to elevated water temperatures. Results of these model linkages show how the power sector's reliability and economic performance can be affected by changes in water temperatures and water availability. The effective reliability and capacity value of thermal electric generators are quantified and discussed in the context of current as well as potential future water resource characteristics.

  6. NOAA's Regional Climate Services Program: Building Relationships with Partners and Customers to Deliver Trusted Climate Information at Usable Scales

    NASA Astrophysics Data System (ADS)

    Mecray, E. L.; Dissen, J.

    2016-12-01

    Federal agencies across multiple sectors from transportation to health, emergency management and agriculture, are now requiring their key stakeholders to identify and plan for climate-related impacts. Responding to the drumbeat for climate services at the regional and local scale, the National Oceanic and Atmospheric Administration (NOAA) formed its Regional Climate Services (RCS) program to include Regional Climate Services Directors (RCSD), Regional Climate Centers, and state climatologists in a partnership. Since 2010, the RCS program has engaged customers across the country and amongst many of the nation's key economic sectors to compile information requirements, deliver climate-related products and services, and build partnerships among federal agencies and their regional climate entities. The talk will include a sketch from the Eastern Region that may shed light on the interaction of the multiple entities working at the regional scale. Additionally, we will show examples of our interagency work with the Department of Interior, the Department of Agriculture, and others in NOAA to deliver usable and trusted climate information and resources. These include webinars, print material, and face-to-face customer engagements to gather and respond to information requirements. NOAA/National Centers for Environmental Information's RCSDs work on-the-ground to learn from customers about their information needs and their use of existing tools and resources. As regional leads, the RCSDs work within NOAA and with our regional partners to ensure the customer receives a broad picture of the tools and information from across the nation.

  7. Empowering America's Communities to Prepare for the Effects of Climate Change: Developing Actionable Climate Science Under the President's Climate Action Plan

    NASA Astrophysics Data System (ADS)

    Duffy, P. B.; Colohan, P.; Driggers, R.; Herring, D.; Laurier, F.; Petes, L.; Ruffo, S.; Tilmes, C.; Venkataraman, B.; Weaver, C. P.

    2014-12-01

    Effective adaptation to impacts of climate change requires best-available information. To be most useful, this information should be easily found, well-documented, and translated into tools that decision-makers use and trust. To meet these needs, the President's Climate Action Plan includes efforts to develop "actionable climate science". The Climate Data Initiative (CDI) leverages the Federal Government's extensive, open data resources to stimulate innovation and private-sector entrepreneurship in support of actions to prepare for climate change. The Initiative forges commitments and partnerships from the private, NGO, academic, and public sectors to create data-driven tools. Open data from Federal agencies to support this innovation is available on Climate.Data.gov, initially focusing on coastal flooding but soon to expand to topics including food, energy, water, energy, transportation, and health. The Climate Resilience Toolkit (CRT) will facilitate access to data-driven resilience tools, services, and best practices, including those accessible through the CDI. The CRT will also include access to training and tutorials, case studies, engagement forums, and other information sources. The Climate Action Plan also calls for a public-private partnership on extreme weather risk, with the goal of generating improved assessments of risk from different types of extreme weather events, using methods and data that are transparent and accessible. Finally, the U.S. Global Change Research Program and associated agencies work to advance the science necessary to inform decisions and sustain assessments. Collectively, these efforts represent increased emphasis across the Federal Government on the importance of information to support climate resilience.

  8. Climate change projections for Greek viticulture as simulated by a regional climate model

    NASA Astrophysics Data System (ADS)

    Lazoglou, Georgia; Anagnostopoulou, Christina; Koundouras, Stefanos

    2017-07-01

    Viticulture represents an important economic activity for Greek agriculture. Winegrapes are cultivated in many areas covering the whole Greek territory, due to the favorable soil and climatic conditions. Given the dependence of viticulture on climate, the vitivinicultural sector is expected to be affected by possible climatic changes. The present study is set out to investigate the impacts of climatic change in Greek viticulture, using nine bioclimatic indices for the period 1981-2100. For this purpose, reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and data from the regional climatic model Regional Climate Model Version 3 (RegCM3) are used. It was found that the examined regional climate model estimates satisfactorily these bioclimatic indices. The results of the study show that the increasing trend of temperature and drought will affect all wine-producing regions in Greece. In vineyards in mountainous regions, the impact is positive, while in islands and coastal regions, it is negative. Overall, it should be highlighted that for the first time that Greece is classified into common climatic characteristic categories, according to the international Geoviticulture Multicriteria Climatic Classification System (MCC system). According to the proposed classification, Greek viticulture regions are estimated to have similar climatic characteristics with the warmer wine-producing regions of the world up to the end of twenty-first century. Wine growers and winemakers should take the findings of the study under consideration in order to take measures for Greek wine sector adaptation and the continuation of high-quality wine production.

  9. The Swedish Regional Climate Modelling Programme, SWECLIM: a review.

    PubMed

    Rummukainen, Markku; Bergström, Sten; Persson, Gunn; Rodhe, Johan; Tjernström, Michael

    2004-06-01

    The Swedish Regional Climate Modelling Programme, SWECLIM, was a 6.5-year national research network for regional climate modeling, regional climate change projections and hydrological impact assessment and information to a wide range of stakeholders. Most of the program activities focussed on the regional climate system of Northern Europe. This led to the establishment of an advanced, coupled atmosphere-ocean-hydrology regional climate model system, a suite of regional climate change projections and progress on relevant data and process studies. These were, in turn, used for information and educational purposes, as a starting point for impact analyses on different societal sectors and provided contributions also to international climate research.

  10. USDA Northeast climate hub greenhouse gas mitigation workshop technical report

    USDA-ARS?s Scientific Manuscript database

    In April 2015, USDA Secretary Vilsack announced the Greenhouse Gas Building Blocks for Climate Smart Agriculture and Forestry in an effort to reduce greenhouse gas emissions, increase carbon sequestration, and expand renewable energy production in the agricultural and forestry sectors. This initiati...

  11. Energy and Global Climate Change: The Road from Paris to Denver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Jeffrey

    This presentation provides an overview of the National Renewable Energy Laboratory; a snapshot of U.S. power sector transformation; a brief history of climate negotiations; an overview of the Paris Agreement; and what the Paris Agreement means for Colorado and beyond.

  12. The Natural Gas Dilemma in New England's Electricity Sector: Experts' Perspectives on Long Term Climate Issues and Policy Opportunities

    NASA Astrophysics Data System (ADS)

    Griffith, Steven

    This thesis is an interpretive analysis of experts' perspectives on the climate implications of New England's reliance on natural gas for electricity generation. Specifically, this research, conducted through interviews and literature review, examines experts' opinions on the desired role of natural gas within the regional electricity sector, alternative energy resources, and state and regional policy opportunities toward the achievement of New England's ambitious long-term greenhouse gas reduction goals. Experts expressed concern about the climate dilemma posed by a dependence on natural gas. However, interviews revealed that short-term reliability and cost considerations are paramount for many experts, and therefore a reliance on natural gas is the existing reality. To incentivize renewable generation technologies for the purposes of long-term climate stabilization, experts advocated for the expanded implementation of renewable portfolio standard, net metering, and feed-in tariff policies. More broadly, interviewees expressed the need for an array of complementary state and regional policies.

  13. The Impact of Climate Change on the United States Economy

    NASA Astrophysics Data System (ADS)

    Mendelsohn, Robert; Neumann, James E.

    2004-08-01

    Understanding the impacts of climate change on economic behaviour is an important aspect of deciding when to take policy actions to prevent or mitigate its consequences. This book applies advanced new economics methodologies to assess impacts on potentially vulnerable aspects of the US economy: agriculture, timber, coastal resources, energy expenditure, fishing, outdoor recreation. It is intended to provide improved understanding of key issues raised in the recent Intergovernmental Panel on Climate Change (IPCC) reports. It concludes that some climate change may produce economic gains in the agriculture and forestry sectors, whereas energy, coastal structures, and water sectors may be harmed. The book will serve as an important reference for the scientific, economic, and policy community, and will also be of interest to natural resource/environmental economists as an example of economic valuation techniques. The volume will clearly be of main importance to researchers and policymakers in the US, but will also be influential as a model for assessment of impacts on economies worldwide.

  14. Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: providing the basis for action.

    PubMed

    Ogle, Stephen M; Olander, Lydia; Wollenberg, Lini; Rosenstock, Todd; Tubiello, Francesco; Paustian, Keith; Buendia, Leandro; Nihart, Alison; Smith, Pete

    2014-01-01

    Agriculture in developing countries has attracted increasing attention in international negotiations within the United Nations Framework Convention on Climate Change for both adaptation to climate change and greenhouse gas mitigation. However, there is limited understanding about potential complementarity between management practices that promote adaptation and mitigation, and limited basis to account for greenhouse gas emission reductions in this sector. The good news is that the global research community could provide the support needed to address these issues through further research linking adaptation and mitigation. In addition, a small shift in strategy by the Intergovernmental Panel on Climate Change (IPCC) and ongoing assistance from agricultural organizations could produce a framework to move the research and development from concept to reality. In turn, significant progress is possible in the near term providing the basis for UNFCCC negotiations to move beyond discussion to action for the agricultural sector in developing countries. © 2013 John Wiley & Sons Ltd.

  15. Agricultural Incentives: Implications for Small-Scale and Subsistence Farming in the US Caribbean Islands

    NASA Astrophysics Data System (ADS)

    Alvarez-Berrios, N.; Parés-Ramos, I.; Gould, W. A.

    2017-12-01

    The effects of climate change threaten the world's most sensitive agroecosystems and our potential to reach agricultural productivity levels needed to feed a projected global population of 9.7 billion people by 2050. The US Caribbean agriculture is especially vulnerable to the effects of climate change, due to the region's frequent exposure to extreme weather events, its geographic and economic scale, shortage of labor force, and rapid urban expansion. Currently, agriculture contributes less than 1% of the island's GDP, and over 80% of the food consumed in the region is imported. Despite low production levels, there is widespread interest in reinvigorating the agricultural sector's contribution to the economy. Local and federal institutions play a major role strengthening the agricultural sector by providing access to incentives, loans, and education for best management practices. However, many of these efforts conform to agricultural systems of larger scale of production and temperate environments. In this study, we explore agricultural incentives programs and their implication for highly diverse, small-scale, and subsistence operations that characterize agricultural systems in Puerto Rico and the US Virgin Islands. We analyze records and maps from the USDA Farm Service Agency, to typify participating farms, and to track changes in land cover, farm size, crop diversity, practices, and production levels resulting from their enrollment in such programs. Preliminary results indicate that many incentives programs are not tailored to agricultural tropical systems and prescribe alternatives that exclude traditional farming methods employed in small-scale and subsistence farms (e.g. crop insurance that benefit monoculture over intercropped systems). Moreover, many of the incentives are contradictory in their recommendations (e.g., crop insurance benefit sun-grown coffee production, while best agricultural practices recommend agroforestry with shade-grown coffee). Understanding the characteristics that underlie the resilience of traditional agriculture is an urgent matter, as they can serve as the basis for the design of agricultural systems that mitigate projected climate changes.

  16. Open access to Water Indicators for Climate Change Adaptation: proof-of-concept for the Copernicus Climate Change Service (C3S)

    NASA Astrophysics Data System (ADS)

    Lottle, Lorna; Arheimer, Berit; Gyllensvärd, Frida; Dejong, Fokke; Ludwig, Fulco; Hutjes, Ronald; Martinez, Bernat

    2017-04-01

    Copernicus Climate Change Service (C3S) is still in the development phase and will combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate and climate dependent sectors in Europe and worldwide. C3S will provide key indicators on climate change drivers and selected sectorial impacts. The aim of these indicators will be to support adaptation and mitigation. This presentation will show one service already operational as a proof-of-concept of this future climate service. The project "Service for Water Indicators in Climate Change Adaptation" (SWICCA) has developed a sectorial information service for water management. It offers readily available climate-impact data, for open access from the web-site http://swicca.climate.copernicus.eu/. The development is user-driven with the overall goal to speed up the workflow in climate-change adaptation of water management across Europe. The service is co-designed by consultant engineers and agencies in 15 case-studies spread out over the continent. SWICCA has an interactive user-interface, which shows maps and graphs, and facilitates data download in user-friendly formats. In total, more than 900 open dataset are given for various hydrometeorological (and a few socioeconomical) variables, model ensembles, resolutions, time-periods and RCPs. The service offers more than 40 precomputed climate impact indicators (CIIs) and transient time-series of 4 essential climate variables ECVs) with high spatial and temporal resolution. To facilitate both near future and far future assessments, SWICCA provides the indicators for different time ranges; normally, absolute values are given for a reference period (e.g. 1971-2000) and the expected future changes for different 30-year periods, such as early century (2011-2040), mid-century (2041-2070) and end-century (2071-2100). An ensemble of model results is always given to indicate confidence in the estimates. The SWICCA demonstrator also includes user guidance, information sheets, tutorials, and links to other relevant websites. The aim of this service is to provide research data and guidance for climate impact assessments in the water sector. The main target group is consulting engineers (so called Purveyors) working with climate change adaptation in the water sector. By using indicators, climate impact assessments can be done without having to run a full production chain from raw climate model results - instead the indicators can be included in the local workflow with local methods applied, to facilitate decision-making and strategies to meet the future. Working with real users will ensure that useful data is inserted into the C3S Climate Data Store (CDS).

  17. Joint inversion of 3-PG using eddy-covariance and inventory plot measurements in temperate-maritime conifer forests: Uncertainty in transient carbon-balance responses to climate change

    NASA Astrophysics Data System (ADS)

    Hember, R. A.; Kurz, W. A.; Coops, N. C.; Black, T. A.

    2010-12-01

    Temperate-maritime forests of coastal British Columbia store large amounts of carbon (C) in soil, detritus, and trees. To better understand the sensitivity of these C stocks to climate variability, simulations were conducted using a hybrid version of the model, Physiological Principles Predicting Growth (3-PG), combined with algorithms from the Carbon Budget Model of the Canadian Forest Sector - version 3 (CBM-CFS3) to account for full ecosystem C dynamics. The model was optimized based on a combination of monthly CO2 and H2O flux measurements derived from three eddy-covariance systems and multi-annual stemwood growth (Gsw) and mortality (Msw) derived from 1300 permanent sample plots by means of Markov chain Monte Carlo sampling. The calibrated model serves as an unbiased estimator of stemwood C with enhanced precision over that of strictly-empirical models, minimized reliance on local prescriptions, and the flexibility to study impacts of environmental change on regional C stocks. We report the contribution of each dataset in identifying key physiological parameters and the posterior uncertainty in predictions of net ecosystem production (NEP). The calibrated model was used to spin up pre-industrial C pools and estimate the sensitivity of regional net carbon balance to a gradient of temperature changes, λ=ΔC/ΔT, during three 62-year harvest rotations, spanning 1949-2135. Simulations suggest that regional net primary production, tree mortality, and heterotrophic respiration all began increasing, while NEP began decreasing in response to warming following the 1976 shift in northeast-Pacific climate. We quantified the uncertainty of λ and how it was mediated by initial dead C, tree mortality, precipitation change, and the time horizon in which it was calculated.

  18. Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: A case study at 6000 years B.P.

    USGS Publications Warehouse

    Kutzbach, J.-E.; Bartlein, P.J.; Foley, J.A.; Harrison, S.P.; Hosteller, S.W.; Liu, Z.; Prentice, I.C.; Webb, T.

    1996-01-01

    Previous climate model simulations have shown that the configuration of the Earth's orbit during the early to mid-Holocene (approximately 10-5 kyr) can account for the generally warmer-than-present conditions experienced by the high latitudes of the northern hemisphere. New simulations for 6 kyr with two atmospheric/mixed-layer ocean models (Community Climate Model, version 1, CCM1, and Global ENvironmental and Ecological Simulation of Interactive Systems, version 2, GENESIS 2) are presented here and compared with results from two previous simulations with GENESIS 1 that were obtained with and without the albedo feedback due to climate-induced poleward expansion of the boreal forest. The climate model results are summarized in the form of potential vegetation maps obtained with the global BIOME model, which facilitates visual comparisons both among models and with pollen and plant macrofossil data recording shifts of the forest-tundra boundary. A preliminary synthesis shows that the forest limit was shifted 100-200 km north in most sectors. Both CCM1 and GENESIS 2 produced a shift of this magnitude. GENESIS 1 however produced too small a shift, except when the boreal forest albedo feedback was included. The feedback in this case was estimated to have amplified forest expansion by approximately 50%. The forest limit changes also show meridional patterns (greatest expansion in central Siberia and little or none in Alaska and Labrador) which have yet to be reproduced by models. Further progress in understanding of the processes involved in the response of climate and vegetation to orbital forcing will require both the deployment of coupled atmosphere-biosphere-ocean models and the development of more comprehensive observational data sets.

  19. Assessing Impact of Climate Change on the Runoffs of Gilgel Abbay Watershed, the upper Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Ayele, H. S.; Li, M. H.; Tung, C. P.; Liu, T. M.

    2015-12-01

    Water is the most climate sensitive sector in changing climate. Hydrological vulnerability assessment is critical to the implementation of adaption measures. In this study, projections of 7 GCMs in association with high (RCP8.5) and medium low (RCP4.5) representative concentration path way from the CMPI5 (fifth phase of the Coupled Model Intercomparison Project) for the period 2021-2040 and 2081-2100 were adopted to assess the impacts of climate change on the runoffs of Gilgel Abbay watershed, the upper Blue Nile basin, in Ethiopia. The GCMs selected were first screened in harmony with baseline climate statistics of study areas. Based on climate projections and statistical characteristics of historical weather data, a weather generator was employed to generate daily temperature and precipitation as inputs for the GWLF hydrological model to simulate runoffs. Changes of projected temperature and precipitation were analyzed to explain variations of evapotranspiration and influences on future runoffs. We found that, despite the fact that the projected magnitude varies among different GCMs, increasing in the wet and a decreasing in dry seasons runoffs were observed in both time windows, which mainly attributes to the increase of precipitations projected by most of GCMs. In contrast to great increases in runoffs, the increase of evapotranspiration by elevating temperature is less significant. The increasing runoffs in both time windows will provide more water inflow to the Lake Tana. On the other hand, the increase of precipitation in wet season makes the wet season wetter and implies higher possibility of flash floods. This will have deleterious consequences in the local community. Therefore, concerned water organizations in local, state, and federal levels shall be prepared to harness the opportunities with more water resources for utilization and management, as well as flood preventive measures.

  20. Raising Public Awareness: The Role of the Household Sector in Mitigating Climate Change

    PubMed Central

    Lin, Shis-Ping

    2015-01-01

    In addition to greenhouse gas emissions from the industrial, transportation and commercial sectors, emissions from the household sector also contribute to global warming. By examining residents of Taiwan (N = 236), this study aims to reveal the factors that influence households’ intention to purchase energy-efficient appliances. The assessment in this study is based on the theory of planned behavior (TPB), and perceived benefit or cost (BOC) is introduced as an independent variable in the proposed efficiency action toward climate change (ECC) model. According to structural equation modeling, most of the indicators presented a good fit to the corresponding ECC model constructs. The analysis indicated that BOC is a good complementary variable to the TPB, as the ECC model explained 61.9% of the variation in intention to purchase energy-efficient appliances, which was higher than that explained by the TPB (58.4%). This result indicates that the ECC model is superior to the TPB. Thus, the strategy of promoting energy-efficient appliances in the household sector should emphasize global warming and include the concept of BOC. PMID:26492262

  1. Raising Public Awareness: The Role of the Household Sector in Mitigating Climate Change.

    PubMed

    Lin, Shis-Ping

    2015-10-20

    In addition to greenhouse gas emissions from the industrial, transportation and commercial sectors, emissions from the household sector also contribute to global warming. By examining residents of Taiwan (N = 236), this study aims to reveal the factors that influence households' intention to purchase energy-efficient appliances. The assessment in this study is based on the theory of planned behavior (TPB), and perceived benefit or cost (BOC) is introduced as an independent variable in the proposed efficiency action toward climate change (ECC) model. According to structural equation modeling, most of the indicators presented a good fit to the corresponding ECC model constructs. The analysis indicated that BOC is a good complementary variable to the TPB, as the ECC model explained 61.9% of the variation in intention to purchase energy-efficient appliances, which was higher than that explained by the TPB (58.4%). This result indicates that the ECC model is superior to the TPB. Thus, the strategy of promoting energy-efficient appliances in the household sector should emphasize global warming and include the concept of BOC.

  2. Chinese insurance agents in "bad barrels": a multilevel analysis of the relationship between ethical leadership, ethical climate and business ethical sensitivity.

    PubMed

    Zhang, Na; Zhang, Jian

    2016-01-01

    The moral hazards and poor public image of the insurance industry, arising from insurance agents' unethical behavior, affect both the normal operation of an insurance company and decrease applicants' confidence in the company. Contrarily, these scandals may demonstrate that the organizations were "bad barrels" in which insurance agents' unethical decisions were supported or encouraged by the organization's leadership or climate. The present study brings two organization-level factors (ethical leadership and ethical climate) together and explores the role of ethical climate on the relationship between the ethical leadership and business ethical sensitivity of Chinese insurance agents. Through the multilevel analysis of 502 insurance agents from 56 organizations, it is found that organizational ethical leadership is positively related to the organizational ethical climate; organizational ethical climate is positively related to business ethical sensitivity, and organizational ethical climate fully mediates the relationship between organizational ethical leadership and business ethical sensitivity. Organizational ethical climate plays a completely mediating role in the relationship between organizational ethical leadership and business ethical sensitivity. The integrated model of ethical leadership, ethical climate and business ethical sensitivity makes several contributions to ethics theory, research and management.

  3. Time variation of effective climate sensitivity in GCMs

    NASA Astrophysics Data System (ADS)

    Williams, K. D.; Ingram, W. J.; Gregory, J. M.

    2009-04-01

    Effective climate sensitivity is often assumed to be constant (if uncertain), but some previous studies of General Circulation Model (GCM) simulations have found it varying as the simulation progresses. This complicates the fitting of simple models to such simulations, as well as having implications for the estimation of climate sensitivity from observations. This study examines the evolution of the feedbacks determining the climate sensitivity in GCMs submitted to the Coupled Model Intercomparison Project. Apparent centennial-timescale variations of effective climate sensitivity during stabilisation to a forcing can be considered an artefact of using conventional forcings which only allow for instantaneous effects and stratospheric adjustment. If the forcing is adjusted for processes occurring on timescales which are short compared to the climate stabilisation timescale then there is little centennial timescale evolution of effective climate sensitivity in any of the GCMs. We suggest that much of the apparent variation in effective climate sensitivity identified in previous studies is actually due to the comparatively fast forcing adjustment. Persistent differences are found in the strength of the feedbacks between the coupled atmosphere - ocean (AO) versions and their atmosphere - mixed-layer ocean (AML) counterparts, (the latter are often assumed to give the equilibrium climate sensitivity of the AOGCM). The AML model can typically only estimate the equilibrium climate sensitivity of the parallel AO version to within about 0.5K. The adjustment to the forcing to account for comparatively fast processes varies in magnitude and sign between GCMs, as well as differing between AO and AML versions of the same model. There is evidence from one AOGCM that the forcing adjustment may take a couple of decades, with implications for observationally based estimates of equilibrium climate sensitivity. We suggest that at least some of the spread in 21st century global temperature predictions between GCMs is due to differing adjustment processes, hence work to understand these differences should be a priority.

  4. Health sector leadership in mitigating climate change: experience from the UK and NSW.

    PubMed

    Pencheon, David; Rissel, Chris E; Hadfield, Glen; Madden, D Lynne

    2009-01-01

    The threat to human health from climate change means that all levels of government and private and public agencies will need to change their current practices to reduce carbon emissions. The health sector will also need to respond and change practice. The National Health Service in the United Kingdom is developing a systematic and strategic approach to reduce its carbon footprint, as described in the recently released NHS Carbon Reduction Strategy for England. The work is being led by the Service's new Sustainable Development Unit. While the Australian health care system has not yet embraced a shared vision for carbon reduction, there are examples emerging of how the sector is contributing to reduce greenhouse gas production. Examples from two NSW area health services to reduce energy use and promote active transport are presented. In both countries, these changes are supported by new legislation and policy.

  5. The Climate Impact of the Household Sector in China

    NASA Astrophysics Data System (ADS)

    Aunan, K.; Berntsen, T. K.; Rypdal, K.; Streets, D. G.; Woo, J.; Smith, K. R.

    2005-05-01

    If it ever enters into force the impact of the Kyoto Protocol on climate change is likely to be small. The USA and Australia have not ratified the Protocol and the initial emission reduction target was only 5.2 per cent. There is an increasing call for post-Kyoto climate treaties, whether they be global or regional, to widen the scope to take into account the impacts that air pollutants as tropospheric ozone and aerosols may have on climate. There are two main reasons for this. First and foremost, there is increasing evidence that these air pollutants play an important role in the climate system. Secondly, it is suggested that including radiative forcing components that also have adverse impacts on human health and environment may increase participation, which will be a prerequisite for future treaties to be effective. China's approval of the Kyoto Protocol in 2002 suggests that it is considering a more active role in the global effort to mitigate global warming. Given its many other priorities, however, China needs to understand what national policies would reduce its contribution to global warming in the most cost-efficient way and at the same time contribute the most to economic and social development in the country. The objective of the present study is to contribute knowledge that is helpful to Chinese policy makers dealing with this question. We do this by addressing emissions that according to the World Health Organisation are among the leading health risks to people in the developing world, China included, i.e. smoke from solid fuels burned in peoples' homes. In China, about 72 per cent of the population lives in rural or peri-urban areas where use of simple, low-efficiency household stoves for coal or biomass is common. Even though the residential sector stands for no more than 11 per cent of the primary energy consumption (biomass included), the sector contributes to, e.g., more than 70 per cent of Chinese emissions of black carbon, about a third of its methane emissions, and more than 40 per cent of the nmVOC emissions (which contributes to global warming through tropospheric ozone production). Thus, policies addressing these sources may be important in the context of global warming in addition to substantially improving living conditions for many people. The question we ask in the present paper is how important are they? Two global models are applied to estimate the climate impact on a global scale of emissions from the Chinese residential sector. To estimate the impact on the development of the global climate in terms of radiative forcing and global mean temperature of a possible reduction in these emissions we use a simple climate model. A global, three-dimensional photochemical tracer/transport model of the troposphere is used to model the changes in concentration of air pollutants that have a radiative forcing. Estimates for Chinese household sector emissions are taken from previous work on emission inventories in Asia.

  6. Northwest Regional Climate Assessment

    NASA Technical Reports Server (NTRS)

    Lipschultz, Fred

    2011-01-01

    Objectives are to establish a continuing, inclusive National process that: 1) synthesizes relevant science and information 2) increases understanding of what is known & not known 3) identifies information needs related to preparing for climate variability and change, and reducing climate impacts and vulnerability 4) evaluates progress of adaptation & mitigation activities 5) informs science priorities 6) builds assessment capacity in regions and sectors 7) builds understanding & skilled use of findings

  7. Effects of climatic variability and change on forest ecosystems: a comprehensive science synthesis for the U.S

    Treesearch

    James M. Vose; David L. Peterson; Toral Patel-Weynand

    2012-01-01

    This report is a scientific assessment of the current condition and likely future condition of forest resources in the United States relative to climatic variability and change. It serves as the U.S. Forest Service forest sector technical report for the National Climate Assessment and includes descriptions of key regional issues and examples of a risk-based framework...

  8. Validation of non-stationary precipitation series for site-specific impact assessment: comparison of two statistical downscaling techniques

    NASA Astrophysics Data System (ADS)

    Mullan, Donal; Chen, Jie; Zhang, Xunchang John

    2016-02-01

    Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.

  9. Farmers' perceptions of and adaptation strategies to climate change and their determinants; the case of Punjab province, Pakistan

    NASA Astrophysics Data System (ADS)

    Abid, M.; Scheffran, J.; Schneider, U. A.; Ashfaq, M.

    2014-10-01

    Climate change is a global environmental threat to all economic sectors, particularly the agricultural sector. Pakistan is one of the negatively affected countries from climate change due to its high exposure to extreme events and low adaptive capacity. In Pakistan, farmers are the primary stakeholders in agriculture and are more at risk due to climate vulnerability. Based on farm household data of 450 households collected from three districts in three agro-ecological zones in Punjab province of Pakistan, this study examined how farmers perceive climate change and how they adapt their farming in response to perceived changes in climate. The results demonstrate that awareness to climate change persists in the area, and farm households make adjustments to adapt their agriculture in response to climatic change. Overall 58% of the farm households adapted their farming to climate change. Changing crop varieties, changing planting dates, plantation of trees and changing fertilizer were the main adaptation methods implemented by farm households in the study area. Results from the binary logistic model revealed that education, farm experience, household size, land area, tenancy status, ownership of tube-well, access to market information, information on weather forecasting and extension all influence the farmers' choice of adaptation measures. Results also indicate that adaptation to climate change is constrained by several factors such as lack of information; lack of money; resource constraint and shortage of irrigation water in the study area. Findings of the study suggest the need of greater investment in farmer education and improved institutional setup for climate change adaptation to improve farmers' wellbeing.

  10. Technology-Driven and Innovative Training for Sustainable Agriculture in The Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Wishart, D. N.

    2015-12-01

    Innovative training in 'Sustainable Agriculture' for an increasingly STEM-dependent agricultural sector will require a combination of approaches and technologies for global agricultural production to increase while offsetting climate change. Climate change impacts the water resources of nations as normal global weather patterns are altered during El Nino events. Agricultural curricula must incorporate awareness of 'climate change' in order to find novel ways to (1) assure global food security; (2) improve soil productivity and conservation; (3) improve crop yields and irrigation; (4) inexpensively develop site specific principles of crop management based on variable soil and associated hydrological properties; and (5) improve precision farming. In February 2015, Central State University (CSU), Ohio became an 1890 Land-Grant institution vital to the sustainability of Ohio's agricultural sector. Besides agricultural extension, the agriculture curriculum at CSU integrates multidisciplinary courses in science, technology engineering, agriculture, and mathematics (STEAM). The agriculture program could benefit from a technology-driven, interdisciplinary soil science course that promotes climate change education and climate literacy while being offered in both a blended and collaborative learning environment. The course will focus on the dynamics of microscale to mesoscale processes occurring in farming systems, those of which impact climate change or could be impacted by climate change. Elements of this course will include: climate change webinars; soil-climate interactions; carbon cycling; the balance of carbon fluxes between soil storage and atmosphere; microorganisms and soil carbon storage; paleoclimate and soil forming processes; geophysical techniques used in the characterization of soil horizons; impact of climate change on soil fertility; experiments; and demonstrations.

  11. The full spectrum of climate change adaptation: testing an analytical framework in Tyrolean mountain agriculture (Austria).

    PubMed

    Grüneis, Heidelinde; Penker, Marianne; Höferl, Karl-Michael

    2016-01-01

    Our scientific view on climate change adaptation (CCA) is unsatisfying in many ways: It is often dominated by a modernistic perspective of planned pro-active adaptation, with a selective focus on measures directly responding to climate change impacts and thus it is far from real-life conditions of those who are actually affected by climate change. Farmers have to simultaneously adapt to multiple changes. Therefore, also empirical climate change adaptation research needs a more integrative perspective on real-life climate change adaptations. This also has to consider "hidden" adaptations, which are not explicitly and directly motivated by CCA but actually contribute to the sector's adaptability to climate change. The aim of the present study is to develop and test an analytic framework that contributes to a broader understanding of CCA and to bridge the gap between scientific expertise and practical action. The framework distinguishes three types of CCA according to their climate related motivations: explicit adaptations, multi-purpose adaptations, and hidden adaptations. Although agriculture is among the sectors that are most affected by climate change, results from the case study of Tyrolean mountain agriculture show that climate change is ranked behind other more pressing "real-life-challenges" such as changing agricultural policies or market conditions. We identified numerous hidden adaptations which make a valuable contribution when dealing with climate change impacts. We conclude that these hidden adaptations have not only to be considered to get an integrative und more realistic view on CCA; they also provide a great opportunity for linking adaptation strategies to farmers' realities.

  12. Web-based access, aggregation, and visualization of future climate projections with emphasis on agricultural assessments

    NASA Astrophysics Data System (ADS)

    Villoria, Nelson B.; Elliott, Joshua; Müller, Christoph; Shin, Jaewoo; Zhao, Lan; Song, Carol

    2018-01-01

    Access to climate and spatial datasets by non-specialists is restricted by technical barriers involving hardware, software and data formats. We discuss an open-source online tool that facilitates downloading the climate data from the global circulation models used by the Inter-Sectoral Impacts Model Intercomparison Project. The tool also offers temporal and spatial aggregation capabilities for incorporating future climate scenarios in applications where spatial aggregation is important. We hope that streamlined access to these data facilitates analysis of climate related issues while considering the uncertainties derived from future climate projections and temporal aggregation choices.

  13. [The climate change policy of the city of São Paulo, Brazil: reflexivity and permeability of the health sector].

    PubMed

    Landin, Rubens; Giatti, Leandro Luiz

    2014-10-01

    São Paulo is today an unsustainable city in which social and environmental vulnerabilities are obliged to tackle the uncertainties of climate change. To face up to this situation, in 2009 the city unveiled its Climate Change Policy. The scope of this paper is to analyze how the health sector is preparing to contribute to the implementation of this policy by 2012. Content analysis was the method adopted by examining official documents and conducting semi-structured interviews. In a context of social transformation affected by environmental degradation and socio-environmental consequences there is a need for the cessation of inertia and a demand for new knowledge systems. The outcomes of the study showed a positive intersectorial dialectic relationship, since the research hypothesis was that the health sector would be called upon to back actions on air quality monitoring. Its verification showed a broad scope introducing health promotion and preventive actions as the determinant focus, especially influencing other public policies. Thus, the process under scrutiny acquired reflexivity when evolving with interactive measures breaking with the traditional sectorial and reductionist policy model. It shows an intersectorial perspective based on the importance of issues related to local public health.

  14. IPCC Methodologies for the Waste Sector: Past, Present, and Future

    USDA-ARS?s Scientific Manuscript database

    The reporting of national greenhouse gas (GHG) emissions began more than a decade ago by the signatory countries of the United Nations Framework Convention on Climate Change (UNFCCC). National GHG inventories rely on the evolving Intergovernmental Panel on Climate Change (IPCC) national GHG inventor...

  15. [Temporal and spatial distribution of the crab Callinectes sapidus (Decapoda: Portunidae) in Chetumal Bay, Quintana Roo, Mexico].

    PubMed

    Ortiz-León, Héctor J; Jesús-Navarrete, Alberto de; Cordero, Eloy Sosa

    2007-03-01

    In order to determine temporal and spatial distribution patterns of Callinectes sapidus, samplings were carried out during the cold-front (January-February), dry (May-June) and rainy (August-September, 2002) climatic seasons, in 30 sampling stations of Chetumal Bay, grouped in sectors A (14 stations), B (eight stations) and C (eight stations). In each sampling station crabs were collected from two transects parallel to the coast, each with three traps, separated by 30 m. Sediments were calcareous coarse and medium sand, white or lightly gray. A total of 1 031 specimens were collected. CPEU (Capture Per Effort Unit) differed spatially and temporally. Highest CPEU was found in sector C with 1.3 ind.trap(-1), and in the rainy season with 1.1 ind.trap(-1). Population was predominantly composed of male individuals. The male:female ratio was 15:1. Males and adults (group II) CPEU was significant different between sectors and climatic seasons. Both males and adults (group II) had a greater CPEU in sector C (1.2 ind.trap-) and in the rainy season (1.1 ind.trap(-1)). Abundance of female and juvenile individuals (group I) was low during the sampling period whereas group 0 juvenile individuals were not found. A greater relative frequency between sectors and climatic seasons were observed in 130-139 mm and 140-149 mm size interval (CW). C. sapidus occurred on sandy sediments in Chetumal Bay. Pearson product moment correlations exhibited significant relationships between CPEU and temperature, salinity and dissolved oxygen. In Chetumal Bay, the spatial and temporal distribution of C. sapidus can be related to salinity, temperature, habitat quality, food availability, recruitment and reproduction events of individuals.

  16. Improved estimate of accelerated Antarctica ice mass loses from GRACE, Altimetry and surface mass balance from regional climate model output

    NASA Astrophysics Data System (ADS)

    Velicogna, I.; Sutterley, T. C.; A, G.; van den Broeke, M. R.; Ivins, E. R.

    2016-12-01

    We use Gravity Recovery and Climate Experiment (GRACE) monthly gravity fields to determine the regional acceleration in ice mass loss in Antarctica for 2002-2016. We find that the total mass loss is controlled by only a few regions. In Antarctica, the Amundsen Sea (AS) sector and the Antarctic Peninsula account for 65% and 18%, respectively, of the total loss (186 ± 10 Gt/yr) mainly from ice dynamics. The AS sector contributes most of the acceleration in loss (9 ± 1 Gt/yr2 ), and Queen Maud Land, East Antarctica, is the only sector with a significant mass gain due to a local increase in SMB (57 ± 5 Gt/yr). We compare GRACE regional mass balance estimates with independent estimates from ICESat-1 and Operation IceBridge laser altimetry, CryoSat-2 radar altimetry, and surface mass balance outputs from RACMO2.3. In the Amundsen Sea Embayment of West Antarctica, an area experiencing rapid retreat and mass loss to the sea, we find good agreement between GRACE and altimetry estimates. Comparison of GRACE with these independent techniques in East Antarctic shows that GIA estimates from the new regional ice deglaciation models underestimate the GIA correction in the EAIS interior, which implies larger losses of the Antarctica ice sheet by about 70 Gt/yr. Sectors where we are observing the largest losses are closest to warm circumpolar water, and with polar constriction of the westerlies enhanced by climate warming, we expect these sectors to contribute more and more to sea level as the ice shelves that protect these glaciers will melt faster in contact with more heat from the surrounding oc

  17. Toward an Ethical Framework for Climate Services

    NASA Astrophysics Data System (ADS)

    Wilby, R.; Adams, P.; Eitland, E.; Hewitson, B.; Shumake, J.; Vaughan, C.; Zebiak, S. E.

    2015-12-01

    Climate services offer information and tools to help stakeholders anticipate and/or manage risks posed by climate change. However, climate services lack a cohesive ethical framework to govern their development and application. This paper describes a prototype, open-ended process to form a set of ethical principles to ensure that climate services are effectively deployed to manage climate risks, realize opportunities, and advance human security.We begin by acknowledging the multiplicity of competing interests and motivations across individuals and institutions. Growing awareness of potential climate impacts has raised interest and investments in climate services and led to the entrance of new providers. User demand for climate services is also rising, as are calls for new types of services. Meanwhile, there is growing pressure from funders to operationalize climate research.Our proposed ethical framework applies reference points founded on diverse experiences in western and developing countries, fundamental and applied climate research, different sectors, gender, and professional practice (academia, private sector, government). We assert that climate service providers should be accountable for both their practices and products by upholding values of integrity, transparency, humility, and collaboration.Principles of practice include: communicating all value judgements; eschewing climate change as a singular threat; engaging in the co-exploration of knowledge; establishing mechanisms for monitoring/evaluating procedures and products; declaring any conflicts of interest. Examples of principles of products include: clear and defensible provenance of information; descriptions of the extent and character of uncertainties using terms that are meaningful to intended users; tools and information that are tailored to the context of the user; and thorough documentation of methods and meta-data.We invite the community to test and refine these points.

  18. New isotope technologies in environmental physics

    NASA Astrophysics Data System (ADS)

    Povinec, P. P.; Betti, M.; Jull, A. J. T.; Vojtyla, P.

    2008-02-01

    As the levels of radionuclides observed at present in the environment are very low, high sensitive analytical systems are required for carrying out environmental investigations. We review recent progress which has been done in low-level counting techniques in both radiometrics and mass spectrometry sectors, with emphasis on underground laboratories, Monte Carlo (GEANT) simulation of background of HPGe detectors operating in various configurations, secondary ionisation mass spectrometry, and accelerator mass spectrometry. Applications of radiometrics and mass spectrometry techniques in radioecology and climate change studies are presented and discussed as well. The review should help readers in better orientation on recent developments in the field of low-level counting and spectrometry, and to advice on construction principles of underground laboratories, as well as on criteria how to choose low or high energy mass spectrometers for environmental investigations.

  19. Prototype development of user specific climate services

    NASA Astrophysics Data System (ADS)

    Jacob, Daniela

    2017-04-01

    Systematic consultations in the last years with representatives from sectors particularly affected by climate change have helped the Climate Service Center Germany (GERICS) to identify the most pressing needs of stakeholders from public and private sectors. Besides the development of innovative climate service products and methods, areas are also identified, for which intensive research activities have to be initiated. An example is the demand of decision makers for high-resolution climate change information needed at regional to local levels for their activities towards climate change adaptation. For questions concerning adaptation to climate change, no standard solutions can be provided. Different from mitigation measures, adaptation measures must be framed in accordance with the specific circumstances prevailing in the local situation. Here, individual solutions, which satisfy the individual requirements and needs, are necessary. They have to be developed in close co-operation with the customers and users. For example, the implications of climate change on strategic and operative decisions, e.g. in enterprises and urban planning, are becoming increasingly important. Therefore, high-quality consultancy for businesses and public administration is needed, in order to support decision makers in identifying associated risks and opportunities. For the development of prototype products, GERICS has framed a general methodological approach, including the idea generation, the iterative development, and the prototype testing in co-development with the user. High process transparency and high product quality are prerequisite for the success of a product. The co-development process ensures the best possible communication of user tailored climate change information for different target groups.

  20. INVENTORY AND ASSESSMENT OF CLIMATE SENSITIVE DECISIONS

    EPA Science Inventory

    The project will create a pilot inventory of climate-sensitive resource managment decision. The project will develop and demonstrate a new approach to collecting systematic information about the context and characteristics of climate-sensitive decisions and using this informatio...

  1. The Role of Federal Government for Climate Adaptation in the Urban Context: Results of a workshop (Invited)

    NASA Astrophysics Data System (ADS)

    Buizer, J.; Chhetri, N.; Roy, M.

    2010-12-01

    Extreme weather events in urban areas such as torrential rainfall in Chicago and London, floods in Boston and Elbe and heat waves in Europe have shed stark light on cities’ vulnerability to the effects of climate change. At the same time, cities themselves are significant net contributors to GHG’s attributable to climatic changes through the built environment (e.g. housing, roads, and parking lots), transport, consumption and recreation. In the arid region of southwestern United States, issues associated with the adequacy of water resources, urban heat island, and air quality best exemplify these contributions. This duality - cities as impacted by, and contributors to extreme climatic patterns induced by climate change, and the specific climate information needed for decision-making by city planners - provided the impetus for a two-day workshop in January 2009. Organized by Arizona State University, the workshop included city managers, planners, private sector stakeholders, water managers, researchers, and Federal program managers. The aim was to identify information needs, and data and research gaps, as well as to design strategies to address climate uncertainty. Two key approaches discussed were: a) building multiple, flexible scenarios and modeling efforts that enable decision-makers to plan for a number of possible futures, and b) matching Federal climate assets to local, regional and sectoral needs through continuous collaboration that supports decision-making within the social, economic, and political context of the place. Federal leadership in facilitating, coordinating and informing efforts that nurture the creative intellectual capacity of cities to produce integrated solutions to mitigate the effects of and adapt to climate change will go a long way in addressing urban climate adaptation in the United States. Participants outlined a number of concerns and suggestions for Federal government leaders and services associated with a national climate network. Concerns included a broad range of issues, including flood protection, sea level rise, extreme events, infrastructure investment decisions, water supply, storm-water and wastewater management, public education and outreach. Suggestions included an in-depth exploration of new roles for federal agencies, as well as new partnerships with state and local entities, the private sector, and non-governmental entities; developing specialized communicators and trusted information brokers who can connect federal science agencies to local decision makers; and integrating federal decision making with local implementation.

  2. Climate, Water and Renewable Energy in the Nordic Countries

    NASA Astrophysics Data System (ADS)

    Snorrason, A.; Jonsdottir, J. F.

    2004-05-01

    Climate and Energy (CE) is a new Nordic research project with funding from Nordic Energy Research (NEFP) and the Nordic energy sector. The project has the objective of a comprehensive assessment of the impact of climate variability and change on Nordic renewable energy resources including hydropower, wind power, bio-fuels and solar energy. This will include assessment of the power production of the hydropower dominated Nordic energy system and its sensitivity and vulnerability to climate change on both temporal and spatial scales; assessment of the impacts of extremes including floods, droughts, storms, seasonal patterns and variability. Within the CE project several thematic groups work on specific issues of climatic change and their impacts on renewable energy. A primary aim of the CE climate group is to supply a standard set of common scenarios of climate change in northern Europe and Greenland, based on recent global and regional climate change experiments. The snow and ice group has chosen glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. Preliminary work with dynamic modelling and climate scenarios shows a dramatic response of glacial runoff to increased temperature and precipitation. The statistical analysis group has reported on the status of time series analysis in the Nordic countries. The group has selected and quality controlled time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. Preliminary work using multivariate analysis on stream flow and climate variables shows strong linkages with the long term atmospheric circulation in the North Atlantic. The hydrological modelling group has already reported on "Climate change impacts on water resources in the Nordic countries - State of the art and discussion of principles". The group will compare different approaches of transferring the climate change signal into hydrological models and discuss uncertainties in models and climate scenarios. Furthermore, comprehensive assessment and mapping of impact of climate change will be produced for the whole Nordic region based on the scenarios from the CE-climate group.

  3. Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change

    DOE PAGES

    Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica

    2017-07-10

    Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981–2004 hindcast yields over the coterminous United States (US) against US Departmentmore » of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. In conclusion, this disparity is largely attributable to heterogeneity in GGCMs' responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.« less

  4. Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica

    Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981–2004 hindcast yields over the coterminous United States (US) against US Departmentmore » of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. In conclusion, this disparity is largely attributable to heterogeneity in GGCMs' responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.« less

  5. Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change

    NASA Astrophysics Data System (ADS)

    Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica

    2017-07-01

    Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981-2004 hindcast yields over the coterminous United States (US) against US Department of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. This disparity is largely attributable to heterogeneity in GGCMs’ responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.

  6. Reducing greenhouse gas emissions in agriculture without compromising food security?

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Havlík, Petr; Soussana, Jean-François; Levesque, Antoine; Valin, Hugo; Wollenberg, Eva; Kleinwechter, Ulrich; Fricko, Oliver; Gusti, Mykola; Herrero, Mario; Smith, Pete; Hasegawa, Tomoko; Kraxner, Florian; Obersteiner, Michael

    2017-10-01

    To keep global warming possibly below 1.5 °C and mitigate adverse effects of climate change, agriculture, like all other sectors, will have to contribute to efforts in achieving net negative emissions by the end of the century. Cost-efficient distribution of mitigation across regions and economic sectors is typically calculated using a global uniform carbon price in climate stabilization scenarios. However, in reality such a carbon price would substantially affect food availability. Here, we assess the implications of climate change mitigation in the land use sector for agricultural production and food security using an integrated partial equilibrium modelling framework and explore ways of relaxing the competition between mitigation in agriculture and food availability. Using a scenario that limits global warming cost-efficiently across sectors to 1.5 °C, results indicate global food calorie losses ranging from 110-285 kcal per capita per day in 2050 depending on the applied demand elasticities. This could translate into a rise in undernourishment of 80-300 million people in 2050. Less ambitious greenhouse gas (GHG) mitigation in the land use sector reduces the associated food security impact significantly, however the 1.5 °C target would not be achieved without additional reductions outside the land use sector. Efficiency of GHG mitigation will also depend on the level of participation globally. Our results show that if non-Annex-I countries decide not to contribute to mitigation action while other parties pursue their mitigation efforts to reach the global climate target, food security impacts in these non-Annex-I countries will be higher than if they participate in a global agreement, as inefficient mitigation increases agricultural production costs and therefore food prices. Land-rich countries with a high proportion of emissions from land use change, such as Brazil, could reduce emissions with only a marginal effect on food availability. In contrast, agricultural mitigation in high population (density) countries, such as China and India, would lead to substantial food calorie loss without a major contribution to global GHG mitigation. Increasing soil carbon sequestration on agricultural land would allow reducing the implied calorie loss by 65% when sticking to the initially estimated land use mitigation requirements, thereby limiting the impact on undernourishment to 20-75 million people, and storing significant amounts of carbon in soils.

  7. Assessing the impacts of 1.5°C of global warming - The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) approach

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Frieler, K.; Warszawski, L.; Lange, S.; Schewe, J.; Reyer, C.; Ostberg, S.; Piontek, F.; Betts, R. A.; Burke, E.; Ciais, P.; Deryng, D.; Ebi, K. L.; Emanuel, K.; Elliott, J. W.; Galbraith, E. D.; Gosling, S.; Hickler, T.; Hinkel, J.; Jones, C.; Krysanova, V.; Lotze-Campen, H.; Mouratiadou, I.; Popp, A.; Tian, H.; Tittensor, D.; Vautard, R.; van Vliet, M. T. H.; Eddy, T.; Hattermann, F.; Huber, V.; Mengel, M.; Stevanovic, M.; Kirsten, T.; Mueller Schmied, H.; Denvil, S.; Halladay, K.; Suzuki, T.; Lotze, H. K.

    2016-12-01

    In Paris, France, December 2015 the Conference of Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the IPCC to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016 the IPCC panel accepted the invitation. Here we describe the model simulations planned within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to address the request by providing tailored cross-sectoral consistent impacts projections. The protocol is designed to allow for 1) a separation of the impacts of the historical warming starting from pre-industrial conditions from other human drivers such as historical land use changes (based on pre-industrial and historical impact model simulations), 2) a quantification of the effects of an additional warming to 1.5°C including a potential overshoot and long term effects up to 2300 in comparison to a no-mitigation scenario (based on the low emissions Representative Concentration Pathway RCP2.6 and a no-mitigation scenario RCP6.0) keeping socio-economic conditions fixed at year 2005 levels, and 3) an assessment of the climate effects based on the same climate scenarios but accounting for parallel changes in socio-economic conditions following the middle of the road Shared Socioeconomic Pathway (SSP2) and differential bio-energy requirements associated with the transformation of the energy system to reach RCP2.6 compared to RCP6.0. To provide the scientific basis for an aggregation of impacts across sectors and an analysis of cross-sectoral interactions potentially damping or amplifying sectoral impacts the protocol is designed to provide consistent impacts projections across a range of impact models from different sectors (global and regional hydrological models, global gridded crop models, global vegetation models, regional forestry models, global and regional marine ecosystem and fisheries models, global and regional coastal infrastructure models, energy models, health models, and agro-economic models).

  8. Assessing the impacts of 1.5°C of global warming - The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) approach

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Warszawski, Lila; Zhao, Fang

    2017-04-01

    In Paris, France, December 2015 the Conference of Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the IPCC to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016 the IPCC panel accepted the invitation. Here we describe the model simulations planned within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to address the request by providing tailored cross-sectoral consistent impacts projections. The protocol is designed to allow for 1) a separation of the impacts of the historical warming starting from pre-industrial conditions from other human drivers such as historical land use changes (based on pre-industrial and historical impact model simulations), 2) a quantification of the effects of an additional warming to 1.5°C including a potential overshoot and long term effects up to 2300 in comparison to a no-mitigation scenario (based on the low emissions Representative Concentration Pathway RCP2.6 and a no-mitigation scenario RCP6.0) keeping socio-economic conditions fixed at year 2005 levels, and 3) an assessment of the climate effects based on the same climate scenarios but accounting for parallel changes in socio-economic conditions following the middle of the road Shared Socioeconomic Pathway (SSP2) and differential bio-energy requirements associated with the transformation of the energy system to reach RCP2.6 compared to RCP6.0. To provide the scientific basis for an aggregation of impacts across sectors and an analysis of cross-sectoral interactions potentially damping or amplifying sectoral impacts the protocol is designed to provide consistent impacts projections across a range of impact models from different sectors (global and regional hydrological models, global gridded crop models, global vegetation models, regional forestry models, global and regional marine ecosystem and fisheries models, global and regional coastal infrastructure models, energy models, health models, and agro-economic models).

  9. Types of Forecast and Weather-Related Information Used among Tourism Businesses in Coastal North Carolina

    NASA Astrophysics Data System (ADS)

    Ayscue, Emily P.

    This study profiles the coastal tourism sector, a large and diverse consumer of climate and weather information. It is crucial to provide reliable, accurate and relevant resources for the climate and weather-sensitive portions of this stakeholder group in order to guide them in capitalizing on current climate and weather conditions and to prepare them for potential changes. An online survey of tourism business owners, managers and support specialists was conducted within the eight North Carolina oceanfront counties asking respondents about forecasts they use and for what purposes as well as why certain forecasts are not used. Respondents were also asked about their perceived dependency of their business on climate and weather as well as how valuable different forecasts are to their decision-making. Business types represented include: Agriculture, Outdoor Recreation, Accommodations, Food Services, Parks and Heritage, and Other. Weekly forecasts were the most popular forecasts with Monthly and Seasonal being the least used. MANOVA and ANOVA analyses revealed outdoor-oriented businesses (Agriculture and Outdoor Recreation) as perceiving themselves significantly more dependent on climate and weather than indoor-oriented ones (Food Services and Accommodations). Outdoor businesses also valued short-range forecasts significantly more than indoor businesses. This suggests a positive relationship between perceived climate and weather dependency and forecast value. The low perceived dependency and value of short-range forecasts of indoor businesses presents an opportunity to create climate and weather information resources directed at how they can capitalize on positive climate and weather forecasts and how to counter negative effects with forecasted adverse conditions. The low use of long-range forecasts among all business types can be related to the low value placed on these forecasts. However, these forecasts are still important in that they are used to make more financially risky decisions such as investment decisions.

  10. Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles.

    PubMed

    Cox, Brian; Mutel, Christopher L; Bauer, Christian; Mendoza Beltran, Angelica; van Vuuren, Detlef P

    2018-04-17

    The future environmental impacts of battery electric vehicles (EVs) are very important given their expected dominance in future transport systems. Previous studies have shown these impacts to be highly uncertain, though a detailed treatment of this uncertainty is still lacking. We help to fill this gap by using Monte Carlo and global sensitivity analysis to quantify parametric uncertainty and also consider two additional factors that have not yet been addressed in the field. First, we include changes to driving patterns due to the introduction of autonomous and connected vehicles. Second, we deeply integrate scenario results from the IMAGE integrated assessment model into our life cycle database to include the impacts of changes to the electricity sector on the environmental burdens of producing and recharging future EVs. Future EVs are expected to have 45-78% lower climate change impacts than current EVs. Electricity used for charging is the largest source of variability in results, though vehicle size, lifetime, driving patterns, and battery size also strongly contribute to variability. We also show that it is imperative to consider changes to the electricity sector when calculating upstream impacts of EVs, as without this, results could be overestimated by up to 75%.

  11. Environmental sub models for a macroeconomic model: agricultural contribution to climate change and acidification in Denmark.

    PubMed

    Jensen, Trine S; Jensen, Jørgen D; Hasler, Berit; Illerup, Jytte B; Andersen, Frits M

    2007-01-01

    Integrated modelling of the interaction between environmental pressure and economic development is a useful tool to evaluate environmental consequences of policy initiatives. However, the usefulness of such models is often restricted by the fact that these models only include a limited set of environmental impacts, which are often energy-related emissions. In order to evaluate the development in the overall environmental pressure correctly, these model systems must be extended. In this article an integrated macroeconomic model system of the Danish economy with environmental modules of energy related emissions is extended to include the agricultural contribution to climate change and acidification. Next to the energy sector, the agricultural sector is the most important contributor to these environmental themes and subsequently the extended model complex calculates more than 99% of the contribution to both climate change and acidification. Environmental sub-models are developed for agriculture-related emissions of CH(4), N(2)O and NH(3). Agricultural emission sources related to the production specific activity variables are mapped and emission dependent parameters are identified in order to calculate emission coefficients. The emission coefficients are linked to the economic activity variables of the Danish agricultural production. The model system is demonstrated by projections of agriculture-related emissions in Denmark under two alternative sets of assumptions: a baseline projection of the general economic development and a policy scenario for changes in the husbandry sector within the agricultural sector.

  12. Spatial relationships of sector-specific fossil fuel CO2 emissions in the United States

    NASA Astrophysics Data System (ADS)

    Zhou, Yuyu; Gurney, Kevin Robert

    2011-09-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multistate spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multistate perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements.

  13. Investing in a green future

    NASA Astrophysics Data System (ADS)

    Clapp, Christa

    2018-01-01

    The growing green bond market reflects the financial sector's awakening to climate risk. New research examining the US municipal bond market suggests a positive green bond premium in recent years, driven by differences in credit quality. As climate-risk disclosure becomes more widespread, investors may show willingness to pay green premiums.

  14. Evaluating Urban Resilience to Climate Change: A Multi-Sector Approach (Final Report)

    EPA Science Inventory

    EPA is announcing the availability of this final report prepared by the Air, Climate, and Energy (ACE) Research Program, located within the Office of Research and Development, with support from Cadmus. One of the goals of the ACE research program is to provide scientific informat...

  15. Climate change in Asia and the Pacific: How can countries adapt?

    USDA-ARS?s Scientific Manuscript database

    The Asia Pacific (AP) region is more vulnerable to climate change risks than other regions, given its dependence on the natural resources and agricultural sector for economic development with densely populated coastal areas, weak institutions, and the poverty of a considerable proportion of its popu...

  16. An early warning system for high climate sensitivity? (Invited)

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R.

    2010-12-01

    The scientific case for the clear and present danger of global warming has been unassailable at least since the release of the Charney Report more than thirty years ago, if not longer. While prompt action to begin decarbonizing energy systems could still head off much of the potential warming, it is distinctly possible that emissions will continue unabated in the coming decades, leading to a doubling or more of pre-industrial carbon dioxide concentrations. At present, we are in the unenviable position of not even knowing how bad things will get if this scenario comes to pass, because of the uncertainty in climate sensitivity. If climate sensitivity is high, then the consequences will be dire, perhaps even catastrophic. As the world continues to warm in response to continued carbon dioxide emissions, will we at least be able to monitor the climate and provide an early warning that the planet is on a high-sensitivity track, if such turns out to be the case? At what point will we actually know the climate sensitivity? It has long been recognized that the prime contributor to uncertainty in climate sensitivity is uncertainty in cloud feedbacks. Study of paleoclimate and climate of the past century has not been able to resolve which models do cloud feedback most correctly, because of uncertainties in radiative forcing. In this talk, I will discuss monitoring requirements, and analysis techniques, that might have the potential to determine which climate models most faithfully represent climate feedbacks, and thus determine which models provide the best estimate of climate sensitivity. The endeavor is complicated by the distinction between transient climate response and equilibrium climate sensitivity. I will discuss the particular challenges posed by this issue, particularly in light of recent indications that the pattern of ocean heat storage may lead to different cloud feedbacks in the transient warming stage than apply once the system has reached equilibrium. Apart from this problem, the transient nature of climate response driven by increasing CO2 requires careful monitoring of ocean heat storage as well as top-of-atmosphere radiative budgets, if climate sensitivity is to be estimated. Water vapor feedback is not considered as uncertain as cloud feedback, but there is still a considerable potential for surprises. I will discuss microwave monitoring requirements for tracking water vapor feedback. At the other extreme, the longer term feedbacks that contribute to Earth System Sensitivity are even more uncertain than cloud feedbacks, particularly with regard to the terrestrial carbon cycle. Prospects for obtaining an early warning of a PETM-type organic carbon release seem bleak. Finally, I will discuss the particular challenge of obtaining an early warning of high climate sensitivity in the case that the climate system has a bifurcation.

  17. Compensation Rules for Climate Policy in the Electricity Sector

    ERIC Educational Resources Information Center

    Burtraw, Dallas; Palmer, Karen

    2008-01-01

    Most previous cap and trade programs have distributed emission allowances for free to incumbent producers. However, in the electricity sector the value of CO[subscript 2] allowances may be far in excess of costs to industry and giving them away to firms diverts allowance value from other purposes. Using a detailed simulation model, this paper…

  18. Exploring Typical and Atypical Safety Climate Perceptions of Practitioners in the Repair, Maintenance, Minor Alteration and Addition (RMAA) Sector in Hong Kong.

    PubMed

    Hon, Carol K H; Liu, Yulin

    2016-09-22

    The safety of repair, maintenance, minor alteration and addition (RMAA) work is an under-explored area. This study explored the typical and atypical safety climate perceptions of practitioners in the RMAA sector in Hong Kong, based on a self-administered questionnaire survey of 662 local practitioners in the industry. Profile analysis, via multidimensional scaling of the respondents' scores of three safety climate scales, identified one typical perception: high in management commitment to occupational health and safety (OHS) and employee involvement, low in applicability for safety rules and regulations, and low in responsibility for OHS. The respondents were clustered into typical and atypical perception groups according to their safety climate scores' match to the typical perception. A comparison of demographics between the two groups with logistic regression found that work level and direct employer significantly affect their classification. A multivariate analysis of variance of safety performance measures between the two groups indicated that the typical group had a significantly higher level of safety compliance than the atypical group, with no significant difference in safety participation or injury. The significance of this study lies in revealing the typical safety climate perception profile pattern of RMAA works and offering a new perspective of safety climate research.

  19. Exploring Typical and Atypical Safety Climate Perceptions of Practitioners in the Repair, Maintenance, Minor Alteration and Addition (RMAA) Sector in Hong Kong

    PubMed Central

    Hon, Carol K.H.; Liu, Yulin

    2016-01-01

    The safety of repair, maintenance, minor alteration and addition (RMAA) work is an under-explored area. This study explored the typical and atypical safety climate perceptions of practitioners in the RMAA sector in Hong Kong, based on a self-administered questionnaire survey of 662 local practitioners in the industry. Profile analysis, via multidimensional scaling of the respondents’ scores of three safety climate scales, identified one typical perception: high in management commitment to occupational health and safety (OHS) and employee involvement, low in applicability for safety rules and regulations, and low in responsibility for OHS. The respondents were clustered into typical and atypical perception groups according to their safety climate scores’ match to the typical perception. A comparison of demographics between the two groups with logistic regression found that work level and direct employer significantly affect their classification. A multivariate analysis of variance of safety performance measures between the two groups indicated that the typical group had a significantly higher level of safety compliance than the atypical group, with no significant difference in safety participation or injury. The significance of this study lies in revealing the typical safety climate perception profile pattern of RMAA works and offering a new perspective of safety climate research. PMID:27669269

  20. Dry-bean production under climate change conditions in the north of Argentina: Risk assessment and economic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feijoo, M.; Mestre, F.; Castagnaro, A.

    This study evaluates the potential effect of climate change on Dry-bean production in Argentina, combining climate models, a crop productivity model and a yield response model estimation of climate variables on crop yields. The study was carried out in the North agricultural regions of Jujuy, Salta, Santiago del Estero and Tucuman which include the largest areas of Argentina where dry beans are grown as a high input crop. The paper combines the output from a crop model with different techniques of analysis. The scenarios used in this study were generated from the output of two General Circulation Models (GCMs): themore » Goddard Institute for Space Studies model (GISS) and the Canadian Climate Change Model (CCCM). The study also includes a preliminary evaluation of the potential changes in monetary returns taking into account the possible variability of yields and prices, using mean-Gini stochastic dominance (MGSD). The results suggest that large climate change may have a negative impact on the Argentine agriculture sector, due to the high relevance of this product in the export sector. The difference negative effect depends on the varieties of dry bean and also the General Circulation Model scenarios considered for double levels of atmospheric carbon dioxide.« less

  1. Limits to global and Australian temperature change this century based on expert judgment of climate sensitivity

    NASA Astrophysics Data System (ADS)

    Grose, Michael R.; Colman, Robert; Bhend, Jonas; Moise, Aurel F.

    2017-05-01

    The projected warming of surface air temperature at the global and regional scale by the end of the century is directly related to emissions and Earth's climate sensitivity. Projections are typically produced using an ensemble of climate models such as CMIP5, however the range of climate sensitivity in models doesn't cover the entire range considered plausible by expert judgment. Of particular interest from a risk-management perspective is the lower impact outcome associated with low climate sensitivity and the low-probability, high-impact outcomes associated with the top of the range. Here we scale climate model output to the limits of expert judgment of climate sensitivity to explore these limits. This scaling indicates an expanded range of projected change for each emissions pathway, including a much higher upper bound for both the globe and Australia. We find the possibility of exceeding a warming of 2 °C since pre-industrial is projected under high emissions for every model even scaled to the lowest estimate of sensitivity, and is possible under low emissions under most estimates of sensitivity. Although these are not quantitative projections, the results may be useful to inform thinking about the limits to change until the sensitivity can be more reliably constrained, or this expanded range of possibilities can be explored in a more formal way. When viewing climate projections, accounting for these low-probability but high-impact outcomes in a risk management approach can complement the focus on the likely range of projections. They can also highlight the scale of the potential reduction in range of projections, should tight constraints on climate sensitivity be established by future research.

  2. Green Hospital and Climate Change: Their Interrelationship and the Way Forward

    PubMed Central

    Kaur, Dilpreet

    2015-01-01

    Climate change is a reality, and the modern healthcare sector not just contributes towards this grave phenomenon but is itself being affected by it. The present review was thus conducted to understand the meaning of ‘Green Hospital’, to identify the many ways in which health sector is contributing towards climate change, to explore possibilities for countering this grave trend and last of all to look for institutions that are pioneering change. Data for the review was extracted from multiple online sources using the Google search engine. It was found that hospitals, being resource intensive establishments, consume vast amounts of electricity, water, food and construction materials to provide high quality care. It was also found that certain healthcare institutions, by employing simple, smart and sustainable measures can greatly reduce their environmental footprint. But constructing Green Hospitals can be a challenge considering the local conditions and growing customer expectations. PMID:26814377

  3. Global farm animal production and global warming: impacting and mitigating climate change.

    PubMed

    Koneswaran, Gowri; Nierenberg, Danielle

    2008-05-01

    The farm animal sector is the single largest anthropogenic user of land, contributing to many environmental problems, including global warming and climate change. The aim of this study was to synthesize and expand upon existing data on the contribution of farm animal production to climate change. We analyzed the scientific literature on farm animal production and documented greenhouse gas (GHG) emissions, as well as various mitigation strategies. An analysis of meat, egg, and milk production encompasses not only the direct rearing and slaughtering of animals, but also grain and fertilizer production for animal feed, waste storage and disposal, water use, and energy expenditures on farms and in transporting feed and finished animal products, among other key impacts of the production process as a whole. Immediate and far-reaching changes in current animal agriculture practices and consumption patterns are both critical and timely if GHGs from the farm animal sector are to be mitigated.

  4. In Pursuit of a Multi-lateral Dialogue - the Swiss National Centre for Climate Services (NCCS)

    NASA Astrophysics Data System (ADS)

    Michiko Hama, Angela; Croci-Maspoli, Mischa; Liniger, Mark; Schwierz, Cornelia; Stöckli, Reto; Fischer, Andreas; Gubler, Stefanie; Kotlarski, Sven; Rossa, Andrea; Zubler, Elias; Appenzeller, Christof

    2017-04-01

    Kick-starting, fostering and maintaining a dialogue between primarily public and academic actors involved in the co-design, co-delivery and use of climate services is at the core of Switzerland's National Centre for Climate Services (NCCS), which was founded in late 2015 in recognition of the Global Framework for Climate Services (GFCS). This coordination and innovation mechanism is a concerted national effort comprised of seven Federal Agencies and Institutes and further partners from academia committed to implementing the Framework at national to subnational level and creating synergies the world over. The NCCS is to be regarded as vital alongside the Swiss National Adaptation Strategy, and it also contributes to putting words into action with respect to the UN's Sustainable Development Goals, the UNFCCC and the Sendai Framework for Disaster Risk Reduction. The services of the Centre provide information to support policy-makers from national to local level as well as the private sector and society at large in minimising their risks, maximising opportunities and optimising costs in the context of climate change and variability. They are indispensable for setting effective mitigation and adaptation measures and for instigating societal transformation. Hence, the goals of the NCCS are to bundle the existing climate services of the Swiss Federation, co-create new tailored solutions with users, act as a network agent and knowledge broker - to boost climate literacy and enable climate-sensitive decision-making leading to increased resilience. The services reflect the specificities and requirements of the Alpine region and its particular challenges and vulnerabilities. Pursuing a participatory approach, the NCCS has brought together essential key players, acted as a sounding board for governmental stakeholders and their needs, and accordingly defined and populated six priority themes in line with the priority areas of the GFCS. These themes are: natural hazards, health, agriculture, energy, forestry and water resources. Specific studies are underway within each theme, encompassing, inter alia, questions on extreme events, solar energy potentials in the housing sector as well as spread of pests and invasive species. In response to the GFCS advocating stronger international development cooperation, Peru and Switzerland are frontrunners in climate services twinning, jointly developing climate services-related capacities and sharing knowledge via the WMO-GFCS project CLIMANDES2. In order to gain further traction in 2017, a communications and network strategy will be designed and rolled out, the set-up of an interactive web portal initiated and the engagement in international cooperation activities strengthened. As one of the core products of the NCCS, the new Swiss climate scenarios for 2018 will be developed in a user-oriented fashion. Enhancing the relevance and uptake of the CH2018 scenarios, stakeholder dialogues will be conceptualized and conducted in all phases and communication formats collaboratively devised and tested. This presentation will give an overview of the founding phase of the NCCS and its first accomplishments since its inception as well as discuss its strategies, activities and current challenges. Following the interactive nature of the session, feedback and input will be sought from the participants with regard to user requirements and communciation tools.

  5. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.

    PubMed

    Elum, Z A; Modise, D M; Nhamo, G

    2017-02-01

    Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.

  6. Psychosocial safety climate, emotional demands, burnout, and depression: a longitudinal multilevel study in the Malaysian private sector.

    PubMed

    Idris, Mohd Awang; Dollard, Maureen F; Yulita

    2014-07-01

    This multilevel longitudinal study investigates a newly identified climate construct, psychosocial safety climate (PSC), as a precursor to job characteristics (e.g., emotional demands), and psychological outcomes (i.e., emotional exhaustion and depression). We argued that PSC, as an organizational climate construct, has cross-level effects on individually perceived job design and psychological outcomes. We hypothesized a mediation process between PSC and emotional exhaustion particularly through emotional demands. In sequence, we predicted that emotional exhaustion would predict depression. At Time 1, data were collected from employees in 36 Malaysian private sector organizations (80% responses rate), n = 253 (56%), and at Time 2 from 27 organizations (60%) and n = 117 (46%). Using hierarchical linear modeling (HLM), we found that there were cross-level effects of PSC Time 1 on emotional demands Time 2 and emotional exhaustion Time 2, but not on depression Time 2, across a 3-month time lag. We found evidence for a lagged mediated effect; emotional demands mediated the relationship between PSC and emotional exhaustion. Emotional exhaustion did not predict depression. Finally, our results suggest that PSC is an important organizational climate construct, and acts to reduce employee psychological problems in the workplace, via working conditions.

  7. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    NASA Astrophysics Data System (ADS)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling parameter for the aerosols. The estimation method is computationally fast and can be used with more complex models where climate sensitivity is diagnosed rather than prescribed. The parameter estimates can be used to create probabilistic climate projections using the UVic ESCM model in future studies.

  8. Climate sensitivity of DSSAT under different agriculture practice scenarios in China

    NASA Astrophysics Data System (ADS)

    Xia, L.; Robock, A.

    2014-12-01

    Crop yields are sensitive to both agricultural practice and climate changes. Under different agricultural practice scenarios, crop yield may have different climate sensitivities. Since it is important to understand how future climate changes affect agriculture productivity and what the potential adaptation strategies would be to compensate for possible negative impacts on crop production, we performed experiments to study climate sensitivity under different agricultural practice scenarios for rice, maize and wheat in the top four production provinces in China using the Decision Support System for Agrotechnology Transfer (DSSAT) crop model. The agricultural practice scenarios include four categories: different amounts of nitrogen fertilizer or no nitrogen stress; irrigation turned on or off, or no water stress; all possible seeds in the DSSAT cultivar data base; and different planting dates. For the climate sensitivity test, the control climate is from 1998 to 2007, and we individually modify four climate variables: daily maximum and minimum temperature by +2 °C and -2 °C, daily precipitation by +20% and -20%, and daily solar radiation by + 20% and -20%. With more nitrogen fertilizer applied, crops are more sensitive to temperature changes as well as precipitation changes because of their release from nitrogen limitation. With irrigation turned on, crop yield sensitivity to temperature decreases in most of the regions depending on the amount of the local precipitation, since more water is available and soil temperature varies less with higher soil moisture. Those results indicate that there could be possible agriculture adaptation strategies under certain future climate scenarios. For example, increasing nitrogen fertilizer usage by a certain amount might compensate for the negative impact on crop yield from climate changes. However, since crops are more sensitive to climate changes when there is more nitrogen fertilizer applied, if the climate changes are unfavorable to crop yields, increasing nitrogen fertilizer usage at certain levels might enhance the negative climate change impact. Enhanced nitrogen fertilizer use might have additional negative impacts on climate because of nitrogen emissions to the atmosphere, but those effects were not studied here.

  9. Source sector and region contributions to concentration and direct radiative forcing of black carbon in China

    NASA Astrophysics Data System (ADS)

    Li, Ke; Liao, Hong; Mao, Yuhao; Ridley, David A.

    2016-01-01

    We quantify the contributions from five domestic emission sectors (residential, industry, transportation, energy, and biomass burning) and emissions outside of China (non-China) to concentration and direct radiative forcing (DRF) of black carbon (BC) in China for year 2010 using a nested-grid version of the global chemical transport model (GEOS-Chem) coupled with a radiative transfer model. The Hemispheric Transport of Air Pollution (HTAP) anthropogenic emissions of BC for year 2010 are used in this study. Simulated surface-layer BC concentrations in China have strong seasonal variations, which exceed 9 μg m-3 in winter and are about 1-5 μg m-3 in summer in the North China Plain and the Sichuan Basin. Residential sector is simulated to have the largest contribution to surface BC concentrations, by 5-7 μg m-3 in winter and by 1-3 μg m-3 in summer, reflecting the large emissions from winter heating and the enhanced wet deposition during summer monsoon. The contribution from industry sector is the second largest and shows relatively small seasonal variations; the emissions from industry sector contribute 1-3 μg m-3 to BC concentrations in the North China Plain and the Sichuan Basin. The contribution from transportation sector is the third largest, followed by that from biomass burning and energy sectors. The non-China emissions mainly influence the surface-layer concentrations of BC in western China; about 70% of surface-layer BC concentration in the Tibet Plateau is attributed to transboundary transport. Averaged over all of China, the all-sky DRF of BC at the top of the atmosphere (TOA) is simulated to be 1.22 W m-2. Sensitivity simulations show that the TOA BC direct radiative forcings from the five domestic emission sectors of residential, industry, energy, transportation, biomass burning, and non-China emissions are 0.44, 0.27, 0.01, 0.12, 0.04, and 0.30 W m-2, respectively. The domestic and non-China emissions contribute 75% and 25% to BC DRF in China, respectively. These results have important implications for taking measures to reduce BC emissions to mitigate near-term climate warming and to improve air quality in China.

  10. Structure-function relationship between the octopus perimeter cluster mean sensitivity and sector retinal nerve fiber layer thickness measured with the RTVue optical coherence tomography and scanning laser polarimetry.

    PubMed

    Naghizadeh, Farzaneh; Garas, Anita; Vargha, Péter; Holló, Gábor

    2014-01-01

    To determine structure-function relationship between each of 16 Octopus perimeter G2 program clusters and the corresponding 16 peripapillary sector retinal nerve fiber layer thickness (RNFLT) values measured with the RTVue-100 Fourier-domain optical coherence tomography (RTVue OCT) and scanning laser polarimetry with variable corneal compensation (GDx-VCC) and enhanced corneal compensation (GDx-ECC) corneal compensation. One eye of 110 white patients (15 healthy, 20 ocular hypertensive, and 75 glaucoma eyes) were investigated. The Akaike information criterion and the F test were used to identify the best fitting model. Parabolic relationship with logarithmic cluster mean sensitivity and linear sector RNFLT values provided the best fit. For RTVue OCT, significant (P<0.0001) coefficients of determination (R) were found for all 16 RNFLT sectors. The R values were highest for the temporal, superotemporal, and inferotemporal RNFLT sectors (0.4483 to 0.5186). For GDx-VCC/ECC, significant (P<0.01) parabolic relationship was seen for all but the temporal and nasal RNFLT sectors. The overall highest R value (0.6943) was found for a superotemporal RNFLT sector with GDx-ECC. For some RNFLT sectors, the goodness of fit differed significantly between the imaging methods. Structure-function relationship was similar for the total population and the glaucoma subgroup, whereas no relationship (P>0.05) was found for the control eyes. Mean sensitivity of the Octopus visual field clusters showed significant parabolic relationship with the corresponding peripapillary RNFLT sectors. The relationship was more general with the RTVue OCT than GDx-VCC or GDx-ECC. The results show that visual field clusters of the Octopus G program can be applied for detailed structure-function research.

  11. NOAA's contribution to an informed society anticipating and responding to climate and its impacts through Climate.gov

    NASA Astrophysics Data System (ADS)

    Niepold, F.

    2012-12-01

    Societal concern about the impacts of climate change is growing. Citizens in public and private sectors want easy access to credible climate science information to help them make informed decisions affecting their lives and livelihoods. Weather and climate influences almost every sector of society, and affects up to 40 percent of the United States' 10 trillion annual economy. (NRC report, 2003 entitled "Satellite Observations of the Earth's Environment: Accelerating the Transition of Research to Operations"). As the leading provider of climate, weather, and water information to the nation and the world, NOAA is a logical source for citizens to turn to for climate information. NOAA must expand and improve the way it communicates, educates, reaches out to, and engages with public stakeholders to better meet the nation's needs for timely, authoritative climate data and information. Citizens are increasingly going online to seek credible, authoritative climate information. However, users report having difficulty locating and using NOAA's online data products and services. Thus, resolving this online accessibility issue will be one of the Climate Portal's main benefits. The use of portal technology and emerging data integration and visualization tools provide an opportunity for NOAA to bring together multiple datasets from diverse disciplines and sources to deliver a more comprehensive picture of climate in the context of affected resources, communities and businesses. Additional benefits include wider extension of NOAA's data to other media such as television and free-choice learning venues, thereby increasing public exposure and engagement. The Climate Portal teams take an audience-focused approach to promoting climate science literacy among the public. The program communicates the challenges, processes, and results of NOAA-supported climate science through stories and data visualizations on the Web and in popular media. They provide information to a range of audiences to enhance society's ability to understand and plan and respond to climate variability and change. As part of a broad NOAA effort, the Climate Portal teams are working to design, test, and develop the NOAA Climate Services portal (climate.gov) that will provide ready access to climate data, information resources and educational products. The portal features customized interfaces for four audiences: scientists and sectoral data users, policy leaders, educators and students, and the public. The portal delivers climate science content that is free, readily accessible, and easily understandable, provided in flexible formats that maximize its usefulness. Important measures of success for NOAA's climate services will be the ease with which diverse public user communities are able to access and use the data products and information services that NOAA provides, the frequency with which they do so, and the trust they place in NOAA's climate resources. In addition to data and products, the Portal will offer a broad array of climate communications, outreach, and educational materials that demonstrate NOAA's leadership in providing climate science research, observations, and modeling products as a service to society. This session will discuss the partnerships and recent advancements of the climate portal and its plans for the coming year.

  12. Estimating the potential of carbon sequestration by Korean forestry sector under climate change and management scenarios

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, M.; Son, Y.; Lee, W. K.

    2017-12-01

    Korean forests have recovered by the national-scale reforestation program and can contribute to the national greenhouse gas (GHG) mitigation goal. The forest carbon (C) sequestration is expected to change by climate change and forest management regime. In this context, estimating the changes in GHG mitigation potential of Korean forestry sector by climate and management is a timely issue. Thus, we estimated the forest C sequestration of Korea under four scenarios (2010­-2050): constant temperature with no management (CT_No), representative concentration pathway (RCP) 8.5 with no management (RCP_No), constant temperature with thinning management (CT_Man), and RCP 8.5 with thinning management (RCP_Man). Dynamic stand growth model (KO-G-Dynamic; for biomass) and forest C model (FBDC model; for non-biomass) were used at approximately 64,000 simulation units (1km2). As model input data, the forest data (e.g., forest type and stand age) and climate data were spatially prepared from the national forest inventories and the RCP 8.5 climate data. The model simulation results showed that the mean annual C sequestrations during the period (Tg C yr-1) were 11.0, 9.9, 11.5, and 10.5, respectively, under the CT_No, RCP_No, CT_Man, and RCP_Man, respectively, at the national scale. The C sequestration decreased with the time passage due to the maturity of the forests. The climate change seemed disadvantageous to the C sequestration by the forest ecosystems (≒ -1.0 Tg C yr-1) due to the increase in organic matter decomposition. In particular, the decrease in C sequestration by the climate change was greater for the needle-leaved species, compared to the broad-leaved species. Meanwhile, the forest management enhanced forest C sequestration (≒ 0.5 Tg C yr-1). Accordingly, implementing appropriate forest management strategies for adaptation would contribute to maintaining the C sequestration by Korean forestry sector under climate change. Acknowledgement: This study was supported by Korean Ministry of Environment (2014001310008).

  13. Cross sectoral impacts on water availability at +2 °C and +3 °C for east Mediterranean island states: The case of Crete

    NASA Astrophysics Data System (ADS)

    Koutroulis, A. G.; Grillakis, M. G.; Daliakopoulos, I. N.; Tsanis, I. K.; Jacob, D.

    2016-01-01

    Ensemble pan-European projections under a 2 °C global warming relative to the preindustrial period reveal a more intense warming in south Eastern Europe by up to +3 °C, thus indicating that impacts of climate change will be disproportionately high for certain regions. The Mediterranean is projected as one of the most vulnerable areas to climatic and anthropogenic changes with decreasing rainfall trends and a continuous gradual warming causing a progressive decline of average stream flow. Many Mediterranean regions are currently experiencing high to severe water stress induced by human and climate drivers. Changes in average climate conditions will increase this stress notably because of a 10-30% decline in freshwater resources. For small island states, where accessibility to freshwater resources is limited the impact will be more pronounced. Here we use a generalized cross-sectoral framework to assess the impact of climatic and socioeconomic futures on the water resources of an Eastern Mediterranean island. A set of representative regional climate models simulations from the EURO-CORDEX initiative driven by different RCP2.6, RCP4.5, and RCP8.5 GCMs are used to form a comparable set of results and a useful basis for the assessment of uncertainties related to impacts of 2° warming and above. A generalized framework of a cross-sectoral water resources analysis was developed in collaboration with the local water authority exploring and costing adaptation measures associated with a set of socioeconomic pathways (SSPs). Transient hydrological modeling was performed to describe the projected hydro-climatological regime and water availability for each warming level. The robust signal of less precipitation and higher temperatures that is projected by climate simulations results to a severe decrease of local water resources which can be mitigated by a number of actions. Awareness of the practical implications of plausible hydro-climatic and socio-economic scenarios in the not so distant future may be the key to shift perception and preference towards a more sustainable direction.

  14. Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tian; Voisin, Nathalie; Leng, Guoyong

    Water management activities or flow regulations modify water fluxes at the land surface and affect water resources in space and time. We hypothesize that flow regulations change the sensitivity of river flow to climate change with respect to unmanaged water resources. Quantifying these changes in sensitivity could help elucidate the impacts of water management at different spatiotemporal scales and inform climate adaptation decisions. In this study, we compared the emergence of significant changes in natural and regulated river flow regimes across the Western United States from simulations driven by multiple climate models and scenarios. We find that significant climate change-inducedmore » alterations in natural flow do not cascade linearly through water management activities. At the annual time scale, 50% of the Hydrologic Unit Code 4 (HUC4) sub-basins over the Western U.S. regions tend to have regulated flow regime more sensitive to the climate change than natural flow regime. Seasonality analyses show that the sensitivity varies remarkably across the seasons. We also find that the sensitivity is related to the level of water management. For 35% of the HUC4 sub-basins with the highest level of water management, the summer and winter flows tend to show a heightened sensitivity to climate change due to the complexity of joint reservoir operations. We further demonstrate that the impacts of considering water management in models are comparable to those that arises from uncertainties across climate models and emission scenarios. This prompts further climate adaptation studies research about nonlinearity effects of climate change through water management activities.« less

  15. Considering land-sea interactions and trade-offs for food and biodiversity.

    PubMed

    Cottrell, Richard S; Fleming, Aysha; Fulton, Elizabeth A; Nash, Kirsty L; Watson, Reg A; Blanchard, Julia L

    2018-02-01

    With the human population expected to near 10 billion by 2050, and diets shifting towards greater per-capita consumption of animal protein, meeting future food demands will place ever-growing burdens on natural resources and those dependent on them. Solutions proposed to increase the sustainability of agriculture, aquaculture, and capture fisheries have typically approached development from single sector perspectives. Recent work highlights the importance of recognising links among food sectors, and the challenge cross-sector dependencies create for sustainable food production. Yet without understanding the full suite of interactions between food systems on land and sea, development in one sector may result in unanticipated trade-offs in another. We review the interactions between terrestrial and aquatic food systems. We show that most of the studied land-sea interactions fall into at least one of four categories: ecosystem connectivity, feed interdependencies, livelihood interactions, and climate feedback. Critically, these interactions modify nutrient flows, and the partitioning of natural resource use between land and sea, amid a backdrop of climate variability and change that reaches across all sectors. Addressing counter-productive trade-offs resulting from land-sea links will require simultaneous improvements in food production and consumption efficiency, while creating more sustainable feed products for fish and livestock. Food security research and policy also needs to better integrate aquatic and terrestrial production to anticipate how cross-sector interactions could transmit change across ecosystem and governance boundaries into the future. © 2017 John Wiley & Sons Ltd.

  16. Improving the Usability of Integrated Assessment for Adaptation Practice: Insights from the U.S. Southeast Energy Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Bremond, Ariane; Preston, Benjamin; Rice, Jennie S.

    2014-10-01

    Energy systems comprise a key sector of the U.S. economy, and one that has been identified as potentially vulnerable to the effects of climate variability and change. However, understanding of adaptation processes in energy companies and private entities more broadly is limited. It is unclear, for example, the extent to which energy companies are well-served by existing knowledge and tools emerging from the impacts, adaptation and vulnerability (IAV) and integrated assessment modeling (IAM) communities and/or what experiments, analyses, and model results have practical utility for informing adaptation in the energy sector. As part of a regional IAM development project, wemore » investigated available evidence of adaptation processes in the energy sector, with a particular emphasis on the U.S. Southeast and Gulf Coast region. A mixed methods approach of literature review and semi-structured interviews with key informants from energy utilities was used to compare existing knowledge from the IAV community with that of regional stakeholders. That comparison revealed that much of the IAV literature on the energy sector is climate-centric and therefore disconnected from the more integrated decision-making processes and institutional perspectives of energy utilities. Increasing the relevance of research and assessment for the energy sector will necessitate a greater investment in integrated assessment and modeling efforts that respond to practical decision-making needs as well as greater collaboration between energy utilities and researchers in the design, execution, and communication of those efforts.« less

  17. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate

    NASA Astrophysics Data System (ADS)

    Butt, E. W.; Rap, A.; Schmidt, A.; Scott, C. E.; Pringle, K. J.; Reddington, C. L.; Richards, N. A. D.; Woodhouse, M. T.; Ramirez-Villegas, J.; Yang, H.; Vakkari, V.; Stone, E. A.; Rupakheti, M.; Praveen, P. S.; van Zyl, P. G.; Beukes, J. P.; Josipovic, M.; Mitchell, E. J. S.; Sallu, S. M.; Forster, P. M.; Spracklen, D. V.

    2016-01-01

    Combustion of fuels in the residential sector for cooking and heating results in the emission of aerosol and aerosol precursors impacting air quality, human health, and climate. Residential emissions are dominated by the combustion of solid fuels. We use a global aerosol microphysics model to simulate the impact of residential fuel combustion on atmospheric aerosol for the year 2000. The model underestimates black carbon (BC) and organic carbon (OC) mass concentrations observed over Asia, Eastern Europe, and Africa, with better prediction when carbonaceous emissions from the residential sector are doubled. Observed seasonal variability of BC and OC concentrations are better simulated when residential emissions include a seasonal cycle. The largest contributions of residential emissions to annual surface mean particulate matter (PM2.5) concentrations are simulated for East Asia, South Asia, and Eastern Europe. We use a concentration response function to estimate the human health impact due to long-term exposure to ambient PM2.5 from residential emissions. We estimate global annual excess adult (> 30 years of age) premature mortality (due to both cardiopulmonary disease and lung cancer) to be 308 000 (113 300-497 000, 5th to 95th percentile uncertainty range) for monthly varying residential emissions and 517 000 (192 000-827 000) when residential carbonaceous emissions are doubled. Mortality due to residential emissions is greatest in Asia, with China and India accounting for 50 % of simulated global excess mortality. Using an offline radiative transfer model we estimate that residential emissions exert a global annual mean direct radiative effect between -66 and +21 mW m-2, with sensitivity to the residential emission flux and the assumed ratio of BC, OC, and SO2 emissions. Residential emissions exert a global annual mean first aerosol indirect effect of between -52 and -16 mW m-2, which is sensitive to the assumed size distribution of carbonaceous emissions. Overall, our results demonstrate that reducing residential combustion emissions would have substantial benefits for human health through reductions in ambient PM2.5 concentrations.

  18. Future tendencies of climate indicators important for adaptation and mitigation strategies in forestry

    NASA Astrophysics Data System (ADS)

    Galos, Borbala; Hänsler, Andreas; Gulyas, Krisztina; Bidlo, Andras; Czimber, Kornel

    2014-05-01

    Climate change is expected to have severe impacts in the forestry sector, especially in low-elevation regions in Southeast Europe, where forests are vulnerable and sensitive to the increasing probability and severity of climatic extremes, especially to droughts. For providing information about the most important regional and local risks and mitigation options for the Carpathian basin, a GIS-supported Decision Support System is under development. This study focuses on the future tendencies of climate indicators that determine the distribution, growth, health status and production of forests as well as the potential pests and diseases. For the analyses the climate database of the Decision Support System has been applied, which contains daily time series for precipitation and temperature means and extremes as well as derived climate indices for 1961-2100. For the future time period, simulation results of 12 regional climate models are included (www.ensembles-eu.org) based on the A1B emission scenario. The main results can be summarized as follows: · The projected change of the climate indices (e.g. total number of hot days, frost days, dry days, consecutive dry periods) and forestry indices (e.g. Ellenberg climate quotient, Forestry aridity index; Tolerance index for beech) indicates the warming and drying of the growing season towards the end of the 21st century. These can have severe consequences on the ecosystem services of forests. · The climatic suitable area of the native tree species is projected to move northwards and upwards in the mountains, respectively. For beech (Fagus sylvatica L.) this shift would mean the drastic shrink of the distribution area in the analyzed region. · The characteristic climate conditions that are expected in the Carpathian basin in the second half of the century, are now located southeastern from the case study region. In this way, the potential future provenance regions can be determined. Results provide input for the climate impact analyses and build an important basis of the future adaptation strategies in forestry, agriculture and water management. Funding: The research is supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0013 and TÁMOP-4.1.1.C-12/1/KONV-2012-0012 (ZENFE) joint EU-national research projects. Keywords: climate indices, climate change impacts, forestry, regional climate modelling

  19. The impact of climate change on the BRICS economies: The case of insurance demand.

    NASA Astrophysics Data System (ADS)

    Ranger, N.; Surminski, S.

    2012-04-01

    Session ERE5.1 Climate change impact on economical and industrial activities The impact of climate change on the BRICS economies: The case of insurance demand. Over the past decade, growth in the BRICS (Brazil, Russia, India, China and South Africa) economies has been a key driver of global economic growth. Current forecasts suggest that these markets will continue to be areas of significant growth for a large number of industries. We consider how climate change may influence these trends in the period to 2030, a time horizon that is long in terms of strategic planning in industry, but relatively short for climate change analysis, where the impacts are predicted to be most significant beyond around 2050. Based on current evidence, we expect climate change to affect the BRICS economies in four main ways: 1. The impact of physical climatic changes on the productivity of climate-sensitive economic activity, the local environment, human health and wellbeing, and damages from extreme weather. 2. Changing patterns of investment in climate risk management and adaptation 3. Changing patterns of investments in areas affected by greenhouse gas (GHG) mitigation policy, 4. The impacts of the above globally, including on international trade, growth, investment, policy, migration and commodity prices, and their impacts on the BRICS. We review the evidence on the impacts of climate change in the BRICS and then apply this to one particular industry sector: non-life insurance. We propose five potential pathways through which climate change could influence insurance demand: economic growth; willingness to pay for insurance; public policy and regulation; the insurability of natural catastrophe risks; and new opportunities associated with adaptation and greenhouse gas mitigation. We conclude that, with the exception of public policy and regulation, the influence of climate change on insurance demand to 2030 is likely to be small when compared with the expected growth due to rising incomes. The scale of the impacts and their direction depend to some extent on (re)insurer responses to the challenges of climate change. We outline five actions that could pave the way for future opportunities in the industry. Authors of the paper: Ranger, Nicola (Centre for Climate Change Economics and Policy/ Grantham Research Institute, London School of Economics, London, UK) and Surminski, Swenja (Centre for Climate Change Economics and Policy/ Grantham Research Institute, London School of Economics, London, UK)

  20. Climate change and Public health: vulnerability, impacts, and adaptation

    NASA Astrophysics Data System (ADS)

    Guzzone, F.; Setegn, S.

    2013-12-01

    Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change on public health and identify appropriate adaptation strategies. Several studies have evaluated the impact of climate change on health, which have included evaluating the current associations between the recent changes in climate, and the evidence base analysis of current, as well as projecting the future impacts of climate change on health. This study will document the use of building an integrated approach for sustainable management of climate, environmental, health surveillance and epidemiological data that will support the assessment of vulnerability, impact and adaption to climate change.

  1. Implications for Climate Sensitivity from the Response to Individual Forcings

    NASA Technical Reports Server (NTRS)

    Marvel, Kate; Schmidt, Gavin A.; Miller, Ron L.; Nazarenko, Larissa

    2015-01-01

    Climate sensitivity to doubled CO2 is a widely-used metric of the large-scale response to external forcing. Climate models predict a wide range for two commonly used definitions: the transient climate response (TCR: the warming after 70 years of CO2 concentrations that riseat 1 per year), and the equilibrium climate sensitivity (ECS: the equilibrium temperature change following a doubling of CO2 concentrations). Many observational datasets have been used to constrain these values, including temperature trends over the recent past 16, inferences from paleo-climate and process-based constraints from the modern satellite eras. However, as the IPCC recently reported different classes of observational constraints produce somewhat incongruent ranges. Here we show that climate sensitivity estimates derived from recent observations must account for the efficacy of each forcing active during the historical period. When we use single forcing experiments to estimate these efficacies and calculate climate sensitivity from the observed twentieth-century warming, our estimates of both TCR and ECS are revised upward compared to previous studies, improving the consistency with independent constraints.

  2. Carbon sequestration in managed temperate coniferous forests under climate change

    NASA Astrophysics Data System (ADS)

    Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.

    2016-03-01

    Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.

  3. Overview of the National Energy-Water System (NEWS) Assessment Framework Study

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C. J.; Miara, A.; Rosenzweig, B.; Corsi, F.; Piasecki, M.; Celicourt, P.; Fekete, B. M.; Macknick, J.; Melillo, J. M.; Newmark, R. L.; Tidwell, V. C.; Suh, S.; Prousevitch, A.

    2015-12-01

    In practical terms, strategic planning for the nation's economic, social and environmental future increasingly centers on issues relating to fresh water. U.S. energy security is highly dependent on electricity generated by the nation's fleet of thermoelectric power stations, which today contribute 90% to total electricity production. This presentation summarizes the overall structure and recent progress on a study devoted to climate adaptation and the reliability of power sector infrastructure and operations, when viewed through the lens of strategic water issues. The focus is on electric power infrastructure, i.e., the types, spatial distributions and levels of investment in technologies that deliver or could deliver electricity to the U.S. economy. The work is guided by a central hypothesis, that today's portfolio of electric power sector infrastructure is unsustainable in the context of satisfying its water needs under anticipated climate change and rising electricity demands. Insofar as water-mediated feedbacks reverberate throughout the national economy, we include macro-economic perspectives as well. The work is organized around the technical development of the NEWS framework which is then used to evaluate, in the context of anticipated climate, economic change and regulatory context: the performance of the nation's electricity sector, the feasibility of alternative pathways to improve climate adaptation, and impacts of energy technology. Scenarios are co-designed with a stakeholder community, and investment tradeoffs are considered with respect to the productivity of the economy, water availability and aquatic ecosystem condition.

  4. The role of country-to-region assignments in global integrated modeling of energy, agriculture, land use, and climate

    NASA Astrophysics Data System (ADS)

    Kyle, P.; Patel, P.; Calvin, K. V.

    2014-12-01

    Global integrated assessment models used for understanding the linkages between the future energy, agriculture, and climate systems typically represent between 8 and 30 geopolitical macro-regions, balancing the benefits of geographic resolution with the costs of additional data collection, processing, analysis, and computing resources. As these models are continually being improved and updated in order to address new questions for the research and policy communities, it is worth examining the consequences of the country-to-region mapping schemes used for model results. This study presents an application of a data processing system built for the GCAM integrated assessment model that allows any country-to-region assignments, with a minimum of four geopolitical regions and a maximum of 185. We test ten different mapping schemes, including the specific mappings used in existing major integrated assessment models. We also explore the impacts of clustering nations into regions according to the similarity of the structure of each nation's energy and agricultural sectors, as indicated by multivariate analysis. Scenarios examined include a reference scenario, a low-emissions scenario, and scenarios with agricultural and buildings sector climate change impacts. We find that at the global level, the major output variables (primary energy, agricultural land use) are surprisingly similar regardless of regional assignments, but at finer geographic scales, differences are pronounced. We suggest that enhancing geographic resolution is advantageous for analysis of climate impacts on the buildings and agricultural sectors, due to the spatial heterogeneity of these drivers.

  5. Farmers' perceptions of and adaptation strategies to climate change and their determinants: the case of Punjab province, Pakistan

    NASA Astrophysics Data System (ADS)

    Abid, M.; Scheffran, J.; Schneider, U. A.; Ashfaq, M.

    2015-05-01

    Climate change is a global environmental threat to all economic sectors, particularly the agricultural sector. Pakistan is one of the countries negatively affected by climate change due to its high exposure to extreme events and low adaptive capacity. In Pakistan, farmers are the primary stakeholders in agriculture and are more at risk due to climate vulnerability. Based on farm household data from 450 households collected from three districts in three agroecological zones in the Punjab province of Pakistan, this study examines how farmers perceive climate change and how they adapt their farming in response to perceived changes in climate. The results demonstrate that awareness of climate change is widespread throughout the area, and farm households make adjustments to adapt their agriculture in response to climatic change. Overall 58% of the farm households adapted their farming to climate change. Changing crop varieties, changing planting dates, planting of shade trees and changing fertilizers were the main adaptation methods implemented by farm households in the study area. The results from the binary logistic model reveal that education, farm experience, household size, land area, tenancy status, ownership of a tube well, access to market information, information on weather forecasting and agricultural extension services all influence farmers' choices of adaptation measures. The results also indicate that adaptation to climate change is constrained by several factors such as lack of information, lack of money, resource constraints and shortage of irrigation water in the study area. Findings of the study suggest the need for greater investment in farmer education and improved institutional setup for climate change adaptation to improve farmers' wellbeing.

  6. How much should we know about energy to better implement climate change education?

    NASA Astrophysics Data System (ADS)

    Silva-Send, N.; Anders, S.

    2011-12-01

    Anthropogenic climate change requires us to understand complex and multidisciplinary aspects of climate science. But without also grasping the connection between our lifestyles, behavior, and energy use, it will be difficult for many of us to make changes to contribute to climate change mitigation and energy conservation. A deeper understanding of the energy-climate relationship related to our behavior is thus warranted because, as the internet-based EnergyLiteracy.org points out, albeit within a different but related context of national security and development, "The vast majority of Americans simply don't adequately understand the magnitude and urgency of our national energy crisis ..." and "That lack of understanding deprives our democracy of the political will that must be generated in order to adequately address...." these issues. Our NSF Climate Change Education Program Project, the San Diego Regional Climate Education Partnership (SDRCEP), has as its overarching aim to inform citizens to make balanced decisions based on climate change and energy literacy. The project targets a selected group of 30 key influential persons in the region, and their audiences, representing, for example, the banking sector, the construction industry, the health sector, and commercial real estate. Interviews carried out so far suggest that the connection between climate change and energy use is not easily made. On the other hand, the interviews indicate that a connection is easily made, in this region, between climate change and water availability. Therefore, the purpose of this presentation is to discuss what specific knowledge about personal and societal energy use might be useful to (a) inform and empower key decision-makers responsible for energy-use decisions that significantly affect our lives in the next decades, and (b) empower people to contribute to reducing the impacts of climate change through behavioral or even life-style changes.

  7. Future Water Management in the South Platte River Basin: Impacts of Hydraulic Fracturing, Population, Agriculture, and Climate Change in a Semi-Arid Region.

    NASA Astrophysics Data System (ADS)

    Walker, E. L.; Hogue, T. S.; Anderson, A. M.; Read, L.

    2015-12-01

    In semi-arid basins across the world, the gap between water supply and demand is growing due to climate change, population growth, and shifts in agriculture and unconventional energy development. Water conservation efforts among residential and industrial water users, recycling and reuse techniques and innovative regulatory frameworks for water management strive to mitigate this gap, however, the extent of these strategies are often difficult to quantify and not included in modeling water allocations. Decision support systems (DSS) are purposeful for supporting water managers in making informed decisions when competing demands create the need to optimize water allocation between sectors. One region of particular interest is the semi-arid region of the South Platte River basin in northeastern Colorado, where anthropogenic and climatic effects are expected to increase the gap between water supply and demand in the near future. Specifically, water use in the South Platte is impacted by several high-intensity activities, including unconventional energy development, i.e. hydraulic fracturing, and large withdrawals for agriculture; these demands are in addition to a projected population increase of 100% by 2050. The current work describes the development of a DSS for the South Platte River basin, using the Water Evaluation and Planning system software (WEAP) to explore scenarios of how variation in future water use in the energy, agriculture, and municipal sectors will impact water allocation decisions. Detailed data collected on oil and gas water use in the Niobrara shale play will be utilized to predict future sector use. We also employ downscaled climate projections for the region to quantify the potential range of water availability in the basin under each scenario, and observe whether or not, and to what extent, climate may impact management decisions at the basin level.

  8. The Feasibility of Avoiding Future Climate Impacts: Results from the AVOID Programmes

    NASA Astrophysics Data System (ADS)

    Lowe, J. A.; Warren, R.; Arnell, N.; Buckle, S.

    2014-12-01

    The AVOID programme and its successor, AVOID2, have focused on answering three core questions: how do we characterise potentially dangerous climate change and impacts, which emissions pathways can avoid at least some of these impacts, and how feasible are the future reductions needed to significantly deviate from a business-as-usual future emissions pathway. The first AVOID project succeeded in providing the UK Government with evidence to inform its position on climate change. A key part of the work involved developing a range of global emissions pathways and estimating and understanding the corresponding global impacts. This made use of a combination of complex general circulation models, simple climate models, pattern-scaling and state-of-the art impacts models. The results characterise the range of avoidable impacts across the globe in several key sectors including river and coastal flooding, cooling and heating energy demand, crop productivity and aspects of biodiversity. The avoided impacts between a scenario compatible with a 4ºC global warming and one with a 2ºC global warming were found to be highly sector dependent and avoided fractions typically ranged between 20% and 70%. A further key aspect was characterising the magnitude of the uncertainty involved, which is found to be very large in some impact sectors although the avoided fraction appears a more robust metric. The AVOID2 programme began in 2014 and will provide results in the run up to the Paris CoP in 2015. This includes new post-IPCC 5th assessment evidence to inform the long-term climate goal, a more comprehensive assessment of the uncertainty ranges of feasible emission pathways compatible with the long-term goal and enhanced estimates of global impacts using the latest generation of impact models and scenarios.

  9. Climate Change Through a Poverty Lens

    NASA Astrophysics Data System (ADS)

    Rozenberg, J.; Hallegatte, S.

    2017-12-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  10. Climate change through a poverty lens

    NASA Astrophysics Data System (ADS)

    Hallegatte, Stephane; Rozenberg, Julie

    2017-04-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  11. The Dependencies of Ecosystem Pattern, Structure, and Dynamics on Climate, Climate Variability, and Climate Change

    NASA Astrophysics Data System (ADS)

    Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.

    2012-12-01

    A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data shown in the database construction and by the model reinforces the need for high-resolution datasets and stresses the importance of understanding and incorporating climate change scenarios into earth system models.

  12. An Adaptation Dilemma Caused by Impacts-Modeling Uncertainty

    NASA Astrophysics Data System (ADS)

    Frieler, K.; Müller, C.; Elliott, J. W.; Heinke, J.; Arneth, A.; Bierkens, M. F.; Ciais, P.; Clark, D. H.; Deryng, D.; Doll, P. M.; Falloon, P.; Fekete, B. M.; Folberth, C.; Friend, A. D.; Gosling, S. N.; Haddeland, I.; Khabarov, N.; Lomas, M. R.; Masaki, Y.; Nishina, K.; Neumann, K.; Oki, T.; Pavlick, R.; Ruane, A. C.; Schmid, E.; Schmitz, C.; Stacke, T.; Stehfest, E.; Tang, Q.; Wisser, D.

    2013-12-01

    Ensuring future well-being for a growing population under either strong climate change or an aggressive mitigation strategy requires a subtle balance of potentially conflicting response measures. In the case of competing goals, uncertainty in impact estimates plays a central role when high confidence in achieving a primary objective (such as food security) directly implies an increased probability of uncertainty induced failure with regard to a competing target (such as climate protection). We use cross sectoral consistent multi-impact model simulations from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, www.isi-mip.org) to illustrate this uncertainty dilemma: RCP projections from 7 global crop, 11 hydrological, and 7 biomes models are combined to analyze irrigation and land use changes as possible responses to climate change and increasing crop demand due to population growth and economic development. We show that - while a no-regrets option with regard to climate protection - additional irrigation alone is not expected to balance the demand increase by 2050. In contrast, a strong expansion of cultivated land closes the projected production-demand gap in some crop models. However, it comes at the expense of a loss of natural carbon sinks of order 50%. Given the large uncertainty of state of the art crop model projections even these strong land use changes would not bring us ';on the safe side' with respect to food supply. In a world where increasing carbon emissions continue to shrink the overall solution space, we demonstrate that current impacts-modeling uncertainty is a luxury we cannot afford. ISI-MIP is intended to provide cross sectoral consistent impact projections for model intercomparison and improvement as well as cross-sectoral integration. The results presented here were generated within the first Fast-Track phase of the project covering global impact projections. The second phase will also include regional projections. It is the aim of the project to build up a CMIP like open archive for climate impact projections allowing for the necessary sharpening the our picture of a 1,2,3,4 degrees warmer world.

  13. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography

    NASA Astrophysics Data System (ADS)

    Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.

    2014-07-01

    Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which is expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of Global Climate Model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the Integrated Catchment Model of Phosphorus Dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivity) were highly varied. Sensitivity was governed by soil type (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy-loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.

  14. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography

    NASA Astrophysics Data System (ADS)

    Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.

    2014-12-01

    Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which are expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as it is to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of global climate model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the INtegrated CAtchment model of Phosphorus dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivities) were highly varied. Sensitivity was governed by quaternary geology (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.

  15. High Performance Work System, HRD Climate and Organisational Performance: An Empirical Study

    ERIC Educational Resources Information Center

    Muduli, Ashutosh

    2015-01-01

    Purpose: This paper aims to study the relationship between high-performance work system (HPWS) and organizational performance and to examine the role of human resource development (HRD) Climate in mediating the relationship between HPWS and the organizational performance in the context of the power sector of India. Design/methodology/approach: The…

  16. Current adaptation measures and policies

    Treesearch

    Geoff Roberts; John A. Parrotta; Anita Wreford

    2009-01-01

    As stated in earlier chapters, the possible impacts of climate change on forests and the forest sector are considerable, and many impacts have already been observed. As forest conditions change, there is an inherent need to change management and policy measures to minimise negative impacts and to exploit the benefits derived from climate change. This chapter highlights...

  17. 3 CFR 13653 - Executive Order 13653 of November 1, 2013. Preparing the United States for the Impacts of Climate...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Council on Environmental Quality (CEQ), the Office of Science and Technology Policy (OSTP), and the... National Science and Technology Council and those that support the implementation of Presidential Policy... integration of climate science in policies and planning of government agencies and the private sector...

  18. Validation of non-stationary precipitation series for site-specific impact assessment: Comparison of two statistical downscaling techniques

    USDA-ARS?s Scientific Manuscript database

    The generation of realistic future precipitation scenarios is crucial for assessing their impacts on a range of environmental and socio-economic impact sectors. A scale mismatch exists, however, between the coarse spatial resolution at which global climate models (GCMs) output future climate scenari...

  19. Visualization of uncertainties and forecast skill in user-tailored seasonal climate predictions for agriculture

    NASA Astrophysics Data System (ADS)

    Sedlmeier, Katrin; Gubler, Stefanie; Spierig, Christoph; Flubacher, Moritz; Maurer, Felix; Quevedo, Karim; Escajadillo, Yury; Avalos, Griña; Liniger, Mark A.; Schwierz, Cornelia

    2017-04-01

    Seasonal climate forecast products potentially have a high value for users of different sectors. During the first phase (2012-2015) of the project CLIMANDES (a pilot project of the Global Framework for Climate Services led by WMO [http://www.wmo.int/gfcs/climandes]), a demand study conducted with Peruvian farmers indicated a large interest in seasonal climate information for agriculture. The study further showed that the required information should by precise, timely, and understandable. In addition to the actual forecast, two complex measures are essential to understand seasonal climate predictions and their limitations correctly: forecast uncertainty and forecast skill. The former can be sampled by using an ensemble of climate simulations, the latter derived by comparing forecasts of past time periods to observations. Including uncertainty and skill information in an understandable way for end-users (who are often not technically educated) poses a great challenge. However, neglecting this information would lead to a false sense of determinism which could prove fatal to the credibility of climate information. Within the second phase (2016-2018) of the project CLIMANDES, one goal is to develop a prototype of a user-tailored seasonal forecast for the agricultural sector in Peru. In this local context, the basic education level of the rural farming community presents a major challenge for the communication of seasonal climate predictions. This contribution proposes different graphical presentations of climate forecasts along with possible approaches to visualize and communicate the associated skill and uncertainties, considering end users with varying levels of technical knowledge.

  20. Defining Canadian Perspectives on Climate Change Science and Solutions

    NASA Astrophysics Data System (ADS)

    Rieger, C.; Byrne, J. M.

    2014-12-01

    Despite the overwhelming scientific evidence of potentially disastrous change in global climate, little is being accomplished in climate mitigation or adaptation in Canada. The energy sector in Canada is still primarily oil and gas, with huge tax breaks to the industry in spite of well known harmful regional and global impacts of fossil fuel pollution. One of the largest concerns for the climate science community is the variable and often complacent attitude many Canadians share on the issue of climate change. The objective herein is twofold: (1) a survey tool will be used to assess the views and opinions of Canadians on climate change science and solutions; (2) develop better communication methods for industry, government and NGOs to share the science and solutions with the public. The study results will inform the Canadian public, policy makers and industry of practical, effective changes needed to address climate change challenges. A survey of Canadians' perspectives is an important step in policy changing research. The climate research and application community must know the most effective ways to communicate the science and solutions with a public that is often resistant to change. The AGU presentation will feature the results of the survey, while continued work into 2015 will be towards advancing communication. This study is both timely and crucial for science communicators in understanding how Canadians view climate change, considering, for example, devastatingly extreme weather being experienced of late and its effect on the economy. The results will assist in recognizing how to encourage Canadians to work towards a more sustainable and resilient energy sector in Canada and abroad.

  1. Climate Risk assessment and management in rainfed agriculture areas in Jordan

    NASA Astrophysics Data System (ADS)

    Khresat, Saeb

    2017-04-01

    Agricultural production is closely tied to climate, making agriculture one of the most climate-sensitive of all economic sectors. Figures and data from official resources and previous studies demonstrated that most of agricultural areas in Jordan were rainfed which made agriculture in the country more susceptible to climate change. The percentage of harvested to cultivated areas in those areas over the past ten years ranged from 45-55%, indicating a high risk associated with rainfed agriculture in Jordan. The anticipated increase in temperature and decrease in precipitation would adversely affect crops and water availability, critically influencing the patterns of future agricultural production, threatens livelihoods and keeps vulnerable people insecure. The anticipated increase in temperature and decrease in precipitation would result in 15-20% yield reduction for major field crops and vegetable crops by 2050 and 2070. This study was conducted to help in formulating action plans to adapt to climate change by assessing the risk from climate change on rainfed agriculture. The scenarios of climate change were used to assess the impact of climate change on rainfed agriculture. The overall risk level was based on possible land use shifts and crop yield under the most probable climate change scenarios. Accordingly, adaptive measures were proposed to reduce the impacts of climate change on agriculture in Jordan. The adaptation measures included the improvement of soil water storage to maximize plant water availability, the management of crop residue and tillage to conserve soil and water, the selection of drought-tolerant crop varieties, the expansion of water harvesting schemes through encouraging the farmers to adopt and apply the in-situ water harvesting systems (micro-catchment). Finally, the study emphasized the need for capacity building and awareness creation at the levels of farmers and extension staff. This would require the formulation of plans and strategies to support services that would promote adoption and adaptation. The empowerment of farmer service centers to provide technical advice and information on viable adaptation options would be needed. This also would require the development of micro-credit/revolving grants to farmers to apply the developed adaptation systems.

  2. BREEDING AND GENETICS SYMPOSIUM: Climate change and selective breeding in aquaculture.

    PubMed

    Sae-Lim, P; Kause, A; Mulder, H A; Olesen, I

    2017-04-01

    Aquaculture is the fastest growing food production sector and it contributes significantly to global food security. Based on Food and Agriculture Organization (FAO) of the United Nations, aquaculture production must increase significantly to meet the future global demand for aquatic foods in 2050. According to Intergovernmental Panel on Climate Change (IPCC) and FAO, climate change may result in global warming, sea level rise, changes of ocean productivity, freshwater shortage, and more frequent extreme climate events. Consequently, climate change may affect aquaculture to various extents depending on climatic zones, geographical areas, rearing systems, and species farmed. There are 2 major challenges for aquaculture caused by climate change. First, the current fish, adapted to the prevailing environmental conditions, may be suboptimal under future conditions. Fish species are often poikilothermic and, therefore, may be particularly vulnerable to temperature changes. This will make low sensitivity to temperature more important for fish than for livestock and other terrestrial species. Second, climate change may facilitate outbreaks of existing and new pathogens or parasites. To cope with the challenges above, 3 major adaptive strategies are identified. First, general 'robustness' will become a key trait in aquaculture, whereby fish will be less vulnerable to current and new diseases while at the same time thriving in a wider range of temperatures. Second, aquaculture activities, such as input power, transport, and feed production contribute to greenhouse gas emissions. Selection for feed efficiency as well as defining a breeding goal that minimizes greenhouse gas emissions will reduce impacts of aquaculture on climate change. Finally, the limited adoption of breeding programs in aquaculture is a major concern. This implies inefficient use of resources for feed, water, and land. Consequently, the carbon footprint per kg fish produced is greater than when fish from breeding programs would be more heavily used. Aquaculture should use genetically improved and robust organisms not suffering from inbreeding depression. This will require using fish from well-managed selective breeding programs with proper inbreeding control and breeding goals. Policymakers and breeding organizations should provide incentives to boost selective breeding programs in aquaculture for more robust fish tolerating climatic change.

  3. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records

    NASA Astrophysics Data System (ADS)

    Martínez-Botí, M. A.; Foster, G. L.; Chalk, T. B.; Rohling, E. J.; Sexton, P. F.; Lunt, D. J.; Pancost, R. D.; Badger, M. P. S.; Schmidt, D. N.

    2015-02-01

    Theory and climate modelling suggest that the sensitivity of Earth's climate to changes in radiative forcing could depend on the background climate. However, palaeoclimate data have thus far been insufficient to provide a conclusive test of this prediction. Here we present atmospheric carbon dioxide (CO2) reconstructions based on multi-site boron-isotope records from the late Pliocene epoch (3.3 to 2.3 million years ago). We find that Earth's climate sensitivity to CO2-based radiative forcing (Earth system sensitivity) was half as strong during the warm Pliocene as during the cold late Pleistocene epoch (0.8 to 0.01 million years ago). We attribute this difference to the radiative impacts of continental ice-volume changes (the ice-albedo feedback) during the late Pleistocene, because equilibrium climate sensitivity is identical for the two intervals when we account for such impacts using sea-level reconstructions. We conclude that, on a global scale, no unexpected climate feedbacks operated during the warm Pliocene, and that predictions of equilibrium climate sensitivity (excluding long-term ice-albedo feedbacks) for our Pliocene-like future (with CO2 levels up to maximum Pliocene levels of 450 parts per million) are well described by the currently accepted range of an increase of 1.5 K to 4.5 K per doubling of CO2.

  4. The Role of Technology in Mitigating Greenhouse Gas Emissions from Power Sector in Developing Countries: the Case of China, India, and Mexico

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge China, India, and Mexico are the top emitters of CO2 among developing nations. The electric power sectors in China and India is dominated by coal-fired power plants, whereas in Mexico, fuel oil and natur...

  5. Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyu; Gurney, Kevin R.

    2011-07-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are drivenmore » by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy« less

  6. "Climate Matters Documoments": Enabling Regionally-Specific Climate Awareness

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Finucane, M.

    2012-12-01

    The Pacific Regional Integrated Sciences & Assessments (RISA) is a multidisciplinary program that enhances the ability of Pacific Island communities to understand, plan for, and adapt to climate-induced change. Using both social and physical science research methods, the Pacific RISA engages a network of regional decision-makers and stakeholders to help solve climate-related issues. Pacific RISA has a broad audience of local and regional decision-makers (i.e. natural resource managers, community planners, state and federal government agencies) and stakeholders (i.e. farmers and ranchers, fishermen, community and native islander groups). The RISA program engages with this audience through a mixed-method approach of two-way communication, including one-on-one interviews, workshops, consensus discussions and public presentations that allow us to tailor our efforts to the needs of specific stakeholders. A recent Pacific RISA project was the creation and production of four short, educational "documoment" videos that explore the different ways in which climate change in Hawaii affects stakeholders from different sectors. The documoments, generally titled "Climate Matters", start with a quote about why climate matters to each stakeholder: a rancher, a coastal hotel owner, the manager of a landfill, and the local branch of the National Weather Service. The narratives then have each stakeholder discussing how climate impacts their professional and personal lives, and describing the types of climate change they have experienced in the islands. Each video ends with a technical fact about how different climate variables in Hawaii (sea level, precipitation, ENSO) have actually changed within the last century of observational data. Freely available on www.PacificRISA.org, the Documoments have been viewed over 350 times, and have inspired similar video projects and received positive attention from different audiences of stakeholders and scientists. In other assessment work the Pacific RISA has done, we found that many stakeholders who regularly make climate sensitive decisions do not always realize it. By viewing videos like the Climate Matters Documoments, it may help a wide variety of community stakeholders and natural resource decision makers realize the myriad ways in which climate change affects their communities and jobs. In addition, when viewed outside of the Pacific Islands region, the different stories told in the Documoments help foster a greater understanding of the unique climate-related issues faced within the Hawaiian Islands.

  7. Vulnerability Assessment of Natural Disasters for Small and Mid-Sized Streams due to Climate Change and Stream Improvement

    NASA Astrophysics Data System (ADS)

    Choi, D.; Jun, H. D.; Kim, S.

    2012-04-01

    Vulnerability assessment plays an important role in drawing up climate change adaptation plans. Although there are some studies on broad vulnerability assessment in Korea, there have been very few studies to develop and apply locally focused and specific sector-oriented climate change vulnerability indicators. Especially, there has seldom been any study to investigate the effect of an adaptation project on assessing the vulnerability status to climate change for fundamental local governments. In order to relieve adverse effects of climate change, Korean government has performed the project of the Major Four Rivers (Han, Geum, Nakdong and Yeongsan river) Restoration since 2008. It is expected that water level in main stream of 4 rivers will be dropped through this project, but flood effect will be mainly occurred in small and mid-sized streams which flows in main stream. Hence, we examined how much the project of the major four rivers restoration relieves natural disasters. Conceptual framework of vulnerability-resilience index to climate change for the Korean fundamental local governments is defined as a function of climate exposure, sensitivity, and adaptive capacity. Then, statistical data on scores of proxy variables assumed to comprise climate change vulnerability for local governments are collected. Proxy variables and estimated temporary weights of them are selected by surveying a panel of experts using Delphi method, and final weights are determined by modified Entropy method. Developed vulnerability-resilience index was applied to Korean fundamental local governments and it is calculated under each scenario as follows. (1) Before the major four rivers restoration, (2) 100 years after represented climate change condition without the major four rivers restoration, (3) After the major four rivers restoration without representing climate change (this means present climate condition) and (4) After the major four rivers restoration and 100 years after represented climate change condition. In the results of calculated vulnerability-resilience index of each scenario, it can be noticed that vulnerability of watersheds which are located near main stream of four rivers is alleviated, but because of climate change, vulnerability is getting high in most watersheds. Also, considering future climate change and river restoration, vulnerability of several watersheds is relieved by river restoration. Acknowledges This work was funded by the National Emergency Management Agency (NEMA) in Korea Program under Grant NEMA-10-NH-04.

  8. My Morning Coffee: The Effect of Climate Change on the Economies of Coffee-Producing Countries

    NASA Astrophysics Data System (ADS)

    Shilling, K.; Brauman, K. A.

    2012-12-01

    Through its effect on export crops, climate change will have important effects on economic systems and government capacity in sub-Saharan Africa. We show that climate change effects on three important export crops - coffee, cocoa and cotton - will undermine large portions of the economy, not just the rural farmers who grow these crops. Our analysis is based high-resolution data on crop location, temperature, and water requirements in conjunction with new projections for temperature increases and precipitation changes in sub-Saharan Africa. Our focus on export crops is distinct from most work on the effects of climate change on agriculture, which often focuses on subsistence and food crops. We posit that substantial and important effects on the economy and political systems will come from negative impacts on cash crops, which underpin many economies in sub-Saharan Africa. For instance, 3% of cropland in Uganda (and 2% in Ethiopia) is used for coffee production and over 3.5 million households are involved in the sector; by contrast, 7% of cropland in Uganda (and 11% in Ethiopia) is used for maize, which contributes much less to the formal economy. The relationship between the value of coffee exported and government revenue illustrates the importance of coffee to political and economic stability. A drop in the export value of coffee by 10% in Uganda will drive government revenue down by 20%, and while there is uncertainty around the exact impact of climate change, it is likely that production will take a turn for the worse. We use these factors to assess reliance of select country's economy on these crops, from the farmer to the exporter; the sensitivity of the crops to variation in the climate; and the subsequent impact on government capacity. Our research illustrates how strongly the impacts of climate change are linked to economic and political structures.

  9. The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.

    2018-03-01

    Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of the local SST pattern changes on regions outside the North Atlantic is small in our setup.

  10. Adaptation of water resource systems to an uncertain future

    NASA Astrophysics Data System (ADS)

    Walsh, C. L.; Blenkinsop, S.; Fowler, H. J.; Burton, A.; Dawson, R. J.; Glenis, V.; Manning, L. J.; Kilsby, C. G.

    2015-09-01

    Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days, and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth the median number of drought order occurrences may increase five-fold. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be insufficient on their own to adapt to uncertainties in the projected changes in climate and population. For example, a 30 % reduction in overall demand by 2050 has a greater impact on reducing the frequency of drought orders than any of the individual or combinations of supply options; hence a portfolio of measures are required.

  11. Inter-sectoral comparison of model uncertainty of climate change impacts in Africa

    NASA Astrophysics Data System (ADS)

    van Griensven, Ann; Vetter, Tobias; Piontek, Franzisca; Gosling, Simon N.; Kamali, Bahareh; Reinhardt, Julia; Dinkneh, Aklilu; Yang, Hong; Alemayehu, Tadesse

    2016-04-01

    We present the model results and their uncertainties of an inter-sectoral impact model inter-comparison initiative (ISI-MIP) for climate change impacts in Africa. The study includes results on hydrological, crop and health aspects. The impact models used ensemble inputs consisting of 20 time series of daily rainfall and temperature data obtained from 5 Global Circulation Models (GCMs) and 4 Representative concentration pathway (RCP). In this study, we analysed model uncertainty for the Regional Hydrological Models, Global Hydrological Models, Malaria models and Crop models. For the regional hydrological models, we used 2 African test cases: the Blue Nile in Eastern Africa and the Niger in Western Africa. For both basins, the main sources of uncertainty are originating from the GCM and RCPs, while the uncertainty of the regional hydrological models is relatively low. The hydrological model uncertainty becomes more important when predicting changes on low flows compared to mean or high flows. For the other sectors, the impact models have the largest share of uncertainty compared to GCM and RCP, especially for Malaria and crop modelling. The overall conclusion of the ISI-MIP is that it is strongly advised to use ensemble modeling approach for climate change impact studies throughout the whole modelling chain.

  12. Integrated Drought Monitoring and Forecasts for Decision Making in Water and Agricultural Sectors over the Southeastern US under Changing Climate

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Mazrooei, A.; Ward, R.

    2017-12-01

    Changing climate arising from structured oscillations such as ENSO and rising temperature poses challenging issues in meeting the increasing water demand (due to population growth) for public supply and agriculture over the Southeast US. This together with infrastructural (e.g., most reservoirs being within-year systems) and operational (e.g., static rule curves) constraints requires an integrated approach that seamlessly monitors and forecasts water and soil moisture conditions to support adaptive decision making in water and agricultural sectors. In this talk, we discuss the utility of an integrated drought management portal that both monitors and forecasts streamflow and soil moisture over the southeast US. The forecasts are continuously developed and updated by forcing monthly-to-seasonal climate forecasts with a land surface model for various target basins. The portal also houses a reservoir allocation model that allows water managers to explore different release policies in meeting the system constraints and target storages conditioned on the forecasts. The talk will also demonstrate how past events (e.g., 2007-2008 drought) could be proactively monitored and managed to improve decision making in water and agricultural sectors over the Southeast US. Challenges in utilizing the portal information from institutional and operational perspectives will also be presented.

  13. Assessment of marine weather forecasts over the Indian sector of Southern Ocean

    NASA Astrophysics Data System (ADS)

    Gera, Anitha; Mahapatra, D. K.; Sharma, Kuldeep; Prakash, Satya; Mitra, A. K.; Iyengar, G. R.; Rajagopal, E. N.; Anilkumar, N.

    2017-09-01

    The Southern Ocean (SO) is one of the important regions where significant processes and feedbacks of the Earth's climate take place. Expeditions to the SO provide useful data for improving global weather/climate simulations and understanding many processes. Some of the uncertainties in these weather/climate models arise during the first few days of simulation/forecast and do not grow much further. NCMRWF issued real-time five day weather forecasts of mean sea level pressure, surface winds, winds at 500 hPa & 850 hPa and rainfall, daily to NCAOR to provide guidance for their expedition to Indian sector of SO during the austral summer of 2014-2015. Evaluation of the skill of these forecasts indicates possible error growth in the atmospheric model at shorter time scales. The error growth is assessed using the model analysis/reanalysis, satellite data and observations made during the expedition. The observed variability of sub-seasonal rainfall associated with mid-latitude systems is seen to exhibit eastward propagations and are well reproduced in the model forecasts. All cyclonic disturbances including the sub-polar lows and tropical cyclones that occurred during this period were well captured in the model forecasts. Overall, this model performs reasonably well over the Indian sector of the SO in medium range time scale.

  14. Variability of Antarctic Sea Ice 1979-1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Comiso, Josefino C.; Parkinson, Claire L.; Cavalieri, Donald J.; Gloersen, Per; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The principal characteristics of the variability of Antarctic sea ice cover as previously described from satellite passive-microwave observations are also evident in a systematically-calibrated and analyzed data set for 20.2 years (1979-1998). The total Antarctic sea ice extent (concentration > 15 %) increased by 13,440 +/- 4180 sq km/year (+1.18 +/- 0.37%/decade). The area of sea ice within the extent boundary increased by 16,960 +/- 3,840 sq km/year (+1.96 +/- 0.44%/decade). Regionally, the trends in extent are positive in the Weddell Sea (1.5 +/- 0.9%/decade), Pacific Ocean (2.4 +/- 1.4%/decade), and Ross (6.9 +/- 1.1 %/decade) sectors, slightly negative in the Indian Ocean (-1.5 +/- 1.8%/decade, and strongly negative in the Bellingshausen-Amundsen Seas sector (-9.5 +/- 1.5%/decade). For the entire ice pack, small ice increases occur in all seasons with the largest increase during autumn. On a regional basis, the trends differ season to season. During summer and fall, the trends are positive or near zero in all sectors except the Bellingshausen-Amundsen Seas sector. During winter and spring, the trends are negative or near zero in all sectors except the Ross Sea, which has positive trends in all seasons. Components of interannual variability with periods of about 3 to 5 years are regionally large, but tend to counterbalance each other in the total ice pack. The interannual variability of the annual mean sea-ice extent is only 1.6% overall, compared to 5% to 9% in each of five regional sectors. Analysis of the relation between regional sea ice extents and spatially-averaged surface temperatures over the ice pack gives an overall sensitivity between winter ice cover and temperature of -0.7% change in sea ice extent per K. For summer, some regional ice extents vary positively with temperature and others negatively. The observed increase in Antarctic sea ice cover is counter to the observed decreases in the Arctic. It is also qualitatively consistent with the counterintuitive prediction of a global atmospheric-ocean model of increasing sea ice around Antarctica with climate warming due to the stabilizing effects of increased snowfall on the Southern Ocean.

  15. Thinning increases climatic resilience of red pine

    USGS Publications Warehouse

    Magruder, Matthew; Chhin, Sophan; Palik, Brian; Bradford, John B.

    2013-01-01

    Forest management techniques such as intermediate stand-tending practices (e.g., thinning) can promote climatic resiliency in forest stands by moderating tree competition. Residual trees gain increased access to environmental resources (i.e., soil moisture, light), which in turn has the potential to buffer trees from stressful climatic conditions. The influences of climate (temperature and precipitation) and forest management (thinning method and intensity) on the productivity of red pine (Pinus resinosa Ait.) in Michigan were examined to assess whether repeated thinning treatments were able to increase climatic resiliency (i.e., maintaining productivity and reduced sensitivity to climatic stress). The cumulative productivity of each thinning treatment was determined, and it was found that thinning from below to a residual basal area of 14 m2·ha−1 produced the largest average tree size but also the second lowest overall biomass per acre. On the other hand, the uncut control and the thinning from above to a residual basal area of 28 m2·ha−1 produced the smallest average tree size but also the greatest overall biomass per acre. Dendrochronological methods were used to quantify sensitivity of annual radial growth to monthly and seasonal climatic factors for each thinning treatment type. Climatic sensitivity was influenced by thinning method (i.e., thinning from below decreased sensitivity to climatic stress more than thinning from above) and by thinning intensity (i.e., more intense thinning led to a lower climatic sensitivity). Overall, thinning from below to a residual basal area of 21 m2·ha−1 represented a potentially beneficial compromise to maximize tree size, biomass per acre, and reduced sensitivity to climatic stress, and, thus, the highest level of climatic resilience.

  16. Challenges at the Intersection of Energy, Economy, Environment, & Security and the Role of the Defense Sector in Addressing Them

    DTIC Science & Technology

    2011-11-29

    economies need in ways that are imperiling  the  climate  its environment needs. 2 The climate - change dimension • Global climate is changing rapidly compared...cloudy & clear • humid & dry • drizzles & downpours • snowfall, snowpack, & snowmelt • breezes, blizzards, tornadoes, & typhoons Climate change means...droughts • heat waves • pest outbreaks • coastal erosion • coral bleaching events • power of typhoons & hurricanes • geographic range of tropical pathogens

  17. Exploring the possibility of a common structural model measuring associations between safety climate factors and safety behaviour in health care and the petroleum sectors.

    PubMed

    Olsen, Espen

    2010-09-01

    The aim of the present study was to explore the possibility of identifying general safety climate concepts in health care and petroleum sectors, as well as develop and test the possibility of a common cross-industrial structural model. Self-completion questionnaire surveys were administered in two organisations and sectors: (1) a large regional hospital in Norway that offers a wide range of hospital services, and (2) a large petroleum company that produces oil and gas worldwide. In total, 1919 and 1806 questionnaires were returned from the hospital and petroleum organisation, with response rates of 55 percent and 52 percent, respectively. Using a split sample procedure principal factor analysis and confirmatory factor analysis revealed six identical cross-industrial measurement concepts in independent samples-five measures of safety climate and one of safety behaviour. The factors' psychometric properties were explored with satisfactory internal consistency and concept validity. Thus, a common cross-industrial structural model was developed and tested using structural equation modelling (SEM). SEM revealed that a cross-industrial structural model could be identified among health care workers and offshore workers in the North Sea. The most significant contributing variables in the model testing stemmed from organisational management support for safety and supervisor/manager expectations and actions promoting safety. These variables indirectly enhanced safety behaviour (stop working in dangerous situations) through transitions and teamwork across units, and teamwork within units as well as learning, feedback, and improvement. Two new safety climate instruments were validated as part of the study: (1) Short Safety Climate Survey (SSCS) and (2) Hospital Survey on Patient Safety Culture-short (HSOPSC-short). Based on development of measurements and structural model assessment, this study supports the possibility of a common safety climate structural model across health care and the offshore petroleum industry. 2010 Elsevier Ltd. All rights reserved.

  18. Immigration Policies and Mental Health Morbidity among Latinos: A State-Level Analysis

    PubMed Central

    Hatzenbuehler, Mark L.; Prins, Seth; Flake, Morgan; Philbin, Morgan; Frazer, Somjen; Hagen, Daniel; Hirsch, Jennifer

    2017-01-01

    Rationale Despite abundant state-level policy activity in the U.S. related to immigration, no research has examined the mental health impact of the overall policy climate for Latinos, taking into account both inclusionary and exclusionary legislation. Objective To examine associations between the state-level policy climate related to immigration and mental health outcomes among Latinos. Methods We created a multi-sectoral policy climate index that included 14 policies in four domains (immigration, race/ethnicity, language, and agricultural worker protections). We then examined the relation of this policy climate index to two mental health outcomes (days of poor mental health and psychological distress) among Latinos from 31 states in the 2012 Behavioral Risk Factor Surveillance System (BRFSS), a population-based health survey of non-institutionalized individuals aged 18 years or older. Results Individuals in states with more exclusionary immigration policies had higher rates of poor mental health days than participants in states with less exclusionary policies (RR: 1.05, 95% CI: 1.00, 1.10). The association between state policies and the rate of poor mental health days was significantly higher among Latinos versus non-Latinos (RR for interaction term: 1.03, 95% CI: 1.01, 1.06). Furthermore, Latinos in states with more exclusionary policies had 1.14 (95% CI: 1.04, 1.25) times the rate of poor mental health days than Latinos in states with less exclusionary policies. Results were robust to individual- and state-level confounders. Sensitivity analyses indicated that results were specific to immigration policies, and not indicators of state political climate or of residential segregation. No relationship was observed between the immigration policy index and psychological distress. Conclusion These results suggest that restrictive immigration policies may be detrimental to the mental health of Latinos in the United States. PMID:28043019

  19. The Role of Demand Response in Reducing Water-Related Power Plant Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Brinkman, G.; Zhou, E.; O'Connell, M.; Newmark, R. L.; Miara, A.; Cohen, S. M.

    2015-12-01

    The electric sector depends on readily available water supplies for reliable and efficient operation. Elevated water temperatures or low water levels can trigger regulatory or plant-level decisions to curtail power generation, which can affect system cost and reliability. In the past decade, dozens of power plants in the U.S. have curtailed generation due to water temperatures and water shortages. Curtailments occur during the summer, when temperatures are highest and there is greatest demand for electricity. Climate change could alter the availability and temperature of water resources, exacerbating these issues. Constructing alternative cooling systems to address vulnerabilities can be capital intensive and can also affect power plant efficiencies. Demand response programs are being implemented by electric system planners and operators to reduce and shift electricity demands from peak usage periods to other times of the day. Demand response programs can also play a role in reducing water-related power sector vulnerabilities during summer months. Traditionally, production cost modeling and demand response analyses do not include water resources. In this effort, we integrate an electricity production cost modeling framework with water-related impacts on power plants in a test system to evaluate the impacts of demand response measures on power system costs and reliability. Specifically, we i) quantify the cost and reliability implications of incorporating water resources into production cost modeling, ii) evaluate the impacts of demand response measures on reducing system costs and vulnerabilities, and iii) consider sensitivity analyses with cooling systems to highlight a range of potential benefits of demand response measures. Impacts from climate change on power plant performance and water resources are discussed. Results provide key insights to policymakers and practitioners for reducing water-related power plant vulnerabilities via lower cost methods.

  20. The Parallel System for Integrating Impact Models and Sectors (pSIMS)

    NASA Technical Reports Server (NTRS)

    Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian

    2014-01-01

    We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.

Top