Sample records for climate system properties

  1. The Dependence of Cloud Property Trend Detection on Absolute Calibration Accuracy of Passive Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.

    2016-12-01

    Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection capabilities of existing sensors.

  2. Edge states in the climate system: exploring global instabilities and critical transitions

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Bódai, Tamás

    2017-07-01

    Multistability is a ubiquitous feature in systems of geophysical relevance and provides key challenges for our ability to predict a system’s response to perturbations. Near critical transitions small causes can lead to large effects and—for all practical purposes—irreversible changes in the properties of the system. As is well known, the Earth climate is multistable: present astronomical and astrophysical conditions support two stable regimes, the warm climate we live in, and a snowball climate characterized by global glaciation. We first provide an overview of methods and ideas relevant for studying the climate response to forcings and focus on the properties of critical transitions in the context of both stochastic and deterministic dynamics, and assess strengths and weaknesses of simplified approaches to the problem. Following an idea developed by Eckhardt and collaborators for the investigation of multistable turbulent fluid dynamical systems, we study the global instability giving rise to the snowball/warm multistability in the climate system by identifying the climatic edge state, a saddle embedded in the boundary between the two basins of attraction of the stable climates. The edge state attracts initial conditions belonging to such a boundary and, while being defined by the deterministic dynamics, is the gate facilitating noise-induced transitions between competing attractors. We use a simplified yet Earth-like intermediate complexity climate model constructed by coupling a primitive equations model of the atmosphere with a simple diffusive ocean. We refer to the climatic edge states as Melancholia states and provide an extensive analysis of their features. We study their dynamics, their symmetry properties, and we follow a complex set of bifurcations. We find situations where the Melancholia state has chaotic dynamics. In these cases, we have that the basin boundary between the two basins of attraction is a strange geometric set with a nearly zero codimension, and relate this feature to the time scale separation between instabilities occurring on weather and climatic time scales. We also discover a new stable climatic state that is similar to a Melancholia state and is characterized by non-trivial symmetry properties.

  3. Feedbacks between Climate and Fire Emissions

    DTIC Science & Technology

    2011-11-29

    CH4 2. Direct emission of short-lived climate forcers - Black Carbon - Particulate organic matter 3. Production of tropospheric ozone and secondary... tropospheric ozone and secondary organic particulate matter 4. Changes in land surface properties - Black carbon on snow - Albedo Radiative Forcing of Black...lived  climate forcers:  particles 3.  Ozone   production 4. Change in  surface properties Fires Impacts on the Climate System 1. Emission of long lived

  4. Testing For The Linearity of Responses To Multiple Anthropogenic Climate Forcings

    NASA Astrophysics Data System (ADS)

    Forest, C. E.; Stone, P. H.; Sokolov, A. P.

    To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally aver- aged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous stud- ies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(TG + TS + TO) - TGSO]/TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitiv- ities of 3.0, 4.5, and 6.2 C, respectively. The values of TGSO for these three cases o are 0.52, 0.62, and 0.76 C. The dependence of linearity on climate system properties, o the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.

  5. Testing for the linearity of responses to multiple anthropogenic climate forcings

    NASA Astrophysics Data System (ADS)

    Forest, C. E.; Stone, P. H.; Sokolov, A. P.

    2001-12-01

    To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally averaged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous studies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(Δ TG + Δ TS + Δ TO) - Δ TGSO ]/ Δ TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitivities of 3.0, 4.5, and 6.2 oC, respectively. The values of Δ TGSO for these three cases are 0.52, 0.62, and 0.76 oC. The dependence of linearity on climate system properties, the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.

  6. Arctic melt ponds and energy balance in the climate system

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  7. History and Progress of GCM Simulations on Recent Mars Climate Change

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.

    2004-01-01

    The Mars Global Surveyor and Odyssey spacecraft reveal evidence that Mars may have experienced significant climate change in the recent past (105-106 Myr ago). Examples include gullies [1], cold-based tropical glaciers [2], paleolakes [3], and youthful near-surface ice [4]. Except for the gullies, the evidence for recent climate change requires ice and/or liquid water at low latitudes. An obvious question, therefore, is how is it possible for ice and/or liquid water to exist at low latitudes which is not possible in the present climate system? There are several mechanisms to consider. An episode of intense volcanic activity could alter the mean composition of the atmosphere and, therefore, the climate system. Impacts, depending on the size, composition, and velocity of the impactor are another way to dramatically alter the climate system. Polar wander and solar variability are also possibilities. However, the most promising way to change the climate is through changes in orbital properties. Mars, because of its proximity to Jupiter and lack of a large stabilizing moon, experiences much greater changes in its orbit properties than the Earth.

  8. History and Progress of GCM Simulations on Recent Mars Climate Change

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.

    2004-01-01

    The Mars Global Surveyor and Odyssey spacecraft reveal evidence that Mars may have experienced significant climate change in the recent past (10(exp 5) - 10(exp 6) Myr ago). Examples include gullies, cold-based tropical glaciers, paleolakes, and youthful near-surface ice. Except for the gullies, the evidence for recent climate change requires ice and/or liquid water at low latitudes. An obvious question, therefore, is how is it possible for ice and/or liquid water to exist at low latitudes which is not possible in the present climate system? There are several mechanisms to consider. An episode of intense volcanic activity could alter the mean composition of the atmosphere and, therefore, the climate system. Impacts, depending on the size, composition, and velocity of the impactor are another way to dramatically alter the climate system. Polar wander and solar variability are also possibilities. However, the most promising way to change the climate is through changes in orbital properties. Mars, because of its proximity to Jupiter and lack of a large stabilizing moon, experiences much greater changes in its orbit properties than the Earth.

  9. Time series of Essential Climate Variables from Satellite Data

    NASA Astrophysics Data System (ADS)

    Werscheck, M.

    2010-09-01

    Climate change is a fact. We need to know how the climate system will develop in future and how this will affect workaday life. To do this we need climate models for prediction of the future on all time scales, and models to assess the impact of the prediction results to the various sectors of social and economic life. With this knowledge we can take measures to mitigate the causes and adapt to changes. Prerequisite for this is a careful and thorough monitoring of the climate systems. Satellite data are an increasing & valuable source of information to observe the climate system. For many decades now satellite data are available to derive information about our planet earth. EUMETSAT is the European Organisation in charge of the exploitation of satellite data for meteorology and (since the year 2000) climatology. Within the EUMETSAT Satellite Application Facility (SAF) Network, comprising 8 initiatives to derive geophysical parameters from satellite, the Satellite Application Facility on Climate Monitoring (CM SAF) is especially dedicated to provide climate relevant information from satellite data. Many products as e.g. water vapour, radiation at surface and top of atmosphere, cloud properties are available, some of these for more then 2 decades. Just recently the European Space Agency (ESA) launched the Climate Change Initiative (CCI) to derive Essential Climate Variables (ECVs) from satellite data, including e.g. cloud properties, aerosol, ozone, sea surface temperature etc.. The presentation will give an overview on some relevant European activities to derive Essential Climate Variables from satellite data and the links to Global Climate Observing System (GCOS), the Global Satellite Intercalibration System (GSICS) as well as the Sustained Co-ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE CM).

  10. The Limits to Adaptation; A Systems Approach

    EPA Science Inventory

    The Limits to Adaptation: A Systems Approach. The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering...

  11. Got spirit? The spiritual climate scale, psychometric properties, benchmarking data and future directions.

    PubMed

    Doram, Keith; Chadwick, Whitney; Bokovoy, Joni; Profit, Jochen; Sexton, Janel D; Sexton, J Bryan

    2017-02-11

    Organizations that encourage the respectful expression of diverse spiritual views have higher productivity and performance, and support employees with greater organizational commitment and job satisfaction. Within healthcare, there is a paucity of studies which define or intervene on the spiritual needs of healthcare workers, or examine the effects of a pro-spirituality environment on teamwork and patient safety. Our objective was to describe a novel survey scale for evaluating spiritual climate in healthcare workers, evaluate its psychometric properties, provide benchmarking data from a large faith-based healthcare system, and investigate relationships between spiritual climate and other predictors of patient safety and job satisfaction. Cross-sectional survey study of US healthcare workers within a large, faith-based health system. Seven thousand nine hundred twenty three of 9199 eligible healthcare workers across 325 clinical areas within 16 hospitals completed our survey in 2009 (86% response rate). The spiritual climate scale exhibited good psychometric properties (internal consistency: Cronbach α = .863). On average 68% (SD 17.7) of respondents of a given clinical area expressed good spiritual climate, although assessments varied widely (14 to 100%). Spiritual climate correlated positively with teamwork climate (r = .434, p < .001) and safety climate (r = .489, p < .001). Healthcare workers reporting good spiritual climate were less likely to have intentions to leave, to be burned out, or to experience disruptive behaviors in their unit and more likely to have participated in executive rounding (p < .001 for each variable). The spiritual climate scale exhibits good psychometric properties, elicits results that vary widely by clinical area, and aligns well with other culture constructs that have been found to correlate with clinical and organizational outcomes.

  12. Ecological optimality in water-limited natural soil-vegetation systems. II - Tests and applications

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Tellers, T. E.

    1982-01-01

    The long-term optimal climatic climax soil-vegetation system is defined for several climates according to previous hypotheses in terms of two free parameters, effective porosity and plant water use coefficient. The free parameters are chosen by matching the predicted and observed average annual water yield. The resulting climax soil and vegetation properties are tested by comparison with independent observations of canopy density and average annual surface runoff. The climax properties are shown also to satisfy a previous hypothesis for short-term optimization of canopy density and water use coefficient. Using these hypotheses, a relationship between average evapotranspiration and optimum vegetation canopy density is derived and is compared with additional field observations. An algorithm is suggested by which the climax soil and vegetation properties can be calculated given only the climate parameters and the soil effective porosity. Sensitivity of the climax properties to the effective porosity is explored.

  13. Overview of the CERES Edition-4 Multilayer Cloud Property Datasets

    NASA Astrophysics Data System (ADS)

    Chang, F. L.; Minnis, P.; Sun-Mack, S.; Chen, Y.; Smith, R. A.; Brown, R. R.

    2014-12-01

    Knowledge of the cloud vertical distribution is important for understanding the role of clouds on earth's radiation budget and climate change. Since high-level cirrus clouds with low emission temperatures and small optical depths can provide a positive feedback to a climate system and low-level stratus clouds with high emission temperatures and large optical depths can provide a negative feedback effect, the retrieval of multilayer cloud properties using satellite observations, like Terra and Aqua MODIS, is critically important for a variety of cloud and climate applications. For the objective of the Clouds and the Earth's Radiant Energy System (CERES), new algorithms have been developed using Terra and Aqua MODIS data to allow separate retrievals of cirrus and stratus cloud properties when the two dominant cloud types are simultaneously present in a multilayer system. In this paper, we will present an overview of the new CERES Edition-4 multilayer cloud property datasets derived from Terra as well as Aqua. Assessment of the new CERES multilayer cloud datasets will include high-level cirrus and low-level stratus cloud heights, pressures, and temperatures as well as their optical depths, emissivities, and microphysical properties.

  14. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services

    PubMed Central

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-01-01

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers’ adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs. PMID:25225382

  15. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services.

    PubMed

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-09-23

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers' adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs.

  16. Cloud Microphysical Properties in Mesoscale Convective Systems: An Intercomparison of Three Tropical Locations

    NASA Astrophysics Data System (ADS)

    Fontaine, Emmanuel; Leroy, Delphine; Schwarzenboeck, Alfons; Coutris, Pierre; Delanoë, Julien; Protat, Alain; Dezitter, Fabien; Grandin, Alice; Strapp, John W.; Lilie, Lyle E.

    2017-04-01

    Mesoscale Convective Systems are complex cloud systems which are primarily the result of specific synoptic conditions associated with mesoscale instabilities leading to the development of cumulonimbus type clouds (Houze, 2004). These systems can last several hours and can affect human societies in various ways. In general, weather and climate models use simplistic schemes to describe ice hydrometeors' properties. However, MCS are complex cloud systems where the dynamic, radiative and precipitation processes depend on spatiotemporal location in the MCS (Houze, 2004). As a consequence, hydrometeor growth processes in MCS vary in space and time, thereby impacting shape and concentration of ice crystals and finally CWC. As a consequence, differences in the representation of ice properties in models (Li et al., 2007, 2005) lead to significant disagreements in the quantification of ice cloud effects on climate evolution (Intergovernmental Panel on Climate Change Fourth Assessment Report). An accurate estimation of the spatiotemporal CWC distribution is therefore a key parameter for evaluating and improving numerical weather prediction (Stephens et al., 2002). The main purpose of this study is to show ice microphysical properties of MCS observed in three different locations in the tropical atmosphere: West-African continent, Indian Ocean, and Northern Australia. An intercomparison study is performed in order to quantify how similar or different are the ice hydrometeors' properties in these three regions related to radar reflectivity factors and temperatures observed in respective MCS.

  17. Geometric state space uncertainty as a new type of uncertainty addressing disparity in ';emergent properties' between real and modeled systems

    NASA Astrophysics Data System (ADS)

    Montero, J. T.; Lintz, H. E.; Sharp, D.

    2013-12-01

    Do emergent properties that result from models of complex systems match emergent properties from real systems? This question targets a type of uncertainty that we argue requires more attention in system modeling and validation efforts. We define an ';emergent property' to be an attribute or behavior of a modeled or real system that can be surprising or unpredictable and result from complex interactions among the components of a system. For example, thresholds are common across diverse systems and scales and can represent emergent system behavior that is difficult to predict. Thresholds or other types of emergent system behavior can be characterized by their geometry in state space (where state space is the space containing the set of all states of a dynamic system). One way to expedite our growing mechanistic understanding of how emergent properties emerge from complex systems is to compare the geometry of surfaces in state space between real and modeled systems. Here, we present an index (threshold strength) that can quantify a geometric attribute of a surface in state space. We operationally define threshold strength as how strongly a surface in state space resembles a step or an abrupt transition between two system states. First, we validated the index for application in greater than three dimensions of state space using simulated data. Then, we demonstrated application of the index in measuring geometric state space uncertainty between a real system and a deterministic, modeled system. In particular, we looked at geometric space uncertainty between climate behavior in 20th century and modeled climate behavior simulated by global climate models (GCMs) in the Coupled Model Intercomparison Project phase 5 (CMIP5). Surfaces from the climate models came from running the models over the same domain as the real data. We also created response surfaces from a real, climate data based on an empirical model that produces a geometric surface of predicted values in state space. We used a kernel regression method designed to capture the geometry of real data pattern without imposing shape assumptions a priori on the data; this kernel regression method is known as Non-parametric Multiplicative Regression (NPMR). We found that quantifying and comparing a geometric attribute in more than three dimensions of state space can discern whether the emergent nature of complex interactions in modeled systems matches that of real systems. Further, this method has potentially wider application in contexts where searching for abrupt change or ';action' in any hyperspace is desired.

  18. Putting the Weather Back Into Climate

    NASA Astrophysics Data System (ADS)

    Smith, Leonard A.; Stainforth, David A.

    2014-05-01

    The literature contains a variety of definitions of climate, and the emphasis in these definitions has changed over time. Defining climate as a mean value is, of course, both limiting and misleading; definitions of climate based on averages have been deprecated as far back as 1931 [1]. In the context of current efforts to produce climate predictions for use in climate adaptation, it is timely to consider how well various definitions of climate serve the research for applications community. From a nonlinear dynamical systems perspective it is common to associate climate with a system's natural measure (or "attractor" if such an object exists). Such a definition is not easily applied to physical systems where we have limited observations over a restricted period of time; the duration of 30 years is often mentioned today and the origin of this period is discussed. Given a dynamic system in which parameters are evolving in time, the view of climate as a natural measure becomes problematic as, by definition, there may be no attractor per se. Attractors defined for particular parameter values cannot be expected to have any association with the probability of states under transient changes in the values of that parameter. Alternatively, distributions may be determined which reflect the transient situation, based on (rather broad) additional assumptions regarding the state of the system at some point in the past (say, an ice age planet vs an interglacial planet). Such distributions reflect many of the properties one would hope to be represented in a generalised definition of the system's climate. Here we trace how definitions of climate have changed over time and highlight a number of properties of definitions of climate which would facilitate common use across researchers, from observers to theoreticians, from climate modellers to mathematicians. We show while periodic changes in parameter values (such as those found in an annual cycle or a diurnal cycle) are easily incorporated within the traditional nonlinear dynamical systems view, non-periodic or secular changes (such as those due to increasing atmospheric greenhouse gas concentrations) yield an open challenge. We argue the need both for clarifying and for clearly meeting the open challenges of defining climate in relation to the state of an evolving system, and suggest a path forward. [1] Miller, A.A., 1931: Climatology. First Ed. Methuen.

  19. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.

    PubMed

    Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli

    2017-10-01

    Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (r C , Mg C ha -1  yr -1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.

  20. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability.

    PubMed

    Williams, Alwyn; Jordan, Nicholas R; Smith, Richard G; Hunter, Mitchell C; Kammerer, Melanie; Kane, Daniel A; Koide, Roger T; Davis, Adam S

    2018-05-31

    Climate models predict increasing weather variability, with negative consequences for crop production. Conservation agriculture (CA) may enhance climate resilience by generating certain soil improvements. However, the rate at which these improvements accrue is unclear, and some evidence suggests CA can lower yields relative to conventional systems unless all three CA elements are implemented: reduced tillage, sustained soil cover, and crop rotational diversity. These cost-benefit issues are important considerations for potential adopters of CA. Given that CA can be implemented across a wide variety of regions and cropping systems, more detailed and mechanistic understanding is required on whether and how regionally-adapted CA can improve soil properties while minimizing potential negative crop yield impacts. Across four US states, we assessed short-term impacts of regionally-adapted CA systems on soil properties and explored linkages with maize and soybean yield stability. Structural equation modeling revealed increases in soil organic matter generated by cover cropping increased soil cation exchange capacity, which improved soybean yield stability. Cover cropping also enhanced maize minimum yield potential. Our results demonstrate individual CA elements can deliver rapid improvements in soil properties associated with crop yield stability, suggesting that regionally-adapted CA may play an important role in developing high-yielding, climate-resilient agricultural systems.

  1. A CERES-like Cloud Property Climatology Using AVHRR Data

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Bedka, K. M.; Yost, C. R.; Trepte, Q.; Bedka, S. T.; Sun-Mack, S.; Doelling, D.

    2015-12-01

    Clouds affect the climate system by modulating the radiation budget and distributing precipitation. Variations in cloud patterns and properties are expected to accompany changes in climate. The NASA Clouds and the Earth's Radiant Energy System (CERES) Project developed an end-to-end analysis system to measure broadband radiances from a radiometer and retrieve cloud properties from collocated high-resolution MODerate-resolution Imaging Spectroradiometer (MODIS) data to generate a long-term climate data record of clouds and clear-sky properties and top-of-atmosphere radiation budget. The first MODIS was not launched until 2000, so the current CERES record is only 15 years long at this point. The core of the algorithms used to retrieve the cloud properties from MODIS is based on the spectral complement of the Advanced Very High Resolution Radiometer (AVHRR), which has been aboard a string of satellites since 1978. The CERES cloud algorithms were adapted for application to AVHRR data and have been used to produce an ongoing CERES-like cloud property and surface temperature product that includes an initial narrowband-based radiation budget. This presentation will summarize this new product, which covers nearly 37 years, and its comparability with cloud parameters from CERES, CALIPSO, and other satellites. Examples of some applications of this dataset are given and the potential for generating a long-term radiation budget CDR is also discussed.

  2. The Limits to Adaptation: A Systems Approach

    EPA Science Inventory

    The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering parameters), resource constraints (expressed th...

  3. High sensitivity of Indian summer monsoon to Middle East dust absorptive properties.

    PubMed

    Jin, Qinjian; Yang, Zong-Liang; Wei, Jiangfeng

    2016-07-28

    The absorptive properties of dust aerosols largely determine the magnitude of their radiative impacts on the climate system. Currently, climate models use globally constant values of dust imaginary refractive index (IRI), a parameter describing the dust absorption efficiency of solar radiation, although it is highly variable. Here we show with model experiments that the dust-induced Indian summer monsoon (ISM) rainfall differences (with dust minus without dust) change from -9% to 23% of long-term climatology as the dust IRI is changed from zero to the highest values used in the current literature. A comparison of the model results with surface observations, satellite retrievals, and reanalysis data sets indicates that the dust IRI values used in most current climate models are too low, tending to significantly underestimate dust radiative impacts on the ISM system. This study highlights the necessity for developing a parameterization of dust IRI for climate studies.

  4. Noise-induced transitions and shifts in a climate-vegetation feedback model.

    PubMed

    Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B

    2018-04-01

    Motivated by the extremely important role of the Earth's vegetation dynamics in climate changes, we study the stochastic variability of a simple climate-vegetation system. In the case of deterministic dynamics, the system has one stable equilibrium and limit cycle or two stable equilibria corresponding to two opposite (cold and warm) climate-vegetation states. These states are divided by a separatrix going across a point of unstable equilibrium. Some possible stochastic scenarios caused by different externally induced natural and anthropogenic processes inherit properties of deterministic behaviour and drastically change the system dynamics. We demonstrate that the system transitions across its separatrix occur with increasing noise intensity. The climate-vegetation system therewith fluctuates, transits and localizes in the vicinity of its attractor. We show that this phenomenon occurs within some critical range of noise intensities. A noise-induced shift into the range of smaller global average temperatures corresponding to substantial oscillations of the Earth's vegetation cover is revealed. Our analysis demonstrates that the climate-vegetation interactions essentially contribute to climate dynamics and should be taken into account in more precise and complex models of climate variability.

  5. Characterization of Wildfire-Induced Aerosol Emissions From the Maritime Continent Peatland and Central African Dry Savannah with MISR and CALIPSO Aerosol Products

    NASA Astrophysics Data System (ADS)

    Lee, Huikyo; Jeong, Su-Jong; Kalashnikova, Olga; Tosca, Mika; Kim, Sang-Woo; Kug, Jong-Seong

    2018-03-01

    Aerosol plumes from wildfires affect the Earth's climate system through regulation of the radiative budget and clouds. However, optical properties of aerosols from individual wildfire smoke plumes and their resultant impact on regional climate are highly variable. Therefore, there is a critical need for observations that can constrain the partitioning between different types of aerosols. Here we present the apparent influence of regional ecosystem types on optical properties of wildfire-induced aerosols based on remote sensing observations from two satellite instruments and three ground stations. The independent observations commonly show that the ratio of the absorbing aerosols is significantly lower in smoke plumes from the Maritime Continent than those from Central Africa, so that their impacts on regional climate are different. The observed light-absorbing properties of wildfire-induced aerosols are explained by dominant ecosystem types such as wet peatlands for the Maritime Continent and dry savannah for Central Africa, respectively. These results suggest that the wildfire-aerosol-climate feedback processes largely depend on the terrestrial environments from which the fires originate. These feedbacks also interact with climate under greenhouse warming. Our analysis shows that aerosol optical properties retrieved based on satellite observations are critical in assessing wildfire-induced aerosols forcing in climate models. The optical properties of carbonaceous aerosol mixtures used by state-of-the-art chemistry climate models may overestimate emissions for absorbing aerosols from wildfires over the Maritime Continent.

  6. Quantifying the Climate-Scale Accuracy of Satellite Cloud Retrievals

    NASA Astrophysics Data System (ADS)

    Roberts, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Liang, L.; Di Girolamo, L.

    2014-12-01

    Instrument calibration and cloud retrieval algorithms have been developed to minimize retrieval errors on small scales. However, measurement uncertainties and assumptions within retrieval algorithms at the pixel level may alias into decadal-scale trends of cloud properties. We first, therefore, quantify how instrument calibration changes could alias into cloud property trends. For a perfect observing system the climate trend accuracy is limited only by the natural variability of the climate variable. Alternatively, for an actual observing system, the climate trend accuracy is additionally limited by the measurement uncertainty. Drifts in calibration over time may therefore be disguised as a true climate trend. We impose absolute calibration changes to MODIS spectral reflectance used as input to the CERES Cloud Property Retrieval System (CPRS) and run the modified MODIS reflectance through the CPRS to determine the sensitivity of cloud properties to calibration changes. We then use these changes to determine the impact of instrument calibration changes on trend uncertainty in reflected solar cloud properties. Secondly, we quantify how much cloud retrieval algorithm assumptions alias into cloud optical retrieval trends by starting with the largest of these biases: the plane-parallel assumption in cloud optical thickness (τC) retrievals. First, we collect liquid water cloud fields obtained from Multi-angle Imaging Spectroradiometer (MISR) measurements to construct realistic probability distribution functions (PDFs) of 3D cloud anisotropy (a measure of the degree to which clouds depart from plane-parallel) for different ISCCP cloud types. Next, we will conduct a theoretical study with dynamically simulated cloud fields and a 3D radiative transfer model to determine the relationship between 3D cloud anisotropy and 3D τC bias for each cloud type. Combining these results provides distributions of 3D τC bias by cloud type. Finally, we will estimate the change in frequency of occurrence of cloud types between two decades and will have the information needed to calculate the total change in 3D optical thickness bias between two decades. If we uncover aliases in this study, the results will motivate the development and rigorous testing of climate specific cloud retrieval algorithms.

  7. Atmospheric sensitivity to land surface changes: comparing the impact of albedo, roughness, and evaporative resistance on near-surface air temperature using an idealized land model.

    NASA Astrophysics Data System (ADS)

    Lague, M. M.; Swann, A. L. S.; Bonan, G. B.

    2017-12-01

    Past studies have demonstrated how changes in vegetation can impact the atmosphere; however, it is often difficult to identify the exact physical pathway through which vegetation changes drive an atmospheric response. Surface properties (such as vegetation color, or height) control surface energy fluxes, which feed back on the atmosphere on both local and global scales by modifying temperatures, cloud cover, and energy gradients. Understanding how land surface properties influence energy fluxes is crucial for improving our understanding of how vegetation change - past, present, and future - impacts the atmosphere, global climate, and people. We explore the sensitivity of the atmosphere to perturbations of three land surface properties - albedo, roughness, and evaporative resistance - using an idealized land model coupled to an Earth System Model. We derive a relationship telling us how large a change in each surface property is required to drive a local 0.1 K change in 2m air temperature. Using this idealized framework, we are able to separate the influence on the atmosphere of each individual surface property. We demonstrate that the impact of each surface property on the atmosphere is spatially variable - that is, a similar change in vegetation can have different climate impacts if made in different locations. This analysis not only improves our understanding of how the land system can influence climate, but also provides us with a set of theoretical limits on the potential climate impact of arbitrary vegetation change (natural or anthropogenic).

  8. Determinants of Low Cloud Properties - An Artificial Neural Network Approach Using Observation Data Sets

    NASA Astrophysics Data System (ADS)

    Andersen, Hendrik; Cermak, Jan

    2015-04-01

    This contribution studies the determinants of low cloud properties based on the application of various global observation data sets in machine learning algorithms. Clouds play a crucial role in the climate system as their radiative properties and precipitation patterns significantly impact the Earth's energy balance. Cloud properties are determined by environmental conditions, as cloud formation requires the availability of water vapour ("precipitable water") and condensation nuclei in sufficiently saturated conditions. A main challenge in the research of aerosol-cloud interactions is the separation of aerosol effects from meteorological influence. To gain understanding of the processes that govern low cloud properties in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. In this study, artificial neural networks are used to relate a selection of predictors (meteorological parameters, aerosol loading) to a set of predictands (cloud microphysical and optical properties). As meteorological parameters, wind direction and velocity, sea level pressure, static stability of the lower troposphere, atmospheric water vapour and temperature at the surface are used (re-analysis data by the European Centre for Medium-Range Weather Forecasts). In addition to meteorological conditions, aerosol loading is used as a predictor of cloud properties (MODIS collection 6 aerosol optical depth). The statistical model reveals significant relationships between predictors and predictands and is able to represent the aerosol-cloud-meteorology system better than frequently used bivariate relationships. The most important predictors can be identified by the additional error when excluding one predictor at a time. The sensitivity of each predictand to each of the predictors is analyzed.

  9. Global soil-climate-biome diagram: linking soil properties to climate and biota

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Yang, Y.; Fang, J.

    2017-12-01

    As a critical component of the Earth system, soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate, and human security. Despite significant progress in digital soil mapping techniques and the rapidly growing quantity of observed soil information, quantitative linkages between soil properties, climate and biota at the global scale remain unclear. By compiling a large global soil database, we mapped seven major soil properties (bulk density [BD]; sand, silt and clay fractions; soil pH; soil organic carbon [SOC] density [SOCD]; and soil total nitrogen [STN] density [STND]) based on machine learning algorithms (regional random forest [RF] model) and quantitatively assessed the linkage between soil properties, climate and biota at the global scale. Our results demonstrated a global soil-climate-biome diagram, which improves our understanding of the strong correspondence between soils, climate and biomes. Soil pH decreased with greater mean annual precipitation (MAP) and lower mean annual temperature (MAT), and the critical MAP for the transition from alkaline to acidic soil pH decreased with decreasing MAT. Specifically, the critical MAP ranged from 400-500 mm when the MAT exceeded 10 °C but could decrease to 50-100 mm when the MAT was approximately 0 °C. SOCD and STND were tightly linked; both increased in accordance with lower MAT and higher MAP across terrestrial biomes. Global stocks of SOC and STN were estimated to be 788 ± 39.4 Pg (1015 g, or billion tons) and 63 ± 3.3 Pg in the upper 30-cm soil layer, respectively, but these values increased to 1654 ± 94.5 Pg and 133 ± 7.8 Pg in the upper 100-cm soil layer, respectively. These results reveal quantitative linkages between soil properties, climate and biota at the global scale, suggesting co-evolution of the soil, climate and biota under conditions of global environmental change.

  10. Observing Climate with Satellites - Are We on Thin Ice?

    NASA Technical Reports Server (NTRS)

    Tucker, Compton

    2012-01-01

    The Earth s climate is determined by irradiance from the Sun and properties of the atmosphere, oceans, and land that determine the reflection, absorption, and emission of energy within our atmosphere and at the Earth s surface. Since the 1970s, Earth-viewing satellites have complimented non-satellite geophysical observations with consistent, quantitative, and spatially-continuous measurements that have led to an unprecedented understanding of the Earth s climate system. I will describe the Earth s climate system as elaborated by satellite and in situ observations, review arguments against global warming, and show the convergence of evidence for human-caused warming of our planet.

  11. Promise and Capability of NASA's Earth Observing System to Monitor Human-Induced Climate Variations

    NASA Technical Reports Server (NTRS)

    King, M. D.

    2003-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. This sensor and multi-platform observing system is especially well suited to observing detailed interdisciplinary components of the Earth s surface and atmosphere in and around urban environments, including aerosol optical properties, cloud optical and microphysical properties of both liquid water and ice clouds, land surface reflectance, fire occurrence, and many other properties that influence the urban environment and are influenced by them. In this presentation I will summarize the current capabilities of MODIS and other EOS sensors currently in orbit to study human-induced climate variations.

  12. Decomposing the uncertainty in climate impact projections of Dynamic Vegetation Models: a test with the forest models LANDCLIM and FORCLIM

    NASA Astrophysics Data System (ADS)

    Cailleret, Maxime; Snell, Rebecca; von Waldow, Harald; Kotlarski, Sven; Bugmann, Harald

    2015-04-01

    Different levels of uncertainty should be considered in climate impact projections by Dynamic Vegetation Models (DVMs), particularly when it comes to managing climate risks. Such information is useful to detect the key processes and uncertainties in the climate model - impact model chain and may be used to support recommendations for future improvements in the simulation of both climate and biological systems. In addition, determining which uncertainty source is dominant is an important aspect to recognize the limitations of climate impact projections by a multi-model ensemble mean approach. However, to date, few studies have clarified how each uncertainty source (baseline climate data, greenhouse gas emission scenario, climate model, and DVM) affects the projection of ecosystem properties. Focusing on one greenhouse gas emission scenario, we assessed the uncertainty in the projections of a forest landscape model (LANDCLIM) and a stand-scale forest gap model (FORCLIM) that is caused by linking climate data with an impact model. LANDCLIM was used to assess the uncertainty in future landscape properties of the Visp valley in Switzerland that is due to (i) the use of different 'baseline' climate data (gridded data vs. data from weather stations), and (ii) differences in climate projections among 10 GCM-RCM chains. This latter point was also considered for the projections of future forest properties by FORCLIM at several sites along an environmental gradient in Switzerland (14 GCM-RCM chains), for which we also quantified the uncertainty caused by (iii) the model chain specific statistical properties of the climate time-series, and (iv) the stochasticity of the demographic processes included in the model, e.g., the annual number of saplings that establish, or tree mortality. Using methods of variance decomposition analysis, we found that (i) The use of different baseline climate data strongly impacts the prediction of forest properties at the lowest and highest, but not so much at medium elevations. (ii) Considering climate change, the variability that is due to the GCM-RCM chains is much greater than the variability induced by the uncertainty in the initial climatic conditions. (iii) The uncertainties caused by the intrinsic stochasticity in the DVMs and by the random generation of the climate time-series are negligible. Overall, our results indicate that DVMs are quite sensitive to the climate data, highlighting particularly (1) the limitations of using one single multi-model average climate change scenario in climate impact studies and (2) the need to better consider the uncertainty in climate model outputs for projecting future vegetation changes.

  13. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2016-02-01

    The effects of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The null-space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of predictive uncertainty (due to soil property (parametric) uncertainty) and the inter-annual climate variability due to year to year differences in CESM climate forcings. After calibrating to measured borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant predictive uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Inter-annual climate variability in projected soil moisture content and Stefan number are small. A volume- and time-integrated Stefan number decreases significantly, indicating a shift in subsurface energy utilization in the future climate (latent heat of phase change becomes more important than heat conduction). Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we quantify the relative magnitude of soil property uncertainty to another source of permafrost uncertainty, structural climate model uncertainty. We show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.

  14. Linking plant and ecosystem functional biogeography.

    PubMed

    Reichstein, Markus; Bahn, Michael; Mahecha, Miguel D; Kattge, Jens; Baldocchi, Dennis D

    2014-09-23

    Classical biogeographical observations suggest that ecosystems are strongly shaped by climatic constraints in terms of their structure and function. On the other hand, vegetation function feeds back on the climate system via biosphere-atmosphere exchange of matter and energy. Ecosystem-level observations of this exchange reveal very large functional biogeographical variation of climate-relevant ecosystem functional properties related to carbon and water cycles. This variation is explained insufficiently by climate control and a classical plant functional type classification approach. For example, correlations between seasonal carbon-use efficiency and climate or environmental variables remain below 0.6, leaving almost 70% of variance unexplained. We suggest that a substantial part of this unexplained variation of ecosystem functional properties is related to variations in plant and microbial traits. Therefore, to progress with global functional biogeography, we should seek to understand the link between organismic traits and flux-derived ecosystem properties at ecosystem observation sites and the spatial variation of vegetation traits given geoecological covariates. This understanding can be fostered by synergistic use of both data-driven and theory-driven ecological as well as biophysical approaches.

  15. Linking plant and ecosystem functional biogeography

    PubMed Central

    Reichstein, Markus; Bahn, Michael; Mahecha, Miguel D.; Kattge, Jens; Baldocchi, Dennis D.

    2014-01-01

    Classical biogeographical observations suggest that ecosystems are strongly shaped by climatic constraints in terms of their structure and function. On the other hand, vegetation function feeds back on the climate system via biosphere–atmosphere exchange of matter and energy. Ecosystem-level observations of this exchange reveal very large functional biogeographical variation of climate-relevant ecosystem functional properties related to carbon and water cycles. This variation is explained insufficiently by climate control and a classical plant functional type classification approach. For example, correlations between seasonal carbon-use efficiency and climate or environmental variables remain below 0.6, leaving almost 70% of variance unexplained. We suggest that a substantial part of this unexplained variation of ecosystem functional properties is related to variations in plant and microbial traits. Therefore, to progress with global functional biogeography, we should seek to understand the link between organismic traits and flux-derived ecosystem properties at ecosystem observation sites and the spatial variation of vegetation traits given geoecological covariates. This understanding can be fostered by synergistic use of both data-driven and theory-driven ecological as well as biophysical approaches. PMID:25225392

  16. Studying Weather and Climate Extremes in a Non-stationary Framework

    NASA Astrophysics Data System (ADS)

    Wu, Z.

    2010-12-01

    The study of weather and climate extremes often uses the theory of extreme values. Such a detection method has a major problem: to obtain the probability distribution of extremes, one has to implicitly assume the Earth’s climate is stationary over a long period within which the climatology is defined. While such detection makes some sense in a purely statistical view of stationary processes, it can lead to misleading statistical properties of weather and climate extremes caused by long term climate variability and change, and may also cause enormous difficulty in attributing and predicting these extremes. To alleviate this problem, here we report a novel non-stationary framework for studying weather and climate extremes in a non-stationary framework. In this new framework, the weather and climate extremes will be defined as timescale-dependent quantities derived from the anomalies with respect to non-stationary climatologies of different timescales. With this non-stationary framework, the non-stationary and nonlinear nature of climate system will be taken into account; and the attribution and the prediction of weather and climate extremes can then be separated into 1) the change of the statistical properties of the weather and climate extremes themselves and 2) the background climate variability and change. The new non-stationary framework will use the ensemble empirical mode decomposition (EEMD) method, which is a recent major improvement of the Hilbert-Huang Transform for time-frequency analysis. Using this tool, we will adaptively decompose various weather and climate data from observation and climate models in terms of the components of the various natural timescales contained in the data. With such decompositions, the non-stationary statistical properties (both spatial and temporal) of weather and climate anomalies and of their corresponding climatologies will be analyzed and documented.

  17. The associations between work-life balance behaviours, teamwork climate and safety climate: cross-sectional survey introducing the work-life climate scale, psychometric properties, benchmarking data and future directions.

    PubMed

    Sexton, J Bryan; Schwartz, Stephanie P; Chadwick, Whitney A; Rehder, Kyle J; Bae, Jonathan; Bokovoy, Joanna; Doram, Keith; Sotile, Wayne; Adair, Kathryn C; Profit, Jochen

    2017-08-01

    Improving the resiliency of healthcare workers is a national imperative, driven in part by healthcare workers having minimal exposure to the skills and culture to achieve work-life balance (WLB). Regardless of current policies, healthcare workers feel compelled to work more and take less time to recover from work. Satisfaction with WLB has been measured, as has work-life conflict, but how frequently healthcare workers engage in specific WLB behaviours is rarely assessed. Measurement of behaviours may have advantages over measurement of perceptions; behaviours more accurately reflect WLB and can be targeted by leaders for improvement. 1. To describe a novel survey scale for evaluating work-life climate based on specific behavioural frequencies in healthcare workers.2. To evaluate the scale's psychometric properties and provide benchmarking data from a large healthcare system.3. To investigate associations between work-life climate, teamwork climate and safety climate. Cross-sectional survey study of US healthcare workers within a large healthcare system. 7923 of 9199 eligible healthcare workers across 325 work settings within 16 hospitals completed the survey in 2009 (86% response rate). The overall work-life climate scale internal consistency was Cronbach α=0.790. t-Tests of top versus bottom quartile work settings revealed that positive work-life climate was associated with better teamwork climate, safety climate and increased participation in safety leadership WalkRounds with feedback (p<0.001). Univariate analysis of variance demonstrated differences that varied significantly in WLB between healthcare worker role, hospitals and work setting. The work-life climate scale exhibits strong psychometric properties, elicits results that vary widely by work setting, discriminates between positive and negative workplace norms, and aligns well with other culture constructs that have been found to correlate with clinical outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Improving Constraints on Climate System Properties withAdditional Data and New Statistical and Sampling Methods

    NASA Astrophysics Data System (ADS)

    Forest, C. E.; Libardoni, A. G.; Sokolov, A. P.; Monier, E.

    2017-12-01

    We use the updated MIT Earth System Model (MESM) to derive the joint probability distribution function for Equilibrium Climate sensitivity (S), an effective heat diffusivity (Kv), and the net aerosol forcing (Faer). Using a new 1800-member ensemble of MESM runs, we derive PDFs by comparing model outputs against historical observations of surface temperature and global mean ocean heat content. We focus on how changes in (i) the MESM model, (ii) recent surface temperature and ocean heat content observations, and (iii) estimates of internal climate variability will all contribute to uncertainties. We show that estimates of S increase and Faer is less negative. These shifts result partly from new model forcing inputs but also from including recent temperature records that lead to higher values of S and Kv. We show that the parameter distributions are sensitive to the internal variability in the climate system. When considering these factors, we derive our best estimate for the joint probability distribution for the climate system properties. We estimate the 90-percent confidence intervals for climate sensitivity as 2.7-5.4 oC with a mode of 3.5 oC, for Kv as 1.9-23.0 cm2 s-1 with a mode of 4.41 cm2 s-1, and for Faer as -0.4 - -0.04 Wm-2 with a mode of -0.25 Wm-2. Lastly, we estimate TCR to be between 1.4 and 2.1 oC with a mode of 1.8 oC.

  19. To what extent can global warming events influence scaling properties of climatic fluctuations in glacial periods?

    NASA Astrophysics Data System (ADS)

    Alberti, Tommaso; Lepreti, Fabio; Vecchio, Antonio; Carbone, Vincenzo

    2017-04-01

    The Earth's climate is an extremely unstable complex system consisting of nonlinear and still rather unknown interactions among atmosphere, land surface, ice and oceans. The system is mainly driven by solar irradiance, even if internal components as volcanic eruptions and human activities affect the atmospheric composition thus acting as a driver for climate changes. Since the extreme climate variability is the result of a set of phenomena operating from daily to multi-millennial timescales, with different correlation times, a study of the scaling properties of the system can evidence non-trivial persistent structures, internal or external physical processes. Recently, the scaling properties of the paleoclimate changes have been analyzed by distinguish between interglacial and glacial climates [Shao and Ditlevsen, 2016]. The results show that the last glacial record (20-120 kyr BP) presents some elements of multifractality, while the last interglacial period (0-10 kyr BP), say the Holocene period, seems to be characterized by a mono-fractal structure. This is associated to the absence of Dansgaard-Oeschger (DO) events in the interglacial climate that could be the cause for the absence of multifractality. This hypothesis is supported by the analysis of the period between 18 and 27 kyr BP, i.e. during the Last Glacial Period, in which a single DO event have been registred. Through the Empirical Mode Decomposition (EMD) we were able to detect a timescale separation within the Last Glacial Period (20-120 kyr BP) in two main components: a high-frequency component, related to the occurrence of DO events, and a low-frequency one, associated to the cooling/warming phase switch [Alberti et al., 2014]. Here, we investigate the scaling properties of the climate fluctuations within the Last Glacial Period, where abrupt climate changes, characterized by fast increase of temperature usually called Dansgaard-Oeschger (DO) events, have been particularly pronounced. By using the MultiFractal Detrended Fluctuation Analysis (MF-DFA), we show that a multifractal structure exists for both high- and low-frequency fluctuations in Northern and Southern hemispheres, with different scaling exponents, thus indicating a long-range persistence of the climatic variability within the whole Last Glacial Period. Our results evidence that both DO events and cooling/warming cycles must be considered as processes of the internal component of the Earth's climate, rather than processes related to external forcings. This study should be helpful for investigation of the internal origin of climate changes. References Shao, Z.G. and Ditlevsen, P.D., Nature Commun., 7, 10951, (2016). Alberti, T., Lepreti, F., Vecchio, A., Bevacqua, E., Capparelli, V. and Carbone, V., Clim. Past, 10, 1751 (2014).

  20. Moisture performance of insulated, raised, wood-frame floors : a study of twelve houses in southern Louisiana

    Treesearch

    Samuel V. Glass; Charles G. Carll; Jay P. Curole; Matthew D. Voitier

    2010-01-01

    In flood-prone areas, elevating a building’s floor system above the anticipated flood level can significantly limit the extent of property damage associated with flooding. In hot and humid climates, such as the Gulf Coast region, raised floor systems may, however, be at risk for seasonal moisture accumulation, as the majority of residential buildings in such climates...

  1. It's a Sooty Problem: Black Carbon and Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with solar radiation, clouds and precipitation is lacking despite decades of research. Just recently we recognized that understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 yrs ago that the global CO2 levels are rising, posing thread to our climate, we need an may of satellites, surface networks of radiometers, elaborated laboratory and field experiments coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week), variability of the chemical composition and complex chemical and physical processes in the atmosphere. The result is a heterogeneous distribution of aerosol and their properties. The new generation of satellites and surface networks of radiometers provides exciting opportunities to measure the aerosol properties and their interaction with clouds and climate. However farther development in the satellite capability, aerosol chemical models and climate models is needed to fully decipher the aerosol secrets with accuracy required to predict future climates.

  2. Paleo-oceanography of the Norwegian Sea during the past 130,000 years: Coccolithophorid and foraminferal data

    USGS Publications Warehouse

    Belanger, P.E.

    1982-01-01

    Faunal, floral and sedimentological properties of Norwegian Sea core V27-86 were examined in order to reconstruct the paleo-oceanographic history of this region. Downcore variations in the relative abundance of three microfossil groups and several sediment properties exhibit three different climate response patterns (CRP). Each pattern is judged to represent the response of a different part of the climate system. The covariance patterns among coccoliths, henthic foraminifera, and other properties suggest that the Norwegian Sea has been ice-free and productive during the present interhlacial. the penultimate interglacial (isotopic-stage se) and at least partially ice-free during an intermediate climatic regime (stages sa-d). A maximum change in these measures occurs at the boundary between isotopic stage 5a (an intermediate climatic regime)and isotopic stage 4 (a glacial climatic regime). In contrast, planktic foraminiferal assemblages and oxygen isotope measurements on planktic foraminifera show a major change at the end of stage 5e (the penultimate interglacial). The contrasting behavior of these two sets of observations is explained by a model which postulates a low-salinity surface layer 115,000 to 75,000 years ago (stages 5a-d).

  3. AN INITIAL ASSESSMENT OF THE CLIMATE IMPACT OF SECONDARY ORGANIC AEROSOLS

    NASA Astrophysics Data System (ADS)

    O'Donnell, D.; Feichter, J.

    2009-12-01

    Atmospheric aerosols influence the Earth’s climate by absorbing and scattering solar radiation (the direct effect) and by altering the properties of clouds (indirect effects). Measurements have shown that a substantial fraction of the tropospheric aerosol burden consists of organic compounds. Hundreds of different organic species have been identified. While progress has been made in the understanding of the role of certain aerosol types in the climate system, that of organic aerosols remains poorly understood and the climate influences resulting from their presence poorly constrained. Organic aerosols are emitted directly from the surface (primary organic aerosols, POA) and are also formed in the atmosphere from gaseous precursors by oxidation reactions (secondary organic aerosols, SOA). Both biogenic and anthropogenic precursors have been identified. Biogenic emissions of aerosol precursors are known to be climate-dependent. Thus, a bi-directional dependency exists between the biosphere and the atmosphere, whereby aerosols of biogenic origin influence the climate system, which in turn affects biogenic aerosol precursor production. This study builds upon the global aerosol-climate model ECHAM5/HAM and adds techniques to model SOA as well as the necessary global emission inventories. Emission of biogenic precursors is calculated online. Formation of SOA is modeled by the well-known two-product model of SOA formation. SOA is subject to the same aerosol microphysics and sink processes as other modeled species (sulphate, black carbon, primary organic carbon, sea salt and dust). The aerosol radiative effects are calculated on a size resolved basis, and the aerosol scheme is coupled to the model cloud microphysics, permitting estimation of both direct and indirect aerosol effects. The following results will be discussed: (i) Estimation of the direct and indirect effects of biogenic and anthropogenic SOA, (ii) Estimation of the sign and magnitude of the biospheric feedback (through biogenic aerosol precursor emission) on the climate system, and (iii) Identification of physical processes and aerosol physical properties that need further experimental investigation in order to improve our understanding of the climate impact of SOA

  4. Tropical cyclogenesis in warm climates simulated by a cloud-system resolving model

    NASA Astrophysics Data System (ADS)

    Fedorov, Alexey V.; Muir, Les; Boos, William R.; Studholme, Joshua

    2018-03-01

    Here we investigate tropical cyclogenesis in warm climates, focusing on the effect of reduced equator-to-pole temperature gradient relevant to past equable climates and, potentially, to future climate change. Using a cloud-system resolving model that explicitly represents moist convection, we conduct idealized experiments on a zonally periodic equatorial β-plane stretching from nearly pole-to-pole and covering roughly one-fifth of Earth's circumference. To improve the representation of tropical cyclogenesis and mean climate at a horizontal resolution that would otherwise be too coarse for a cloud-system resolving model (15 km), we use the hypohydrostatic rescaling of the equations of motion, also called reduced acceleration in the vertical. The simulations simultaneously represent the Hadley circulation and the intertropical convergence zone, baroclinic waves in mid-latitudes, and a realistic distribution of tropical cyclones (TCs), all without use of a convective parameterization. Using this model, we study the dependence of TCs on the meridional sea surface temperature gradient. When this gradient is significantly reduced, we find a substantial increase in the number of TCs, including a several-fold increase in the strongest storms of Saffir-Simpson categories 4 and 5. This increase occurs as the mid-latitudes become a new active region of TC formation and growth. When the climate warms we also see convergence between the physical properties and genesis locations of tropical and warm-core extra-tropical cyclones. While end-members of these types of storms remain very distinct, a large distribution of cyclones forming in the subtropics and mid-latitudes share properties of the two.

  5. Emergent properties of climate-vegetation feedbacks in the North American Monsoon Macrosystem

    NASA Astrophysics Data System (ADS)

    Mathias, A.; Niu, G.; Zeng, X.

    2012-12-01

    The ability of ecosystems to adapt naturally to climate change and associated disturbances (e.g. wildfires, spread of invasive species) is greatly affected by the stability of feedback interactions between climate and vegetation. In order to study climate-vegetation interactions, such as CO2 and H2O exchange in the North American Monsoon System (NAMS), we plan to couple a community land surface model (NoahMP or CLM) used in regional climate models (WRF) with an individual based, spatially explicit vegetation model (ECOTONE). Individual based modeling makes it possible to link individual plant traits with properties of plant communities. Community properties, such as species composition and species distribution arise from dynamic interactions of individual plants with each other, and with their environment. Plants interact with each other through intra- and interspecific competition for resources (H2O, nitrogen), and the outcome of these interactions depends on the properties of the plant community and the environment itself. In turn, the environment is affected by the resulting change in community structure, which may have an impact on the drivers of climate change. First, we performed sensitivity tests of ECOTONE to assess its ability to reproduce vegetation distribution in the NAMS. We compared the land surface model and ECOTONE with regard to their capability to accurately simulate soil moisture, CO2 flux and above ground biomass. For evaluating the models we used the eddy-correlation sensible and latent heat fluxes, CO2 flux and observations of other climate and environmental variables (e.g. soil temperature and moisture) from the Santa Rita experimental range. The model intercomparison helped us understand the advantages and disadvantages of each model, providing us guidance for coupling the community land surface model (NoahMP or CLM) with ECOTONE.

  6. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  7. New Observationally-Based Metrics for the Analysis of Coupled Climate Model and Earth System Model Simulations of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Russell, J. L.

    2014-12-01

    The exchange of heat and carbon dioxide between the atmosphere and ocean are major controls on Earth's climate under conditions of anthropogenic forcing. The Southern Ocean south of 30°S, occupying just over ¼ of the surface ocean area, accounts for a disproportionate share of the vertical exchange of properties between the deep and surface waters of the ocean and between the surface ocean and the atmosphere; thus this region can be disproportionately influential on the climate system. Despite the crucial role of the Southern Ocean in the climate system, understanding of the particular mechanisms involved remains inadequate, and the model studies underlying many of these results are highly controversial. As part of the overall goal of working toward reducing uncertainties in climate projections, we present an analysis using new data/model metrics based on a unified framework of theory, quantitative datasets, and numerical modeling. These new metrics quantify the mechanisms, processes, and tendencies relevant to the role of the Southern Ocean in climate.

  8. Urban Flood Management with Integrated Inland-River System in Seoul

    NASA Astrophysics Data System (ADS)

    Moon, Y. I.; Kim, J. S.; Yuk, J. M.

    2015-12-01

    Global warming and climate change have caused significant damage and loss of life worldwide. The pattern of natural disasters has gradually diversified and their frequency is increasing. The impact of climate change on flood risk in urban rivers is of particular interest because these areas are typically densely populated. The occurrence of urban river flooding due to climate change not only causes significant loss of life and property but also causes health and social problems. It is therefore necessary to develop a scientific urban flood management system to cope with and reduce the impacts of climate change, including flood damage. In this study, we are going to introduce Integrated Inland-River Flood Analysis System in Seoul to conduct predictions on flash rain or short-term rainfall by using radar and satellite information and perform prompt and accurate prediction on the inland flooded areas. In addition, this urban flood management system can be used as a tool for decision making of systematic disaster prevention through real-time monitoring.

  9. Observation of Upper and Middle Tropospheric Clouds

    NASA Technical Reports Server (NTRS)

    Cox, Stephen K.

    1996-01-01

    The goal of this research has been to identify and describe the properties of climatically important cloud systems critically important to understanding their effects upon satellite remote sensing and the global climate. These goals have been pursued along several different but complementary lines of investigation: the design, construction, testing and application of instrumentation; the collection of data sets during Intensive Field Observation periods; the reduction and analysis of data collected during IFO's; and completion of research projects specifically designed to address important and timely research objectives. In the first year covered by this research proposal, three papers were authored in the refereed literature which reported completed analyses of FIRE 1 IFO studies initiated under the previous NASA funding of this topic area. microphysical and radiative properties of marine stratocumulus cloud systems deduced from tethered balloon observations were reported from the San Nicolas Island site of the first FIRE marine stratocumulus experiment. Likewise, in situ observations of radiation and dynamic properties of a cirrus cloud layer were reported from first FIRE cirrus IFO based from Madison, Wisconsin. In addition, application techniques were under development for monitoring cirrus cloud systems using a 403 MHz Doppler wind profiler system adapted with a RASS (Radio Acoustic Sounding System) and an infrared interferometer system; these instrument systems were used in subsequent deployments for the FIRE 2 Parsons, Kansas and FIRE 2 Porto Santo, ASTEX expeditions. In November 1991 and in June 1992, these two systems along with a complete complement of surface radiation and meteorology measurements were deployed to the two sites noted above as anchor points for the respective IFO'S. Subsequent research activity concentrated on the interpretation and integration of the IFO analyses in the context of the radiative properties of cloud systems and our ability to remotely observe radiative, thermodynamic and dynamic properties of these cloud systems.

  10. Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Jiwen; Wang, Yuan; Rosenfeld, Daniel

    2016-11-01

    Over the past decade, the number of studies that investigate aerosol-cloud interactions has increased considerably. Although tremendous progress has been made to improve our understanding of basic physical mechanisms of aerosol-cloud interactions and reduce their uncertainties in climate forcing, we are still in poor understanding of (1) some of the mechanisms that interact with each other over multiple spatial and temporal scales, (2) the feedback between microphysical and dynamical processes and between local-scale processes and large-scale circulations, and (3) the significance of cloud-aerosol interactions on weather systems as well as regional and global climate. This review focuses on recent theoreticalmore » studies and important mechanisms on aerosol-cloud interactions, and discusses the significances of aerosol impacts on raditative forcing and precipitation extremes associated with different cloud systems. Despite significant understanding has been gained about aerosol impacts on the main cloud types, there are still many unknowns especially associated with various deep convective systems. Therefore, large efforts are needed to escalate our understanding. Future directions should focus on obtaining concurrent measurements of aerosol properties, cloud microphysical and dynamic properties over a range of temporal and spatial scales collected over typical climate regimes and closure studies, as well as improving understanding and parameterizations of cloud microphysics such as ice nucleation, mixed-phase properties, and hydrometeor size and fall speed« less

  11. MEDUSA (Martian Environmental DUst Systematic Analyser) for the monitoring of the Martian atmospheric dust and water vapour

    NASA Astrophysics Data System (ADS)

    Colangeli, L.; Battaglia, R.; della Corte, V.; Esposito, F.; Ferrini, G.; Mazzotta Epifani, E.; Palomba, E.; Palumbo, P.; Panizza, A.; Rotundi, A.

    2004-03-01

    The knowledge of Martian airborne dust properties and about mechanisms of dust settling/raising to/from the surface are important to determine climate and surface evolution on Mars. Water is an important tracer of climatic changes on long time-scales and is strictly related to the presence of life forms. The study in situ of dust and water vapour properties and evolution in Martian atmosphere is useful to trace back the planet climate, also in function of life form development. This investigation is also appropriate in preparation to future manned exploration of the planet (in relation to hazardous conditions). In this work we discuss the concept of the MEDUSA (Martian Environmental Dust Analyser) experiment that is designed to provide data on grain size and mass distribution, number density, velocity and scattering properties and on water vapour concentration. The instrument is a multisensor system based on optical and impact detection of grains, coupled with cumulative deposition sensors.

  12. Analysis and Experimental Investigation of Optimum Design of Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)

    NASA Astrophysics Data System (ADS)

    Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung

    2018-02-01

    The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.

  13. How are interannual modes of variability IOD, ENSO, SAM, AMO excited by natural and anthropogenic forcing?

    NASA Astrophysics Data System (ADS)

    Maher, Nicola; Marotzke, Jochem

    2017-04-01

    Natural climate variability is found in observations, paleo-proxies, and climate models. Such climate variability can be intrinsic internal variability or externally forced, for example by changes in greenhouse gases or large volcanic eruptions. There are still questions concerning how external forcing, both natural (e.g., volcanic eruptions and solar variability) and anthropogenic (e.g., greenhouse gases and ozone) may excite both interannual modes of variability in the climate system. This project aims to address some of these problems, utilising the large ensemble of the MPI-ESM-LR climate model. In this study we investigate the statistics of four modes of interannual variability, namely the North Atlantic Oscillation (NAO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the El Niño Southern Oscillation (ENSO). Using the 100-member ensemble of MPI-ESM-LR the statistical properties of these modes (amplitude and standard deviation) can be assessed over time. Here we compare the properties in the pre-industrial control run, historical run and future scenarios (RCP4.5, RCP2.6) and present preliminary results.

  14. Conservation of prehistoric caves and stability of their inner climate: lessons from Chauvet and other French caves.

    PubMed

    Bourges, F; Genthon, P; Genty, D; Lorblanchet, M; Mauduit, E; D'Hulst, D

    2014-09-15

    In the last 150 years, some prehistoric painted caves suffered irreversible degradations due to misperception of conservation issues and subsequent mismanagement. These sites presented naturally an exceptional stability of their internal climate allowing conservation in situ of outstanding fragile remains, some for nearly 40,000 years. This is for a large part due to exchanges of air, CO2, heat and water with the karstic system in which these caves are included. We introduce the concept of underground confinement, based on the stability of the inner cave climate parameters, especially its temperature. Confined caves present the best conservative properties. It is emphasized that this confined state implies slow exchanges with the surrounding karst and that a stable cave cannot be viewed as a closed system. This is illustrated on four case studies of French caves of various confinement states evidenced by long term continuous monitoring and on strategies to improve their conservation properties. The Chauvet cave presents optimal conservation properties. It is wholly confined as shown by the stability of its internal parameters since its discovery in 1994. In Marsoulas cave, archeological works removed the entrance scree and let a strong opening situation of the decorated zone. Remediation is expected by adding a buffer structure at the entrance. In Pech Merle tourist cave, recurrent painting fading was related to natural seasonal drying of walls. Improvement of the cave closure system restored a confined state insuring optimal visibility of the paintings. In Gargas tourist cave, optimization of closures, lighting system and number of visitors, allowed it to gradually reach a semi-confined state that improved the conservation properties. Conclusions are drawn on the characterization of confinement state of caves and on the ways to improve their conservation properties by restoring their initial regulation mechanisms and to avoid threats to their stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Climate and Cryosphere (CliC) Project and its Interest in Arctic Hydrology Research

    NASA Astrophysics Data System (ADS)

    Yang, D.; Prowse, T. D.; Steffen, K.; Ryabinin, V.

    2009-12-01

    The cryosphere is an important and dynamic component of the global climate system. The global cryosphere is changing rapidly, with changes in the Polar Regions receiving particular attention during the International Polar Year 2007-2008. The Climate and Cryosphere (CliC) Project is a core project of the World Climate Research Programme (WCRP) and is co-sponsored by WCRP, SCAR (Scientific Committee for Antarctic Research) and IASC (International Committee for Antarctic Research). The principal goal of CliC is to assess and quantify the impacts that climatic variability and change have on components of the cryosphere and the consequences of these impacts for the climate system. To achieve its objectives, CliC coordinates international and regional projects, partners with other organizations in joint initiatives, and organizes panels and working groups to lead and coordinate advanced research aimed at closing identified gaps in scientific knowledge about climate and cryosphere. The terrestrial cryosphere includes land areas where snow cover, lake- and river-ice, glaciers and ice caps, permafrost and seasonally frozen ground and solid precipitation occur. The main task of this theme is to improve estimates and quantify the uncertainty of water balance and related energy flux components in cold climate regions. This includes precipitation (both solid and liquid) distribution, properties of snow, snow melt, evapotranspiration, sublimation, water movement through frozen and unfrozen ground, water storage in watersheds, river- and lake-ice properties and processes, and river runoff. The focus of this theme includes two specific issues: the role of permafrost and frozen ground in the carbon balance, and precipitation in cold climates. Hydrological studies of cold regions will provide a key contribution to the new theme crosscut, which focuses on the cryospheric input to the freshwater balance of the Arctic. This presentation will provide an overview and update of recent developments of cold region hydrometeorology research activities and future challenges in arctic hydrology and climate change investigations.

  16. Testing anthropic selection: a climate change example.

    PubMed

    Waltham, Dave

    2011-03-01

    Planetary anthropic selection, the idea that Earth has unusual properties since, otherwise, we would not be here to observe it, is a controversial idea. This paper proposes a methodology by which to test anthropic proposals by comparison of Earth to synthetic populations of Earth-like planets. The paper illustrates this approach by investigating possible anthropic selection for high (or low) rates of Milankovitch-driven climate change. Three separate tests are investigated: (1) Earth-Moon properties and their effect on obliquity; (2) Individual planet locations and their effect on eccentricity variation; (3) The overall structure of the Solar System and its effect on eccentricity variation. In all three cases, the actual Earth/Solar System has unusually low Milankovitch frequencies compared to similar alternative systems. All three results are statistically significant at the 5% or better level, and the probability of all three occurring by chance is less than 10(-5). It therefore appears that there has been anthropic selection for slow Milankovitch cycles. This implies possible selection for a stable climate, which, if true, undermines the Gaia hypothesis and also suggests that planets with Earth-like levels of biodiversity are likely to be very rare. © Mary Ann Liebert, Inc.

  17. Climate Impacts of Fire-Induced Land-Surface Changes

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hao, X.; Qu, J. J.

    2017-12-01

    One of the consequences of wildfires is the changes in land-surface properties such as removal of vegetation. This will change local and regional climate through modifying the land-air heat and water fluxes. This study investigates mechanism by developing and a parameterization of fire-induced land-surface property changes and applying it to modeling of the climate impacts of large wildfires in the United States. Satellite remote sensing was used to quantitatively evaluate the land-surface changes from large fires provided from the Monitoring Trends in Burning Severity (MTBS) dataset. It was found that the changes in land-surface properties induced by fires are very complex, depending on vegetation type and coverage, climate type, season and time after fires. The changes in LAI are remarkable only if the actual values meet a threshold. Large albedo changes occur in winter for fires in cool climate regions. The signs are opposite between the first post-fire year and the following years. Summer day-time temperature increases after fires, while nigh-time temperature changes in various patterns. The changes are larger in forested lands than shrub / grassland lands. In the parameterization scheme, the detected post-fire changes are decomposed into trends using natural exponential functions and fluctuations of periodic variations with the amplitudes also determined by natural exponential functions. The final algorithm is a combination of the trends, periods, and amplitude functions. This scheme is used with Earth system models to simulate the local and regional climate effects of wildfires.

  18. Collaborative Project. Understanding the effects of tides and eddies on the ocean dynamics, sea ice cover and decadal/centennial climate prediction using the Regional Arctic Climate Model (RACM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, Jennifer; Joseph, Renu

    2013-09-14

    The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less

  19. The effect of measured and estimated soil hydraulic properties on simulated water regime in the analysis of grapevine adaptability to future climate

    NASA Astrophysics Data System (ADS)

    Bonfante, Antonello; Alfieri, Silvia Maria; Agrillo, Antonietta; Dragonetti, Giovanna; Mileti, Antonio; Monaco, Eugenia; De Lorenzi, Francesca

    2013-04-01

    In the last years many research works have been addressed to evaluate the impact of future climate on crop productivity and plant water use at different spatial scales (global, regional, field) by means of simulation models of agricultural crop systems. Most of these approaches use estimated soil hydraulic properties, through pedotransfer functions (PTF). This choice is related to soil data availability: soil data bases lack measured soil hydraulic properties, but generally they contain information that allow the application of PTF . Although the reliability of the predicted future climate scenarios cannot be immediately validated, we address to evaluate the effects of a simplification of the soil system by using PTF. Thus we compare simulations performed with measured soil hydraulic properties versus simulations carried out with estimated properties. The water regimes resulting from the two procedures are evaluated with respect to crop adaptability to future climate. In particular we will examine if the two procedures bring about different seasonal and spatial variations in the soil water regime patterns, and if these patterns influence adaptation options. The present case study uses the agro-hydrological model SWAP (soil-water-atmosphere and plant) and studies future adaptability of grapevine. The study area is a viticultural area of Southern Italy (Valle Telesina, BN) devoted to the production of high quality wines (DOC and DOCG), and characterized by a complex geomorphology and pedology. The future climate scenario (2021-2050) was constructed applying statistical downscaling techniques to GCMs scenarios. The moisture regime for 25 soils of the selected study area was calculated by means of SWAP model, using both measured and estimated soil hydraulic properties. In the simulation, the upper boundary conditions were derived from the regional climate scenarios. Unit gradient in soil water potential was set as lower boundary condition. Crop-specific input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. From the output of the simulation runs, the relative evapotranspiration deficit (or Crop Water Stress Index - CWSI) of the soil units was calculated. Since CWSI is considered an important indicator of the qualitative grapevine responses, its pattern in both simulation procedures has been evaluated. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)

  20. Assessing the Organizational Social Context (OSC) of child welfare systems: implications for research and practice.

    PubMed

    Glisson, Charles; Green, Philip; Williams, Nathaniel J

    2012-09-01

    The study: (1) provides the first assessment of the a priori measurement model and psychometric properties of the Organizational Social Context (OSC) measurement system in a US nationwide probability sample of child welfare systems; (2) illustrates the use of the OSC in constructing norm-based organizational culture and climate profiles for child welfare systems; and (3) estimates the association of child welfare system-level organizational culture and climate profiles with individual caseworker-level job satisfaction and organizational commitment. The study applies confirmatory factor analysis (CFA) and hierarchical linear models (HLM) analysis to a US nationwide sample of 1,740 caseworkers from 81 child welfare systems participating in the second National Survey of Child and Adolescent Wellbeing (NSCAW II). The participating child welfare systems were selected using a national probability procedure reflecting the number of children served by child welfare systems nationwide. The a priori OSC measurement model is confirmed in this nationwide sample of child welfare systems. In addition, caseworker responses to the OSC scales generate acceptable to high scale reliabilities, moderate to high within-system agreement, and significant between-system differences. Caseworkers in the child welfare systems with the best organizational culture and climate profiles report higher levels of job satisfaction and organizational commitment. Organizational climates characterized by high engagement and functionality, and organizational cultures characterized by low rigidity are associated with the most positive work attitudes. The OSC is the first valid and reliable measure of organizational culture and climate with US national norms for child welfare systems. The OSC provides a useful measure of Organizational Social Context for child welfare service improvement and implementation research efforts which include a focus on child welfare system culture and climate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE PAGES

    Harp, Dylan R.; Atchley, Adam L.; Painter, Scott L.; ...

    2016-02-11

    Here, the effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21more » $$^{st}$$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.« less

  2. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE PAGES

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; ...

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows formore » the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. As a result, by comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.« less

  3. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-01

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.

  4. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Michael J.; Schmidt, Anja; Easter, Richard

    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptionsmore » between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.« less

  5. Comptational Design Of Functional CA-S-H and Oxide Doped Alloy Systems

    NASA Astrophysics Data System (ADS)

    Yang, Shizhong; Chilla, Lokeshwar; Yang, Yan; Li, Kuo; Wicker, Scott; Zhao, Guang-Lin; Khosravi, Ebrahim; Bai, Shuju; Zhang, Boliang; Guo, Shengmin

    Computer aided functional materials design accelerates the discovery of novel materials. This presentation will cover our recent research advance on the Ca-S-H system properties prediction and oxide doped high entropy alloy property simulation and experiment validation. Several recent developed computational materials design methods were utilized to the two systems physical and chemical properties prediction. A comparison of simulation results to the corresponding experiment data will be introduced. This research is partially supported by NSF CIMM project (OIA-15410795 and the Louisiana BoR), NSF HBCU Supplement climate change and ecosystem sustainability subproject 3, and LONI high performance computing time allocation loni mat bio7.

  6. A network-base analysis of CMIP5 "historical" experiments

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Foudalis, I.; Dovrolis, C.

    2012-12-01

    In computer science, "complex network analysis" refers to a set of metrics, modeling tools and algorithms commonly used in the study of complex nonlinear dynamical systems. Its main premise is that the underlying topology or network structure of a system has a strong impact on its dynamics and evolution. By allowing to investigate local and non-local statistical interaction, network analysis provides a powerful, but only marginally explored, framework to validate climate models and investigate teleconnections, assessing their strength, range, and impacts on the climate system. In this work we propose a new, fast, robust and scalable methodology to examine, quantify, and visualize climate sensitivity, while constraining general circulation models (GCMs) outputs with observations. The goal of our novel approach is to uncover relations in the climate system that are not (or not fully) captured by more traditional methodologies used in climate science and often adopted from nonlinear dynamical systems analysis, and to explain known climate phenomena in terms of the network structure or its metrics. Our methodology is based on a solid theoretical framework and employs mathematical and statistical tools, exploited only tentatively in climate research so far. Suitably adapted to the climate problem, these tools can assist in visualizing the trade-offs in representing global links and teleconnections among different data sets. Here we present the methodology, and compare network properties for different reanalysis data sets and a suite of CMIP5 coupled GCM outputs. With an extensive model intercomparison in terms of the climate network that each model leads to, we quantify how each model reproduces major teleconnections, rank model performances, and identify common or specific errors in comparing model outputs and observations.

  7. Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Stevens, Bjorn; Schmidt, Hauke; Timmreck, Claudia

    2016-11-01

    Stratospheric sulfate aerosols from volcanic eruptions have a significant impact on the Earth's climate. To include the effects of volcanic eruptions in climate model simulations, the Easy Volcanic Aerosol (EVA) forcing generator provides stratospheric aerosol optical properties as a function of time, latitude, height, and wavelength for a given input list of volcanic eruption attributes. EVA is based on a parameterized three-box model of stratospheric transport and simple scaling relationships used to derive mid-visible (550 nm) aerosol optical depth and aerosol effective radius from stratospheric sulfate mass. Precalculated look-up tables computed from Mie theory are used to produce wavelength-dependent aerosol extinction, single scattering albedo, and scattering asymmetry factor values. The structural form of EVA and the tuning of its parameters are chosen to produce best agreement with the satellite-based reconstruction of stratospheric aerosol properties following the 1991 Pinatubo eruption, and with prior millennial-timescale forcing reconstructions, including the 1815 eruption of Tambora. EVA can be used to produce volcanic forcing for climate models which is based on recent observations and physical understanding but internally self-consistent over any timescale of choice. In addition, EVA is constructed so as to allow for easy modification of different aspects of aerosol properties, in order to be used in model experiments to help advance understanding of what aspects of the volcanic aerosol are important for the climate system.

  8. A satellite view of aerosols in the climate system

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Boucher, Olivier

    2002-01-01

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  9. Ecological optimality in water-limited natural soil-vegetation systems. I - Theory and hypothesis

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.

    1982-01-01

    The solution space of an approximate statistical-dynamic model of the average annual water balance is explored with respect to the hydrologic parameters of both soil and vegetation. Within the accuracy of this model it is shown that water-limited natural vegetation systems are in stable equilibrium with their climatic and pedologic environments when the canopy density and species act to minimize average water demand stress. Theory shows a climatic limit to this equilibrium above which it is hypothesized that ecological pressure is toward maximization of biomass productivity. It is further hypothesized that natural soil-vegetation systems will develop gradually and synergistically, through vegetation-induced changes in soil structure, toward a set of hydraulic soil properties for which the minimum stress canopy density of a given species is maximum in a given climate. Using these hypotheses, only the soil effective porosity need be known to determine the optimum soil and vegetation parameters in a given climate.

  10. A quantitative comparison of Soil Development in four climatic regimes

    USGS Publications Warehouse

    Harden, J.W.; Taylor, E.M.

    1983-01-01

    A new quantitative Soil Development Index based on field data has been applied to chronosequences formed under different climatic regimes. The four soil chronosequences, developed primarily on sandy deposits, have some numeric age control and are located in xeric-inland (Merced, Calif.), xeric-coastal (Ventura, Calif.), aridic (Las Cruces, N. Mex.), and udic (Susquehanna Valley, Pa.) soil-moisture regimes. To quantify field properties, points are assigned for developmental increases in soil properties in comparison to the parent material. Currently ten soil-field properties are quantified and normalized for each horizon in a given chronosequence, including two new properties for carbonate-rich soils in addition to the eight properties previously defined. When individual properties or the combined indexes are plotted as a function of numeric age, rates of soil development can be compared in different climates. The results demonstrate that (1) the Soil Development Index can be applied to very different soil types, (2) many field properties develop systematically in different climatic regimes, (3) certain properties appear to have similar rates of development in different climates, and (4) the Profile Index that combines different field properties increases significantly with age and appears to develop at similar rates in different climates. The Soil Development Index can serve as a preliminary guide to soil age where other age control is lacking and can be used to correlate deposits of different geographical and climatic regions. ?? 1983.

  11. Controls on the Archean climate system investigated with a global climate model.

    PubMed

    Wolf, E T; Toon, O B

    2014-03-01

    The most obvious means of resolving the faint young Sun paradox is to invoke large quantities of greenhouse gases, namely, CO2 and CH4. However, numerous changes to the Archean climate system have been suggested that may have yielded additional warming, thus easing the required greenhouse gas burden. Here, we use a three-dimensional climate model to examine some of the factors that controlled Archean climate. We examine changes to Earth's rotation rate, surface albedo, cloud properties, and total atmospheric pressure following proposals from the recent literature. While the effects of increased planetary rotation rate on surface temperature are insignificant, plausible changes to the surface albedo, cloud droplet number concentrations, and atmospheric nitrogen inventory may each impart global mean warming of 3-7 K. While none of these changes present a singular solution to the faint young Sun paradox, a combination can have a large impact on climate. Global mean surface temperatures at or above 288 K could easily have been maintained throughout the entirety of the Archean if plausible changes to clouds, surface albedo, and nitrogen content occurred.

  12. Recent advances in understanding secondary organic aerosols: implications for global climate forcing

    NASA Astrophysics Data System (ADS)

    Shrivastava, Manish

    2017-04-01

    Anthropogenic emissions and land-use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding pre-industrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features 1) influence estimates of aerosol radiative forcing and 2) can confound estimates of the historical response of climate to increases in greenhouse gases (e.g. the 'climate sensitivity'). Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, often represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This presentation is based on a US Department of Energy Atmospheric Systems Research sponsored workshop, which highlighted key SOA processes overlooked in climate models that could greatly affect climate forcing estimates. We will highlight the importance of processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including: formation of extremely low-volatility organics in the gas-phase; isoprene epoxydiols (IEPOX) multi-phase chemistry; particle-phase oligomerization; and physical properties such as viscosity. We also highlight some of the recently discovered important processes that involve interactions between natural biogenic emissions and anthropogenic emissions such as effects of sulfur and NOx emissions on SOA. We will present examples of integrated model-measurement studies that relate the observed evolution of organic aerosol mass and number with knowledge of particle properties such as volatility and viscosity. We will also highlight the importance of continuing efforts to rank the most influential SOA processes that affect climate forcing, but are often missing in climate models. Ultimately, gas- and particle-phase chemistry processes that capture the dynamic evolution of number and mass concentrations of SOA particles need to be accurately and efficiently represented in regional and global atmospheric chemistry-climate models.

  13. Soil classification and carbon storage in cacao agroforestry farming systems of Bahia, Brazil

    USDA-ARS?s Scientific Manuscript database

    Information concerning the classification of soils and their properties under cacao agroforestry systems of the Atlantic rain forest biome region in the Southeast of Bahia Brazil is largely unknown. Soil and climatic conditions in this region are favorable for high soil carbon storage. This study is...

  14. Using Geographic Information Systems to Evaluate Energy Initiatives in Austere Environments

    DTIC Science & Technology

    2013-03-01

    conducting economic analysis of energy reduction initiatives. This research examined the energy savings potential of improving the thermal properties...shelter improvements in any climate and location in the world. Specifically, solar flies developed through Solar Integrated Power Shelter System...94 Improvements to the Existing Model

  15. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  16. Assessing the aerosol direct and first indirect effects using ACM/GCM simulation results

    NASA Astrophysics Data System (ADS)

    Huang, H.; Gu, Y.; Xue, Y.; Lu, C. H.

    2016-12-01

    Atmospheric aerosols have been found to play an important role in global climate change but there are still large uncertainty in evaluating its role in the climate system. The aerosols generally affect global and regional climate through the scattering and the absorption of solar radiation (direct effect) and through their influences on cloud particle, number and sizes (first indirect effect). The indirect effect will further affects cloud water content, cloud top albedo and surface precipitations. In this study, we investigate the global climatic effect of aerosols using a coupled NCEP Global Forecast System (GFS) and a land surface model (SSiB2) The OPAC (Optical Properties of Aerosols and Clouds) database is used for aerosol effect. The OPAC data provides the optical properties (i.e., the extinction, scattering and absorption coefficient, single-scattering albedo, asymmetry factor and phase function) of ten types of aerosols under various relative humidity conditions for investigating the global direct and first indirect effects of dust aerosols. For indirect forcings due to liquid water, we follow the approach presented by Jiang et al (2011), in which a parameterization of cloud effective radius was calculated to describe its variance with convective strength and aerosol concentration. Since the oceans also play an important role on aerosol climatic effect, we also design a set of simulations using a coupled atmosphere/ocean model (CFS) to evaluate the sensitivity of aerosol effect with two-way atmosphere-ocean interactions.

  17. The relative influence of climate and catchment properties on hydrological drought

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Laaha, Gregor; Koffler, Daniel

    2014-05-01

    Studying hydrological drought (a below-normal water availability in groundwater, lakes and streams) is important to society and the ecosystem, but can also reveal interesting information about catchment functioning. This information can later be used for predicting drought in ungauged basins and to inform water management decisions. In this study, we used an extensive Austrian dataset of discharge measurements in clusters of catchments and combine this dataset with thematic information on climate and catchment properties. Our aim was to study the relative effects of climate and catchment characteristics on drought duration and deficit and on hydrological drought typology. Because the climate of the region is roughly uniform, our hypothesis was that the effect of differences of catchment properties would stand out. From time series of precipitation and discharge we identified droughts with the widely-used threshold level approach, defining a drought when a variable falls below a pre-defined threshold representing the regime. Drought characteristics that were analysed are drought duration and deficit. We also applied the typology of Van Loon & Van Lanen (2012). To explain differences in drought characteristics between catchments we did a correlation analysis with climate and catchment characteristics, based on Pearson correlation. We found very interesting patterns in the correlations of drought characteristics with climate and catchment properties: 1) Droughts with long duration (mean and maximum) and composite droughts are related to catchments with a high BFI (high baseflow) and a high percentage of shallow groundwater tables. 2) The deficit (mean and maximum) of both meteorological droughts and hydrological droughts is strongly related to catchment humidity, in this case quantified by average annual precipitation. 3) The hydrological drought types that are related to snow, i.e. cold snow season drought and snow melt drought, occur in catchments that are have a high elevation, steep slopes, a high percentage of crystalline rock, bare rock and glacier. The conclusion of our research is that it is not straightforward to separate the effects of climate and catchment properties on drought, since they are interrelated. This is especially true for mountainous regions where temperature and precipitation are strongly dependent on altitude. We did however see that the duration of drought is more related to catchment storage (catchment properties) and the severity of drought (represented by the drought deficit) is more related to catchment wetness (climate). Van Loon, A.F., and Van Lanen, H.A.J.: A process-based typology of hydrological drought, Hydrology and Earth System Science, 16, p. 1915-1946, doi: 10.5194/hess-16-1915-2012, 2012

  18. Investigation of the effects of the macrophysical and microphysical properties of cirrus clouds on the retrieval of optical properties: Results for FIRE 2

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Stephens, Graeme L.

    1993-01-01

    Due to the prevalence and persistence of cirrus cloudiness across the globe, cirrus clouds are believed to have an important effect on the climate. Stephens et al., (1990) among others have shown that the important factor determining how cirrus clouds modulate the climate is the balance between the albedo and emittance effect of the cloud systems. This factor was shown to depend in part upon the effective sizes of the cirrus cloud particles. Since effective sizes of cirrus cloud microphysical distributions are used as a basis of parameterizations in climate models, it is crucial that the relationships between effective sizes and radiative properties be clearly established. In this preliminary study, the retrieval of cirrus cloud effective sizes are examined using a two dimensional radiative transfer model for a cirrus cloud case sampled during FIRE Cirrus 11. The purpose of this paper is to present preliminary results from the SHSG model demonstrating the sensitivity of the bispectral relationships of reflected radiances and thus the retrieval of effective sizes to phase function and dimensionality.

  19. Cloud Properties of CERES-MODIS Edition 4 and CERES-VIIRS Edition 1

    NASA Technical Reports Server (NTRS)

    Sun-Mack, Sunny; Minnis, Patrick; Chang, Fu-Lung; Hong, Gang; Arduini, Robert; Chen, Yan; Trepte, Qing; Yost, Chris; Smith, Rita; Brown, Ricky; hide

    2015-01-01

    The Clouds and Earth's Radiant Energy System (CERES) analyzes MODerate-resolution Imaging Spectroradiometer (MODIS) data and Visible Infrared Imaging Radiometer Suite (VIIRS) to derive cloud properties that are combine with aerosol and CERES broadband flux data to create a multi-parameter data set for climate study. CERES has produced over 15 years of data from Terra and over 13 years of data from Aqua using the CERES-MODIS Edition-2 cloud retrieval algorithm. A recently revised algorithm, CERESMODIS Edition 4, has been developed and is now generating enhanced cloud data for climate research (over 10 years for Terra and 8 years for Aqua). New multispectral retrievals of properties are included along with a multilayer cloud retrieval system. Cloud microphysical properties are reported at 3 wavelengths, 0.65, 1.24, and 2.1 microns to enable better estimates of the vertical profiles of cloud water contents. Cloud properties over snow are retrieved using the 1.24-micron channel. A new CERES-VIIRS cloud retrieval package was developed for the VIIRS spectral complement and is currently producing the CERES-VIIRS Edition 1 cloud dataset. The results from CERES-MODIS Edition 4 and CERES-VIIRS Edition 1 are presented and compared with each other and other datasets, including CALIPSO, CloudSat and the CERES-MODIS Edition-2 results.

  20. Climate change impacts in multispecies systems: drought alters food web size structure in a field experiment

    PubMed Central

    Woodward, Guy; Brown, Lee E.; Edwards, Francois K.; Hudson, Lawrence N.; Milner, Alexander M.; Reuman, Daniel C.; Ledger, Mark E.

    2012-01-01

    Experimental data from intergenerational field manipulations of entire food webs are scarce, yet such approaches are essential for gauging impacts of environmental change in natural systems. We imposed 2 years of intermittent drought on stream channels in a replicated field trial, to measure food web responses to simulated climate change. Drought triggered widespread losses of species and links, with larger taxa and those that were rare for their size, many of which were predatory, being especially vulnerable. Many network properties, including size–scaling relationships within food chains, changed in response to drought. Other properties, such as connectance, were unaffected. These findings highlight the need for detailed experimental data from different organizational levels, from pairwise links to the entire food web. The loss of not only large species, but also those that were rare for their size, provides a newly refined way to gauge likely impacts that may be applied more generally to other systems and/or impacts. PMID:23007087

  1. Testing Anthropic Selection: A Climate Change Example

    PubMed Central

    2011-01-01

    Abstract Planetary anthropic selection, the idea that Earth has unusual properties since, otherwise, we would not be here to observe it, is a controversial idea. This paper proposes a methodology by which to test anthropic proposals by comparison of Earth to synthetic populations of Earth-like planets. The paper illustrates this approach by investigating possible anthropic selection for high (or low) rates of Milankovitch-driven climate change. Three separate tests are investigated: (1) Earth-Moon properties and their effect on obliquity; (2) Individual planet locations and their effect on eccentricity variation; (3) The overall structure of the Solar System and its effect on eccentricity variation. In all three cases, the actual Earth/Solar System has unusually low Milankovitch frequencies compared to similar alternative systems. All three results are statistically significant at the 5% or better level, and the probability of all three occurring by chance is less than 10−5. It therefore appears that there has been anthropic selection for slow Milankovitch cycles. This implies possible selection for a stable climate, which, if true, undermines the Gaia hypothesis and also suggests that planets with Earth-like levels of biodiversity are likely to be very rare. Key Words: Planetary habitability and biosignatures—Intelligence—Paleoenvironment and paleoclimate—Co-evolution of Earth and life—Complex life. Astrobiology 11, 105–114. PMID:21401338

  2. Methods for Discerning Cloud Reflectivity Changes due to the Indirect Effect of Aerosol: A Pilot-study for Triana

    NASA Technical Reports Server (NTRS)

    Kinne, S.; Wiscombe, Warren; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Understanding the effect of aerosol on cloud systems is one of the major challenges in atmospheric and climate research. Local studies suggest a multitude of influences on cloud properties. Yet the overall effect on cloud albedo, a critical parameter in climate simulations, remains uncertain. NASA's Triana mission will provide, from its EPIC multi-spectral imager, simultaneous data on aerosol properties and cloud reflectivity. With Triana's unique position in space these data will be available not only globally but also over the entire daytime, well suited to accommodate the often short lifetimes of aerosol and investigations around diurnal cycles. This pilot study explores the ability to detect relationships between aerosol properties and cloud reflectivity with sophisticated statistical methods. Sample results using data from the EOS Terra platform to simulate Triana are presented.

  3. Venus climate stability and volcanic resurfacing rates

    NASA Technical Reports Server (NTRS)

    Bullock, M. A.; Grinspoon, D. H.; Pollack, J. B.

    1994-01-01

    The climate of Venus is to a large degree controlled by the radiative properties of its massive atmosphere. In addition, outgassing due to volcanic activity, exospheric escape processes, and surface/atmosphere interactions may all be important in moderating the abundances of atmospheric CO2 and other volatiles. We have developed an evolutionary climate model for Venus using a systems approach that emphasizes feedbacks between elements in the climate system. Modules for atmospheric radiative transfer, surface/atmosphere interactions, tropospheric chemistry, and exospheric escape processes have so far been developed. Climate feedback loops result from interconnections between modules, in the form of the environmental parameters pressure, temperature, and atmospheric mixing ratios. The radiative transfer module has been implemented by using Rosseland mean opacities in a one dimensional grey radiative-convective model. The model has been solved for the static (time independent) case to determine climate equilibrium points. The dynamics of the model have also been explored by employing reaction/diffusion kinetics for possible surface atmosphere heterogeneous reactions over geologic timescales. It was found that under current conditions, the model predicts that the climate of Venus is at or near an unstable equilibrium point. The effects of constant rate volcanism and corresponding exsolution of volatiles on the stability of the climate model were also explored.

  4. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system.

    PubMed

    Seinfeld, John H; Bretherton, Christopher; Carslaw, Kenneth S; Coe, Hugh; DeMott, Paul J; Dunlea, Edward J; Feingold, Graham; Ghan, Steven; Guenther, Alex B; Kahn, Ralph; Kraucunas, Ian; Kreidenweis, Sonia M; Molina, Mario J; Nenes, Athanasios; Penner, Joyce E; Prather, Kimberly A; Ramanathan, V; Ramaswamy, Venkatachalam; Rasch, Philip J; Ravishankara, A R; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  5. Improving Our Fundamental Understanding of the Role of Aerosol Cloud Interactions in the Climate System

    NASA Technical Reports Server (NTRS)

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kahn, Ralph; hide

    2016-01-01

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  6. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system

    DOE PAGES

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; ...

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from pre-industrial time. General Circulation Models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions but significant challengesmore » exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. Lastly, we suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.« less

  7. Fisheries regulatory regimes and resilience to climate change.

    PubMed

    Ojea, Elena; Pearlman, Isaac; Gaines, Steven D; Lester, Sarah E

    2017-05-01

    Climate change is already producing ecological, social, and economic impacts on fisheries, and these effects are expected to increase in frequency and magnitude in the future. Fisheries governance and regulations can alter socio-ecological resilience to climate change impacts via harvest control rules and incentives driving fisher behavior, yet there are no syntheses or conceptual frameworks for examining how institutions and their regulatory approaches can alter fisheries resilience to climate change. We identify nine key climate resilience criteria for fisheries socio-ecological systems (SES), defining resilience as the ability of the coupled system of interacting social and ecological components (i.e., the SES) to absorb change while avoiding transformation into a different undesirable state. We then evaluate the capacity of four fisheries regulatory systems that vary in their degree of property rights, including open access, limited entry, and two types of rights-based management, to increase or inhibit resilience. Our exploratory assessment of evidence in the literature suggests that these regulatory regimes vary widely in their ability to promote resilient fisheries, with rights-based approaches appearing to offer more resilience benefits in many cases, but detailed characteristics of the regulatory instruments are fundamental.

  8. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system

    PubMed Central

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kraucunas, Ian; Molina, Mario J.; Nenes, Athanasios; Penner, Joyce E.; Prather, Kimberly A.; Ramanathan, V.; Ramaswamy, Venkatachalam; Rasch, Philip J.; Ravishankara, A. R.; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-01-01

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol−cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol−cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty. PMID:27222566

  9. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation: The Roles of Trust in Sources of Climate Information, Climate Change Beliefs, and Perceived Risk.

    PubMed

    Arbuckle, J Gordon; Morton, Lois Wright; Hobbs, Jon

    2015-02-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers' trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management).

  10. Characteristics of Tropical Cyclones in High-Resolution Models of the Present Climate

    NASA Technical Reports Server (NTRS)

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; Jonas, Jeffery A.; Kim, Daeyhun; Kumar, Arun; LaRow, Timothy E.; Lim, Young-Kwon; Murakami, Hiroyuki; Roberts, Malcolm J.; hide

    2014-01-01

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) in two types of experiments, using a climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

  11. Characteristics of Tropical Cyclones in High-resolution Models in the Present Climate

    NASA Technical Reports Server (NTRS)

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; Jonas, Jeffrey A.; Kim, Daehyun; Kumar, Arun; LaRow, Timothy E.; Lim, Young-Kwon; Murakami, Hiroyuki; Reed, Kevin; hide

    2014-01-01

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

  12. Characterizing Organic Aerosol Processes and Climatically Relevant Properties via Advanced and Integrated Analyses of Aerosol Mass Spectrometry Datasets from DOE Campaigns and ACRF Measurements. Final report for DE-SC0007178

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qi

    Organic aerosols (OA) are an important but poorly characterized component of the earth’s climate system. Enormous complexities commonly associated with OA composition and life cycle processes have significantly complicated the simulation and quantification of aerosol effects. To unravel these complexities and improve understanding of the properties, sources, formation, evolution processes, and radiative properties of atmospheric OA, we propose to perform advanced and integrated analyses of multiple DOE aerosol mass spectrometry datasets, including two high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) datasets from intensive field campaigns on the aerosol life cycle and the Aerosol Chemical Speciation Monitor (ACSM) datasets from long-term routinemore » measurement programs at ACRF sites. In this project, we will focus on 1) characterizing the chemical (i.e., composition, organic elemental ratios), physical (i.e., size distribution and volatility), and radiative (i.e., sub- and super-saturated growth) properties of organic aerosols, 2) examining the correlations of these properties with different source and process regimes (e.g., primary, secondary, urban, biogenic, biomass burning, marine, or mixtures), 3) quantifying the evolutions of these properties as a function of photochemical processing, 4) identifying and characterizing special cases for important processes such as SOA formation and new particle formation and growth, and 5) correlating size-resolved aerosol chemistry with measurements of radiative properties of aerosols to determine the climatically relevant properties of OA and characterize the relationship between these properties and processes of atmospheric aerosol organics. Our primary goal is to improve a process-level understanding of the life cycle of organic aerosols in the Earth’s atmosphere. We will also aim at bridging between observations and models via synthesizing and translating the results and insights generated from this research into data products and formulations that may be directly used to inform, improve, and evaluate regional and global models. In addition, we will continue our current very active collaborations with several modeling groups to enhance the use and interpretation of our data products. Overall, this research will contribute new data to improve quantification of the aerosol’s effects on climate and thus the achievement of ASR’s science goal of – “improving the fidelity and predictive capability of global climate models”.« less

  13. The Psychometric Properties of the Perceived Motivational Climate in Exercise Questionnaire

    ERIC Educational Resources Information Center

    Brown, Theresa C.; Fry, Mary D.; Little, Todd D.

    2013-01-01

    Given the potential benefits of understanding how climate may influence individuals' motivational outcomes, there exists a need for instrumentation measuring exercise setting climates. The purpose of this study was to validate further the psychometric properties of the Perceived Motivational Climate in Exercise Questionnaire (Huddleston, Fry &…

  14. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation

    PubMed Central

    Morton, Lois Wright; Hobbs, Jon

    2015-01-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers’ trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management). PMID:25983336

  15. Thermal Property Analysis of Axle Load Sensors for Weighing Vehicles in Weigh-in-Motion System

    PubMed Central

    Burnos, Piotr; Gajda, Janusz

    2016-01-01

    Systems which permit the weighing of vehicles in motion are called dynamic Weigh-in-Motion scales. In such systems, axle load sensors are embedded in the pavement. Among the influencing factors that negatively affect weighing accuracy is the pavement temperature. This paper presents a detailed analysis of this phenomenon and describes the properties of polymer, quartz and bending plate load sensors. The studies were conducted in two ways: at roadside Weigh-in-Motion sites and at a laboratory using a climate chamber. For accuracy assessment of roadside systems, the reference vehicle method was used. The pavement temperature influence on the weighing error was experimentally investigated as well as a non-uniform temperature distribution along and across the Weigh-in-Motion site. Tests carried out in the climatic chamber allowed the influence of temperature on the sensor intrinsic error to be determined. The results presented clearly show that all kinds of sensors are temperature sensitive. This is a new finding, as up to now the quartz and bending plate sensors were considered insensitive to this factor. PMID:27983704

  16. Using simple chaotic models to interpret climate under climate change: Implications for probabilistic climate prediction

    NASA Astrophysics Data System (ADS)

    Daron, Joseph

    2010-05-01

    Exploring the reliability of model based projections is an important pre-cursor to evaluating their societal relevance. In order to better inform decisions concerning adaptation (and mitigation) to climate change, we must investigate whether or not our models are capable of replicating the dynamic nature of the climate system. Whilst uncertainty is inherent within climate prediction, establishing and communicating what is plausible as opposed to what is likely is the first step to ensuring that climate sensitive systems are robust to climate change. Climate prediction centers are moving towards probabilistic projections of climate change at regional and local scales (Murphy et al., 2009). It is therefore important to understand what a probabilistic forecast means for a chaotic nonlinear dynamic system that is subject to changing forcings. It is in this context that we present the results of experiments using simple models that can be considered analogous to the more complex climate system, namely the Lorenz 1963 and Lorenz 1984 models (Lorenz, 1963; Lorenz, 1984). Whilst the search for a low-dimensional climate attractor remains illusive (Fraedrich, 1986; Sahay and Sreenivasan, 1996) the characterization of the climate system in such terms can be useful for conceptual and computational simplicity. Recognising that a change in climate is manifest in a change in the distribution of a particular climate variable (Stainforth et al., 2007), we first establish the equilibrium distributions of the Lorenz systems for certain parameter settings. Allowing the parameters to vary in time, we investigate the dependency of such distributions to initial conditions and discuss the implications for climate prediction. We argue that the role of chaos and nonlinear dynamic behaviour ought to have more prominence in the discussion of the forecasting capabilities in climate prediction. References: Fraedrich, K. Estimating the dimensions of weather and climate attractors. J. Atmos. Sci, 43, 419-432, 1986. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141, 1963. Lorenz, E. N. Irregularity: a fundamental property of the atmosphere. Tellus, 36A, 98-110, 1984. Murphy, J. M., D. M. H. Sexton, G. J. Jenkins, B. B. B. Booth, C. C. Brown, R. T. Clark, M. Collins, G. R. Harris, E. J. Kendon, R. A. Betts, S. J. Brown, P. Boorman, T. P. Howard, K. A. Humphrey, M. P. McCarthy, R. E. McDonald, A. Stephens, C. Wallace, R. Warren, R. Wilby, and R. A. Wood. Uk climate projections science report: Climate change projections. 2009. Sahay, A. and K. R. Sreenivasan. The search for a low-dimensional characterization of a local climate system. Phil. Trans. R. Soc. A., 354, 1715-1750, 1996. Stainforth, D. A., M. R. Allen, E. R. Tredger, and L. A. Smith. Confidence, uncertainty and decision-support relevance in climate predictions. Phil. Trans. R. Soc. A, 365, 2145-2161, 2007.

  17. A Multi-Year Data Set of Cloud Properties Derived for CERES from Aqua, Terra, and TRMM

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Sunny Sun-Mack; Trepte, Quinz Z.; Yan Chen; Brown, Richard R.; Gibson, Sharon C.; Heck, Michael L.; Dong, Xiquan; Xi, Baike

    2007-01-01

    The Clouds and Earth's Radiant Energy System (CERES) Project is producing a suite of cloud properties from high-resolution imagers on several satellites and matching them precisely with broadband radiance data to study the influence of clouds and radiation on climate. The cloud properties generally compare well with independent validation sources. Distinct differences are found between the CERES cloud properties and those derived with other algorithms from the same imager data. CERES products will be updated beginning in late 2006.

  18. Formation of a CliC/CLIVAR Northern Oceans Regional Panel to advance the understanding of the role of the Arctic in global climate

    NASA Astrophysics Data System (ADS)

    Solomon, A.

    2017-12-01

    The Arctic climate is rapidly transitioning into a new regime with lower sea ice extent and increasingly younger and thinner sea ice pack. The emergent properties of this new regime are yet to be determined since altered feedback processes between ice, ocean, and atmosphere will further impact upper ocean heat content, atmospheric circulation, atmospheric and oceanic stratification, the interactions between subsurface/intermediate warm waters and surface cold and fresh layer, cloud cover, ice growth, among other properties. This emergent new climate regime needs to be understood in terms of the two-way feedback between the Arctic and lower-latitudes (both in the ocean and atmosphere), as well as the local coupling between ocean-sea ice-atmosphere. The net result of these feedbacks will determine the magnitude of future Arctic amplification and potential impacts on mid-latitude weather extremes, among other impacts. A new international panel, the CliC/CLIVAR Northern Oceans Regional Panel, has been established to coordinate efforts that will enhance our ability to monitor the coupled system, understand the driving mechanisms of the system change from a coupled process perspective, and predict the evolution of the emerging "New Arctic" climate. This talk will discuss the scientific motivation for this new panel, the near-term objectives, and plans for deliverables.

  19. Report for Oregon State University Reporting Period: June 2016 to June 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, Jennifer

    The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less

  20. Climate forcings and feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, James

    1993-01-01

    Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption or an El Nino.

  1. Climate change, urbanization, and optimal long-term floodplain protection

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Lund, Jay R.; Jenkins, Marion W.; Marques, Guilherme F.; Ritzema, Randall S.

    2007-06-01

    This paper examines levee-protected floodplains and economic aspects of adaptation to increasing long-term flood risk due to urbanization and climate change. The lower American River floodplain in the Sacramento, California, metropolitan area is used as an illustration to explore the course of optimal floodplain protection decisions over long periods. A dynamic programming model is developed and suggests economically desirable adaptations for floodplain levee systems given simultaneous changes in flood climate and urban land values. Economic engineering optimization analyses of several climate change and urbanization scenarios are made. Sensitivity analyses consider assumptions about future values of floodplain land and damageable property along with the discount rate. Methodological insights and policy lessons are drawn from modeling results, reflecting the joint effects and relationships that climate, economic costs, and regional economic growth can have on floodplain levee planning decisions.

  2. Spatio-Temporal Dynamics of Maize Yield Water Constraints under Climate Change in Spain

    PubMed Central

    Ferrero, Rosana; Lima, Mauricio; Gonzalez-Andujar, Jose Luis

    2014-01-01

    Many studies have analyzed the impact of climate change on crop productivity, but comparing the performance of water management systems has rarely been explored. Because water supply and crop demand in agro-systems may be affected by global climate change in shaping the spatial patterns of agricultural production, we should evaluate how and where irrigation practices are effective in mitigating climate change effects. Here we have constructed simple, general models, based on biological mechanisms and a theoretical framework, which could be useful in explaining and predicting crop productivity dynamics. We have studied maize in irrigated and rain-fed systems at a provincial scale, from 1996 to 2009 in Spain, one of the most prominent “hot-spots” in future climate change projections. Our new approach allowed us to: (1) evaluate new structural properties such as the stability of crop yield dynamics, (2) detect nonlinear responses to climate change (thresholds and discontinuities), challenging the usual linear way of thinking, and (3) examine spatial patterns of yield losses due to water constraints and identify clusters of provinces that have been negatively affected by warming. We have reduced the uncertainty associated with climate change impacts on maize productivity by improving the understanding of the relative contributions of individual factors and providing a better spatial comprehension of the key processes. We have identified water stress and water management systems as being key causes of the yield gap, and detected vulnerable regions where efforts in research and policy should be prioritized in order to increase maize productivity. PMID:24878747

  3. Spatio-temporal dynamics of maize yield water constraints under climate change in Spain.

    PubMed

    Ferrero, Rosana; Lima, Mauricio; Gonzalez-Andujar, Jose Luis

    2014-01-01

    Many studies have analyzed the impact of climate change on crop productivity, but comparing the performance of water management systems has rarely been explored. Because water supply and crop demand in agro-systems may be affected by global climate change in shaping the spatial patterns of agricultural production, we should evaluate how and where irrigation practices are effective in mitigating climate change effects. Here we have constructed simple, general models, based on biological mechanisms and a theoretical framework, which could be useful in explaining and predicting crop productivity dynamics. We have studied maize in irrigated and rain-fed systems at a provincial scale, from 1996 to 2009 in Spain, one of the most prominent "hot-spots" in future climate change projections. Our new approach allowed us to: (1) evaluate new structural properties such as the stability of crop yield dynamics, (2) detect nonlinear responses to climate change (thresholds and discontinuities), challenging the usual linear way of thinking, and (3) examine spatial patterns of yield losses due to water constraints and identify clusters of provinces that have been negatively affected by warming. We have reduced the uncertainty associated with climate change impacts on maize productivity by improving the understanding of the relative contributions of individual factors and providing a better spatial comprehension of the key processes. We have identified water stress and water management systems as being key causes of the yield gap, and detected vulnerable regions where efforts in research and policy should be prioritized in order to increase maize productivity.

  4. Shallow Horizontal GCHP Effectiveness in Arid Climate Soils

    NASA Astrophysics Data System (ADS)

    North, Timothy James

    Ground coupled heat pumps (GCHPs) have been used successfully in many environments to improve the heating and cooling efficiency of both small and large scale buildings. In arid climate regions, such as the Phoenix, Arizona metropolitan area, where the air condi-tioning load is dominated by cooling in the summer, GCHPs are difficult to install and operate. This is because the nature of soils in arid climate regions, in that they are both dry and hot, renders them particularly ineffective at dissipating heat. The first part of this thesis addresses applying the SVHeat finite element modeling soft-ware to create a model of a GCHP system. Using real-world data from a prototype solar-water heating system coupled with a ground-source heat exchanger installed in Menlo Park, California, a relatively accurate model was created to represent a novel GCHP panel system installed in a shallow vertical trench. A sensitivity analysis was performed to evaluate the accuracy of the calibrated model. The second part of the thesis involved adapting the calibrated model to represent an ap-proximation of soil conditions in arid climate regions, using a range of thermal properties for dry soils. The effectiveness of the GCHP in the arid climate region model was then evaluated by comparing the thermal flux from the panel into the subsurface profile to that of the prototype GCHP. It was shown that soils in arid climate regions are particularly inefficient at heat dissipation, but that it is highly dependent on the thermal conductivity inputted into the model. This demonstrates the importance of proper site characterization in arid climate regions. Finally, several soil improvement methods were researched to evaluate their potential for use in improving the effectiveness of shallow horizontal GCHP systems in arid climate regions.

  5. The ARM Climate Research Facility - New Capabilities and the Expected Impacts on Climate Science and Modeling

    NASA Astrophysics Data System (ADS)

    Voyles, J.; Mather, J. H.

    2010-12-01

    The ARM Climate Research Facility is a Department of Energy national scientific user facility. Research sites include fixed and mobile facilities, which collect research quality data for climate research. Through the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy’s Office of Science allocated $60 million to the ARM Climate Research Facility for the purchase of instruments and improvement of research sites. With these funds, ARM is in the process of deploying a broad variety of new instruments that will greatly enhance the measurement capabilities of the facility. New instruments being purchased include dual-frequency scanning cloud radars, scanning precipitation radars, Doppler lidars, a mobile Aerosol Observing System and many others. A list of instruments being purchased is available at http://www.arm.gov/about/recovery-act. Orders for all instruments have now been placed and activities are underway to integrate these new systems with our research sites. The overarching goal is to provide instantaneous and statistical measurements of the climate that can be used to advance the physical understanding and predictive performance of climate models. The Recovery Act investments enable the ARM Climate Research Facility to enhance existing and add new measurements, which enable a more complete understanding of the 3-dimensional evolution of cloud processes and related atmospheric properties. Understanding cloud processes are important globally, to reduce climate-modeling uncertainties and help improve our nation’s ability to manage climate impacts. Domer Plot of W-Band Reflectivity

  6. Long Term Cloud Property Datasets From MODIS and AVHRR Using the CERES Cloud Algorithm

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Bedka, Kristopher M.; Doelling, David R.; Sun-Mack, Sunny; Yost, Christopher R.; Trepte, Qing Z.; Bedka, Sarah T.; Palikonda, Rabindra; Scarino, Benjamin R.; Chen, Yan; hide

    2015-01-01

    Cloud properties play a critical role in climate change. Monitoring cloud properties over long time periods is needed to detect changes and to validate and constrain models. The Clouds and the Earth's Radiant Energy System (CERES) project has developed several cloud datasets from Aqua and Terra MODIS data to better interpret broadband radiation measurements and improve understanding of the role of clouds in the radiation budget. The algorithms applied to MODIS data have been adapted to utilize various combinations of channels on the Advanced Very High Resolution Radiometer (AVHRR) on the long-term time series of NOAA and MetOp satellites to provide a new cloud climate data record. These datasets can be useful for a variety of studies. This paper presents results of the MODIS and AVHRR analyses covering the period from 1980-2014. Validation and comparisons with other datasets are also given.

  7. High resolution projections for the western Iberian coastal low level jet in a changing climate

    NASA Astrophysics Data System (ADS)

    Soares, Pedro M. M.; Lima, Daniela C. A.; Cardoso, Rita M.; Semedo, Alvaro

    2017-09-01

    The Iberian coastal low-level jet (CLLJ) is one of the less studied boundary layer wind jet features in the Eastern Boundary Currents Systems (EBCS). These regions are amongst the most productive ocean ecosystems, where the atmosphere-land-ocean feedbacks, which include marine boundary layer clouds, coastal jets, upwelling and inland soil temperature and moisture, play an important role in defining the regional climate along the sub-tropical mid-latitude western coastal areas. Recently, the present climate western Iberian CLLJ properties were extensively described using a high resolution regional climate hindcast simulation. A summer maximum frequency of occurrence above 30 % was found, with mean maximum wind speeds around 15 ms-1, between 300 and 400 m heights (at the jet core). Since the 1990s the climate change impact on the EBCS is being studied, nevertheless some lack of consensus still persists regarding the evolution of upwelling and other components of the climate system in these areas. However, recently some authors have shown that changes are to be expected concerning the timing, intensity and spatial homogeneity of coastal upwelling, in response to future warming, especially at higher latitudes, namely in Iberia and Canaries. In this study, the first climate change assessment study regarding the Western Iberian CLLJ, using a high resolution (9 km) regional climate simulation, is presented. The properties of this CLLJ are studied and compared using two 30 years simulations: one historical simulation for the 1971-2000 period, and another simulation for future climate, in agreement with the RCP8.5 scenario, for the 2071-2100 period. Robust and consistent changes are found: (1) the hourly frequency of occurrence of the CLLJ is expected to increase in summer along the western Iberian coast, from mean maximum values of around 35 % to approximately 50 %; (2) the relative increase of the CLLJ frequency of occurrence is higher in the north off western Iberia; (3) the occurrence of the CLLJ covers larger areas both latitudinal and longitudinal; (4) the CLLJ season is lengthened extending to May and September; and, (5) there are shifts for higher occurrences of higher wind speeds and for the jet core to occur at higher heights.

  8. Characteristics of tropical cyclones in high-resolution models in the present climate

    DOE PAGES

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; ...

    2014-12-05

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TCmore » frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.« less

  9. Species-free species distribution models describe macroecological properties of protected area networks.

    PubMed

    Robinson, Jason L; Fordyce, James A

    2017-01-01

    Among the greatest challenges facing the conservation of plants and animal species in protected areas are threats from a rapidly changing climate. An altered climate creates both challenges and opportunities for improving the management of protected areas in networks. Increasingly, quantitative tools like species distribution modeling are used to assess the performance of protected areas and predict potential responses to changing climates for groups of species, within a predictive framework. At larger geographic domains and scales, protected area network units have spatial geoclimatic properties that can be described in the gap analysis typically used to measure or aggregate the geographic distributions of species (stacked species distribution models, or S-SDM). We extend the use of species distribution modeling techniques in order to model the climate envelope (or "footprint") of individual protected areas within a network of protected areas distributed across the 48 conterminous United States and managed by the US National Park System. In our approach we treat each protected area as the geographic range of a hypothetical endemic species, then use MaxEnt and 5 uncorrelated BioClim variables to model the geographic distribution of the climatic envelope associated with each protected area unit (modeling the geographic area of park units as the range of a species). We describe the individual and aggregated climate envelopes predicted by a large network of 163 protected areas and briefly illustrate how macroecological measures of geodiversity can be derived from our analysis of the landscape ecological context of protected areas. To estimate trajectories of change in the temporal distribution of climatic features within a protected area network, we projected the climate envelopes of protected areas in current conditions onto a dataset of predicted future climatic conditions. Our results suggest that the climate envelopes of some parks may be locally unique or have narrow geographic distributions, and are thus prone to future shifts away from the climatic conditions in these parks in current climates. In other cases, some parks are broadly similar to large geographic regions surrounding the park or have climatic envelopes that may persist into near-term climate change. Larger parks predict larger climatic envelopes, in current conditions, but on average the predicted area of climate envelopes are smaller in our single future conditions scenario. Individual units in a protected area network may vary in the potential for climate adaptation, and adaptive management strategies for the network should account for the landscape contexts of the geodiversity or climate diversity within individual units. Conservation strategies, including maintaining connectivity, assessing the feasibility of assisted migration and other landscape restoration or enhancements can be optimized using analysis methods to assess the spatial properties of protected area networks in biogeographic and macroecological contexts.

  10. Projecting Future Water Levels of the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Bennington, V.; Notaro, M.; Holman, K.

    2013-12-01

    The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.

  11. The ESA Cloud CCI project: Generation of Multi Sensor consistent Cloud Properties with an Optimal Estimation Based Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Jerg, M.; Stengel, M.; Hollmann, R.; Poulsen, C.

    2012-04-01

    The ultimate objective of the ESA Climate Change Initiative (CCI) Cloud project is to provide long-term coherent cloud property data sets exploiting and improving on the synergetic capabilities of past, existing, and upcoming European and American satellite missions. The synergetic approach allows not only for improved accuracy and extended temporal and spatial sampling of retrieved cloud properties better than those provided by single instruments alone but potentially also for improved (inter-)calibration and enhanced homogeneity and stability of the derived time series. Such advances are required by the scientific community to facilitate further progress in satellite-based climate monitoring, which leads to a better understanding of climate. Some of the primary objectives of ESA Cloud CCI Cloud are (1) the development of inter-calibrated radiance data sets, so called Fundamental Climate Data Records - for ESA and non ESA instruments through an international collaboration, (2) the development of an optimal estimation based retrieval framework for cloud related essential climate variables like cloud cover, cloud top height and temperature, liquid and ice water path, and (3) the development of two multi-annual global data sets for the mentioned cloud properties including uncertainty estimates. These two data sets are characterized by different combinations of satellite systems: the AVHRR heritage product comprising (A)ATSR, AVHRR and MODIS and the novel (A)ATSR - MERIS product which is based on a synergetic retrieval using both instruments. Both datasets cover the years 2007-2009 in the first project phase. ESA Cloud CCI will also carry out a comprehensive validation of the cloud property products and provide a common data base as in the framework of the Global Energy and Water Cycle Experiment (GEWEX). The presentation will give an overview of the ESA Cloud CCI project and its goals and approaches and then continue with results from the Round Robin algorithm comparison exercise carried out at the beginning of the project which included three algorithms. The purpose of the exercise was to assess and compare existing cloud retrieval algorithms in order to chose one of them as backbone of the retrieval system and also identify areas of potential improvement and general strengths and weaknesses of the algorithm. Furthermore the presentation will elaborate on the optimal estimation algorithm subsequently chosen to derive the heritage product and which is presently further developed and will be employed for the AVHRR heritage product. The algorithm's capabilities to coherently and simultaneously process all radiative input and yield retrieval parameters together with associated uncertainty estimates will be presented together with first results for the heritage product. In the course of the project the algorithm is being developed into a freely and publicly available community retrieval system for interested scientists.

  12. Asphalt pavement aging and temperature dependent properties using functionally graded viscoelastic model

    NASA Astrophysics Data System (ADS)

    Dave, Eshan V.

    Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional finite-element modeling (FEM) technique discretizes the problem domain into smaller elements, each with a unique constitutive property. However the assignment of unique material property description to an element in the FEM approach makes it an unattractive choice for simulation of problems with material non-homogeneities. Specialized elements such as "graded elements" allow for non-homogenous material property definitions within an element. This dissertation describes the development of graded viscoelastic finite element analysis method and its application for analysis of asphalt concrete pavements. Results show that the present research improves efficiency and accuracy of simulations for asphalt pavement systems. Some of the practical implications of this work include the new technique's capability for accurate analysis and design of asphalt pavements and overlay systems and for the determination of pavement performance with varying climatic conditions and amount of in-service age. Other application areas include simulation of functionally graded fiber-reinforced concrete, geotechnical materials, metal and metal composites at high temperatures, polymers, and several other naturally existing and engineered materials.

  13. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia.

    PubMed

    Godde, Cécile M; Thorburn, Peter J; Biggs, Jody S; Meier, Elizabeth A

    2016-01-01

    Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model's outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in our simulations revealed the importance of the climate constraints on SOC.

  14. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia

    PubMed Central

    Godde, Cécile M.; Thorburn, Peter J.; Biggs, Jody S.; Meier, Elizabeth A.

    2016-01-01

    Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil–climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model’s outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat–chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in our simulations revealed the importance of the climate constraints on SOC. PMID:27242862

  15. Relationships between aerodynamic roughness and land use and land cover in Baltimore, Maryland

    USGS Publications Warehouse

    Nicholas, F.W.; Lewis, J.E.

    1980-01-01

    Urbanization changes the radiative, thermal, hydrologic, and aerodynamic properties of the Earth's surface. Knowledge of these surface characteristics, therefore, is essential to urban climate analysis. Aerodynamic or surface roughness of urban areas is not well documented, however, because of practical constraints in measuring the wind profile in the presence of large buildings. Using an empirical method designed by Lettau, and an analysis of variance of surface roughness values calculated for 324 samples averaging 0.8 hectare (ha) of land use and land cover sample in Baltimore, Md., a strong statistical relation was found between aerodynamic roughness and urban land use and land cover types. Assessment of three land use and land cover systems indicates that some of these types have significantly different surface roughness characteristics. The tests further indicate that statistically significant differences exist in estimated surface roughness values when categories (classes) from different land use and land cover classification systems are used as surrogates. A Level III extension of the U.S. Geological Survey Level II land use and land cover classification system provided the most reliable results. An evaluation of the physical association between the aerodynamic properties of land use and land cover and the surface climate by numerical simulation of the surface energy balance indicates that changes in surface roughness within the range of values typical of the Level III categories induce important changes in the surface climate.

  16. The Mediterranean Sea regime shift at the end of the 1980s, and intriguing parallelisms with other European basins.

    PubMed

    Conversi, Alessandra; Fonda Umani, Serena; Peluso, Tiziana; Molinero, Juan Carlos; Santojanni, Alberto; Edwards, Martin

    2010-05-19

    Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems. Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work) Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts may provide the key for distinguishing local (i.e., basin) anthropogenic drivers, such as eutrophication or fishing, from larger scale (hemispheric) climate drivers.

  17. The effects of global climate change on Southeast Asia: A survey of likely impacts and problems of adaptation

    NASA Technical Reports Server (NTRS)

    Njoto, Sukrisno; Howe, Charles W.

    1991-01-01

    Study results indicate the likelihood of significant net damages from climate change, in particular damages from sea-level rise and higher temperatures that seem unlikely to be offset by favorable shifts in precipitation and carbon dioxide. Also indicated was the importance of better climate models, in particular models that can calculate climate change on a regional scale appropriate to policy-making. In spite of this potential for damage, there seems to be a low level of awareness and concern, probably caused by the higher priority given to economic growth and reinforced by the great uncertainty in the forecasts. The common property nature of global environment systems also leads to a feeling of helplessness on the part of country governments.

  18. Daytime Cloud Property Retrievals Over the Arctic from Multispectral MODIS Data

    NASA Technical Reports Server (NTRS)

    Spangenberg, Douglas A.; Trepte, Qing; Minnis, Patrick; Uttal, Taneil

    2004-01-01

    Improving climate model predictions over Earth's polar regions requires a complete understanding of polar clouds properties. Passive satellite remote sensing techniques can be used to retrieve macro and microphysical properties of polar cloud systems. However, over the Arctic, there is minimal contrast between clouds and the background snow surface observed in satellite data, especially for visible wavelengths. This makes it difficult to identify clouds and retrieve their properties from space. Variable snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds further complicate cloud property identification. For this study, the operational Clouds and the Earth s Radiant Energy System (CERES) cloud mask is first used to discriminate clouds from the background surface in Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data. A solar-infrared infrared nearinfrared technique (SINT) first used by Platnick et al. (2001) is used here to retrieve cloud properties over snow and ice covered regions.

  19. Cyclones and extreme windstorm events over Europe under climate change: Global and regional climate model diagnostics

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Ulbrich, U.

    2003-04-01

    More than any changes of the climate system mean state conditions, the development of extreme events may influence social, economic and legal aspects of our society. This linkage results from the impact of extreme climate events (natural hazards) on environmental systems which again are directly linked to human activities. Prominent examples from the recent past are the record breaking rainfall amounts of August 2002 in central Europe which produced widespread floodings or the wind storm Lothar of December 1999. Within the MICE (Modelling the Impact of Climate Extremes) project framework an assessment of the impact of changes in extremes will be done. The investigation is carried out for several different impact categories as agriculture, energy use and property damage. Focus is laid on the diagnostics of GCM and RCM simulations under different climate change scenarios. In this study we concentrate on extreme windstorms and their relationship to cyclone activity in the global HADCM3 as well as in the regional HADRM3 model under two climate change scenarios (SRESA2a, B2a). In order to identify cyclones we used an objective algorithm from Murry and Simmonds which was widely tested under several different conditions. A slight increase in the occurrence of systems is identified above northern parts of central Europe for both scenarios. For more severe systems (core pressure < 990 hPa) we find an increase for western Europe. Strong wind events can be defined via different percentile values of the windspeed (e.g. above the 95 percentile). By this means the relationship between strong wind events and cyclones is also investigated. For several regions (e.g. Germany, France, Spain) a shift to more deep cyclones connected with an increasing number of strong wind events is found.

  20. Climate effects caused by land plant invasion in the Devonian

    NASA Astrophysics Data System (ADS)

    Hir guillaume, Le; yannick, Donnadieu; yves, Goddéris; brigitte, Meyer-Berthaud; gilles, Ramstein

    2017-04-01

    Land plants invaded continents during the Mid-Paleozoic. Their spreading and diversification have been compared to the Cambrian explosion in terms of intensity and impact on the diversification of life on Earth. Whereas prior studies were focused on the evolution of the root system and its weathering contribution, here we investigated the biophysical impacts of plant colonization on the surface climate through changes in continental albedo, roughness, thermal properties, and potential evaporation using a 3D-climate model coupled to a global biogeochemical cycles associated to a simple model for vegetation dynamics adapted to Devonian conditions. From the Early to the Late Devonian, we show that continental surface changes induced by land plants and tectonic drift have produced a large CO2 drawdown without being associated to a global cooling, because the cooling trend is counteracted by a warming trend resulting from the surface albedo reduction. If CO2 is consensually assumed as the main driver of the Phanerozoic climate, during land-plant invasion, the modifications of soil properties could have played in the opposite direction of the carbon dioxide fall, hence maintaining warm temperatures during part of the Devonian.

  1. Multi-Objective Control Optimization for Greenhouse Environment Using Evolutionary Algorithms

    PubMed Central

    Hu, Haigen; Xu, Lihong; Wei, Ruihua; Zhu, Bingkun

    2011-01-01

    This paper investigates the issue of tuning the Proportional Integral and Derivative (PID) controller parameters for a greenhouse climate control system using an Evolutionary Algorithm (EA) based on multiple performance measures such as good static-dynamic performance specifications and the smooth process of control. A model of nonlinear thermodynamic laws between numerous system variables affecting the greenhouse climate is formulated. The proposed tuning scheme is tested for greenhouse climate control by minimizing the integrated time square error (ITSE) and the control increment or rate in a simulation experiment. The results show that by tuning the gain parameters the controllers can achieve good control performance through step responses such as small overshoot, fast settling time, and less rise time and steady state error. Besides, it can be applied to tuning the system with different properties, such as strong interactions among variables, nonlinearities and conflicting performance criteria. The results implicate that it is a quite effective and promising tuning method using multi-objective optimization algorithms in the complex greenhouse production. PMID:22163927

  2. Combined effects of climate, restoration measures and slope position in change in soil chemical properties and nutrient loss across lands affected by the Wenchuan Earthquake in China.

    PubMed

    Lin, Yongming; Deng, Haojun; Du, Kun; Rafay, Loretta; Zhang, Guang-Shuai; Li, Jian; Chen, Can; Wu, Chengzhen; Lin, Han; Yu, Wei; Fan, Hailan; Ge, Yonggang

    2017-10-15

    The MS 8.0Wenchuan Earthquake in 2008 caused huge damage to land cover in the northwest of China's Sichuan province. In order to determine the nutrient loss and short term characteristics of change in soil chemical properties, we established an experiment with three treatments ('undestroyed', 'destroyed and treated', and 'destroyed and untreated'), two climate types (semi-arid hot climate and subtropical monsoon climate), and three slope positions (upslope, mid-slope, and bottom-slope) in 2011. Ten soil properties-including pH, organic carbon, total nitrogen, total phosphorus, total potassium, Ca 2+ , Mg 2+ , alkaline hydrolysable nitrogen, available phosphorus, and available potassium-were measured in surface soil samples in December 2014. Analyses were performed to compare the characteristics of 3-year change in soil chemical properties in two climate zones. This study revealed that soil organic carbon, total nitrogen, Ca 2+ content, alkaline hydrolysable nitrogen, available phosphorus, and available potassium were significantly higher in subtropical monsoon climate zones than in semi-arid hot climate zones. However, subtropical monsoon climate zones had a higher decrease in soil organic carbon, total nitrogen, total phosphorus, total potassium, and alkaline hydrolysable nitrogen in 'destroyed and untreated' sites than in semi-arid hot climate zones. Most soil chemical properties exhibited significant interactions, indicating that they may degrade or develop concomitantly. 'Destroyed and treated' sites in both climate types had lower C:P and N:P ratios than 'destroyed and untreated' sites. Principal component analysis (PCA) showed that the first, second, and third principal components explained 76.53% of the variation and might be interpreted as structural integrity, nutrient supply availability, and efficiency of soil; the difference of soil parent material; as well as weathering and leaching effects. Our study indicated that the characteristics of short term change in soil properties were affected by climate types and treatments, but not slope positions. Our results provide useful information for the selection of restoration countermeasures in different climate types to facilitate ecological restoration and reconstruction strategies in earthquake-affected areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Constructing regional climate networks in the Amazonia during recent drought events.

    PubMed

    Guo, Heng; Ramos, Antônio M T; Macau, Elbert E N; Zou, Yong; Guan, Shuguang

    2017-01-01

    Climate networks are powerful approaches to disclose tele-connections in climate systems and to predict severe climate events. Here we construct regional climate networks from precipitation data in the Amazonian region and focus on network properties under the recent drought events in 2005 and 2010. Both the networks of the entire Amazon region and the extreme networks resulted from locations severely affected by drought events suggest that network characteristics show slight difference between the two drought events. Based on network degrees of extreme drought events and that without drought conditions, we identify regions of interest that are correlated to longer expected drought period length. Moreover, we show that the spatial correlation length to the regions of interest decayed much faster in 2010 than in 2005, which is because of the dual roles played by both the Pacific and Atlantic oceans. The results suggest that hub nodes in the regional climate network of Amazonia have fewer long-range connections when more severe drought conditions appeared in 2010 than that in 2005.

  4. Progress towards MODIS and VIIRS Cloud Optical Property Data Record Continuity

    NASA Astrophysics Data System (ADS)

    Meyer, K.; Platnick, S. E.; Wind, G.; Amarasinghe, N.; Holz, R.; Ackerman, S. A.; Heidinger, A. K.

    2016-12-01

    The launch of Suomi NPP in the fall of 2011 began the next generation of U.S. operational polar orbiting Earth observations, and its VIIRS imager provides an opportunity to extend the 15+ year climate data record of MODIS EOS. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals, and there is a significant change in the spectral location of the 2.1μm shortwave-infrared channel used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, we discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud optical and microphysical properties product (MOD06); the NOAA AWG/CLAVR-x cloud-top property algorithm and a common MODIS-VIIRS cloud mask feed into the optical property algorithm. To account for the different channel sets of MODIS and VIIRS, each algorithm nominally uses a subset of channels common to both imagers. Data granule and aggregated examples for the current version of the continuity algorithm (MODAWG) will be shown. In addition, efforts to reconcile apparent radiometric biases between analogous channels of the two imagers, a critical consideration for obtaining inter-sensor climate data record continuity, will be discussed.

  5. Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Martin, S. T.; Kleinman, L.

    2016-03-01

    Aerosol indirect effects, which represent the impact of aerosols on climate through influencing the properties of clouds, remain one of the main uncertainties in climate predictions (Stocker et al. 2013). Reducing this large uncertainty requires both improved understanding and representation of aerosol properties and processes in climate models, including the cloud activation properties of aerosols. The Atmospheric System Research (ASR) science program plan of January 2010 states that: “A key requirement for simulating aerosol-cloud interactions is the ability to calculate cloud condensation nuclei and ice nuclei (CCN and IN, respectively) concentrations as a function of supersaturation from the chemical andmore » microphysical properties of the aerosol.” The Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/15) study seeks to understand how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity (Manaus)—in particular, the differences in cloud-aerosol-precipitation interactions between polluted and pristine conditions. One key question of GoAmazon2014/5 is: “What is the influence of the Manaus pollution plume on the cloud condensation nuclei (CCN) activities of the aerosol particles and the secondary organic material in the particles?” To address this question, we measured size-resolved CCN spectra, a critical measurement for GoAmazon2014/5.« less

  6. CLARREO shortwave observing system simulation experiments of the twenty-first century: Simulator design and implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, D.R.; Algieri, C.A.; Ong, J.R.

    2011-04-01

    Projected changes in the Earth system will likely be manifested in changes in reflected solar radiation. This paper introduces an operational Observational System Simulation Experiment (OSSE) to calculate the signals of future climate forcings and feedbacks in top-of-atmosphere reflectance spectra. The OSSE combines simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report for the NCAR Community Climate System Model (CCSM) with the MODTRAN radiative transfer code to calculate reflectance spectra for simulations of current and future climatic conditions over the 21st century. The OSSE produces narrowband reflectances and broadband fluxes, the latter of which have been extensivelymore » validated against archived CCSM results. The shortwave reflectance spectra contain atmospheric features including signals from water vapor, liquid and ice clouds, and aerosols. The spectra are also strongly influenced by the surface bidirectional reflectance properties of predicted snow and sea ice and the climatological seasonal cycles of vegetation. By comparing and contrasting simulated reflectance spectra based on emissions scenarios with increasing projected and fixed present-day greenhouse gas and aerosol concentrations, we find that prescribed forcings from increases in anthropogenic sulfate and carbonaceous aerosols are detectable and are spatially confined to lower latitudes. Also, changes in the intertropical convergence zone and poleward shifts in the subsidence zones and the storm tracks are all detectable along with large changes in snow cover and sea ice fraction. These findings suggest that the proposed NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission to measure shortwave reflectance spectra may help elucidate climate forcings, responses, and feedbacks.« less

  7. Sensitivity of global terrestrial ecosystems to climate variability.

    PubMed

    Seddon, Alistair W R; Macias-Fauria, Marc; Long, Peter R; Benz, David; Willis, Kathy J

    2016-03-10

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  8. Sensitivity of global terrestrial ecosystems to climate variability

    NASA Astrophysics Data System (ADS)

    Seddon, Alistair W. R.; Macias-Fauria, Marc; Long, Peter R.; Benz, David; Willis, Kathy J.

    2016-03-01

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  9. Opportunistic management of estuaries under climate change: A new adaptive decision-making framework and its practical application.

    PubMed

    Peirson, William; Davey, Erica; Jones, Alan; Hadwen, Wade; Bishop, Keith; Beger, Maria; Capon, Samantha; Fairweather, Peter; Creese, Bob; Smith, Timothy F; Gray, Leigh; Tomlinson, Rodger

    2015-11-01

    Ongoing coastal development and the prospect of severe climate change impacts present pressing estuary management and governance challenges. Robust approaches must recognise the intertwined social and ecological vulnerabilities of estuaries. Here, a new governance and management framework is proposed that recognises the integrated social-ecological systems of estuaries so as to permit transformative adaptation to climate change within these systems. The framework lists stakeholders and identifies estuarine uses and values. Goals are categorised that are specific to ecosystems, private property, public infrastructure, and human communities. Systematic adaptation management strategies are proposed with conceptual examples and associated governance approaches. Contrasting case studies are used to illustrate the practical application of these ideas. The framework will assist estuary managers worldwide to achieve their goals, minimise maladaptative responses, better identify competing interests, reduce stakeholder conflict and exploit opportunities for appropriate ecosystem restoration and sustainable development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Interactive, process-oriented climate modeling with CLIMLAB

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2016-12-01

    Global climate is a complex emergent property of the rich interactions between simpler components of the climate system. We build scientific understanding of this system by breaking it down into component process models (e.g. radiation, large-scale dynamics, boundary layer turbulence), understanding each components, and putting them back together. Hands-on experience and freedom to tinker with climate models (whether simple or complex) is invaluable for building physical understanding. CLIMLAB is an open-ended software engine for interactive, process-oriented climate modeling. With CLIMLAB you can interactively mix and match model components, or combine simpler process models together into a more comprehensive model. It was created primarily to support classroom activities, using hands-on modeling to teach fundamentals of climate science at both undergraduate and graduate levels. CLIMLAB is written in Python and ties in with the rich ecosystem of open-source scientific Python tools for numerics and graphics. The Jupyter Notebook format provides an elegant medium for distributing interactive example code. I will give an overview of the current capabilities of CLIMLAB, the curriculum we have developed thus far, and plans for the future. Using CLIMLAB requires some basic Python coding skills. We consider this an educational asset, as we are targeting upper-level undergraduates and Python is an increasingly important language in STEM fields.

  11. On the impact of anthropogenic emissions on biogenic SOA formation above West Africa: results from DACCIWA aircraft field campaign

    NASA Astrophysics Data System (ADS)

    Brito, Joel; Freney, Evelyn; Colomb, Aurelie; Dupuy, Régis; Duplissy, Jonathan; Denjean, Cyrielle; Dominutti, Pamela; Batenburg, Anneke; Haslett, Sophie; Schulz, Christiane; Bourrianne, Thierry; Burnet, Frederic; Borbon, Agnès; Schneider, Johannes; Borrmann, Stephan; Coe, Hugh; Sellegri, Karine; Flamant, Cyrille; Knippertz, Peter; Schwarzenboeck, Alfons

    2017-04-01

    As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, airborne campaigns were designed to measure a large range of atmospheric constituents focusing on the improvement of our current understanding on the effect of anthropogenic emissions on regional climate. The targeted region, Southern West Africa, holds currently a population of over 340 million people, and is predicted by the United Nations to reach about 800 million by 2050. The climate in the region is characterized by a large-scale atmospheric circulation system which controls precipitation over a land area of about 6 million km2, directly impacting the water resources, agriculture and power generation of hundreds of millions of people. Besides its large natural variability, the West African monsoon system is also expected to be significantly affected by global and regional climate change, with large uncertainties on the role of local pollution. An important aspect assessing the impact of human activities on the local climate is thereby the understanding of aerosol sources and properties. The presented study details results of the DACCIWA measurement campaign using the French ATR42 research aircraft, which in combination with the German Falcon 20 and British Twin Otter aircraft, aimed to characterize physico-chemical properties of aerosols in the region using a suite of aerosol measurement techniques (e.g. C-TOF AMS, APITOF, SMPS, etc.) and supporting information from simultaneous trace gas measurements (e.g. PTRMS). This large dataset has been used to assess how anthropogenic emission (NOx, SO2, SO4) is impacting formation of biogenic secondary organic aerosol formation, in particular through the formation of isoprene epoxydiols (IEPOX). The recently collected data will certainly help understanding the coupling between human activities and regional climate in a sensitive, highly populated area.

  12. New CERES Data Examined for Evidence of Tropical Iris Feedback

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Lin, Bing; Young, David F.

    2002-01-01

    New data products are available from the CERES instrument, a part of the NASA Earth Observing System. The Single Scanner Footprint (SSF) product combines radiative fluxes with extensive information on the cloud conditions in the footprint, which are retrieved using the co-orbiting imager instrument. These data have been analyzed to more accurately define the radiative properties for the various regions of the recently-proposed adaptive infrared Iris. A variety of ways of defining the cloudy moist region were examined. According to CERES, the net radiative flux for the cloudy moist region ranges between 28 and 54 W/m2 depending on the specific definition used. This is in contrast to the value of 123 W/m2 which was somewhat subjectively assigned by LCH. This simple model may miss many feedbacks in the climate system, but it should provide a rough range of the climate variations if the physics of the Iris is correct. There is some question whether the change in cloudy moist area with cloud-weighted SST actually represents a useful quantity, and whether extrapolating it from a regional variation to a global response to warmer climate is appropriate. Regardless, the current results show that the proposed Iris feedback is very much weaker when objectively-determined radiative properties are used in the model.

  13. Global meta-analysis of leaf area index in wetlands indicates uncertainties in understanding of their ecosystem function

    NASA Astrophysics Data System (ADS)

    Dronova, I.; Taddeo, S.; Foster, K.

    2017-12-01

    Projecting ecosystem responses to global change relies on the accurate understanding of properties governing their functions in different environments. An important variable in models of ecosystem function is canopy leaf area index (LAI; leaf area per unit ground area) declared as one of the Essential Climate Variables in the Global Climate Observing System and extensively measured in terrestrial landscapes. However, wetlands have been largely under-represented in these efforts, which globally limits understanding of their contribution to carbon sequestration, climate regulation and resilience to natural and anthropogenic disturbances. This study provides a global synthesis of >350 wetland-specific LAI observations from 182 studies and compares LAI among wetland ecosystem and vegetation types, biomes and measurement approaches. Results indicate that most wetland types and even individual locations show a substantial local dispersion of LAI values (average coefficient of variation 65%) due to heterogeneity of environmental properties and vegetation composition. Such variation indicates that mean LAI values may not sufficiently represent complex wetland environments, and the use of this index in ecosystem function models needs to incorporate within-site variation in canopy properties. Mean LAI did not significantly differ between direct and indirect measurement methods on a pooled global sample; however, within some of the specific biomes and wetland types significant contrasts between these approaches were detected. These contrasts highlight unique aspects of wetland vegetation physiology and canopy structure affecting measurement principles that need to be considered in generalizing canopy properties in ecosystem models. Finally, efforts to assess wetland LAI using remote sensing strongly indicate the promise of this technology for cost-effective regional-scale modeling of canopy properties similar to terrestrial systems. However, such efforts urgently require more rigorous corrections for three-dimensional contributions of non-canopy material and non-vegetated surfaces to wetland canopy reflectance.

  14. Outcome of the third cloud retrieval evaluation workshop

    NASA Astrophysics Data System (ADS)

    Roebeling, Rob; Baum, Bryan; Bennartz, Ralf; Hamann, Ulrich; Heidinger, Andy; Thoss, Anke; Walther, Andi

    2013-05-01

    Accurate measurements of global distributions of cloud parameters and their diurnal, seasonal, and interannual variations are needed to improve understanding of the role of clouds in the weather and climate system, and to monitor their time-space variations. Cloud properties retrieved from satellite observations, such as cloud vertical placement, cloud water path and cloud particle size, play an important role for such studies. In order to give climate and weather researchers more confidence in the quality of these retrievals their validity needs to be determined and their error characteristics must be quantified. The purpose of the Cloud Retrieval Evaluation Workshop (CREW), held from 15-18 Nov. 2011 in Madison, Wisconsin, USA, is to enhance knowledge on state-of-art cloud properties retrievals from passive imaging satellites, and pave the path towards optimizing these retrievals for climate monitoring as well as for the analysis of cloud parameterizations in climate and weather models. CREW also seeks to observe and understand methods used to prepare daily and monthly cloud parameter climatologies. An important workshop component is discussion on results of the algorithm and sensor comparisons and validation studies. Hereto a common database with about 12 different cloud properties retrievals from passive imagers (MSG, MODIS, AVHRR, POLDER and/or AIRS), complemented with cloud measurements that serve as a reference (CLOUDSAT, CALIPSO, AMSU, MISR), was prepared for a number of "golden days". The passive imager cloud property retrievals were inter-compared and validated against Cloudsat, Calipso and AMSU observations. In our presentation we summarize the outcome of the inter-comparison and validation work done in the framework of CREW, and elaborate on reasons for observed differences. More in depth discussions were held on retrieval principles and validation, and utilization of cloud parameters for climate research. This was done in parallel breakout sessions on cloud vertical placement, cloud physical properties, and cloud climatologies. We present the recommendations of these sessions, propose a way forward to establish international partnerships on cloud research, and summarize actions defined to tailor CREW activities to missions of international programs, such as the Global Energy and Water Cycle Experiment (GEWEX) and Sustained, Co-Ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM). Finally, attention is given to increase the traceability and uniformity of different longterm and homogeneous records of cloud parameters.

  15. Window performance and building energy use: Some technical options for increasing energy efficiency

    NASA Astrophysics Data System (ADS)

    Selkowitz, Stephen

    1985-11-01

    Window system design and operation has a major impact on energy use in buildings as well as on occupants' thermal and visual comfort. Window performance will be a function of optical and thermal properties, window management strategies, climate and orientation, and building type and occupancy. In residences, heat loss control is a primary concern, followed by sun control in more southerly climates. In commercial buildings, the daylight provided by windows may be the major energy benefits but solar gain must be controlled so that increased cooling loads do not exceed daylighting savings. Reductions in peak electrical demand and HVAC system size may also be possible in well-designed daylighted buildings.

  16. Quantified Objectives for Assessing the Contribution of Low Clouds to Climate Sensitivity and Variability

    NASA Astrophysics Data System (ADS)

    Del Genio, A. D.; Platnick, S. E.; Bennartz, R.; Klein, S. A.; Marchand, R.; Oreopoulos, L.; Pincus, R.; Wood, R.

    2016-12-01

    Low clouds are central to leading-order questions in climate and subseasonal weather predictability, and are key to the NRC panel report's goals "to understand the signals of the Earth system under a changing climate" and "for improved models and model projections." To achieve both goals requires a mix of continuity observations to document the components of the changing climate and improvements in retrievals of low cloud and boundary layer dynamical/thermodynamic properties to ensure process-oriented observations that constrain the parameterized physics of the models. We discuss four climate/weather objectives that depend sensitively on understanding the behavior of low clouds: 1. Reduce uncertainty in GCM-inferred climate sensitivity by 50% by constraining subtropical low cloud feedbacks. 2. Eliminate the GCM Southern Ocean shortwave flux bias and its effect on cloud feedback and the position of the midlatitude storm track. 3. Eliminate the double Intertropical Convergence Zone bias in GCMs and its potential effects on tropical precipitation over land and the simulation and prediction of El Niño. 4. Increase the subseasonal predictability of tropical warm pool precipitation from 20 to 30 days. We envision advances in three categories of observations that would be highly beneficial for reaching these goals: 1. More accurate observations will facilitate more thorough evaluation of clouds in GCMs. 2. Better observations of the links between cloud properties and the environmental state will be used as the foundation for parameterization improvements. 3. Sufficiently long and higher quality records of cloud properties and environmental state will constrain low cloud feedback purely observationally. To accomplish this, the greatest need is to replace A-Train instruments, which are nearing end-of-life, with enhanced versions. The requirements are sufficient horizontal and vertical resolution to capture boundary layer cloud and thermodynamic spatial structure; more accurate determination of cloud condensate profiles and optical properties; near-coincident observations to permit multi-instrument retrievals and association with dynamic and thermodynamic structure; global coverage; and, for long-term monitoring, measurement and orbit stability and sufficient mission duration.

  17. CLIMLAB: a Python-based software toolkit for interactive, process-oriented climate modeling

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2015-12-01

    Global climate is a complex emergent property of the rich interactions between simpler components of the climate system. We build scientific understanding of this system by breaking it down into component process models (e.g. radiation, large-scale dynamics, boundary layer turbulence), understanding each components, and putting them back together. Hands-on experience and freedom to tinker with climate models (whether simple or complex) is invaluable for building physical understanding. CLIMLAB is an open-ended software engine for interactive, process-oriented climate modeling. With CLIMLAB you can interactively mix and match model components, or combine simpler process models together into a more comprehensive model. It was created primarily to support classroom activities, using hands-on modeling to teach fundamentals of climate science at both undergraduate and graduate levels. CLIMLAB is written in Python and ties in with the rich ecosystem of open-source scientific Python tools for numerics and graphics. The IPython notebook format provides an elegant medium for distributing interactive example code. I will give an overview of the current capabilities of CLIMLAB, the curriculum we have developed thus far, and plans for the future. Using CLIMLAB requires some basic Python coding skills. We consider this an educational asset, as we are targeting upper-level undergraduates and Python is an increasingly important language in STEM fields. However CLIMLAB is well suited to be deployed as a computational back-end for a graphical gaming environment based on earth-system modeling.

  18. Policy strategies to address sustainability of Alaskan boreal forests in response to a directionally changing climate.

    PubMed

    Chapin, F Stuart; Lovecraft, Amy L; Zavaleta, Erika S; Nelson, Joanna; Robards, Martin D; Kofinas, Gary P; Trainor, Sarah F; Peterson, Garry D; Huntington, Henry P; Naylor, Rosamond L

    2006-11-07

    Human activities are altering many factors that determine the fundamental properties of ecological and social systems. Is sustainability a realistic goal in a world in which many key process controls are directionally changing? To address this issue, we integrate several disparate sources of theory to address sustainability in directionally changing social-ecological systems, apply this framework to climate-warming impacts in Interior Alaska, and describe a suite of policy strategies that emerge from these analyses. Climate warming in Interior Alaska has profoundly affected factors that influence landscape processes (climate regulation and disturbance spread) and natural hazards, but has only indirectly influenced ecosystem goods such as food, water, and wood that receive most management attention. Warming has reduced cultural services provided by ecosystems, leading to some of the few institutional responses that directly address the causes of climate warming, e.g., indigenous initiatives to the Arctic Council. Four broad policy strategies emerge: (i) enhancing human adaptability through learning and innovation in the context of changes occurring at multiple scales; (ii) increasing resilience by strengthening negative (stabilizing) feedbacks that buffer the system from change and increasing options for adaptation through biological, cultural, and economic diversity; (iii) reducing vulnerability by strengthening institutions that link the high-latitude impacts of climate warming to their low-latitude causes; and (iv) facilitating transformation to new, potentially more beneficial states by taking advantage of opportunities created by crisis. Each strategy provides societal benefits, and we suggest that all of them be pursued simultaneously.

  19. Influence of coatings on the thermal and mechanical processes at insulating glass units

    NASA Astrophysics Data System (ADS)

    Penkova, Nina; Krumov, Kalin; Surleva, Andriana; Geshkova, Zlatka

    2017-09-01

    Different coatings on structural glass are used in the advances transparent facades and window systems in order to increase the thermal performance of the glass units and to regulate their optical properties. Coated glass has a higher absorptance in the solar spectrum which leads to correspondent higher temperature in the presence of solar load compared to the uncoated one. That process results in higher climatic loads at the insulating glass units (IGU) and in thermal stresses in the coated glass elements. Temperature fields and gradients in glass panes and climatic loads at IGU in window systems are estimated at different coating of glazed system. The study is implemented by numerical simulation of conjugate heat transfer in the window systems at summer time and presence of solar irradiation, as well as during winter night time.

  20. CALIPSO: Global Aerosol and Cloud Observations from Lidar and Passive Instruments

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Winker, D. M.; Pelon, J. R.; McCormick, M. P.

    2002-01-01

    CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Spaceborne Observations) is an approved satellite mission being developed through collaboration between NASA and the French space agency CNES. The mission is scheduled for launch in 2004 and will operate for 3 years as part of a five-satellite formation called the Aqua constellation. This constellation will provide a unique data set on aerosol and cloud optical and physical properties and aerosol-cloud interactions that will substantially increase our understanding of the climate system and the potential for climate change.

  1. Advancing Technologies for Climate Observation

    NASA Technical Reports Server (NTRS)

    Wu, D.; Esper, J.; Ehsan, N.; Johnson, T.; Mast, W.; Piepmeier, J.; Racette, P.

    2014-01-01

    Climate research needs Accurate global cloud ice measurements Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation Cost-effective, sensitive instruments for diurnal and wide-swath coverage Mature technology for space remote sensing IceCube objectivesDevelop and validate a flight-qualified 883 GHz receiver for future use in ice cloud radiometer missions Raise TRL (57) of 883 GHz receiver technology Reduce instrument cost and risk by developing path to space for COTS sub-mm-wave receiver systems Enable remote sensing of global cloud ice with advanced technologies and techniques

  2. Advancing the adaptive capacity of social-ecological systems to absorb climate extremes

    NASA Astrophysics Data System (ADS)

    Thonicke, Kirsten; Bahn, Michael; Bardgett, Richard; Bloemen, Jasper; Chabay, Ilan; Erb, Karlheinz; Giamberini, Mariasilvia; Gingrich, Simone; Lavorel, Sandra; Liehr, Stefan; Rammig, Anja

    2017-04-01

    The recent and projected increases in climate variability and the frequency of climate extremes are posing a profound challenge to society and the biosphere (IPCC 2012, IPCC 2013). Climate extremes can affect natural and managed ecosystems more severely than gradual warming. The ability of ecosystems to resist and recover from climate extremes is therefore of fundamental importance for society, which strongly relies on their ability to supply provisioning, regulating, supporting and cultural services. Society in turn triggers land-use and management decisions that affect ecosystem properties. Thus, ecological and socio-economic conditions are tightly coupled in what has been referred to as the social-ecological system. For ensuring human well-being in the light of climate extremes it is crucial to enhance the resilience of the social-ecological system (SES) across spatial, temporal and institutional scales. Stakeholders, such as resource managers, urban, landscape and conservation planners, decision-makers in agriculture and forestry, as well as natural hazards managers, require an improved knowledge base for better-informed decision making. To date the vulnerability and adaptive capacity of SESs to climate extremes is not well understood and large uncertainties exist as to the legacies of climate extremes on ecosystems and on related societal structures and processes. Moreover, we lack empirical evidence and incorporation of simulated future ecosystem and societal responses to support pro-active management and enhance social-ecological resilience. In our presentation, we outline the major research gaps and challenges to be addressed for understanding and enhancing the adaptive capacity of SES to absorb and adapt to climate extremes, including acquisition and elaboration of long-term monitoring data and improvement of ecological models to better project climate extreme effects and provide model uncertainties. We highlight scientific challenges and discuss conceptual and observational gaps that need to be overcome to advance this inter- and transdisciplinary topic.

  3. An overview of mineral dust modeling over East Asia

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Huang, Jianping; Qian, Yun; Zhao, Chun; Kang, Litai; Yang, Ben; Wang, Yong; Liu, Yuzhi; Yuan, Tiangang; Wang, Tianhe; Ma, Xiaojun; Zhang, Guolong

    2017-08-01

    East Asian dust (EAD) exerts considerable impacts on the energy balance and climate/climate change of the earth system through its influence on solar and terrestrial radiation, cloud properties, and precipitation efficiency. Providing an accurate description of the life cycle and climate effects of EAD is therefore critical to better understanding of climate change and socioeconomic development in East Asia and even worldwide. Dust modeling has undergone substantial development since the late 1990s, associated with improved understanding of the role of EAD in the earth system. Here, we review the achievements and progress made in recent decades in terms of dust modeling research, including dust emissions, long-range transport, radiative forcing (RF), and climate effects of dust particles over East Asia. Numerous efforts in dust/EAD modeling have been directed towards furnishing more sophisticated physical and chemical processes into the models on higher spatial resolutions. Meanwhile, more systematic observations and more advanced retrieval methods for instruments that address EAD related science issues have made it possible to evaluate model results and quantify the role of EAD in the earth system, and to further reduce the uncertainties in EAD simulations. Though much progress has been made, large discrepancies and knowledge gaps still exist among EAD simulations. The deficiencies and limitations that pertain to the performance of the EAD simulations referred to in the present study are also discussed.

  4. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Jerman, Miloš; Fořt, Jan; Černý, Robert

    2015-03-01

    Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

  5. Regional Climate Modelling of the Western Iberian Low-Level Wind Jet

    NASA Astrophysics Data System (ADS)

    Soares, Pedro M. M.; Lima, Daniela C. A.; Cardoso, Rita M.; Semedo, Álvaro

    2016-04-01

    The Iberian coastal low-level jet (CLLJ) is one the less studied boundary layer wind jet features in the Eastern Boundary Currents Systems (EBCS). These regions are amongst the most productive ocean ecosystems, where the atmosphere-land-ocean feedbacks, which include marine boundary layer clouds, coastal jets, upwelling and inland soil temperature and moisture, play an important role in defining the regional climate along the sub-tropical mid-latitude western coastal areas. Recently, the present climate western Iberian CLLJ properties were extensively described using a high resolution regional climate hindcast simulation. A summer maximum frequency of occurrence above 30% was found, with mean maximum wind speeds around 15 ms-1, between 300 and 400m heights (at the jet core). Since the 1990s the climate change impact on the EBCS is being studied, nevertheless some lack of consensus still persists regarding the evolution of upwelling and other components of the climate system in these areas. However, recently some authors have shown that changes are to be expected concerning the timing, intensity and spatial homogeneity of coastal upwelling and of CLLJs, in response to future warming, especially at higher latitudes, namely in Iberia and Canaries. In this study, the first climate change assessment study regarding the Western Iberian CLLJ, using a high resolution (9km) regional climate simulation, is presented. The properties of this CLLJ are studied and compared using two 30 years simulations: one historical simulation for the 1971-2000 period, and another simulation for future climate, in agreement with the RCP8.5 scenario, for the 2071-2100 period. Robust and consistent changes are found: 1) the hourly frequency of occurrence of the CLLJ is expected to increase in summer along the western Iberian coast, from mean maximum values of around 35% to approximately 50%; 2) the relative increase of the CLLJ frequency of occurrence is higher in the north off western Iberia; 3) the occurrence of the CLLJ covers larger areas both latitudinal and longitudinal; 4) the CLLJ season is enlarged extending to May and September; and, 5) there are shifts for higher occurrences of higher wind speeds and for the jet core to occur at higher heights. Publication supported by project FCT UID/GEO/50019/2013 - Instituto Dom Luiz - University of Lisbon

  6. Higher climatological temperature sensitivity of soil carbon in cold than warm climates

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.

    2017-11-01

    The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.

  7. Hospital safety climate surveys: measurement issues.

    PubMed

    Jackson, Jeanette; Sarac, Cakil; Flin, Rhona

    2010-12-01

    Organizational safety culture relates to behavioural norms in the workplace and is usually assessed by safety climate surveys. These can be a diagnostic indicator on the state of safety in a hospital. This review examines recent studies using staff surveys of hospital safety climate, focussing on measurement issues. Four questionnaires (hospital survey on patient safety culture, safety attitudes questionnaire, patient safety climate in healthcare organizations, hospital safety climate scale), with acceptable psychometric properties, are now applied across countries and clinical settings. Comparisons for benchmarking must be made with caution in case of questionnaire modifications. Increasing attention is being paid to the unit and hospital level wherein distinct cultures may be located, as well as to associated measurement and study design issues. Predictive validity of safety climate is tested against safety behaviours/outcomes, with some relationships reported, although effects may be specific to professional groups/units. Few studies test the role of intervening variables that could influence the effect of climate on outcomes. Hospital climate studies are becoming a key component of healthcare safety management systems. Large datasets have established more reliable instruments that allow a more focussed investigation of the role of culture in the improvement and maintenance of staff's safety perceptions within units, as well as within hospitals.

  8. Minimizing the regrets of long-term urban floodplain management decisions under deeply uncertain climate change

    NASA Astrophysics Data System (ADS)

    Hecht, J. S.; Kirshen, P. H.; Vogel, R. M.

    2016-12-01

    Making long-term floodplain management decisions under uncertain climate change is a major urban planning challenge of the 21stcentury. To support these efforts, we introduce a screening-level optimization model that identifies adaptation portfolios by minimizing the regrets associated with their flood-control and damage costs under different climate change trajectories that are deeply uncertain, i.e. have probabilities that cannot be specified plausibly. This mixed integer program explicitly considers the coupled damage-reduction impacts of different floodwall designs and property-scale investments (first-floor elevation, wet floodproofing of basements, permanent retreat and insurance), recommends implementation schedules, and assesses impacts to stakeholders residing in three types of homes. An application to a stylized municipality illuminates many nonlinear system dynamics stemming from large fixed capital costs, infrastructure design thresholds, and discharge-depth-damage relationships. If stakeholders tolerate mild damage, floodwalls that fully protect a community from large design events are less cost-effective than portfolios featuring both smaller floodwalls and property-scale measures. Potential losses of property tax revenue from permanent retreat motivate municipal property-tax initiatives for adaptation financing. Yet, insurance incentives for first-floor elevation may discourage locally financed floodwalls, in turn making lower-income residents more vulnerable to severe flooding. A budget constraint analysis underscores the benefits of flexible floodwall designs with low incremental expansion costs while near-optimal solutions demonstrate the scheduling flexibility of many property-scale measures. Finally, an equity analysis shows the importance of evaluating the overpayment and under-design regrets of recommended adaptation portfolios for each stakeholder and contrasts them to single-scenario model results.

  9. Psychometric Properties of an Instrument to Measure Social and Pedagogical School Climate among Teachers (PESOC)

    ERIC Educational Resources Information Center

    Hultin, H.; Ferrer-Wreder, L.; Eichas, K.; Karlberg, M.; Grosin, L.; Galanti, M. R.

    2018-01-01

    This study investigated the psychometric properties of a teacher-reported version of a Swedish school climate instrument called the Pedagogical and Social Climate (PESOC), which consists of 95 items covering cultural, structural and social factors. A sample of 348 teachers from 19 Swedish secondary schools was used. Multilevel confirmatory factor…

  10. How can crop intra-specific biodiversity mitigate the vulnerability of agricultural systems to climate change? A case study on durum wheat in Southern Italy

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; Alfieri, Silvia Maria; Basile, Angelo; Menenti, Massimo; Bonfante, Antonello; De Lorenzi, Fracesca

    2014-05-01

    Climate evolution may lead to changes in the amount and distribution of precipitations and to reduced water availability, with constraints on the cultivation of some crops. Recently, foreseen crop responses to climate change raise a crucial question for the agricultural stakeholders: are the current production systems resilient to this change? An active debate is in progress about the definition of adaptation of agricultural systems, particularly about the integrated assessment of climate stressors, vulnerability and resilece towards the evaluation of climate impact on agricultural systems. Climate change represents a risk for rain-fed agricultural systems, where irrigations cannot compensate reductions in precipitations. The intra-specific biodiversity of crops can be a resource towards adaptation. The knowledge of the responses to environmental conditions (temperature and water availability) of different cultivars can allow to identify options for adaptation to future climate. Simulation models of water flow in the soil-plant-atmosphere system, driven by different climate scenarios, can describe present and foreseen soil water regime. The present work deals with a case-study on the adaptive capacity of durum wheat to climate change. The selected study area is a hilly region in Southern Italy (Fortore Beneventano, Campania Region). Two climate cases were studied: "reference" (1961-1990) and "future" (2021-2050). A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was run to determine the water regime in some soil units, representative of the soil variability in the study area. From model output, the Relative Evapotranspiration Deficit (RETD) was determined as an indicator of hydrological conditions during the crop growing period for each year and climate case; and periods with higher frequencies of soil water deficits were identified. The timing of main crop development stages was calculated. The occurrence of water deficit at different development stages was thus assessed. Moreover, the yield response functions to water availability of several durum wheat cultivars were determined; cultivars' hydrologic requirements were thus defined and compared with the simulated values of RETD. The latter was evaluated against requirements for each soil unit, cultivar and year in both climate cases to assess adaptability. In the future climate scenario a significant reduction (about 80 mm) of rainfall is foreseen. The analyses of inter- and intra-annual courses of the indicator (RETD) showed higher RETD in one soil unit, which resulted less suitable for durum wheat cultivation. According to the soils' water regime and to the cultivar-specific yield responses, the adaptability of durum wheat cultivars was assessed. The difference between the two climate cases was significant; the adaptability of the cultivars was strongly influenced by the different rainfall regime and by the soil physical properties, which strongly affected the soil water balance. The case study showed how in the future climate case, for rainfed durum wheat, the intra-specific variability will allow to maintain the current crop production system. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)

  11. Climate Change, Soils, and Human Health

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.

    2013-04-01

    According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical need. There is also a great need for a better understanding of how soil organisms will respond to climate change because those organisms are incredibly important in a number of soil processes, including the carbon and nitrogen cycles. All of these questions are important in trying to understand human health impacts. More information on climate change, soils, and human health issues can be found in Brevik (2012). References Brevik, E.C. 2012. Climate change, soils, and human health. In: E.C. Brevik and L. Burgess (Eds). Soils and human health. CRC Press, Boca Raton, FL. in press. IPCC. 2007. Summary for policymakers. pp. 1-18. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

  12. A Comparative Review of North American Tundra Delineations

    NASA Technical Reports Server (NTRS)

    Silver, Kirk C.; Carroll, Mark

    2013-01-01

    Recent profound changes have been observed in the Arctic environment, including record low sea ice extents and high latitude greening. Studying the Arctic and how it is changing is an important element of climate change science. The Tundra, an ecoregion of the Arctic, is directly related to climate change due to its effects on the snow ice feedback mechanism and greenhouse gas cycling. Like all ecoregions, the Tundra border is shifting, yet studies and policies require clear delineation of boundaries. There are many options for ecoregion classification systems, as well as resources for creating custom maps. To help decision makers identify the best classification system possible, we present a review of North American Tundra ecoregion delineations and further explore the methodologies, purposes, limitations, and physical properties of five common ecoregion classification systems. We quantitatively compare the corresponding maps by area using a geographic information system.

  13. Evaluating the effect of spinning systems on thermal comfort properties of modal fabrics

    NASA Astrophysics Data System (ADS)

    Seçil Aydın, İ.; Kertmen, M.; Marmarali, A.

    2017-10-01

    In recent years the importance of clothing comfort became one of the most important feature of the fabrics. The aim of this study is to characterize thermal comfort properties of single jersey fabrics were knitted using 100% modal yarns which were spun in various types of yarn spinning methods such as ring spinning, compact spinning, rotor spinning and airjet spinning. Thermal comfort properties like air permeability, thermal resistance, thermal absorptivity and water vapour permeability of fabrics were tested. The results indicate that compact spinning technology will be appropriate for the summer climate casual wear.

  14. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models.

    PubMed

    Lovejoy, S; de Lima, M I P

    2015-07-01

    Over the range of time scales from about 10 days to 30-100 years, in addition to the familiar weather and climate regimes, there is an intermediate "macroweather" regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be "homogenized" by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.

  15. The Normative Orientations of Climate Scientists.

    PubMed

    Bray, Dennis; von Storch, Hans

    2017-10-01

    In 1942 Robert K. Merton tried to demonstrate the structure of the normative system of science by specifying the norms that characterized it. The norms were assigned the abbreviation CUDOs: Communism, Universalism, Disinterestedness, and Organized skepticism. Using the results of an on-line survey of climate scientists concerning the norms of science, this paper explores the climate scientists' subscription to these norms. The data suggests that while Merton's CUDOs remain the overall guiding moral principles, they are not fully endorsed or present in the conduct of climate scientists: there is a tendency to withhold results until publication, there is the intention of maintaining property rights, there is external influence defining research and the tendency to assign the significance of authored work according to the status of the author rather than content of the paper. These are contrary to the norms of science as proposed by Robert K. Merton.

  16. Extra-Tropical Cyclones at Climate Scales: Comparing Models to Observations

    NASA Astrophysics Data System (ADS)

    Tselioudis, G.; Bauer, M.; Rossow, W.

    2009-04-01

    Climate is often defined as the accumulation of weather, and weather is not the concern of climate models. Justification for this latter sentiment has long been hidden behind coarse model resolutions and blunt validation tools based on climatological maps. The spatial-temporal resolutions of today's climate models and observations are converging onto meteorological scales, however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough that its accumulation results in a robust climate simulation. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from observations and climate model output. These include the usual cyclone characteristics (centers, tracks), but also adaptive cyclone-centric composites. We have created a novel dataset, the MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid-latitude cyclones, using a search algorithm that delimits the boundaries of each system from the outer-most closed SLP contour. Using this we then extract composites of cloud, radiation, and precipitation properties from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools in process-based climate model evaluation studies will be shown.

  17. The GCOS Reference Upper-Air Network (GRUAN)

    NASA Astrophysics Data System (ADS)

    Vömel, H.; Berger, F. H.; Immler, F. J.; Seidel, D.; Thorne, P.

    2009-04-01

    While the global upper-air observing network has provided useful observations for operational weather forecasting for decades, its measurements lack the accuracy and long-term continuity needed for understanding climate change. Consequently, the scientific community faces uncertainty on such key issues as the trends of temperature in the upper troposphere and stratosphere or the variability and trends of stratospheric water vapour. To address these shortcomings, and to ensure that future climate records will be more useful than the records to date, the Global Climate Observing System (GCOS) program initiated the GCOS Reference Upper Air Network (GRUAN). GRUAN will be a network of about 30-40 observatories with a representative sampling of geographic regions and surface types. These stations will provide upper-air reference observations of the essential climate variables, i.e. temperature, geopotential, humidity, wind, radiation and cloud properties using specialized radiosondes and complementary remote sensing profiling instrumentation. Long-term stability, quality assurance / quality control, and a detailed assessment of measurement uncertainties will be the key aspects of GRUAN observations. The network will not be globally complete but will serve to constrain and adjust data from more spatially comprehensive global observing systems including satellites and the current radiosonde networks. This paper outlines the scientific rationale for GRUAN, its role in the Global Earth Observation System of Systems, network requirements and likely instrumentation, management structure, current status and future plans.

  18. Near-surface wind speed statistical distribution: comparison between ECMWF System 4 and ERA-Interim

    NASA Astrophysics Data System (ADS)

    Marcos, Raül; Gonzalez-Reviriego, Nube; Torralba, Verónica; Cortesi, Nicola; Young, Doo; Doblas-Reyes, Francisco J.

    2017-04-01

    In the framework of seasonal forecast verification, knowing whether the characteristics of the climatological wind speed distribution, simulated by the forecasting systems, are similar to the observed ones is essential to guide the subsequent process of bias adjustment. To bring some light about this topic, this work assesses the properties of the statistical distributions of 10m wind speed from both ERA-Interim reanalysis and seasonal forecasts of ECMWF system 4. The 10m wind speed distribution has been characterized in terms of the four main moments of the probability distribution (mean, standard deviation, skewness and kurtosis) together with the coefficient of variation and goodness of fit Shapiro-Wilks test, allowing the identification of regions with higher wind variability and non-Gaussian behaviour at monthly time-scales. Also, the comparison of the predicted and observed 10m wind speed distributions has been measured considering both inter-annual and intra-seasonal variability. Such a comparison is important in both climate research and climate services communities because it provides useful climate information for decision-making processes and wind industry applications.

  19. Improving regional climate and hydrological forecasting following the record setting flooding across the Lake Ontario - St. Lawrence River system

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Seglenieks, F.; Bruxer, J.; Fortin, V.; Noel, J.

    2017-12-01

    In the spring of 2017, water levels across Lake Ontario and the upper St. Lawrence River exceeded record high levels, leading to widespread flooding, damage to property, and controversy over regional dam operating protocols. Only a few years earlier, water levels on Lakes Superior, Michigan, and Huron (upstream of Lake Ontario) had dropped to record low levels leading to speculation that either anthropogenic controls or climate change were leading to chronic water loss from the Great Lakes. The contrast between low water level conditions across Earth's largest lake system from the late 1990s through 2013, and the rapid rise prior to the flooding in early 2017, underscores the challenges of quantifying and forecasting hydrologic impacts of rising regional air and water temperatures (and associated changes in lake evaporation) and persistent increases in long-term precipitation. Here, we assess the hydrologic conditions leading to the recent record flooding across the Lake Ontario - St. Lawrence River system, with a particular emphasis on understanding the extent to which those conditions were consistent with observed and anticipated changes in historical and future climate, and the extent to which those conditions could have been anticipated through improvements in seasonal climate outlooks and hydrological forecasts.

  20. Overview of atmospheric aerosol studies in Malaysia: Known and unknown

    NASA Astrophysics Data System (ADS)

    Kanniah, Kasturi Devi; Kaskaoutis, Dimitris G.; San Lim, Hwee; Latif, Mohd Talib; Kamarul Zaman, Nurul Amalin Fatihah; Liew, Juneng

    2016-12-01

    Atmospheric aerosols particularly those originated from anthropogenic sources can affect human health, air quality and the regional climate system of Southeast Asia (SEA). Population growth, and rapid urbanization associated with economic development in the SEA countries including Malaysia have resulted in high aerosol concentrations. Moreover, transboundary smoke plumes add more aerosols to the atmosphere in Malaysia. Nevertheless, the aerosol monitoring networks and/or field studies and research campaigns investigating the various aerosol properties are not so widespread over Malaysia. In the present work, we summarize and discuss the results of previous studies that investigated the aerosol properties over Malaysia by means of various instrumentation and techniques, focusing on the use of remote sensing data to examine atmospheric aerosols. Furthermore, we identify gaps in this research field and recommend further studies to bridge these knowledge gaps. More specifically gaps are identified in (i) monitoring aerosol loading and composition over urban areas, (ii) examining the influence of dust, (iii) assessing radiative effects of aerosols, (iv) measuring and modelling fine particles and (v) quantifying the contribution of long range transport of aerosols. Such studies are crucial for understanding the optical, physical and chemical properties of aerosols and their spatio-temporal characteristics over the region, which are useful for modelling and prediction of aerosols' effects on air quality and climate system.

  1. Uniform shrub growth response to June temperature across the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Ackerman, Daniel E.; Griffin, Daniel; Hobbie, Sarah E.; Popham, Kelly; Jones, Erin; Finlay, Jacques C.

    2018-04-01

    The expansion of woody shrubs in arctic tundra alters many aspects of high-latitude ecosystems, including carbon cycling and wildlife habitat. Dendroecology, the study of annual growth increments in woody plants, has shown promise in revealing how climate and environmental conditions interact with shrub growth to affect these key ecosystem properties. However, a predictive understanding of how shrub growth response to climate varies across the heterogeneous landscape remains elusive. Here we use individual-based mixed effects modeling to analyze 19 624 annual growth ring measurements in the stems of Salix pulchra (Cham.), a rapidly expanding deciduous shrub. Stem samples were collected at six sites throughout the North Slope of Alaska. Sites spanned four landscapes that varied in time since glaciation and hence in soil properties, such as nutrient availability, that we expected would modulate shrub growth response to climate. Ring growth was remarkably coherent among sites and responded positively to mean June temperature. The strength of this climate response varied slightly among glacial landscapes, but in contrast to expectations, this variability was not systematically correlated with landscape age. Additionally, shrubs at all sites exhibited diminishing marginal growth gains in response to increasing temperatures, indicative of alternative growth limiting mechanisms in particularly warm years, such as temperature-induced moisture limitation. Our results reveal a regionally-coherent and robust shrub growth response to early season growing temperature, with local soil properties contributing only a minor influence on shrub growth. Our conclusions strengthen predictions of changes to wildlife habitat and improve the representation of tundra vegetation dynamics in earth systems models in response to future arctic warming.

  2. The evaluation of the climate change effects on maize and fennel cultivation by means of an hydrological physically based model: the case study of an irrigated district of southern Italy

    NASA Astrophysics Data System (ADS)

    Bonfante, A.; Alfieri, M. S.; Basile, A.; De Lorenzi, F.; Fiorentino, N.; Menenti, M.

    2012-04-01

    The effect of climate change on irrigated agricultural systems will be different from area to area depending on some factors as: (i) water availability, (ii) crop water demand (iii) soil hydrological behavior and (iv) irrigation management strategy. The adaptation of irrigated crop systems to future climate change can be supported by physically based model which simulate the water and heat fluxes in the soil-vegetation-atmosphere system. The aim of this work is to evaluate the effects of climate change on the heat and water balance of a maize-fennel rotation. This was applied to a on-demand irrigation district of Southern Italy ("Destra Sele", Campania Region, 22.645 ha). Two climate scenarios were considered, current climate (1961-1990) and future climate (2021-2050), the latter constructed by applying statistical downscaling to GCMs scenarios. For each climate scenario the soil moisture regime of the selected study area was calculated by means of a simulation model of the soil-water-atmosphere system (SWAP). Synthetic indicators of the soil water regimes (e.g., crop water stress index - CWSI, available water content) have been calculated and impacts evaluated taking into account the yield response functions to water availability of different cultivars. Different irrigation delivering strategies were also simulated. The hydrological model SWAP was applied to the representative soils of the whole area (20 soil units) for which the soil hydraulic properties were derived by means of pedo-transfer function (HYPRES) tested and validated on the typical soils in the study area. Upper boundary conditions were derived from two climate scenarios, i.e. current and future. Unit gradient in soil water potential was set as lower boundary condition. Crop-specific input data and model parameters were derived from field experiments, in the same area, where the SWAP model was calibrated and validated. The results obtained have shown a significant increase of CWSI in the future climate scenario, and some spatial patterns strongly influenced by the soils characteristics. Adaptability of different maize cultivars has been evaluated. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: Plant Adaptative capacity, SWAP, Climate changes, Maize, Fennel

  3. A Mixed Phase Tale: New Ways of using in-situ cloud observations to reduce climate model biases in Southern Ocean

    NASA Astrophysics Data System (ADS)

    Gettelman, A.; Stith, J. L.

    2014-12-01

    Southern ocean clouds are a critical part of the earth's energy budget, and significant biases in the climatology of these clouds exist in models used to predict climate change. We compare in situ measurements of cloud microphysical properties of ice and liquid over the S. Ocean with constrained output from the atmospheric component of an Earth System Model. Observations taken during the HIAPER (the NSF/NCAR G-V aircraft) Pole-to-Pole Observations (HIPPO) multi-year field campaign are compared with simulations from the atmospheric component of the Community Earth System Model (CESM). Remarkably, CESM is able to accurately simulate the locations of cloud formation, and even cloud microphysical properties are comparable between the model and observations. Significantly, the simulations do not predict sufficient supercooled liquid. Altering the model cloud and aerosol processes to better reproduce the observations of supercooled liquid acts to reduce long-standing biases in S. Ocean clouds in CESM, which are typical of other models. Furthermore, sensitivity tests show where better observational constraints on aerosols and cloud microphysics can reduce uncertainty and biases in global models. These results are intended to show how we can connect large scale simulations with field observations in the S. Ocean to better understand Southern Ocean cloud processes and reduce biases in global climate simulations.

  4. Possible climates on terrestrial exoplanets.

    PubMed

    Forget, F; Leconte, J

    2014-04-28

    What kind of environment may exist on terrestrial planets around other stars? In spite of the lack of direct observations, it may not be premature to speculate on exoplanetary climates, for instance, to optimize future telescopic observations or to assess the probability of habitable worlds. To begin with, climate primarily depends on (i) the atmospheric composition and the volatile inventory; (ii) the incident stellar flux; and (iii) the tidal evolution of the planetary spin, which can notably lock a planet with a permanent night side. The atmospheric composition and mass depends on complex processes, which are difficult to model: origins of volatiles, atmospheric escape, geochemistry, photochemistry, etc. We discuss physical constraints, which can help us to speculate on the possible type of atmosphere, depending on the planet size, its final distance for its star and the star type. Assuming that the atmosphere is known, the possible climates can be explored using global climate models analogous to the ones developed to simulate the Earth as well as the other telluric atmospheres in the solar system. Our experience with Mars, Titan and Venus suggests that realistic climate simulators can be developed by combining components, such as a 'dynamical core', a radiative transfer solver, a parametrization of subgrid-scale turbulence and convection, a thermal ground model and a volatile phase change code. On this basis, we can aspire to build reliable climate predictors for exoplanets. However, whatever the accuracy of the models, predicting the actual climate regime on a specific planet will remain challenging because climate systems are affected by strong positive feedbacks. They can drive planets with very similar forcing and volatile inventory to completely different states. For instance, the coupling among temperature, volatile phase changes and radiative properties results in instabilities, such as runaway glaciations and runaway greenhouse effect.

  5. Issues related to incorporating northern peatlands into global climate models

    NASA Astrophysics Data System (ADS)

    Frolking, Steve; Roulet, Nigel; Lawrence, David

    Northern peatlands cover ˜3-4 million km2 (˜10% of the land north of 45°N) and contain ˜200-400 Pg carbon (˜10-20% of total global soil carbon), almost entirely as peat (organic soil). Recent developments in global climate models have included incorporation of the terrestrial carbon cycle and representation of several terrestrial ecosystem types and processes in their land surface modules. Peatlands share many general properties with upland, mineral-soil ecosystems, and general ecosystem carbon, water, and energy cycle functions (productivity, decomposition, water infiltration, evapotranspiration, runoff, latent, sensible, and ground heat fluxes). However, northern peatlands also have several unique characteristics that will require some rethinking or revising of land surface algorithms in global climate models. Here we review some of these characteristics, deep organic soils, a significant fraction of bryophyte vegetation, shallow water tables, spatial heterogeneity, anaerobic biogeochemistry, and disturbance regimes, in the context of incorporating them into global climate models. With the incorporation of peatlands, global climate models will be able to simulate the fate of northern peatland carbon under climate change, and estimate the magnitude and strength of any climate system feedbacks associated with the dynamics of this large carbon pool.

  6. Assessing safety climate in acute hospital settings: a systematic review of the adequacy of the psychometric properties of survey measurement tools.

    PubMed

    Alsalem, Gheed; Bowie, Paul; Morrison, Jillian

    2018-05-10

    The perceived importance of safety culture in improving patient safety and its impact on patient outcomes has led to a growing interest in the assessment of safety climate in healthcare organizations; however, the rigour with which safety climate tools were developed and psychometrically tested was shown to be variable. This paper aims to identify and review questionnaire studies designed to measure safety climate in acute hospital settings, in order to assess the adequacy of reported psychometric properties of identified tools. A systematic review of published empirical literature was undertaken to examine sample characteristics and instrument details including safety climate dimensions, origin and theoretical basis, and extent of psychometric evaluation (content validity, criterion validity, construct validity and internal reliability). Five questionnaire tools, designed for general evaluation of safety climate in acute hospital settings, were included. Detailed inspection revealed ambiguity around concepts of safety culture and climate, safety climate dimensions and the methodological rigour associated with the design of these measures. Standard reporting of the psychometric properties of developed questionnaires was variable, although evidence of an improving trend in the quality of the reported psychometric properties of studies was noted. Evidence of the theoretical underpinnings of climate tools was limited, while a lack of clarity in the relationship between safety culture and patient outcome measures still exists. Evidence of the adequacy of the psychometric development of safety climate questionnaire tools is still limited. Research is necessary to resolve the controversies in the definitions and dimensions of safety culture and climate in healthcare and identify related inconsistencies. More importance should be given to the appropriate validation of safety climate questionnaires before extending their usage in healthcare contexts different from those in which they were originally developed. Mixed methods research to understand why psychometric assessment and measurement reporting practices can be inadequate and lacking in a theoretical basis is also necessary.

  7. Outcome of the Third Cloud Retrieval Evaluation Workshop

    NASA Astrophysics Data System (ADS)

    Roebeling, R.; Baum, B.; Bennartz, R.; Hamann, U.; Heidinger, A.; Thoss, A.; Walther, A.

    2012-04-01

    Accurate measurements of global distributions of cloud parameters and their diurnal, seasonal, and inter-annual variations are needed to improve the understanding of the role of clouds in the weather and climate system, and to monitor their time-space variations. Cloud properties retrieved from satellite observations, such as cloud vertical placement, cloud water path and cloud particle size, play an important role such studies. In order to give climate and weather researchers more confidence in the quality of these retrievals their validity needs to be determined and their error characteristics need to be quantified. The purpose of the Cloud Retrieval Evaluation Workshop (CREW), which was held from 15-18 November 2011 in Madison, Wisconsin, USA, is to enhance our knowledge on state-of-art cloud properties retrievals from passive imaging satellites, and pave the path towards optimising these retrievals for climate monitoring as well as for the analysis of cloud parameterizations in climate and weather models. CREW also seeks to observe and understand methods that are used to prepare daily and monthly cloud parameter climatologies. An important component of the workshop is the discussion on the results of the algorithm and sensor comparisons and validation studies. Hereto a common database with about 12 different cloud properties retrievals from passive imagers (MSG, MODIS, AVHRR, POLDER and/or AIRS), complemented with cloud measurements that serve as a reference (CLOUDSAT, CALIPSO, AMSU, MISR), was prepared for a number of "golden days". The passive imager cloud property retrievals were inter-compared and validated against Cloudsat, Calipso and AMSU observations. In our presentation we will summarize the outcome of the inter-comparison and validation work done in the framework of CREW, and elaborate on the reasons for the observed differences. More in depth discussions were held on retrieval principles and validation, and the utilization of cloud parameters for climate research. This was done in parallel breakout sessions on cloud vertical placement; cloud physical properties, and cloud climatologies. We will present the recommendations of these sessions, propose a way forward to establish international partnerships on cloud research, and summarize the actions defined to tailor the CREW activities to missions of international programs, such as the Global Energy and Water Cycle Experiment (GEWEX) and Sustained, Co-Ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM). Finally, attention will be given to increase the traceability and uniformity of different long-term and homogeneous records of cloud parameters.

  8. Flow networks for Ocean currents

    NASA Astrophysics Data System (ADS)

    Tupikina, Liubov; Molkenthin, Nora; Marwan, Norbert; Kurths, Jürgen

    2014-05-01

    Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e., by its high computational complexity, we here introduce a new, discrete construction of flow-networks, which is then applied to static and dynamic velocity fields. Analyzing the flow-networks of prototypical flows we find that our approach can highlight the zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. We also apply the method to time series data of the Equatorial Pacific Ocean Current and the Gulf Stream ocean current for the changing velocity fields, which could not been done before, and analyse the properties of the dynamical system. Flow-networks can be powerful tools to theoretically understand the step from system's dynamics to network's topology that can be analyzed using network measures and is used for shading light on different climatic phenomena.

  9. Successfully Engaging Family and Student Audiences in Climate Science Workshops in an Informal Learning Venue

    NASA Astrophysics Data System (ADS)

    DeFrancis, G.; Haynes, R.; Schroer, K.

    2017-12-01

    The Montshire Museum of Science, a regional science center serving families, teachers, and students in rural Vermont and New Hampshire, has been actively engaged in in climate literacy initiatives for over 10 years. The Museum's visitor evaluation data shows that before audiences can be engaged in conversations around climate change, they need to be introduced to the underlying earth processes that drive climate, and to the nature of how climate science is done. Through this work, the Museum has developed a suite of climate science programs that can be incorporated in informal science programming at museums, science centers, and libraries, and in the formal K-8 classroom environment. Front-end and formative evaluation data was used in the program design, and summative evaluation showed an increase in concept understanding in the topic presented. Family science and student workshops developed focused on Albedo and the Earth's energy budget, properties and characteristics of sea ice, sediment cores and ice cores to study changes in the climate over time, and the geography of the polar regions. We found that successful climate literacy learning experiences require meaningful hands-on, inquiry-based activities focused on a single earth process, and leads to an increase in science talk and conversation about climate change between the program instructor and audience members as learners begin to understand how these processes interact in the Earth's climate system.

  10. A Comparative Analysis of Climate-Risk and Extreme Event-Related Impacts on Well-Being and Health: Policy Implications

    PubMed Central

    Al-Amin, Abul Quasem; Wiesböck, Laura; Mugabe, Paschal; Aparicio-Effen, Marilyn; Fudjumdjum, Hubert; Chiappetta Jabbour, Charbel Jose

    2018-01-01

    There are various climate risks that are caused or influenced by climate change. They are known to have a wide range of physical, economic, environmental and social impacts. Apart from damages to the physical environment, many climate risks (climate variability, extreme events and climate-related hazards) are associated with a variety of impacts on human well-being, health, and life-supporting systems. These vary from boosting the proliferation of vectors of diseases (e.g., mosquitos), to mental problems triggered by damage to properties and infrastructure. There is a great variety of literature about the strong links between climate change and health, while there is relatively less literature that specifically examines the health impacts of climate risks and extreme events. This paper is an attempt to address this knowledge gap, by compiling eight examples from a set of industrialised and developing countries, where such interactions are described. The policy implications of these phenomena and the lessons learned from the examples provided are summarised. Some suggestions as to how to avert the potential and real health impacts of climate risks are made, hence assisting efforts to adapt to a problem whose impacts affect millions of people around the world. All the examples studied show some degree of vulnerability to climate risks regardless of their socioeconomic status and need to increase resilience against extreme events. PMID:29438345

  11. A Comparative Analysis of Climate-Risk and Extreme Event-Related Impacts on Well-Being and Health: Policy Implications.

    PubMed

    Filho, Walter Leal; Al-Amin, Abul Quasem; Nagy, Gustavo J; Azeiteiro, Ulisses M; Wiesböck, Laura; Ayal, Desalegn Y; Morgan, Edward A; Mugabe, Paschal; Aparicio-Effen, Marilyn; Fudjumdjum, Hubert; Chiappetta Jabbour, Charbel Jose

    2018-02-13

    There are various climate risks that are caused or influenced by climate change. They are known to have a wide range of physical, economic, environmental and social impacts. Apart from damages to the physical environment, many climate risks (climate variability, extreme events and climate-related hazards) are associated with a variety of impacts on human well-being, health, and life-supporting systems. These vary from boosting the proliferation of vectors of diseases (e.g., mosquitos), to mental problems triggered by damage to properties and infrastructure. There is a great variety of literature about the strong links between climate change and health, while there is relatively less literature that specifically examines the health impacts of climate risks and extreme events. This paper is an attempt to address this knowledge gap, by compiling eight examples from a set of industrialised and developing countries, where such interactions are described. The policy implications of these phenomena and the lessons learned from the examples provided are summarised. Some suggestions as to how to avert the potential and real health impacts of climate risks are made, hence assisting efforts to adapt to a problem whose impacts affect millions of people around the world. All the examples studied show some degree of vulnerability to climate risks regardless of their socioeconomic status and need to increase resilience against extreme events.

  12. Evaluation of ACCESS Model Cloud Properties Over the SouthernOcean Area Using Multiple-satellite ProductsSan Luo1,2 Zhian Sun2, Xiaogu Zheng1, Lawrie Rikus2 and Charmaine Franklin31 College of Global Change and Earth System Science, Beijing Normal University, China 2 Collaboration for Australian Weather and Climate Research3 CSIRO

    NASA Astrophysics Data System (ADS)

    Luo, S.

    2016-12-01

    Radiation field and cloud properties over the Southern Ocean area generated by the Australian Community Climate and Earth System Simulator (ACCESS) are evaluated using multiple-satellite products from the Fast Longwave And Shortwave radiative Fluxes (FLASHFlux) project and NASA/GEWEX surface radiation budget (SRB) data. The cloud properties are also evaluated using the observational simulator package COSP, a synthetic brightness temperature model (SBTM) and cloud liquid-water path data (UWisc) from the University of Wisconsin satellite retrievals. All of these evaluations are focused on the Southern Ocean area in an effort to understand the reasons behind the short-wave radiation biases at the surface. It is found that the model overestimates the high-level cloud fraction and frequency of occurrence of small ice-water content and underestimates the middle and low-level cloud fraction and water content. In order to improve the modelled radiation fields over the Southern Ocean area, two main modifications have been made to the physical schemes in the ACCESS model. Firstly the autoconversion rate at which the cloud water is converted into rain and the accretion rate in the warm rain scheme have been modified, which increases the cloud liquid-water content in warm cloud layers. Secondly, the scheme which determines the fraction of supercooled liquid water in mixed-phase clouds in the parametrization of cloud optical properties has been changed to use one derived from CALIPSO data which provides larger liquid cloud fractions and thus higher optical depths than the default scheme. Sensitivity tests of these two schemes in ACCESS climate runs have shown that applying either can lead to a reduction of the solar radiation reaching the surface and reduce the short-wave radiation biases.

  13. Characterization of Ambient Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Levy, M. E.; Zheng, J.; Molina, L. T.

    2013-12-01

    Because of the strong absorption over a broad range of the electromagnetic spectra, black carbon (BC) is a key short-lived climate forcer, which contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. The impact of BC on the radiative forcing of the Earth-Atmosphere system is highly dependent of the particle properties. In this presentation, emphasis will be placed on characterizing BC containing aerosols in at the California-Mexico border to obtain a greater understanding of the atmospheric aging and properties of ambient BC aerosols. A comprehensive set of directly measured aerosol properties, including the particle size distribution, effective density, hygroscopicity, volatility, and several optical properties, will be discussed to quantify the mixing state and composition of ambient particles. In Tijuana, Mexico, submicron aerosols are strongly influenced by vehicle emissions; subsequently, the BC concentration in Tijuana is considerably higher than most US cities with an average BC concentration of 2.71 × 2.65 g cm-3. BC accounts for 24.75 % × 9.44 of the total submicron concentration on average, but periodically accounts for over 50%. This high concentration of BC strongly influences many observed aerosol properties such as single scattering albedo, hygroscopicity, effective density, and volatility.

  14. Cloud and aerosol studies using combined CPL and MAS data

    NASA Astrophysics Data System (ADS)

    Vaughan, Mark A.; Rodier, Sharon; Hu, Yongxiang; McGill, Matthew J.; Holz, Robert E.

    2004-11-01

    Current uncertainties in the role of aerosols and clouds in the Earth's climate system limit our abilities to model the climate system and predict climate change. These limitations are due primarily to difficulties of adequately measuring aerosols and clouds on a global scale. The A-train satellites (Aqua, CALIPSO, CloudSat, PARASOL, and Aura) will provide an unprecedented opportunity to address these uncertainties. The various active and passive sensors of the A-train will use a variety of measurement techniques to provide comprehensive observations of the multi-dimensional properties of clouds and aerosols. However, to fully achieve the potential of this ensemble requires a robust data analysis framework to optimally and efficiently map these individual measurements into a comprehensive set of cloud and aerosol physical properties. In this work we introduce the Multi-Instrument Data Analysis and Synthesis (MIDAS) project, whose goal is to develop a suite of physically sound and computationally efficient algorithms that will combine active and passive remote sensing data in order to produce improved assessments of aerosol and cloud radiative and microphysical properties. These algorithms include (a) the development of an intelligent feature detection algorithm that combines inputs from both active and passive sensors, and (b) identifying recognizable multi-instrument signatures related to aerosol and cloud type derived from clusters of image pixels and the associated vertical profile information. Classification of these signatures will lead to the automated identification of aerosol and cloud types. Testing of these new algorithms is done using currently existing and readily available active and passive measurements from the Cloud Physics Lidar and the MODIS Airborne Simulator, which simulate, respectively, the CALIPSO and MODIS A-train instruments.

  15. Integrated Earth System Model (iESM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Peter Edmond; Mao, Jiafu; Shi, Xiaoying

    2016-12-02

    The iESM is a simulation code that represents the physical and biological aspects of Earth's climate system, and also includes the macro-economic and demographic properties of human societies. The human aspect of the simulation code is focused in particular on the effects of human activities on land use and land cover change, but also includes aspects such as energy economies. The time frame for predictions with iESM is approximately 1970 through 2100.

  16. Nonstationarity RC Workshop Report: Nonstationary Weather Patterns and Extreme Events Informing Design and Planning for Long-Lived Infrastructure

    DTIC Science & Technology

    2017-11-01

    magnitude, intensity, and seasonality of climate. For infrastructure projects, relevant design life often exceeds 30 years—a period of time of...uncertainty about future statistical properties of climate at time and spatial scales required for planning and design purposes. Information...about future statistical properties of climate at time and spatial scales required for planning and design , and for assessing future operational

  17. The Effect of Environmental Conditions on Tropical Deep Convective Systems Observed from the TRMM Satellite

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Wielicki, Bruce A.; Minnis, Patrick; Chambers, Lin H.; Xu, Kuan-Man; Hu, Yongxiang; Fan, Tai-Fang

    2005-01-01

    This study uses measurements of radiation and cloud properties taken between January and August 1998 by three Tropical Rainfall Measuring Mission (TRMM) instruments, the Clouds and the Earth's Radiant Energy System (CERES) scanner, the TRMM Microwave Imager (TMI), and the Visible and InfraRed Scanner (VIRS), to evaluate the variations of tropical deep convective systems (DCS) with sea surface temperature (SST) and precipitation. This study finds that DCS precipitation efficiency increases with SST at a rate of approx. 2%/K. Despite increasing rainfall efficiency, the cloud areal coverage rises with SST at a rate of about 7%/K in the warm tropical seas. There, the boundary layer moisture supply for deep convection and the moisture transported to the upper troposphere for cirrus-anvil cloud formation increase by approx. 6.3%/K and approx. 4.0%/K, respectively. The changes in cloud formation efficiency, along with the increased transport of moisture available for cloud formation, likely contribute to the large rate of increasing DCS areal coverage. Although no direct observations are available, the increase of cloud formation efficiency with rising SST is deduced indirectly from measurements of changes in the ratio of DCS ice water path and boundary layer water vapor amount with SST. Besides the cloud areal coverage, DCS cluster effective sizes also increase with precipitation. Furthermore, other cloud properties, such as cloud total water and ice water paths, increase with SST. These changes in DCS properties will produce a negative radiative feedback for the earth's climate system due to strong reflection of shortwave radiation by the DCS. These results significantly differ from some previous hypothesized dehydration scenarios for warmer climates, and have great potential in testing current cloud-system resolving models and convective parameterizations of general circulation models.

  18. Spatial representation of organic carbon and active-layer thickness of high latitude soils in CMIP5 earth system models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Umakant; Drewniak, Beth; Jastrow, Julie D.

    Soil properties such as soil organic carbon (SOC) stocks and active-layer thickness are used in earth system models (F.SMs) to predict anthropogenic and climatic impacts on soil carbon dynamics, future changes in atmospheric greenhouse gas concentrations, and associated climate changes in the permafrost regions. Accurate representation of spatial and vertical distribution of these soil properties in ESMs is a prerequisite for redudng existing uncertainty in predicting carbon-climate feedbacks. We compared the spatial representation of SOC stocks and active-layer thicknesses predicted by the coupled Modellntercomparison Project Phase 5 { CMIP5) ESMs with those predicted from geospatial predictions, based on observation datamore » for the state of Alaska, USA. For the geospatial modeling. we used soil profile observations {585 for SOC stocks and 153 for active-layer thickness) and environmental variables (climate, topography, land cover, and surficial geology types) and generated fine-resolution (50-m spatial resolution) predictions of SOC stocks (to 1-m depth) and active-layer thickness across Alaska. We found large inter-quartile range (2.5-5.5 m) in predicted active-layer thickness of CMIP5 modeled results and small inter-quartile range (11.5-22 kg m-2) in predicted SOC stocks. The spatial coefficient of variability of active-layer thickness and SOC stocks were lower in CMIP5 predictions compared to our geospatial estimates when gridded at similar spatial resolutions (24.7 compared to 30% and 29 compared to 38%, respectively). However, prediction errors. when calculated for independent validation sites, were several times larger in ESM predictions compared to geospatial predictions. Primaly factors leading to observed differences were ( 1) lack of spatial heterogeneity in ESM predictions, (2) differences in assumptions concerning environmental controls, and (3) the absence of pedogenic processes in ESM model structures. Our results suggest that efforts to incorporate these factors in F.SMs should reduce current uncertainties associated with ESM predictions of carbon-climate feedbacks.« less

  19. Greenhouse-gas emission targets for limiting global warming to 2 degrees C.

    PubMed

    Meinshausen, Malte; Meinshausen, Nicolai; Hare, William; Raper, Sarah C B; Frieler, Katja; Knutti, Reto; Frame, David J; Allen, Myles R

    2009-04-30

    More than 100 countries have adopted a global warming limit of 2 degrees C or below (relative to pre-industrial levels) as a guiding principle for mitigation efforts to reduce climate change risks, impacts and damages. However, the greenhouse gas (GHG) emissions corresponding to a specified maximum warming are poorly known owing to uncertainties in the carbon cycle and the climate response. Here we provide a comprehensive probabilistic analysis aimed at quantifying GHG emission budgets for the 2000-50 period that would limit warming throughout the twenty-first century to below 2 degrees C, based on a combination of published distributions of climate system properties and observational constraints. We show that, for the chosen class of emission scenarios, both cumulative emissions up to 2050 and emission levels in 2050 are robust indicators of the probability that twenty-first century warming will not exceed 2 degrees C relative to pre-industrial temperatures. Limiting cumulative CO(2) emissions over 2000-50 to 1,000 Gt CO(2) yields a 25% probability of warming exceeding 2 degrees C-and a limit of 1,440 Gt CO(2) yields a 50% probability-given a representative estimate of the distribution of climate system properties. As known 2000-06 CO(2) emissions were approximately 234 Gt CO(2), less than half the proven economically recoverable oil, gas and coal reserves can still be emitted up to 2050 to achieve such a goal. Recent G8 Communiqués envisage halved global GHG emissions by 2050, for which we estimate a 12-45% probability of exceeding 2 degrees C-assuming 1990 as emission base year and a range of published climate sensitivity distributions. Emissions levels in 2020 are a less robust indicator, but for the scenarios considered, the probability of exceeding 2 degrees C rises to 53-87% if global GHG emissions are still more than 25% above 2000 levels in 2020.

  20. Does Timing Matter? Temporal Stability of Soil-Magnetic Climate Proxies

    NASA Astrophysics Data System (ADS)

    Geiss, C. E.

    2013-12-01

    Numerous studies have shown that the rock-magnetic properties of soils can serve as valuable proxies of continental climates. Many studies average the magnetic properties of several closely spaced sites to reconstruct regional climate signals, but little is known about the temporal variability of soil-magnetic properties. We analyzed the magnetic properties of five, closely spaced (within 20 m from each other) soil profiles that were sampled over a period of five years between 2002 and 2006. The soil profiles are well-developed and display strong magnetic enhancement. According to land records, agricultural influence was minimal as the site had never been plowed and solely been used as pasture. Detailed soil descriptions and measurements of magnetic susceptibility (χ), anhysteretic and isothermal remanent magnetization (ARM, IRM), as well as coercivity parameters show that all studied profiles have very similar horizination and magnetic properties are virtually unchanged from year to year. The only differences between the soil profiles are the position and strength of redoximorphic features. These nanocrystalline iron-oxide deposits have little influence on the magnetic properties of the soils and the timing of soil sampling for magnetic analyses is not a critical factor when sampling for climatic reconstructions.

  1. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands

    USGS Publications Warehouse

    Feher, Laura C.; Osland, Michael J.; Griffith, Kereen T.; Grace, James B.; Howard, Rebecca J.; Stagg, Camille L.; Enwright, Nicholas M.; Krauss, Ken W.; Gabler, Christopher A.; Day, Richard H.; Rogers, Kerrylee

    2017-01-01

    Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity and strong positive nonlinear (sigmoidal) relationships between (1) temperature and above-ground biomass and canopy height and (2) precipitation and canopy height. Near temperature-controlled mangrove range limits, small changes in temperature are expected to trigger comparatively large changes in biomass and canopy height, as mangrove forests grow, expand, and, in some cases, replace salt marshes. However, within these same transition zones, temperature-induced changes in productivity are expected to be comparatively small. Interestingly, despite the significant above-ground height, biomass, and productivity relationships across the tropical–temperate mangrove–marsh transition zone, the relationships between temperature and soil carbon density or soil carbon accumulation were not significant. Our literature review identifies several ecosystem properties and many regions of the world for which there are insufficient data to fully evaluate the influence of climatic drivers, and the identified data gaps can be used by scientists to guide future research. Our analyses indicate that near precipitation-controlled transition zones, small changes in precipitation are expected to trigger comparatively large changes in canopy height. However, there are scant data to evaluate the influence of precipitation on other ecosystem properties. There is a need for more decomposition data across climatic gradients, and to advance understanding of the influence of changes in precipitation and freshwater availability, additional ecological data are needed from tidal saline wetlands in arid climates. Collectively, our results can help scientists and managers better anticipate the linear and nonlinear ecological consequences of climate change for coastal wetlands.

  2. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovejoy, S., E-mail: lovejoy@physics.mcgill.ca; Lima, M. I. P. de; Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra

    2015-07-15

    Over the range of time scales from about 10 days to 30–100 years, in addition to the familiar weather and climate regimes, there is an intermediate “macroweather” regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spitemore » of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be “homogenized” by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.« less

  3. A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

    2004-01-01

    High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

  4. The Aerosol-Monsoon Climate System of Asia

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated absorbing aerosols (dust and black carbon) may interact with monsoon dynamics to produce feedback effects on the atmospheric water cycle, leading to in accelerated melting of snowpacks over the Himalayas and Tibetan Plateau, and subsequent changes in evolution of the pre-monsoon and peak monsoon rainfall, moisture and wind distributions in South Asia and East Asia.

  5. Nonlinear Dynamics of Complex Coevolutionary Systems in Historical Times

    NASA Astrophysics Data System (ADS)

    Perdigão, Rui A. P.

    2016-04-01

    A new theoretical paradigm for statistical-dynamical modeling of complex coevolutionary systems is introduced, with the aim to provide historical geoscientists with a practical tool to analyse historical data and its underlying phenomenology. Historical data is assumed to represent the history of dynamical processes of physical and socio-economic nature. If processes and their governing laws are well understood, they are often treated with traditional dynamical equations: deterministic approach. If the governing laws are unknown or impracticable, the process is often treated as if being random (even if it is not): statistical approach. Although single eventful details - such as the exact spatiotemporal structure of a particular hydro-meteorological incident - may often be elusive to a detailed analysis, the overall dynamics exhibit group properties summarized by a simple set of categories or dynamical regimes at multiple scales - from local short-lived convection patterns to large-scale hydro-climatic regimes. The overwhelming microscale complexity is thus conveniently wrapped into a manageable group entity, such as a statistical distribution. In a stationary setting whereby the distribution is assumed to be invariant, alternating regimes are approachable as dynamical intermittence. For instance, in the context of bimodal climatic oscillations such as NAO and ENSO, each mode corresponds to a dynamical regime or phase. However, given external forcings or longer-term internal variability and multiscale coevolution, the structural properties of the system may change. These changes in the dynamical structure bring about a new distribution and associated regimes. The modes of yesteryear may no longer exist as such in the new structural order of the system. In this context, aside from regime intermittence, the system exhibits structural regime change. New oscillations may emerge whilst others fade into the annals of history, e.g. particular climate fluctuations during the Little Ice Age. Traditional theories of stochastic processes and dynamical systems are grounded on the existence of so-called dynamical invariants; properties that remain unchanged as the dynamics unfold, assuming structural invariance and ergodicity of the underlying system. However, such theories are no longer optimal when trying to understand and model long-term historical records of coevolutionary systems. A new paradigm is thus needed. Therefore, we introduce a new class of dynamical systems that reinvent themselves as the dynamics unfold. Rather than only changing variables and parameters under a rigid framework, the governing laws are malleable themselves. The novel formulation captures and explains the coevolutionary dynamics of multiscale hydroclimatic systems, bringing along a physically sound understanding of their regimes, transitions and extremes over a long-term history.

  6. Climate-soil Interactions: Global Change, Local Properties, and Ecological Sites

    USDA-ARS?s Scientific Manuscript database

    Global climate change is predicted to alter historic patterns of precipitation and temperature in rangelands globally. Vegetation community response to altered weather patterns will be mediated at the site level by local-scale properties that govern ecological potential, including geology, topograph...

  7. Observations of Co-variation in Cloud Properties and their Relationships with Atmospheric State

    NASA Astrophysics Data System (ADS)

    Sinclair, K.; van Diedenhoven, B.; Fridlind, A. M.; Arnold, T. G.; Yorks, J. E.; Heymsfield, G. M.; McFarquhar, G. M.; Um, J.

    2017-12-01

    Radiative properties of upper tropospheric ice clouds are generally not well represented in global and cloud models. Cloud top height, cloud thermodynamic phase, cloud optical thickness, cloud water path, particle size and ice crystal shape all serve as observational targets for models to constrain cloud properties. Trends or biases in these cloud properties could have profound effects on the climate since they affect cloud radiative properties. Better understanding of co-variation between these cloud properties and linkages with atmospheric state variables can lead to better representation of clouds in models by reducing biases in their micro- and macro-physical properties as well as their radiative properties. This will also enhance our general understanding of cloud processes. In this analysis we look at remote sensing, in situ and reanalysis data from the MODIS Airborne Simulator (MAS), Cloud Physics Lidar (CPL), Cloud Radar System (CRS), GEOS-5 reanalysis data and GOES imagery obtained during the Tropical Composition, Cloud and Climate Coupling (TC4) airborne campaign. The MAS, CPL and CRS were mounted on the ER-2 high-altitude aircraft during this campaign. In situ observations of ice size and shape were made aboard the DC8 and WB57 aircrafts. We explore how thermodynamic phase, ice effective radius, particle shape and radar reflectivity vary with altitude and also investigate how these observed cloud properties vary with cloud type, cloud top temperature, relative humidity and wind profiles. Observed systematic relationships are supported by physical interpretations of cloud processes and any unexpected differences are examined.

  8. Exploring the reversibility of marine climate change impacts in temperature overshoot scenarios

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Li, X.; Tokarska, K.; Kohfeld, K. E.

    2017-12-01

    Artificial carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating climate change and restoring the climate system to a `safe' state after overshoot. Previous studies have demonstrated that the changes in surface air temperature due to anthropogenic CO2 emissions can be reversed through CDR, while some oceanic properties, for example thermosteric sea level rise, show a delay in their response to CDR. This research aims to investigate the reversibility of changes in ocean conditions after implementation of CDR with a focus on ocean biogeochemical properties. To achieve this, we analyze climate model simulations based on two sets of emission scenarios. We first use RCP2.6 and its extension until year 2300 as the reference scenario and design several temperature and cumulative CO2 emissions "overshoot" scenarios based on other RCPs, which represents cases with less ambitious mitigation policies in the near term that temporarily exceed the 2 °C target adopted by the Paris Agreement. In addition, we use a set of emission scenarios with a reference scenario limiting warming to 1.5°C in the long term and two overshoot scenarios. The University of Victoria Earth System Climate Model (UVic ESCM), a climate model of intermediate complexity, is forced with these emission scenarios. We compare the response of select ocean variables (seawater temperature, pH, dissolved oxygen) in the overshoot scenarios to that in the respective reference scenario at the time the same amount of cumulative emissions is achieved. Our results suggest that the overshoot and subsequent return to a reference CO2 cumulative emissions level would leave substantial impacts on the marine environment. Although the changes in global mean sea surface variables (temperature, pH and dissolved oxygen) are largely reversible, global mean ocean temperature, dissolved oxygen and pH differ significantly from those in the reference scenario. Large ocean areas exhibit temperature increase and pH and dissolved oxygen decrease relative to the reference scenario without cumulative CO2 emissions overshoot. Furthermore, our results show that the higher the level of overshoot, the lower the reversibility of changes in the marine environment.

  9. Development of a system emulating the global carbon cycle in Earth system models

    NASA Astrophysics Data System (ADS)

    Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Oka, A.; Abe-Ouchi, A.; Kawamiya, M.

    2010-08-01

    Recent studies have indicated that the uncertainty in the global carbon cycle may have a significant impact on the climate. Since state of the art models are too computationally expensive for it to be possible to explore their parametric uncertainty in anything approaching a comprehensive fashion, we have developed a simplified system for investigating this problem. By combining the strong points of general circulation models (GCMs), which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs), which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM) which can represent the outputs of a GCM-based Earth system model, using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite) which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean (COCO) including an ocean carbon cycle (an NPZD-type marine ecosystem model); a state of the art vegetation model (Sim-CYCLE); and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario. By adjusting the effective climate sensitivity (equivalent to the equilibrium climate sensitivity for an energy balance model) of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (with an equilibrium climate sensitivity of 4.0 K) version of MIROC3.2. By tuning of the physical and biogeochemical parameters it was possible to reasonably reproduce the bulk physical and biogeochemical properties of previously published CO2 stabilisation scenarios for that model. As an example of an application of the LCM, the behavior of the high sensitivity version of MIROC3.2 (with a 6.3 K equilibrium climate sensitivity) is also demonstrated. Given the highly adjustable nature of the model, we believe that the LCM should be a very useful tool for studying uncertainty in global climate change, and we have named the model, JUMP-LCM, after the name of our research group (Japan Uncertainty Modelling Project).

  10. Nonlinear Synergistic Emergence and Predictability in Complex Systems: Theory and Hydro-Climatic Applications

    NASA Astrophysics Data System (ADS)

    Perdigão, Rui A. P.; Hall, Julia; Pires, Carlos A. L.; Blöschl, Günter

    2017-04-01

    Classical and stochastic dynamical system theories assume structural coherence and dynamic recurrence with invariants of motion that are not necessarily so. These are grounded on the unproven assumption of universality in the dynamic laws derived from statistical kinematic evaluation of non-representative empirical records. As a consequence, the associated formulations revolve around a restrictive set of configurations and intermittencies e.g. in an ergodic setting, beyond which any predictability is essentially elusive. Moreover, dynamical systems are fundamentally framed around dynamic codependence among intervening processes, i.e. entail essentially redundant interactions such as couplings and feedbacks. That precludes synergistic cooperation among processes that, whilst independent from each other, jointly produce emerging dynamic behaviour not present in any of the intervening parties. In order to overcome these fundamental limitations, we introduce a broad class of non-recursive dynamical systems that formulate dynamic emergence of unprecedented states in a fundamental synergistic manner, with fundamental principles in mind. The overall theory enables innovations to be predicted from the internal system dynamics before any a priori information is provided about the associated dynamical properties. The theory is then illustrated to anticipate, from non-emergent records, the spatiotemporal emergence of multiscale hyper chaotic regimes, critical transitions and structural coevolutionary changes in synthetic and real-world complex systems. Example applications are provided within the hydro-climatic context, formulating and dynamically forecasting evolving hydro-climatic distributions, including the emergence of extreme precipitation and flooding in a structurally changing hydro-climate system. Validation is then conducted with a posteriori verification of the simulated dynamics against observational records. Agreement between simulations and observations is confirmed with robust nonlinear information diagnostics.

  11. Evaluating controls on fluvial sand-body clustering in the Ferris Formation (Cretaceous/Paleogene, Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Heller, P.

    2009-12-01

    A primary goal of sedimentary geologists is to interpret past tectonic, climatic, and eustatic conditions from the stratigraphic record. Stratigraphic changes in alluvial-basin fills are routinely interpreted as the result of past tectonic movements or changes in climate or sea level. Recent physical and numerical models have shown that sedimentary systems can exhibit self-organization on basin-filling time scales, suggesting that structured stratigraphic patterns can form spontaneously rather than as the result of changing boundary conditions. The Ferris Formation (Upper Cretaceous/Paleogene, Hanna Basin, Wyoming) exhibits stratigraphic organization where clusters of closely-spaced channel deposits are separated from other clusters by intervals dominated by overbank material. In order to evaluate the role of basinal controls on deposition and ascertain the potential for self-organization in this ancient deposit, the spatial patterns of key channel properties (including sand-body dimensions, paleoflow depth, maximum clast size, paleocurrent direction, and sediment provenance) are analyzed. Overall the study area lacks strong trends sand-body properties through the stratigraphic succession and in cluster groups. Consequently there is no indication that the stratigraphic pattern observed in the Ferris Formation was driven by systematic changes in climate or tectonics.

  12. 17 years of aerosol and clouds from the ATSR Series of Instruments

    NASA Astrophysics Data System (ADS)

    Poulsen, C. A.

    2015-12-01

    Aerosols play a significant role in Earth's climate by scattering and absorbing incoming sunlight and affecting the formation and radiative properties of clouds. The extent to which aerosols affect cloud remains one of the largest sources of uncertainty amongst all influences on climate change. Now, a new comprehensive datasets has been developed under the ESA Climate Change Initiative (CCI) programme to quantify how changes in aerosol levels affect these clouds. The unique dataset is constructed from the Optimal Retrieval of Aerosol and Cloud (ORAC) algorithm used in (A)ATSR (Along Track Scanning Radiometer) retrievals of aerosols generated in the Aerosol CCI and the CC4CL ( Community Code for CLimate) for cloud retrieval in the Cloud CCI. The ATSR instrument is a dual viewing instrument with on board visible and infra red calibration systems making it an ideal instrument to study trends of Aerosol and Clouds and their interactions. The data set begins in 1995 and ends in 2012. A new instrument in the series SLSTR(Sea and Land Surface Temperature Radiometer) will be launch in 2015. The Aerosol and Clouds are retreived using similar algorithms to maximise the consistency of the results These state-of-the-art retrievals have been merged together to quantify the susceptibility of cloud properties to changes in aerosol concentration. Aerosol-cloud susceptibilities are calculated from several thousand samples in each 1x1 degree globally gridded region. Two-D histograms of the aerosol and cloud properties are also included to facilitate seamless comparisons between other satellite and modelling data sets. The analysis of these two long term records will be discussed individually and the initial comparisons between these new joint products and models will be presented.

  13. Land Use and Climate Impacts on Fluvial Systems (LUCIFS): A PAGES - Focus 4 (PHAROS) research activity

    NASA Astrophysics Data System (ADS)

    Dearing, John; Hoffmann, Thomas

    2010-05-01

    LUCIFS is a global research program which is concerned with understanding past interactions between climate, human activity and fluvial systems. Its focus is on evaluating the geomorphic impact of humans on landscapes, with a strong emphasis on geomorphological and sedimentological perspectives on mid- to long-term man-landscape interactions. Of particular relevance are aspects of sediment redistribution systems such as non-linear behaviour, the role of system configuration, scale effects, and emergent properties Over the last decade the LUCIFS program has been investigating both contemporary and long-term river response to global change with the principal aims of i)quantifying land use and climate change impacts of river-borne fluxes of water, sediment, C, N and P; ii) identification of key controls on these fluxes at the catchment scale; and iii) identification of the feedback on both human society and biogeochemical cycles of long-term changes in the fluxes of these materials The major scientific tasks of the LUCIFS-program are: • synthesising results of regional case studies • identify regional gaps and encouraging new case studies • addressing research gaps and formulating new research questions • organising workshops and conferences In this paper we present the LUCIFS program within the new PAGES structure. LUCIFS is located in the Focus 4 (PHAROS) dealing with how a knowledge of human-climate-ecosystem interactions in the past can help inform understanding and management today. In conjunction with the other working groups HITE (Human Impacts on Terrestrial Ecosystems), LIMPACS (Human Impacts on Lake Ecosystems) and IHOPE (Integrated History of People on Earth) PHAROS aims to compare regional-scale reconstructions of environmental and climatic processes using natural archives, documentary and instrumental data, with evidence of past human activity obtained from historical, paleoecological and archaeological records.

  14. Aerosols and their Impact on Radiation, Clouds, Precipitation & Severe Weather Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhanqing; Rosenfeld, Daniel; Fan, Jiwen

    Aerosols, the tiny particles suspended in the atmosphere, have been in the forefront of environmental and climate change sciences as the primary atmospheric pollutant and external force affecting Earth’s weather and climate. There are two dominant mechanisms by which aerosols affect weather and climate: aerosol-radiation interactions (ARI) and aerosol-cloud interactions (ACI). ARI arises from aerosol scattering and absorption, which alters the radiation budgets of the atmosphere and surface, while ACI is rooted to the fact that aerosols serve as cloud condensation nuclei and ice nuclei. Both ARI and ACI are coupled with atmospheric dynamics to produce a chain of complexmore » interactions with a large range of meteorological variables that influence both weather and climate. Elaborated here are the impacts of aerosols on the radiation budget, clouds (microphysics, structure, and lifetime), precipitation, and severe weather events (lightning, thunderstorms, hail, and tornados). Depending on environmental variables and aerosol properties, the effects can be both positive and negative, posing the largest uncertainties in the external forcing of the climate system. This has considerably hindered our ability in projecting future climate changes and in doing accurate numerical weather predictions.« less

  15. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    NASA Astrophysics Data System (ADS)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  16. Backscatter modelling and inversion from Cassini/SAR data: Implications for Titan's sand seas properties and climatic conditions

    NASA Astrophysics Data System (ADS)

    Lucas, A.; Rodriguez, S.; Lemonnier, F.; Paillou, P.; Le Gall, A. A.; Narteau, C.

    2015-12-01

    Sand seas on Titan may reflect the present and past climatic conditions. Understanding the morphodynamics and physicochemical properties of Titan's dunes is therefore essential for a better comprehension of the climatic and geological history of the largest Saturn's moon. We derived quantitatively surface properties (texture, composition) from the modelling of microwave backscattered signal and Monte Carlo inversion of despeckled Cassini/SAR data over the equatorial sand seas. We show that dunes and inter-dunes have significantly different physical properties. Absorption is more efficient in the dunes compared to the inter-dunes. The inter-dunes are smoother with an higher dielectric constant than the dunes. Considering the composition, the inter-dunes are in between the dunes and the bright inselbergs, suggesting the presence of a shallow layer of sediment in between the dunes. Additionally potential secondary bedforms may have been detected. Implications for dune morphodynamics, sediment inventory and climatic conditions occurring on Titan will be discussed.

  17. Atmospheric Aerosol Properties and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip; hide

    2009-01-01

    This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.

  18. Snow: A New Model Diagnostic and Seasonal Forecast Influences

    NASA Astrophysics Data System (ADS)

    Slater, A. G.; Lawrence, D. M.; Koven, C.

    2015-12-01

    Snow is the most variable of terrestrial surface condition on the planet with the seasonal extent of snow cover varying by about 48% of land area in the Northern Hemisphere. Physical properties of snow such as high albedo, high insulation along with its ability to store moisture make it an integral component of mid- and high-latitude climates and it is therefore important that models capture these properties and associated processes. In this work we explore two items associated with snow and their role in the climate system. Firstly, a diagnostic measure of snow insulation that is rooted in the physics of heat transfer is introduced. Insulation of the ground during cold Arctic winters heavily influences the rate and depth of ground freezing (or thawing), which can then influence hydrologic and biogeochemical fluxes. The ability of models to simulate snow insulation varies widely. Secondly, the role of snow upon seasonal forecasts is demonstrated within a currently operational modeling system. Due to model system biases, mass and longevity of snow can vary with forecasts. In turn, a longer lasting and greater moisture store can have impacts upon the surface temperature. These impacts can linger for over two months after all snow has melted. The cause of the biases is identified and a solution posed.

  19. Using a geographic information system and hillslope runoff modeling to support decision-making for managed aquifer recharge using distributed stormwater collection

    NASA Astrophysics Data System (ADS)

    Teo, E. K.; Beganskas, S.; Young, K. S.; Weir, W. B.; Harmon, R. E.; Lozano, S.; Fisher, A. T.

    2017-12-01

    Many aquifer systems in central coastal California face a triple threat of excess demand, changing land use, and a shifting climate. These last two factors can contribute to reductions in groundwater recharge. Managed aquifer recharge using distributed stormwater collection (DSC-MAR) is an adaptation technique for collecting excess stormwater runoff from hillslopes for infiltration into underlying aquifers, before that water reaches a "blue line" stream. We are developing a decision support system (DSS) that combines surface and subsurface hydrogeological data with high-resolution predictions of hillslope runoff, with specific application to Santa Cruz and northern Monterey Counties. Other studies presented at AGU will focus on the northern and southern parts of our study region (San Lorenzo River Basin, Lower Pajaro River Basin). This presentation focuses on mid-Santa Cruz County, including the Soquel-Aptos Groundwater Basin. The DSS uses a geographic information system to compile and merge data from numerous local, state, and federal sources to identify locations on the landscape where DSC-MAR may be most suitable. This requires classification of disparate data types so that they can be combined. Stormwater runoff for individual river basins in the study region was simulated using historical streamflow data for calibration and validation. Both analyses were completed with relatively fine resolution, from 10 m2 pixels for elevation to 0.1-1.0 km hydrologic response units for properties such as soil and vegetation properties. Future climate is uncertain, so we used historical data to create a catalog of dry, normal, and wet hydrologic conditions, then created synthetic future climate scenarios for simulation. The DDS shows that there are numerous regions in mid-Santa Cruz County where there is a confluence of MAR suitability and the generation of stormwater runoff that could supply recharge projects (with a nominal target of 100 ac-ft/yr of infiltration), even under dry climate scenarios, and allows us to assess the potential benefits to be derived from a implementation of DSC-MAR projects in strategic locations. The tools and methods developed with this DDS should be broadly applicable to other basins.

  20. Arctic climate response to geoengineering with stratospheric sulfate aerosols

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2010-12-01

    Recent warming and record summer sea-ice area minimums have spurred expressions of concern for arctic ecosystems, permafrost, and polar bear populations, among other things. Geoengineering by stratospheric sulfate aerosol injections to deliberately cancel the anthropogenic temperature rise has been put forth as a possible solution to restoring Arctic (and global) climate to modern conditions. However, climate is particularly sensitive in the northern high latitudes, responding easily to radiative forcing changes. To that end, we explore the extent to which tropical injections of stratospheric sulfate aerosol can accomplish regional cancellation in the Arctic. We use the Community Climate System Model version 3 global climate model to execute simulations with combinations of doubled CO2 and imposed stratospheric sulfate burdens to investigate the effects on high latitude climate. We further explore the sensitivity of the polar climate to ocean dynamics by running a suite of simulations with and without ocean dynamics, transiently and to equilibrium respectively. We find that, although annual, global mean temperature cancellation is accomplished, there is over-cooling on land in Arctic summer, but residual warming in Arctic winter, which is largely due to atmospheric circulation changes. Furthermore, the spatial extent of these features and their concurrent impacts on sea-ice properties are modified by the inclusion of ocean dynamical feedbacks.

  1. Patterns and determinants of wood physical and mechanical properties across major tree species in China.

    PubMed

    Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun

    2015-06-01

    The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.

  2. Climate change and adaptational impacts in coastal systems: the case of sea defences.

    PubMed

    Firth, Louise B; Mieszkowska, Nova; Thompson, Richard C; Hawkins, Stephen J

    2013-09-01

    We briefly review how coastal ecosystems are responding to and being impacted by climate change, one of the greatest challenges facing society today. In adapting to rising and stormier seas associated with climate change, coastal defence structures are proliferating and becoming dominant coastal features, particularly in urbanised areas. Whilst the primary function of these structures is to protect coastal property and infrastructure, they inevitably have a significant secondary impact on the local environment and ecosystems. In this review we outline some of the negative and positive effects of these structures on physical processes, impacts on marine species, and the novel engineering approaches that have been employed to improve the ecological value of these structures in recent years. Finally we outline guidelines for an environmentally sensitive approach to design of such structures in the marine environment.

  3. CLOUD CONDENSATION NUCLEI MEASUREMENTS DURING THE SENEX 2013 CAMPAIGN: OBSERVATIONS, ANALYSIS AND IMPACTS

    EPA Science Inventory

    This proposal targets the EPA-STAR Anthropogenic Influences on Organic Aerosol Formation and Regional Climate Implications, EPA-G2012-STAR-D1 question 3: “How are the climatically relevant properties of biogenic secondary organic aerosols (either optical properties or...

  4. Understanding the Impacts of Climate Change and Land Use Dynamics Using a Fully Coupled Hydrologic Feedback Model between Surface and Subsurface Systems

    NASA Astrophysics Data System (ADS)

    Park, C.; Lee, J.; Koo, M.

    2011-12-01

    Climate is the most critical driving force of the hydrologic system of the Earth. Since the industrial revolution, the impacts of anthropogenic activities to the Earth environment have been expanded and accelerated. Especially, the global emission of carbon dioxide into the atmosphere is known to have significantly increased temperature and affected the hydrologic system. Many hydrologists have contributed to the studies regarding the climate change on the hydrologic system since the Intergovernmental Panel on Climate Change (IPCC) was created in 1988. Among many components in the hydrologic system groundwater and its response to the climate change and anthropogenic activities are not fully understood due to the complexity of subsurface conditions between the surface and the groundwater table. A new spatio-temporal hydrologic model has been developed to estimate the impacts of climate change and land use dynamics on the groundwater. The model consists of two sub-models: a surface model and a subsurface model. The surface model involves three surface processes: interception, runoff, and evapotranspiration, and the subsurface model does also three subsurface processes: soil moisture balance, recharge, and groundwater flow. The surface model requires various input data including land use, soil types, vegetation types, topographical elevations, and meteorological data. The surface model simulates daily hydrological processes for rainfall interception, surface runoff varied by land use change and crop growth, and evapotranspiration controlled by soil moisture balance. The daily soil moisture balance is a key element to link two sub-models as it calculates infiltration and groundwater recharge by considering a time delay routing through a vadose zone down to the groundwater table. MODFLOW is adopted to simulate groundwater flow and interaction with surface water components as well. The model is technically flexible to add new model or modify existing model as it is developed with an object-oriented language - Python. The model also can easily be localized by simple modification of soil and crop properties. The actual application of the model after calibration was successful and results showed reliable water balance and interaction between the surface and subsurface hydrologic systems.

  5. Hotspots of climate change impacts in sub-Saharan Africa and implications for adaptation and development.

    PubMed

    Müller, Christoph; Waha, Katharina; Bondeau, Alberte; Heinke, Jens

    2014-08-01

    Development efforts for poverty reduction and food security in sub-Saharan Africa will have to consider future climate change impacts. Large uncertainties in climate change impact assessments do not necessarily complicate, but can inform development strategies. The design of development strategies will need to consider the likelihood, strength, and interaction of climate change impacts across biosphere properties. We here explore the spread of climate change impact projections and develop a composite impact measure to identify hotspots of climate change impacts, addressing likelihood and strength of impacts. Overlapping impacts in different biosphere properties (e.g. flooding, yields) will not only claim additional capacity to respond, but will also narrow the options to respond and develop. Regions with severest projected climate change impacts often coincide with regions of high population density and poverty rates. Science and policy need to propose ways of preparing these areas for development under climate change impacts. © 2014 John Wiley & Sons Ltd.

  6. A global food demand model for the assessment of complex human-earth systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    EDMONDS, JAMES A.; LINK, ROBERT; WALDHOFF, STEPHANIE T.

    Demand for agricultural products is an important problem in climate change economics. Food consumption will shape and shaped by climate change and emissions mitigation policies through interactions with bioenergy and afforestation, two critical issues in meeting international climate goals such as two-degrees. We develop a model of food demand for staple and nonstaple commodities that evolves with changing incomes and prices. The model addresses a long-standing issue in estimating food demands, the evolution of demand relationships across large changes in income and prices. We discuss the model, some of its properties and limitations. We estimate parameter values using pooled cross-sectional-time-seriesmore » observations and the Metropolis Monte Carlo method and cross-validate the model by estimating parameters using a subset of the observations and test its ability to project into the unused observations. Finally, we apply bias correction techniques borrowed from the climate-modeling community and report results.« less

  7. Satellite and Ground-based Radiometers Reveal Much Lower Dust Absorption of Sunlight than Used in Climate Models

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Dubovik, O.; Karnieli, A.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The ability of dust to absorb solar radiation and heat the atmosphere is one of the main uncertainties in climate modeling and the prediction of climate change. Dust absorption is not well known due to limitations of in situ measurements. New techniques to measure dust absorption are needed in order to assess the impact of dust on climate. Here we report two new independent remote sensing techniques that provide sensitive measurements of dust absorption. Both are based on remote sensing. One uses satellite spectral measurements, the second uses ground based sky measurements from the AERONET network. Both techniques demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. Dust cooling of the earth system in the solar spectrum is therefore significantly stronger than recent calculations indicate. We shall also address the issue of the effects of dust non-sphericity on the aerosol optical properties.

  8. A dataset mapping the potential biophysical effects of vegetation cover change

    NASA Astrophysics Data System (ADS)

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-02-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.

  9. A dataset mapping the potential biophysical effects of vegetation cover change

    PubMed Central

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-01-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes. PMID:29461538

  10. Antarctic cloud and surface properties: Satellite observations and climate implications

    NASA Astrophysics Data System (ADS)

    Berque, Joannes

    2004-12-01

    The radiative effect of clouds in the Antarctic, although small at the top of the atmosphere, is very large within the surface-atmosphere system, and influences a variety of climate processes on a global scale. Because field observations are difficult in the Antarctic interior, satellite observations may be especially valuable in this region; but the remote sensing of clouds and surface properties over the high ice sheets is problematic due to the lack of radiometric contrast between clouds and the snow. A radiative transfer model of the Antarctic snow-atmosphere system is developed, and a new method is proposed for the examination of the problem of cloud properties retrieval from multi-spectral measurements. Key limitations are identified, and a method is developed to overcome them. Using data from the Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Agency (NOAA) polar orbiters, snow grain size is retrieved over the course of a summer. Significant variability is observed, and it appears related to major precipitation events. A radiative transfer model and a single-column model are used to evaluate the impact of this variability on the Antarctic plateau. The range of observed grain size induces changes of up to 30 Wm-2 on the absorption of shortwave radiation in both models. Cloud properties are then retrieved in summertime imagery of the South Pole. Comparison of model to observations over a wide range of cloud optical depths suggests that this method allows the meaningful interpretation of AVHRR radiances in terms of cloud properties over the Antarctic plateau. The radiative effect of clouds at the top of the atmosphere is evaluated over the South Pole with ground-based lidar observations and data from Clouds and the Earth Radiant Energy System (CERES) onboard NASA's Terra satellite. In accord with previous work, results indicate that the shortwave and net effect are one of cooling throughout the year, while the longwave effect is one of cooling in winter and slight warming in summer.

  11. Hillslope characterization: Identifying key controls on local-scale plant communities' distribution using remote sensing and subsurface data fusion.

    NASA Astrophysics Data System (ADS)

    Falco, N.; Wainwright, H. M.; Dafflon, B.; Leger, E.; Peterson, J.; Steltzer, H.; Wilmer, C.; Williams, K. H.; Hubbard, S. S.

    2017-12-01

    Mountainous watershed systems are characterized by extreme heterogeneity in hydrological and pedological properties that influence biotic activities, plant communities and their dynamics. To gain predictive understanding of how ecosystem and watershed system evolve under climate change, it is critical to capture such heterogeneity and to quantify the effect of key environmental variables such as topography, and soil properties. In this study, we exploit advanced geophysical and remote sensing techniques - coupled with machine learning - to better characterize and quantify the interactions between plant communities' distribution and subsurface properties. First, we have developed a remote sensing data fusion framework based on the random forest (RF) classification algorithm to estimate the spatial distribution of plant communities. The framework allows the integration of both plant spectral and structural information, which are derived from multispectral satellite images and airborne LiDAR data. We then use the RF method to evaluate the estimated plant community map, exploiting the subsurface properties (such as bedrock depth, soil moisture and other properties) and geomorphological parameters (such as slope, curvature) as predictors. Datasets include high-resolution geophysical data (electrical resistivity tomography) and LiDAR digital elevation maps. We demonstrate our approach on a mountain hillslope and meadow within the East River watershed in Colorado, which is considered to be a representative headwater catchment in the Upper Colorado Basin. The obtained results show the existence of co-evolution between above and below-ground processes; in particular, dominant shrub communities in wet and flat areas. We show that successful integration of remote sensing data with geophysical measurements allows identifying and quantifying the key environmental controls on plant communities' distribution, and provides insights into their potential changes in the future climate conditions.

  12. Towards the Goal of Modular Climate Data Services: An Overview of NCPP Applications and Software

    NASA Astrophysics Data System (ADS)

    Koziol, B. W.; Cinquini, L.; Treshansky, A.; Murphy, S.; DeLuca, C.

    2013-12-01

    In August 2013, the National Climate Predictions and Projections Platform (NCPP) organized a workshop focusing on the quantitative evaluation of downscaled climate data products (QED-2013). The QED-2013 workshop focused on real-world application problems drawn from several sectors (e.g. hydrology, ecology, environmental health, agriculture), and required that downscaled downscaled data products be dynamically accessed, generated, manipulated, annotated, and evaluated. The cyberinfrastructure elements that were integrated to support the workshop included (1) a wiki-based project hosting environment (Earth System CoG) with an interface to data services provided by an Earth System Grid Federation (ESGF) data node; (2) metadata tools provided by the Earth System Documentation (ES-DOC) collaboration; and (3) a Python-based library OpenClimateGIS (OCGIS) for subsetting and converting NetCDF-based climate data to GIS and tabular formats. Collectively, this toolset represents a first deployment of a 'ClimateTranslator' that enables users to access, interpret, and apply climate information at local and regional scales. This presentation will provide an overview of these components above, how they were used in the workshop, and discussion of current and potential integration. The long-term strategy for this software stack is to offer the suite of services described on a customizable, per-project basis. Additional detail on the three components is below. (1) Earth System CoG is a web-based collaboration environment that integrates data discovery and access services with tools for supporting governance and the organization of information. QED-2013 utilized these capabilities to share with workshop participants a suite of downscaled datasets, associated images derived from those datasets, and metadata files describing the downscaling techniques involved. The collaboration side of CoG was used for workshop organization, discussion, and results. (2) The ES-DOC Questionnaire, Viewer, and Comparator are web-based tools for the creation and use of model and experiment documentation. Workshop participants used the Questionnaire to generate metadata on regional downscaling models and statistical downscaling methods, and the Viewer to display the results. A prototype Comparator was available to compare properties across dynamically downscaled models. (3) OCGIS is a Python (v2.7) package designed for geospatial manipulation, subsetting, computation, and translation of Climate and Forecasting (CF)-compliant climate datasets - either stored in local NetCDF files, or files served through THREDDS data servers.

  13. Measurements of fluorescent aerosols using a mutil-channel lidar spectrometer system during DUBI 2016 Campaign

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Huang, J.; Zhou, T.; Shi, J.; Sugimoto, N.; Tang, K.

    2016-12-01

    Atmospheric bioaerosols are relevant for public health and may play an important role in the climate system. Previous studies have shown that abundant bioaerosols (such as microorganisms) injected into the atmosphere along with dust events, could affect leeward ecosystem and human health, even induce globe climate change. However, the challenge in quantifying bioaerosol climate effects (e.g., radiative forcing and aerosol-cloud interactions) arises from large spatial and temporal heterogeneity of their concentrations, compositions, sizes, shape and optical properties. Lidar, as one of most advanced active remote sensing, is used to offer some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. In order to investigate the characterization of atmospheric bioaerosols along transported pathways of dust aerosols, we carried out DUBI (DUst BIoaerosol) 2016 Campaign over Northern China in spring of 2016. Lots of instruments, including bioaerosol sampling, lidar as well as others, were installed at three sites­ (Erenhot, Zhangbei and Jinan) simultaneously. A multi-channel lidar spectrometer system was developed to observe Mie, Raman scattering and laser-induced fluorescence excitation at 355 nm from the atmosphere. The lidar system operated polarization measurements at 355nm, aiming to identify dust particles from other aerosols. It employs a high power pulsed laser with energy of 80mJ at 355nm and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum between 360nm and 720nm with spectral resolution 5.7 nm using two spectrometers simultaneously. The spectrometer mainly includes an F/3.7 Crossed Czerny-Turner spectrographs, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at Zhangbei during DUBI 2016 Campaign. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and spatial resolutions. Moreover, characterization of bioaerosols was investigated from co-located bioaerosol sampling analysis.

  14. Crime Seasonality: Examining the Temporal Fluctuations of Property Crime in Cities With Varying Climates.

    PubMed

    Linning, Shannon J; Andresen, Martin A; Brantingham, Paul J

    2017-12-01

    This study investigates whether crime patterns fluctuate periodically throughout the year using data containing different property crime types in two Canadian cities with differing climates. Using police report data, a series of ordinary least squares (OLS; Vancouver, British Columbia) and negative binomial (Ottawa, Ontario) regressions were employed to examine the corresponding temporal patterns of property crime in Vancouver (2003-2013) and Ottawa (2006-2008). Moreover, both aggregate and disaggregate models were run to examine whether different weather and temporal variables had a distinctive impact on particular offences. Overall, results suggest that cities that experience greater variations in weather throughout the year have more distinct increases of property offences in the summer months and that different climate variables affect certain crime types, thus advocating for disaggregate analysis in the future.

  15. How does complex terrain influence responses of carbon and water cycle processes to climate variability and climate change? (Invited)

    NASA Astrophysics Data System (ADS)

    Bond, B. J.; Peterson, K.; McKane, R.; Lajtha, K.; Quandt, D. J.; Allen, S. T.; Sell, S.; Daly, C.; Harmon, M. E.; Johnson, S. L.; Spies, T.; Sollins, P.; Abdelnour, A. G.; Stieglitz, M.

    2010-12-01

    We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site situated in Oregon’s central-western Cascade Range. Decades of long-term measurements and intensive research have revealed influences of topography on vegetation patterns, disturbance history, and hydrology. More recent research has shown surprising interactions between microclimates and synoptic weather patterns due to cold air drainage and pooling in mountain valleys. Using these data and insights, in addition to a recent LiDAR (Light Detection and Ranging) reconnaissance and a small sensor network, we are employing process-based models, including “SPA” (Soil-Plant-Atmosphere, developed by Mathew Williams of the University of Edinburgh), and “VELMA” (Visualizing Ecosystems for Land Management Alternatives, developed by Marc Stieglitz and colleagues of the Georgia Institute of Technology) to focus on two important features of mountainous landscapes: heterogeneity (both spatial and temporal) and connectivity (atmosphere-canopy-hillslope-stream). Our research questions include: 1) Do fine-scale spatial and temporal heterogeneity result in emergent properties at the basin scale, and if so, what are they? 2) How does connectivity across ecosystem components affect system responses to climate variability and change? Initial results show that for environmental drivers that elicit non-linear ecosystem responses on the plot scale, such as solar radiation, soil depth and soil water content, fine-scale spatial heterogeneity may produce unexpected emergent properties at larger scales. The results from such modeling experiments are necessarily a function of the supporting algorithms. However, comparisons based on models such as SPA and VELMA that operate at much different spatial scales (plots vs. hillslopes) and levels of biophysical organization (individual plants vs. aggregate plant biomass) can help us to understand how and why mountainous ecosystems may have distinctive responses to climate variability and climate change.

  16. Characterising groundwater dynamics in Western Victoria, Australia using Menyanthes software

    NASA Astrophysics Data System (ADS)

    Woldeyohannes, Yohannes; Webb, John

    2010-05-01

    Water table across much of the western Victoria, Australia have been declining for at least the last 10-15 years, and this is attributed to the consistently low rainfall for these years, but over the same period of time there has been substantial change in land use, with grazing land replaced by cropping and tree plantations appearing in some areas. Hence, it is important to determine the relative effect the climate and land use factors on the water table changes. Monitoring changes in groundwater levels to climate variables and/or land use change is helpful in indicating the degree of threat faced to agricultural and public assets. The dynamics of the groundwater system in the western Victoria, mainly on the basalt plain, have been modelled to determine the climatic influence in water table fluctuations. In this study, a standardized computer package Menyanthes was used for quantifying the influence of climatic variables on the groundwater level, statistically estimating trends in groundwater levels and identify the properties that determine the dynamics of groundwater system. This method is optimized for use on hydrological problems and is based on the use of continuous time transfer function noise model, which estimates the Impulse response function of the system from the temporal correlation between time series of groundwater level and precipitation surplus. In this approach, the spatial differences in the groundwater system are determined by the system properties, while temporal variation is driven by the dynamics of the input into the system. 80 time series models are analysed and the model output parameter values characterized by their moments. The zero-order moment Mo of a distribution function is its area and M1 is related to the mean of the impulse response function. The relation is M1/Mo. It is a measure of the system's memory. It takes approximately 3 times the mean time (M1/Mo) for the effect of a shower to disappear completely from the system. Overall, the model fitted the data well, explaining 89% (median value of R2) of variation in groundwater level using the climatic variables (rainfall and evaporation) left without significant trend (-0.046 m/yr, on average), which is within the range of variable input standard error. The average estimated system response (memory to disappear) is 5.2 years which is less than by 1/10th of the previously estimated time using Ground Water Flow System approach. The average Mo is 1.45 m, which means that a precipitation of 365 mm/yr will eventually lead to a ground water level rise of 1.45 m on the location. The Menyanthes result is compared with HARTT (Hydrograph Analysis and Time Trends) method. The trend and Mo estimate using Menyanthes and HARTT show comparable result. From a time series analysis there is no indication that the groundwater table was rising/falling due to changes in landuse, at least not during the observation period.

  17. The Meriden School Climate Survey-Student Version: Preliminary Evidence of Reliability and Validity

    ERIC Educational Resources Information Center

    Gage, Nicholas A.; Larson, Alvin; Chafouleas, Sandra M.

    2016-01-01

    School climate has been linked with myriad positive student outcomes and the measurement of school climate is widely advocated at the national and state level. However, districts have little guidance about how to define and measure school climate. This study examines the psychometric properties of a district-developed school climate measure that…

  18. Exploring the concept of climate surprises. A review of the literature on the concept of surprise and how it is related to climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glantz, M.H.; Moore, C.M.; Streets, D.G.

    This report examines the concept of climate surprise and its implications for environmental policymaking. Although most integrated assessment models of climate change deal with average values of change, it is usually the extreme events or surprises that cause the most damage to human health and property. Current models do not help the policymaker decide how to deal with climate surprises. This report examines the literature of surprise in many aspects of human society: psychology, military, health care, humor, agriculture, etc. It draws together various ways to consider the concept of surprise and examines different taxonomies of surprise that have beenmore » proposed. In many ways, surprise is revealed to be a subjective concept, triggered by such factors as prior experience, belief system, and level of education. How policymakers have reacted to specific instances of climate change or climate surprise in the past is considered, particularly with regard to the choices they made between proactive and reactive measures. Finally, the report discusses techniques used in the current generation of assessment models and makes suggestions as to how climate surprises might be included in future models. The report concludes that some kinds of surprises are simply unpredictable, but there are several types that could in some way be anticipated and assessed, and their negative effects forestalled.« less

  19. Developing the architecture for the Climate Information Portal for Copernicus

    NASA Astrophysics Data System (ADS)

    Som de Cerff, Wim; Thijsse, Peter; Plieger, Maarten; Pascoe, Stephen; Jukes, Martin; Leadbetter, Adam; Goosen, Hasse; de Vreede, Ernst

    2015-04-01

    Climate change is impacting the environment, society and policy decisions. Information about climate change is available from many sources, but not all of them are reliable. The CLIPC project is developing a portal to provide a single point of access for authoritative scientific information on climate change. This ambitious objective is made possible through the Copernicus Earth Observation Programme for Europe, which will deliver a new generation of environmental measurements of climate quality. The data about the physical environment which is used to inform climate change policy and adaptation measures comes from several categories: satellite measurements, terrestrial observing systems, model projections and simulations and from re-analyses (syntheses of all available observations constrained with numerical weather prediction systems). These data categories are managed by different communities: CLIPC will provide a single point of access for the whole range of data. Information on data value and limitations will be provided as part of a knowledge base of authoritative climate information. The impacts of climate change on society will generally reflect a range of different environmental and climate system changes, and different sectors and actors within society will react differently to these changes. The CLIPC portal will provide some a number of indicators showing impacts on specific sectors which have been generated using a range of factors selected through structured expert consultation. It will also, as part of the transformation services, allow users to explore the consequences of using different combinations of driving factors which they consider to be of particular relevance to their work or life. The portal will provide information on the scientific quality and pitfalls of such transformations to prevent misleading usage of the results. The CLIPC project will not be able to process a comprehensive range of climate change impacts on the physical environment and society, but will develop an end to end processing chain (indicator toolkit), from comprehensive information on the climate state through to highly aggregated decision relevant products. This processing chain will be demonstrated within three thematic areas: water, rural and urban. Indicators of climate change and climate change impact will be provided, and a toolkit to update and post process the collection of indicators will be integrated into the portal. For the indicators three levels (Tiers) have been loosely defined: Tier 1: field summarising properties of the climate system; e.g. temperature change; Tier 2: expressed in terms of environmental properties outside the climate system; e.g. flooding change; Tier 3: expressed in social and economic impact. For the architecture, CLIPC has two interlocked themes: 1. Harmonised access to climate datasets derived from models, observations and re-analyses 2. A climate impact toolkit to evaluate, rank and aggregate indicators For development of the CLIPC architecture an Agile 'storyline' approach is taken. The storyline is a real world use case and consists of producing a Tier 3 indicator (Urban Heat Vulnerability) and making it available through the CLIPC infrastructure for a user group. In this way architecture concepts can be directly tested and improved. Also, the produced indicator can be shown to users to refine requirements. Main components of the CLIPC architecture are 1) Data discovery and access, 2) Data processing, 3) Data visualization, 4) Knowledge base and 5) User Management. The Data discovery and access component main challenge is to provide harmonized access to various sources of climate data (ngEO, EMODNET/SeaDataNet, ESGF, MyOcean). The discovery service concept will be provided using a CLIPC data and data product catalogue and via a structured data search on selected infrastructures, using NERC vocabulary services and mappings. Data processing will be provided using OGC WPS services, linking/re-using existing processing services from climate4impact.eu. The processing services will allow users to calculate climate impact indicators (Tier 1, 2 and 3). Processing wizards will guide users in processing indicators. The PyWPS framework will be used. The CLIPC portal will have its own central viewing service, using OGC standards for interoperability. For the WMS server side the ADAGUC framework will be used. For Tier 3 visualizations specific tailored visualisations will be developed. Tier 3 can be complicated to build and require manual work from specialists to provide meaningful results before they can be published as e.g. interactive maps. The CLIPC knowledge base is a set of services that supply explanatory information to the users when working with CLIPC services. It is structured around 1) a catalogue, containing ISO standardized metadata, citations, background information, links to data; 2) Commentary information, e.g. FAQ, annotation URLs , version information, disclaimers; 3) Technical documents, e.g. using vocabularies and mappings 4) Glossaries, adding and using existing glossaries from e.g. EUPORIAS/IS-ENES, IPCC; 5) literature references. CLIPC will have a very light weight user management system, providing as little barriers to the user as possible. We will make use of OpenID, accepting from selected OpenID providers such as Google and ESGF. In the presentation we will show the storyline implementation: the first results of the Tier 3 indicator, the architecture in development and the lessons learned.

  20. The impact of oceanic heat transport on the atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Lunkeit, Frank

    2017-04-01

    A general circulation model of intermediate complexity with an idealized Earth-like aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is on the atmospheric mean meridional circulation and global thermodynamic properties. The atmosphere counterbalances to a large extent the imposed changes in the oceanic heat transport, but, nonetheless, significant modifications to the atmospheric general circulation are found. Increasing the strength of the oceanic heat transport up to 2.5 PW leads to an increase in the global mean near-surface temperature and to a decrease in its equator-to-pole gradient. For stronger transports, the gradient is reduced further, but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. Additionally, a stronger oceanic heat transport leads to a decline in the intensity and a poleward shift of the maxima of both the Hadley and Ferrel cells. Changes in zonal mean diabatic heating and friction impact the properties of the Hadley cell, while the behavior of the Ferrel cell is mostly controlled by friction. The efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport. This suggests that the climate system becomes less efficient and turns into a state of reduced entropy production as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fluids with different temperatures, thus reducing the available energy in the climate system and bringing it closer to a state of thermal equilibrium.

  1. Development of a Recombination System for the Generation of Occlusion Positive Genetically Modified Anticarsia Gemmatalis Multiple Nucleopolyhedrovirus

    PubMed Central

    Haase, Santiago; McCarthy, Christina B.; Ferrelli, M. Leticia; Pidre, Matias L.; Sciocco-Cap, Alicia; Romanowski, Victor

    2015-01-01

    Anticarsia gemmatalis is an important pest in legume crops in South America and it has been successfully controlled using Anticarsia gemmatalis Multiple Nucleopolyhedrovirus (AgMNPV) in subtropical climate zones. Nevertheless, in temperate climates its speed of kill is too slow. Taking this into account, genetic modification of AgMNPV could lead to improvements of its biopesticidal properties. Here we report the generation of a two-component system that allows the production of recombinant AgMNPV. This system is based on a parental AgMNPV in which the polyhedrin gene (polh) was replaced by a bacterial β-galactosidase (lacZ) gene flanked by two target sites for the homing endonuclease I-PpoI. Co-transfection of insect cells with linearized (I-PpoI-digested) parental genome and a transfer vector allowed the restitution of polh and the expression of a heterologous gene upon homologous recombination, with a low background of non-recombinant AgMNPV. The system was validated by constructing a recombinant occlusion-positive (polh+) AgMNPV expressing the green fluorescent protein gene (gfp). This recombinant virus infected larvae normally per os and led to the expression of GFP in cell culture as well as in A. gemmatalis larvae. These results demonstrate that the system is an efficient method for the generation of recombinant AgMNPV expressing heterologous genes, which can be used for manifold purposes, including biotechnological and pharmaceutical applications and the production of orally infectious recombinants with improved biopesticidal properties. PMID:25835531

  2. Technology-Driven and Innovative Training for Sustainable Agriculture in The Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Wishart, D. N.

    2015-12-01

    Innovative training in 'Sustainable Agriculture' for an increasingly STEM-dependent agricultural sector will require a combination of approaches and technologies for global agricultural production to increase while offsetting climate change. Climate change impacts the water resources of nations as normal global weather patterns are altered during El Nino events. Agricultural curricula must incorporate awareness of 'climate change' in order to find novel ways to (1) assure global food security; (2) improve soil productivity and conservation; (3) improve crop yields and irrigation; (4) inexpensively develop site specific principles of crop management based on variable soil and associated hydrological properties; and (5) improve precision farming. In February 2015, Central State University (CSU), Ohio became an 1890 Land-Grant institution vital to the sustainability of Ohio's agricultural sector. Besides agricultural extension, the agriculture curriculum at CSU integrates multidisciplinary courses in science, technology engineering, agriculture, and mathematics (STEAM). The agriculture program could benefit from a technology-driven, interdisciplinary soil science course that promotes climate change education and climate literacy while being offered in both a blended and collaborative learning environment. The course will focus on the dynamics of microscale to mesoscale processes occurring in farming systems, those of which impact climate change or could be impacted by climate change. Elements of this course will include: climate change webinars; soil-climate interactions; carbon cycling; the balance of carbon fluxes between soil storage and atmosphere; microorganisms and soil carbon storage; paleoclimate and soil forming processes; geophysical techniques used in the characterization of soil horizons; impact of climate change on soil fertility; experiments; and demonstrations.

  3. The Observed Behavior of the Bias in MODIS-retrieved Cloud Droplet Effective Radius through MISR-MODIS Data Fusion

    NASA Astrophysics Data System (ADS)

    Fu, D.; Di Girolamo, L.; Liang, L.; Zhao, G.

    2017-12-01

    Listed as one of the Essential Climate Variables by the Global Climate Observing System, the effective radius (Re) of the cloud drop size distribution plays an important role in the energy and water cycles of the Earth system. Re is retrieved from several passive sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), based on a visible and near-infrared bi-spectral technique that had its foundation more than a quarter century ago. This technique makes a wide range of assumptions, including 1-D radiative transfer, assumed single-mode drop size distribution, and cloud horizontal and vertical homogeneity. It is well known that deviations from these assumptions lead to bias in the retrieved Re. Recently, an effort to characterize the bias in MODIS-retrieved Re through MISR-MODIS data fusion revealed biases in the zonal-mean values of MODIS-retrieved Re that varied from 2 to 11 µm, depending on latitude (Liang et al., 2015). Here, in a push towards bias-correction of MODIS-retrieved Re, we further examine the bias with MISR-MODIS data fusion as it relates to other observed cloud properties, such as cloud-top height and the spatial variability of the radiance field, sun-view geometry, and the driving meteorology had from reanalysis data. Our results show interesting relationships in Re bias behavior with these observed properties, revealing that while Re bias do show a certain degree of dependence on some properties, no single property dominates the behavior in MODIS-retrieved Re bias.

  4. Sensitivity of the Palaeocene-Eocene Thermal Maximum climate to cloud properties.

    PubMed

    Kiehl, Jeffrey T; Shields, Christine A

    2013-10-28

    The Palaeocene-Eocene Thermal Maximum (PETM) was a significant global warming event in the Earth's history (approx. 55 Ma). The cause for this warming event has been linked to increases in greenhouse gases, specifically carbon dioxide and methane. This rapid warming took place in the presence of the existing Early Eocene warm climate. Given that projected business-as-usual levels of atmospheric carbon dioxide reach concentrations of 800-1100 ppmv by 2100, it is of interest to study past climates where atmospheric carbon dioxide was higher than present. This is especially the case given the difficulty of climate models in simulating past warm climates. This study explores the sensitivity of the simulated pre-PETM and PETM periods to change in cloud condensation nuclei (CCN) and microphysical properties of liquid water clouds. Assuming lower levels of CCN for both of these periods leads to significant warming, especially at high latitudes. The study indicates that past differences in cloud properties may be an important factor in accurately simulating past warm climates. Importantly, additional shortwave warming from such a mechanism would imply lower required atmospheric CO2 concentrations for simulated surface temperatures to be in reasonable agreement with proxy data for the Eocene.

  5. Developing User-Driven Climate Information Services to Build Resilience Amongst Groups at Risk of Drought and Flood in Arid and Semi-Arid Land Counties in Kenya

    NASA Astrophysics Data System (ADS)

    Githungo, W. N.; Shaka, A.; Kniveton, D.; Muithya, L.; Powell, R.; Visman, E. L.

    2014-12-01

    The Arid and Semi-Arid Land (ASAL) counties of Kitui and Makueni in Kenya are experiencing increasing climate variability in seasonal rainfall, including changes in the onset, cessation and distribution of the two principal rains upon which the majority of the population's small-holder farmers and livestock keepers depend. Food insecurity is prevalent with significant numbers also affected by flooding during periods of intense rainfall. As part of a multi-partner Adaptation Consortium, Kenya Meteorological Services (KMS) are developing Climate Information Services (CIS) which can better support decision making amongst the counties' principal livelihoods groups and across County Government ministries. Building on earlier pilots and stakeholder discussion, the system combines the production of climate information tailored for transmission via regional and local radio stations with the establishment of a new SMS service. SMS are provided through a network of CIS intermediaries drawn from across key government ministries, religious networks, non-governmental and community groups, aiming to achieve one SMS recipient per 3-500 people. It also introduces a demand-led, premium-rate SMS weather information service which is designed to be self-financing in the long term. Supporting the ongoing process of devolution, KMS is downscaling national forecasts for each county, and providing seasonal, monthly, weekly and daily forecasts, as well as warnings of weather-related hazards. Through collaboration with relevant ministries, government bodies and research institutions, including livestock, agriculture, drought management and health, technical advisories are developed to provide guidance on application of the climate information. The system seeks to provide timely, relevant information which can enable people to use weather and climate information to support decisions which protect life and property and build resilience to ongoing climate variability and future change.

  6. Multiscale complex network analysis: An approach to study spatiotemporal rainfall pattern in south Germany

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankit; Marwan, Norbert; Rathinasamy, Maheswaran; Oeztuerk, Ugur; Merz, Bruno; Kurths, Jürgen

    2017-04-01

    Understanding of the climate sytems has been of tremendous importance to different branches such as agriculture, flood, drought and water resources management etc. In this regard, complex networks analysis and time series analysis attracted considerable attention, owing to their potential role in understanding the climate system through characteristic properties. One of the basic requirements in studying climate network dynamics is to identify connections in space or time or space-time, depending upon the purpose. Although a wide variety of approaches have been developed and applied to identify and analyse spatio-temporal relationships by climate networks, there is still further need for improvements in particular when considering precipitation time series or interactions on different scales. In this regard, recent developments in the area of network theory, especially complex networks, offer new avenues, both for their generality about systems and for their holistic perspective about spatio-temporal relationships. The present study has made an attempt to apply the ideas developed in the field of complex networks to examine connections in regional climate networks with particular focus on multiscale spatiotemporal connections. This paper proposes a novel multiscale understanding of regional climate networks using wavelets. The proposed approach is applied to daily precipitation records observed at 543 selected stations from south Germany for a period of 110 years (1901-2010). Further, multiscale community mining is performed on the same study region to shed more light on the underlying processes at different time scales. Various network measure and tools so far employed provide micro-level (individual station) and macro-level (community structure) information of the network. It is interesting to investigate how the result of this study can be useful for future climate predictions and for evaluating climate models on their implementation regarding heavy precipitation. Keywords: Complex network, event synchronization, wavelet, regional climate network, multiscale community mining

  7. Optimization of Water Management of Cranberry Fields under Current and Future Climate Conditions

    NASA Astrophysics Data System (ADS)

    Létourneau, G.; Gumiere, S.; Mailhot, E.; Rousseau, A. N.

    2016-12-01

    In North America, cranberry production is on the rise. Since 2005, land area dedicated to cranberry doubled, principally in Canada. Recent studies have shown that sub-irrigation could lead to improvements in yield, water use efficiency and pumping energy requirements compared to conventional sprinkler irrigation. However, the experimental determination of the optimal water table level of each production site may be expensiveand time-consuming. The primary objective of this study is to optimize the water table level as a function of typical soil properties, and climatic conditions observed in major production areas using a numerical modeling approach. The second objective is to evaluate the impacts of projected climatic conditions on water management of cranberry fields. To that end, cranberry-specific management operations such as harvest flooding, rapid drainage following heavy rainfall, or hydric stress management during dry weather conditions were simulated with the HYDRUS 2D software. Results have shown that maintaining the water table approximately at 60 cm provides optimal results for most of the studied soils. However, under certain extreme climatic conditions, the drainage system design may not allow maintaining optimal hydric conditions for cranberry growth. The long-term benefit of this study has potential to advance the design of drainage/sub-irrigation systems.

  8. Southern Ocean bottom water characteristics in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Heuzé, CéLine; Heywood, Karen J.; Stevens, David P.; Ridley, Jeff K.

    2013-04-01

    Southern Ocean deep water properties and formation processes in climate models are indicative of their capability to simulate future climate, heat and carbon uptake, and sea level rise. Southern Ocean temperature and density averaged over 1986-2005 from 15 CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models are compared with an observed climatology, focusing on bottom water. Bottom properties are reasonably accurate for half the models. Ten models create dense water on the Antarctic shelf, but it mixes with lighter water and is not exported as bottom water as in reality. Instead, most models create deep water by open ocean deep convection, a process occurring rarely in reality. Models with extensive deep convection are those with strong seasonality in sea ice. Optimum bottom properties occur in models with deep convection in the Weddell and Ross Gyres. Bottom Water formation processes are poorly represented in ocean models and are a key challenge for improving climate predictions.

  9. Lost in Translation? Psychometric Properties and Construct Validity of the English Essen Climate Evaluation Schema (EssenCES) Social Climate Questionnaire

    ERIC Educational Resources Information Center

    Tonkin, Matthew; Howells, Kevin; Ferguson, Eamonn; Clark, Amanda; Newberry, Michelle; Schalast, Norbert

    2012-01-01

    The social climate of correctional (forensic) settings is likely to have a significant impact on the outcome of treatment and the overall functioning of these units. The Essen Climate Evaluation Schema (EssenCES) provides an objective way of measuring social climate that overcomes the content, length, and psychometric limitations of other…

  10. Properties of CIRRUS Overlapping Clouds as Deduced from the GOES-12 Imagery Data

    NASA Technical Reports Server (NTRS)

    Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny; Khaiyer, Mandana

    2006-01-01

    Understanding the impact of cirrus clouds on modifying both the solar reflected and terrestrial emitted radiations is crucial for climate studies. Unlike most boundary layer stratus and stratocumulus clouds that have a net cooling effect on the climate, high-level thin cirrus clouds can have a warming effect on our climate. Many research efforts have been devoted to retrieving cirrus cloud properties due to their ubiquitous presence. However, using satellite observations to detect and/or retrieve cirrus cloud properties faces two major challenges. First, they are often semitransparent at visible to infrared wavelengths; and secondly, they often occur over a lower cloud system. The overlapping of high-level cirrus and low-level stratus cloud poses a difficulty in determining the individual cloud top altitudes and optical properties, especially when the signals from cirrus clouds are overwhelmed by the signals of stratus clouds. Moreover, the operational satellite retrieval algorithms, which often assume only single layer cloud in the development of cloud retrieval techniques, cannot resolve the cloud overlapping situation properly. The new geostationary satellites, starting with the Twelfth Geostationary Operational Environmental Satellite (GOES-12), are providing a new suite of imager bands that have replaced the conventional 12-micron channel with a 13.3-micron CO2 absorption channel. The replacement of the 13.3-micron channel allows for the application of a CO2-slicing retrieval technique (Chahine et al. 1974; Smith and Platt 1978), which is one of the important passive satellite methods for remote sensing the altitudes of mid to high-level clouds. Using the CO2- slicing technique is more effective in detecting semitransparent cirrus clouds than using the conventional infrared-window method.

  11. Synergy of Satellite-Surface Observations for Studying the Properties of Absorbing Aerosols in Asia

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2010-01-01

    Through interaction with clouds and alteration of the Earth's radiation budget, atmospheric aerosols significantly influence our weather and climate. Monsoon rainfalls, for example, sustain the livelihood of more than half of the world's population. Thus, understanding the mechanism that drives the water cycle and freshwater distribution is high-lighted as one of the major near-term goals in NASA's Earth Science Enterprise Strategy. Every cloud droplet/ice-crystal that serves as an essential element in portraying water cycle and distributing freshwater contains atmospheric aerosols at its core. In addition, the spatial and temporal variability of atmospheric aerosol properties is complex due to their dynamic nature. In fact, the predictability of the tropical climate system is much reduced during the boreal spring, which is associated with the peak season of biomass burning activities and regional/long-range transport of dust aerosols. Therefore, to accurately assess the impact of absorbing aerosols on regional-to-global climate requires not only modeling efforts but also continuous observations from satellites, aircraft, networks of ground-based instruments and dedicated field experiments. Since 1997 NASA has been successfully launching a series of satellites the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite, in major international research projects such as the Joint Aerosol Monsoon Experiment (JAM EX), a core element of the Asian Monsoon Years (AMY, 2008-2012). SMART-COMMIT deployments during 2008 AMY/JAMEX were conducted in northwestern China to characterize the properties of dust-laden aerosols and in the vicinity of Beijing for mega-city aerosols. In 2009, SMART-COMMIT also participated in the JAMEX/RAJO-MEGHA (Radiation, Aerosol Joint Observations-Monsoon Experiment in the Gangetic-Himalayan Area; Sanskrit for Dust-Cloud) to study the aerosol properties, solar absorption and the associated atmospheric warming, and the climatic impact of elevated aerosols during the pre-monsoon season in South Asia. We will show results from these field experiments, as well as discuss a new initiative of 7-SEAS (7 South East Asian Studies) to study the interaction of anthropogenic aerosols with regional meteorology, particularly with clouds.

  12. Remote Sensing of Aerosol in the Terrestrial Atmosphere from Space: New Missions

    NASA Technical Reports Server (NTRS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Ivanov, Yu.; Bovchaliuk, A.; Mishchenko, M.; Danylevsky, V.; Sosonkin, M.; Bovchaliuk, V.

    2015-01-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project Aerosol-UA that obtains data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The project is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  13. Contrasting scaling properties of interglacial and glacial climates

    PubMed Central

    Shao, Zhi-Gang; Ditlevsen, Peter D.

    2016-01-01

    Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H∼0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H∼1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard–Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles. PMID:26980084

  14. New tools for linking human and earth system models: The Toolbox for Human-Earth System Interaction & Scaling (THESIS)

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; Kauffman, B.; Lawrence, P.

    2016-12-01

    Integrated analysis of questions regarding land, water, and energy resources often requires integration of models of different types. One type of integration is between human and earth system models, since both societal and physical processes influence these resources. For example, human processes such as changes in population, economic conditions, and policies govern the demand for land, water and energy, while the interactions of these resources with physical systems determine their availability and environmental consequences. We have begun to develop and use a toolkit for linking human and earth system models called the Toolbox for Human-Earth System Integration and Scaling (THESIS). THESIS consists of models and software tools to translate, scale, and synthesize information from and between human system models and earth system models (ESMs), with initial application to linking the NCAR integrated assessment model, iPETS, with the NCAR earth system model, CESM. Initial development is focused on urban areas and agriculture, sectors that are both explicitly represented in both CESM and iPETS. Tools are being made available to the community as they are completed (see https://www2.cgd.ucar.edu/sections/tss/iam/THESIS_tools). We discuss four general types of functions that THESIS tools serve (Spatial Distribution, Spatial Properties, Consistency, and Outcome Evaluation). Tools are designed to be modular and can be combined in order to carry out more complex analyses. We illustrate their application to both the exposure of population to climate extremes and to the evaluation of climate impacts on the agriculture sector. For example, projecting exposure to climate extremes involves use of THESIS tools for spatial population, spatial urban land cover, the characteristics of both, and a tool to bring urban climate information together with spatial population information. Development of THESIS tools is continuing and open to the research community.

  15. Aerosol physicochemical properties in relation to meteorology: Case studies in urban, marine, and arid settings

    NASA Astrophysics Data System (ADS)

    Wonaschuetz, Anna

    Atmospheric aerosols are a highly relevant component of the climate system affecting atmospheric radiative transfer and the hydrological cycle. As opposed to other key atmospheric constituents with climatic relevance, atmospheric aerosol particles are highly heterogeneous in time and space with respect to their size, concentration, chemical composition and physical properties. Many aspects of their life cycle are not understood, making them difficult to represent in climate models and hard to control as a pollutant. Aerosol-cloud interactions in particular are infamous as a major source of uncertainty in future climate predictions. Field measurements are an important source of information for the modeling community and can lead to a better understanding of chemical and microphysical processes. In this study, field data from urban, marine, and arid settings are analyzed and the impact of meteorological conditions on the evolution of aerosol particles while in the atmosphere is investigated. Particular attention is given to organic aerosols, which are a poorly understood component of atmospheric aerosols. Local wind characteristics, solar radiation, relative humidity and the presence or absence of clouds and fog are found to be crucial factors in the transport and chemical evolution of aerosol particles. Organic aerosols in particular are found to be heavily impacted by processes in the liquid phase (cloud droplets and aerosol water). The reported measurements serve to improve the process-level understanding of aerosol evolution in different environments and to inform the modeling community by providing realistic values for input parameters and validation of model calculations.

  16. Stratospheric Aerosol--Observations, Processes, and Impact on Climate

    NASA Technical Reports Server (NTRS)

    Kresmer, Stefanie; Thomason, Larry W.; von Hobe, Marc; Hermann, Markus; Deshler, Terry; Timmreck, Claudia; Toohey, Matthew; Stenke, Andrea; Schwarz, Joshua P.; Weigel, Ralf; hide

    2016-01-01

    Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have been developed for measuring physical aerosol properties with greater accuracy and for characterizing aerosol composition. However, these changes induce challenges to constructing a long-term stratospheric aerosol climatology. Currently, changes in stratospheric aerosol levels less than 20% cannot be confidently quantified. The volcanic signals tend to mask any nonvolcanically driven change, making them difficult to understand. While the role of carbonyl sulfide as a substantial and relatively constant source of stratospheric sulfur has been confirmed by new observations and model simulations, large uncertainties remain with respect to the contribution from anthropogenic sulfur dioxide emissions. New evidence has been provided that stratospheric aerosol can also contain small amounts of nonsulfatematter such as black carbon and organics. Chemistry-climate models have substantially increased in quantity and sophistication. In many models the implementation of stratospheric aerosol processes is coupled to radiation and/or stratospheric chemistry modules to account for relevant feedback processes.

  17. Soil and Land Resources Information System (SLISYS-Tarim) for Sustainable Management of River Oases along the Tarim River, China

    NASA Astrophysics Data System (ADS)

    Othmanli, Hussein; Zhao, Chengyi; Stahr, Karl

    2017-04-01

    The Tarim River Basin is the largest continental basin in China. The region has extremely continental desert climate characterized by little rainfall <50 mm/a and high potential evaporation >3000 mm/a. The climate change is affecting severely the basin causing soil salinization, water shortage, and regression in crop production. Therefore, a Soil and Land Resources Information System (SLISYS-Tarim) for the regional simulation of crop yield production in the basin was developed. The SLISYS-Tarim consists of a database and an agro-ecological simulation model EPIC (Environmental Policy Integrated Climate). The database comprises relational tables including information about soils, terrain conditions, land use, and climate. The soil data implicate information of 50 soil profiles which were dug, analyzed, described and classified in order to characterize the soils in the region. DEM data were integrated with geological maps to build a digital terrain structure. Remote sensing data of Landsat images were applied for soil mapping, and for land use and land cover classification. An additional database for climate data, land management and crop information were linked to the system, too. Construction of the SLISYS-Tarim database was accomplished by integrating and overlaying the recommended thematic maps within environment of the geographic information system (GIS) to meet the data standard of the global and national SOTER digital database. This database forms appropriate input- and output data for the crop modelling with the EPIC model at various scales in the Tarim Basin. The EPIC model was run for simulating cotton production under a constructed scenario characterizing the current management practices, soil properties and climate conditions. For the EPIC model calibration, some parameters were adjusted so that the modeled cotton yield fits to the measured yield on the filed scale. The validation of the modeling results was achieved in a later step based on remote sensing data. The simulated cotton yield varied according to field management, soil type and salinity level, where soil salinity was the main limiting factor. Furthermore, the calibrated and validated EPIC model was run under several scenarios of climate conditions and land management practices to estimate the effect of climate change on cotton production and sustainability of agriculture systems in the basin. The application of SLISYS-Tarim showed that this database can be a suitable framework for storage and retrieval of soil and terrain data at various scales. The simulation with the EPIC model can assess the impact of climate change and management strategies. Therefore, SLISYS-Tarim can be a good tool for regional planning and serve the decision support system on regional and national scale.

  18. A New Paradigm for Diagnosing Contributions to Model Aerosol Forcing Error

    NASA Astrophysics Data System (ADS)

    Jones, A. L.; Feldman, D. R.; Freidenreich, S.; Paynter, D.; Ramaswamy, V.; Collins, W. D.; Pincus, R.

    2017-12-01

    A new paradigm in benchmark absorption-scattering radiative transfer is presented that enables both the globally averaged and spatially resolved testing of climate model radiation parameterizations in order to uncover persistent sources of biases in the aerosol instantaneous radiative effect (IRE). A proof of concept is demonstrated with the Geophysical Fluid Dynamics Laboratory AM4 and Community Earth System Model 1.2.2 climate models. Instead of prescribing atmospheric conditions and aerosols, as in prior intercomparisons, native snapshots of the atmospheric state and aerosol optical properties from the participating models are used as inputs to an accurate radiation solver to uncover model-relevant biases. These diagnostic results show that the models' aerosol IRE bias is of the same magnitude as the persistent range cited ( 1 W/m2) and also varies spatially and with intrinsic aerosol optical properties. The findings underscore the significance of native model error analysis and its dispositive ability to diagnose global biases, confirming its fundamental value for the Radiative Forcing Model Intercomparison Project.

  19. Observed and Simulated Radiative and Microphysical Properties of Tropical Convective Storms

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony D.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Increases in the ice content, albedo and cloud cover of tropical convective storms in a warmer climate produce a large negative contribution to cloud feedback in the GISS GCM. Unfortunately, the physics of convective upward water transport, detrainment, and ice sedimentation, and the relationship of microphysical to radiative properties, are all quite uncertain. We apply a clustering algorithm to TRMM satellite microwave rainfall retrievals to identify contiguous deep precipitating storms throughout the tropics. Each storm is characterized according to its size, albedo, OLR, rain rate, microphysical structure, and presence/absence of lightning. A similar analysis is applied to ISCCP data during the TOGA/COARE experiment to identify optically thick deep cloud systems and relate them to large-scale environmental conditions just before storm onset. We examine the statistics of these storms to understand the relative climatic roles of small and large storms and the factors that regulate convective storm size and albedo. The results are compared to GISS GCM simulated statistics of tropical convective storms to identify areas of agreement and disagreement.

  20. Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos

    2017-02-01

    Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.

  1. Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model.

    PubMed

    Sato, Yousuke; Goto, Daisuke; Michibata, Takuro; Suzuki, Kentaroh; Takemura, Toshihiko; Tomita, Hirofumi; Nakajima, Teruyuki

    2018-03-07

    Aerosols affect climate by modifying cloud properties through their role as cloud condensation nuclei or ice nuclei, called aerosol-cloud interactions. In most global climate models (GCMs), the aerosol-cloud interactions are represented by empirical parameterisations, in which the mass of cloud liquid water (LWP) is assumed to increase monotonically with increasing aerosol loading. Recent satellite observations, however, have yielded contradictory results: LWP can decrease with increasing aerosol loading. This difference implies that GCMs overestimate the aerosol effect, but the reasons for the difference are not obvious. Here, we reproduce satellite-observed LWP responses using a global simulation with explicit representations of cloud microphysics, instead of the parameterisations. Our analyses reveal that the decrease in LWP originates from the response of evaporation and condensation processes to aerosol perturbations, which are not represented in GCMs. The explicit representation of cloud microphysics in global scale modelling reduces the uncertainty of climate prediction.

  2. On the stability of the Atlantic meridional overturning circulation.

    PubMed

    Hofmann, Matthias; Rahmstorf, Stefan

    2009-12-08

    One of the most important large-scale ocean current systems for Earth's climate is the Atlantic meridional overturning circulation (AMOC). Here we review its stability properties and present new model simulations to study the AMOC's hysteresis response to freshwater perturbations. We employ seven different versions of an Ocean General Circulation Model by using a highly accurate tracer advection scheme, which minimizes the problem of numerical diffusion. We find that a characteristic freshwater hysteresis also exists in the predominantly wind-driven, low-diffusion limit of the AMOC. However, the shape of the hysteresis changes, indicating that a convective instability rather than the advective Stommel feedback plays a dominant role. We show that model errors in the mean climate can make the hysteresis disappear, and we investigate how model innovations over the past two decades, like new parameterizations and mixing schemes, affect the AMOC stability. Finally, we discuss evidence that current climate models systematically overestimate the stability of the AMOC.

  3. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    NASA Astrophysics Data System (ADS)

    Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; Müller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.

    2013-10-01

    In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere-Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  4. Climate Adaptation and Policy-Induced Inflation of Coastal Property Value

    PubMed Central

    McNamara, Dylan E.; Gopalakrishnan, Sathya; Smith, Martin D.; Murray, A. Brad

    2015-01-01

    Human population density in the coastal zone and potential impacts of climate change underscore a growing conflict between coastal development and an encroaching shoreline. Rising sea-levels and increased storminess threaten to accelerate coastal erosion, while growing demand for coastal real estate encourages more spending to hold back the sea in spite of the shrinking federal budget for beach nourishment. As climatic drivers and federal policies for beach nourishment change, the evolution of coastline mitigation and property values is uncertain. We develop an empirically grounded, stochastic dynamic model coupling coastal property markets and shoreline evolution, including beach nourishment, and show that a large share of coastal property value reflects capitalized erosion control. The model is parameterized for coastal properties and physical forcing in North Carolina, U.S.A. and we conduct sensitivity analyses using property values spanning a wide range of sandy coastlines along the U.S. East Coast. The model shows that a sudden removal of federal nourishment subsidies, as has been proposed, could trigger a dramatic downward adjustment in coastal real estate, analogous to the bursting of a bubble. We find that the policy-induced inflation of property value grows with increased erosion from sea level rise or increased storminess, but the effect of background erosion is larger due to human behavioral feedbacks. Our results suggest that if nourishment is not a long-run strategy to manage eroding coastlines, a gradual removal is more likely to smooth the transition to more climate-resilient coastal communities. PMID:25806944

  5. Climate adaptation and policy-induced inflation of coastal property value.

    PubMed

    McNamara, Dylan E; Gopalakrishnan, Sathya; Smith, Martin D; Murray, A Brad

    2015-01-01

    Human population density in the coastal zone and potential impacts of climate change underscore a growing conflict between coastal development and an encroaching shoreline. Rising sea-levels and increased storminess threaten to accelerate coastal erosion, while growing demand for coastal real estate encourages more spending to hold back the sea in spite of the shrinking federal budget for beach nourishment. As climatic drivers and federal policies for beach nourishment change, the evolution of coastline mitigation and property values is uncertain. We develop an empirically grounded, stochastic dynamic model coupling coastal property markets and shoreline evolution, including beach nourishment, and show that a large share of coastal property value reflects capitalized erosion control. The model is parameterized for coastal properties and physical forcing in North Carolina, U.S.A. and we conduct sensitivity analyses using property values spanning a wide range of sandy coastlines along the U.S. East Coast. The model shows that a sudden removal of federal nourishment subsidies, as has been proposed, could trigger a dramatic downward adjustment in coastal real estate, analogous to the bursting of a bubble. We find that the policy-induced inflation of property value grows with increased erosion from sea level rise or increased storminess, but the effect of background erosion is larger due to human behavioral feedbacks. Our results suggest that if nourishment is not a long-run strategy to manage eroding coastlines, a gradual removal is more likely to smooth the transition to more climate-resilient coastal communities.

  6. Climate system properties determining the social cost of carbon

    NASA Astrophysics Data System (ADS)

    Otto, Alexander; Todd, Benjamin J.; Bowerman, Niel; Frame, David J.; Allen, Myles R.

    2013-06-01

    The choice of an appropriate scientific target to guide global mitigation efforts is complicated by uncertainties in the temperature response to greenhouse gas emissions. Much climate policy discourse has been based on the equilibrium global mean temperature increase following a concentration stabilization scenario. This is determined by the equilibrium climate sensitivity (ECS) which, in many studies, shows persistent, fat-tailed uncertainty. However, for many purposes, the equilibrium response is less relevant than the transient response. Here, we show that one prominent policy variable, the social cost of carbon (SCC), is generally better constrained by the transient climate response (TCR) than by the ECS. Simple analytic expressions show the SCC to be directly proportional to the TCR under idealized assumptions when the rate at which we discount future damage equals 2.8%. Using ensemble simulations of a simple climate model we find that knowing the true value of the TCR can reduce the relative uncertainty in the SCC substantially more, up to a factor of 3, than knowing the ECS under typical discounting assumptions. We conclude that the TCR, which is better constrained by observations, less subject to fat-tailed uncertainty and more directly related to the SCC, is generally preferable to the ECS as a single proxy for the climate response in SCC calculations.

  7. Characterization of extreme precipitation within atmospheric river events over California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, S.; Prabhat,; Byna, S.

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  8. Characterization of extreme precipitation within atmospheric river events over California

    DOE PAGES

    Jeon, S.; Prabhat,; Byna, S.; ...

    2015-11-17

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  9. High fidelity remote sensing of snow properties from MODIS and the Airborne Snow Observatory: Snowflakes to Terabytes

    NASA Astrophysics Data System (ADS)

    Painter, T.; Mattmann, C. A.; Brodzik, M.; Bryant, A. C.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Rittger, K. E.; Seidel, F. C.; Zimdars, P. A.

    2012-12-01

    The response of the cryosphere to climate forcings largely determines Earth's climate sensitivity. However, our understanding of the strength of the simulated snow albedo feedback varies by a factor of three in the GCMs used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, mainly caused by uncertainties in snow extent and the albedo of snow-covered areas from imprecise remote sensing retrievals. Additionally, the Western US and other regions of the globe depend predominantly on snowmelt for their water supply to agriculture, industry and cities, hydroelectric power, and recreation, against rising demand from increasing population. In the mountains of the Upper Colorado River Basin, dust radiative forcing in snow shortens snow cover duration by 3-7 weeks. Extended to the entire upper basin, the 5-fold increase in dust load since the late-1800s results in a 3-week earlier peak runoff and a 5% annual loss of total runoff. The remotely sensed dynamics of snow cover duration and melt however have not been factored into hydrological modeling, operational forecasting, and policymaking. To address these deficiencies in our understanding of snow properties, we have developed and validated a suite of MODIS snow products that provide accurate fractional snow covered area and radiative forcing of dust and carbonaceous aerosols in snow. The MODIS Snow Covered Area and Grain size (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithms, developed and transferred from imaging spectroscopy techniques, leverage the complete MODIS surface reflectance spectrum. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. We have created the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties, and provide complete, robust inputs to water management models and systems of the future. In the push to better understand the physical and ecological processes of snowmelt and how they influence regional to global hydrologic and climatic cycles, these technologies and retrievals provide markedly improved detail. We have implemented a science computing facility anchored upon the open source Apache OODT data processing framework. Apache OODT provides adaptable, rapid, and effective workflow technologies that we leverage to execute 10s of thousands of MOD-DRFS and MODSCAG jobs in the Western US, Alaska, and High Asia, critical regions where snowmelt and runoff must be more accurately and precisely identified. Apache OODT also provides us data dissemination capabilities built upon the popular, open source WebDAV protocol that allow our system to disseminate over 20 TB of MOD-DRFS and MODSCAG to the decision making community. Our latest endeavor involves building out Apache OODT to support Geospatial exploration of our data, including providing a Leaflet.js based Map, Geoserver backed protocols, and seamless integration with our Apache OODT system. This framework provides the foundation for the ASO data system.

  10. Evenness indices measure the signal strength of biweight site chronologies

    Treesearch

    Kurt H. Riitters

    1990-01-01

    The signal strength of a biweight site chronology is properly viewed as an outcome of analysis rather than as a property of the forest-climate system. It can be estimated by the evenness of the empirical weights that are assigned to individual trees. The approach is demonstrated for a 45-year biweight chronology obtained from 40 jack pine (Pinus banksiana Lamb.) trees...

  11. A computational approach to climate science education with CLIMLAB

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2017-12-01

    CLIMLAB is a Python-based software toolkit for interactive, process-oriented climate modeling for use in education and research. It is motivated by the need for simpler tools and more reproducible workflows with which to "fill in the gaps" between blackboard-level theory and the results of comprehensive climate models. With CLIMLAB you can interactively mix and match physical model components, or combine simpler process models together into a more comprehensive model. I use CLIMLAB in the classroom to put models in the hands of students (undergraduate and graduate), and emphasize a hierarchical, process-oriented approach to understanding the key emergent properties of the climate system. CLIMLAB is equally a tool for climate research, where the same needs exist for more robust, process-based understanding and reproducible computational results. I will give an overview of CLIMLAB and an update on recent developments, including: a full-featured, well-documented, interactive implementation of a widely-used radiation model (RRTM) packaging with conda-forge for compiler-free (and hassle-free!) installation on Mac, Windows and Linux interfacing with xarray for i/o and graphics with gridded model data a rich and growing collection of examples and self-computing lecture notes in Jupyter notebook format

  12. MALIBU: A High Spatial Resolution Multi-Angle Imaging Unmanned Airborne System to Validate Satellite-derived BRDF/Albedo Products

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roman, M. O.; Pahlevan, N.; Stachura, M.; McCorkel, J.; Bland, G.; Schaaf, C.

    2016-12-01

    Albedo is a key climate forcing variable that governs the absorption of incoming solar radiation and its ultimate transfer to the atmosphere. Albedo contributes significant uncertainties in the simulation of climate changes; and as such, it is defined by the Global Climate Observing System (GCOS) as a terrestrial essential climate variable (ECV) required by global and regional climate and biogeochemical models. NASA's Goddard Space Flight Center's Multi AngLe Imaging Bidirectional Reflectance Distribution Function small-UAS (MALIBU) is part of a series of pathfinder missions to develop enhanced multi-angular remote sensing techniques using small Unmanned Aircraft Systems (sUAS). The MALIBU instrument package includes two multispectral imagers oriented at two different viewing geometries (i.e., port and starboard sides) capture vegetation optical properties and structural characteristics. This is achieved by analyzing the surface reflectance anisotropy signal (i.e., BRDF shape) obtained from the combination of surface reflectance from different view-illumination angles and spectral channels. Satellite measures of surface albedo from MODIS, VIIRS, and Landsat have been evaluated by comparison with spatially representative albedometer data from sparsely distributed flux towers at fixed heights. However, the mismatch between the footprint of ground measurements and the satellite footprint challenges efforts at validation, especially for heterogeneous landscapes. The BRDF (Bidirectional Reflectance Distribution Function) models of surface anisotropy have only been evaluated with airborne BRDF data over a very few locations. The MALIBU platform that acquires extremely high resolution sub-meter measures of surface anisotropy and surface albedo, can thus serve as an important source of reference data to enable global land product validation efforts, and resolve the errors and uncertainties in the various existing products generated by NASA and its national and international partners.

  13. Progress towards NASA MODIS and Suomi NPP Cloud Property Data Record Continuity

    NASA Astrophysics Data System (ADS)

    Platnick, S.; Meyer, K.; Holz, R.; Ackerman, S. A.; Heidinger, A.; Wind, G.; Platnick, S. E.; Wang, C.; Marchant, B.; Frey, R.

    2017-12-01

    The Suomi NPP VIIRS imager provides an opportunity to extend the 17+ year EOS MODIS climate data record into the next generation operational era. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals. In addition, there is a significant mismatch in the spectral location of the 2.2 μm shortwave-infrared channels used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, a merged MODIS-VIIRS cloud record to serve the science community in the coming decades requires different algorithm approaches than those used for MODIS alone. This new approach includes two parallel efforts: (1) Imager-only algorithms with only spectral channels common to VIIRS and MODIS (i.e., eliminate use of MODIS CO2 and NIR/IR water vapor channels). Since the algorithms are run with similar spectral observations, they provide a basis for establishing a continuous cloud data record across the two imagers. (2) Merged imager and sounder measurements (i.e.., MODIS-AIRS, VIIRS-CrIS) in lieu of higher-spatial resolution MODIS absorption channels absent on VIIRS. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud mask (MOD35), optical and microphysical properties product (MOD06), and the NOAA AWG Cloud Height Algorithm (ACHA). We discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. In addition, we summarize efforts to reconcile apparent radiometric biases between analogous imager channels, a critical consideration for obtaining inter-sensor climate data record continuity.

  14. Soil Polygenesis as a Function of Quaternary Climate, Northern Great Basin, USA

    NASA Technical Reports Server (NTRS)

    Chadwick, O. A.; Nettleton, W. D.; Staidl, G. J.

    1995-01-01

    Polygenetic soils are those that record multiple morphological, mineralogical, and chemical imprints as the geographical pattern of climates shifts spatially and new boundaries are established. Optimal conditions for interpreting paleoclimates from polygenetic soils occur when precipitation and/or temperature changes are great enough to produce new soil properties without obliterating existing properties.

  15. Effect of permafrost properties on gas hydrate petroleum system in the Qilian Mountains, Qinghai, Northwest China.

    PubMed

    Wang, Pingkang; Zhang, Xuhui; Zhu, Youhai; Li, Bing; Huang, Xia; Pang, Shouji; Zhang, Shuai; Lu, Cheng; Xiao, Rui

    2014-12-01

    The gas hydrate petroleum system in the permafrost of the Qilian Mountains, which exists as an epigenetic hydrocarbon reservoir above a deep-seated hydrocarbon reservoir, has been dynamic since the end of the Late Pleistocene because of climate change. The permafrost limits the occurrence of gas hydrate reservoirs by changing the pressure-temperature (P-T) conditions, and it affects the migration of the underlying hydrocarbon gas because of its strong sealing ability. In this study, we reconstructed the permafrost structure of the Qilian Mountains using a combination of methods and measured methane permeability in ice-bearing sediment permafrost. A relationship between the ice saturation of permafrost and methane permeability was established, which permitted the quantitative evaluation of the sealing ability of permafrost with regard to methane migration. The test results showed that when ice saturation is >80%, methane gas can be completely sealed within the permafrost. Based on the permafrost properties and genesis of shallow gas, we suggest that a shallow "gas pool" occurred in the gas hydrate petroleum system in the Qilian Mountains. Its formation was related to a metastable gas hydrate reservoir controlled by the P-T conditions, sealing ability of the permafrost, fault system, and climatic warming. From an energy perspective, the increasing volume of the gas pool means that it will likely become a shallow gas resource available for exploitation; however, for the environment, the gas pool is an underground "time bomb" that is a potential source of greenhouse gas.

  16. Southern Ocean Bottom Water Characteristics in CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline; Heywood, Karen; Stevens, David; Ridley, Jeff

    2013-04-01

    The depiction of Southern Ocean deep water properties and formation processes in climate models is an indicator of their capability to simulate future climate, heat and carbon uptake, and sea level rise. Southern Ocean potential temperature and density averaged over 1986-2005 from fifteen CMIP5 climate models are compared with an observed climatology, focusing on bottom water properties. The mean bottom properties are reasonably accurate for half of the models, but the other half may not yet have approached an equilibrium state. Eleven models create dense water on the Antarctic shelf, but it does not spill off and propagate northwards, alternatively mixing rapidly with less dense water. Instead most models create deep water by open ocean deep convection. Models with large deep convection areas are those with a strong seasonal cycle in sea ice. The most accurate bottom properties occur in models hosting deep convection in the Weddell and Ross gyres.

  17. A new dataset for systematic assessments of climate change impacts as a function of global warming

    NASA Astrophysics Data System (ADS)

    Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; M{ü}ller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.

    2012-11-01

    In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a~narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships betweenΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  18. Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013

    NASA Astrophysics Data System (ADS)

    Ladstädter, F.; Steiner, A. K.; Schwärz, M.; Kirchengast, G.

    2015-04-01

    Observations from the GPS radio occultation (GPSRO) satellite technique and from the newly established GCOS Reference Upper Air Network (GRUAN) are both candidates to serve as reference observations in the Global Climate Observing System (GCOS). Such reference observations are key to decrease existing uncertainties in upper-air climate research. There are now more than 12 years of data available from GPSRO, with the recognized properties high accuracy, global coverage, high vertical resolution, and long-term stability. These properties make GPSRO a suitable choice for comparison studies with other upper-air observational systems. The GRUAN network consists of reference radiosonde ground stations (16 at present), which adhere to the GCOS climate monitoring principles. In this study, we intercompare GPSRO temperature and humidity profiles and Vaisala RS90/92 data from the "standard" global radiosonde network over the whole 2002 to 2013 time frame. Additionally, we include the first years of GRUAN data (using Vaisala RS92), available since 2009. GPSRO profiles which occur within 3 h and 300 km of radiosonde launches are used. Overall very good agreement is found between all three data sets with temperature differences usually less than 0.2 K. In the stratosphere above 30 hPa, temperature differences are larger but still within 0.5 K. Day/night comparisons with GRUAN data reveal small deviations likely related to a warm bias of the radiosonde data at high altitudes, but also residual errors from the GPSRO retrieval process might play a role. Vaisala RS90/92 specific humidity exhibits a dry bias of up to 40% in the upper troposphere, with a smaller bias at lower altitudes within 15%. GRUAN shows a marked improvement in the bias characteristics, with less than 5% difference to GPSRO, up to 300 hPa. GPSRO dry temperature and physical temperature are validated using radiosonde data as reference. We find that GPSRO provides valuable long-term stable reference observations with well-defined error characteristics for climate applications and for anchoring other upper-air measurements.

  19. Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN over 2002 to 2013

    NASA Astrophysics Data System (ADS)

    Ladstädter, F.; Steiner, A. K.; Schwärz, M.; Kirchengast, G.

    2014-11-01

    Observations from the GPS radio occultation (GPSRO) satellite technique and from the newly established GCOS Reference Upper Air Network (GRUAN) are both candidates to serve as reference observations in the Global Climate Observing System (GCOS). Such reference observations are key to decrease existing uncertainties in upper-air climate research. There are now more than 12 years of data available from GPSRO, with the recognized properties high accuracy, global coverage, high vertical resolution, and long-term stability. These properties make GPSRO a suitable choice for comparison studies with other upper-air observational systems. The GRUAN network consists of reference radiosonde ground stations (16 at present), which adhere to the GCOS climate monitoring principles. In this study, we intercompare GPSRO temperature and humidity profiles and Vaisala RS90/92 data from the "standard" global radiosonde network over the whole 2002 to 2013 time frame. Additionally, we include the first years of GRUAN data (using Vaisala RS92), available since 2009. GPSRO profiles which occur within 3 h and 300 km of radiosonde launches are used. Very good agreement is found between all three datasets with temperature differences usually less than 0.2 K. In the stratosphere above 30 hPa, temperature differences are larger but still within 0.5 K. Day/night comparisons with GRUAN data reveal small deviations likely related to a warm bias of the radiosonde data at high altitudes, but also residual errors from the GPSRO retrieval process might play a role. Vaisala RS90/92 specific humidity exhibits a dry bias of up to 40% in the upper troposphere, with a smaller bias at lower altitudes within 15%. GRUAN shows a marked improvement in the bias characteristics, with less than 5% difference to GPSRO up to 300 hPa. GPSRO dry temperature and physical temperature are validated using radiosonde data as reference. We find that GPSRO provides valuable long-term stable reference observations with well-defined error characteristics for climate applications and for anchoring other upper-air measurements.

  20. The MAGO experiment for dust environment monitoring on the Martian surface

    NASA Astrophysics Data System (ADS)

    Palumbo, P.; Battaglia, R.; Brucato, J. R.; Colangeli, L.; della Corte, V.; Esposito, F.; Ferrini, G.; Mazzotta Epifani, E.; Mennella, V.; Palomba, E.; Panizza, A.; Rotundi, A.

    2004-01-01

    Among the main directions identified for future Martian exploration, the study of the properties of dust dispersed in the atmosphere, its cycle and the impact on climate are considered of primary relevance. Dust storms, dust devils and the dust ``cycle'' have been identified and studied by past remote and in situ experiments, but little quantitative information is available on these processes, so far. The airborne dust contributes to the determination of the dynamic and thermodynamic evolution of the atmosphere, including the large-scale circulation processes and its impact on the climate of Mars. Moreover, aeolian erosion, redistribution of dust on the surface and weathering processes are mostly known only qualitatively. In order to improve our knowledge of the airborne dust evolution and other atmospheric processes, it is mandatory to measure the amount, mass-size distribution and dynamical properties of solid particles in the Martian atmosphere as a function of time. In this context, there is clearly a need for the implementation of experiments dedicated to study directly atmospheric dust. The Martian atmospheric grain observer (MAGO) experiment is aimed at providing direct quantitative measurements of mass and size distributions of dust particles, a goal that has never been fully achieved so far. The instrument design combines three types of sensors to monitor in situ the dust mass flux (micro balance system, MBS) and single grain properties (grain detection system, GDS+impact sensor, IS). Technical solutions and science capabilities are discussed in this paper.

  1. ARM Research in the Equatorial Western Pacific: A Decade and Counting

    NASA Technical Reports Server (NTRS)

    Long, C. N.; McFarlane, S. A.; DelGenio, A.; Minnis, P.; Ackerman, T. S.; Mather, J.; Comstock, J.; Mace, G. G.; Jensen, M.; Jakob, C.

    2013-01-01

    The tropical western Pacific (TWP) is an important climatic region. Strong solar heating, warm sea surface temperatures, and the annual progression of the intertropical convergence zone (ITCZ) across this region generate abundant convective systems, which through their effects on the heat and water budgets have a profound impact on global climate and precipitation. In order to accurately evaluate tropical cloud systems in models, measurements of tropical clouds, the environment in which they reside, and their impact on the radiation and water budgets are needed. Because of the remote location, ground-based datasets of cloud, atmosphere, and radiation properties from the TWP region have come primarily from short-term field experiments. While providing extremely useful information on physical processes, these short-term datasets are limited in statistical and climatological information. To provide longterm measurements of the surface radiation budget in the tropics and the atmospheric properties that affect it, the Atmospheric Radiation Measurement program established a measurement site on Manus Island, Papua New Guinea, in 1996 and on the island republic of Nauru in late 1998. These sites provide unique datasets now available for more than 10 years on Manus and Nauru. This article presents examples of the scientific use of these datasets including characterization of cloud properties, analysis of cloud radiative forcing, model studies of tropical clouds and processes, and validation of satellite algorithms. New instrumentation recently installed at the Manus site will provide expanded opportunities for tropical atmospheric science.

  2. Development of a numerical model to simulate groundwater flow in the shallow aquifer system of Assateague Island, Maryland and Virginia

    USGS Publications Warehouse

    Masterson, John P.; Fienen, Michael N.; Gesch, Dean B.; Carlson, Carl S.

    2013-01-01

    A three-dimensional groundwater-flow model was developed for Assateague Island in eastern Maryland and Virginia to simulate both groundwater flow and solute (salt) transport to evaluate the groundwater system response to sea-level rise. The model was constructed using geologic and spatial information to represent the island geometry, boundaries, and physical properties and was calibrated using an inverse modeling parameter-estimation technique. An initial transient solute-transport simulation was used to establish the freshwater-saltwater boundary for a final calibrated steady-state model of groundwater flow. This model was developed as part of an ongoing investigation by the U.S. Geological Survey Climate and Land Use Change Research and Development Program to improve capabilities for predicting potential climate-change effects and provide the necessary tools for adaptation and mitigation of potentially adverse impacts.

  3. Mars dust storms - Interannual variability and chaos

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.; Lyons, James R.

    1993-01-01

    The hypothesis is that the global climate system, consisting of atmospheric dust interacting with the circulation, produces its own interannual variability when forced at the annual frequency. The model has two time-dependent variables representing the amount of atmospheric dust in the northern and southern hemispheres, respectively. Absorption of sunlight by the dust drives a cross-equatorial Hadley cell that brings more dust into the heated hemisphere. The circulation decays when the dust storm covers the globe. Interannual variability manifests itself either as a periodic solution in which the period is a multiple of the Martian year, or as an aperiodic (chaotic) solution that never repeats. Both kinds of solution are found in the model, lending support to the idea that interannual variability is an intrinsic property of the global climate system. The next step is to develop a hierarchy of dust-circulation models capable of being integrated for many years.

  4. Highly Improved Predictability in the Forecasting of the East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Lee, E.; Chase, T. N.; Rajagopalan, B.

    2007-12-01

    The East Asian summer monsoon greatly influences the lives and property of about a quarter of all the people in the world. However, the predictability of the monsoon is very low in comparison with that of Indian summer monsoon because of the complexity of the system which involves both tropical and sub-tropical climates. Previous monsoon prediction models emphasized ocean factors as the primary monsoon forcing. Here we show that pre-season land surface cover is at least as important as ocean indices. A new statistical forecast model of the East Asian summer monsoon using land cover conditions in addition to ocean heat sources doubles the predictability relative to a model using ocean factors alone. This work highlights the, as yet, undocumented importance of seasonal land cover in monsoon prediction and the role of the biosphere in the climate system as a whole. We also detail the physical mechanisms involved in these land surface forcings.

  5. Investigating the variation of terrestrial water storage under changing climate and land cover

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Niu, G. Y.; Zhang, X.; Troch, P. A. A.

    2015-12-01

    Terrestrial water storage (TWS) consists of groundwater, soil moisture, snow and ice, lakes and rivers and water contained in biomass. The water storage, especially the subsurface storage, is an essential property of the catchment, which controls climate, hydrological and biogeochemical processes at different scales. During the past decades, climate and land cover change has been proved to exert significant influences on hydrological processes which in turn alters the TWS variation. In order to better understand the interaction and feedback mechanism between TWS and earth system, it is necessary to quantify the effects of climate and land cover change on TWS variation. Direct estimation of total TWS has been made possible by the Gravity Recovery And Climate Experiment (GRACE) satellites that measures the earth gravity field. At present, few efforts were made to explicitly investigate the TWS variation under changing climate and land cover. GRACE data has its own limitations. One is its temporal coverage is short, it's only available since 2002, which is not sufficient to reflect the trend due to climate and land cover change. The other reason is that it cannot distinguish different components contributing to TWS. The limitation of TWS observation data can be overcame by numerical models developed to reproduce or to predict different earth system processes. After calibration and validation, with limited observations, these models can be trusted to extend our knowledge to where observations are not available both in time and space. In this study, based on Noah-MP LSM and satellite and ground data, we aim to: (1) Investigate the variation of total TWS as well as its components over Upper Colorado River Basin from 1990 to 2014. (2) Identify the major factors that control the TWS variation. (3) Quantify how the changing climate and land cover affect TWS variation in the same period.

  6. "No future without a past" or "History will teach us nothing"?

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.

    2012-12-01

    .In 1947, Harold Clayton Urey published a landmark paper on the thermodynamic properties of isotopic substances. With his work, Urey paved the way for the reconstruction of paleotemperatures based on small differences in the distribution of stable isotopes in compounds such as sedimentary calcium carbonate. Cesare Emiliani (a student of Urey) followed in Urey's footsteps and in 1955 provided temperature reconstructions over several glacial cycles based on stable isotopes - as Urey had proposed. Emiliani is today considered the father of Paleoceanography. Over the past 60 years, the field has grown immensely and has provided unique and fundamental knowledge about the functioning of the Earth system and Earth's climatic history. In this presentation, I will explain why studying the climate of the past is fun and important. I will make the case that studying past climate events is indispensable to predicting future climate change resulting from human activities ("No future without a past"). If mankind continues on the current path of carbon emissions, atmospheric carbon dioxide concentrations will reach levels probably unprecedented during the past 30 million years. The rate of anthropogenic carbon input is likely unprecedented during the past 56 million years. Recent evidence from paleoclimate archives reveals dramatic and long-lived consequences for Earth's climate and environment following large and rapid carbon release into the ocean-atmosphere system. While the evidence for the close link between rising atmospheric carbon dioxide levels and past climate change is unequivocal, such lessons from the past seem to be largely ignored at the moment ("History will teach us nothing"?). Currently, there is no indication that mankind will start reducing carbon emissions any time soon. In 1973, Emiliani warned: "If the present climatic balance is not maintained, we may soon be confronted with either a runaway glaciation or runaway deglaciation." The past forty years of climate research have shown that the latter scenario is overwhelmingly more likely.

  7. Data-driven Climate Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Kondrashov, D. A.; Chekroun, M.

    2016-12-01

    Global climate models aim to simulate a broad range of spatio-temporal scales of climate variability with state vector having many millions of degrees of freedom. On the other hand, while detailed weather prediction out to a few days requires high numerical resolution, it is fairly clear that a major fraction of large-scale climate variability can be predicted in a much lower-dimensional phase space. Low-dimensional models can simulate and predict this fraction of climate variability, provided they are able to account for linear and nonlinear interactions between the modes representing large scales of climate dynamics, as well as their interactions with a much larger number of modes representing fast and small scales. This presentation will highlight several new applications by Multilayered Stochastic Modeling (MSM) [Kondrashov, Chekroun and Ghil, 2015] framework that has abundantly proven its efficiency in the modeling and real-time forecasting of various climate phenomena. MSM is a data-driven inverse modeling technique that aims to obtain a low-order nonlinear system of prognostic equations driven by stochastic forcing, and estimates both the dynamical operator and the properties of the driving noise from multivariate time series of observations or a high-end model's simulation. MSM leads to a system of stochastic differential equations (SDEs) involving hidden (auxiliary) variables of fast-small scales ranked by layers, which interact with the macroscopic (observed) variables of large-slow scales to model the dynamics of the latter, and thus convey memory effects. New MSM climate applications focus on development of computationally efficient low-order models by using data-adaptive decomposition methods that convey memory effects by time-embedding techniques, such as Multichannel Singular Spectrum Analysis (M-SSA) [Ghil et al. 2002] and recently developed Data-Adaptive Harmonic (DAH) decomposition method [Chekroun and Kondrashov, 2016]. In particular, new results by DAH-MSM modeling and prediction of Arctic Sea Ice, as well as decadal predictions of near-surface Earth temperatures will be presented.

  8. Barriers to Uptake of Climate-Smart Agriculture Practices at the Farm Level: A Case Study of Dano and Ouahigouya Farmers, Burkina Faso

    NASA Astrophysics Data System (ADS)

    Thomas, Y. B.

    2016-12-01

    Smallholder farmers in Burkina Faso, which are already bearing the brunt of climate vagaries, are among the most exposed to the risks associated to climate change. Supporting these farmers in adoption of climate-smart agriculture (CSA) practices would help to increase farm productivity and incomes, improve their resilience to climate risks, and mitigate climate change by reducing GHG emissions. CSA is neither a new agricultural system nor a set of practice, but is a new approach, a way to guide the needed changes of agricultural systems, given the necessity to jointly address food security and climate change. Integrating statistics and visualization analysis, this paper identifies and analyzes the key barriers to farmers' effective adoption of CSA practices in Dano and Ouahigouya areas, Burkina Faso. The data used in this study were collected, in May 2016, from 147 households in the two different agro-ecological zones; these data were supplemented by information from focus group discussion (FGD), interview with institutions, and direct observation. It come out from this study that a better adoption of CSA practices requires a strong understanding of barriers and mechanisms (appropriate policies, strategies and actions) that may facilitate these practices by all actors involved in the diffusion, transfer and implementation process. The study revealed that farmers' adoption was influenced by several factors. The inaccessibility of inputs, credit constraints, water shortage, uncertainty in market condition, and climate risk appeared to be among factors that hindered farmers' ability and willingness to adopt CSA practices. Therefore mechanisms (such as index based crop insurance and property and procedural rights frameworks) that protect farmers from these hazards and shocks could encourage them (especially, risk-averse farmers) to take on more risky and more technologies that have high potential to maximize their profit.

  9. The impact of climate change on the water resource

    NASA Astrophysics Data System (ADS)

    Perac, Marija Å.; Grgurevac, Anamarija

    2010-05-01

    The EU has defined dangerous climate change as an increase in 2 degrees Celsius of average global temperatures. Rising global temperatures will lead to an intensification of hydrological cycle, resulting in dryer dry season, and subsequently heightened risk of more extreme and frequent floods and drought. Climate change is caused by greenhouse gasses ( GHGs), which enhance the " greenhouse " properties of the earth's atmosphere. These gasses allow solar radiation from the sun to travel through the atmosphere but prevent the reflected heat from escaping back into space. This causes the earth's temperature to rise. Changing climate will also have significant impacts on the availability of water as well as the quality of water that is available and accessible. Possibly, climate change magnificent impact at water cycles in Croatia. It means more droughts, it will have impact in agriculture and natural systems, specially swamp areas. Also, it will be come to reduction river flows, and maybe lower underground water level which used for water supply. Climate change can be impact on intensity of floods and quality/quantity of water.Successes of climate change in Croatia are: decrease volume of precipitation at whole state area; long drought years directly water quantity for irrigation; decreasing drinking water. Ponder able for next 40 years mean temperature will be increase for 2,5 C. It assumes that sea level will be increase at 65 - 100 cm. It will be endanger cities and settlements besides coast ( cities: Split, Zadar; west coast of Istra; delta of Neretva; islands: Krk, Cres, Lošinj…). Suggestions for next activities: monitoring and notation hydro meteorological information's; account impact of climate change on the: evaporation, drain, water balance, water management activity, make a region impact study of a possibly account on the water resources. Maintaining and development of water resources and agrotehnical systems and application water management strategy are essential postulate of accommodation that defined economical expansion of the state. Global heating in 21. century in European continent mostly attack Mediterranean and Alps region.

  10. Development and Initial Testing of a Multi-Sensor Platform for Cloud-Aerosol Interactions in the Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Hoffman, D. S.; Repasky, K. S.; Todt, B.; Sharpe, T.; Half Red, C.; Carlsten, J. L.

    2009-12-01

    Coupled atmospheric components of the lower troposphere including aerosols and water vapor have a large affect on the chemical processes that drive the earth’s complex climate system. Aerosols can affect the earth’s global radiation budget directly by absorbing or reflecting incoming solar radiation, and indirectly by changing the microphysical properties of clouds by serving as cloud condensation nuclei (CCN). An increase in CCN results in higher cloud droplet concentration which has been shown to suppress drizzle formation and lead to more reflective clouds. The changes in the cloud microphysical structure due to the interaction of aerosols and water vapor result in more incoming solar radiation being reflected back into space, leading to a net negative radiative forcing in the global radiation budget. The uncertainty in this radiative forcing reflects the uncertainty in the understanding of the aerosol indirect effect and its role in the climate system. To better understand the aerosol direct and indirect effects, lidar measurements of aerosol properties and water vapor distributions can provide important information to enhance our understanding of the role of aerosols in the climate system. The LIDAR group at Montana State University has initiated a program to simultaneously study aerosols, water vapor, and cloud formation with high spatial and temporal resolution using both active and passive sensors. Aerosol distributions and radiative properties are currently being studied with a two-color LIDAR system at 1064 and 532 nm. In addition, a three color, high spectral resolution LIDAR system at 1064,532, and 355 nm has also been developed and is starting to take initial data. Daytime and nighttime boundary layer water vapor number density profiles are also currently being studied with an external cavity diode oscillator/diode amplifier based micro-pulsed differential absorption lidar (DIAL) instrument at the 830 nm water vapor absorption band. Cloud formation studies are being conducted by a simultaneous, spatially correlated digital sky imaging camera system where aerosol loading and water vapor distributions are monitored as a function of lateral distance to clouds. Furthermore, a commercially purchased sun/sky scanning solar radiometer (CIMEL 318) as part of the NASA run AERONET program is also being used to study aerosol loading and radiative transfer through the atmosphere. A brief description of these instruments will be presented as well as initial simultaneous results showing correlated data between lower tropospheric aerosols and boundary layer water vapor distributions over extended periods if time.

  11. Influence of long term climate change on net infiltration at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Alan I.; Flint, Lorraine E.; Hevesi, Joseph A.

    1993-01-01

    Net infiltration and recharge at Yucca Mountain, Nevada, a potential site for a high level nuclear waste repository, are determined both by the rock properties and past and future changes in climate. A 1-dimensional model was constructed to represent a borehole being drilled through the unsaturated zone. The rock properties were matched to the lithologies expected to be encountered in the borehole. As current paleoclimate theory assumes that 18O increases with wetter and cooler global climates, a past climate scenario, built on depletion of 18O from ocean sediments was used as a basis for climate change over the past 700,000 years. The climate change was simulated by assigning net infiltration values as a linear function of 8O. Assuming the rock properties, lithologies and climate scenarios are correct, simulations indicated that Yucca Mountain is not in steady state equilibrium at the surface (250 meters. Based on the cyclic climate inputs, the near surface is currently in a long term drying trend (for the last 3,000 years) yet recharge into the water table is continuing to occur at an average rate equivalent to the average input rate of the climate model, indicating that conditions at depth are damped out over very long time periods. The Paintbrush Tuff nonwelded units, positioned between the Tiva Canyon and Topopah Spring welded Tuff Members, do not appear to act as capillary barrier and therefore would not perch water. The low porosity vitric caprock and basal vitrophyre of the Topopah Spring Member, however, act as restrictive layers. The higher porosity rock directly above the caprock reduces the potential for the caprock to perch water leaving the basal vitrophyre as the most likely location for perched water to develop.

  12. Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0: Climate variability of sea salt aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Li; Pierce, David W.; Russell, Lynn M.

    This study examines multi-year climate variability associated with sea salt aerosols and their contribution to the variability of shortwave cloud forcing (SWCF) using a 150-year simulation for pre-industrial conditions of the Community Earth System Model version 1.0 (CESM1). The results suggest that changes in sea salt and related cloud and radiative properties on interannual timescales are dominated by the ENSO cycle. Sea salt variability on longer (interdecadal) timescales is associated with low-frequency Pacific ocean variability similar to the interdecadal Pacific Oscillation (IPO), but does not show a statistically significant spectral peak. A multivariate regression suggests that sea salt aerosol variabilitymore » may contribute to SWCF variability in the tropical Pacific, explaining up to 25-35% of the variance in that region. Elsewhere, there is only a small aerosol influence on SWCF through modifying cloud droplet number and liquid water path that contributes to the change of cloud effective radius and cloud optical depth (and hence cloud albedo), producing a multi-year aerosol-cloud-wind interaction.« less

  13. Severity of climate change dictates the direction of biophysical feedbacks of vegetation change to Arctic climate

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxin; Jansson, Christer; Miller, Paul; Smith, Ben; Samuelsson, Patrick

    2014-05-01

    Vegetation-climate feedbacks induced by vegetation dynamics under climate change alter biophysical properties of the land surface that regulate energy and water exchange with the atmosphere. Simulations with Earth System Models applied at global scale suggest that the current warming in the Arctic has been amplified, with large contributions from positive feedbacks, dominated by the effect of reduced surface albedo as an increased distribution, cover and taller stature of trees and shrubs mask underlying snow, darkening the surface. However, these models generally employ simplified representation of vegetation dynamics and structure and a coarse grid resolution, overlooking local or regional scale details determined by diverse vegetation composition and landscape heterogeneity. In this study, we perform simulations using an advanced regional coupled vegetation-climate model (RCA-GUESS) applied at high resolution (0.44×0.44° ) over the Arctic Coordinated Regional Climate Downscaling Experiment (CORDEX-Arctic) domain. The climate component (RCA4) is forced with lateral boundary conditions from EC-EARTH CMIP5 simulations for three representative concentration pathways (RCP 2.6, 4.5, 8.5). Vegetation-climate response is simulated by the individual-based dynamic vegetation model (LPJ-GUESS), accounting for phenology, physiology, demography and resource competition of individual-based vegetation, and feeding variations of leaf area index and vegetative cover fraction back to the climate component, thereby adjusting surface properties and surface energy fluxes. The simulated 2m air temperature, precipitation, vegetation distribution and carbon budget for the present period has been evaluated in another paper. The purpose of this study is to elucidate the spatial and temporal characteristics of the biophysical feedbacks arising from vegetation shifts in response to different CO2 concentration pathways and their associated climate change. Our results indicate that the albedo feedback dominates simulated warming in spring in all three scenarios, while in summer, evapotranspiration feedback, governing the partitioning of the return energy flux from the surface to the atmosphere into latent and sensible heat, exerts evaporative cooling effects, the magnitude of which depends on the severity of climate change, in turn driven by the underlying GHG emissions pathway, resulting in shift in the sign of net biophysical at higher levels of warming. Spatially, western Siberia is identified as the most susceptible location, experiencing the potential to reverse biophysical feedbacks in all seasons. We further analyze how the pattern of vegetation shifts triggers different signs of net effects of biophysical feedbacks.

  14. Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat-Mungbean-Rice Cropping System under Subtropical Climatic Conditions

    PubMed Central

    Islam, Md. Monirul; Hasanuzzaman, Mirza

    2014-01-01

    This study was conducted to know cropping cycles required to improve OM status in soil and to investigate the effects of medium-term tillage practices on soil properties and crop yields in Grey Terrace soil of Bangladesh under wheat-mungbean-T. aman cropping system. Four different tillage practices, namely, zero tillage (ZT), minimum tillage (MT), conventional tillage (CT), and deep tillage (DT), were studied in a randomized complete block (RCB) design with four replications. Tillage practices showed positive effects on soil properties and crop yields. After four cropping cycles, the highest OM accumulation, the maximum root mass density (0–15 cm soil depth), and the improved physical and chemical properties were recorded in the conservational tillage practices. Bulk and particle densities were decreased due to tillage practices, having the highest reduction of these properties and the highest increase of porosity and field capacity in zero tillage. The highest total N, P, K, and S in their available forms were recorded in zero tillage. All tillage practices showed similar yield after four years of cropping cycles. Therefore, we conclude that zero tillage with 20% residue retention was found to be suitable for soil health and achieving optimum yield under the cropping system in Grey Terrace soil (Aeric Albaquept). PMID:25197702

  15. A common fallacy in climate model evaluation

    NASA Astrophysics Data System (ADS)

    Annan, J. D.; Hargreaves, J. C.; Tachiiri, K.

    2012-04-01

    We discuss the assessment of model ensembles such as that arising from the CMIP3 coordinated multi-model experiments. An important aspect of this is not merely the closeness of the models to observations in absolute terms but also the reliability of the ensemble spread as an indication of uncertainty. In this context, it has been widely argued that the multi-model ensemble of opportunity is insufficiently broad to adequately represent uncertainties regarding future climate change. For example, the IPCC AR4 summarises the consensus with the sentence: "Those studies also suggest that the current AOGCMs may not cover the full range of uncertainty for climate sensitivity." Similar claims have been made in the literature for other properties of the climate system, including the transient climate response and efficiency of ocean heat uptake. Comparison of model outputs with observations of the climate system forms an essential component of model assessment and is crucial for building our confidence in model predictions. However, methods for undertaking this comparison are not always clearly justified and understood. Here we show that the popular approach which forms the basis for the above claims, of comparing the ensemble spread to a so-called "observationally-constrained pdf", can be highly misleading. Such a comparison will almost certainly result in disagreement, but in reality tells us little about the performance of the ensemble. We present an alternative approach based on an assessment of the predictive performance of the ensemble, and show how it may lead to very different, and rather more encouraging, conclusions. We additionally outline some necessary conditions for an ensemble (or more generally, a probabilistic prediction) to be challenged by an observation.

  16. Flood events across the North Atlantic region - past development and future perspectives

    NASA Astrophysics Data System (ADS)

    Matti, Bettina; Dieppois, Bastien; Lawler, Damian; Dahlke, Helen E.; Lyon, Steve W.

    2016-04-01

    Flood events have a large impact on humans, both socially and economically. An increase in winter and spring flooding across much of northern Europe in recent years opened up the question of changing underlying hydro-climatic drivers of flood events. Predicting the manifestation of such changes is difficult due to the natural variability and fluctuations in northern hydrological systems caused by large-scale atmospheric circulations, especially under altered climate conditions. Improving knowledge on the complexity of these hydrological systems and their interactions with climate is essential to be able to determine drivers of flood events and to predict changes in these drivers under altered climate conditions. This is particularly true for the North Atlantic region where both physical catchment properties and large-scale atmospheric circulations have a profound influence on floods. This study explores changes in streamflow across North Atlantic region catchments. An emphasis is placed on high-flow events, namely the timing and magnitude of past flood events, and selected flood percentiles were tested for stationarity by applying a flood frequency analysis. The issue of non-stationarity of flood return periods is important when linking streamflow to large-scale atmospheric circulations. Natural fluctuations in these circulations are found to have a strong influence on the outcome causing natural variability in streamflow records. Long time series and a multi-temporal approach allows for determining drivers of floods and linking streamflow to large-scale atmospheric circulations. Exploring changes in selected hydrological signatures consistency was found across much of the North Atlantic region suggesting a shift in flow regime. The lack of an overall regional pattern suggests that how catchments respond to changes in climatic drivers is strongly influenced by their physical characteristics. A better understanding of hydrological response to climate drivers is essential for example for forecasting purposes.

  17. Contrasting scaling properties of interglacial and glacial climates

    NASA Astrophysics Data System (ADS)

    Ditlevsen, Peter; Shao, Zhi-Gang

    2017-04-01

    Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H˜0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H˜1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard-Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles. Ref: Zhi-Gang Shao and Peter Ditlevsen, Nature Comm. 7, 10951, 2016

  18. Wasp waist or beer belly? Modeling food web structure and energetic control in Alaskan marine ecosystems, with implications for fishing and environmental forcing

    NASA Astrophysics Data System (ADS)

    Gaichas, Sarah; Aydin, Kerim; Francis, Robert C.

    2015-11-01

    The Eastern Bering Sea (EBS) and Gulf of Alaska (GOA) continental shelf ecosystems show some similar and some distinctive groundfish biomass dynamics. Given that similar species occupy these regions and fisheries management is also comparable, similarities might be expected, but to what can we attribute the differences? Different types of ecosystem structure and control (e.g. top-down, bottom-up, mixed) can imply different ecosystem dynamics and climate interactions. Further, the structural type identified for a given ecosystem may suggest optimal management for sustainable fishing. Here, we use information on the current system state derived from food web models of both the EBS and the GOA combined with dynamic ecosystem models incorporating uncertainty to classify each ecosystem by its structural type. We then suggest how this structure might be generally related to dynamics and predictability. We find that the EBS and GOA have fundamentally different food web structures both overall, and when viewed from the perspective of the same commercially and ecologically important species in each system, walleye pollock (Gadus chalcogrammus). EBS food web structure centers on a large mass of pollock, which appears to contribute to relative system stability and predictability. In contrast, GOA food web structure features high predator biomass, which contributes to a more dynamic, less predictable ecosystem. Mechanisms for climate influence on pollock production in the EBS are increasingly understood, while climate forcing mechanisms contributing to the potentially destabilizing high predator biomass in the GOA remain enigmatic. We present results of identical pollock fishing and climate-driven pollock recruitment simulations in the EBS and GOA which show different system responses, again with less predictable response in the GOA. Overall, our results suggest that identifying structural properties of fished food webs is as important for sustainable fisheries management as attempting to predict climate and fisheries effects within each ecosystem.

  19. Spatial and Temporal Distribution of Cloud Properties Observed by MODIS: Preliminary Level-3 Results from the Collection 5 Reprocessing

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Hubanks, Paul; Pincus, Robert

    2006-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of operational algorithms for the retrieval of cloud physical and optical properties (optical thickness, effective particle radius, water path, thermodynamic phase) have recently been updated and are being used in the new "Collection 5" processing stream being produced by the MODIS Adaptive Processing System (MODAPS) at NASA GSFC. All Terra and Aqua data are undergoing Collection 5 reprocessing with an expected completion date by the end of 2006. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. The cloud products have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In this talk, we will summarize the available Level-3 cloud properties and their associated statistical data sets, and show preliminary Terra and Aqua results from the available Collection 5 reprocessing effort. Anticipated results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.

  20. Climatology analysis of cirrus cloud in ARM site: South Great Plain

    NASA Astrophysics Data System (ADS)

    Olayinka, K.

    2017-12-01

    Cirrus cloud play an important role in the atmospheric energy balance and hence in the earth's climate system. The properties of optically thin clouds can be determined from measurements of transmission of the direct solar beam. The accuracy of cloud optical properties determined in this way is compromised by contamination of the direct transmission by light that is scattered into the sensors field of view. With the forward scattering correction method developed by Min et al., (2004), the accuracy of thin cloud retrievals from MFRSR has been improved. Our result shows over 30% of cirrus cloud present in the atmosphere are within optical depth between (1-2). In this study, we do statistics studies on cirrus clouds properties based on multi-years cirrus cloud measurements from MFRSR at ARM site from the South Great Plain (SGP) site due to its relatively easy accessibility, wide variability of climate cloud types and surface flux properties, large seasonal variation in temperature and specific humidity. Through the statistic studies, temporal and spatial variations of cirrus clouds are investigated. Since the presence of cirrus cloud increases the effect of greenhouse gases, we will retrieve the aerosol optical depth in all the cirrus cloud regions using a radiative transfer model for atmospheric correction. Calculate thin clouds optical depth (COD), and aerosol optical depth (AOD) using a radiative transfer model algorithm, e.g.: MODTRAN (MODerate resolution atmospheric TRANsmission)

  1. Cirrus clouds properties derived from polarized micro pulse lidar (p-mpl) observations at the atmospheric observatory `el arenosillo' (sw iberian peninsula): a case study for radiative implications

    NASA Astrophysics Data System (ADS)

    Águila, Ana del; Gómez, Laura; Vilaplana, José Manuel; Sorribas, Mar; Córdoba-Jabonero, Carmen

    2018-04-01

    Cirrus (Ci) clouds are involved in Climate Change concerns since they affect the radiative balance of the atmosphere. Recently, a polarized Micro Pulse Lidar (P-MPL), standard system within NASA/MPLNET has been deployed at the INTA/Atmospheric Observatory `El Arenosillo' (ARN), located in the SW Iberian Peninsula. Hence, the INTA/P-MPL system is used for Ci detection over that station for the first time. Radiative effects of a Ci case observed over ARN are examined, as reference for future long-term Ci observations. Optical and macrophysical properties are retrieved, and used for radiative transfer simulations. Data are compared to the measured surface radiation levels and all-sky images simultaneously performed at the ARN station.

  2. Projecting date palm distribution in Iran under climate change using topography, physicochemical soil properties, soil taxonomy, land use, and climate data

    NASA Astrophysics Data System (ADS)

    Shabani, Farzin; Kumar, Lalit; Taylor, Subhashni

    2014-11-01

    This study set out to model potential date palm distribution under current and future climate scenarios using an emission scenario, in conjunction with two different global climate models (GCMs): CSIRO-Mk3.0 (CS), and MIROC-H (MR), and to refine results based on suitability under four nonclimatic parameters. Areas containing suitable physicochemical soil properties and suitable soil taxonomy, together with land slopes of less than 10° and suitable land uses for date palm ( Phoenix dactylifera) were selected as appropriate refining tools to ensure the CLIMEX results were accurate and robust. Results showed that large regions of Iran are projected as likely to become climatically suitable for date palm cultivation based on the projected scenarios for the years 2030, 2050, 2070, and 2100. The study also showed CLIMEX outputs merit refinement by nonclimatic parameters and that the incremental introduction of each additional parameter decreased the disagreement between GCMs. Furthermore, the study indicated that the least amount of disagreement in terms of areas conducive to date palm cultivation resulted from CS and MR GCMs when the locations of suitable physicochemical soil properties and soil taxonomy were used as refinement tools.

  3. Incorporating measures of time-varying emissions to enhance top-down BC emissions: what is done well, what needs improvement, and what are the consequences

    NASA Astrophysics Data System (ADS)

    Cohen, J. B.; Xi, X.; Wang, C.

    2012-12-01

    Black Carbon (BC) and other absorbing aerosols uniquely impact the climate system by both scattering and absorbing solar radiation, leading to simultaneous heating and cooling of the climate system. A critical understanding of the emissions, processing, transport, and removal of these aerosols are necessary to increase our understanding of their impacts on climate system. However, BC is tricky to model: it has a mostly anthropogenic origin that is highly variable in both space and time. Furthermore, its atmospheric chemical and physical processing involves interaction with third-party chemical species. Finally, there is a strong correlation between uncertainty in prediction of the primary removal mechanism, precipitation, and those regions having the highest emissions, such as Monsoon regions of Asia. Recent work using a coupled climate/radiation/aerosol/urbanization model, data of BC concentrations and remotely sensed AAODs from more than 100 different sites, and a Kalman Filter, has lead to an average estimate of the BC average and uncertainty range of emissions. These average results ranged from about 200% to 300% the emissions currently used by the IPCC, AEROCOM, and GFED. The differences in the modeled concentrations, AAODs, radiative forcings, and climate response between these annual average different emissions levels, as well as the error bounds associated with the Kalman Filter emissions has been explored and will be summarized. Additionally, since absorbing aerosols are regionally and temporally non-uniform, an improved comparison between these differences will be highlighted using an additional data source: MISR AOD and a new analysis technique to mathematically constrain and identify unique temporally and spatially varying properties. These new constraints will be further combined with model runs under the different emissions scenarios to test the impacts of both annual average as well as more realistic cases of large-scale, season-to-season, and year-to-year variations. These results will be displayed, compared against measurements, and the influence of the time-varying component quantified both globally as well as over two regions exhibiting such an influence. It is hoped that such quantification can lead to further improvement of the emissions estimates and their impact on the climate system.

  4. Small-world bias of correlation networks: From brain to climate

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan

    2017-03-01

    Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.

  5. Small-world bias of correlation networks: From brain to climate.

    PubMed

    Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan

    2017-03-01

    Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.

  6. Literature Review of Low Impact Development for Stormwater Control

    DTIC Science & Technology

    2015-05-30

    appropriate LID technology can be selected to capture the targeted vi metal pollutant. Little information exists on the effects of field variables such as...loading rates and volume, temperature , climate, pH, sediments, organics, and maintenance cycles on systems in the field. 4. The amount of research...maximum extent technically feasible, the pre-development hydrology of the property with regard to the temperature , rate, volume, and duration of flow

  7. Influence of dimethyl sulfide on the carbon cycle and biological production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shanlin; Maltrud, Mathew; Elliott, Scott

    Dimethyl sulfide (DMS) is a significant source of marine sulfate aerosol and plays an important role in modifying cloud properties. Fully coupled climate simulations using dynamic marine ecosystem and DMS calculations are conducted to estimate DMS fluxes under various climate scenarios and to examine the sign and strength of phytoplankton-DMS-climate feedbacks for the first time. Simulation results show small differences in the DMS production and emissions between pre-industrial and present climate scenarios, except for some areas in the Southern Ocean. There are clear changes in surface ocean DMS concentrations moving into the future, and they are attributable to changes inmore » phytoplankton production and competition driven by complex spatially varying mechanisms. Comparisons between parallel simulations with and without DMS fluxes into the atmosphere show significant differences in marine ecosystems and physical fields. Without DMS, the missing subsequent aerosol indirect effects on clouds and radiative forcing lead to fewer clouds, more solar radiation, and a much warmer climate. Phaeocystis, a uniquely efficient organosulfur producer with a growth advantage under cooler climate states, can benefit from producing the compound through cooling effects of DMS in the climate system. Our results show a tight coupling between the sulfur and carbon cycles. The ocean carbon uptake declines without DMS emissions to the atmosphere. The analysis indicates a weak positive phytoplankton-DMS-climate feedback at the global scale, with large spatial variations driven by individual autotrophic functional groups and complex mechanisms. The sign and strength of the feedback vary with climate states and phytoplankton groups. This highlights the importance of a dynamic marine ecosystem module and the sulfur cycle mechanism in climate projections.« less

  8. Influence of dimethyl sulfide on the carbon cycle and biological production

    DOE PAGES

    Wang, Shanlin; Maltrud, Mathew; Elliott, Scott; ...

    2018-02-27

    Dimethyl sulfide (DMS) is a significant source of marine sulfate aerosol and plays an important role in modifying cloud properties. Fully coupled climate simulations using dynamic marine ecosystem and DMS calculations are conducted to estimate DMS fluxes under various climate scenarios and to examine the sign and strength of phytoplankton-DMS-climate feedbacks for the first time. Simulation results show small differences in the DMS production and emissions between pre-industrial and present climate scenarios, except for some areas in the Southern Ocean. There are clear changes in surface ocean DMS concentrations moving into the future, and they are attributable to changes inmore » phytoplankton production and competition driven by complex spatially varying mechanisms. Comparisons between parallel simulations with and without DMS fluxes into the atmosphere show significant differences in marine ecosystems and physical fields. Without DMS, the missing subsequent aerosol indirect effects on clouds and radiative forcing lead to fewer clouds, more solar radiation, and a much warmer climate. Phaeocystis, a uniquely efficient organosulfur producer with a growth advantage under cooler climate states, can benefit from producing the compound through cooling effects of DMS in the climate system. Our results show a tight coupling between the sulfur and carbon cycles. The ocean carbon uptake declines without DMS emissions to the atmosphere. The analysis indicates a weak positive phytoplankton-DMS-climate feedback at the global scale, with large spatial variations driven by individual autotrophic functional groups and complex mechanisms. The sign and strength of the feedback vary with climate states and phytoplankton groups. This highlights the importance of a dynamic marine ecosystem module and the sulfur cycle mechanism in climate projections.« less

  9. Development of a Micro Pulsed Lidar and a Singly-Resonant Optical Parametric Oscillator for CO2 Dial for Use in Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Chantjaroen, Chat

    According to the Fifth Assessment Report (AR5) from the Intergovernmental Panel on Climate Change (IPCC), aerosols and CO2 are the largest contributors to anthropogenic radiative forcing--net negative for aerosols and positive for CO2. This relates to the amount of impact that aerosols and CO2 can have on our atmosphere and climate system. CO2 is the predominant greenhouse gas in the atmosphere and causes great impacts on our climate system. Recent studies show that a less well known atmospheric component--aerosols, which are solid particles or liquid droplets suspended in air, can cause great impact on our climate system too. They can affect our climate directly by absorbing and scattering sunlight to warm or cool our climate. They can also affect our climate indirectly by affecting cloud microphysical properties. Typically sulfate aerosols or sea salts act as condensation nuclei for clouds to form. Clouds are estimated to shade about 60% of the earth at any given time. They are preventing much of the sunlight from reaching the earth's surface and are helping with the flow of the global water cycle. These are what permit lifeforms on earth. In the IPCC report, both aerosols and CO2 also have the largest uncertainties and aerosols remains at a low level of scientific understanding. These indicate the need of more accurate measurements and that new technologies and instruments needs to be developed. This dissertation focuses on the development of two instruments--a scannable Micro-Pulsed Lidar (MPL) for atmospheric aerosol measurements and an Optical Parametric Oscillator (OPO) for use as a transmitter in a Differential Absorption Lidar (DIAL) for atmospheric CO2 measurements. The MPL demonstrates successful measurements of aerosols. It provides the total aerosol optical depth (AOD) and aerosol lidar ratio (Sa) that agree well with an instrument used by the Aerosol Robotic Network (AERONET). It also successfully provides range-resolved information about aerosols that AERONET instrument is incapable of. The range-resolved information is important in the study of the sources and sinks of aerosols. The OPO results show good promise for its use as a DIAL transmitter.

  10. Tropical Ocean Evaporation/SST Sensitivity and It's Link to Water and Energy Budget Variations During ENSO

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Marshall, Susan; Oglesby, Robert; Roads, John; Sohn, Byung-Ju; Arnold, James E. (Technical Monitor)

    2001-01-01

    The continuing debate over feedback mechanisms governing tropical sea surface temperatures (SSTs) and tropical climate in general has highlighted the diversity of potential checks and balances within the climate system. Competing feedbacks due to changes in surface evaporation, water vapor, and cloud long- and shortwave radiative properties each may serve critical roles in stabilizing or destabilizing the climate system. It is also intriguing that even those climate variations having origins internal to the climate system - changes in ocean heat transport for example, apparently require complementary equilibrating effects by changes in atmospheric energy fluxes. Perhaps the best observational evidence of this is the relatively invariant nature of tropically averaged net radiation exiting the top-of-atmosphere (TOA) as measured by broadband satellite sensors over the past two decades. Thus, analyzing how these feedback mechanisms are operating within the context of current interannual variability may offer considerable insight for anticipating future climate change. In this paper we focus primarily on interannual variations of ocean evaporative fluxes and their significance for coupled water and energy cycles within the tropical climate system. In particular, we use both the da Silva estimates of surface fluxes (based on the Comprehensive Ocean Atmosphere Data Set, COADS) and numerical simulations from several global climate models to examine evaporation sensitivity to perturbations in SST associated with warm and cold ENSO events. The specific questions we address are as follows: (1) What recurring patterns of surface wind and humidity anomalies are present during ENSO and how do they combine to yield systematic evaporation anomalies?, (2) What is the resulting tropical ocean mean evaporation-SST sensitivity associated with this climate perturbation?, and (3) What role does this evaporation play in tropical heat and water balance over tropical oceanic regions? We use the da Silva ocean flux data to identify composite structure of departures of latent heat flux from climatology. We also show how these patterns arise out of associated wind and humidity anomaly distributions. Our preliminary work shows that evaporation sensitivity estimates from the da Silva / COADS data, computed for the tropical oceans (30 degrees N/S) are in the neighborhood of 5 to 6 W/square m K. Model estimates are also quite close to this figure. This rate is only slightly less than a rate corresponding to constant relative humidity; however, substantial regional departures from constant relative humidity are present. These patterns are robust and we relate the associated wind and humidity fluctuations noted in previous investigations to the derived evaporation anomalies. Finally, these results are interpreted with other data from the Earth radiation Budget Experiment (ERBE), Global Precipitation Climatology Project (GPCP) and NASA's Surface Radiation Budget (SRB) data set to characterize the tropical energetics of ENSO-related climate variability.

  11. Far-infrared surface emissivity and climate.

    PubMed

    Feldman, Daniel R; Collins, William D; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-11-18

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8-2.0 W m(-2) difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m(-2), and 15%, respectively, after only 25 y of integration. Additionally, the calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.

  12. Far-infrared surface emissivity and climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate modelmore » projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.« less

  13. Far-infrared surface emissivity and climate

    PubMed Central

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-01-01

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m−2 difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m−2, and 15%, respectively, after only 25 y of integration. Additionally, the calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change. PMID:25368189

  14. Far-infrared surface emissivity and climate

    DOE PAGES

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; ...

    2014-11-03

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate modelmore » projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.« less

  15. Adapting livestock management to spatio-temporal heterogeneity in semi-arid rangelands.

    PubMed

    Jakoby, O; Quaas, M F; Baumgärtner, S; Frank, K

    2015-10-01

    Management strategies in rotational grazing systems differ in their level of complexity and adaptivity. Different components of such grazing strategies are expected to allow for adaptation to environmental heterogeneities in space and time. However, most models investigating general principles of rangeland management strategies neglect spatio-temporal system properties including seasonality and spatial heterogeneity of environmental variables. We developed an ecological-economic rangeland model that combines a spatially explicit farm structure with intra-annual time steps. This allows investigating different management components in rotational grazing systems (including stocking and rotation rules) and evaluating their effect on the ecological and economic states of semi-arid grazing systems. Our results show that adaptive stocking is less sensitive to overstocking compared to a constant stocking strategy. Furthermore, the rotation rule becomes important only at stocking numbers that maximize expected income. Altogether, the best of the tested strategies is adaptive stocking combined with a rotation that adapts to both spatial forage availability and seasonality. This management strategy maximises mean income and at the same time maintains the rangeland in a viable condition. However, we could also show that inappropriate adaptation that neglects seasonality even leads to deterioration. Rangelands characterised by higher inter-annual climate variability show a higher risk of income losses under a non-adaptive stocking rule, and non-adaptive rotation is least able to buffer increasing climate variability. Overall, all important system properties including seasonality and spatial heterogeneity of available resources need to be considered when designing an appropriate rangeland management system. Resulting adaptive rotational grazing strategies can be valuable for improving management and mitigating income risks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A toy model of sea ice growth

    NASA Technical Reports Server (NTRS)

    Thorndike, Alan S.

    1992-01-01

    My purpose here is to present a simplified treatment of the growth of sea ice. By ignoring many details, it is possible to obtain several results that help to clarify the ways in which the sea ice cover will respond to climate change. Three models are discussed. The first deals with the growth of sea ice during the cold season. The second describes the cycle of growth and melting for perennial ice. The third model extends the second to account for the possibility that the ice melts away entirely in the summer. In each case, the objective is to understand what physical processes are most important, what ice properties determine the ice behavior, and to which climate variables the system is most sensitive.

  17. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  18. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    PubMed

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO 2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO 2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied 13 C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R 2  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties. © 2016 Her Majesty the Queen in Right of Canada. Global Change Biology. Published by 2016 John Wiley & Sons Ltd.

  19. Effects of Implementing Subgrid-Scale Cloud-Radiation Interactions in a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Herwehe, J. A.; Alapaty, K.; Otte, T.; Nolte, C. G.

    2012-12-01

    Interactions between atmospheric radiation, clouds, and aerosols are the most important processes that determine the climate and its variability. In regional scale models, when used at relatively coarse spatial resolutions (e.g., larger than 1 km), convective cumulus clouds need to be parameterized as subgrid-scale clouds. Like many groups, our regional climate modeling group at the EPA uses the Weather Research & Forecasting model (WRF) as a regional climate model (RCM). One of the findings from our RCM studies is that the summertime convective systems simulated by the WRF model are highly energetic, leading to excessive surface precipitation. We also found that the WRF model does not consider the interactions between convective clouds and radiation, thereby omitting an important process that drives the climate. Thus, the subgrid-scale cloudiness associated with convective clouds (from shallow cumuli to thunderstorms) does not exist and radiation passes through the atmosphere nearly unimpeded, potentially leading to overly energetic convection. This also has implications for air quality modeling systems that are dependent upon cloud properties from the WRF model, as the failure to account for subgrid-scale cloudiness can lead to problems such as the underrepresentation of aqueous chemistry processes within clouds and the overprediction of ozone from overactive photolysis. In an effort to advance the climate science of the cloud-aerosol-radiation (CAR) interactions in RCM systems, as a first step we have focused on linking the cumulus clouds with the radiation processes. To this end, our research group has implemented into WRF's Kain-Fritsch (KF) cumulus parameterization a cloudiness formulation that is widely used in global earth system models (e.g., CESM/CAM5). Estimated grid-scale cloudiness and associated condensate are adjusted to account for the subgrid clouds and then passed to WRF's Rapid Radiative Transfer Model - Global (RRTMG) radiation schemes to affect the shortwave and longwave radiative processes. To evaluate the effects of implementing the subgrid-scale cloud-radiation interactions on WRF regional climate simulations, a three-year study period (1988-1990) was simulated over the CONUS using two-way nested domains with 108 km and 36 km horizontal grid spacing, without and with the cumulus feedbacks to radiation, and without and with some form of four dimensional data assimilation (FDDA). Initial and lateral boundary conditions (as well as data for the FDDA, when enabled) were supplied from downscaled NCEP-NCAR Reanalysis II (R2) data sets. Evaluation of the simulation results will be presented comparing regional surface precipitation and temperature statistics with North American Regional Reanalysis (NARR) data and Climate Forecast System Reanalysis (CFSR) data, respectively, as well as comparison with available surface radiation (SURFRAD) and satellite (CERES) observations. This research supports improvements in the EPA's WRF-CMAQ modeling system, leading to better predictions of present and future air quality and climate interactions in order to protect human health and the environment.

  20. Local and large-scale climate forcing of Puget Sound oceanographic properties on seasonal to interdecadal timescales

    Treesearch

    Stephanie K. Moore; Nathan J. Mantua; Jonathan P. Kellogg; Jan A. Newton

    2008-01-01

    The influence of climate on Puget Sound oceanographic properties is investigated on seasonal to interannual timescales using continuous profile data at 16 stations from 1993 to 2002 and records of sea surface temperature (SST) and sea surface salinity (SSS) from 1951 to 2002. Principal components analyses of profile data identify indices representing 42%, 58%, and 56%...

  1. Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance

    Treesearch

    David M. Barnard; Frederick C. Meinzer; Barbara Lachenbruch; Katherine A. McCulloh; Daniel M. Johnson; David R. Woodruff

    2011-01-01

    In the Pacific north-west, the Cascade Mountain Range blocks much of the precipitation and maritime influence of the Pacific Ocean, resulting in distinct climates east and west of the mountains. The current study aimed to investigate relationships between water storage and transport properties in populations of Douglas-fir (Pseudotsuga menziesii)...

  2. 24 CFR 1710.100 - Statement of Record-format.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....113 Recreational Facilities 1710.114 Subdivision Characteristics and Climate 1710.115 (a) General...) Nuisances (g) Hazards (h) Climate (i) Occupancy Additional Information 1710.116 (a) Property Owners...

  3. 24 CFR 1710.100 - Statement of Record-format.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....113 Recreational Facilities 1710.114 Subdivision Characteristics and Climate 1710.115 (a) General...) Nuisances (g) Hazards (h) Climate (i) Occupancy Additional Information 1710.116 (a) Property Owners...

  4. 24 CFR 1710.100 - Statement of Record-format.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....113 Recreational Facilities 1710.114 Subdivision Characteristics and Climate 1710.115 (a) General...) Nuisances (g) Hazards (h) Climate (i) Occupancy Additional Information 1710.116 (a) Property Owners...

  5. 24 CFR 1710.100 - Statement of Record-format.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....113 Recreational Facilities 1710.114 Subdivision Characteristics and Climate 1710.115 (a) General...) Nuisances (g) Hazards (h) Climate (i) Occupancy Additional Information 1710.116 (a) Property Owners...

  6. 24 CFR 1710.100 - Statement of Record-format.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....113 Recreational Facilities 1710.114 Subdivision Characteristics and Climate 1710.115 (a) General...) Nuisances (g) Hazards (h) Climate (i) Occupancy Additional Information 1710.116 (a) Property Owners...

  7. Psychometric assessment of the Spiritual Climate Scale Arabic version for nurses in Saudi Arabia.

    PubMed

    Cruz, Jonas Preposi; Albaqawi, Hamdan Mohammad; Alharbi, Sami Melbes; Alicante, Jerico G; Vitorino, Luciano M; Abunab, Hamzeh Y

    2017-12-07

    To assess the psychometric properties of the Spiritual Climate Scale Arabic version for Saudi nurses. Evidence showed that a high level of spiritual climate in the workplace is associated with increased productivity and performance, enhanced emotional intelligence, organisational commitment and job satisfaction among nurses. A convenient sample of 165 Saudi nurses was surveyed in this descriptive, cross-sectional study. Cronbach's α and intraclass correlation coefficient of the 2 week test-retest scores were computed to establish reliability. Exploratory factor analysis was performed to support the validity of the Spiritual Climate Scale Arabic version. The Spiritual Climate Scale Arabic version manifested excellent content validity. Exploratory factor analysis supported a single factor with an explained variance of 73.2%. The Cronbach's α values of the scale ranged from .79 to .88, while the intraclass correlation coefficient value was .90. The perceived spiritual climate was associated with the respondents' hospital, gender, age and years of experience. Findings of this study support the sound psychometric properties of the Spiritual Climate Scale Arabic version. The Spiritual Climate Scale Arabic version can be used by nurse managers to assess the nurses' perception of the spiritual climate in any clinical area. This process can lead to spiritually centred interventions, thereby ensuring a clinical climate that accepts and respects different spiritual beliefs and practices. © 2017 John Wiley & Sons Ltd.

  8. Validating the Psychological Climate Scale in Voluntary Child Welfare

    ERIC Educational Resources Information Center

    Zeitlin, Wendy; Claiborne, Nancy; Lawrence, Catherine K.; Auerbach, Charles

    2016-01-01

    Objective: Organizational climate has emerged as an important factor in understanding and addressing the complexities of providing services in child welfare. This research examines the psychometric properties of each of the dimensions of Parker and colleagues' Psychological Climate Survey in a sample of voluntary child welfare workers. Methods:…

  9. Hydrogeologic controls on streamflow sensitivity to climate variation

    Treesearch

    Anne Jefferson; Anne Nolin; Sarah Lewis; Christina Tague

    2008-01-01

    Climate models project warmer temperatures for the north-west USA, which will result in reduced snowpacks and decreased summer streamflow. This paper examines how groundwater, snowmelt, and regional climate patterns control discharge at multiple time scales, using historical records from two watersheds with contrasting geological properties and drainage efficiencies....

  10. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the Goddard Institute for Space Studies (GISS) 8 deg x lO deg atmospheric General Circulation Model (GCM) to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  11. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the GISS 8 deg x lO deg atmospheric GCM to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  12. Effects of Drake Passage on the Ocean's Thermal and Mechanical Energy Budget in a Coupled AOGCM

    NASA Astrophysics Data System (ADS)

    von der Heydt, A. S.; Viebahn, J. P.

    2016-12-01

    During the Cenozoic Earth's climate has undergone a major long-term transition from `greenhouse' to `icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The gradual cooling may be seen as response to the overall slowly decreasing atmospheric CO2-concentration due to weathering processes in the Earth System, however, continental geometry has changed considerably over this period and the long-term gradual trend was interrupted, by several rapid transitions and periods where temperature and greenhouse gas concentrations seem to be decoupled. The Eocene-Oligocene boundary ( 34 Ma, E/O) and mid-Miocene climatic transition ( 13 Ma, MCT) reflect major phases of Antarctic ice sheet build-up and global climate cooling, while Northern Hemisphere ice sheets developed much later ( 2.7Ma). Thresholds in atmospheric CO2-concentration together with feedback mechanisms related to land ice formation are among the favoured mechanisms of these climatic transitions, while the long-proposed ocean circulation changes caused by opening of tectonic gateways seem to play a less direct role. The opening of the Southern Ocean gateways, however, has eventually led to the development of today's strongest ocean current, the Antarctic Circumpolar Current, playing a major role in the transport properties of the global ocean circulation. The overall state of the global ocean circulation, therefore, must precondition the climate system to dramatic events such as major ice sheet formation. Closing Drake Passage in ocean-only and coupled climate models under otherwise present-day boundary conditions has become a classic experiment, indicating that there exists a considerable uncertainty in the climate response of those models to a closed Drake Passage. Here we quantify the climate response to a closed Drake Passage in a state-of-the-art coupled climate model (CESM). We show that the ocean gateway mechanism is robust in the sense that the equatorward expansion of the Southern Ocean sub-polar gyres inevitably leads to widespread warming around Antarctica. Moreover, we provide a framework to characterise the ocean temperature response to a closed Drake Passage in terms of both the mechanical and thermal energy budget of the ocean.

  13. Climate Forcing by Particles from Specific Sources, With Implications for No-regrets Scenarios

    NASA Astrophysics Data System (ADS)

    Bond, T. C.; Roden, C. A.; Subramanian, R.; Rasch, P. J.

    2006-12-01

    Mitigation-- the act of reducing human effects on climate and atmosphere by changing practices-- occurs one source at a time, one country at a time. Examining climate forcing produced by individual sources could be instructive. Two sectors contribute the largest fraction of black carbon aerosols from energy-related combustion: diesel engines and residential biofuel. We examine direct climate forcing by aerosols from these sources in four locations. Because source characterization is lacking, global emission inventories that include chemical composition of particles have often relied on expert judgment. We are gaining information on emission rates and climate- relevant properties through partnerships with projects related to air quality and health in Thailand and Honduras. Despite the presence of organic carbon, black carbon's constant companion, particles from both diesel and biofuel exert net climate warming. In particular, solid-fuel combustion produces material with weak light absorption and strong absorption spectral dependence. We discuss the expected emissions and properties of this material. Revised emission rates and properties are implemented in the Community Atmosphere Model, housed at the National Center for Atmospheric Research, and we tag particles emitted from individual sources. Which sources feed high-forcing regions, such as the area above the low-cloud deck in the North Pacific? Which particles might have been scavenged, and how does uncertainty in removal rates affect single-source forcing? Using model experiments, we estimate central values and uncertainties of direct radiative forcing from each source. Finally, we discuss the potential for reducing climate forcing by mitigating these individual sources. What is the range of benefits expected by addressing these sources, and what are the costs and obstacles? Only by representing uncertainty can we determine the likelihood that reducing these emissions represents a "no- regret" scenario for climate.

  14. Factors Controlling Carbon Metabolism and Humification in Different Soil Agroecosystems

    PubMed Central

    Doni, S.; Macci, C.; Peruzzi, E.; Ceccanti, B.; Masciandaro, G.

    2014-01-01

    The aim of this study was to describe the processes that control humic carbon sequestration in soil. Three experimental sites differing in terms of management system and climate were selected: (i) Abanilla-Spain, soil treated with municipal solid wastes in Mediterranean semiarid climate; (ii) Puch-Germany, soil under intensive tillage and conventional agriculture in continental climate; and (iii) Alberese-Italy, soil under organic and conventional agriculture in Mediterranean subarid climate. The chemical-structural and biochemical soil properties at the initial sampling time and one year later were evaluated. The soils under organic (Alberese, soil cultivated with Triticum durum Desf.) and nonintensive management practices (Puch, soil cultivated with Triticum aestivum L. and Avena sativa L.) showed higher enzymatically active humic carbon, total organic carbon, humification index (B/E3s), and metabolic potential (dehydrogenase activity/water soluble carbon) if compared with conventional agriculture and plough-based tillage, respectively. In Abanilla, the application of municipal solid wastes stimulated the specific β-glucosidase activity (extracellular β-glucosidase activity/extractable humic carbon) and promoted the increase of humic substances with respect to untreated soil. The evolution of the chemical and biochemical status of the soils along a climatic gradient suggested that the adoption of certain management practices could be very promising in increasing SOC sequestration potential. PMID:25614887

  15. Identifying misbehaving models using baseline climate variance

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-06-01

    The majority of projections made using general circulation models (GCMs) are conducted to help tease out the effects on a region, or on the climate system as a whole, of changing climate dynamics. Sun et al., however, used model runs from 20 different coupled atmosphere-ocean GCMs to try to understand a different aspect of climate projections: how bias correction, model selection, and other statistical techniques might affect the estimated outcomes. As a case study, the authors focused on predicting the potential change in precipitation for the Murray-Darling Basin (MDB), a 1-million- square- kilometer area in southeastern Australia that suffered a recent decade of drought that left many wondering about the potential impacts of climate change on this important agricultural region. The authors first compared the precipitation predictions made by the models with 107 years of observations, and they then made bias corrections to adjust the model projections to have the same statistical properties as the observations. They found that while the spread of the projected values was reduced, the average precipitation projection for the end of the 21st century barely changed. Further, the authors determined that interannual variations in precipitation for the MDB could be explained by random chance, where the precipitation in a given year was independent of that in previous years.

  16. Parsivel Disdrometer Support for MAGIC Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollias, Pavlos; Bartholomew, Mary Jane

    2016-06-01

    In the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign, the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s second Mobile Facility (AMF2) was deployed on the Horizon Lines cargo ship Spirit traversing a route between Los Angeles, California and Honolulu, Hawaii for one full year. The transect for this deployment was chosen specifically because it crosses the stratocumulus-to-cumulus transition of the North-East Pacific, a region of great climatic interest and a close approximation to the transect used for several focused model intercomparison efforts. The cloud type and cover along this transect vary from lowmore » marine stratocumulus with high areal coverage near the California coast to isolated shallow cumulus with much lower areal coverage in the trade wind regime near Hawaii. The low marine stratocumulus decks, with their high albedo, exert a major influence on the shortwave radiation budget in the ocean environment, and thus provide an extremely important forcing of Earth’s climate. The trade cumulus clouds play a large role in the global surface evaporation and also in Earth’s albedo. One of the important science drivers of the MAGIC campaign was to measure the properties of clouds and precipitation, specifically cloud type, fractional coverage, base height, physical thickness, liquid water path (LWP), optical depth, and drizzle and precipitation frequency, amount, and extent. Retrievals of cloud and precipitation properties during the MAGIC campaign relied critically on the calibration of the AMF2 radar systems. For MAGIC this included the KAZR and M-WACR, both fixed zenith-pointing systems, and the 1290 MHz beam steerable wind profiler.« less

  17. Severe Autumn storms in future Western Europe with a warmer Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Baatsen, Michiel; Haarsma, Reindert J.; Van Delden, Aarnout J.; de Vries, Hylke

    2015-08-01

    Simulations with a very high resolution (~25 km) global climate model indicate that more severe Autumn storms will impact Europe in a warmer future climate. The observed increase is mainly attributed to storms with a tropical origin, especially in the later part of the twentyfirst century. As their genesis region expands, tropical cyclones become more intense and their chances of reaching Europe increase. This paper investigates the properties and evolution of such storms and clarifies the future changes. The studied tropical cyclones feature a typical evolution of tropical development, extratropical transition and a re-intensification. A reduction of the transit area between regions of tropical and extratropical cyclogenesis increases the probability of re-intensification. Many of the modelled storms exhibit hybrid properties in a considerable part of their life cycle during which they exhibit the hazards of both tropical and extratropical systems. In addition to tropical cyclones, other systems such as cold core extratropical storms mainly originating over the Gulf Stream region also increasingly impact Western Europe. Despite their different history, all of the studied storms have one striking similarity: they form a warm seclusion. The structure, intensity and frequency of storms in the present climate are compared to observations using the MERRA and IBTrACS datasets. Damaging winds associated with the occurrence of a sting jet are observed in a large fraction of the cyclones during their final stage. Baroclinic instability is of great importance for the (re-)intensification of the storms. Furthermore, so-called atmospheric rivers providing tropical air prove to be vital for the intensification through diabatic heating and will increase considerably in strength in the future, as will the associated flooding risks.

  18. Climate Action Benefits: Infrastructure

    EPA Pesticide Factsheets

    This page provides background on the relationship between infrastructure and climate change and describes what the CIRA Infrastructure analyses cover. It provides links to the subsectors Bridges, Roads, Urban Drainage, and Coastal Property.

  19. Interpreting the power spectrum of Dansgaard-Oeschger events via stochastic dynamical systems

    NASA Astrophysics Data System (ADS)

    Mitsui, Takahito; Lenoir, Guillaume; Crucifix, Michel

    2017-04-01

    Dansgaard-Oeschger (DO) events are abrupt climate shifts, which are particularly pronounced in the North Atlantic region during glacial periods [Dansgaard et al. 1993]. The signals are most clearly found in δ 18O or log [Ca2+] records of Greenland ice cores. The power spectrum S(f) of DO events has attracted attention over two decades with debates on the apparent 1.5-kyr periodicity [Grootes & Stuiver 1997; Schultz et al. 2002; Ditlevsen et al. 2007] and scaling property over several time scales [Schmitt, Lovejoy, & Schertzer 1995; Rypdal & Rypdal 2016]. The scaling property is written most simply as S(f)˜ f-β , β ≈ 1.4. However, physical as well as underlying dynamics of the periodicity and the scaling property are still not clear. Pioneering works for modelling the spectrum of DO events are done by Cessi (1994) and Ditlevsen (1999), but their model-data comparisons of the spectra are rather qualitative. Here, we show that simple stochastic dynamical systems can generate power spectra statistically consistent with the observed spectra over a wide range of frequency from orbital to the Nyquist frequency (=1/40 yr-1). We characterize the scaling property of the spectrum by defining a local scaling exponentβ _loc. For the NGRIP log [Ca2+] record, the local scaling exponent β _loc increases from ˜ 1 to ˜ 2 as the frequency increases from ˜ 1/5000 yr-1 to ˜ 1/500 yr-1, and β _loc decreases toward zero as the frequency increases from ˜ 1/500 yr-1 to the Nyquist frequency. For the δ 18O record, the local scaling exponent β _loc increases from ˜ 1 to ˜ 1.5 as the frequency increases from ˜ 1/5000 yr^{-1 to ˜ 1/1000 yr-1, and β _loc decreases toward zero as the frequency increases from ˜ 1/1000 yr-1 to the Nyquist frequency. This systematic breaking of a single scaling is reproduced by the simple stochastic models. Especially, the models suggest that the flattening of the spectra starting from multi-centennial scale and ending at the Nyquist frequency results from both non-dynamical (or non-system) noise and 20-yr binning of the ice core records. The modelling part of this research is partially based on the following work: Takahito Mitsui and Michel Crucifix, Influence of external forcings on abrupt millennial-scale climate changes: a statistical modelling study, Climate Dynamics (first online). doi:10.1007/s00382-016-3235-z

  20. NASA Langley Atmospheric Science Data Center Toolsets for Airborne Data (TAD): Common Variable Naming Schema

    NASA Astrophysics Data System (ADS)

    Chen, G.; Early, A. B.; Peeters, M. C.

    2014-12-01

    NASA has conducted airborne tropospheric chemistry studies for about three decades. These field campaigns have generated a great wealth of observations, which are characterized by a wide range of trace gases and aerosol properties. The airborne observational data have often been used in assessment and validation of models and satellite instruments. One particular issue is a lack of consistent variable naming across field campaigns, which makes cross-mission data discovery difficult. The ASDC Toolset for Airborne Data (TAD) is being designed to meet the user community needs for manipulating aircraft data for scientific research on climate change and air quality relevant issues. As part of this effort, a common naming system was developed to provide a link between variables from different aircraft field studies. This system covers all current and past airborne in-situ measurements housed at the ASDC, as well as select NOAA missions. The TAD common variable naming system consists of 6 categories and 3 sub-levels. The top-level category is primarily defined by the physical characteristics of the measurement: e.g., aerosol, cloud, trace gases. The sub-levels were designed to organize the variables according to nature of measurement (e.g., aerosol microphysical and optical properties) or chemical structures (e.g., carbon compound). The development of the TAD common variable naming system was in consultation with staff from the Global Change Master Directory (GCMD) and referenced/expanded the existing Climate and Forecast (CF) variable naming conventions. The detailed structure of the TAD common variable naming convention and its application in TAD development will be presented.

  1. Time-lapse Seismic Refraction Monitoring of an Active Landslide in Lias Group Mudrocks, North Yorkshire, UK

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Whiteley, J.; Chambers, J. E.; Inauen, C.; Swift, R. T.

    2017-12-01

    Geophysical monitoring of the internal moisture content and processes of landslides is an increasingly common approach to the characterisation and assessment of the hydrogeological condition of rainfall-triggered landslides. Geoelectrical monitoring methods are sensitive to changes in the subsurface moisture conditions that cause the failure of unstable slopes, typically through the increase of pore water pressures and softening of materials within the landslide system. The application of seismic methods to the monitoring of landslides has not been as extensively applied as geoelectrical approaches, but the seismic method can determine elastic properties of landslide materials that can characterise and identify changes in the geomechanical condition of landslide systems that also lead to slope failure. We present the results of a seismic refraction monitoring campaign undertaken at the Hollin Hill Landslide Observatory in North Yorkshire, UK. This campaign has involved the repeat acquisition of surface acquired high resolution P- and S-wave seismic refraction data. The monitoring profile traverses a 142m long section from the crest to the toe of an active landslide comprising of mudstone and sandstone. Data were acquired at six to nine week intervals between October 2016 and October 2017. This repeat acquisition approach allowed for the imaging of seismically determined property changes of the landslide throughout the annual climatic cycle. Initial results showed that changes in the moisture dynamics of the landslide are reflected by changes in the seismic character of the inverted tomograms. Changes in the seismic properties are linked to the changes in the annual climatic cycle, particularly in relation to effective rainfall. The results indicate that the incorporation of seismic monitoring data into ongoing geoelectrical monitoring programmes can provide complementary geomechanical data to enhance our understanding of the internal condition of landslide systems. Future development of this integrated approach will allow for the imaging and monitoring of these systems at unprecedented spatial and temporal scales.

  2. Assessing the adaptive capacity of maize hybrids to climate change in an irrigated district of Southern Italy

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; Bonfante, Antonello; De Mascellis, Roberto; Alfieri, Silvia Maria; Menenti, Massimo; De Lorenzi, Francesca

    2013-04-01

    Climate change will cause significant changes in water distribution and availability; as a consequence the water resources in some areas (like Mediterranean regions) will be limiting factors to the cultivation of some species, included cereals. So the perspective of climate change requires an analysis of the adaptation possibilities of food and fiber species currently cultivated. A powerful tool for adaptation is the relevant intra-specific biodiversity of crops. The knowledge, for different crop cultivars, of the responses to different environmental conditions (e.g. yield response functions to water regime) can be a tool to identify adaptation options to future climate. Moreover, simulation models of water flow in the soil-plant-atmosphere system can be coupled with future climate scenarios to predict the soil water regime also accounting for different irrigation scheduling options. In this work the adaptive capacity of maize hybrids (Zea mays L.) was evaluated in an irrigated district of Southern Italy (the "Destra Sele" plain, an area of about 18.000 ha), where maize is extensively grown for water buffalo feeding. Horticultural crops (tomato, fennel, artichoke) are grown, as well. The methodology applied is based on two complementary elements: - a database on climatic requirements of 30 maize hybrids: the yield response functions to water availability were determined from experimental data derived both from scientific literature and from field trials carried out by ISAFOM-CNR. These functions were applied to describe the behaviour of the hybrids with respect to the relative evapotranspiration deficit; - the simulation performed by the agro-hydrological model SWAP (soil-water-plant and atmosphere), to determine the future soil water regime at landscape scale. Two climate scenarios were studied: "past" (1961-1990) and "future" (2021-2050). Future climate scenarios were generated within the Italian National Project AGROSCENARI. Climate scenarios at low spatial resolution generated with general circulation models (AOGCMs) were down-scaled by means of a statistical model (Tomozeiu et al., 2007). The downscaled climate scenario includes 50 realizations of daily minimum, maximum temperature and precipitation data, on a regular grid with a spatial resolution of 35 km. The hydraulic properties of 25 representative soils of the "Destra Sele" area were estimated with HYPRES pedo-transfer function previously tested in the area. The model SWAP was run to determine the soil water balance with different irrigation strategies: optimal irrigation, no irrigation, and deficit irrigation, in both climate periods. Deficit irrigation was scheduled applying water volumes equal to 20%, 40%, 60% and 80% of optimal ones. From the outputs of the model runs the relative evapotranspiration deficit (or Crop Water Stress Index - CWSI) was calculated and compared with the yield response functions of the hybrids. By means of these functions, for each hybrid a critical value of CWSI was identified, namely a CWSI value corresponding to a relative yield of 0.9. By comparing the CWSI of soil units with hybrid's critical values, cultivar's adaptability to future water regime was determined, both as a function of irrigation scheduling and of soils' physical properties. The case study shows how, in the future climate scenario, with limited water resources, the intra-specific variability will allow to maintain current crop production system. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)

  3. Holistic information evaluation of divergence of soil's properties by using of legacy data of large scale monitoring surveys

    NASA Astrophysics Data System (ADS)

    Mikheeva, Irina

    2017-04-01

    Identification of tendencies of soil's transformations is very important for adequate ecological and economical assessment of degradation of soils. But monitoring of conditions of soils, and other natural objects, bring up a number of important methodological questions, including the probabilistic and statistical analysis of the accumulated legacy data and their use for verification of quantitative estimates of natural processes. Owing to considerable natural variability there is a problem of a reliable assessment of contemporary soil evolution under the influence of environmental management and climate changes. When studying dynamics of soil quality it is necessary to consider soil as open complex system with parameters which significantly vary in space. The analysis of probabilistic distributions of attributes of studied system is informative for the characteristic of holistic state and behavior of the system. Therefore earlier we had offered the method of evaluation of alterations of soils by analysis of changes of pdf of their properties and their statistical entropy. The executed analysis of dynamics of pdf showed that often opposite tendencies to decrease and to increase of property can be shown at the same time. However to give an adequate quantitative evaluation of changes of soil properties it is necessary to characterize them in general. We proposed that it is reasonable to name processes of modern changes in soil properties concerning their start meaning by the term "divergence" and investigate it quantitatively. For this purpose we suggested to use value of information divergence which is defined as a measure of distinctions of pdf in compared objects or in various time. As the measure of dissimilarity, divergence should satisfy come conditions, the most important is scale-invariance property. Information divergence was used by us for evaluation of distinctions of soils according heterogeneity of factors of soil formation and with course of natural and anthropogenous processes. This characteristic allowed to allocate the most changed and vulnerable kinds and layers of soils, and also to range natural changes and anthropogenous impacts in size of their influence on properties of the soil. Case study was conducted on considerable part of the Priirtyshskaya plain in South of Western Siberia. Climate here is sharply continental and droughty. Soils were formed from ancient lake and alluvial deposits. It determined their mainly easy particle size distribution and spatial diversity of the texture. It is possible to judge rates and extent of manifestation of processes of degradation on alteration of properties of the main types of soils here: chestnut soils and Haplic Chernozems.

  4. Extreme Weather and Climate: Workshop Report

    NASA Technical Reports Server (NTRS)

    Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc; hide

    2016-01-01

    Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.

  5. Estimation of effective hydrologic properties of soils from observations of vegetation density

    NASA Technical Reports Server (NTRS)

    Tellers, T. E.; Eagleson, P. S.

    1980-01-01

    A one-dimensional model of the annual water balance is reviewed. Improvements are made in the method of calculating the bare soil component of evaporation, and in the way surface retention is handled. A natural selection hypothesis, which specifies the equilibrium vegetation density for a given, water limited, climate soil system, is verified through comparisons with observed data. Comparison of CDF's of annual basin yield derived using these soil properties with observed CDF's provides verification of the soil-selection procedure. This method of parameterization of the land surface is useful with global circulation models, enabling them to account for both the nonlinearity in the relationship between soil moisture flux and soil moisture concentration, and the variability of soil properties from place to place over the Earth's surface.

  6. Resolving the Aerosol Piece of the Global Climate Picture

    NASA Astrophysics Data System (ADS)

    Kahn, R. A.

    2017-12-01

    Factors affecting our ability to calculate climate forcing and estimate model predictive skill include direct radiative effects of aerosols and their indirect effects on clouds. Several decades of Earth-observing satellite observations have produced a global aerosol column-amount (AOD) record, but an aerosol microphysical property record required for climate and many air quality applications is lacking. Surface-based photometers offer qualitative aerosol-type classification, and several space-based instruments map aerosol air-mass types under favorable conditions. However, aerosol hygroscopicity, mass extinction efficiency (MEE), and quantitative light absorption, must be obtained from in situ measurements. Completing the aerosol piece of the climate picture requires three elements: (1) continuing global AOD and qualitative type mapping from space-based, multi-angle imagers and aerosol vertical distribution from near-source stereo imaging and downwind lidar, (2) systematic, quantitative in situ observations of particle properties unobtainable from space, and (3) continuing transport modeling to connect observations to sources, and extrapolate limited sampling in space and time. At present, the biggest challenges to producing the needed aerosol data record are: filling gaps in particle property observations, maintaining global observing capabilities, and putting the pieces together. Obtaining the PDFs of key particle properties, adequately sampled, is now the leading observational deficiency. One simplifying factor is that, for a given aerosol source and season, aerosol amounts often vary, but particle properties tend to be repeatable. SAM-CAAM (Systematic Aircraft Measurements to Characterize Aerosol Air Masses), a modest aircraft payload deployed frequently could fill this gap, adding value to the entire satellite data record, improving aerosol property assumptions in retrieval algorithms, and providing MEEs to translate between remote-sensing optical constraints and aerosol mass book-kept in climate models [Kahn et al., BAMS 2017]. This will also improve connections between remote-sensing particle types and those defined in models. The third challenge, maintaining global observing capabilities, requires continued community effort and good budgetary fortune.

  7. A New Paradigm for Diagnosing Contributions to Model Aerosol Forcing Error: Diagnosing Model Aerosol Forcing Error

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A. L.; Feldman, D. R.; Freidenreich, S.

    A new paradigm in benchmark absorption-scattering radiative transfer is presented that enables both the globally averaged and spatially resolved testing of climate model radiation parameterizations in order to uncover persistent sources of biases in the aerosol instantaneous radiative effect (IRE). A proof of concept is demonstrated with the Geophysical Fluid Dynamics Laboratory AM4 and Community Earth System Model 1.2.2 climate models. Instead of prescribing atmospheric conditions and aerosols, as in prior intercomparisons, native snapshots of the atmospheric state and aerosol optical properties from the participating models are used as inputs to an accurate radiation solver to uncover model-relevant biases. Thesemore » diagnostic results show that the models' aerosol IRE bias is of the same magnitude as the persistent range cited (~1 W/m 2) and also varies spatially and with intrinsic aerosol optical properties. The findings presented here underscore the significance of native model error analysis and its dispositive ability to diagnose global biases, confirming its fundamental value for the Radiative Forcing Model Intercomparison Project.« less

  8. Application of Local Discretization Methods in the NASA Finite-Volume General Circulation Model

    NASA Technical Reports Server (NTRS)

    Yeh, Kao-San; Lin, Shian-Jiann; Rood, Richard B.

    2002-01-01

    We present the basic ideas of the dynamics system of the finite-volume General Circulation Model developed at NASA Goddard Space Flight Center for climate simulations and other applications in meteorology. The dynamics of this model is designed with emphases on conservative and monotonic transport, where the property of Lagrangian conservation is used to maintain the physical consistency of the computational fluid for long-term simulations. As the model benefits from the noise-free solutions of monotonic finite-volume transport schemes, the property of Lagrangian conservation also partly compensates the accuracy of transport for the diffusion effects due to the treatment of monotonicity. By faithfully maintaining the fundamental laws of physics during the computation, this model is able to achieve sufficient accuracy for the global consistency of climate processes. Because the computing algorithms are based on local memory, this model has the advantage of efficiency in parallel computation with distributed memory. Further research is yet desirable to reduce the diffusion effects of monotonic transport for better accuracy, and to mitigate the limitation due to fast-moving gravity waves for better efficiency.

  9. A New Paradigm for Diagnosing Contributions to Model Aerosol Forcing Error: Diagnosing Model Aerosol Forcing Error

    DOE PAGES

    Jones, A. L.; Feldman, D. R.; Freidenreich, S.; ...

    2017-12-07

    A new paradigm in benchmark absorption-scattering radiative transfer is presented that enables both the globally averaged and spatially resolved testing of climate model radiation parameterizations in order to uncover persistent sources of biases in the aerosol instantaneous radiative effect (IRE). A proof of concept is demonstrated with the Geophysical Fluid Dynamics Laboratory AM4 and Community Earth System Model 1.2.2 climate models. Instead of prescribing atmospheric conditions and aerosols, as in prior intercomparisons, native snapshots of the atmospheric state and aerosol optical properties from the participating models are used as inputs to an accurate radiation solver to uncover model-relevant biases. Thesemore » diagnostic results show that the models' aerosol IRE bias is of the same magnitude as the persistent range cited (~1 W/m 2) and also varies spatially and with intrinsic aerosol optical properties. The findings presented here underscore the significance of native model error analysis and its dispositive ability to diagnose global biases, confirming its fundamental value for the Radiative Forcing Model Intercomparison Project.« less

  10. The socio-hydrologic evolution of human-flood interactions on the Charles and Mystic River, eastern Massachusetts, USA.

    NASA Astrophysics Data System (ADS)

    Mertz, Z.

    2015-12-01

    Socio-hydrology is an emerging subdiscipline for identifying the emergent properties of human-flood interactions. The Charles and the Mystic Rivers, in eastern Massachusetts, have been the subject of such interactions for hundreds of years. Over time, human dependency and settlement have altered the natural conditions of the rivers, and changed the potential for flood occurrence and property damage. As a result, flood management strategies have been enacted to counter this potential. Before we can assess how human vulnerability and actions related to river flooding will change under future climate conditions, we must first document the evolution of flooding and flood management and understand the motivations and thresholds of response that describe how the system has evolved in the past. We have mined historical data from traditional and non-traditional sources and have developed "mental models" from in-depth interviews of key personnel. We will present the socio-hydrological history of the Charles and Mystic Rivers and recommend how this information can inform future flood management strategies in the face of climate change.

  11. An alternative to soil taxonomy for describing key soil characteristics

    USGS Publications Warehouse

    Duniway, Michael C.; Miller, Mark E.; Brown, Joel R.; Toevs, Gordon

    2013-01-01

    is not a simple task. Furthermore, because the US system of soil taxonomy is not applied universally, its utility as a means for effectively describing soil characteristics to readers in other countries is limited. Finally, and most importantly, even at the finest level of soil classification there are often large within-taxa variations in critical properties that can determine ecosystem responses to drivers such as climate and land-use change.

  12. Ice lollies: An ice particle generated in supercooled conveyor belts

    NASA Astrophysics Data System (ADS)

    Keppas, S. Ch.; Crosier, J.; Choularton, T. W.; Bower, K. N.

    2017-05-01

    On 21 January 2009, a maturing low-pressure weather system approached the UK along with several associated frontal systems. As a part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate-Clouds project, an observational research flight took place in southern England, sampling the leading warm front of this system. During the flight, a distinctive hydrometeor type was repeatedly observed which has not been widely reported in previous studies. We refer to the hydrometeors as "drizzle-rimed columnar ice" or "ice lollies" for short due to their characteristic shape. We discuss the processes that led to their formation using in situ and remote sensing data.

  13. ARM Research in the Equatorial Western Pacific: A Decade and Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Charles N.; McFarlane, Sally A.; Del Genio, Anthony D.

    2013-05-22

    The tropical western Pacific (TWP) is an important climatic region. Strong solar heating, warm sea surface temperatures and the annual progression of the Intertropical Convergence Zone (ITCZ) across this region generate abundant convective systems, which through their effects on the heat and water budgets have a profound impact on global climate and precipitation. To accurately represent tropical cloud systems in models, measurements of tropical clouds, the environment in which they reside, and their impact on the radiation and water budgets are needed. Because of the remote location, ground-based datasets of cloud, atmosphere, and radiation properties from the TWP region havemore » traditionally come primarily from short-term field experiments. While providing extremely useful information on physical processes, these datasets are limited in statistical and climatological information because of their short duration. To provide long-term measurements of the surface radiation budget in the tropics, and the atmospheric properties that affect it, the Atmospheric Radiation Measurement program established a measurement site on Manus Island, Papua New Guinea in 1996 and on the island republic of Nauru in late 1998. These sites provide unique datasets available from more than 10 years of operation in the equatorial western Pacific on Manus and Nauru. We present examples of the scientific use of these datasets including characterization of cloud properties, analysis of cloud radiative forcing, model studies of tropical clouds and processes, and validation of satellite algorithms. We also note new instrumentation recently installed at the Manus site that will expand opportunities for tropical atmospheric science.« less

  14. Regional variation of flow duration curves in the eastern United States: Process-based analyses of the interaction between climate and landscape properties

    Treesearch

    Wafa Chouaib; Peter V. Caldwell; Younes Alila

    2018-01-01

    This paper advances the physical understanding of the flow duration curve (FDC) regional variation. It provides a process-based analysis of the interaction between climate and landscape properties to explain disparities in FDC shapes. We used (i) long term measured flow and precipitation data over 73 catchments from the eastern US. (ii) We calibrated the...

  15. Aerosol Concentration, Size, Hygroscopicity and MEE, Globally: What Do We Need to Know and How Can We Know It?

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    2017-01-01

    Organizers of the Symposium Clouds, their Properties, and their Climate Feedbacks - What Have We Learned in the Satellite Era, held at Columbia University, NASAGISS June 6-8, 2017 plan to post the presented talks to an online website. http:www.gewex.orgeventclouds-their-properties-and-their-climate-feedbacks-what-have-we-learned-in-the-satellite-era?instance_id293534

  16. Measuring resilience to climate change: The benefits of forest conservation in the floodplain

    Treesearch

    Carolyn Kousky; Margaret Walls; Ziyan Chu

    2014-01-01

    The economic costs of flooding have increased in the United States over the last several decades, largely as a result of more people and property, and more valuable property, located in harm’s way (Pielke and Downton 2000). In addition, climate models predict increases in the intensity of precipitation events in many locations (Wuebbles and Hayhoe 2004; IPCC 2012). How...

  17. Redefining thermal regimes to design reserves for coral reefs in the face of climate change.

    PubMed

    Chollett, Iliana; Enríquez, Susana; Mumby, Peter J

    2014-01-01

    Reef managers cannot fight global warming through mitigation at local scale, but they can use information on thermal patterns to plan for reserve networks that maximize the probability of persistence of their reef system. Here we assess previous methods for the design of reserves for climate change and present a new approach to prioritize areas for conservation that leverages the most desirable properties of previous approaches. The new method moves the science of reserve design for climate change a step forwards by: (1) recognizing the role of seasonal acclimation in increasing the limits of environmental tolerance of corals and ameliorating the bleaching response; (2) using the best proxy for acclimatization currently available; (3) including information from several bleaching events, which frequency is likely to increase in the future; (4) assessing relevant variability at country scales, where most management plans are carried out. We demonstrate the method in Honduras, where a reassessment of the marine spatial plan is in progress.

  18. On the stability of the Atlantic meridional overturning circulation

    PubMed Central

    Hofmann, Matthias; Rahmstorf, Stefan

    2009-01-01

    One of the most important large-scale ocean current systems for Earth's climate is the Atlantic meridional overturning circulation (AMOC). Here we review its stability properties and present new model simulations to study the AMOC's hysteresis response to freshwater perturbations. We employ seven different versions of an Ocean General Circulation Model by using a highly accurate tracer advection scheme, which minimizes the problem of numerical diffusion. We find that a characteristic freshwater hysteresis also exists in the predominantly wind-driven, low-diffusion limit of the AMOC. However, the shape of the hysteresis changes, indicating that a convective instability rather than the advective Stommel feedback plays a dominant role. We show that model errors in the mean climate can make the hysteresis disappear, and we investigate how model innovations over the past two decades, like new parameterizations and mixing schemes, affect the AMOC stability. Finally, we discuss evidence that current climate models systematically overestimate the stability of the AMOC. PMID:19897722

  19. Redefining Thermal Regimes to Design Reserves for Coral Reefs in the Face of Climate Change

    PubMed Central

    Chollett, Iliana; Enríquez, Susana; Mumby, Peter J.

    2014-01-01

    Reef managers cannot fight global warming through mitigation at local scale, but they can use information on thermal patterns to plan for reserve networks that maximize the probability of persistence of their reef system. Here we assess previous methods for the design of reserves for climate change and present a new approach to prioritize areas for conservation that leverages the most desirable properties of previous approaches. The new method moves the science of reserve design for climate change a step forwards by: (1) recognizing the role of seasonal acclimation in increasing the limits of environmental tolerance of corals and ameliorating the bleaching response; (2) using the best proxy for acclimatization currently available; (3) including information from several bleaching events, which frequency is likely to increase in the future; (4) assessing relevant variability at country scales, where most management plans are carried out. We demonstrate the method in Honduras, where a reassessment of the marine spatial plan is in progress. PMID:25333380

  20. Review: groundwater in Alaska (USA)

    USGS Publications Warehouse

    Callegary, J.B.; Kikuchi, C.P.; Koch, Joshua C.; Lilly, M.R.; Leake, S.A.

    2013-01-01

    Groundwater in the US state of Alaska is critical to both humans and ecosystems. Interactions among physiography, ecology, geology, and current and past climate have largely determined the location and properties of aquifers as well as the timing and magnitude of fluxes to, from, and within the groundwater system. The climate ranges from maritime in the southern portion of the state to continental in the Interior, and arctic on the North Slope. During the Quaternary period, topography and rock type have combined with glacial and periglacial processes to develop the unconsolidated alluvial aquifers of Alaska and have resulted in highly heterogeneous hydrofacies. In addition, the long persistence of frozen ground, whether seasonal or permanent, greatly affects the distribution of aquifer recharge and discharge. Because of high runoff, a high proportion of groundwater use, and highly variable permeability controlled in part by permafrost and seasonally frozen ground, understanding groundwater/surface-water interactions and the effects of climate change is critical for understanding groundwater availability and the movement of natural and anthropogenic contaminants.

  1. Strong Constraints on Aerosol-Cloud Interactions from Volcanic Eruptions

    NASA Technical Reports Server (NTRS)

    Malavelle, Florent F.; Haywood, Jim M.; Jones, Andy; Gettelman, Andrew; Clarisse, Lieven; Bauduin, Sophie; Allan, Richard P.; Karset, Inger Helene H.; Kristjansson, Jon Egill; Oreopoulos, Lazaros; hide

    2017-01-01

    Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets - consistent with expectations - but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around minus 0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.

  2. Strong constraints on aerosol-cloud interactions from volcanic eruptions.

    PubMed

    Malavelle, Florent F; Haywood, Jim M; Jones, Andy; Gettelman, Andrew; Clarisse, Lieven; Bauduin, Sophie; Allan, Richard P; Karset, Inger Helene H; Kristjánsson, Jón Egill; Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Bellouin, Nicolas; Boucher, Olivier; Grosvenor, Daniel P; Carslaw, Ken S; Dhomse, Sandip; Mann, Graham W; Schmidt, Anja; Coe, Hugh; Hartley, Margaret E; Dalvi, Mohit; Hill, Adrian A; Johnson, Ben T; Johnson, Colin E; Knight, Jeff R; O'Connor, Fiona M; Partridge, Daniel G; Stier, Philip; Myhre, Gunnar; Platnick, Steven; Stephens, Graeme L; Takahashi, Hanii; Thordarson, Thorvaldur

    2017-06-22

    Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around -0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.

  3. Validation of Cloud Properties From Multiple Satellites Using CALIOP Data

    NASA Technical Reports Server (NTRS)

    Yost, Christopher R.; Minnis, Patrick; Bedka, Kristopher M.; Heck, Patrick W.; Palikonda, Rabindra; Sun-Mack, Sunny; Trepte, Qing

    2016-01-01

    The NASA Langley Satellite ClOud and Radiative Property retrieval System (SatCORPS) is routinely applied to multispectral imagery from several geostationary and polar-orbiting imagers to retrieve cloud properties for weather and climate applications. Validation of the retrievals with independent datasets is continuously ongoing in order to understand differences caused by calibration, spatial resolution, viewing geometry, and other factors. The CALIOP instrument provides a decade of detailed cloud observations which can be used to evaluate passive imager retrievals of cloud boundaries, thermodynamic phase, cloud optical depth, and water path on a global scale. This paper focuses on comparisons of CALIOP retrievals to retrievals from MODIS, VIIRS, AVHRR, GOES, SEVIRI, and MTSAT. CALIOP is particularly skilled at detecting weakly-scattering cirrus clouds with optical depths less than approx. 0.5. These clouds are often undetected by passive imagers and the effect this has on the property retrievals is discussed.

  4. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  5. Assessing organizational climate: psychometric properties of the CLIOR Scale.

    PubMed

    Peña-Suárez, Elsa; Muñiz, José; Campillo-Álvarez, Angela; Fonseca-Pedrero, Eduardo; García-Cueto, Eduardo

    2013-02-01

    Organizational climate is the set of perceptions shared by workers who occupy the same workplace. The main goal of this study is to develop a new organizational climate scale and to determine its psychometric properties. The sample consisted of 3,163 Health Service workers. A total of 88.7% of participants worked in hospitals, and 11.3% in primary care; 80% were women and 20% men, with a mean age of 51.9 years (SD= 6.28). The proposed scale consists of 50 Likert-type items, with an alpha coefficient of 0.97, and an essentially one-dimensional structure. The discrimination indexes of the items are greater than 0.40, and the items show no differential item functioning in relation to participants' sex. A short version of the scale was developed, made up of 15 items, with discrimination indexes higher than 0.40, an alpha coefficient of 0.94, and its structure was clearly one-dimensional. These results indicate that the new scale has adequate psychometric properties, allowing a reliable and valid assessment of organizational climate.

  6. On the Influence of Air Mass Origin on Low-Cloud Properties in the Southeast Atlantic

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik; Hollmann, Rainer; Schwarz, Katharina

    2017-10-01

    This study investigates the impact of air mass origin and dynamics on cloud property changes in the Southeast Atlantic (SEA) during the biomass burning season. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget and thus prominent in climate system research. In this study, the thermodynamically stable SEA stratocumulus cover is observed not only as the result of local environmental conditions but also as connected to large-scale meteorology by the often neglected but important role of spatial origins of air masses entering this region. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a Hybrid Single-Particle Lagrangian Integrated Trajectory cluster analysis is conducted linking satellite observations of cloud properties (Spinning-Enhanced Visible and Infrared Imager), information on aerosol species (Monitoring Atmospheric Composition and Climate), and meteorological context (ERA-Interim reanalysis) to air mass clusters. It is found that a characteristic pattern of air mass origins connected to distinct synoptical conditions leads to marked cloud property changes in the southern part of the study area. Long-distance air masses are related to midlatitude weather disturbances that affect the cloud microphysics, especially in the southwestern subdomain of the study area. Changes in cloud effective radius are consistent with a boundary layer deepening and changes in lower tropospheric stability (LTS). In the southeastern subdomain cloud cover is controlled by a generally higher LTS, while air mass origin plays a minor role. This study leads to a better understanding of the dynamical drivers behind observed stratocumulus cloud properties in the SEA and frames potentially interesting conditions for aerosol-cloud interactions.

  7. Characterization of the Aerosol Instrument Package for the In-service Aircraft Global Observing System IAGOS

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Berg, Marcel; Tettig, Frank; Franke, Harald; Petzold, Andreas

    2015-04-01

    The atmospheric aerosol influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the aerosol microphysical properties is needed to reduce the reported uncertainty of the aerosol climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The IAGOS Aerosol Package (IAGOS-P2C) consists of two modified Butanol based CPCs (Model Grimm 5.410) and one optical particle counter (Model Grimm Sky OPC 1.129). A thermodenuder at 250°C is placed upstream the second CPC, thus the number concentrations of the total aerosol and the non-volatile aerosol fraction is measured. The Sky OPC measures the size distribution in the rage theoretically up to 32 μ m. Because of the inlet cut off diameter of D50=3 μ m we are using the 16 channel mode in the range of 250 nm - 2.5 μ m at 1 Hz resolution. In this presentation the IAGOS Aerosol package is characterized for pressure levels relevant for the planned application, down to cruising level of 150 hPa including the inlet system. In our aerosol lab we have tested the system against standard instrumentation with different aerosol test substances in a long duration test. Particle losses are characterized for the inlet system. In addition first results for airborne measurements are shown from a first field campaign.

  8. Global volcanic aerosol properties derived from emissions, 1990-2015, using CESM1(WACCM)

    NASA Astrophysics Data System (ADS)

    Mills, Michael; Schmidt, Anja; Easter, Richard; Solomon, Susan; Kinnison, Douglas; Ghan, Steven; Neely, Ryan; Marsh, Daniel; Conley, Andrew; Bardeen, Charles; Gettelman, Andrew

    2016-04-01

    Accurate representation of global stratospheric aerosols from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO2 emissions and plume altitudes for eruptions from 1990 to 2015, and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model (CESM). We combined these with other non-volcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2015. Our calculations show remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite-based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD calculations greatly improve on that provided for the Chemistry-Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods. The stark differences in SAOD and SAD compared to other data sets will have significant effects on calculations of the radiative forcing of climate and global stratospheric chemistry over the period 2005-2015. In light of these results, the impact of volcanic aerosols in reducing the rate of global average temperature increases since the year 2000 should be revisited. We have made our calculated aerosol properties from January 1990 to November 2015 available for public download.

  9. Factsheet: Climate Change and Harmful Algal Blooms

    EPA Pesticide Factsheets

    Climate change is predicted to change many environmental conditions that could affect the properties of fresh and marine waters. These changes could favor the growth of harmful algal blooms and habitat changes.

  10. The evolution of hydrological and water quality conditions on Techirghiol Lake

    NASA Astrophysics Data System (ADS)

    Maftei, Carmen; Buta, Constantin; Tofan, Lucica

    2015-04-01

    Changes in climate and environment conditions alter the hydraulic and chemical properties of lakes. With a surface from 1300ha, the Techirghiol Lake, situated on the littoral of the Black Sea at 15km from Constanta town, is considered the greatest hypersaline lake of Romania very well known (from 1891) especially for the curative qualities of its water and mud. Physical and geographical conditions associated with an arid climate regime - where the annual precipitation is less than 400mm and the average temperatures exceed (lead evaporative potential to 700-1000mm), cause a strong concentration of mineral salts that give the lake an excessive salinity. In conditions of excessive salinity forms a therapeutic mud as a result of bacterial decomposition of aquatic organisms that have done there, especially crustaceans Arthemia and algae that live in water. This mud, highly hydrated, rich in minerals, has therapeutic properties, for this reason in Techirghiol has developed a strong health resort. Fresh water is a threat to the therapeutic lake properties. In hydrological year 1961-1962, the overland flow value to the lake was approximately 0.4 million m3, and from 1972-1973 the value reached 6 million cubic meters per year a great contribution was from the irrigation water. One of the consequences is the increasing of the lake level and the second is the decreasing of salinity. For this reason a hydraulic work system has been built to separate the saline water of the lake and the freshwater. The aim of this paper is to investigate the hydrologic and chemical responses of the Techirghiol Lake to the changes in climate and environment conditions.

  11. Analysis the temporal and spatial impact of water harvesting on Aforestation processes, at the Northen Negev region, Israel

    NASA Astrophysics Data System (ADS)

    Argaman, E.; Egozi, R.; Goldshlager, N.

    2012-04-01

    Water availability in arid regions is a major limiting factor, which affect plant development. Therefore, knowledge about preliminary and ongoing spatial & temporal conditions (e.g. land surface properties, hydrological regime and vegetation dynamics) can improve greatly afforestation practice. The Ambassadors forest is one of the Jewish National Fund (JNF) new afforestation projects (initiated on 2005), which rely on water harvesting irrigation systems, located at the northern Negev region, Israel. Temporal and spatial processes are studied utilizing ground, air-borne and space-borne techniques for assessment of surface processes, that take place due to significant land-use change. Since 2005 the area shows significant variation of surface energy balance components which impact the spatial and temporal forest generation. Both human and climate affect these parameters, hence their influence is essential for future study of the region. Parameters of surface Albedo & Temperature and Vegetation dynamics are gathered by space-borne sensors (e.g. MODIS, Landsat & ALI) and verified at field scale in conjunction with ground-truth measurements of climate and soil properties. In addition, the project study various scenarios that might result from diverse climate trajectories that impact soil formation factors and therefore forest development. Preliminary results show that surface physical & ecoligical properties had changed significantly since the aforestation project began, comparing previous years. Sharp increase of surface albedo detected since 2005 that raised from 0.25 to 0.32, while vegetation density, estimated from NDVI, had dropped from annaul average of 0.21 down to 0.13 during 10-year time period. These changes are related to human interferance. The current paper presents the first phase of the long-term study of the Remote Sensing analysis and the current surface monitoring phase.

  12. Vegetation-climate feedback causes reduced precipitation and tropical rainforest cover in CMIP5 regional Earth system model simulation over Africa

    NASA Astrophysics Data System (ADS)

    Wu, M.; Smith, B.; Samuelsson, P.; Rummukainen, M.; Schurgers, G.

    2012-12-01

    We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feed back to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feed back to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and the atmosphere. In the equatorial rainforest stronghold region of central Africa, a feedback syndrome characterised by reduced plant production and LAI, a dominance shift from tropical trees to grasses, reduced soil water and reduced rainfall was identified. The likely underlying mechanism was a decline in evaporative water recycling associated with sparser vegetation cover, reminiscent of Earth system model studies in which a similar feedback mechanism was simulated to force dieback of tropical rainforest and reduced precipitation over the Amazon Basin (Cox et al. 2000; Betts et al. 2004; Malhi et al. 2009). Opposite effects are seen in southern Senegal, southern Mali, northern Guinea and Guinea-Bissau, positive evapotranspiration feedback enhancing the cover of trees in forest and savannah, mitigating warming and promoting local moisture recycling as rainfall. Our study, the first application of a coupled Earth system model at regional scale and resolution over Africa, reveals that vegetation-climate feedbacks may significantly impact the magnitude and character of simulated changes in climate as well as vegetation and ecosystems in future scenario studies of this region. They should be accounted for in future studies of climate change and its impacts on Africa.

  13. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  14. Exploring the Radiative Effect and Climate Impact of Contaminated Contrails

    NASA Astrophysics Data System (ADS)

    Yi, B.; Yang, P.; Minnis, P.; Duda, D. P.

    2015-12-01

    As an impact of human aviation activities, contrails have drawn a great deal of attention. There have been numerous investigations into the contrail properties, radiative effects, and climate impact. However, very little effort has been focused on the impact of contaminated contrails. Generated by the combustion process within the aircraft engine, the aerosols and exhaust gases frequently influence contrail formation. Contrail ice crystals contaminated by soot particles have been found to exhibit dramatically different light scattering properties from those of pristine crystals. In this study, we employ state-of-the-art light scattering computational capabilities to calculate the single-scattering properties of soot-contaminated contrails. The contaminated contrail particle is assumed to be a hexagonal ice column containing several soot particles. The invariant imbedding T-matrix method and the Ray-by-Ray geometry optics method are combined to construct a simplified yet novel set of contaminated contrail optical properties. The bulk optical properties are calculated based on the data set and are parameterized for use in the Community Atmospheric Model. Using global contrail retrievals from satellite remote sensing observations in 2006 and 2012, simulations are conducted using the general circulation model to analyze contaminated contrail radiative effects as well as their climatic sensitivities. Our results show that the contaminated contrail is significantly more absorbing than pristine contrail in the shortwave spectrum. As a result, much stronger contrail radiative impact and climate feedback are found. Several sensitivity studies are also implemented to quantify the effect of contrail contamination.

  15. Climate gentrification: from theory to empiricism in Miami-Dade County, Florida

    NASA Astrophysics Data System (ADS)

    Keenan, Jesse M.; Hill, Thomas; Gumber, Anurag

    2018-05-01

    This article provides a conceptual model for the pathways by which climate change could operate to impact geographies and property markets whose inferior or superior qualities for supporting the built environment are subject to a descriptive theory known as ‘Climate Gentrification.’ The article utilizes Miami-Dade County, Florida (MDC) as a case study to explore the market mechanisms that speak to the operations and processes inherent in the theory. This article tests the hypothesis that the rate of price appreciation of single-family properties in MDC is positively related to and correlated with incremental measures of higher elevation (the ‘Elevation Hypothesis’). As a reflection of an increase in observed nuisance flooding and relative SLR, the second hypothesis is that the rates of price appreciation in lowest the elevation cohorts have not kept up with the rates of appreciation of higher elevation cohorts since approximately 2000 (the ‘Nuisance Hypothesis’). The findings support a validation of both hypotheses and suggest the potential existence of consumer preferences that are based, in part, on perceptions of flood risk and/or observations of flooding. These preferences and perceptions are anticipated to be amplified by climate change in a manner that reinforces the proposition that climate change impacts will affect the marketability and valuation of property with varying degrees of environmental exposure and resilience functionality. Uncovering these empirical relationships is a critical first step for understanding the occurrence and parameters of Climate Gentrification.

  16. Coupling river hydrochemical information with catchment properties for multi-scale-analysis of lateral matter fluxes in the Earth system

    NASA Astrophysics Data System (ADS)

    Hartmann, Jens; Lauerwald, Ronny; Moosdorf, Nils

    2016-04-01

    Over the last decade the number of regional to global scale studies of river chemical fluxes and their steering factors increased rapidly, entailing a growing demand for appropriate databases to calculate mass budgets, to calibrate models, or to test hypotheses [1, 2]. Research applying compilations of hydrochemical data are related to questions targeting different time and spatial scales, as for example the annual to centennial scale. In focus are often the alteration of land-ocean matter fluxes due anthropogenic disturbance, the climate sensitivity of chemical weathering fluxes [3], or nutrient fluxes and their evolution [2, 4]. We present an overview of the GLObal RIver CHemistry database GLORICH, which combines an assemblage of hydrochemical data from varying sources with catchment characteristics of the sampling locations [1]. The information provided include e.g. catchment size, lithology, soil, climate, land cover, net primary production, population density and average slope gradient. The data base comprises 1.27 million samples distributed over 17,000 sampling locations [1]. It will be shown how large assemblages of data are useful to target some major questions about the alteration of land ocean element fluxes due to climate or land use change while coupling hydrochemical data with catchment properties in a homogenized database. An extension by isotopic data will be in the focus of future work [c.f. 5]. Further, applications in climate change studies for understanding feedbacks in the Earth system will be discussed [6]. References: [1] Hartmann, J., Lauerwald, R., & Moosdorf, N. (2014). A brief overview of the GLObal RIver CHemistry Database, GLORICH. Procedia Earth and Planetary Science, 10, 23-27. [2] Hartmann, J., Levy, J., & Kempe, S. (2011). Increasing dissolved silica trends in the Rhine River: an effect of recovery from high P loads?. Limnology, 12(1), 63-73. [3] Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M., & West, A. J. (2014). Global chemical weathering and associated P-release - the role of lithology, temperature and soil properties. Chemical Geology, 363, 145-163. [4] Hartmann, J., West, A. J., Renforth, P., Köhler, P., De La Rocha, C. L., Wolf-Gladrow, D. A., Dürr, H.H. & Scheffran, J. (2013). Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Reviews of Geophysics, 51(2), 113-149. [5] Bataille, C. P., Brennan, S. R., Hartmann, J., Moosdorf, N., Wooller, M. J., & Bowen, G. J. (2014). A geostatistical framework for predicting variations in strontium concentrations and isotope ratios in Alaskan rivers. Chemical Geology, 389, 1-15. [6] Goll, D. S., Moosdorf, N., Hartmann, J., & Brovkin, V. (2014). Climate-driven changes in chemical weathering and associated phosphorus release since 1850: Implications for the land carbon balance. Geophysical Research Letters, 41(10), 3553-3558.

  17. Application of advanced data assimilation techniques to the study of cloud and precipitation feedbacks in the tropical climate system

    NASA Astrophysics Data System (ADS)

    Posselt, Derek J.

    The research documented in this study centers around two topics: evaluation of the response of precipitating cloud systems to changes in the tropical climate system, and assimilation of cloud and precipitation information from remote-sensing platforms. The motivation for this work proceeds from the following outstanding problems: (1) Use of models to study the response of clouds to perturbations in the climate system is hampered by uncertainties in cloud microphysical parameterizations. (2) Though there is an ever-growing set of available observations, cloud and precipitation assimilation remains a difficult problem, particularly in the tropics. (3) Though it is widely acknowledged that cloud and precipitation processes play a key role in regulating the Earth's response to surface warming, the response of the tropical hydrologic cycle to climate perturbations remains largely unknown. The above issues are addressed in the following manner. First, Markov chain Monte Carlo (MCMC) methods are used to quantify the sensitivity of the NASA Goddard Cumulus Ensemble (GCE) cloud resolving model (CRM) to changes in its cloud odcrnpbymiC8l parameters. TRMM retrievals of precipitation rate, cloud properties, and radiative fluxes and heating rates over the South China Sea are then assimilated into the GCE model to constrain cloud microphysical parameters to values characteristic of convection in the tropics, and the resulting observation-constrained model is used to assess the response of the tropical hydrologic cycle to surface warming. The major findings of this study are the following: (1) MCMC provides an effective tool with which to evaluate both model parameterizations and the assumption of Gaussian statistics used in optimal estimation procedures. (2) Statistics of the tropical radiation budget and hydrologic cycle can be used to effectively constrain CRM cloud microphysical parameters. (3) For 2D CRM simulations run with and without shear, the precipitation efficiency of cloud systems increases with increasing sea surface temperature, while the high cloud fraction and outgoing shortwave radiation decrease.

  18. A scheme for parameterizing cirrus cloud ice water content in general circulation models

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Donner, Leo J.

    1990-01-01

    Clouds strongly influence th earth's energy budget. They control th amount of solar radiative energy absorbed by the climate system, partitioning the energy between the atmosphere and the earth's surface. They also control the loss of energy to space by their effect on thermal emission. Cirrus and altostratus are the most frequent cloud types, having an annual average global coverage of 35 and 40 percent, respectively. Cirrus is composed almost entirely of ice crystals and the same is frequently true of the upper portions of altostratus since they are often formed by the thickening of cirrostratus and by the spreading of the middle or upper portions of thunderstorms. Thus, since ice clouds cover such a large portion of the earth's surface, they almost certainly have an important effect on climate. With this recognition, researchers developing climate models are seeking largely unavailable methods for specifying the conditions for ice cloud formation, and quantifying the spatial distribution of ice water content, IWC, a necessary step in deriving their radiative characteristics since radiative properties are apparently related to IWC. A method is developed for specifying IWC in climate models, based on theory and measurements in cirrus during FIRE and other experiments.

  19. Comparison of CERES-MODIS cloud microphysical properties with surface observations over Loess Plateau

    NASA Astrophysics Data System (ADS)

    Yan, Hongru; Huang, Jianping; Minnis, Patrick; Yi, Yuhong; Sun-Mack, Sunny; Wang, Tianhe; Nakajima, Takashi Y.

    2015-03-01

    To enhance the utility of satellite-derived cloud properties for studying the role of clouds in climate change and the hydrological cycle in semi-arid areas, it is necessary to know their uncertainties. This paper estimates the uncertainties of several cloud properties by comparing those derived over the China Loess Plateau from the MODerate-resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua by the Clouds and Earth's Radiant Energy System (CERES) with surface observations at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL). The comparisons use data from January 2008 to June 2010 limited to single layer and overcast stratus conditions during daytime. Cloud optical depths (τ) and liquid water paths (LWP) from both Terra and Aqua generally track the variation of the surface counterparts with modest correlation, while cloud effective radius (re) is only weakly correlated with the surface retrievals. The mean differences between Terra and the SACOL retrievals are -4.7±12.9, 2.1±3.2 μm and 30.2±85.3 g m-2 for τ, re and LWP, respectively. The corresponding differences for Aqua are 2.1±8.4, 1.2±2.9 μm and 47.4±79.6 g m-2, respectively. Possible causes for biases of satellite retrievals are discussed through statistical analysis and case studies. Generally, the CERES-MODIS cloud properties have a bit larger biases over the Loess Plateau than those in previous studies over other locations.

  20. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national agriculture adaptation strategy decisions.

  1. Using Minimax Regret Optimization to Search for Multi-Stakeholder Solutions to Deeply Uncertain Flood Hazards under Climate Change

    NASA Astrophysics Data System (ADS)

    Kirshen, P. H.; Hecht, J. S.; Vogel, R. M.

    2015-12-01

    Prescribing long-term urban floodplain management plans under the deep uncertainty of climate change is a challenging endeavor. To address this, we have implemented and tested with stakeholders a parsimonious multi-stage mixed integer programming (MIP) model that identifies the optimal time period(s) for implementing publicly and privately financed adaptation measures. Publicly funded measures include reach-scale flood barriers, flood insurance, and buyout programs to encourage property owners in flood-prone areas to retreat from the floodplain. Measures privately funded by property owners consist of property-scale floodproofing options, such as raising building foundations, as well as investments in flood insurance or retreat from flood-prone areas. The objective function to minimize the sum of flood control and damage costs in all planning stages for different property types during floods of different severities. There are constraints over time for flow mass balances, construction of flood management alternatives and their cumulative implementation, budget allocations, and binary decisions. Damages are adjusted for flood control investments. In recognition of the deep uncertainty of GCM-derived climate change scenarios, we employ the minimax regret criterion to identify adaptation portfolios robust to different climate change trajectories. As an example, we identify publicly and privately funded adaptation measures for a stylized community based on the estuarine community of Exeter, New Hampshire, USA. We explore the sensitivity of recommended portfolios to different ranges of climate changes, and costs associated with economies of scale and flexible infrastructure design as well as different municipal budget constraints.

  2. Reduced cooling following future volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Hopcroft, Peter O.; Kandlbauer, Jessy; Valdes, Paul J.; Sparks, R. Stephen J.

    2017-11-01

    Volcanic eruptions are an important influence on decadal to centennial climate variability. Large eruptions lead to the formation of a stratospheric sulphate aerosol layer which can cause short-term global cooling. This response is modulated by feedback processes in the earth system, but the influence from future warming has not been assessed before. Using earth system model simulations we find that the eruption-induced cooling is significantly weaker in the future state. This is predominantly due to an increase in planetary albedo caused by increased tropospheric aerosol loading with a contribution from associated changes in cloud properties. The increased albedo of the troposphere reduces the effective volcanic aerosol radiative forcing. Reduced sea-ice coverage and hence feedbacks also contribute over high-latitudes, and an enhanced winter warming signal emerges in the future eruption ensemble. These findings show that the eruption response is a complex function of the environmental conditions, which has implications for the role of eruptions in climate variability in the future and potentially in the past.

  3. CERA - the technical basis for WDCC

    NASA Astrophysics Data System (ADS)

    Thiemann, Hannes; Lautenschlager, Michael

    2010-05-01

    The World Data Centre for Climate (WDCC) is hosted by the German Climate Computing Centre (DKRZ). It collects, stores and disseminates data for climate research in order to serve the scientific community. Emphasis hereby is spent on climate modelling and related data products. CERA (Climate and environmental retrieval and archive) is the infrastructure hosting data and metadata from WDCC. Data originates from projects like IPCC (and IPCC-DDC), ENSEMBLES, COPS and several others. Currently more than 400 terabytes of data are managed within CERA. Even more data is addressed through metadata. Data stored inline in CERA is currently archived in an Oracle Database which itself is transparently linked to a sophisticated HSM system. Within this HSM system a wide range of storage systems like different RAID and tape devices are used. HSM for CERA is configured in such a way, that a unique media failure may not cause any data loss. Correct and complete metadata are an important ingredient for relevant archiving procedures. Within CERA special care is taken to assure these goals. As a high end service DOIs can be assigned to data entities as they make the management of intellectual property easier and more convenient. Any data format can be served from within CERA although most of the data stored in CERA is in either GRIB or netCDF format. Out of the box CERA provides several data reduction mechanisms like time-slicing or regional selection. More elaborate functions like format conversion or diverse processing is attached either in- our outline. Fine-grained access control allows data to be distributed under divers data policies. Currently up to 800 users are registered within CERA. More than 600.000 downloads (255 terabytes) have been served from CERA within 2009. At present CERA is restructured, more specific details of the current implementation and the future development will be given in the presentation.

  4. Compilation of Abstracts for SC12 Conference Proceedings

    NASA Technical Reports Server (NTRS)

    Morello, Gina Francine (Compiler)

    2012-01-01

    1 A Breakthrough in Rotorcraft Prediction Accuracy Using Detached Eddy Simulation; 2 Adjoint-Based Design for Complex Aerospace Configurations; 3 Simulating Hypersonic Turbulent Combustion for Future Aircraft; 4 From a Roar to a Whisper: Making Modern Aircraft Quieter; 5 Modeling of Extended Formation Flight on High-Performance Computers; 6 Supersonic Retropropulsion for Mars Entry; 7 Validating Water Spray Simulation Models for the SLS Launch Environment; 8 Simulating Moving Valves for Space Launch System Liquid Engines; 9 Innovative Simulations for Modeling the SLS Solid Rocket Booster Ignition; 10 Solid Rocket Booster Ignition Overpressure Simulations for the Space Launch System; 11 CFD Simulations to Support the Next Generation of Launch Pads; 12 Modeling and Simulation Support for NASA's Next-Generation Space Launch System; 13 Simulating Planetary Entry Environments for Space Exploration Vehicles; 14 NASA Center for Climate Simulation Highlights; 15 Ultrascale Climate Data Visualization and Analysis; 16 NASA Climate Simulations and Observations for the IPCC and Beyond; 17 Next-Generation Climate Data Services: MERRA Analytics; 18 Recent Advances in High-Resolution Global Atmospheric Modeling; 19 Causes and Consequences of Turbulence in the Earths Protective Shield; 20 NASA Earth Exchange (NEX): A Collaborative Supercomputing Platform; 21 Powering Deep Space Missions: Thermoelectric Properties of Complex Materials; 22 Meeting NASA's High-End Computing Goals Through Innovation; 23 Continuous Enhancements to the Pleiades Supercomputer for Maximum Uptime; 24 Live Demonstrations of 100-Gbps File Transfers Across LANs and WANs; 25 Untangling the Computing Landscape for Climate Simulations; 26 Simulating Galaxies and the Universe; 27 The Mysterious Origin of Stellar Masses; 28 Hot-Plasma Geysers on the Sun; 29 Turbulent Life of Kepler Stars; 30 Modeling Weather on the Sun; 31 Weather on Mars: The Meteorology of Gale Crater; 32 Enhancing Performance of NASAs High-End Computing Applications; 33 Designing Curiosity's Perfect Landing on Mars; 34 The Search Continues: Kepler's Quest for Habitable Earth-Sized Planets.

  5. Climate Data Service in the FP7 EarthServer Project

    NASA Astrophysics Data System (ADS)

    Mantovani, Simone; Natali, Stefano; Barboni, Damiano; Grazia Veratelli, Maria

    2013-04-01

    EarthServer is a European Framework Program project that aims at developing and demonstrating the usability of open standards (OGC and W3C) in the management of multi-source, any-size, multi-dimensional spatio-temporal data - in short: "Big Earth Data Analytics". In order to demonstrate the feasibility of the approach, six thematic Lighthouse Applications (Cryospheric Science, Airborne Science, Atmospheric/ Climate Science, Geology, Oceanography, and Planetary Science), each with 100+ TB, are implemented. Scope of the Atmospheric/Climate lighthouse application (Climate Data Service) is to implement the system containing global to regional 2D / 3D / 4D datasets retrieved either from satellite observations, from numerical modelling and in-situ observations. Data contained in the Climate Data Service regard atmospheric profiles of temperature / humidity, aerosol content, AOT, and cloud properties provided by entities such as the European Centre for Mesoscale Weather Forecast (ECMWF), the Austrian Meteorological Service (Zentralanstalt für Meteorologie und Geodynamik - ZAMG), the Italian National Agency for new technologies, energies and sustainable development (ENEA), and the Sweden's Meteorological and Hydrological Institute (Sveriges Meteorologiska och Hydrologiska Institut -- SMHI). The system, through an easy-to-use web application permits to browse the loaded data, visualize their temporal evolution on a specific point with the creation of 2D graphs of a single field, or compare different fields on the same point (e.g. temperatures from different models and satellite observations), and visualize maps of specific fields superimposed with high resolution background maps. All data access operations and display are performed by means of OGC standard operations namely WMS, WCS and WCPS. The EarthServer project has just started its second year over a 3-years development plan: the present status the system contains subsets of the final database, with the scope of demonstrating I/O modules and visualization tools. At the end of the project all datasets will be available to the users.

  6. School Social Climate and Generalized Peer Perception in Traditional and Cyberbullying Status

    ERIC Educational Resources Information Center

    Bayar, Yusuf; Ucanok, Zehra

    2012-01-01

    The purpose of this study was to determine whether there were any differences in perceptions of school social climate and peers in terms of bullying status, and to investigate the psychometric properties of the School Social Climate and Generalized Peer Perception Scales. The students participated from six different cities in Turkey were in…

  7. Lithostratigraphy and physical properties of lacustrine sediments of the last ca. 150 kyr from Chalco basin, central México

    NASA Astrophysics Data System (ADS)

    Ortega-Guerrero, Beatriz; Lozano-García, Socorro; Herrera-Hernández, Dimitris; Caballero, Margarita; Beramendi-Orosco, Laura; Bernal, Juan Pablo; Torres-Rodríguez, Esperanza; Avendaño-Villeda, Diana

    2017-11-01

    The recognition of past climatic fluctuations in sedimentary sequences in central Mexico is relevant for understanding the forcing mechanisms and responses of climatic system in the northern American tropic. Moreover, in this active volcanic setting the sedimentary record preserves the history of past volcanic activity. Climatic and environmental variability has been documented for the last tenths of thousands of years from the upper lacustrine sediments in Chalco basin. A series of cores drilled down to 122 m depth in this basin offer a long, continuous and high resolution record of past climatic changes of the last ca. 150 kyr in this region. Here we present the detailed lithostratigraphy and some physical properties (magnetic susceptibility and density) of the master sequence. Sedimentary components and their abundance were identified and quantified in smear slides and direct core observations. Age model is based on 13 14C and one 230Th/U dates. Based on their facies association seven lithostratigraphic units were defined, which reflect the main stages of lake Chalco evolution. These phases closely match the marine isotopic stages. The data reveal that at the end of MIS6 Chalco was a relatively deep and stratified freshwater lake. During MIS5 the depositional environment fluctuated between low lake stands to marshy and marginal playa settings with sporadic flooding events, and severe arid periods resulted in aerial exposure of lake sediments. Low lake stands persisted during MIS4 and MIS3, with minor fluctuations towards slightly deeper phases. The Last Glacial Maximum (LGM) and the deglacial period (21-13 kyr) are characterized by intense volcanism. The early and mid-Holocene high calcareous content and alkaline-subsaline lake suggest dry conditions. The fluctuations of lake levels inferred provide the basis for future paleoclimatic works.

  8. A probabilistic approach to quantifying spatial patterns of flow regimes and network-scale connectivity

    NASA Astrophysics Data System (ADS)

    Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca

    2017-04-01

    The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of land-use/land-cover changes and river regulation on network-scale connectivity.

  9. The Influence of Sea Ice on Arctic Low Cloud Properties and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.

    2015-01-01

    The Arctic is one of the most climatically sensitive regions of the Earth. Climate models robustly project the Arctic to warm 2-3 times faster than the global mean surface temperature, termed polar warming amplification (PWA), but also display the widest range of surface temperature projections in this region. The response of the Arctic to increased CO2 modulates the response in tropical and extra-tropical regions through teleconnections in the atmospheric circulation. An increased frequency of extreme precipitation events in the northern mid-latitudes, for example, has been linked to the change in the background equator-to-pole temperature gradient implied by PWA. Understanding the Arctic climate system is therefore important for predicting global climate change. The ice albedo feedback is the primary mechanism driving PWA, however cloud and dynamical feedbacks significantly contribute. These feedback mechanisms, however, do not operate independently. How do clouds respond to variations in sea ice? This critical question is addressed by combining sea ice, cloud, and radiation observations from satellites, including CERES, CloudSAT, CALIPSO, MODIS, and microwave radiometers, to investigate sea ice-cloud interactions at the interannual timescale in the Arctic. Cloud characteristics are strongly tied to the atmospheric dynamic and thermodynamic state. Therefore, the sensitivity of Arctic cloud characteristics, vertical distribution and optical properties, to sea ice anomalies is computed within atmospheric dynamic and thermodynamic regimes. Results indicate that the cloud response to changes in sea ice concentration differs significantly between atmospheric state regimes. This suggests that (1) the atmospheric dynamic and thermodynamic characteristics and (2) the characteristics of the marginal ice zone are important for determining the seasonal forcing by cloud on sea ice variability.

  10. Atmospheric Research 2016 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Platnick, Steven

    2017-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Divisions goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the Earth Sciences Division in atmospheric science research. Figure 1.1 shows the 22-year record of peer-reviewed publications and proposals among the various laboratories.

  11. Multivariate bias adjustment of high-dimensional climate simulations: the Rank Resampling for Distributions and Dependences (R2D2) bias correction

    NASA Astrophysics Data System (ADS)

    Vrac, Mathieu

    2018-06-01

    Climate simulations often suffer from statistical biases with respect to observations or reanalyses. It is therefore common to correct (or adjust) those simulations before using them as inputs into impact models. However, most bias correction (BC) methods are univariate and so do not account for the statistical dependences linking the different locations and/or physical variables of interest. In addition, they are often deterministic, and stochasticity is frequently needed to investigate climate uncertainty and to add constrained randomness to climate simulations that do not possess a realistic variability. This study presents a multivariate method of rank resampling for distributions and dependences (R2D2) bias correction allowing one to adjust not only the univariate distributions but also their inter-variable and inter-site dependence structures. Moreover, the proposed R2D2 method provides some stochasticity since it can generate as many multivariate corrected outputs as the number of statistical dimensions (i.e., number of grid cell × number of climate variables) of the simulations to be corrected. It is based on an assumption of stability in time of the dependence structure - making it possible to deal with a high number of statistical dimensions - that lets the climate model drive the temporal properties and their changes in time. R2D2 is applied on temperature and precipitation reanalysis time series with respect to high-resolution reference data over the southeast of France (1506 grid cell). Bivariate, 1506-dimensional and 3012-dimensional versions of R2D2 are tested over a historical period and compared to a univariate BC. How the different BC methods behave in a climate change context is also illustrated with an application to regional climate simulations over the 2071-2100 period. The results indicate that the 1d-BC basically reproduces the climate model multivariate properties, 2d-R2D2 is only satisfying in the inter-variable context, 1506d-R2D2 strongly improves inter-site properties and 3012d-R2D2 is able to account for both. Applications of the proposed R2D2 method to various climate datasets are relevant for many impact studies. The perspectives of improvements are numerous, such as introducing stochasticity in the dependence itself, questioning its stability assumption, and accounting for temporal properties adjustment while including more physics in the adjustment procedures.

  12. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system

    NASA Astrophysics Data System (ADS)

    Huang, Ronghui; Chen, Jilong; Wang, Lin; Lin, Zhongda

    2012-09-01

    Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.

  13. U.S. Global Climate Change Impacts Report, Overview of Sectors

    NASA Astrophysics Data System (ADS)

    Wuebbles, D.

    2009-12-01

    The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts by sector, including water resources, energy supply and use, transportation, agriculture, ecosystems, human health and society. The resulting findings for the climate change impacts on these sectors are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Widespread climate-related impacts are occurring now and are expected to increase. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Crop and livestock production will be increasingly challenged. Agriculture is considered one of the sectors most adaptable to changes in climate. However, increased heat, pests, water stress, diseases, and weather extremes will pose adaptation challenges for crop and livestock production. Coastal areas are at increasing risk from sea-level rise and storm surge. Sea-level rise and storm surge place many U.S. coastal areas at increasing risk. Energy and transportation infrastructure and other property in coastal areas are very likely to be adversely affected. Threats to human health will increase. Health impacts of climate change are related to heat stress, waterborne diseases, poor air quality, extreme weather events, and diseases transmitted by insects and rodents. Robust public health infrastructure can reduce the potential for negative impacts. Climate change will interact with many social and environmental stresses. Climate change will combine with pollution, population growth, overuse of resources, urbanization, and other social, economic, and environmental stresses to create larger impacts than from any of these factors alone. Thresholds will be crossed, leading to large changes in climate and ecosystems. There are a variety of thresholds in the climate system and ecosystems. These thresholds determine, for example, the presence of sea ice and permafrost, and the survival of species, from fish to insect pests, with implications for society. With further climate change, the crossing of additional thresholds is expected. These and many other findings will be discussed in the presentation.

  14. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    NASA Astrophysics Data System (ADS)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect, reservoirs and flows, albedo feedback, Snowball Earth, climate sensitivity, and model experiment design. Climate calculations are extended to Mars with some modifications to the Earth climate component, and could be used in lessons about the Mars atmosphere, and exploring scenarios of Mars climate history.

  15. Coupling HYDRUS-1D with ArcGIS to estimate pesticide accumulation and leaching risk on a regional basis.

    PubMed

    Anlauf, Ruediger; Schaefer, Jenny; Kajitvichyanukul, Puangrat

    2018-07-01

    HYDRUS-1D is a well-established reliable instrument to simulate water and pesticide transport in soils. It is, however, a point-specific model which is usually used for site-specific simulations. Aim of the investigation was the development of pesticide accumulation and leaching risk maps for regions combining HYDRUS-1D as a model for pesticide fate with regional data in a geographical information system (GIS). It was realized in form of a python tool in ArcGIS. Necessary high resolution local soil information, however, is very often not available. Therefore, worldwide interpolated 250-m-grid soil data (SoilGrids.org) were successfully incorporated to the system. The functionality of the system is shown by examples from Thailand, where example regions that differ in soil properties and climatic conditions were exposed in the model system to pesticides with different properties. A practical application of the system will be the identification of areas where measures to optimize pesticide use should be implemented with priority. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Globus Online: Climate Data Management for Small Teams

    NASA Astrophysics Data System (ADS)

    Ananthakrishnan, R.; Foster, I.

    2013-12-01

    Large and highly distributed climate data demands new approaches to data organization and lifecycle management. We need, in particular, catalogs that can allow researchers to track the location and properties of large numbers of data files, and management tools that can allow researchers to update data properties and organization during their research, move data among different locations, and invoke analysis computations on data--all as easily as if they were working with small numbers of files on their desktop computer. Both catalogs and management tools often need to be able to scale to extremely large quantities of data. When developing solutions to these problems, it is important to distinguish between the needs of (a) large communities, for whom the ability to organize published data is crucial (e.g., by implementing formal data publication processes, assigning DOIs, recording definitive metadata, providing for versioning), and (b) individual researchers and small teams, who are more frequently concerned with tracking the diverse data and computations involved in what highly dynamic and iterative research processes. Key requirements in the latter case include automated data registration and metadata extraction, ease of update, close-to-zero management overheads (e.g., no local software install); and flexible, user-managed sharing support, allowing read and write privileges within small groups. We describe here how new capabilities provided by the Globus Online system address the needs of the latter group of climate scientists, providing for the rapid creation and establishment of lightweight individual- or team-specific catalogs; the definition of logical groupings of data elements, called datasets; the evolution of catalogs, dataset definitions, and associated metadata over time, to track changes in data properties and organization as a result of research processes; and the manipulation of data referenced by catalog entries (e.g., replication of a dataset to a remote location for analysis, sharing of a dataset). Its software-as-a-service ('SaaS') architecture means that these capabilities are provided to users over the network, without a need for local software installation. In addition, Globus Online provides well defined APIs, thus providing a platform that can be leveraged to integrate the capabilities with other portals and applications. We describe early applications of these new Globus Online to climate science. We focus in particular on applications that demonstrate how Globus Online capabilities complement those of the Earth System Grid Federation (ESGF), the premier system for publication and discovery of large community datasets. ESGF already uses Globus Online mechanisms for data download. We demonstrate methods by which the two systems can be further integrated and harmonized, so that for example data collections produced within a small team can be easily published from Globus Online to ESGF for archival storage and broader access--and a Globus Online catalog can be used to organize an individual view of a subset of data held in ESGF.

  17. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support our hypothesis. That is, the change of vegetation in space and time may be better understood when modelling vegetation change as both a dynamic and multivariate process. Therefore, future research will focus on a multivariate dynamical spatio-temporal modelling approach. This ongoing research is performed within the context of the project "Global impacts of hydrological and climatic extremes on vegetation" (project acronym: SAT-EX) which is part of the Belgian research programme for Earth Observation Stereo III.

  18. NOMADS-NOAA Operational Model Archive and Distribution System

    Science.gov Websites

    Forecast Maps Climate Climate Prediction Climate Archives Weather Safety Storm Ready NOAA Central Library (16km) 6 hours grib filter http OpenDAP-alt URMA hourly - http - Climate Models Climate Forecast System Flux Products 6 hours grib filter http - Climate Forecast System 3D Pressure Products 6 hours grib

  19. Roosevelt Island Climate Evolution Project (RICE): A 65 Kyr ice core record of black carbon aerosol deposition to the Ross Ice Shelf, West Antarctica.

    NASA Astrophysics Data System (ADS)

    Edwards, Ross; Bertler, Nancy; Tuohy, Andrea; Neff, Peter; Proemse, Bernedette; Feiteng, Wang; Goodwin, Ian; Hogan, Chad

    2015-04-01

    Emitted by fires, black carbon aerosols (rBC) perturb the atmosphere's physical and chemical properties and are climatically active. Sedimentary charcoal and other paleo-fire records suggest that rBC emissions have varied significantly in the past due to human activity and climate variability. However, few paleo rBC records exist to constrain reconstructions of the past rBC atmospheric distribution and its climate interaction. As part of the international Roosevelt Island Climate Evolution (RICE) project, we have developed an Antarctic rBC ice core record spanning the past ~65 Kyr. The RICE deep ice core was drilled from the Roosevelt Island ice dome in West Antarctica from 2011 to 2013. The high depth resolution (~ 1 cm) record was developed using a single particle intracavity laser-induced incandescence soot photometer (SP2) coupled to an ice core melter system. The rBC record displays sub-annual variability consistent with both austral dry-season and summer biomass burning. The record exhibits significant decadal to millennial-scale variability consistent with known changes in climate. Glacial rBC concentrations were much lower than Holocene concentrations with the exception of several periods of abrupt increases in rBC. The transition from glacial to interglacial rBC concentrations occurred over a much longer time relative to other ice core climate proxies such as water isotopes and suggests . The protracted increase in rBC during the transition may reflected Southern hemisphere ecosystem / fire regime changes in response to hydroclimate and human activity.

  20. Are recent hurricane (Harvey, Irma, Maria) disasters natural?

    NASA Astrophysics Data System (ADS)

    Trenberth, K. E.; Lijing, C.; Jacobs, P.; Abraham, J. P.

    2017-12-01

    Yes and no! Hurricanes are certainly natural, but human-caused climate change is supersizing them, and unbridled growth is exacerbating risk of major damages. The addition of heat-trapping gases to the atmosphere has led to observed increases in upper ocean heat content (OHC). This human-caused increase in OHC supports higher sea surface temperatures (SSTs) and atmospheric moisture. These elevated temperatures and increased moisture availability fuel tropical storms, allowing them to grow larger, longer lasting, and more intense, and with widespread heavy rainfalls. Our preliminary analysis of OHC through the August of 2017 shows not only was it by far the highest on record globally, but it was also the highest on record in the Gulf of Mexico prior to hurricane Harvey occurring. The human influence on the climate is also evident in rising sea levels, which increases risks from storm surges. These climatic changes are taking place against a background of growing habitation along coasts, which further increases the risk storms pose to life and property. This combination of planning choice and climatic change illustrates the tragedy of global warming, as evidenced by Harvey in Houston, Irma in the Caribbean and Florida, and Maria in Puerto Rico. However, future damages and loss of life can be mitigated, by stopping or slowing human-caused climate change, and through proactive planning (e.g., better building codes, increased-capacity drainage systems, shelters, and evacuation plans). We discuss the climatic and planning contexts of the unnatural disasters of the 2017 Atlantic Hurricane season, including novel indices of climate-hurricane influence.

  1. The Longterm Effects of Climate Change in European Shrubland Ecosystems

    NASA Astrophysics Data System (ADS)

    Emmett, B.; Sowerby, A.; Smith, A.; EU Increase-infrastructure Project Team

    2011-12-01

    Shrublands constitute significant and important parts of European landscapes providing a large number of important ecosystem services. Biogeochemical cycles in these ecosystems have gained little attention relative to forests and grassland systems. As climate change progresses the potential feedback from the biosphere to the atmosphere through changes in above and below-ground structure and functioning will become increasingly important. A series of replicate long term climate change experiments have been running for ca. 10 years in contrasting shrubland types across Europe to quantify; (a) the potential changes in carbon sequestration, GHG emissions and nutrient cycling, (b) the links to above and below-ground biodiversity, and (c) implications for water quality, in response to warming and repeated summer drought. Results indicate a relatively high rate of below-ground carbon allocation compared to forest systems and the importance of modifying factors such as past and current management, atmospheric deposition and soil type in determining resilience to change. Unexpectedly, sustained reduction in soil moisture over winter (between drought periods and despite major winter rainfall) was observed in the repeated summer drought treatment, along with a reduction in the maximum water-holding capacity attained. The persistent reduction in soil moisture throughout the year resulted in a year-round increase in soil respiration flux, a response that accelerated over time to 40% above control levels in the hydric, organic-rich UK system. As above-ground biomass, litter production and diversity was remarkably stable, changes in soil fungal communities and soil physical structure appear to be critical in driving changes in soil carbon fluxes in this organic-rich site. Current ecosystem models may under-estimate potential changes in carbon loss in response to climate change if changes in soil biological and physical properties are not included.

  2. The planets of the Solar System

    NASA Technical Reports Server (NTRS)

    Marov, M. Y.

    1986-01-01

    This book is intended both for the lay person and the would-be scientist. The planets are discussed with a comparision of their basic natural features: mechanical characteristics and parameters of movement, surfaces, inner structure, physical properties of the atmosphere and meteorology. Also general problems of planetary cosmogony, thermal history and climatic evolution are considered briefly. The book is based on Soviet and foreign material, data from spacecraft, Earth optical and radio astronomical measurements and also data obtained from theoretical models.

  3. Satellite Imagery Analysis for Nighttime Temperature Inversion Clouds

    NASA Technical Reports Server (NTRS)

    Kawamoto, K.; Minnis, P.; Arduini, R.; Smith, W., Jr.

    2001-01-01

    Clouds play important roles in the climate system. Their optical and microphysical properties, which largely determine their radiative property, need to be investigated. Among several measurement means, satellite remote sensing seems to be the most promising. Since most of the cloud algorithms proposed so far are daytime use which utilizes solar radiation, Minnis et al. (1998) developed a nighttime use one using 3.7-, 11 - and 12-microns channels. Their algorithm, however, has a drawback that is not able to treat temperature inversion cases. We update their algorithm, incorporating new parameterization by Arduini et al. (1999) which is valid for temperature inversion cases. This updated algorithm has been applied to GOES satellite data and reasonable retrieval results were obtained.

  4. Chasing Perfection: Should We Reduce Model Uncertainty in Carbon Cycle-Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.; Lombardozzi, D.; Wieder, W. R.; Lindsay, K. T.; Thomas, R. Q.

    2015-12-01

    Earth system model simulations of the terrestrial carbon (C) cycle show large multi-model spread in the carbon-concentration and carbon-climate feedback parameters. Large differences among models are also seen in their simulation of global vegetation and soil C stocks and other aspects of the C cycle, prompting concern about model uncertainty and our ability to faithfully represent fundamental aspects of the terrestrial C cycle in Earth system models. Benchmarking analyses that compare model simulations with common datasets have been proposed as a means to assess model fidelity with observations, and various model-data fusion techniques have been used to reduce model biases. While such efforts will reduce multi-model spread, they may not help reduce uncertainty (and increase confidence) in projections of the C cycle over the twenty-first century. Many ecological and biogeochemical processes represented in Earth system models are poorly understood at both the site scale and across large regions, where biotic and edaphic heterogeneity are important. Our experience with the Community Land Model (CLM) suggests that large uncertainty in the terrestrial C cycle and its feedback with climate change is an inherent property of biological systems. The challenge of representing life in Earth system models, with the rich diversity of lifeforms and complexity of biological systems, may necessitate a multitude of modeling approaches to capture the range of possible outcomes. Such models should encompass a range of plausible model structures. We distinguish between model parameter uncertainty and model structural uncertainty. Focusing on improved parameter estimates may, in fact, limit progress in assessing model structural uncertainty associated with realistically representing biological processes. Moreover, higher confidence may be achieved through better process representation, but this does not necessarily reduce uncertainty.

  5. New Proxies for Climate change parameters: Foram Culturing and Pteropod Potentials

    NASA Astrophysics Data System (ADS)

    Keul, N.; Schneider, R. R.; Langer, G.; Bijma, J.; Peijnenburg, K. T.

    2017-12-01

    Global climate change is one of the most pressing challenges our society is currently facing and strong efforts are made to simulate future climate conditions. To better validate models that aim at predicting global temperature rise as a consequence of anthropogenic CO2 emissions, accurate atmospheric paleo-CO2 estimates in combination with temperature reconstructions are necessary. Consequently there is a strong need for reliable proxies, allowing reconstruction of climate change. With respect to foraminifera a combination of laboratory experiments and modeling is presented, to show the isolated impact of the different parameters of the carbonate system on trace element composition of their shells. We focus on U/Ca and Sr/Ca ratios, which have recently been established as new proxies reflecting changes in the carbonate system of seawater. While U/Ca correlates with carbonate ion concentration, Sr/Ca is primarily influenced by DIC. The latter is particularly promising since the impact of additional parameters is relatively well constrained and hence, Sr/Ca ratios may allow higher accuracy in carbonate system parameter reconstructions. Furthermore, our results will be discussed on how to advance our knowledge about foraminiferal biomineralization. Pteropods, among the first responders to ocean acidification and warming, are explored as carriers of marine paleoenvironmental signals. In order to characterize the stable isotopic composition of aragonitic pteropod shells and their variation in response to climate change parameters, pteropod shells were collected along a latitudinal transect in the Atlantic Ocean. By comparing shell oxygen isotopic composition to depth changes of the calculated aragonite equilibrium oxygen isotope values, we infer shallow calcification depths for Heliconoides inflatus (75 m), rendering this species a good potential proxy carrier for past variations in surface ocean properties. Furthermore, we demonstrate that indeed, pteropod shells are excellent recorders of climate change, as carbonate ion and temperature in the upper water column have dominant influences on pteropod shell carbon and oxygen isotopic composition. These results, in combination with a wide distribution and high abundance, make H. inflatus, a promising new proxy carrier in paleoceanography.

  6. Sustaining observations of the unsteady ocean circulation.

    PubMed

    Frajka-Williams, E

    2014-09-28

    Sustained observations of ocean properties reveal a global warming trend and rising sea levels. These changes have been documented by traditional ship-based measurements of ocean properties, whereas more recent Argo profiling floats and satellite records permit estimates of ocean changes on a near real-time basis. Through these and newer methods of observing the oceans, scientists are moving from quantifying the 'state of the ocean' to monitoring its variability, and distinguishing the physical processes bringing signals of change. In this paper, I give a brief overview of the UK contributions to the physical oceanographic observations, and the role they have played in the wider global observing systems. While temperature and salinity are the primary measurements of physical oceanography, new transbasin mooring arrays also resolve changes in ocean circulation on daily timescales. Emerging technologies permit routine observations at higher-than-ever spatial resolutions. Following this, I then give a personal perspective on the future of sustained observations. New measurement techniques promise exciting discoveries concerning the role of smaller scales and boundary processes in setting the large-scale ocean circulation and the ocean's role in climate. The challenges now facing the scientific community include sustaining critical observations in the case of funding system changes or shifts in government priorities. These long records will enable a determination of the role and response of the ocean to climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Groundwater in the Boreal Plains: How Climate and Geology Interact to Control Water Table Configurations in a Sub-Humid, Low-Relief Region

    NASA Astrophysics Data System (ADS)

    Hokanson, K. J.; Devito, K.; Mendoza, C. A.

    2017-12-01

    The Boreal Plain (BP) region of Canada, a landscape characterized by low-relief, a sub-humid climate and heterogeneous glacial landforms, is experiencing unprecedented anthropogenic and natural disturbance, including climate change and oil & gas operations. Understanding the controls on and the natural variability of water table position, and subsequently predicting changes in water table position under varying physical and climatic scenarios will become important as water security becomes increasingly threatened. The BP is composed of a mosaic of forestland, wetland, and aquatic land covers that contrast in dominant vegetation cover, evapotranspiration, and soil storage that, in turn, influence water table configurations. Additionally, these land-covers overlie heterogeneous glacial landforms with large contrasts in storage and hydraulic properties which, when coupled with wet-dry climate cycles, result in complex water table distributions in time and space. Several forestland-wetland-pond complexes were selected at the Utikuma Research Study Area (URSA) over three distinct surficial geologic materials (glacial fluvial outwash, stagnant ice moraine, lacustrine clay plain) to explore the roles of climate (cumulative departure from the long term yearly mean precipitation), geology, topographic position, and land cover on water table configurations over 15 years (2002 - 2016). In the absence of large groundwater flow systems, local relief and shallow low conductivity substrates promote the formation of near-surface water tables that are less susceptible to climate variation, regardless of topography. Furthermore, in areas of increased storage, wet and dry climate conditions can result in appreciably different water table configurations over time, ranging from mounds to hydraulic depressions, depending on the arrangement of land-covers, dominant surficial geology, and substrate layering.

  8. An isoline separating relatively warm from relatively cool wintertime forest surface temperatures for the southeastern United States

    NASA Astrophysics Data System (ADS)

    Wickham, J.; Wade, T. G.; Riitters, K. H.

    2014-09-01

    Forest-oriented climate mitigation policies promote forestation as a means to increase uptake of atmospheric carbon to counteract global warming. Some have pointed out that a carbon-centric forest policy may be overstated because it discounts biophysical aspects of the influence of forests on climate. In extra-tropical regions, many climate models have shown that forests tend to be warmer than grasslands and croplands because forest albedos tend to be lower than non-forest albedos. A lower forest albedo results in higher absorption of solar radiation and increased sensible warming that is not offset by the cooling effects of carbon uptake in extra-tropical regions. However, comparison of forest warming potential in the context of climate models is based on a coarse classification system of tropical, temperate, and boreal. There is considerable variation in climate within the broad latitudinal zonation of tropical, temperate, and boreal, and the relationship between biophysical (albedo) and biogeochemical (carbon uptake) mechanisms may not be constant within these broad zones. We compared wintertime forest and non-forest surface temperatures for the southeastern United States and found that forest surface temperatures shifted from being warmer than non-forest surface temperatures north of approximately 36°N to cooler south of 36°N. Our results suggest that the biophysical aspects of forests' influence on climate reinforce the biogeochemical aspects of forests' influence on climate south of 36°N. South of 36°N, both biophysical and biogeochemical properties of forests appear to support forestation as a climate mitigation policy. We also provide some quantitative evidence that evergreen forests tend to have cooler wintertime surface temperatures than deciduous forests that may be attributable to greater evapotranspiration rates.

  9. Landscape structure and climate influences on hydrologic response

    NASA Astrophysics Data System (ADS)

    Nippgen, Fabian; McGlynn, Brian L.; Marshall, Lucy A.; Emanuel, Ryan E.

    2011-12-01

    Climate variability and catchment structure (topography, geology, vegetation) have a significant influence on the timing and quantity of water discharged from mountainous catchments. How these factors combine to influence runoff dynamics is poorly understood. In this study we linked differences in hydrologic response across catchments and across years to metrics of landscape structure and climate using a simple transfer function rainfall-runoff modeling approach. A transfer function represents the internal catchment properties that convert a measured input (rainfall/snowmelt) into an output (streamflow). We examined modeled mean response time, defined as the average time that it takes for a water input to leave the catchment outlet from the moment it reaches the ground surface. We combined 12 years of precipitation and streamflow data from seven catchments in the Tenderfoot Creek Experimental Forest (Little Belt Mountains, southwestern Montana) with landscape analyses to quantify the first-order controls on mean response times. Differences between responses across the seven catchments were related to the spatial variability in catchment structure (e.g., slope, flowpath lengths, tree height). Annual variability was largely a function of maximum snow water equivalent. Catchment averaged runoff ratios exhibited strong correlations with mean response time while annually averaged runoff ratios were not related to climatic metrics. These results suggest that runoff ratios in snowmelt dominated systems are mainly controlled by topography and not by climatic variability. This approach provides a simple tool for assessing differences in hydrologic response across diverse watersheds and climate conditions.

  10. Runoff and recharge processes under a strong semi-arid climatic gradient

    NASA Astrophysics Data System (ADS)

    Ries, F.; Lange, J.; Sauter, M.; Schmidt, S.

    2012-04-01

    Hydrological processes in semi-arid environments are highly dynamic. In the eastern slopes of the West Bank these dynamics are even intensified due to the predominant karst morphology, the strong climatic gradient (150-700 mm mean annual precipitation) and the small-scale variability of land use, topography and soil cover. The region is characterized by a scarcity in water resources and a high population growth. Therefore detailed information about the temporal and spatial distribution, amount and variability of available water resources is required. Providing this information by the use of hydrological models is challenging, because available data are extremely limited. From 2007 on, the research area of Wadi Auja, northeast of Jerusalem, has been instrumented with a dense monitoring network. Rainfall distribution and climatic parameters as well as the hydrological reaction of the system along the strong semi-arid climatic gradient are measured on the plot (soil moisture), hillslope (runoff generation) and catchment scale (spring discharge, groundwater level, flood runoff). First data from soil moisture plots situated along the climatic gradient are presented. They allow insights into physical properties of the soil layer and its impact on runoff and recharge processes under different climatic conditions. From continuous soil moisture profiles, soil water balances are calculated for singe events and entire seasons. These data will be used to parameterize the distributed hydrological model TRAIN-ZIN, which has been successfully applied in several studies in the Jordan River Basin.

  11. Challenges of coordinating global climate observations - Role of satellites in climate monitoring

    NASA Astrophysics Data System (ADS)

    Richter, C.

    2017-12-01

    Global observation of the Earth's atmosphere, ocean and land is essential for identifying climate variability and change, and for understanding their causes. Observation also provides data that are fundamental for evaluating, refining and initializing the models that predict how the climate system will vary over the months and seasons ahead, and that project how climate will change in the longer term under different assumptions concerning greenhouse gas emissions and other human influences. Long-term observational records have enabled the Intergovernmental Panel on Climate Change to deliver the message that warming of the global climate system is unequivocal. As the Earth's climate enters a new era, in which it is forced by human activities, as well as natural processes, it is critically important to sustain an observing system capable of detecting and documenting global climate variability and change over long periods of time. High-quality climate observations are required to assess the present state of the ocean, cryosphere, atmosphere and land and place them in context with the past. The global observing system for climate is not a single, centrally managed observing system. Rather, it is a composite "system of systems" comprising a set of climate-relevant observing, data-management, product-generation and data-distribution systems. Data from satellites underpin many of the Essential Climate Variables(ECVs), and their historic and contemporary archives are a key part of the global climate observing system. In general, the ECVs will be provided in the form of climate data records that are created by processing and archiving time series of satellite and in situ measurements. Early satellite data records are very valuable because they provide unique observations in many regions which were not otherwise observed during the 1970s and which can be assimilated in atmospheric reanalyses and so extend the satellite climate data records back in time.

  12. Simulation of Dynamic Soil Crusting Processes and Vegetative Feedbacks in Semi-Arid Regions

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bras, R. L.

    2009-12-01

    Many soils, especially those in arid and semi-arid regions, develop compacted surface layers with hydrologic properties different to those of the underlying layers. These layers, referred to as soil crusts when dry and soil seals when wet, may be only a few millimeters thick but can have a significant impact by altering the partitioning of rainfall, increasing surface runoff and reducing infiltration. This reduces the quantity of water entering the root zone, limiting the amount of water available for primary productivity, while increasing erosion and negatively impacting seedling establishment and growth. Vegetation significantly alters soil hydraulic properties in the immediate vicinity of a vegetation patch. Root action has been shown to create macropores, increasing infiltration capacity around the base of vegetation. Shading protects the soil from evaporation and the formation of soil seals/crusts. Experiments have confirmed large variations in infiltration rates in below canopy and bare soil patches. It is believed that a positive feedback may occur between seals/crusts and vegetation patches resulting in systems that exhibit ‘islands of fertility’. The bare soil patches act to increase the micro-catchment area of the vegetation patch, thereby collecting moisture from a far greater area than the immediate footprint of its rooting system. Vegetation then alters the soil conditions directly beneath it, allowing for increased infiltration of this extra moisture. A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was used to explore the role of dynamic soil properties on hydrologic and energy fluxes. Rather than assigning the hydraulic properties of the surface soils a priori, soil seals/crusts were allowed to develop in the model depending on vegetation cover, soil type and rainfall intensity. The effects of plant shading and root action on infiltration in the immediate vicinity of vegetation patches were also included. These changes introduced both spatial and temporal heterogeneity into soil hydraulic properties and allowed for simulation of plant-soil feedbacks. The semi-arid Lucky Hills basin in the Walnut Gulch Experimental Watershed in Arizona was used as a case study to investigate the role of dynamic soil properties, which occur at patch scales, on the larger basin scale hydrologic and energy fluxes (sensible and latent heats, net radiation and rainfall partitioning). The model was used to test the contribution of dynamic soil properties to the establishment of a positive feedback between vegetation and soils that leads to the ‘islands of fertility’ that have been observed in many semi-arid systems. The model was also used to investigate the role that plant-soil interactions play in providing both stability to the larger system during periods of consistent climate forcing and some resilience to disturbance during climate perturbations.

  13. Modelling the influence of climate change on the chemical concentrations in the Baltic Sea region with the POPCYCLING-Baltic model.

    PubMed

    Kong, Deguo; MacLeod, Matthew; Cousins, Ian T

    2014-09-01

    The effect of projected future changes in temperature, wind speed, precipitation and particulate organic carbon on concentrations of persistent organic chemicals in the Baltic Sea regional environment is evaluated using the POPCYCLING-Baltic multimedia chemical fate model. Steady-state concentrations of hypothetical perfectly persistent chemicals with property combinations that encompass the entire plausible range for non-ionizing organic substances are modelled under two alternative climate change scenarios (IPCC A2 and B2) and compared to a baseline climate scenario. The contributions of individual climate parameters are deduced in model experiments in which only one of the four parameters is changed from the baseline scenario. Of the four selected climate parameters, temperature is the most influential, and wind speed is least. Chemical concentrations in the Baltic region are projected to change by factors of up to 3.0 compared to the baseline climate scenario. For chemicals with property combinations similar to legacy persistent organic pollutants listed by the Stockholm Convention, modelled concentration ratios between two climate change scenarios and the baseline scenario range from factors of 0.5 to 2.0. This study is a first step toward quantitatively assessing climate change-induced changes in the environmental concentrations of persistent organic chemicals in the Baltic Sea region. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effects of model layer simplification using composite hydraulic properties

    USGS Publications Warehouse

    Kuniansky, Eve L.; Sepúlveda, Nicasio; Elango, Lakshmanan

    2011-01-01

    Groundwater provides much of the fresh drinking water to more than 1.5 billion people in the world (Clarke et al., 1996) and in the United States more that 50 percent of citizens rely on groundwater for drinking water (Solley et al., 1998). As aquifer systems are developed for water supply, the hydrologic system is changed. Water pumped from the aquifer system initially can come from some combination of inducing more recharge, water permanently removed from storage, and decreased groundwater discharge. Once a new equilibrium is achieved, all of the pumpage must come from induced recharge and decreased discharge (Alley et al., 1999). Further development of groundwater resources may result in reductions of surface water runoff and base flows. Competing demands for groundwater resources require good management. Adequate data to characterize the aquifers and confining units of the system, like hydrologic boundaries, groundwater levels, streamflow, and groundwater pumping and climatic data for recharge estimation are to be collected in order to quantify the effects of groundwater withdrawals on wetlands, streams, and lakes. Once collected, three-dimensional (3D) groundwater flow models can be developed and calibrated and used as a tool for groundwater management. The main hydraulic parameters that comprise a regional or subregional model of an aquifer system are the hydraulic conductivity and storage properties of the aquifers and confining units (hydrogeologic units) that confine the system. Many 3D groundwater flow models used to help assess groundwater/surface-water interactions require calculating ?effective? or composite hydraulic properties of multilayered lithologic units within a hydrogeologic unit. The calculation of composite hydraulic properties stems from the need to characterize groundwater flow using coarse model layering in order to reduce simulation times while still representing the flow through the system accurately. The accuracy of flow models with simplified layering and hydraulic properties will depend on the effectiveness of the methods used to determine composite hydraulic properties from a number of lithologic units.

  15. Significant Features Found in Simulated Tropical Climates Using a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.

    2000-01-01

    Cloud resolving model (CRM) has widely been used in recent years for simulations involving studies of radiative-convective systems and their role in determining the tropical regional climate. The growing popularity of CRMs usage can be credited for their inclusion of crucial and realistic features such like explicit cloud-scale dynamics, sophisticated microphysical processes, and explicit radiative-convective interaction. For example, by using a two-dimensional cloud model with radiative-convective interaction process, found a QBO-like (quasibiennial oscillation) oscillation of mean zonal wind that affected the convective system. Accordingly, the model-generated rain band corresponding to convective activity propagated in the direction of the low-level zonal mean winds; however, the precipitation became "localized" (limited within a small portion of the domain) as zonal mean winds were removed. Two other CRM simulations by S94 and Grabowski et al. (1996, hereafter G96), respectively that produced distinctive quasi-equilibrium ("climate") states on both tropical water and energy, i.e., a cold/dry state in S94 and a warm/wet state in G96, have later been investigated by T99. They found that the pattern of the imposed large-scale horizontal wind and the magnitude of the imposed surface fluxes were the two crucial mechanisms in determining the tropical climate states. The warm/wet climate was found associated with prescribed strong surface winds, or with maintained strong vertical wind shears that well-organized convective systems prevailed. On the other hand, the cold/dry climate was produced due to imposed weak surface winds and weak wind shears throughout a vertically mixing process by convection. In this study, considered as a sequel of T99, the model simulations to be presented are generally similar to those of T99 (where a detailed model setup can be found), except for a more detailed discussion along with few more simulated experiments. There are twelve major experiments chosen for presentations that are introduced in section two. Several significant feature analyses regarding the rainfall properties, CAPE (Convective Available Potential Energy), cloud-scale eddies, the stability issue, the convective system propagation, relative humidity, and the effect on the quasi-equilibrium state by the imposed constant. radiation or constant surface fluxes, and etc. will be presented in the meeting. However, only three of the subjects are discussed in section three. A brief summary is concluded in the end section.

  16. [On the biological properties of fragrance compounds and essential oils].

    PubMed

    Buchbauer, Gerhard

    2004-11-01

    In the present review the physiological and/or pharmacological properties of essential oils and of single fragrance compounds are discussed. Essential oils are known and have been used since ancient times as natural medicines. As natural products essential oils are dependent on climate and their composition varies according to conditions of soil, to solar irradiation, to harvest time, to production methods, to storage conditions and similar facts which are discussed in chapter 2 of this review. The next chapters deal with the therapeutic use of essential oils in treating diseases, disorders or ailments of the nervous system, against cancer and as penetration enhancers. For space-saving reasons, however, the manifold antimicrobial and antifungal properties of these natural products have been left out. In the last chapter, the pros and cons in the use of essential oils in therapy are also discussed.

  17. Climate and atmospheric modeling studies. Climate applications of Earth and planetary observations. Chemistry of Earth and environment

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The research conducted during the past year in the climate and atmospheric modeling programs concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols and the solar 'constant' on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree x 1 degree resolution has been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method was developed to simulate the hydraulic behavior of soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water (or colored water) throughout the planet. Each isotope or colored water source is a fraction of the climate model's water. It participates in condensation and surface evaporation at different fractionation rates and is transported by the dynamics. A major benefit of this project has been to improve the programming techniques and physical simulation of the water vapor budget of the climate model.

  18. Effects of climate, vegetation, and soils on consumptive water use and ground-water recharge to the Central Midwest Regional aquifer system, Mid-continent United States

    USGS Publications Warehouse

    Dugan, J.T.; Peckenpaugh, J.M.

    1985-01-01

    The Central Midwest aquifer system, in parts of Arkansas, Colorado, Kansas, Missouri, Nebraska, New Mexico, South Dakota, and Texas, is a region of great hydrologic diversity. This study examines the relationships between climate, vegetation, and soil that affect consumptive water use and recharge to the groundwater system. Computations of potential recharge and consumptive water use were restricted to those areas where the aquifers under consideration were the immediate underlying system. The principal method of analysis utilized a soil moisture computer model. This model requires four types of input: (1) hydrologic properties of the soils, (2) vegetation types, (3) monthly precipitation, and (4) computed monthly potential evapotranspiration (PET) values. The climatic factors that affect consumptive water use and recharge were extensively mapped for the study area. Nearly all the pertinent climatic elements confirmed the extreme diversity of the region. PET and those factors affecting it--solar radiation, temperature, and humidity--showed large regional differences; mean annual PET ranged from 36 to 70 inches in the study area. The seasonal climatic patterns indicate significant regional differences in those factors affecting seasonal consumptive water use and recharge. In the southern and western parts of the study area, consumptive water use occurred nearly the entire year; whereas, in northern parts it occurred primarily during the warm season (April through September). Results of the soil-moisture program, which added the effects of vegetation and the hydrologic characteristics of the soil to computed PET values, confirmed the significant regional differences in consumptive water use or actual evapotranspiration (AET) and potential groundwater recharge. Under two different vegetative conditions--the 1978 conditions and pre-agricultural conditions consisting of only grassland and woodland--overall differences in recharge were minimal. Mean annual recharge under both conditions averaged slightly more than 4.5 inches for the entire study area, but ranged from less than 0.10 inches in eastern Colorado to slightly more than 15 inches in Arkansas. (Lantz-PTT)

  19. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties

    NASA Astrophysics Data System (ADS)

    Roderick, Michael L.; Farquhar, Graham D.

    2011-12-01

    We use the Budyko framework to calculate catchment-scale evapotranspiration (E) and runoff (Q) as a function of two climatic factors, precipitation (P) and evaporative demand (Eo = 0.75 times the pan evaporation rate), and a third parameter that encodes the catchment properties (n) and modifies how P is partitioned between E and Q. This simple theory accurately predicted the long-term evapotranspiration (E) and runoff (Q) for the Murray-Darling Basin (MDB) in southeast Australia. We extend the theory by developing a simple and novel analytical expression for the effects on E and Q of small perturbations in P, Eo, and n. The theory predicts that a 10% change in P, with all else constant, would result in a 26% change in Q in the MDB. Future climate scenarios (2070-2099) derived using Intergovernmental Panel on Climate Change AR4 climate model output highlight the diversity of projections for P (±30%) with a correspondingly large range in projections for Q (±80%) in the MDB. We conclude with a qualitative description about the impact of changes in catchment properties on water availability and focus on the interaction between vegetation change, increasing atmospheric [CO2], and fire frequency. We conclude that the modern version of the Budyko framework is a useful tool for making simple and transparent estimates of changes in water availability.

  20. Future integrated aquifer vulnerability assessment considering land use / land cover and climate change using DRASTIC and SWAT

    NASA Astrophysics Data System (ADS)

    Jang, W.; Engel, B.; Chaubey, I.

    2015-12-01

    Climate change causes significant changes to temperature regimes and precipitation patterns across the world. Such alterations in climate pose serious risks for not only inland freshwater ecosystems but also groundwater systems, and may adversely affect numerous critical services they provide to humans. All groundwater results from precipitation, and precipitation is affected by climate change. Climate change is also influenced by land use / land cover (LULC) change and vice versa. According to Intergovernmental Panel on Climate Change (IPCC) reports, climate change is caused by global warming which is generated by the increase of greenhouse gas (GHG) emissions in the atmosphere. LULC change is a major driving factor causing an increase in GHG emissions. LULC change data (years 2006-2100) will be produced by the Land Transformation Model (LTM) which simulates spatial patterns of LULC change over time. MIROC5 (years 2006-2100) will be obtained considering GCMs and ensemble characteristics such as resolution and trend of temperature and precipitation which is a consistency check with observed data from local weather stations and historical data from GCMs output data. Thus, MIROC5 will be used to account for future climate change scenarios and relationship between future climate change and alteration of groundwater quality in this study. For efficient groundwater resources management, integrated aquifer vulnerability assessments (= intrinsic vulnerability + hazard potential assessment) are required. DRASTIC will be used to evaluate intrinsic vulnerability, and aquifer hazard potential will be evaluated by Soil and Water Assessment Tool (SWAT) which can simulate pollution potential from surface and transport properties of contaminants. Thus, for effective integrated aquifer vulnerability assessment for LULC and climate change in the Midwestern United States, future projected LULC and climate data from the LTM and GCMs will be incorporated with DRASTIC and SWAT. It is hypothesized that: 1) long-term future hydrology and water quality in surface and subsurface drainage areas will be influenced by LULC and climate change, and 2) this approach will be useful to identify specific areas contributing the most pollutants to aquifers due to LULC and climate change.

  1. The climatic and hydrologic history of southern Nevada during the late Quaternary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forester, R.M.; Bradbury, J.P.; Carter, C.

    Understanding climate change during the expected life span of a potential high-level nuclear-waste repository at Yucca Mountain, Nevada, requires estimates of future climate boundary conditions. These climate boundary conditions are governed by changes in the Earth's orbital properties (eccentricity, obliquity, precession) that determine insolation. Subcycles of the 400,000 year insolation-controlled climate cycles last approximately 100,000 years. This report describes the changes which have occurred in the climatic history of Southern Nevada during the past 400,000 years. These changes provide a basis for understanding the changes which may occur during the long-term future in this area.

  2. Empirical Relationships Between Optical Properties and Equivalent Diameters of Fractal Soot Aggregates at 550 Nm Wavelength.

    NASA Technical Reports Server (NTRS)

    Pandey, Apoorva; Chakrabarty, Rajan K.; Liu, Li; Mishchenko, Michael I.

    2015-01-01

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numericallyexact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships.

  3. The impact of 850,000 years of climate changes on the structure and dynamics of mammal food webs.

    PubMed

    Nenzén, Hedvig K; Montoya, Daniel; Varela, Sara

    2014-01-01

    Most evidence of climate change impacts on food webs comes from modern studies and little is known about how ancient food webs have responded to climate changes in the past. Here, we integrate fossil evidence from 71 fossil sites, body-size relationships and actualism to reconstruct food webs for six large mammal communities that inhabited the Iberian Peninsula at different times during the Quaternary. We quantify the long-term dynamics of these food webs and study how their structure changed across the Quaternary, a period for which fossil data and climate changes are well known. Extinction, immigration and turnover rates were correlated with climate changes in the last 850 kyr. Yet, we find differences in the dynamics and structural properties of Pleistocene versus Holocene mammal communities that are not associated with glacial-interglacial cycles. Although all Quaternary mammal food webs were highly nested and robust to secondary extinctions, general food web properties changed in the Holocene. These results highlight the ability of communities to re-organize with the arrival of phylogenetically similar species without major structural changes, and the impact of climate change and super-generalist species (humans) on Iberian Holocene mammal communities.

  4. The Impact of 850,000 Years of Climate Changes on the Structure and Dynamics of Mammal Food Webs

    PubMed Central

    Nenzén, Hedvig K.; Montoya, Daniel; Varela, Sara

    2014-01-01

    Most evidence of climate change impacts on food webs comes from modern studies and little is known about how ancient food webs have responded to climate changes in the past. Here, we integrate fossil evidence from 71 fossil sites, body-size relationships and actualism to reconstruct food webs for six large mammal communities that inhabited the Iberian Peninsula at different times during the Quaternary. We quantify the long-term dynamics of these food webs and study how their structure changed across the Quaternary, a period for which fossil data and climate changes are well known. Extinction, immigration and turnover rates were correlated with climate changes in the last 850 kyr. Yet, we find differences in the dynamics and structural properties of Pleistocene versus Holocene mammal communities that are not associated with glacial-interglacial cycles. Although all Quaternary mammal food webs were highly nested and robust to secondary extinctions, general food web properties changed in the Holocene. These results highlight the ability of communities to re-organize with the arrival of phylogenetically similar species without major structural changes, and the impact of climate change and super-generalist species (humans) on Iberian Holocene mammal communities. PMID:25207754

  5. Deep Learning @15 Petaflops/second: Semi-supervised pattern detection for 15 Terabytes of climate data

    NASA Astrophysics Data System (ADS)

    Collins, W. D.; Wehner, M. F.; Prabhat, M.; Kurth, T.; Satish, N.; Mitliagkas, I.; Zhang, J.; Racah, E.; Patwary, M.; Sundaram, N.; Dubey, P.

    2017-12-01

    Anthropogenically-forced climate changes in the number and character of extreme storms have the potential to significantly impact human and natural systems. Current high-performance computing enables multidecadal simulations with global climate models at resolutions of 25km or finer. Such high-resolution simulations are demonstrably superior in simulating extreme storms such as tropical cyclones than the coarser simulations available in the Coupled Model Intercomparison Project (CMIP5) and provide the capability to more credibly project future changes in extreme storm statistics and properties. The identification and tracking of storms in the voluminous model output is very challenging as it is impractical to manually identify storms due to the enormous size of the datasets, and therefore automated procedures are used. Traditionally, these procedures are based on a multi-variate set of physical conditions based on known properties of the class of storms in question. In recent years, we have successfully demonstrated that Deep Learning produces state of the art results for pattern detection in climate data. We have developed supervised and semi-supervised convolutional architectures for detecting and localizing tropical cyclones, extra-tropical cyclones and atmospheric rivers in simulation data. One of the primary challenges in the applicability of Deep Learning to climate data is in the expensive training phase. Typical networks may take days to converge on 10GB-sized datasets, while the climate science community has ready access to O(10 TB)-O(PB) sized datasets. In this work, we present the most scalable implementation of Deep Learning to date. We successfully scale a unified, semi-supervised convolutional architecture on all of the Cori Phase II supercomputer at NERSC. We use IntelCaffe, MKL and MLSL libraries. We have optimized single node MKL libraries to obtain 1-4 TF on single KNL nodes. We have developed a novel hybrid parameter update strategy to improve scaling to 9600 KNL nodes (600,000 cores). We obtain 15PF performance over the course of the training run; setting a new watermark for the HPC and Deep Learning communities. This talk will share insights on how to obtain this extreme level of performance, current gaps/challenges and implications for the climate science community.

  6. Climate change impacts on groundwater recharge- uncertainty, shortcomings, and the way forward?

    NASA Astrophysics Data System (ADS)

    Holman, I. P.

    2006-06-01

    An integrated approach to assessing the regional impacts of climate and socio-economic change on groundwater recharge is described from East Anglia, UK. Many factors affect future groundwater recharge including changed precipitation and temperature regimes, coastal flooding, urbanization, woodland establishment, and changes in cropping and rotations. Important sources of uncertainty and shortcomings in recharge estimation are discussed in the light of the results. The uncertainty in, and importance of, socio-economic scenarios in exploring the consequences of unknown future changes are highlighted. Changes to soil properties are occurring over a range of time scales, such that the soils of the future may not have the same infiltration properties as existing soils. The potential implications involved in assuming unchanging soil properties are described. To focus on the direct impacts of climate change is to neglect the potentially important role of policy, societal values and economic processes in shaping the landscape above aquifers. If the likely consequences of future changes of groundwater recharge, resulting from both climate and socio-economic change, are to be assessed, hydrogeologists must increasingly work with researchers from other disciplines, such as socio-economists, agricultural modellers and soil scientists.

  7. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    NASA Astrophysics Data System (ADS)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to evaluate the tomato crop adaptability to future climate. To this purpose, for several tomato cultivars, threshold values of their yield responses to soil water availability were determined (data from scientific literature). Cultivars' threshold values were evaluated, in all soil units, against the indicators' values, for irrigation levels with different ΔT/I. Less water intensive cultivars and irrigation volumes that optimize transpiration (and yield) could thus be identified in both climate scenarios, and irrigation management scenarios were determined taking into account soils' hydrological properties, crop biodiversity, and efficient use of water resource. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: climate change, adaptation, simulation models, deficit irrigation, water resource efficiency, SWAP

  8. A generalized predictive model for direct gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Givoni, B.

    In the correlational model for direct gain developed by the Los Alamos National Laboratory, a list of constants applicable to different types of buildings or passive solar systems was specified separately for each type. In its original form, the model was applicable only to buildings similar in their heat capacity, type of glazing, or night insulation to the types specified by the model. While maintaining the general form of the predictive equations, the new model, the predictive model for direct gain (PMDG), replaces the constants with functions dependent upon the thermal properties of the building, or the components of themore » solar system, or both. By this transformation, the LANL model for direct gain becomes a generalized one. The new model predicts the performance of buildings heated by direct gain with any heat capacity, glazing, and night insulation as functions of their thermophysical properties and climatic conditions.« less

  9. Vegetation-climate feedback causes reduced precipitation in CMIP5 regional Earth system model simulation over Africa

    NASA Astrophysics Data System (ADS)

    Wu, Minchao; Smith, Benjamin; Schurgers, Guy; Lindström, Joe; Rummukainen, Markku; Samuelsson, Patrick

    2013-04-01

    Terrestrial ecosystems have been demonstrated to play a significant role within the climate system, amplifying or dampening climate change via biogeophysical and biogeochemical exchange with the atmosphere and vice versa (Cox et al. 2000; Betts et al. 2004). Africa is particularly vulnerable to climate change and studies of vegetation-climate feedback mechanisms on Africa are still limited. Our study is the first application of A coupled Earth system model at regional scale and resolution over Africa. We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feedback to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feedback to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and the atmosphere. In the equatorial rainforest stronghold region of central Africa, a feedback syndrome characterised by reduced plant production and LAI, a dominance shift from tropical trees to grasses, reduced soil water and reduced rainfall was identified. The likely underlying mechanism was a decline in evaporative water recycling associated with sparser vegetation cover, reminiscent of Earth system model studies in which a similar feedback mechanism was simulated to force dieback of tropical rainforest and reduced precipitation over the Amazon Basin (Cox et al. 2000; Betts et al. 2004; Malhi et al. 2009). Opposite effects are seen in southern Senegal, southern Mali, northern Guinea and Guinea-Bissau, positive evapotranspiration feedback enhancing the cover of trees in forest and savannah, mitigating warming and promoting local moisture recycling as rainfall. We reveal that LAI-driven evapotranspiration feedback may reduced rainfall in parts of Africa, vegetation-climate feedbacks may significantly impact the magnitude and character of simulated changes in climate as well as vegetation and ecosystems in future scenario studies of this region. They should be accounted for in future studies of climate change and its impacts on Africa. Keywords: vegetation-climate feedback, regional climate model, evapotranspiration, CORDEX. References: Betts, R.A., Cox, P.M., Collins, M., Harris, P.P., Huntingford, C. & Jones, C.D. 2004. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology 78: 157-175. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A. & Totterdell, I.J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184-187. Samuelsson, P., Jones, C., Wilĺen, U., Gollvik, S., Hansson, U. and coauthors. 2011. The Rossby Centre Regional Climate Model RCA3:Model description and performance. Tellus 63A, 4-23. Smith, B., Prentice, I. C. and Sykes, M. T. 2001. Representation of vegetation dynamics in modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecol. Biogeog. 10, 621-637 Smith, B., Samuelsson, P., Wramneby, A. & Rummukainen, M. 2011. A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications. Tellus 63A: 87-106.

  10. Aerosol Direct Radiative Effects Over the Northwest Atlantic, Northwest Pacific, and North Indian Oceans: Estimates Based on In-situ Chemical and Optical Measurements and Chemical Transport Modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J. A.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2005-12-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean during INDOEX, the Northwest Pacific Ocean during ACE-Asia, and the Northwest Atlantic Ocean during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth, and direct radiative effect of aerosols (change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing.

  11. Comparison of the impacts of urban development and climate change on exposing European cities to pluvial flooding

    NASA Astrophysics Data System (ADS)

    Skougaard Kaspersen, Per; Høegh Ravn, Nanna; Arnbjerg-Nielsen, Karsten; Madsen, Henrik; Drews, Martin

    2017-08-01

    The economic and human consequences of extreme precipitation and the related flooding of urban areas have increased rapidly over the past decades. Some of the key factors that affect the risks to urban areas include climate change, the densification of assets within cities and the general expansion of urban areas. In this paper, we examine and compare quantitatively the impact of climate change and recent urban development patterns on the exposure of four European cities to pluvial flooding. In particular, we investigate the degree to which pluvial floods of varying severity and in different geographical locations are influenced to the same extent by changes in urban land cover and climate change. We have selected the European cities of Odense, Vienna, Strasbourg and Nice for analyses to represent different climatic conditions, trends in urban development and topographical characteristics. We develop and apply a combined remote-sensing and flood-modelling approach to simulate the extent of pluvial flooding for a range of extreme precipitation events for historical (1984) and present-day (2014) urban land cover and for two climate-change scenarios (i.e. representative concentration pathways, RCP 4.5 and RCP 8.5). Changes in urban land cover are estimated using Landsat satellite imagery for the period 1984-2014. We combine the remote-sensing analyses with regionally downscaled estimates of precipitation extremes of current and expected future climate to enable 2-D overland flow simulations and flood-hazard assessments. The individual and combined impacts of urban development and climate change are quantified by examining the variations in flooding between the different simulations along with the corresponding uncertainties. In addition, two different assumptions are examined with regards to the development of the capacity of the urban drainage system in response to urban development and climate change. In the stationary approach, the capacity resembles present-day design, while it is updated in the evolutionary approach to correspond to changes in imperviousness and precipitation intensities due to urban development and climate change respectively. For all four cities, we find an increase in flood exposure corresponding to an observed absolute growth in impervious surfaces of 7-12 % during the past 30 years of urban development. Similarly, we find that climate change increases exposure to pluvial flooding under both the RCP 4.5 and RCP 8.5 scenarios. The relative importance of urban development and climate change on flood exposure varies considerably between the cities. For Odense, the impact of urban development is comparable to that of climate change under an RCP 8.5 scenario (2081-2100), while for Vienna and Strasbourg it is comparable to the impacts of an RCP 4.5 scenario. For Nice, climate change dominates urban development as the primary driver of changes in exposure to flooding. The variation between geographical locations is caused by differences in soil infiltration properties, historical trends in urban development and the projected regional impacts of climate change on extreme precipitation. Developing the capacity of the urban drainage system in relation to urban development is found to be an effective adaptation measure as it fully compensates for the increase in run-off caused by additional sealed surfaces. On the other hand, updating the drainage system according to changes in precipitation intensities caused by climate change only marginally reduces flooding for the most extreme events.

  12. GLACIER MONITORING SYSTEM IN COLOMBIA - complementing glaciological measurements with laser-scanning and ground-penetrating radar surveys

    NASA Astrophysics Data System (ADS)

    Ceballos, Jorge; Micheletti, Natan; Rabatel, Antoine; Mölg, Nico; Zemp, Michael

    2015-04-01

    Colombia (South America) has six small glaciers (total glacierized area of 45 Km2); their geographical location, close to zero latitude, makes them very sensitive to climate changes. An extensive monitoring program is being performed since 2006 on two glaciers, with international cooperation supports. This presentation summarizes the results of glacier changes in Colombia and includes the latest results obtained within the CATCOS Project - Phase 1 (Capacity Building and Twinning for Climate Observing Systems) signed between Colombia and Switzerland, and within the Joint Mixte Laboratory GREAT-ICE (IRD - France), with the application of LiDAR technology and GPR-based ice thickness measurements at Conejeras Glacier. Conejeras Glacier (Lat. N. 4° 48' 56"; Long. W. 75° 22' 22"; Alt. Max. 4915m.; Alt. Min. 4730m. Area 0.2 Km2) is located on the north-western side of Santa Isabel Volcano. This glacier belongs to global glacier monitoring network of the World Glacier Monitoring Service (WGMS-ID: 2721). The surface mass balance is calculated monthly using the direct glaciological method. Between April 2006 and May 2014, Conejeras Glacier showed a cumulative loss of -21 m w.e. The CATCOS Project allowed to improve the glacier monitoring system in Colombia with two main actions: (1) a terrestrial laser scanner survey (RIEGL VZ-6000 terrestrial laser scanner, property of Universities of Lausanne and Fribourg); and (2) ice thickness measurements (Blue System Integration Ltd. Ice Penetrating Radar of property of IRD). The terrestrial laser-scanning survey allowed to realize an accurate digital terrain model of the glacier surface with 13 million points and a decimetric resolution. Ice thickness measurements showed an average glacier thickness of 22 meters and a maximum of 52 meters.

  13. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen

    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate modelsmore » typically do not comprehensively include all important processes. Our review summarizes some of the important developments during the past decade in understanding SOA formation. We also highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.« less

  14. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    DOE PAGES

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; ...

    2017-06-15

    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate modelsmore » typically do not comprehensively include all important processes. Our review summarizes some of the important developments during the past decade in understanding SOA formation. We also highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.« less

  15. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing

    NASA Astrophysics Data System (ADS)

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Kuang, Chongai; Laskin, Alexander; Martin, Scot T.; Ng, Nga Lee; Petaja, Tuukka; Pierce, Jeffrey R.; Rasch, Philip J.; Roldin, Pontus; Seinfeld, John H.; Shilling, John; Smith, James N.; Thornton, Joel A.; Volkamer, Rainer; Wang, Jian; Worsnop, Douglas R.; Zaveri, Rahul A.; Zelenyuk, Alla; Zhang, Qi

    2017-06-01

    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This review summarizes some of the important developments during the past decade in understanding SOA formation. We highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.

  16. Root water uptake and lateral interactions among root systems in a temperate forest

    NASA Astrophysics Data System (ADS)

    Agee, E.; He, L.; Bisht, G.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.; Ivanov, V. Y.

    2016-12-01

    A growing body of research has highlighted the importance of root architecture and hydraulic properties to the maintenance of the transpiration stream under water limitation and drought. Detailed studies of single plant systems have shown the ability of root systems to adjust zones of uptake due to the redistribution of local water potential gradients, thereby delaying the onset of stress under drying conditions. An open question is how lateral interactions and competition among neighboring plants impact individual and community resilience to water stress. While computational complexity has previously hindered the implementation of microscopic root system structure and function in larger scale hydrological models, newer hybrid approaches allow for the resolution of these properties at the plot scale. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model root water uptake in a one-hectare temperate forest plot under natural and synthetic forcings. Two characteristic hydraulic architectures, tap roots and laterally sprawling roots, are implemented in an ensemble of simulations. Variations of root architecture, their hydraulic properties, and degree of system interactions produce variable local response to water limitation and provide insights on individual and community response to changing meteorological conditions. Results demonstrate the ability of interacting systems to shift areas of active uptake based on local gradients, allowing individuals to meet water demands despite competition from their peers. These results further illustrate how inter- and intra-species variations in root properties may influence not only individual response to water stress, but also help quantify the margins of resilience for forest ecosystems under changing climate.

  17. Is rock slope instability in high-mountain systems driven by topo-climatic, paraglacial or rock mechanical factors? - A question of scale!

    NASA Astrophysics Data System (ADS)

    Messenzehl, Karoline; Dikau, Richard

    2016-04-01

    Due to the emergent and (often non-linear) complex nature of mountain systems the key small-scale system properties responsible for rock slope instability contrast to those being dominant at larger spatial scales. This geomorphic system behaviour has major epistemological consequences for the study of rockfalls and associated form-process-relationships. As each scale requires its own scientific explanation, we cannot simply upscale bedrock-scale findings and, in turn, we cannot downscale the valley-scale knowledge to smaller phenomena. Here, we present a multi-scale study from the Turtmann Valley (Swiss Alps), that addresses rock slope properties at three different geomorphic levels: (i) regional valley scale, (ii) the hillslope scale and (iii) the bedrock scale. Using this hierarchical approach, we aim to understand the key properties of high-mountain systems responsible for rockfall initiation with respect to the resulting form-process-relationship at each scale. (i) At the valley scale (110 km2) rock slope instability was evaluated using a GIS-based modelling approach. Topo-climatic parameters, i.e. the permafrost distribution and the time since deglaciation after LGM were found to be the key variables causative for the regional-scale bedrock erosion and the storage of 62.3 - 65.3 x 106 m3 rockfall sediments in the hanging valleys (Messenzehl et al. 2015). (ii) At the hillslope scale (0.03 km2) geotechnical scanline surveys of 16 rock slopes and one-year rock temperature data of 25 ibuttons reveal that the local rockfall activity and the resulting deposition of individual talus slope landforms is mainly controlled by the specific rock mass strength with respect to the slope aspect, than being a paraglacial reaction. Permafrost might be only of secondary importance for the present-day rock mechanical state as geophysical surveys disprove the existence of frozen bedrock below 2600 m asl. (Messenzehl & Draebing 2015). (iii) At the bedrock scale (0.01 mm - 10 m) the spacing, persistence and orientation of joints turned out to be the most causative bedrock properties for the higher-scale rock mass strength. Rock temperature data suggest that high-frequent, surficial thermal processes, daily freeze-thaw cycles and seasonal ice segregation coupled with a winter snow cover are the major rock breakdown mechanisms. By linking the rockwalls' joint geometric pattern to the size and shape of rockfall blocks lying on the corresponding talus slopes, different rockfall magnitudes and frequencies were identified. Here we show, that the decrease in spatial scale is linked with a shift in variable importance, from topo-climatic and paraglacial factors at the largest scale to rock mechanical parameters at the smallest scale. Therefore, to understand the key destabilising factors of rock slopes in mountain systems and the resulting landforms, a holistic research approach is needed which considers the nested, hierarchical structure of geomorphic systems. Messenzehl, K., Meyer, H., Otto, J.-C., Hoffmann, T., Dikau, R., 2015. Regional-scale controls on the spatial activity of rockfalls. (Turtmann valley, Swiss Alps) - A multivariate modelling approach. In: Geomorphology. Messenzehl, K., Draebing, D., 2015. Multidisciplinary investigations on coupled rockwall talus-systems (Turtmann valley, Swiss Alps). Geophysical Research Abstracts, 17 (EGU2015-1935, 2015).

  18. Mid-Level Mixed-Phase Cloud Properties Derived From Polarization Lidar Measurements and Model Simulations

    NASA Astrophysics Data System (ADS)

    Sassen, K.; Canonica, L.; James, C.; Khvorostyanov, V.

    2005-12-01

    Water-dominated altocumulus clouds are distributed world-wide in the middle troposphere, and so are generally supercooled clouds with variable amounts of ice production via the heterogeneous droplet freezing process, which depends on temperature and the availability of ice nuclei. Although they tend to be relatively optically thin (i.e., for water clouds) and may often act similarly to cirrus clouds, altocumulus are globally widespread and probably play a significant role in maintaining the radiation balance of the Earth/atmosphere system. We will review recent cloud microphysical/ radiative model findings describing their impact on radiation transfer, and how increasing ice content (leading to cloud glaciation) affects their radiative impact. These simulations are based on the results of a polarization lidar climatology of the macrophysical properties of midlatitude altocumulus clouds, which variably produced ice virga. A new more advanced polarization lidar algorithm for characterizing mixed-phase cloud properties is currently being developed. Relative ice content is shown to have a large effect on atmospheric heating rates. We will also present lidar data examples, from Florida to Alaska, that indicate how desert dust and forest fire smoke aerosols can affect supercooled cloud phase. Since such aerosols may be becoming increasingly prevalent due to various human activities or climate change itself, it is important to assess the potential effects of increasing ice nuclei to climate change.

  19. The observed influence of local anthropogenic pollution on northern Alaskan cloud properties

    NASA Astrophysics Data System (ADS)

    Maahn, Maximilian; de Boer, Gijs; Creamean, Jessie M.; Feingold, Graham; McFarquhar, Greg M.; Wu, Wei; Mei, Fan

    2017-12-01

    Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM) Program's Airborne Carbon Measurements (ACME-V) campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point) with data from a reference area relatively free of anthropogenic sources (Utqiaġvik/Barrow) represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects of anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment.

  20. Topsoil moisture mapping using geostatistical techniques under different Mediterranean climatic conditions.

    PubMed

    Martínez-Murillo, J F; Hueso-González, P; Ruiz-Sinoga, J D

    2017-10-01

    Soil mapping has been considered as an important factor in the widening of Soil Science and giving response to many different environmental questions. Geostatistical techniques, through kriging and co-kriging techniques, have made possible to improve the understanding of eco-geomorphologic variables, e.g., soil moisture. This study is focused on mapping of topsoil moisture using geostatistical techniques under different Mediterranean climatic conditions (humid, dry and semiarid) in three small watersheds and considering topography and soil properties as key factors. A Digital Elevation Model (DEM) with a resolution of 1×1m was derived from a topographical survey as well as soils were sampled to analyzed soil properties controlling topsoil moisture, which was measured during 4-years. Afterwards, some topography attributes were derived from the DEM, the soil properties analyzed in laboratory, and the topsoil moisture was modeled for the entire watersheds applying three geostatistical techniques: i) ordinary kriging; ii) co-kriging considering as co-variate topography attributes; and iii) co-kriging ta considering as co-variates topography attributes and gravel content. The results indicated topsoil moisture was more accurately mapped in the dry and semiarid watersheds when co-kriging procedure was performed. The study is a contribution to improve the efficiency and accuracy of studies about the Mediterranean eco-geomorphologic system and soil hydrology in field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM)

    NASA Astrophysics Data System (ADS)

    Mills, Michael J.; Schmidt, Anja; Easter, Richard; Solomon, Susan; Kinnison, Douglas E.; Ghan, Steven J.; Neely, Ryan R.; Marsh, Daniel R.; Conley, Andrew; Bardeen, Charles G.; Gettelman, Andrew

    2016-03-01

    Accurate representation of global stratospheric aerosols from volcanic and nonvolcanic sulfur emissions is key to understanding the cooling effects and ozone losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO2 emissions and plume altitudes for eruptions from 1990 to 2014 and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model. We used these combined with other nonvolcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2014. Our calculations show remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD) and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite-based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at middle and high latitudes. Our SAD calculations greatly improve on that provided for the Chemistry-Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods.

  2. Estimates of Zenith Total Delay trends from GPS reprocessing with autoregressive process

    NASA Astrophysics Data System (ADS)

    Klos, Anna; Hunegnaw, Addisu; Teferle, Felix Norman; Ebuy Abraha, Kibrom; Ahmed, Furqan; Bogusz, Janusz

    2017-04-01

    Nowadays, near real-time Zenith Total Delay (ZTD) estimates from Global Positioning System (GPS) observations are routinely assimilated into numerical weather prediction (NWP) models to improve the reliability of forecasts. On the other hand, ZTD time series derived from homogeneously re-processed GPS observations over long periods have the potential to improve our understanding of climate change on various temporal and spatial scales. With such time series only recently reaching somewhat adequate time spans, the application of GPS-derived ZTD estimates to climate monitoring is still to be developed further. In this research, we examine the character of noise in ZTD time series for 1995-2015 in order to estimate more realistic magnitudes of trend and its uncertainty than would be the case if the stochastic properties are not taken into account. Furthermore, the hourly sampled, homogeneously re-processed and carefully homogenized ZTD time series from over 700 globally distributed stations were classified into five major climate zones. We found that the amplitudes of annual signals reach values of 10-150 mm with minimum values for the polar and Alpine zones. The amplitudes of daily signals were estimated to be 0-12 mm with maximum values found for the dry zone. We examined seven different noise models for the residual ZTD time series after modelling all known periodicities. This identified a combination of white plus autoregressive process of fourth order to be optimal to match all changes in power of the ZTD data. When the stochastic properties are neglected, ie. a pure white noise model is employed, only 11 from 120 trends were insignificant. Using the optimum noise model more than half of the 120 examined trends became insignificant. We show that the uncertainty of ZTD trends is underestimated by a factor of 3-12 when the stochastic properties of the ZTD time series are ignored and we conclude that it is essential to properly model the noise characteristics of such time series when interpretations in terms of climate change are to be performed.

  3. Experimental and Metrological Basis for SI-Traceable Infrared Radiance Measurements From Space

    NASA Astrophysics Data System (ADS)

    Gero, P. J.; Dykema, J. A.; Anderson, J. G.; Leroy, S. S.

    2007-12-01

    In order to establish a climate benchmark record and to be useful in interdecadal climate forecast testing, satellite measurements of high spectral resolution infrared radiance must have uncertainty estimates that can be proven beyond a doubt. An uncertainty in radiance of about 1 part in 1000 is required for climate applications. This can be accomplished by appealing to the best measurement practices of the metrology community. The International System of Units (SI) are linked to fundamental physical properties of matter, and can be realized anywhere in the world without bias. By doing so, one can make an accurate observation to within a specified uncertainty. Achieving SI-traceable radiance measurements from space is a novel requirement, and requires specialized sensor design and a disciplined experimental approach. Infrared remote sensing satellite instruments typically employ blackbody calibration targets, which are tied to the SI through Planck's law and the definition of the Kelvin. The blackbody temperature and emissivity, however, must be determined accurately on- orbit, in order for the blackbody emission scale to be SI-traceable. We outline a methodology of instrument design, pre-flight calibration and on-orbit diagnostics for realizing SI- traceable infrared radiance measurements. This instrument is intended as a component of the Climate Absolute Radiance and Refractivity Earth Observatory (CLARREO), a high priority recommendation of the National Research Council decadal survey. Calibration blackbodies for remote sensing differ from a perfect Planckian blackbody; thus the component uncertainties must be evaluated in order to confer traceability. We have performed traceability experiments in the laboratory to verify blackbody temperature, emissivity and the end-to-end radiance scale. We discuss the design of the Harvard standard blackbody and an intercomparison campaign that will be conducted with the GIFTS blackbody (University of Wisconsin, Madison) and radiometric calibration facilities at NIST. The GIFTS blackbody is a high-performance space-qualified design with a new generation of on-orbit thermometer calibration via miniaturized fixed point cells. NIST facilities allow the step-by-step measurement of blackbody surface properties, thermal properties, on-axis emissivity, and end-to-end radiometric performance. These activities will lay the experimental groundwork for achieving SI-traceable infrared radiance measurements on a satellite instrument.

  4. Sensitivity of drainage efficiency of cranberry fields to edaphic conditions

    NASA Astrophysics Data System (ADS)

    Periard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean; Hallema, Dennis W.

    2014-05-01

    Water management on a cranberry farm requires intelligent irrigation and drainage strategies to sustain strong productivity and minimize environmental impact. For example, to avoid propagation of disease and meet evapotranspiration demand, it is imperative to maintain optimal moisture conditions in the root zone, which depends on an efficient drainage system. However, several drainage problems have been identified in cranberry fields. Most of these drainage problems are due to the presence of a restrictive layer in the soil profile (Gumiere et al., 2014). The objective of this work is to evaluate the effects of a restrictive layer on the drainage efficiency by the bias of a multi-local sensitivity analysis. We have tested the sensitivity of the drainage efficiency to different input parameters set of soil hydraulic properties, geometrical parameters and climatic conditions. Soil water flux dynamic for every input parameters set was simulated with finite element model Hydrus 1D (Simanek et al., 2008). Multi-local sensitivity was calculated with the Gâteaux directional derivatives with the procedure described by Cheviron et al. (2010). Results indicate that drainage efficiency is more sensitive to soil hydraulic properties than geometrical parameters and climatic conditions. Then, the geometrical parameters of the depth are more sensitive than the thickness. The drainage efficiency was very insensitive to the climatic conditions. Understanding the sensitivity of drainage efficiency according to soil hydraulic properties, geometrical and climatic conditions are essential for diagnosis drainage problems. However, it becomes important to identify the mechanisms involved in the genesis of anthropogenic soils cranberry to identify conditions that may lead to the formation of a restrictive layer. References: Cheviron, B., S.J. Gumiere, Y. Le Bissonnais, R. Moussa and D. Raclot. 2010. Sensitivity analysis of distributed erosion models: Framework. Water Resources Research 46: W08508. doi:10.1029/2009WR007950. Gumiere, S.J., J. Lafond, D. W. Hallema, Y. Périard, J. Caron et J. Gallichand. 2014. Mapping soil hydraulic conductivity and matric potential for water management of cranberry: Characterization and spatial interpolation methods. Biosystems Engineering.

  5. Towards an integrated forecasting system for fisheries on habitat-bound stocks

    NASA Astrophysics Data System (ADS)

    Christensen, A.; Butenschön, M.; Gürkan, Z.; Allen, I. J.

    2013-03-01

    First results of a coupled modelling and forecasting system for fisheries on habitat-bound stocks are being presented. The system consists currently of three mathematically, fundamentally different model subsystems coupled offline: POLCOMS providing the physical environment implemented in the domain of the north-west European shelf, the SPAM model which describes sandeel stocks in the North Sea, and the third component, the SLAM model, which connects POLCOMS and SPAM by computing the physical-biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the basis of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin-scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeel stocks are currently exploited close to the maximum sustainable yield, even though periodic overfishing seems to have occurred, but large uncertainty is associated with determining stock maximum sustainable yield due to stock inherent dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2-6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.

  6. A New Tool for Climatic Analysis Using the Koppen Climate Classification

    ERIC Educational Resources Information Center

    Larson, Paul R.; Lohrengel, C. Frederick, II

    2011-01-01

    The purpose of climate classification is to help make order of the seemingly endless spatial distribution of climates. The Koppen classification system in a modified format is the most widely applied system in use today. This system may not be the best nor most complete climate classification that can be conceived, but it has gained widespread…

  7. Hidden attractors in dynamical systems

    NASA Astrophysics Data System (ADS)

    Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh

    2016-06-01

    Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.

  8. Boundary Condition Effects on Hillslope Form and Soil Development Along a Climatic Gradient From Semiarid to Hyperarid in Northern Chile

    NASA Astrophysics Data System (ADS)

    Owen, J. J.; Dietrich, W. E.; Nishiizumi, K.; Bellugi, D.; Amundson, R.

    2008-12-01

    Modeling the development of hillslopes using mass balance equations has generated many testable hypotheses related to morphology, process rates, and soil properties, however it is only relatively recently that techniques for constraining these models (such as cosmogenic radionuclides) have become commonplace. As such, many hypotheses related to the effects of boundary conditions or climate on process rates and soil properties have been left untested. We selected pairs of hillslopes along a precipitation gradient in northern Chile (24°-30° S) which were either bounded by actively eroding (bedrock-bedded) channels or by stable or aggradational landforms (pediments, colluvial aprons, valley bottoms). For each hillslope we measured soil properties, atmospheric deposition rates, and bedrock denudation rates. We observe significant changes in soil properties with climate: there is a shift from thick, weathered soils in the semiarid south, to the near absence of soil in the arid middle, to salt-rich soils in the hyperarid north. Coincident with these are dramatic changes in the types and rates of processes acting on the soils. We found relatively quick, biotically-driven soil formation and transport in the south, and very slow, salt-driven processes in the north. Additionally, we observe systematic differences between hillslopes of different boundary condition within the same climate zone, such as thicker soils, gentler slopes, and slower erosion rates on hillslopes with a non-eroding boundary versus an eroding boundary. These support general predictions based on hillslope soil mass balance equations and geomorphic transport laws. Using parameters derived from our field data, we attempt to use a mass balance model of hillslope development to explore the effect of changing boundary conditions and/or shifting climate.

  9. Hydro-geomorphological characterization and classification of Chilean river networks using horizontal, vertical and climatological properties

    NASA Astrophysics Data System (ADS)

    Pereira, A. A.; Gironas, J. A.; Passalacqua, P.; Mejia, A.; Niemann, J. D.

    2017-12-01

    Previous work has shown that lithological, tectonic and climatic processes have a major influence in shaping the geomorphology of river networks. Accordingly, quantitative classification methods have been developed to identify and characterize network types (dendritic, parallel, pinnate, rectangular and trellis) based solely on the self-affinity of their planform properties, computed from available Digital Elevation Model (DEM) data. In contrast, this research aim is to include both horizontal and vertical properties to evaluate a quantitative classification method for river networks. We include vertical properties to consider the unique surficial conditions (e.g., large and steep height drops, volcanic activity, and complexity of stream networks) of the Andes Mountains. Furthermore, the goal of the research is also to explain the implications and possible relations between the hydro-geomorphological properties and climatic conditions. The classification method is applied to 42 basins in the southern Andes in Chile, ranging in size from 208 Km2 to 8,000 Km2. The planform metrics include the incremental drainage area, stream course irregularity and junction angles, while the vertical metrics include the hypsometric curve and the slope-area relationship. We introduce new network structures (Brush, Funnel and Low Sinuosity Rectangular), possibly unique to the Andes, that can be quantitatively differentiated from previous networks identified in other geographic regions. Then, this research evaluates the effect that excluding different Strahler order streams has on the horizontal properties and therefore in the classification. We found that climatic conditions are not only linked to horizontal parameters, but also to vertical ones, finding significant correlation between climatic variables (average near-surface temperature and rainfall) and vertical measures (parameters associated with the hypsometric curve and slope-area relation). The proposed classification shows differences among basins previously classified as the same type, which are not noticeable in their horizontal properties and helps reduce misclassifications within the old clusters. Additional hydro-geomorphological metrics are to be considered in the classification method to improve the effectiveness of it.

  10. Understanding Differences Between Co-Incident CloudSat, Aqua/MODIS and NOAA18 MHS Ice water Path Retrievals Over the Tropical Oceans

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna; Robertson, Franklin; Blankenship, Clay

    2008-01-01

    Accurate measurement of the physical and radiative properties of clouds and their representation in climate models continues to be a challe nge. Model parameterizations are still subject to a large number of t unable parameters; furthermore, accurate and representative in situ o bservations are very sparse, and satellite observations historically have significant quantitative uncertainties, particularly with respect to particle size distribution (PSD) and cloud phase. Ice Water Path (IWP), or amount of ice present in a cloud column, is an important cl oud property to accurately quantify, because it is an integral measur e of the microphysical properties of clouds and the cloud feedback pr ocesses in the climate system. This paper investigates near co-incident retrievals of IWP over tropical oceans using three diverse measurem ent systems: radar from CloudSat, Vis/IR from Aqua/MODIS, and microwa ve from NOAA-18IMHS. CloudSat 94 GHz radar measurements provide high resolution vertical and along-orbit structure of cloud reflectivity a nd enable IWP (and IWC) retrievals. Overlapping MODIS measurements of cloud optical thickness and phase allow estimates of IWP when cloud tops are identified as being ice. Periodically, NOAA18 becomes co-inci dent in space I time to enable comparison of A-Train measurements to IWP inferred from the 157 and 89 GHz channel radiances. This latter m easurement is effective only for thick convective anvil systems. We s tratify these co-incident data (less than 4 minutes separation) into cirrus only, cirrus overlying liquid water clouds, and precipitating d eep convective clouds. Substantial biases in IWP and ice effective ra dius are found. Systematic differences in these retrievals are consid ered in light of the uncertainties in a priori assumptions ofPSDs, sp ectral sensitivity and algorithm strategies, which have a direct impact on the IWP product.

  11. Stomata: key players in the earth system, past and present.

    PubMed

    Berry, Joseph A; Beerling, David J; Franks, Peter J

    2010-06-01

    Stomata have played a key role in the Earth System for at least 400 million years. By enabling plants to control the rate of evaporation from their photosynthetic organs, stomata helped to set in motion non-linear processes that led to an acceleration of the hydrologic cycle over the continents and an expansion of climate zones favorable for plant life. Global scale modeling of land-atmosphere interactions provides a way to explore parallels between the influence of vegetation on climate over time, and the influence of spatial and temporal variation in the activities of vegetation in the current Earth System on climate and weather. We use the logic in models that simulate land-atmosphere interactions to illustrate the central role played by stomatal conductance in the Earth System. In the modeling context, most of the activities of plants and their manifold interactions with their genomes and with the environment are communicated to the atmosphere through a single property: the aperture or conductance of their stomata. We tend to think of the controls on vegetation responses in the real world as being distributed among factors such as seasonal patterns of growth, the changing availability of soil water, or changes in light intensity and leaf water potential over a day. However, the impact of these controls on crucial exchanges of energy and water vapor with the atmosphere are also largely mediated by stomata. The decisions 'made by' stomata emerge as an important and inadequately understood component of these models. At the present time we lack effective ways to link advances in the biology of stomata to this decision making process. While not unusual, this failure to connect between disciplines, introduces uncertainty in modeling studies being used to predict weather and climate change and ultimately to inform policy decisions. This problem is also an opportunity.

  12. Application of Remote Sensing to Assess the Impact of Short Term Climate Variability on Coastal Sedimentation

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Huh, Oscar K.; Walker, Nan

    2004-01-01

    The purpose of this joint University of Wisconsin (UW) and Louisiana State University (LSU) project has been to relate short term climate variation to response in the coastal zone of Louisiana in an attempt to better understand how the coastal zone is shaped by climate variation. Climate variation in this case largely refers to variation in surface wind conditions that affect wave action and water currents in the coastal zone. The primary region of focus was the Atchafalaya Bay and surrounding bays in the central coastal region of Louisiana. Suspended solids in the water column show response to wind systems both in quantity (through resuspension) and in the pattern of dispersement or transport. Wind systems associated with cold fronts are influenced by short term climate variation. Wind energy was used as the primary signature of climate variation in this study because winds are a significant influence on sediment transport in the micro-tidal Gilf of Mexico coastal zone. Using case studies, the project has been able to investigate the influence of short term climate variation on sediment transport. Wind energy data, collected daily for National Weather Service (NWS) stations at Lake Charles and New Orleans, LA, were used as an indicator of short term climate variation influence on seasonal time scales. A goal was to relate wind energy to coastal impact through sediment transport. This goal was partially accomplished by combining remote sensing and wind energy data. Daily high resolution remote sensing observations are needed to monitor the complex coastal zone environment, where winds, tides, and water level all interact to influence sediment transport. The NASA Earth Observing System (EOS) era brings hope for documenting and revealing response of the complex coastal transport mosaic through regular high spatial resolution observations from the Moderate resolution Imaging Spectrometer (MODIS) instrument. MODIS observations were sampled in this project for information content and should continue to be viewed as a resource for coastal zone monitoring. The project initialized the effort to transfer a suspended sediment concentration (SSC) algorithm to the MODIS platform for case 2 waters. MODIS enables monitoring of turbid coastal zones around the globe. The MODIS SSC algorithm requires refinements in the atmospheric aerosol contribution, sun glint influence, and designation of the sediment inherent optical properties (IOPs); the framework for continued development is in place with a plan to release the algorithm to the MODIS direct broadcast community.

  13. The use of a hydrological physically based model to evaluate the vine adaptability to future climate: the case study of a Protected Designation of Origin area (DOC and DOCG) of Southern Italy

    NASA Astrophysics Data System (ADS)

    Bonfante, Antonello; Basile, Angelo; Menenti, Massimo; Monaco, Eugenia; Alfieri, Silvia Maria; Manna, Piero; Langella, Giuliano; De Lorenzi, Francesca

    2013-04-01

    The quality of grape and wine is variety-specific and depends significantly on the pedoclimatic conditions, thus from the terroir characteristics. In viticulture the concept of terroir is known to be very complex. At present some changes are occurring in the studies of terroir. Their spatial analysis is improving by means of studies that account for the spatial distribution of solar radiation and of bioclimatic indexes. Moreover, simulation models are used to study the water flow in the soil-plant-atmosphere system in order to determine the water balance of vines as a function of i) soil physical properties, ii) climatic regime and iii) agro-ecosystems characteristics. The future climate evolution may endanger not only yield production (IPCC, 2007), but also its quality. The effects on quality may be relevant for grape production, since they can affect the sustainability of the cultivation of grape varieties in the areas where they are currently grown. This study addresses this question by evaluating the adaptive capacity of grape's cultivars in a 20000 ha viticultural area in the "Valle Telesina" (Campania Region, Southern Italy). This area has a long tradition in the production of high quality wines (DOC and DOCG) and it is characterized by a complex geomorphology with a large variability of soils and micro-climate. Two climate scenarios were considered: "past" (1961-1990) and "future" (2021-2050), the latter constructed applying statistical downscaling to GCMs scenarios. For each climate scenario the moisture regime of the soils of the study area was calculated by means of a simulation model of the soil-water-atmosphere system (SWAP). The hydrological model SWAP was applied to the representative soils of the entire area (47 soil units); the soil hydraulic properties were estimated (by means of pedo-transfer function HYPRES) and measured. Upper boundary conditions were derived from the climate scenarios. Unit gradient in soil water potential was set as lower boundary condition. Crop-specific input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Synthetic indicators of the regimes (e.g. crop evapotranspiration deficit - CWSI, available soil water content, soil temperature) were calculated and compared with thermal and water requirements of a set of grape varieties, including the ones currently cultivated in the area. As a result of the comparison, most varieties resulted adaptable to the future climate. For some cultivars (i.e. Catalanesca) a significant increase of suitable area is foreseen; in other cases (i.e. Aglianico and Falanghina) a slight reduction will occur. Moreover for the most important varieties actually cultivated (e.g. Aglianico, Falanghina, etc.) an analysis on the expected spatial migration due to the climate change was performed. Finally, an analysis of CWSI during different crop phenological stages was performed for both climate periods . The time course of the moisture regime in different soils was thus described; this analysis allowed to identify the soils where the water regime can positively affect grape (and wine) quality . The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)

  14. Semiannual progress report, April - September 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Research conducted during the past year in the climate and modeling programs has concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols, and the solar constant on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree by 1 degree resolution has now been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method has been developed to simulate the hydraulic behavior of the soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water throughout the planet.

  15. Biogeochemical Coupling between Ocean and Sea Ice

    NASA Astrophysics Data System (ADS)

    Wang, S.; Jeffery, N.; Maltrud, M. E.; Elliott, S.; Wolfe, J.

    2016-12-01

    Biogeochemical processes in ocean and sea ice are tightly coupled at high latitudes. Ongoing changes in Arctic and Antarctic sea ice domain likely influence the coupled system, not only through physical fields but also biogeochemical properties. Investigating the system and its changes requires representation of ocean and sea ice biogeochemical cycles, as well as their coupling in Earth System Models. Our work is based on ACME-HiLAT, a new offshoot of the Community Earth System Model (CESM), including a comprehensive representation of marine ecosystems in the form of the Biogeochemical Elemental Cycling Module (BEC). A full vertical column sea ice biogeochemical module has recently been incorporated into the sea ice component. We have further introduced code modifications to couple key growth-limiting nutrients (N, Si, Fe), dissolved and particulate organic matter, and phytoplankton classes that are important in polar regions between ocean and sea ice. The coupling of ocean and sea ice biology-chemistry will enable representation of key processes such as the release of important climate active constituents or seeding algae from melting sea ice into surface waters. Sensitivity tests suggest sea ice and ocean biogeochemical coupling influences phytoplankton competition, biological production, and the CO2 flux. Sea ice algal seeding plays an important role in determining phytoplankton composition of Arctic early spring blooms, since different groups show various responses to the seeding biomass. Iron coupling leads to increased phytoplankton biomass in the Southern Ocean, which also affects carbon uptake via the biological pump. The coupling of macronutrients and organic matter may have weaker influences on the marine ecosystem. Our developments will allow climate scientists to investigate the fully coupled responses of the sea ice-ocean BGC system to physical changes in polar climate.

  16. Temporal asymmetry in precipitation time series and its influence on flow simulations in combined sewer systems

    NASA Astrophysics Data System (ADS)

    Müller, Thomas; Schütze, Manfred; Bárdossy, András

    2017-09-01

    A property of natural processes is temporal irreversibility. However, this property cannot be reflected by most statistics used to describe precipitation time series and, consequently, is not considered in most precipitation models. In this paper, a new statistic, the asymmetry measure, is introduced and applied to precipitation enabling to detect and quantify irreversibility. It is used to analyze two different data sets of Singapore and Germany. The data of both locations show a significant asymmetry for high temporal resolutions. The asymmetry is more pronounced for Singapore where the climate is dominated by convective precipitation events. The impact of irreversibility on applications is analyzed on two different hydrological sewer system models. The results show that the effect of the irreversibility can lead to biases in combined sewer overflow statistics. This bias is in the same order as the effect that can be achieved by real time control of sewer systems. Consequently, wrong conclusion can be drawn if synthetic time series are used for sewer systems if asymmetry is present, but not considered in precipitation modeling.

  17. Development of sustainable stormwater management using simulation-optimization approach under climate change

    NASA Astrophysics Data System (ADS)

    Huang, Yu-ru; Tung, Ching-pin

    2015-04-01

    Climate change had altered the hydrological processes globally with result that the extreme events have an increase in both the magnitude and the frequency. In particular, the high intensity rainfall cause the severe flooding had significantly impacted on human life and property in recently year. The traditional facility to handle runoff is the drainage system which is designed in accordance with the intensity-duration-frequency (IDF) curve. However, the flooding occurs once the drainage capacity is overwhelmed by excess stormwater. Thus the general solution are that expanding and upgrading the existing drainage system or increasing the design return period for new development areas to reduce flooding. Besides, another technique which is low impact development(LID) is regarded as more sustainable solution for stormwater management. The concept of LID is to control stormwater at the source by decentralized practices and mimic the predevelopment hydrologic conditions including storage, retention and high rate of infiltration. In contrast to conventional drainage system aims to move runoff away as quickly as possible, the LID approach attempts to keep runoff on site to reduce peak and volume of flow. The purpose of this research is to identify the most cost-effective measures for stormwater management after the analysis of the strategies combining drainage system and LID on various land use planning. The case study is a rural community in Hsinchu in Taiwan, and having residential areas, farms and pond. It is assumed that two land use layout are planned and drainage system are designed for 2-,and 5-year return period events. On the other hand, three LID technologies, namely green roof, porous pavement and rain barrel, are selected to place in the scenario of the drainage system for 2-year return period event, and the minimal peak flow is target to optimize LID placement by simulated annealing algorithm. Moreover, the design storm under climate change are derived from the revised IDF curve. After that the storm water management model (SWMM) is used to simulate these strategies for a spectrum of design storms, the cost and the benefit can be analyzed to provide government an advice in developing stormwater management under uncertain conditions of climate change.

  18. Understanding hygroscopic growth and phase transformation of aerosols using single particle Raman spectroscopy in an electrodynamic balance.

    PubMed

    Lee, Alex K Y; Ling, T Y; Chan, Chak K

    2008-01-01

    Hygroscopic growth is one of the most fundamental properties of atmospheric aerosols. By absorbing or evaporating water, an aerosol particle changes its size, morphology, phase, chemical composition and reactivity and other parameters such as its refractive index. These changes affect the fate and the environmental impacts of atmospheric aerosols, including global climate change. The ElectroDynamic Balance (EDB) has been widely accepted as a unique tool for measuring hygroscopic properties and for investigating phase transformation of aerosols via single particle levitation. Coupled with Raman spectroscopy, an EDB/Raman system is a powerful tool that can be used to investigate both physical and chemical changes associated with the hygroscopic properties of individually levitated particles under controlled environments. In this paper, we report the use of an EDB/Raman system to investigate (1) contact ion pairs formation in supersaturated magnesium sulfate solutions; (2) phase transformation in ammonium nitrate/ammonium sulfate mixed particles; (3) hygroscopicity of organically coated inorganic aerosols; and (4) heterogeneous reactions altering the hygroscopicity of organic aerosols.

  19. COMMIT in 7-SEAS/BASELInE: Operation of and Observations from a Novel, Mobile Laboratory for Measuring In-Situ Properties of Aerosols and Gases

    NASA Technical Reports Server (NTRS)

    Pantina, Peter; Tsay, Si-Chee; Hsiao, Ta-Chih; Loftus, Adrian M.; Kuo, Ferret; Ou-Yang, Chang-Feng; Sayer, Andrew M.; Wang, Shen-Hsiang; Lin, Neng-Huei; Hsu, N. Christina; hide

    2016-01-01

    Trace gases and aerosols (particularly biomass-burning aerosols) have important implications for air quality and climate studies in Southeast Asia (SEA). This paper describes the purpose, operation, and datasets collected from NASA Goddard Space Flight Center's (NASA/GSFC) Chemical, Optical, and Microphysical Measurements of In-situ Troposphere (COMMIT) laboratory, a mobile platform designed to measure trace gases and optical/microphysical properties of naturally occurring and anthropogenic aerosols. More importantly, the laboratory houses a specialized humidification system to characterize hygroscopic growth/enhancement, a behavior that affects aerosol properties and cloud-aerosol interactions and is generally underrepresented in the current literature. A summary of the trace gas and optical/microphysical measurements is provided, along with additional detail and analysis of data collected from the hygroscopic system during the 2015 Seven South-East Asian Studies (7-SEAS) field campaign. The results suggest that data from the platform are reliable and will complement future studies of aerosols and air quality in SEA and other regions of interest.

  20. Remote Sensing Techniques for Rapid Assessment of Forest Damage Caused by Catastrophic Climatic Events, NA-TP-01-01

    Treesearch

    William Ciesla; William Frament; Margaret Miller-Weeks

    2001-01-01

    Catastrophic climatic events such as hurricanes, tornadoes, and ice storms can cause billions of dollars in damage to infrastructure and personal property, loss of lives, and damage to natural resources. Forests are especially susceptible to these events. The following is a list of recent climatic events in North America that have had devastating effects on forest...

  1. Developing a Comparative Measure of the Learning Climate in Professional Schools

    ERIC Educational Resources Information Center

    Bowen, Donald D.; Kilmann, Ralph H.

    1975-01-01

    The Learning Climate Questionnaire (LCQ) compares the objective properties of schools with measures of overall student satisfaction. The validity of the instrument suggests its use for substantive research investigations into the organizational dynamics of professional schools. (Author/JR)

  2. Biomass and the Climatic Space from historical to future scenarios of a Seasonally Dry Tropical Forest - Caatinga

    NASA Astrophysics Data System (ADS)

    Castanho, A. D. D. A.; Coe, M. T.; Maia Andrade, E.; Walker, W.; Baccini, A.; Brando, P. M.; Farina, M.

    2017-12-01

    The Caatinga found in the semiarid region in northeastern Brazil is the largest continuous seasonally dry tropical forest in South America. The region has for centuries been subject to anthropogenic activities of land conversion, abandonment, and regrowth. The region also has a large spatial variability of edaphic-climatic properties. These effects together contribute to a wide variability of plant physiognomies and biomass concentration. In addition to land use change due to anthropogenic activities the region is exposed in the near and long term to dryer conditions. The main goal of this work was to validate a high spatial resolution (30 m) map of above ground biomass, understand the climatic role in the biomass spatial variability in the present, and the potential threat to vegetation for future climatic shifts. Satellite-derived biomass products are advanced tools that can address spatial changes in forest structure for an extended region. Here we combine a compilation of published field phytosociological observations across the region with a new 30-meter spatial resolution satellite biomass product. Climate data used for this analyses were based on the CRU (Climate Research Unit, UEA) for the historical time period and for the future a mean and 25-75% quantiles of the CMIP Global Climate model estimates for the RCP scenarios of 4.5 and 8.5 W/m2. The high heterogeneity in the biomass and physiognomy distribution across the Caatinga region is mostly explained by the climatic space defined by the precipitation and dryness index. The Caatinga region has historically already been exposed to shift in its climatic properties, driving all the physiognomies, to a dryer climatic space within the last decade. Future climate intensify the observed trends. This study provides a clearer understanding of the spatial distribution of Caatinga vegetation, its biomass, and relationships to climate, which are essential for strategic development planning, preservation of the biome functions, human services, and biodiversity, face future climate scenarios.

  3. Cloud Radiation Forcings and Feedbacks: General Circulation Model Tests and Observational Validation

    NASA Technical Reports Server (NTRS)

    Lee,Wan-Ho; Iacobellis, Sam F.; Somerville, Richard C. J.

    1997-01-01

    Using an atmospheric general circulation model (the National Center for Atmospheric Research Community Climate Model: CCM2), the effects on climate sensitivity of several different cloud radiation parameterizations have been investigated. In addition to the original cloud radiation scheme of CCM2, four parameterizations incorporating prognostic cloud water were tested: one version with prescribed cloud radiative properties and three other versions with interactive cloud radiative properties. The authors' numerical experiments employ perpetual July integrations driven by globally constant sea surface temperature forcings of two degrees, both positive and negative. A diagnostic radiation calculation has been applied to investigate the partial contributions of high, middle, and low cloud to the total cloud radiative forcing, as well as the contributions of water vapor, temperature, and cloud to the net climate feedback. The high cloud net radiative forcing is positive, and the middle and low cloud net radiative forcings are negative. The total net cloud forcing is negative in all of the model versions. The effect of interactive cloud radiative properties on global climate sensitivity is significant. The net cloud radiative feedbacks consist of quite different shortwave and longwave components between the schemes with interactive cloud radiative properties and the schemes with specified properties. The increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn to negative shortwave feedbacks for the interactive radiative schemes, while the decrease in cloud amount simply produces a positive shortwave feedback for the schemes with a specified cloud water path. For the longwave feedbacks, the decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while for the other cases, the longwave feedback is positive. These cloud radiation parameterizations are empirically validated by using a single-column diagnostic model. together with measurements from the Atmospheric Radiation Measurement program and from the Tropical Ocean Global Atmosphere Combined Ocean-Atmosphere Response Experiment. The inclusion of prognostic cloud water produces a notable improvement in the realism of the parameterizations, as judged by these observations. Furthermore, the observational evidence suggests that deriving cloud radiative properties from cloud water content and microphysical characteristics is a promising route to further improvement.

  4. Tree Species Traits but Not Diversity Mitigate Stem Breakage in a Subtropical Forest following a Rare and Extreme Ice Storm

    PubMed Central

    Nadrowski, Karin; Pietsch, Katherina; Baruffol, Martin; Both, Sabine; Gutknecht, Jessica; Bruelheide, Helge; Heklau, Heike; Kahl, Anja; Kahl, Tiemo; Niklaus, Pascal; Kröber, Wenzel; Liu, Xiaojuan; Mi, Xiangcheng; Michalski, Stefan; von Oheimb, Goddert; Purschke, Oliver; Schmid, Bernhard; Fang, Teng; Welk, Erik; Wirth, Christian

    2014-01-01

    Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA) were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level. PMID:24879434

  5. Simulating Snow in Canadian Boreal Environments with CLASS for ESM-SnowMIP

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bartlett, P. A.; Derksen, C.; Ireson, A. M.; Essery, R.

    2017-12-01

    The ability of land surface schemes to provide realistic simulations of snow cover is necessary for accurate representation of energy and water balances in climate models. Historically, this has been particularly challenging in boreal forests, where poor treatment of both snow masking by forests and vegetation-snow interaction has resulted in biases in simulated albedo and snowpack properties, with subsequent effects on both regional temperatures and the snow albedo feedback in coupled simulations. The SnowMIP (Snow Model Intercomparison Project) series of experiments or `MIPs' was initiated in order to provide assessments of the performance of various snow- and land-surface-models at selected locations, in order to understand the primary factors affecting model performance. Here we present preliminary results of simulations conducted for the third such MIP, ESM-SnowMIP (Earth System Model - Snow Model Intercomparison Project), using the Canadian Land Surface Scheme (CLASS) at boreal forest sites in central Saskatchewan. We assess the ability of our latest model version (CLASS 3.6.2) to simulate observed snowpack properties (snow water equivalent, density and depth) and above-canopy albedo over 13 winters. We also examine the sensitivity of these simulations to climate forcing at local and regional scales.

  6. High resolution crop growth simulation for identification of potential adaptation strategies under climate change

    NASA Astrophysics Data System (ADS)

    Kim, K. S.; Yoo, B. H.

    2016-12-01

    Impact assessment of climate change on crop production would facilitate planning of adaptation strategies. Because socio-environmental conditions would differ by local areas, it would be advantageous to assess potential adaptation measures at a specific area. The objectives of this study was to develop a crop growth simulation system at a very high spatial resolution, e.g., 30 m, and to assess different adaptation options including shift of planting date and use of different cultivars. The Decision Support System for Agrotechnology Transfer (DSSAT) model was used to predict yields of soybean and maize in Korea. Gridded data for climate and soil were used to prepare input data for the DSSAT model. Weather input data were prepared at the resolution of 30 m using bilinear interpolation from gridded climate scenario data. Those climate data were obtained from Korean Meteorology Administration. Spatial resolution of temperature and precipitation was 1 km whereas that of solar radiation was 12.5 km. Soil series data at the 30 m resolution were obtained from the soil database operated by Rural Development Administration, Korea. The SOL file, which is a soil input file for the DSSAT model was prepared using physical and chemical properties of a given soil series, which were available from the soil database. Crop yields were predicted by potential adaptation options based on planting date and cultivar. For example, 10 planting dates and three cultivars were used to identify ideal management options for climate change adaptation. In prediction of maize yield, combination of 20 planting dates and two cultivars was used as management options. Predicted crop yields differed by site even within a relatively small region. For example, the maximum of average yields for 2001-2010 seasons differed by sites In a county of which areas is 520 km2 (Fig. 1). There was also spatial variation in the ideal management option in the region (Fig. 2). These results suggested that local assessment of climate change impact on crop production would be useful for planning adaptation options.

  7. Clouds across the Arctic: A spatial perspective uniting surface observations of downwelling infrared radiation, reanalyses and education

    NASA Astrophysics Data System (ADS)

    Cox, Christopher J.

    The polar regions serve an important role in the Earth's energy balance by acting as a heat sink for the global climate system. In the Arctic, a complex distribution of continental and oceanic features support large spatial variability in environmental parameters important for climate. Additionally, feedbacks that are unique to the cryosphere cause the region to be very sensitive to climate perturbations. Environmental changes are being observed, including increasing temperatures, reductions in sea ice extent and thickness, melting permafrost, changing atmospheric circulation patterns and changing cloud properties, which may be signaling a shift in climate. Despite these changes, the Arctic remains an understudied region, including with respect to the atmosphere and clouds. A better understanding of cloud properties and their geographical variability is needed to better understand observed changes and to forecast the future state of the system, to support adaptation and mitigation strategies, and understand how Arctic change impacts other regions of the globe. Surface-based observations of the atmosphere are critical measurements in this effort because they are high quality and have high temporal resolution, but there are few atmospheric observatories in the Arctic and the period of record is short. Reanalyses combine assimilated observations with models to fill in spatial and temporal data gaps, and also provide additional model-derived parameters. Reanalyses are spatially comprehensive, but are limited by large uncertainties and biases, in particular with respect to derived parameters. Infrared radiation is a large component of the surface energy budget. Infrared emission from clouds is closely tied to cloud properties, so measurements of the infrared spectrum can be used to retrieve information about clouds and can also be used to investigate the influence clouds have on the surface radiation balance. In this dissertation, spectral infrared radiances and other observations obtained between 2006 and 2012 at three Arctic observatories are used to investigate the spatial and temporal characteristics of cloud properties in the Arctic. The observatory locations are Barrow, Alaska; Eureka, Nunavut, Canada; and Summit Station, Greenland. Additional spatial information is inferred from reanalysis data. Therefore, to establish confidence in analysis results and context for interpretation, the reanalyses are validated using the surface observations in a mutually informative validation-analysis approach. In Chapter 1, a method is developed to convert spectral infrared radiances to downwelling infrared flux. These measurements are used to compare Barrow and Eureka. These sites are then situated in the context of the greater Arctic using the reanalyses. In Chapter 2, spectral infrared radiances are used to obtain a baseline data set of cloud microphysical and optical properties from Eureka. In Chapter 3, downwelling infrared fluxes are obtained from Summit Station using the method from Chapter 1 and are used to develop a new method for reanalysis validation. Comparisons are made between Summit, Barrow and Eureka. Spatial comparisons of cloud infrared influence are made across the Greenland ice sheet using the reanalyses. Chapter 4 reports on an effort to conduct timely and engaging educational programs for high school students in the Arctic, thereby helping to extend the reach of Arctic cloud science beyond research community.

  8. Identifying the fingerprints of the anthropogenic component of land use/land cover changes on regional climate of the USA high plains

    NASA Astrophysics Data System (ADS)

    Mutiibwa, D.; Irmak, S.

    2011-12-01

    The majority of recent climate change studies have largely focused on detection and attribution of anthropogenic forcings of greenhouse gases, aerosols, stratospheric and tropospheric ozone. However, there is growing evidence that land cover/land use (LULC) change can significantly impact atmospheric processes from local to regional weather and climate variability. Human activities such as conversion of natural ecosystem to croplands and urban-centers, deforestation and afforestation impact biophysical properties of the land surfaces including albedo, energy balance, moisture-holding capacity of soil, and surface roughness. Alterations in these properties affect the heat and moisture exchanges between the land surface and atmospheric boundary layer, and ultimately impact the climate system. The challenge is to demonstrate that LULC changes produce a signal that can be discerned from natural climate noise. In this study, we attempt to detect the signature of anthropogenic forcing of LULC change on climate on regional scale. The signal projector investigated for detecting the signature of LULC changes on regional climate of the High Plains of the USA is the Normalized Difference Vegetation Index (NDVI). NDVI is an indicator that captures short and long-term geographical distribution of vegetation surfaces. The study develops an enhanced signal processing procedure to maximize the signal to noise ratio by introducing a pre-filtering technique of ARMA processes on the investigated climate and signal variables, before applying the optimal fingerprinting technique to detect the signals of LULC changes on observed climate, temperature, in the High Plains. The intent is to filter out as much noise as possible while still retaining the essential features of the signal by making use of the known characteristics of the noise and the anticipated signal. The study discusses the approach of identifying and suppressing the autocorrelation in optimal fingerprint analysis by applying linear transformation of ARMA processes to the analysis variables. With the assumption that natural climate variability is a near stationary process, the pre-filters are developed to generate stationary residuals. The High Plains region although impacted by droughts over the last three decades has had an increase in agricultural lands, both irrigated and non-irrigated. The study shows that for the most part of the High Plains region there is significant influence of evaporative cooling on regional climate during the summer months. As the vegetation coverage increases coupled with increased in irrigation application, the regional daytime surface energy in summer is increasingly redistributed into latent heat flux which increases the effect of evaporative cooling on summer temperatures. We included the anthropogenic forcing of CO2 on regional climate with the main purpose of surpassing the radiative heating effect of greenhouse gases from natural climate noise, to enhance the LULC signal-to-noise ratio. The warming signal due to greenhouse gas forcing is observed to be weakest in the central part of the High Plains. The results showed that the CO2 signal in the region was weak or is being surpassed by the evaporative cooling effect.

  9. The neurobiology of climate change

    NASA Astrophysics Data System (ADS)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  10. The neurobiology of climate change.

    PubMed

    O'Donnell, Sean

    2018-01-06

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  11. Climate change and Public health: vulnerability, impacts, and adaptation

    NASA Astrophysics Data System (ADS)

    Guzzone, F.; Setegn, S.

    2013-12-01

    Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change on public health and identify appropriate adaptation strategies. Several studies have evaluated the impact of climate change on health, which have included evaluating the current associations between the recent changes in climate, and the evidence base analysis of current, as well as projecting the future impacts of climate change on health. This study will document the use of building an integrated approach for sustainable management of climate, environmental, health surveillance and epidemiological data that will support the assessment of vulnerability, impact and adaption to climate change.

  12. multi-dimensional Cloud-aERosol Exploratory Study using RPAS (mCERES): Bottom-up and top-down closure of aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Roberts, Greg; Calmer, Radiance; Sanchez, Kevin; Cayez, Grégoire; Nicoll, Kerianne; Hashimshoni, Eyal; Rosenfeld, Daniel; Ansmann, Albert; Sciare, Jean; Ovadneite, Jurgita; Bronz, Murat; Hattenberger, Gautier; Preissler, Jana; Buehl, Johannes; Ceburnis, Darius; O'Dowd, Colin

    2016-04-01

    Clouds are omnipresent in earth's atmosphere and constitute an important role in regulating the radiative budget of the planet. However, the response of clouds to climate change remains uncertain, in particular, with respect to aerosol-cloud interactions and feedback mechanisms between the biosphere and atmosphere. Aerosol-cloud interactions and their feedbacks are the main themes of the European project FP7 BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). The National Center for Meteorological Research (CNRM-GAME, Toulouse, France) conducted airborne experiments in Cyprus and Ireland in March and August 2015 respectively to link ground-based and satellite observations. Multiple RPAS (remotely piloted aircraft systems) were instrumented for a specific scientific focus to characterize the vertical distribution of aerosol, cloud microphysical properties, radiative fluxes, 3D wind vectors and meteorological state parameters. Flights below and within clouds were coordinated with satellite overpasses to perform 'top-down' closure of cloud micro-physical properties. Measurements of cloud condensation nuclei spectra at the ground-based site have been used to determine cloud microphyical properties using wind vectors and meteorological parameters measured by the RPAS at cloud base. These derived cloud properties have been validated by in-situ RPAS measurements in the cloud and compared to those derived by the Suomi-NPP satellite. In addition, RPAS profiles in Cyprus observed the layers of dust originating from the Arabian Peninsula and the Sahara Desert. These profiles generally show a well-mixed boundary layer and compare well with ground-based LIDAR observations.

  13. Stochastic modeling of wetland-groundwater systems

    NASA Astrophysics Data System (ADS)

    Bertassello, Leonardo Enrico; Rao, P. Suresh C.; Park, Jeryang; Jawitz, James W.; Botter, Gianluca

    2018-02-01

    Modeling and data analyses were used in this study to examine the temporal hydrological variability in geographically isolated wetlands (GIWs), as influenced by hydrologic connectivity to shallow groundwater, wetland bathymetry, and subject to stochastic hydro-climatic forcing. We examined the general case of GIWs coupled to shallow groundwater through exfiltration or infiltration across wetland bottom. We also examined limiting case with the wetland stage as the local expression of the shallow groundwater. We derive analytical expressions for the steady-state probability density functions (pdfs) for wetland water storage and stage using few, scaled, physically-based parameters. In addition, we analyze the hydrologic crossing time properties of wetland stage, and the dependence of the mean hydroperiod on climatic and wetland morphologic attributes. Our analyses show that it is crucial to account for shallow groundwater connectivity to fully understand the hydrologic dynamics in wetlands. The application of the model to two different case studies in Florida, jointly with a detailed sensitivity analysis, allowed us to identify the main drivers of hydrologic dynamics in GIWs under different climate and morphologic conditions.

  14. The Ocean Colour Climate Change Initiative: I. A Methodology for Assessing Atmospheric Correction Processors Based on In-Situ Measurements

    NASA Technical Reports Server (NTRS)

    Muller, Dagmar; Krasemann, Hajo; Brewin, Robert J. W.; Deschamps, Pierre-Yves; Doerffer, Roland; Fomferra, Norman; Franz, Bryan A.; Grant, Mike G.; Groom, Steve B.; Melin, Frederic; hide

    2015-01-01

    The Ocean Colour Climate Change Initiative intends to provide a long-term time series of ocean colour data and investigate the detectable climate impact. A reliable and stable atmospheric correction procedure is the basis for ocean colour products of the necessary high quality. In order to guarantee an objective selection from a set of four atmospheric correction processors, the common validation strategy of comparisons between in-situ and satellite derived water leaving reflectance spectra, is extended by a ranking system. In principle, the statistical parameters such as root mean square error, bias, etc. and measures of goodness of fit, are transformed into relative scores, which evaluate the relationship of quality dependent on the algorithms under study. The sensitivity of these scores to the selected database has been assessed by a bootstrapping exercise, which allows identification of the uncertainty in the scoring results. Although the presented methodology is intended to be used in an algorithm selection process, this paper focusses on the scope of the methodology rather than the properties of the individual processors.

  15. 23 Years of Cloud Statistics Using HIRS Over Australia

    NASA Astrophysics Data System (ADS)

    Chedzey, H. C.; Menzel, W. P.; Lynch, M. J.; McGann, B. T.

    2004-05-01

    Clouds are an integral factor in the Earth's water and radiation budgets. Observations and improvements to the accuracy of measurements of cloud properties are crucial in supporting global climate change studies. Regional studies are also of interest and analysis of regional climate variability provides an insight into local weather systems. HIRS is the High-Resolution Infrared Radiation Sounder aboard polar orbiting satellites operated by NOAA (National Oceanographic and Atmospheric Administration). An archive of HIRS data obtained between 1979 (NOAA-5) through to 2001 (NOAA-16) was made available by CIMSS (Cooperative Institute for Meteorological Satellite Studies) at the University of Wisconsin-Madison. The data is obtained from near nadir and frequencies of observations are converted into percentages based on total number of observations for each 1 by 1 degree cell. An assessment of cloud frequency percentages for a region including areas of the Indian Ocean and Australia (0\\deg - 60\\deg S; 80\\deg E - 170\\deg E) will be presented. Climate variability and possible associations with future work to be conducted into cloud frequency and rainfall of North West Cloud Bands using MODIS data will also be covered.

  16. Mechanistic Lake Modeling to Understand and Predict Heterogeneous Responses to Climate Warming

    NASA Astrophysics Data System (ADS)

    Read, J. S.; Winslow, L. A.; Rose, K. C.; Hansen, G. J.

    2016-12-01

    Substantial warming has been documented for of hundreds globally distributed lakes, with likely impacts on ecosystem processes. Despite a clear pattern of widespread warming, thermal responses of individual lakes to climate change are often heterogeneous, with the warming rates of neighboring lakes varying across depths and among seasons. We aggregated temperature observations and parameterized mechanistic models for 9,000 lakes in the U.S. states of Minnesota, Wisconsin, and Michigan to examine broad-scale lake warming trends and among-lake diversity. Daily lake temperature profiles and ice-cover dynamics were simulated using the General Lake Model for the contemporary period (1979-2015) using drivers from the North American Land Data Assimilation System (NLDAS-2) and for contemporary and future periods (1980-2100) using downscaled data from six global circulation models driven by the Representative Climate Pathway 8.5 scenario. For the contemporary period, modeled vs observed summer mean surface temperatures had a root mean squared error of 0.98°C with modeled warming trends similar to observed trends. Future simulations under the extreme 8.5 scenario predicted a median lake summer surface warming rate of 0.57°C/decade until mid-century, with slower rates in the later half of the 21st century (0.35°C/decade). Modeling scenarios and analysis of field data suggest that the lake-specific properties of size, water clarity, and depth are strong controls on the sensitivity of lakes to climate change. For example, a simulated 1% annual decline in water clarity was sufficient to override the effects of climate warming on whole lake water temperatures in some - but not all - study lakes. Understanding heterogeneous lake responses to climate variability can help identify lake-specific features that influence resilience to climate change.

  17. Global covariation of carbon turnover times with climate in terrestrial ecosystems.

    PubMed

    Carvalhais, Nuno; Forkel, Matthias; Khomik, Myroslava; Bellarby, Jessica; Jung, Martin; Migliavacca, Mirco; Mu, Mingquan; Saatchi, Sassan; Santoro, Maurizio; Thurner, Martin; Weber, Ulrich; Ahrens, Bernhard; Beer, Christian; Cescatti, Alessandro; Randerson, James T; Reichstein, Markus

    2014-10-09

    The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is 23(+7)(-4) years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75° north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models.

  18. Shifts in the Source and Composition of Dissolved Organic Matter in Southwest Greenland Lakes Along a Regional Hydro-climatic Gradient

    NASA Astrophysics Data System (ADS)

    Osburn, Christopher L.; Anderson, Nicholas J.; Stedmon, Colin A.; Giles, Madeline E.; Whiteford, Erika J.; McGenity, Terry J.; Dumbrell, Alex J.; Underwood, Graham J. C.

    2017-12-01

    Dissolved organic matter (DOM) concentration and quality were examined from Arctic lakes located in three clusters across south-west (SW) Greenland, covering the regional climatic gradient: cool, wet coastal zone; dry inland interior; and cool, dry ice-marginal areas. We hypothesized that differences in mean annual precipitation between sites would result in a reduced hydrological connectivity between lakes and their catchments and that this concentrates degraded DOM. The DOM in the inland lake group was characterized by a lower aromaticity and molecular weight, a low soil-like fluorescence, and carbon stable isotope (δ13C-DOC) values enriched by 2‰ relative to the coastal group. DOC-specific absorbance (SUVA254) and DOC-specific soil-like fluorescence (SUVFC1) revealed seasonal and climatic gradients across which DOM exhibited a dynamic we term "pulse-process": Pulses of DOM exported from soils to lakes during snow and ice melt were followed by pulses of autochthonous DOM inputs (possibly from macrophytes), and their subsequent photochemical and microbial processing. These effects regulated the dynamics of DOM in the inland lakes and suggested that if circumpolar lakes currently situated in cool wetter climatic regimes with strong hydrological connectivity have reduced connectivity under a drier future climate, they may evolve toward an end-point of large stocks of highly degraded DOC, equivalent to the inland lakes in the present study. The regional climatic gradient across SW Greenland and its influence on DOM properties in these lakes provide a model of possible future changes to lake C cycling in high-latitude systems where climatic changes are most pronounced.

  19. Desertification in 1957-2015 Estimated from Vegetation Coverage and Climate Conditions on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Cuo, L.

    2017-12-01

    Desert is an area that receives less than 25 cm precipitation in cold climate or 50 cm precipitation in hot climate (Miller, 1961). Others defined true desert as a region having no recorded precipitation in 12 consecutive months (McGinnies et al., 1968). According to Koppen-Gieger climate classification system, if mean annual precipitation is less than 50% of the value A calculated by mean annual temperature times 20 plus 280 if 70% or more precipitation falls in April-September, the region has desert climate; if the mean annual precipitation is within 50%-100% of the value A, the region has semi-arid or steppe climate. On the Tibetan Plateau, the above definitions will result in no desert at all or the majority of the region falling into the category of desert which is not consistent with reality based on field exploration. In this study, the fractional vegetation coverage (FPC), precipitation, soil moisture and extreme wind days are used as indices to define areas of various degrees of desertification which produces much more realistic distribution of desert areas on the plateau. The Lund-Potsdam-Jena Dynamic Vegetation model (LPJ) is used to simulate vegetation growth, succession and vegetation properties such as FPC and soil moisture on the Tibetan Plateau. Gridded daily climate data are generated to drive the model and to analyze the status and changes of various deserts including light desert, medium desert, severe desert, extremely severe desert and desert proned area. The study will reveal the status and changes of possible driving factors of desertification, as well as various kinds of desert on the Tibetan Plateau during 1957-2015.

  20. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2006-05-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer calculations by observational inputs increases the clear-sky, 24-h averaged AOD (34±8%), top of atmosphere (TOA) DRE (32±12%), and TOA direct climate forcing of aerosols (DCF - change in radiative flux due to anthropogenic aerosols) (37±7%) relative to values obtained with "a priori" parameterizations of aerosol loadings and properties (GFDL RTM). The resulting constrained clear-sky TOA DCF is -3.3±0.47, -14±2.6, -6.4±2.1 Wm-2 for the NIO, NWP, and NWA, respectively. With the use of constrained quantities (extensive and intensive parameters) the calculated uncertainty in DCF was 25% less than the "structural uncertainties" used in the IPCC-2001 global estimates of direct aerosol climate forcing. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing.

  1. The Deep South Clouds & Aerosols project: Improving the modelling of clouds in the Southern Ocean region

    NASA Astrophysics Data System (ADS)

    Morgenstern, Olaf; McDonald, Adrian; Harvey, Mike; Davies, Roger; Katurji, Marwan; Varma, Vidya; Williams, Jonny

    2016-04-01

    Southern-Hemisphere climate projections are subject to persistent climate model biases affecting the large majority of contemporary climate models, which degrade the reliability of these projections, particularly at the regional scale. Southern-Hemisphere specific problems include the fact that satellite-based observations comparisons with model output indicate that cloud occurrence above the Southern Ocean is substantially underestimated, with consequences for the radiation balance, sea surface temperatures, sea ice, and the position of storm tracks. The Southern-Ocean and Antarctic region is generally characterized by an acute paucity of surface-based and airborne observations, further complicating the situation. In recognition of this and other Southern-Hemisphere specific problems with climate modelling, the New Zealand Government has launched the Deep South National Science Challenge, whose purpose is to develop a new Earth System Model which reduces these very large radiative forcing problems associated with erroneous clouds. The plan is to conduct a campaign of targeted observations in the Southern Ocean region, leveraging off international measurement campaigns in this area, and using these and existing measurements of cloud and aerosol properties to improve the representation of clouds in the nascent New Zealand Earth System Model. Observations and model development will target aerosol physics and chemistry, particularly sulphate, sea salt, and non-sulphate organic aerosol, its interactions with clouds, and cloud microphysics. The hypothesis is that the cloud schemes in most GCMs are trained on Northern-Hemisphere data characterized by substantial anthropogenic or terrestrial aerosol-related influences which are almost completely absent in the Deep South.

  2. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST -AIRC): An overview

    NASA Technical Reports Server (NTRS)

    Zhangqing, Li; Li, C.; Chen, H.; Tsay, S.-C.; Holben, B.; Huang, J.; Li, B.; Maring, H.; Qian, Y.; Shi, G.; hide

    2011-01-01

    As the most populated region of the world, Asia is a major source of aerosols with potential large impact over vast downstream areas, Papers published in this special section describe the variety of aerosols observed in China and their effects and interactions with the regional climate as part of the East Asian Study of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC), The majority of the papers are based on analyses of observations made under three field projects, namely, the Atmospheric Radiation Measurements (ARM) Mobile Facility mission in China (AMF-China), the East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE), and the Atmospheric Aerosols of China and their Climate Effects (AACCE), The former two are U,S,-China collaborative projects, and the latter is a part of the China's National Basic Research program (or often referred to as "973 project"), Routine meteorological data of China are also employed in some studies, The wealth of general and speCIalized measurements lead to extensive and close-up investigations of the optical, physical, and chemical properties of anthropogenic, natural, and mixed aerosols; their sources, formation, and transport mechanisms; horizontal, vertical, and temporal variations; direct and indirect effects; and interactions with the East Asian monsoon system, Particular efforts are made to advance our understanding of the mixing and interaction between dust and anthropogenic pollutants during transport. Several modeling studies were carried out to simulate aerosol impact on radiation budget, temperature, precipitation, wind and atmospheric circulation, fog, etc, In addition, impacts of the Asian monsoon system on aerosol loading are also simulated.

  3. Landscape fires dominate terrestrial natural aerosol - climate feedbacks

    NASA Astrophysics Data System (ADS)

    Scott, C.; Arnold, S.; Monks, S. A.; Asmi, A.; Paasonen, P.; Spracklen, D. V.

    2017-12-01

    The terrestrial biosphere is an important source of natural aerosol including landscape fire emissions and secondary organic aerosol (SOA) formed from biogenic volatile organic compounds (BVOCs). Atmospheric aerosol alters the Earth's climate by absorbing and scattering radiation (direct radiative effect; DRE) and by perturbing the properties of clouds (aerosol indirect effect; AIE). Natural aerosol sources are strongly controlled by, and can influence, climate; giving rise to potential natural aerosol-climate feedbacks. Earth System Models (ESMs) include a description of some of these natural aerosol-climate feedbacks, predicting substantial changes in natural aerosol over the coming century with associated radiative perturbations. Despite this, the sensitivity of natural aerosols simulated by ESMs to changes in climate or emissions has not been robustly tested against observations. Here we combine long-term observations of aerosol number and a global aerosol microphysics model to assess terrestrial natural aerosol-climate feedbacks. We find a strong positive relationship between the summertime anomaly in observed concentration of particles greater than 100 nm diameter and the anomaly in local air temperature. This relationship is reproduced by the model and driven by variability in dynamics and meteorology, as well as natural sources of aerosol. We use an offline radiative transfer model to determine radiative effects due to changes in two natural aerosol sources: landscape fire and biogenic SOA. We find that interannual variability in the simulated global natural aerosol radiative effect (RE) is negatively related to the global temperature anomaly. The magnitude of global aerosol-climate feedback (sum of DRE and AIE) is estimated to be -0.15 Wm-2 K-1 for landscape fire aerosol and -0.06 Wm-2 K-1 for biogenic SOA. These feedbacks are comparable in magnitude, but opposite in sign to the snow albedo feedback, highlighting the need for natural aerosol feedbacks to be included in climate simulations.

  4. Synthesizing US Colonial Climate: Available Data and a "Proxy Adjustment" Method

    NASA Astrophysics Data System (ADS)

    Zalzal, K. S.; Munoz-Hernandez, A.; Arrigo, J. S.

    2008-12-01

    Climate and its variability is a primary driver of hydrologic systems. A paucity of instrumental data makes reconstructing seventeenth- and eighteenth-century climatic conditions along the Northeast corridor difficult, yet this information is necessary if we are to understand the conditions, changes and interactions society had with hydrosystems during this first period of permanent European settlement. For this period (approx. 1600- 1800) there are instrumental records for some regions such as annual temperature and precipitation data for Philadelphia beginning in 1738; Cambridge, Mass., from 1747-1776; and temperature for New Haven, Conn., from 1780 to 1800. There are also paleorecords, including tree-rings analyses and sediment core examinations of pollen and overwash deposits, and historical accounts of extreme weather events. Our analyses of these data show that correlating even the available data is less than straightforward. To produce a "best track" climate record, we introduce a new method of "paleoadjustment" as a means to characterize climate statistical properties as opposed to a strict reconstruction. Combining the instrumented record with the paleorecord, we estimated two sets of climate forcings to use in colonial hydrology study. The first utilized a recent instrumented record (1817-1917) from Baltimore, Md, statistically adjusted in 20-year windows to match trends in the paleorecords and anecdotal evidence from the Middle Colonies and Chesapeake Bay region. The second was a regression reconstruction for New England using climate indices developed from journal records and the Cambridge, Mass., instrumental record. The two climate reconstructions were used to compute the annual potential water yield over the 200-year period of interest. A comparison of these results allowed us to make preliminary conclusions regarding the effect of climate on hydrology during the colonial period. We contend that an understanding of historical hydrology will improve our ability to predict and react to changes in global water resources.

  5. Designing ecological climate change impact assessments to reflect key climatic drivers

    USGS Publications Warehouse

    Sofaer, Helen R.; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian W.; Morisette, Jeffrey T.

    2017-01-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.

  6. Designing ecological climate change impact assessments to reflect key climatic drivers.

    PubMed

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  7. System and Method for Providing a Climate Data Persistence Service

    NASA Technical Reports Server (NTRS)

    Schnase, John L. (Inventor); Ripley, III, William David (Inventor); Duffy, Daniel Q. (Inventor); Thompson, John H. (Inventor); Strong, Savannah L. (Inventor); McInerney, Mark (Inventor); Sinno, Scott (Inventor); Tamkin, Glenn S. (Inventor); Nadeau, Denis (Inventor)

    2018-01-01

    A system, method and computer-readable storage devices for providing a climate data persistence service. A system configured to provide the service can include a climate data server that performs data and metadata storage and management functions for climate data objects, a compute-storage platform that provides the resources needed to support a climate data server, provisioning software that allows climate data server instances to be deployed as virtual climate data servers in a cloud computing environment, and a service interface, wherein persistence service capabilities are invoked by software applications running on a client device. The climate data objects can be in various formats, such as International Organization for Standards (ISO) Open Archival Information System (OAIS) Reference Model Submission Information Packages, Archive Information Packages, and Dissemination Information Packages. The climate data server can enable scalable, federated storage, management, discovery, and access, and can be tailored for particular use cases.

  8. A personal perspective on modelling the climate system.

    PubMed

    Palmer, T N

    2016-04-01

    Given their increasing relevance for society, I suggest that the climate science community itself does not treat the development of error-free ab initio models of the climate system with sufficient urgency. With increasing levels of difficulty, I discuss a number of proposals for speeding up such development. Firstly, I believe that climate science should make better use of the pool of post-PhD talent in mathematics and physics, for developing next-generation climate models. Secondly, I believe there is more scope for the development of modelling systems which link weather and climate prediction more seamlessly. Finally, here in Europe, I call for a new European Programme on Extreme Computing and Climate to advance our ability to simulate climate extremes, and understand the drivers of such extremes. A key goal for such a programme is the development of a 1 km global climate system model to run on the first exascale supercomputers in the early 2020s.

  9. Estimation of effective hydrologic properties of soils from observations of vegetation density. M.S. Thesis; [water balance of watersheds in Clinton, Maine and Santa Paula, California

    NASA Technical Reports Server (NTRS)

    Tellers, T. E.

    1980-01-01

    An existing one-dimensional model of the annual water balance is reviewed. Slight improvements are made in the method of calculating the bare soil component of evaporation, and in the way surface retention is handled. A natural selection hypothesis, which specifies the equilibrium vegetation density for a given, water limited, climate-soil system, is verified through comparisons with observed data and is employed in the annual water balance of watersheds in Clinton, Ma., and Santa Paula, Ca., to estimate effective areal average soil properties. Comparison of CDF's of annual basin yield derived using these soil properties with observed CDF's provides excellent verification of the soil-selection procedure. This method of parameterization of the land surface should be useful with present global circulation models, enabling them to account for both the non-linearity in the relationship between soil moisture flux and soil moisture concentration, and the variability of soil properties from place to place over the Earth's surface.

  10. Quantification of scaling exponents and dynamical complexity of microwave refractivity in a tropical climate

    NASA Astrophysics Data System (ADS)

    Fuwape, Ibiyinka A.; Ogunjo, Samuel T.

    2016-12-01

    Radio refractivity index is used to quantify the effect of atmospheric parameters in communication systems. Scaling and dynamical complexities of radio refractivity across different climatic zones of Nigeria have been studied. Scaling property of the radio refractivity across Nigeria was estimated from the Hurst Exponent obtained using two different scaling methods namely: The Rescaled Range (R/S) and the detrended fluctuation analysis(DFA). The delay vector variance (DVV), Largest Lyapunov Exponent (λ1) and Correlation Dimension (D2) methods were used to investigate nonlinearity and the results confirm the presence of deterministic nonlinear profile in the radio refractivity time series. The recurrence quantification analysis (RQA) was used to quantify the degree of chaoticity in the radio refractivity across the different climatic zones. RQA was found to be a good measure for identifying unique fingerprint and signature of chaotic time series data. Microwave radio refractivity was found to be persistent and chaotic in all the study locations. The dynamics of radio refractivity increases in complexity and chaoticity from the Coastal region towards the Sahelian climate. The design, development and deployment of robust and reliable microwave communication link in the region will be greatly affected by the chaotic nature of radio refractivity in the region.

  11. Unexpected Results are Usually Wrong, but Often Interesting

    NASA Astrophysics Data System (ADS)

    Huber, M.

    2014-12-01

    In climate modeling, an unexpected result is usually wrong, arising from some sort of mistake. Despite the fact that we all bemoan uncertainty in climate, the field is underlain by a robust, successful body of theory and any properly conducted modeling experiment is posed and conducted within that context. Consequently, if results from a complex climate model disagree with theory or from expectations from simpler models, much skepticism is in order. But, this exposes the fundamental tension of using complex, sophisticated models. If simple models and theory were perfect there would be no reason for complex models--the entire point of sophisticated models is to see if unexpected phenomena arise as emergent properties of the system. In this talk, I will step through some paleoclimate examples, drawn from my own work, of unexpected results that emerge from complex climate models arising from mistakes of two kinds. The first kind of mistake, is what I call a 'smart mistake'; it is an intentional incorporation of assumptions, boundary conditions, or physics that is in violation of theoretical or observational constraints. The second mistake, a 'dumb mistake', is just that, an unintentional violation. Analysis of such mistaken simulations provides some potentially novel and certainly interesting insights into what is possible and right in paleoclimate modeling by forcing the reexamination of well-held assumptions and theories.

  12. Abrupt Climate Transition of Icy Worlds from Snowball to Moist or Runaway Greenhouse

    NASA Astrophysics Data System (ADS)

    Yang, J.; Ding, F.; Ramirez, R. M.; Peltier, W. R.; Hu, Y.; Liu, Y.

    2017-12-01

    Ongoing and future space missions aim to identify potentially habitable planets in our Solar System and beyond. Planetary habitability is determined not only by a planet's current stellar insolation and atmospheric properties, but also by the evolutionary history of its climate. It has been suggested that icy planets and moons become habitable after their initial ice shield melts as their host stars brighten. Here we show from global climate model simulations that a habitable state is not achieved in the climatic evolution of those icy planets and moons that possess an inactive carbonate-silicate cycle and low concentrations of greenhouse gases. Examples for such planetary bodies are the icy moons Europa and Enceladus, and certain icy exoplanets orbiting G and F stars. We find that the stellar fluxes that are required to overcome a planet's initial snowball state are so large that they lead to significant water loss and preclude a habitable planet. Specifically, they exceed the moist greenhouse limit, at which water vapour accumulates at high altitudes where it can readily escape, or the runaway greenhouse limit, at which the strength of the greenhouse increases until the oceans boil away. We suggest that some icy planetary bodies may transition directly to a moist or runaway greenhouse without passing through a habitable Earth-like state.

  13. Abrupt climate transition of icy worlds from snowball to moist or runaway greenhouse

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Ding, Feng; Ramirez, Ramses M.; Peltier, W. R.; Hu, Yongyun; Liu, Yonggang

    2017-08-01

    Ongoing and future space missions aim to identify potentially habitable planets in our Solar System and beyond. Planetary habitability is determined not only by a planet's current stellar insolation and atmospheric properties, but also by the evolutionary history of its climate. It has been suggested that icy planets and moons become habitable after their initial ice shield melts as their host stars brighten. Here we show from global climate model simulations that a habitable state is not achieved in the climatic evolution of those icy planets and moons that possess an inactive carbonate-silicate cycle and low concentrations of greenhouse gases. Examples for such planetary bodies are the icy moons Europa and Enceladus, and certain icy exoplanets orbiting G and F stars. We find that the stellar fluxes that are required to overcome a planet's initial snowball state are so large that they lead to significant water loss and preclude a habitable planet. Specifically, they exceed the moist greenhouse limit, at which water vapour accumulates at high altitudes where it can readily escape, or the runaway greenhouse limit, at which the strength of the greenhouse increases until the oceans boil away. We suggest that some icy planetary bodies may transition directly to a moist or runaway greenhouse without passing through a habitable Earth-like state.

  14. Studies of encapsulant materials for terrestrial solar-cell arrays

    NASA Technical Reports Server (NTRS)

    Carmichael, D. C. (Compiler)

    1975-01-01

    Study 1 of this contract is entitled ""Evaluation of World Experience and Properties of Materials for Encapsulation of Terrestrial Solar-Cell Arrays.'' The approach of this study is to review and analyze world experience and to compile data on properties of encapsulants for photovoltaic cells and for related applications. The objective of the effort is to recommend candidate materials and processes for encapsulating terrestrial photovoltaic arrays at low cost for a service life greater than 20 years. The objectives of Study 2, ""Definition of Encapsulant Service Environments and Test Conditions,'' are to develop the climatic/environmental data required to define the frequency and duration of detrimental environmental conditions in a 20-year array lifetime and to develop a corresponding test schedule for encapsulant systems.

  15. Southeast Atlantic Cloud Properties in a Multivariate Statistical Model - How Relevant is Air Mass History for Local Cloud Properties?

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik

    2017-04-01

    This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.

  16. Do GCM's predict the climate.... Or the low frequency weather?

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Schertzer, D.; Varon, D.

    2012-04-01

    Over twenty-five years ago, a three-regime scaling model was proposed describing the statistical variability of the atmosphere over time scales ranging from weather scales out to ≈ 100 kyrs. Using modern in situ data reanalyses, monthly surface series (at 5ox5o), 8 "multiproxy" (yearly) series of the Northern hemisphere from 1500 - 1980, and GRIP and Vostok paleotemperatures at 5.2 and ≈ 100 year resolutions (over the past 91-420 kyrs), we refine the model and show how it can be understood with the help of new developments in nonlinear dynamics, especially multifractals and cascades. In a scaling range, mean fluctuations in state variables such as temperature ΔT vary in power law manners ≈ Δt**H the where Δt is the duration. At small (weather) scales the fluctuation exponents are generally H>0; they grow with scale (Δt). At longer scales Δt >τw (≈ 10 days) H changes sign, the fluctuations decrease with scale; this is the low variability, "low frequency weather" regime. In this regime, the spectrum is a relatively flat "plateau", it's variability is low, stable, corresponding to our usual idea of "long term weather statistics". Finally for longer times, Δt>τc ≈ 10 - 100 years, once again H>0, so that the variability increases with scale: the true climate regime. These scaling regimes allow us to objectively define the weather as fluctuations over periods <τw, to define "climate states" as fluctuations at scale τc and then "climate change" as the fluctuations at longer periods (Δt>τc). We show that the intermediate low frequency weather regime is the result of the weather regime undergoing a "dimensional transition": at temporal scales longer than the typical lifetime of planetary structures (τw), the spatial degrees of freedom are rapidly quenched so that only the temporal degrees of freedom are important. This low frequency weather regime has statistical properties well reproduced not only by stochastic cascade models of weather, but also by control runs (i.e. without climate forcing) of GCM based climate forecasting systems including those of the Institut Pierre Simon Laplace (Paris) and the Earth Forecasting System (Hamburg). In order for these systems to go beyond simply predicting low frequency weather i.e. in order for them to predict the climate, they need appropriate climate forcings and/ or new internal mechanisms of variability. Using statistical scaling techniques we examine the scale dependence of fluctuations from forced and unforced GCM outputs, including from the ECHO-G and EFS simulations in the Millenium climate reconstruction project and compare this with data, multiproxies and paleo data. Our general conclusion is that the models systematically underestimate the multidecadal, multicentennial scale variability.

  17. Building accurate historic and future climate MEPDG input files for Louisiana DOTD.

    DOT National Transportation Integrated Search

    2017-02-01

    The pavement design process (originally MEPDG, then DARWin-ME, and now Pavement ME Design) requires a multi-year set of hourly : climate input data that influence pavement material properties. In Louisiana, the software provides nine locations with c...

  18. Climate variability and vulnerability to climate change: a review

    PubMed Central

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  19. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    PubMed

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-10-01

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The limit of irrigation adaption due to the inter-crop conflict of water use under changing climate and landuse

    NASA Astrophysics Data System (ADS)

    Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.

    2017-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.

  1. NASA's climate data system primer, version 1.2

    NASA Technical Reports Server (NTRS)

    Closs, James W.; Reph, Mary G.; Olsen, Lola M.

    1989-01-01

    This is a beginner's manual for NASA's Climate Data System (NCDS), an interactive scientific information management system that allows one to locate, access, manipulate, and display climate-research data. Additional information on the use of the system is available from the system itself.

  2. [Research progress on carbon sink function of agroforestry system under climate change].

    PubMed

    Xie, Ting-Ting; Su, Pei-Xi; Zhou, Zi-Juan; Shan, Li-Shan

    2014-10-01

    As a land comprehensive utilization system, agroforestry system can absorb and fix CO2 effectively to increase carbon storage, and also reduces greenhouse effect convincingly while reaching the aim of harvest. The regulatory role in CO2 makes humans realize that agroforestry systems have significant superiority compared with single cropping systems, therefore, understanding the carbon sinks of different components in an agroforestry system and its influencing factors play an important role in studying global carbon cycle and accurate evaluation of carbon budget. This paper reviewed the concept and classification of agroforestry system, and then the carbon sequestration potentials of different components in agroforestry systems and influencing factors. It was concluded that the carbon sequestration rate of plants from different agroforestry systems in different regions are highly variable, ranging from 0.59 to 11.08 t C · hm(-2) · a(-1), and it is mainly influenced by climatic factors and the characteristics of agroforestry systems (species composition, tree density and stand age). The soil C sequestration of any agroforestry system is influenced by the amount and quality of biomass input provided by tree and nontree components of the system and the soil properties such as soil texture and soil structure. Overall the amount of carbon storage in any agroforestry system depends on the structure and function of its each component. The future studies should focus on the carbon sink functions of structurally optimized agroforestry systems, the temporal variation and spatial distribution pattern of carbon storage in agroforestry system and its carbon sequestration mechanism in a long time.

  3. Iranian speleothems: Investigating Quaternary climate variability in semi-arid Western Asia

    NASA Astrophysics Data System (ADS)

    Carolin, Stacy; Morgan, Jacob; Peckover, Emily; Walker, Richard; Henderson, Gideon; Rowe, Peter; Andrews, Julian; Ersek, Vasile; Sloan, Alastair; Talebian, Morteza; Fattahi, Morteza; Nezamdoust, Javad

    2016-04-01

    Rapid population growth and limited water supply has highlighted the need for vigorous water resource management practices in the semi-arid regions of Western Asia. One significant unknown in this discussion is the future change in rainfall amount due to the consequential effects of today's greenhouse gas forcing on the regional climate system. Currently, there is little paleoclimate proxy data in Western Asia to extend climate records beyond the limits of the instrumental period, leaving scant evidence to investigate the system's response to various climate forcings on different timescales. Here we present a synthesis of speleothem climate records across northern Iran, from the wetter climate of the Alborz and Zagros mountain ranges to the dry northeast, in order to investigate the magnitude of past climate variability and the forcings responsible. The stalagmites collected from the west and north-central mountain ranges, areas with ~200-400mm mean annual precipitation mostly falling within the fall-winter-spring months, all demonstrate growth limited to the interglacial periods of the Quaternary. We present overlapping Holocene stable isotope records with a complementary trace element record to assist in interpreting the isotopic variability. One of the records is sampled at <4yr resolution and spans 3.7-5.3 kyBP, a contested period of catastrophic droughts that allegedly eradicated civilizations in areas of the near East. Imposed upon decadal-scale variability, the record reveals a 1,000-yr gradual trend toward enriched stable oxygen isotope values, interpreted as a trend toward drier conditions, which ends with an abrupt 300-yr cessation in growth beginning at 4.3 kyBP, coincident with the so-called 4.2 kyBP drought event. From the northeast Iranian plateau, we present a new stalagmite record that spans the penultimate deglaciation and Stages 5e-5a. This region presently receives limited rain annually (~100-300mm/yr, regularly falling between November and May), and the record presented is one of the first speleothem climate records to span a deglaciation in West Asia. To improve our interpretation of the speleothem climate proxy timeseries, we use multiple decades of Tehran GNIP data, meteorological data, and isotope-equipped climate model outputs to investigate the large-scale mechanisms forcing isotopic variations in rainwater across northern Iran. We also examine possible transformation of water isotopes during the transition through the karst aquifer based on site properties, measured dripwater isotopes, and simple model experiments.

  4. Green roof soil system affected by soil structural changes: A project initiation

    NASA Astrophysics Data System (ADS)

    Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal

    2014-05-01

    Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.

  5. Validation of a Wave Data Assimilation System Based on SWAN

    NASA Astrophysics Data System (ADS)

    Flampourisi, Stylianos; Veeramony, Jayaram; Orzech, Mark D.; Ngodock, Hans E.

    2013-04-01

    SWAN is one of the most broadly used models for wave predictions in the nearshore, with known and extensively studied limitations due to the physics and/or to the numerical implementation. In order to improve the performance of the model, a 4DVAR data assimilation system based on a tangent linear code and the corresponding adjoint from the numerical SWAN model has been developed at NRL(Orzech et. al., 2013), by implementing the methodology of Bennett 2002. The assimilation system takes into account the nonlinear triad and quadruplet interactions, depth-limited breaking, wind forcing, bottom friction and white-capping. Using conjugate gradient method, the assimilation system minimizes a quadratic penalty functional (which represents the overall error of the simulation) and generates the correction of the forward simulation in spatial, temporal and spectral domain. The weights are given to the output of the adjoint by calculating the covariance to an ensemble of forward simulations according to Evensen 2009. This presentation will focus on the extension of the system to a weak-constrainted data assimilation system and on the extensive validation of the system by using wave spectra for forcing, assimilation and validation, from FRF Duck, North Carolina, during August 2011. During this period, at the 17 m waverider buoy location, the wind speed was up to 35 m/s (due to Hurricane Irene) and the significant wave height varied from 0.5 m to 6 m and the peak period between 5 s and 18 s. In general, this study shows significant improvement of the integrated spectral properties, but the main benefit of assimilating the wave spectra (and not only their integrated properties) is that the accurate simulation of separated, in frequency and in direction, wave systems is possible even nearshore, where non-linear phenomena are dominant. The system is ready to be used for more precise reanalysis of the wave climate and climate variability, and determination of coastal hazards in regional or local scales, in case of available wave data. References: Orzech, M.D., J. Veeramony, and H.E. Ngodock, 2013: A variational assimilation system for nearshore wave modeling. J. Atm. & Oc. Tech., in press.

  6. A 15 year legacy of cloud and atmosphere observations in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Shupe, M.

    2012-12-01

    For the past 15 years, the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program has operated the North Slope of Alaska (NSA) atmospheric observatory in Barrow, Alaska. Barrow offers many valuable perspectives on the Arctic environment that complement observations at lower latitudes. Unique features of the Arctic region include cold and dry atmospheric conditions, strong annual variability in sun light, a seasonally high-reflective surface, and persistent clouds that involve mixed-phase processes. ARM's ultimate objective with its flagship observatory at the northernmost point in U.S. territory is to provide measurements that can be used to improve the understanding of these atmospheric physical and radiative properties and processes such that they can be better represented in climate models. The NSA is the most detailed and long-lasting cloud-radiation-atmosphere observatory in the Arctic, providing continuous, sophisticated measurements of climate-relevant parameters. Instrument suites include active radars and lidars at various frequencies, passive radiometers monitoring radiation in microwave, infrared, visible and ultraviolet wavelengths, meteorological towers, and sounding systems. Together these measurements are used to characterize many of the important properties of clouds, aerosols, atmospheric radiation, dynamics, thermodynamics, and the surface. The coordinated nature of these measurements offers important multi-dimensional insight into many fundamental processes linking these different elements of the climate system. Moreover, the continuous operations of the facility support these observations over the full diurnal cycle and in all seasons of the year. This presentation will highlight a number of important studies and key findings that have been facilitated by the NSA observations during the first 15 years in operation. Some of these include: a thorough documentation of clouds, their occurrence frequency, phase, microphysical properties, and impacts on surface radiation; the indirect effect of aerosols on the surface longwave radiative effects of Arctic clouds; improved measurements of low amounts of atmospheric water vapor and their impacts on atmospheric radiation; dynamical and microphysical processes that are responsible for long-lived Arctic stratiform clouds; evaluation of satellite observations in extreme and observationally-difficult regimes; and assessment of model performance for models ranging from very high resolution to climate model simulations in the Arctic. The observational legacy at Barrow continues as ARM works to expand and enhance its impact. Plans are underway to install observational capabilities at a sister location in Oliktok Point to the east of Barrow, including enhanced capabilities of tethered balloon profiling and flying unmanned aerial vehicles over the adjacent Arctic Ocean. A new set of scanning cloud and precipitation radars have recently come online at Barrow that will allow for new insights on the spatial context of measurements at Barrow, including important information on the variability of atmospheric processes associated with the coastline. And lastly, there are many opportunities for the intensive observations at Barrow to inform important regional research on permafrost and sea-ice loss, while also serving as an unmatched, long-term record for evaluating atmospheric processes in regional and global climate models.

  7. Predicted Thermal Responses of Military Working Dog (MWD) to Chemical, Biological, Radiological, Nuclear (CBRN) Protective Kennel Enclosure

    DTIC Science & Technology

    2011-08-01

    meteorological conditions. More specifically, climate chamber studies of the chemical protective kennel cover were conducted over a range of...responses to predict how long the dog could safely remain in the enclosure for various ambient environmental conditions. Climate chamber studies of...Engineering Center (NSRDEC) was tested in a climate - controlled chamber to quantify its insulation and vapor permeability properties. A schematic of

  8. Climate and water resource change impacts and adaptation potential for US power supply

    DOE PAGES

    Miara, Ariel; Macknick, Jordan E.; Vorosmarty, Charles J.; ...

    2017-10-30

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptationmore » strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. As a result, climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.« less

  9. Climate and water resource change impacts and adaptation potential for US power supply

    NASA Astrophysics Data System (ADS)

    Miara, Ariel; Macknick, Jordan E.; Vörösmarty, Charles J.; Tidwell, Vincent C.; Newmark, Robin; Fekete, Balazs

    2017-11-01

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptation strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. Climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.

  10. Climate and water resource change impacts and adaptation potential for US power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miara, Ariel; Macknick, Jordan E.; Vorosmarty, Charles J.

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptationmore » strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. As a result, climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.« less

  11. Monitoring Top-of-Atmosphere Radiative Energy Imbalance for Climate Prediction

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Chambers, Lin H.; Stackhouse, Paul W., Jr.; Minnis, Patrick

    2009-01-01

    Large climate feedback uncertainties limit the prediction accuracy of the Earth s future climate with an increased CO2 atmosphere. One potential to reduce the feedback uncertainties using satellite observations of top-of-atmosphere (TOA) radiative energy imbalance is explored. Instead of solving the initial condition problem in previous energy balance analysis, current study focuses on the boundary condition problem with further considerations on climate system memory and deep ocean heat transport, which is more applicable for the climate. Along with surface temperature measurements of the present climate, the climate feedbacks are obtained based on the constraints of the TOA radiation imbalance. Comparing to the feedback factor of 3.3 W/sq m/K of the neutral climate system, the estimated feedback factor for the current climate system ranges from -1.3 to -1.0 W/sq m/K with an uncertainty of +/-0.26 W/sq m/K. That is, a positive climate feedback is found because of the measured TOA net radiative heating (0.85 W/sq m) to the climate system. The uncertainty is caused by the uncertainties in the climate memory length. The estimated time constant of the climate is large (70 to approx. 120 years), implying that the climate is not in an equilibrium state under the increasing CO2 forcing in the last century.

  12. CLIMATE CHANGE IN THAILAND AND ITS POTENTIAL IMPACT ON RICE YIELD

    EPA Science Inventory

    Because of the uncertainties surrounding prediction of climate change, it is common to employ climate scenarios to estimate its impacts on a system. Climate scenarios are sets of climatic perturbations used with models to test system sensitivity to projected changes. In this stud...

  13. Regional assessment of Climate change impacts in the Mediterranean: the CIRCE project

    NASA Astrophysics Data System (ADS)

    Iglesias, A.

    2011-12-01

    The CIRCE project has developed for the first time an assessment of the climate change impacts in the Mediterranean area. The objectives of the project are: to predict and to quantify physical impacts of climate change in the Mediterranean area; to evaluate the consequences of climate change for the society and the economy of the populations located in the Mediterranean area; to develop an integrated approach to understand combined effects of climate change; and to identify adaptation and mitigation strategies in collaboration with regional stakeholders. The CIRCE Project, coordinated by the Instituto Nazionale di Geofisca e Vulcanologia, started on 1st April 2007 and ended in a policy conference in Rome on June 2011. CIRCE involves 64 partners from Europe, Middle East and North Africa working together to evaluate the best strategies of adaptation to the climate change in the Mediterranean basin. CIRCE wants to understand and to explain how climate will change in the Mediterranean area bringing together the natural sciences community and social community in a new integrated and comprehensive way. The project has investigated how global and Mediterranean climates interact, how the radiative properties of the atmosphere and the radiative fluxes vary, the interaction between cloudiness and aerosol, the modifications in the water cycle. Recent observed modifications in the climate variables and detected trends will be compared. The economic and social consequences of climate change are evaluated by analysing direct impacts on migration, tourism and energy markets together with indirect impacts on the economic system. CIRCE has produced results about the consequences on agriculture, forests and ecosystems, human health and air quality. The variability of extreme events in the future scenario and their impacts is also assessed. A rigorous common framework, including a set of quantitative indicators developed specifically for the Mediterranean environment was be developed and used in collaboration with regional stakeholders. Possible adaptation and mitigation strategies were be identified. The integrated results discussed by the project CIRCE will be presented in the first Regional Assessment of Climate Change in the Mediterranean area, to be published in September 2011 and will make a powerful contribution to the definition and evaluation of adaptation and mitigation strategies.

  14. Characterization of interfade duration for satellite communication systems design and optimization in a temperate climate

    NASA Astrophysics Data System (ADS)

    Jorge, Flávio; Riva, Carlo; Rocha, Armando

    2016-03-01

    The characterization of the fade dynamics on Earth-satellite links is an important subject when designing the so called fade mitigation techniques that contribute to the proper reliability of the satellite communication systems and the customers' quality of service (QoS). The interfade duration, defined as the period between two consecutive fade events, has been only poorly analyzed using limited data sets, but its complete characterization would enable the design and optimization of the satellite communication systems by estimating the system requirements to recover in time before the next propagation impairment. Depending on this analysis, several actions can be taken ensuring the service maintenance. In this paper we present for the first time a detailed and comprehensive analysis of the interfade events statistical properties based on 9 years of in-excess attenuation measurements at Ka band (19.7 GHz) with very high availability that is required to build a reliable data set mainly for the longer interfade duration events. The number of years necessary to reach the statistical stability of interfade duration is also evaluated for the first time, providing a reference when accessing the relevance of the results published in the past. The study is carried out in Aveiro, Portugal, which is conditioned by temperate Mediterranean climate with Oceanic influences.

  15. Performance and economics of residential solar space heating

    NASA Astrophysics Data System (ADS)

    Zehr, F. J.; Vineyard, T. A.; Barnes, R. W.; Oneal, D. L.

    1982-11-01

    The performance and economics of residential solar space heating were studied for various locations in the contiguous United States. Common types of active and passive solar heating systems were analyzed with respect to an average-size, single-family house designed to meet or exceed the thermal requirements of the Department of Housing and Urban Development Minimum Property Standards (HUD-MPS). The solar systems were evaluated in seventeen cities to provide a broad range of climatic conditions. Active systems evaluated consist of air and liquid flat plate collectors with single- and double-glazing: passive systems include Trombe wall, water wall, direct gain, and sunspace systems. The active system solar heating performance was computed using the University of Wisconsin's F-CHART computer program. The Los Alamos Scientific Laboratory's Solar Load Ratio (SLR) method was employed to compute solar heating performance for the passive systems. Heating costs were computed with gas, oil, and electricity as backups and as conventional heating system fuels.

  16. High Resolution Ecosystem Structure, Biomass and Blue Carbon stocks in Mangrove Ecosystems- Methods and Applications of Lidar, radar Interferometry and High Resolution imagery

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Fatoyinbo, T. E.; Lee, S. K.; Feliciano, E. A.; Simard, M.; Trettin, C.

    2016-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for <0.5% of the total SW TOA flux variance over the tropics and 4% globally. Variations in atmospheric reflectance and transmittance account for virtually all of the total SW TOA flux variance over the tropics and only 81% globally. The remaining 15% of the global SW TOA flux variance is explained by the co-variance of surface albedo and atmospheric reflectance/transmittance. Equatorward of 60-degree latitude, the atmospheric contribution exceeds that of the surface by at least an order-of-magnitude. In contrast, the surface and atmospheric variations contribute equally poleward of 60S and surface variations account for twice as much as the atmosphere poleward of 60N. However, as much as 40% of the total SW TOA flux variance poleward of 60N is explained by the covariance of surface albedo and atmospheric reflectance/transmittance, highlighting the tight coupling between sea-ice concentration and cloud properties over the Arctic Ocean.

  17. Decomposing Shortwave Top-of-Atmosphere Radiative Flux Variability in Terms of Surface and Atmospheric Contributions Using CERES Observations

    NASA Astrophysics Data System (ADS)

    Loeb, N. G.; Wong, T.; Wang, H.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for <0.5% of the total SW TOA flux variance over the tropics and 4% globally. Variations in atmospheric reflectance and transmittance account for virtually all of the total SW TOA flux variance over the tropics and only 81% globally. The remaining 15% of the global SW TOA flux variance is explained by the co-variance of surface albedo and atmospheric reflectance/transmittance. Equatorward of 60-degree latitude, the atmospheric contribution exceeds that of the surface by at least an order-of-magnitude. In contrast, the surface and atmospheric variations contribute equally poleward of 60S and surface variations account for twice as much as the atmosphere poleward of 60N. However, as much as 40% of the total SW TOA flux variance poleward of 60N is explained by the covariance of surface albedo and atmospheric reflectance/transmittance, highlighting the tight coupling between sea-ice concentration and cloud properties over the Arctic Ocean.

  18. Identifying and Analyzing Uncertainty Structures in the TRMM Microwave Imager Precipitation Product over Tropical Ocean Basins

    NASA Technical Reports Server (NTRS)

    Liu, Jianbo; Kummerow, Christian D.; Elsaesser, Gregory S.

    2016-01-01

    Despite continuous improvements in microwave sensors and retrieval algorithms, our understanding of precipitation uncertainty is quite limited, due primarily to inconsistent findings in studies that compare satellite estimates to in situ observations over different parts of the world. This study seeks to characterize the temporal and spatial properties of uncertainty in the Tropical Rainfall Measuring Mission Microwave Imager surface rainfall product over tropical ocean basins. Two uncertainty analysis frameworks are introduced to qualitatively evaluate the properties of uncertainty under a hierarchy of spatiotemporal data resolutions. The first framework (i.e. 'climate method') demonstrates that, apart from random errors and regionally dependent biases, a large component of the overall precipitation uncertainty is manifested in cyclical patterns that are closely related to large-scale atmospheric modes of variability. By estimating the magnitudes of major uncertainty sources independently, the climate method is able to explain 45-88% of the monthly uncertainty variability. The percentage is largely resolution dependent (with the lowest percentage explained associated with a 1 deg x 1 deg spatial/1 month temporal resolution, and highest associated with a 3 deg x 3 deg spatial/3 month temporal resolution). The second framework (i.e. 'weather method') explains regional mean precipitation uncertainty as a summation of uncertainties associated with individual precipitation systems. By further assuming that self-similar recurring precipitation systems yield qualitatively comparable precipitation uncertainties, the weather method can consistently resolve about 50 % of the daily uncertainty variability, with only limited dependence on the regions of interest.

  19. Spectral Dependence of MODIS Cloud Droplet Effective Radius Retrievals for Marine Boundary Layer Clouds

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Platnick, Steven E.; Ackerman, Andrew S.; Cho, Hyoun-Myoung

    2014-01-01

    Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth's surface. They have a significant role in Earth's radiative energy balance and hydrological cycle. Despite the fundamental role of low-level warm water clouds in climate, our understanding of these clouds is still limited. In particular, connections between their properties (e.g. cloud fraction, cloud water path, and cloud droplet size) and environmental factors such as aerosol loading and meteorological conditions continue to be uncertain or unknown. Modeling these clouds in climate models remains a challenging problem. As a result, the influence of aerosols on these clouds in the past and future, and the potential impacts of these clouds on global warming remain open questions leading to substantial uncertainty in climate projections. To improve our understanding of these clouds, we need continuous observations of cloud properties on both a global scale and over a long enough timescale for climate studies. At present, satellite-based remote sensing is the only means of providing such observations.

  20. Impact of Land Cover Characterization and Properties on Snow Albedo in Climate Models

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bartlett, P. A.; Chan, E.; Montesano, P.

    2017-12-01

    The simulation of winter albedo in boreal and northern environments has been a particular challenge for land surface modellers. Assessments of output from CMIP3 and CMIP5 climate models have revealed that many simulations are characterized by overestimation of albedo in the boreal forest. Recent studies suggest that inaccurate representation of vegetation distribution, improper simulation of leaf area index, and poor treatment of canopy-snow processes are the primary causes of albedo errors. While several land cover datasets are commonly used to derive plant functional types (PFT) for use in climate models, new land cover and vegetation datasets with higher spatial resolution have become available in recent years. In this study, we compare the spatial distribution of the dominant PFTs and canopy cover fractions based on different land cover datasets, and present results from offline simulations of the latest version Canadian Land Surface Scheme (CLASS) over the northern Hemisphere land. We discuss the impact of land cover representation and surface properties on winter albedo simulations in climate models.

Top