Quality management and perceptions of teamwork and safety climate in European hospitals.
Kristensen, Solvejg; Hammer, Antje; Bartels, Paul; Suñol, Rosa; Groene, Oliver; Thompson, Caroline A; Arah, Onyebuchi A; Kutaj-Wasikowska, Halina; Michel, Philippe; Wagner, Cordula
2015-12-01
This study aimed to investigate the associations of quality management systems with teamwork and safety climate, and to describe and compare differences in perceptions of teamwork climate and safety climate among clinical leaders and frontline clinicians. We used a multi-method, cross-sectional approach to collect survey data of quality management systems and perceived teamwork and safety climate. Our data analyses included descriptive and multilevel regression methods. Data on implementation of quality management system from seven European countries were evaluated including patient safety culture surveys from 3622 clinical leaders and 4903 frontline clinicians. Perceived teamwork and safety climate. Teamwork climate was reported as positive by 67% of clinical leaders and 43% of frontline clinicians. Safety climate was perceived as positive by 54% of clinical leaders and 32% of frontline clinicians. We found positive associations between implementation of quality management systems and teamwork and safety climate. Our findings, which should be placed in a broader clinical quality improvement context, point to the importance of quality management systems as a supportive structural feature for promoting teamwork and safety climate. To gain a deeper understanding of this association, further qualitative and quantitative studies using longitudinally collected data are recommended. The study also confirms that more clinical leaders than frontline clinicians have a positive perception of teamwork and safety climate. Such differences should be accounted for in daily clinical practice and when tailoring initiatives to improve teamwork and safety climate. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.
Wallin, Carl-Johan; Kalman, Sigridur; Sandelin, Annika; Färnert, May-Lena; Dahlstrand, Ursula; Jylli, Leena
2015-03-01
Positive safety and a teamwork climate in the training environment may be a precursor for successful teamwork training. This pilot project aimed to implement and test whether a new interdisciplinary and team-based approach would result in a positive training climate in the operating theatre. A 3-day educational module for training the complete surgical team of specialist nursing students and residents in safe teamwork skills in an authentic operative theatre, named Co-Op, was implemented in a university hospital. Participants' (n=22) perceptions of the 'safety climate' and the 'teamwork climate', together with their 'readiness for inter-professional learning', were measured to examine if the Co-Op module produced a positive training environment compared with the perceptions of a control group (n=11) attending the conventional curriculum. The participants' perceptions of 'safety climate' and 'teamwork climate' and their 'readiness for inter-professional learning' scores were significantly higher following the Co-Op module compared with their perceptions following the conventional curriculum, and compared with the control group's perceptions following the conventional curriculum. The Co-Op module improved 'safety climate' and 'teamwork climate' in the operating theatre, which suggests that a deliberate and designed educational intervention can shape a learning environment as a model for the establishment of a safety culture.
Erestam, Sofia; Haglind, Eva; Bock, David; Andersson, Annette Erichsen; Angenete, Eva
2017-01-01
Inter-professional teamwork in the operating room is important for patient safety. The World Health Organization (WHO) checklist was introduced to improve intraoperative teamwork. The aim of this study was to evaluate the safety climate in a Swedish operating room setting before and after an intervention, using a revised version of the WHO checklist to improve teamwork. This study is a single center prospective interventional study. Participants were personnel working in operating room teams including surgeons, anesthesiologists, scrub nurses, nurse anaesthetists and nurse assistants. The study started with pre-interventional observations of the WHO checklist use followed by education on safety climate, the WHO checklist, and non-technical skills in the operating room. Thereafter a revised version of the WHO checklist was introduced. Post-interventional observations regarding the performance of the WHO checklist were carried out. The Safety Attitude Questionnaire was used to assess safety climate at baseline and post-intervention. At baseline we discovered a need for improved teamwork and communication. The participants considered teamwork to be important for patient safety, but had different perceptions of good teamwork between professions. The intervention, a revised version of the WHO checklist, did not affect teamwork climate. Adherence to the revision of the checklist was insufficient, dominated by a lack of structure. There was no significant change in teamwork climate by use of the revised WHO checklist, which may be due to insufficient implementation, as a lack of adherence to the WHO checklist was detected. We found deficiencies in teamwork and communication. Further studies exploring how to improve safety climate are needed. NCT02329691.
Profit, Jochen; Sharek, Paul J.; Kan, Peiyi; Rigdon, Joseph; Desai, Manisha; Nisbet, Courtney C.; Tawfik, Daniel S.; Thomas, Eric J.; Lee, Henry C.; Sexton, J. Bryan
2018-01-01
Background and Objective Teamwork may affect clinical care in the neonatal intensive care unit (NICU) setting. The objective of this study was to assess teamwork climate across NICUs and to test scale level and item level associations with healthcare-associated infection (HAI) rates in very low birth weight (VLBW) infants. Methods Cross-sectional study of the association between HAI rates, defined as any bacterial or fungal infection during the birth hospitalization, among 6663 VLBW infants cared for in 44 NICUs between 2010 and 2012. NICU HAI rates were correlated with teamwork climate ratings obtained in 2011 from 2073 of 3294 eligible (response rate 63%) NICU health professionals. The relation between HAI rates and NICU teamwork climate was assessed using logistic regression models including NICU as a random effect. Results Across NICUs, 36 to 100% (mean 66%) of respondents reported good teamwork. HAI rates were significantly and independently associated with teamwork climate (OR [95% CI] 0.82 [0.73-0.92], p = 0.005), such that the odds of an infant contracting a HAI decreased by 18% with each 10% rise in NICU respondents reporting good teamwork. Conclusion Improving teamwork may be an important element in infection control efforts. PMID:28395366
Profit, Jochen; Sharek, Paul J; Kan, Peiyi; Rigdon, Joseph; Desai, Manisha; Nisbet, Courtney C; Tawfik, Daniel S; Thomas, Eric J; Lee, Henry C; Sexton, J Bryan
2017-08-01
Background and Objective Teamwork may affect clinical care in the neonatal intensive care unit (NICU) setting. The objective of this study was to assess teamwork climate across NICUs and to test scale-level and item-level associations with health care-associated infection (HAI) rates in very low-birth-weight (VLBW) infants. Methods Cross-sectional study of the association between HAI rates, defined as any bacterial or fungal infection during the birth hospitalization, among 6,663 VLBW infants cared for in 44 NICUs between 2010 and 2012. NICU HAI rates were correlated with teamwork climate ratings obtained in 2011 from 2,073 of 3,294 eligible NICU health professionals (response rate 63%). The relation between HAI rates and NICU teamwork climate was assessed using logistic regression models including NICU as a random effect. Results Across NICUs, 36 to 100% (mean 66%) of respondents reported good teamwork. HAI rates were significantly and independently associated with teamwork climate (odds ratio, 0.82; 95% confidence interval, 0.73-0.92, p = 0.005), such that the odds of an infant contracting a HAI decreased by 18% with each 10% rise in NICU respondents reporting good teamwork. Conclusion Improving teamwork may be an important element in infection control efforts. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Comparing NICU teamwork and safety climate across two commonly used survey instruments
Profit, Jochen; Lee, Henry C; Sharek, Paul J; Kan, Peggy; Nisbet, Courtney C; Thomas, Eric J; Etchegaray, Jason M; Sexton, Bryan
2016-01-01
Background and objectives Measurement and our understanding of safety culture are still evolving. The objectives of this study were to assess variation in safety and teamwork climate and in the neonatal intensive care unit (NICU) setting, and compare measurement of safety culture scales using two different instruments (Safety Attitudes Questionnaire (SAQ) and Hospital Survey on Patient Safety Culture (HSOPSC)). Methods Cross-sectional survey study of a voluntary sample of 2073 (response rate 62.9%) health professionals in 44 NICUs. To compare survey instruments, we used Spearman's rank correlation coefficients. We also compared similar scales and items across the instruments using t tests and changes in quartile-level performance. Results We found significant variation across NICUs in safety and teamwork climate scales of SAQ and HSOPSC (p<0.001). Safety scales (safety climate and overall perception of safety) and teamwork scales (teamwork climate and teamwork within units) of the two instruments correlated strongly (safety r=0.72, p<0.001; teamwork r=0.67, p<0.001). However, the means and per cent agreements for all scale scores and even seemingly similar item scores were significantly different. In addition, comparisons of scale score quartiles between the two instruments revealed that half of the NICUs fell into different quartiles when translating between the instruments. Conclusions Large variation and opportunities for improvement in patient safety culture exist across NICUs. Important systematic differences exist between SAQ and HSOPSC such that these instruments should not be used interchangeably. PMID:26700545
Context in Quality of Care: Improving Teamwork and Resilience.
Tawfik, Daniel S; Sexton, John Bryan; Adair, Kathryn C; Kaplan, Heather C; Profit, Jochen
2017-09-01
Quality improvement in health care is an ongoing challenge. Consideration of the context of the health care system is of paramount importance. Staff resilience and teamwork climate are key aspects of context that drive quality. Teamwork climate is dynamic, with well-established tools available to improve teamwork for specific tasks or global applications. Similarly, burnout and resilience can be modified with interventions such as cultivating gratitude, positivity, and awe. A growing body of literature has shown that teamwork and burnout relate to quality of care, with improved teamwork and decreased burnout expected to produce improved patient quality and safety. Copyright © 2017 Elsevier Inc. All rights reserved.
Relational Climate and Health Care Costs: Evidence From Diabetes Care.
Soley-Bori, Marina; Stefos, Theodore; Burgess, James F; Benzer, Justin K
2018-01-01
Quality of care worries and rising costs have resulted in a widespread interest in enhancing the efficiency of health care delivery. One area of increasing interest is in promoting teamwork as a way of coordinating efforts to reduce costs and improve quality, and identifying the characteristics of the work environment that support teamwork. Relational climate is a measure of the work environment that captures shared employee perceptions of teamwork, conflict resolution, and diversity acceptance. Previous research has found a positive association between relational climate and quality of care, yet its relationship with costs remains unexplored. We examined the influence of primary care relational climate on health care costs incurred by diabetic patients at the U.S. Department of Veterans Affairs between 2008 and 2012. We found that better relational climate is significantly related to lower costs. Clinics with the strongest relational climate saved $334 in outpatient costs per patient compared with facilities with the weakest score in 2010. The total outpatient cost saving if all clinics achieved the top 5% relational climate score was $20 million. Relational climate may contribute to lower costs by enhancing diabetic treatment work processes, especially in outpatient settings.
Relationship between organizational climate and empowerment of nurses in Hong Kong.
Mok, Esther; Au-Yeung, Betty
2002-05-01
The authors explore the relationship between organizational climate and empowerment among the nursing staff of a regional hospital in Hong Kong. The main purpose of the study was to apply the modified Spreitzer measure of empowerment in a hospital and to examine the relationship of organizational climate to perceptions of empowerment. From 658 questionnaires sent out, 331 nurses participated in the study with a response rate of 50.3%. Survey measures administered included the modified Litwin and Stringer Organizational Climate Questionnaire (LSOCQ) and the modified Spreitzer empowerment instrument. The relationships between organizational climate and empowerment were examined in a series of bivariate correlational analyses. The final section of the questionnaire asked the respondents to list three elements in the organizational climate that they perceived would further increase their feelings of empowerment. Exploratory factor analysis of the modified LSOCQ resulted in six factors: leadership, working harmony, challenge, recognition, teamwork and decision making. There was a positive correlation between organizational climate and psychological empowerment. Using multiple regression analysis, all the six derived climate factors significantly accounted for 44% of the variance. Among the six predicting factors, leadership and teamwork showed the most positive relationship with psychological empowerment. Responses from the open questions on perception of organizational climate that further enhance nurses' feelings of empowerment were categorized into eight areas. They include leadership, communication, working relationship, recognition, structure, training, teamwork and stress management. The study echoes previous studies in finding that organizational climate and, in particular, supportive leadership and teamwork are related to empowerment. The findings also suggest that the nurses in the study did not put much emphasis on the importance of participative decision making.
THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE
Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan
2015-01-01
Background: The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran’s universities. Methods: This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran’s public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For predicting the organizational climate pattern of the libraries is used from the multivariate linear regression and track diagram. Results: of the 9 variables affecting organizational climate, 5 variables of innovation, teamwork, customer service, psychological safety and deep diversity play a major role in prediction of the organizational climate of Iran’s libraries. The results also indicate that each of these variables with different coefficient have the power to predict organizational climate but the climate score of psychological safety (0.94) plays a very crucial role in predicting the organizational climate. Track diagram showed that five variables of teamwork, customer service, psychological safety, deep diversity and innovation directly effects on the organizational climate variable that contribution of the team work from this influence is more than any other variables. Conclusions: Of the indicator of the organizational climate of climateQual, the contribution of the team work from this influence is more than any other variables that reinforcement of teamwork in academic libraries can be more effective in improving the organizational climate of this type libraries. PMID:26622203
THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE.
Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan
2015-10-01
The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran's universities. This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran's public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For predicting the organizational climate pattern of the libraries is used from the multivariate linear regression and track diagram. of the 9 variables affecting organizational climate, 5 variables of innovation, teamwork, customer service, psychological safety and deep diversity play a major role in prediction of the organizational climate of Iran's libraries. The results also indicate that each of these variables with different coefficient have the power to predict organizational climate but the climate score of psychological safety (0.94) plays a very crucial role in predicting the organizational climate. Track diagram showed that five variables of teamwork, customer service, psychological safety, deep diversity and innovation directly effects on the organizational climate variable that contribution of the team work from this influence is more than any other variables. Of the indicator of the organizational climate of climateQual, the contribution of the team work from this influence is more than any other variables that reinforcement of teamwork in academic libraries can be more effective in improving the organizational climate of this type libraries.
Comparing NICU teamwork and safety climate across two commonly used survey instruments.
Profit, Jochen; Lee, Henry C; Sharek, Paul J; Kan, Peggy; Nisbet, Courtney C; Thomas, Eric J; Etchegaray, Jason M; Sexton, Bryan
2016-12-01
Measurement and our understanding of safety culture are still evolving. The objectives of this study were to assess variation in safety and teamwork climate and in the neonatal intensive care unit (NICU) setting, and compare measurement of safety culture scales using two different instruments (Safety Attitudes Questionnaire (SAQ) and Hospital Survey on Patient Safety Culture (HSOPSC)). Cross-sectional survey study of a voluntary sample of 2073 (response rate 62.9%) health professionals in 44 NICUs. To compare survey instruments, we used Spearman's rank correlation coefficients. We also compared similar scales and items across the instruments using t tests and changes in quartile-level performance. We found significant variation across NICUs in safety and teamwork climate scales of SAQ and HSOPSC (p<0.001). Safety scales (safety climate and overall perception of safety) and teamwork scales (teamwork climate and teamwork within units) of the two instruments correlated strongly (safety r=0.72, p<0.001; teamwork r=0.67, p<0.001). However, the means and per cent agreements for all scale scores and even seemingly similar item scores were significantly different. In addition, comparisons of scale score quartiles between the two instruments revealed that half of the NICUs fell into different quartiles when translating between the instruments. Large variation and opportunities for improvement in patient safety culture exist across NICUs. Important systematic differences exist between SAQ and HSOPSC such that these instruments should not be used interchangeably. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Hutchinson, A; Cooper, K L; Dean, J E; McIntosh, A; Patterson, M; Stride, C B; Laurence, B E; Smith, C M
2006-10-01
To explore the factor structure, reliability, and potential usefulness of a patient safety climate questionnaire in UK health care. Four acute hospital trusts and nine primary care trusts in England. The questionnaire used was the 27 item Teamwork and Safety Climate Survey. Thirty three healthcare staff commented on the wording and relevance. The questionnaire was then sent to 3650 staff within the 13 NHS trusts, seeking to achieve at least 600 responses as the basis for the factor analysis. 1307 questionnaires were returned (36% response). Factor analyses and reliability analyses were carried out on 897 responses from staff involved in direct patient care, to explore how consistently the questions measured the underlying constructs of safety climate and teamwork. Some questionnaire items related to multiple factors or did not relate strongly to any factor. Five items were discarded. Two teamwork factors were derived from the remaining 11 teamwork items and three safety climate factors were derived from the remaining 11 safety items. Internal consistency reliabilities were satisfactory to good (Cronbach's alpha > or =0.69 for all five factors). This is one of the few studies to undertake a detailed evaluation of a patient safety climate questionnaire in UK health care and possibly the first to do so in primary as well as secondary care. The results indicate that a 22 item version of this safety climate questionnaire is useable as a research instrument in both settings, but also demonstrates a more general need for thorough validation of safety climate questionnaires before widespread usage.
Teamwork in the operating room: frontline perspectives among hospitals and operating room personnel.
Sexton, J Bryan; Makary, Martin A; Tersigni, Anthony R; Pryor, David; Hendrich, Ann; Thomas, Eric J; Holzmueller, Christine G; Knight, Andrew P; Wu, Yun; Pronovost, Peter J
2006-11-01
The Joint Commission on Accreditation of Healthcare Organizations is proposing that hospitals measure culture beginning in 2007. However, a reliable and widely used measurement tool for the operating room (OR) setting does not currently exist. OR personnel in 60 US hospitals were surveyed using the Safety Attitudes Questionnaire. The teamwork climate domain of the survey uses six items about difficulty speaking up, conflict resolution, physician-nurse collaboration, feeling supported by others, asking questions, and heeding nurse input. To justify grouping individual-level responses to a single score at each hospital OR level, the authors used a multilevel confirmatory factor analysis, intraclass correlations, within-group interrater reliability, and Cronbach's alpha. To detect differences at the hospital OR level and by caregiver type, the authors used multivariate analysis of variance (items) and analysis of variance (scale). The response rate was 77.1%. There was robust evidence for grouping individual-level respondents to the hospital OR level using the diverse set of statistical tests, e.g., Comparative Fit Index = 0.99, root mean squared error of approximation = 0.05, and acceptable intraclasss correlations, within-group interrater reliability values, and Cronbach's alpha = 0.79. Teamwork climate differed significantly by hospital (F59, 1,911 = 4.06, P < 0.001) and OR caregiver type (F4, 1,911 = 9.96, P < 0.001). Rigorous assessment of teamwork climate is possible using this psychometrically sound teamwork climate scale. This tool and initial benchmarks allow others to compare their teamwork climate to national means, in an effort to focus more on what excellent surgical teams do well.
Factors influencing teamwork and collaboration within a tertiary medical center
Chien, Shu Feng; Wan, Thomas TH; Chen, Yu-Chih
2012-01-01
AIM: To understand how work climate and related factors influence teamwork and collaboration in a large medical center. METHODS: A survey of 3462 employees was conducted to generate responses to Sexton’s Safety Attitudes Questionnaire (SAQ) to assess perceptions of work environment via a series of five-point, Likert-scaled questions. Path analysis was performed, using teamwork (TW) and collaboration (CO) as endogenous variables. The exogenous variables are effective communication (EC), safety culture (SC), job satisfaction (JS), work pressure (PR), and work climate (WC). The measurement instruments for the variables or summated subscales are presented. Reliability of each sub-scale are calculated. Alpha Cronbach coefficients are relatively strong: TW (0.81), CO (0.76), EC (0.70), SC (0.83), JS (0.91), WP (0.85), and WC (0.78). Confirmatory factor analysis was performed for each of these constructs. RESULTS: Path analysis enables to identify statistically significant predictors of two endogenous variables, teamwork and intra-organizational collaboration. Significant amounts of variance in perceived teamwork (R2 = 0.59) and in collaboration (R2 = 0.75) are accounted for by the predictor variables. In the initial model, safety culture is the most important predictor of perceived teamwork, with a β weight of 0.51, and work climate is the most significant predictor of collaboration, with a β weight of 0.84. After eliminating statistically insignificant causal paths and allowing correlated predictors1, the revised model shows that work climate is the only predictor positively influencing both teamwork (β = 0.26) and collaboration (β = 0.88). A relatively weak positive (β = 0.14) but statistically significant relationship exists between teamwork and collaboration when the effects of other predictors are simultaneously controlled. CONCLUSION: Hospital executives who are interested in improving collaboration should assess the work climate to ensure that employees are operating in a setting conducive to intra-organizational collaboration. PMID:25237612
Ginsburg, Liane; Bain, Lorna
2017-03-01
Communication failure is a leading cause of error and is often due to inhibition of individuals to speak up in interprofessional healthcare environments. The present study sought to evaluate the impact of a multifaceted intervention designed to promote speaking up on teamwork climate in one clinical department of a large community hospital based in Canada. The multifaceted intervention included a role-playing simulation workshop, teamwork climate data feedback and facilitated discussion with the interprofessional team (discussion briefings), and other department-led initiatives to promote trust, teamwork, and speaking up among interprofessional team members. A quasi-experiment (pretest-posttest control group design, using two posttests several months apart) was used to evaluate the impact of the complete intervention on individual teamwork climate perceptions. The intervention was implemented with an intact interprofessional team (the Emergency Department-ED) in 2014. The intensive care unit (ICU) was used as the control unit. Survey response rates were the highest at time 1 (83/102 = 81% for the ED and 29/31 = 94% for the ICU) and the lowest at time 3 (38/105 = 36% for the ED and 14/30 = 47% for the ICU). The results obtained from paired and unpaired analyses suggest that this type of multifaceted approach can improve staff perceptions of teamwork climate. The teamwork climate score in the ED was significantly higher at follow-up (Mt2 = 3.42, SD = 0.66) compared to baseline (Mt1 = 3.13, SD = 0.72), (F(1, 34) = 12.2, p = .001, eta 2 p = .263), while baseline and follow-up scores were not significantly different between baseline and follow-up for the ICU group (Mt1 = 4.12, SD = 0.60; Mt2 = 4.15, SD = 0.56; F(1, 34) = 0.06, p = .806, eta 2 p = .002). Sustaining high levels of participation in interprofessional initiatives and engaging physicians remain challenging when interventions are used in context. Improving team communication is a broad and challenging area that continues to require attention.
Cross-cultural adaptation and validation of the teamwork climate scale
Silva, Mariana Charantola; Peduzzi, Marina; Sangaleti, Carine Teles; da Silva, Dirceu; Agreli, Heloise Fernandes; West, Michael A; Anderson, Neil R
2016-01-01
ABSTRACT OBJECTIVE To adapt and validate the Team Climate Inventory scale, of teamwork climate measurement, for the Portuguese language, in the context of primary health care in Brazil. METHODS Methodological study with quantitative approach of cross-cultural adaptation (translation, back-translation, synthesis, expert committee, and pretest) and validation with 497 employees from 72 teams of the Family Health Strategy in the city of Campinas, SP, Southeastern Brazil. We verified reliability by the Cronbach’s alpha, construct validity by the confirmatory factor analysis with SmartPLS software, and correlation by the job satisfaction scale. RESULTS We problematized the overlap of items 9, 11, and 12 of the “participation in the team” factor and the “team goals” factor regarding its definition. The validation showed no overlapping of items and the reliability ranged from 0.92 to 0.93. The confirmatory factor analysis indicated suitability of the proposed model with distribution of the 38 items in the four factors. The correlation between teamwork climate and job satisfaction was significant. CONCLUSIONS The version of the scale in Brazilian Portuguese was validated and can be used in the context of primary health care in the Country, constituting an adequate tool for the assessment and diagnosis of teamwork. PMID:27556966
Smits, Marleen; Keizer, Ellen; Giesen, Paul; Deilkås, Ellen Catharina Tveter; Hofoss, Dag; Bondevik, Gunnar Tschudi
2018-03-01
To examine patient safety culture in Dutch out-of-hours primary care using the safety attitudes questionnaire (SAQ) which includes five factors: teamwork climate, safety climate, job satisfaction, perceptions of management and communication openness. Cross-sectional observational study using an anonymous web-survey. Setting Sixteen out-of-hours general practitioner (GP) cooperatives and two call centers in the Netherlands. Subjects Primary healthcare providers in out-of-hours services. Main outcome measures Mean scores on patient safety culture factors; association between patient safety culture and profession, gender, age, and working experience. Overall response rate was 43%. A total of 784 respondents were included; mainly GPs (N = 470) and triage nurses (N = 189). The healthcare providers were most positive about teamwork climate and job satisfaction, and less about communication openness and safety climate. The largest variation between clinics was found on safety climate; the lowest on teamwork climate. Triage nurses scored significantly higher than GPs on each of the five patient safety factors. Older healthcare providers scored significantly higher than younger on safety climate and perceptions of management. More working experience was positively related to higher teamwork climate and communication openness. Gender was not associated with any of the patient safety factors. Our study showed that healthcare providers perceive patient safety culture in Dutch GP cooperatives positively, but there are differences related to the respondents' profession, age and working experience. Recommendations for future studies are to examine reasons for these differences, to examine the effects of interventions to improve safety culture and to make international comparisons of safety culture. Key Points Creating a positive patient safety culture is assumed to be a prerequisite for quality and safety. We found that: • healthcare providers in Dutch GP cooperatives perceive patient safety culture positively; • triage nurses scored higher than GPs, and older and more experienced healthcare professionals scored higher than younger and less experienced professionals - on several patient safety culture factors; and • within the GP cooperatives, safety climate and openness of communication had the largest potential for improvement.
Smits, Marleen; Keizer, Ellen; Giesen, Paul; Deilkås, Ellen Catharina Tveter; Hofoss, Dag; Bondevik, Gunnar Tschudi
2018-01-01
Objective To examine patient safety culture in Dutch out-of-hours primary care using the safety attitudes questionnaire (SAQ) which includes five factors: teamwork climate, safety climate, job satisfaction, perceptions of management and communication openness. Design Cross-sectional observational study using an anonymous web-survey. Setting Sixteen out-of-hours general practitioner (GP) cooperatives and two call centers in the Netherlands. Subjects Primary healthcare providers in out-of-hours services. Main outcome measures Mean scores on patient safety culture factors; association between patient safety culture and profession, gender, age, and working experience. Results Overall response rate was 43%. A total of 784 respondents were included; mainly GPs (N = 470) and triage nurses (N = 189). The healthcare providers were most positive about teamwork climate and job satisfaction, and less about communication openness and safety climate. The largest variation between clinics was found on safety climate; the lowest on teamwork climate. Triage nurses scored significantly higher than GPs on each of the five patient safety factors. Older healthcare providers scored significantly higher than younger on safety climate and perceptions of management. More working experience was positively related to higher teamwork climate and communication openness. Gender was not associated with any of the patient safety factors. Conclusions Our study showed that healthcare providers perceive patient safety culture in Dutch GP cooperatives positively, but there are differences related to the respondents’ profession, age and working experience. Recommendations for future studies are to examine reasons for these differences, to examine the effects of interventions to improve safety culture and to make international comparisons of safety culture. Key Points Creating a positive patient safety culture is assumed to be a prerequisite for quality and safety. We found that: • healthcare providers in Dutch GP cooperatives perceive patient safety culture positively; • triage nurses scored higher than GPs, and older and more experienced healthcare professionals scored higher than younger and less experienced professionals – on several patient safety culture factors; and • within the GP cooperatives, safety climate and openness of communication had the largest potential for improvement. PMID:29334826
Weng, Shao-Jen; Kim, Seung-Hwan; Wu, Chieh-Liang
2017-02-01
We aim to draw insights on how medical staff's perception of management leadership affects safety climate with key safety related dimensions-teamwork climate, job satisfaction and working conditions. A cross-sectional survey using Safety Attitude Questionnaire (SAQ) was performed in a medical center in Taichung City, Taiwan. The relationships among the dimensions in SAQ were then analyzed by structural equation modeling with a mediation analysis. 2205 physicians and nurses of the medical center participated in the survey. Because not all questions in the survey are suitable for entire hospital staff, only the valid responses (n = 1596, response rate of 72%) were extracted for analysis. Key measures are the direct and indirect effects of teamwork climate, job satisfaction, perception of management leadership, and working conditions on safety climate. Outcomes show that effect of perception of management leadership on safety climate is significant (standardized indirect effect of 0.892 with P-value 0.002) and fully mediated by other dimensions, where 66.9% is mediated through teamwork climate, 24.1% through working conditions and 9.0% through job satisfaction. Our findings point to the importance of management leadership and the mechanism of its influence on safety climate. To improve safety climate, the implication is that commitment by management on leading safety improvement needs to be demonstrated when it implements daily supportive actions for other safety dimensions. For future improvement, development of a management system that can facilitate two-way trust between management and staff over the long term is recommended. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Lee, Yii-Ching; Zeng, Pei-Shan; Huang, Chih-Hsuan; Wu, Hsin-Hung
2018-01-01
This study uses the decision-making trial and evaluation laboratory method to identify critical dimensions of the safety attitudes questionnaire in Taiwan in order to improve the patient safety culture from experts' viewpoints. Teamwork climate, stress recognition, and perceptions of management are three causal dimensions, while safety climate, job satisfaction, and working conditions are receiving dimensions. In practice, improvements on effect-based dimensions might receive little effects when a great amount of efforts have been invested. In contrast, improving a causal dimension not only improves itself but also results in better performance of other dimension(s) directly affected by this particular dimension. Teamwork climate and perceptions of management are found to be the most critical dimensions because they are both causal dimensions and have significant influences on four dimensions apiece. It is worth to note that job satisfaction is the only dimension affected by the other dimensions. In order to effectively enhance the patient safety culture for healthcare organizations, teamwork climate, and perceptions of management should be closely monitored.
Zeng, Pei-Shan; Huang, Chih-Hsuan
2018-01-01
This study uses the decision-making trial and evaluation laboratory method to identify critical dimensions of the safety attitudes questionnaire in Taiwan in order to improve the patient safety culture from experts' viewpoints. Teamwork climate, stress recognition, and perceptions of management are three causal dimensions, while safety climate, job satisfaction, and working conditions are receiving dimensions. In practice, improvements on effect-based dimensions might receive little effects when a great amount of efforts have been invested. In contrast, improving a causal dimension not only improves itself but also results in better performance of other dimension(s) directly affected by this particular dimension. Teamwork climate and perceptions of management are found to be the most critical dimensions because they are both causal dimensions and have significant influences on four dimensions apiece. It is worth to note that job satisfaction is the only dimension affected by the other dimensions. In order to effectively enhance the patient safety culture for healthcare organizations, teamwork climate, and perceptions of management should be closely monitored. PMID:29686825
Improving teamwork: impact of structured interdisciplinary rounds on a hospitalist unit.
O'Leary, Kevin J; Haviley, Corinne; Slade, Maureen E; Shah, Hiren M; Lee, Jungwha; Williams, Mark V
2011-02-01
Effective collaboration and teamwork is essential in providing safe and effective care. Research reveals deficiencies in teamwork on medical units involving hospitalists. The aim of this study was to assess the impact of an intervention, Structured Inter-Disciplinary Rounds (SIDR), on nurses' ratings of collaboration and teamwork. The study was a controlled trial involving an intervention and control hospitalist unit. The intervention, SIDR, combined a structured format for communication with a forum for regular interdisciplinary meetings. We asked nurses to rate the quality of communication and collaboration with hospitalists using a 5-point ordinal scale. We also assessed teamwork and safety climate using a validated instrument. Multivariable regression analyses were used to assess the impact on length of stay (LOS) and cost using both a concurrent and historic control. A total of 49 of 58 (84%) nurses completed surveys. A larger percentage of nurses rated the quality of communication and collaboration with hospitalists as high or very high on the intervention unit compared to the control unit (80% vs. 54%; P = 0.05). Nurses also rated the teamwork and safety climate significantly higher on the intervention unit (P = 0.008 and P = 0.03 for teamwork and safety climate, respectively). Multivariable analyses demonstrated no difference in the adjusted LOS and an inconsistent effect on cost. SIDR had a positive effect on nurses' ratings of collaboration and teamwork on a hospitalist unit, yet no impact on LOS and cost. Further study is required to assess the impact of SIDR on patient safety measures. Copyright © 2010 Society of Hospital Medicine.
Mazurenko, Olena; Richter, Jason; Kazley, Abby Swanson; Ford, Eric
2017-04-25
The aim of this study was to explore the relationship between managers and clinicians' agreement on deeming the patient safety climate as high or low and the patients' satisfaction with those organizations. We used two secondary data sets: the Hospital Survey on Patient Safety Culture (2012) and the Hospital Consumer Assessment of Healthcare Providers and Systems (2012). We used ordinary least squares regressions to analyze the relationship between the extent of agreement between managers and clinicians' perceptions of safety climate in relationship to patient satisfaction. The dependent variables were four Hospital Consumer Assessment of Healthcare Providers and Systems patient satisfaction scores: communication with nurses, communication with doctors, communication about medicines, and discharge information. The main independent variables were four groups that were formed based on the extent of managers and clinicians' agreement on four patient safety climate domains: communication openness, feedback and communication about errors, teamwork within units, and teamwork across units. After controlling for hospital and market-level characteristics, we found that patient satisfaction was significantly higher if managers and clinicians reported that patient safety climate is high or if only clinicians perceived the climate as high. Specifically, manager and clinician agreement on high levels of communication openness (β = 2.25, p = .01; β = 2.46, p = .05), feedback and communication about errors (β = 3.0, p = .001; β = 2.89, p = .01), and teamwork across units (β = 2.91, p = .001; β = 3.34, p = .01) was positively and significantly associated with patient satisfaction with discharge information and communication about medication. In addition, more favorable perceptions about patient safety climate by clinicians only yielded similar findings. Organizations should measure and examine patient safety climate from multiple perspectives and be aware that individuals may have varying opinions about safety climate. Hospitals should encourage multidisciplinary collaboration given that staff perceptions about patient safety climate may be associated with patient satisfaction.
Schwartz, Miriam E; Welsh, Deborah E; Paull, Douglas E; Knowles, Regina S; DeLeeuw, Lori D; Hemphill, Robin R; Essen, Keith E; Sculli, Gary L
2017-11-09
Communication failure is a significant source of adverse events in health care and a leading root cause of sentinel events reported to the Joint Commission. The Veterans Health Administration National Center for Patient Safety established Clinical Team Training (CTT) as a comprehensive program to enhance patient safety and to improve communication and teamwork among health care professionals. CTT is based on techniques used in aviation's Crew Resource Management (CRM) training. The aviation industry has reached a significant safety record in large part related to the culture change generated by CRM and sustained by its recurrent implementation. This article focuses on the improvement of communication, teamwork, and patient safety by utilizing a standardized, CRM-based, interprofessional, immersive training in diverse clinical areas. The Teamwork and Safety Climate Questionnaire was used to evaluate safety climate before and after CTT. The scores for all of the 27 questions on the questionnaire showed an increase from baseline to 12 months, and 11 of those increases were statistically significant. A recurrent training is recommended to maintain the positive outcomes. CTT enhances patient safety and reduces risk of patient harm by improving teamwork and facilitating clear, concise, specific and timely communication among health care professionals. © 2017 American Society for Healthcare Risk Management of the American Hospital Association.
Sexton, J Bryan; Schwartz, Stephanie P; Chadwick, Whitney A; Rehder, Kyle J; Bae, Jonathan; Bokovoy, Joanna; Doram, Keith; Sotile, Wayne; Adair, Kathryn C; Profit, Jochen
2017-08-01
Improving the resiliency of healthcare workers is a national imperative, driven in part by healthcare workers having minimal exposure to the skills and culture to achieve work-life balance (WLB). Regardless of current policies, healthcare workers feel compelled to work more and take less time to recover from work. Satisfaction with WLB has been measured, as has work-life conflict, but how frequently healthcare workers engage in specific WLB behaviours is rarely assessed. Measurement of behaviours may have advantages over measurement of perceptions; behaviours more accurately reflect WLB and can be targeted by leaders for improvement. 1. To describe a novel survey scale for evaluating work-life climate based on specific behavioural frequencies in healthcare workers.2. To evaluate the scale's psychometric properties and provide benchmarking data from a large healthcare system.3. To investigate associations between work-life climate, teamwork climate and safety climate. Cross-sectional survey study of US healthcare workers within a large healthcare system. 7923 of 9199 eligible healthcare workers across 325 work settings within 16 hospitals completed the survey in 2009 (86% response rate). The overall work-life climate scale internal consistency was Cronbach α=0.790. t-Tests of top versus bottom quartile work settings revealed that positive work-life climate was associated with better teamwork climate, safety climate and increased participation in safety leadership WalkRounds with feedback (p<0.001). Univariate analysis of variance demonstrated differences that varied significantly in WLB between healthcare worker role, hospitals and work setting. The work-life climate scale exhibits strong psychometric properties, elicits results that vary widely by work setting, discriminates between positive and negative workplace norms, and aligns well with other culture constructs that have been found to correlate with clinical outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Davenport, Daniel L; Henderson, William G; Mosca, Cecilia L; Khuri, Shukri F; Mentzer, Robert M
2007-12-01
Since the Institute of Medicine patient safety reports, a number of survey-based measures of organizational climate safety factors (OCSFs) have been developed. The goal of this study was to measure the impact of OCSFs on risk-adjusted surgical morbidity and mortality. Surveys were administered to staff on general/vascular surgery services during a year. Surveys included multiitem scales measuring OCSFs. Additionally, perceived levels of communication and collaboration with coworkers were assessed. The National Surgical Quality Improvement Program was used to assess risk-adjusted morbidity and mortality. Correlations between outcomes and OCSFs were calculated and between outcomes and communication/collaboration with attending and resident doctors, nurses, and other providers. Fifty-two sites participated in the survey: 44 Veterans Affairs and 8 academic medical centers. A total of 6,083 surveys were returned, for a response rate of 52%. The OCSF measures of teamwork climate, safety climate, working conditions, recognition of stress effects, job satisfaction, and burnout demonstrated internal validity but did not correlate with risk-adjusted outcomes. Reported levels of communication/collaboration with attending and resident doctors correlated with risk-adjusted morbidity. Survey-based teamwork, safety climate, and working conditions scales are not confirmed to measure organizational factors that influence risk-adjusted surgical outcomes. Reported communication/collaboration with attending and resident doctors on surgical services influenced patient morbidity. This suggests the importance of doctors' coordination and decision-making roles on surgical teams in providing high-quality and safe care. We propose risk-adjusted morbidity as an effective measure of surgical patient safety.
Doram, Keith; Chadwick, Whitney; Bokovoy, Joni; Profit, Jochen; Sexton, Janel D; Sexton, J Bryan
2017-02-11
Organizations that encourage the respectful expression of diverse spiritual views have higher productivity and performance, and support employees with greater organizational commitment and job satisfaction. Within healthcare, there is a paucity of studies which define or intervene on the spiritual needs of healthcare workers, or examine the effects of a pro-spirituality environment on teamwork and patient safety. Our objective was to describe a novel survey scale for evaluating spiritual climate in healthcare workers, evaluate its psychometric properties, provide benchmarking data from a large faith-based healthcare system, and investigate relationships between spiritual climate and other predictors of patient safety and job satisfaction. Cross-sectional survey study of US healthcare workers within a large, faith-based health system. Seven thousand nine hundred twenty three of 9199 eligible healthcare workers across 325 clinical areas within 16 hospitals completed our survey in 2009 (86% response rate). The spiritual climate scale exhibited good psychometric properties (internal consistency: Cronbach α = .863). On average 68% (SD 17.7) of respondents of a given clinical area expressed good spiritual climate, although assessments varied widely (14 to 100%). Spiritual climate correlated positively with teamwork climate (r = .434, p < .001) and safety climate (r = .489, p < .001). Healthcare workers reporting good spiritual climate were less likely to have intentions to leave, to be burned out, or to experience disruptive behaviors in their unit and more likely to have participated in executive rounding (p < .001 for each variable). The spiritual climate scale exhibits good psychometric properties, elicits results that vary widely by clinical area, and aligns well with other culture constructs that have been found to correlate with clinical and organizational outcomes.
Assessment of nurses' work climate at Alexandria Main University Hospital.
Emam, Sanaa Abdel-aziz; Nabawy, Zeinab Mohamed; Mohamed, Azzaa Hassan; Sbeira, Walaa Hashem
2005-01-01
Work climate is indicative of how well the organization is realizing its full potential. An accurate assessment of work climate can identify the unnecessary obstacles to nurses interfering with their best performance. The present study aims to assess nurses' work climate at Alexandria Main University Hospital. The study sample included all nurses (N=400) who were working in inpatient medical and surgical units at the Alexandria Main University Hospital who were available at the time of data collection. A structured questionnaire was developed to assess nurses' perceptions regarding the dimensions of work climate. Data was collected by individual interview using the structured questionnaire. Results indicated that the highest percentages of nurses in medical and surgical units perceived that their work climate is characterized by good way of performance management, feeling of responsibility, warmth and supportive relationships, quality of communication, morale, organizational clarity and feeling of identity and belongness to the hospital. Nurses perceived that they are lacking work climate conducive to conflict resolution, participation in decision making, opportunity for training and development, fair rewards and recognition, calculated risks, sufficient resources, effective leadership and teamwork. There were no significant difference between nurses perceptions in medical and surgical units regarding all dimensions of work climate. The highest percentage of nurses in all units were satisfied only with the feeling of responsibility, way of performance management, and quality of communication. Conflict and identity were perceived as the most important areas that need improvement in the hospital. Based on the results recommendations were given to enhance work climate through designing compensation and recognition systems, and negotiate their requirements and accomplishment based on established standards and outcomes measures. Also, encouragement of and planning for participative decision making, teamwork, in-service training program and open communication are recommended to be present in the work units.
ERIC Educational Resources Information Center
Huffman-Joley, Gail
Expectations for leaders in colleges of education are changing as are expectations for leaders in public schools and business. The traditional hierarchical model is being transformed into an organizational climate of teamwork and shared decision making, which have become the watchwords for organizational climate and change. In accord with these…
Richter, Jason; Mazurenko, Olena; Kazley, Abby Swanson; Ford, Eric W
2017-11-04
Evidenced-based processes of care improve patient outcomes, yet universal compliance is lacking, and perceptions of the quality of care are highly variable. The purpose of this study is to examine how differences in clinician and management perceptions on teamwork and communication relate to adherence to hospital processes of care. Hospitals submitted identifiable data for the 2012 Hospital Survey on Patient Safety Culture and the Centers for Medicare and Medicaid Services' Hospital Compare. The dependent variable was a composite, developed from the scores on adherence to acute myocardial infarction, heart failure, and pneumonia process of care measures. The primary independent variables reflected 4 safety culture domains: communication openness, feedback about errors, teamwork within units, and teamwork between units. We assigned each hospital into one of 4 groups based on agreement between managers and clinicians on each domain. Each hospital was categorized as "high" (above the median) or "low" (below) for clinicians and managers in communication and teamwork. We found a positive relationship between perceived teamwork and communication climate and processes of care measures. If managers and clinicians perceived the communication openness as high, the hospital was more likely to adhere with processes of care. Similarly, if clinicians perceived teamwork across units as high, the hospital was more likely to adhere to processes of care. Manager and staff perceptions about teamwork and communications impact adherence to processes of care. Policies should recognize the importance of perceptions of both clinicians and managers on teamwork and communication and seek to improve organizational climate and practices. Clinician perceptions of teamwork across units are more closely linked to processes of care, so managers should be cognizant and try to improve their perceptions.
ERIC Educational Resources Information Center
Huitt, Tiffany W.; Killins, Anita; Brooks, William S.
2015-01-01
As the healthcare climate shifts toward increased interdisciplinary patient care, it is essential that students become accomplished at group problem solving and develop positive attitudes toward teamwork. Team-based learning (TBL) has become a popular approach to medical education because of its ability to promote active learning, problem-solving…
Bondevik, Gunnar Tschudi; Hofoss, Dag; Hansen, Elisabeth Holm; Deilkås, Ellen Catharina Tveter
2014-09-01
This study aimed to investigate patient safety attitudes amongst health care providers in Norwegian primary care by using the Safety Attitudes Questionnaire, in both out-of-hours (OOH) casualty clinics and GP practices. The questionnaire identifies five major patient safety factors: Teamwork climate, Safety climate, Job satisfaction, Perceptions of management, and Working conditions. Cross-sectional study. Statistical analysis included multiple linear regression and independent samples t-tests. Seven OOH casualty clinics and 17 GP practices in Norway. In October and November 2012, 510 primary health care providers working in OOH casualty clinics and GP practices (316 doctors and 194 nurses) were invited to participate anonymously. To study whether patterns in patient safety attitudes were related to professional background, gender, age, and clinical setting. The overall response rate was 52%; 72% of the nurses and 39% of the doctors answered the questionnaire. In the OOH clinics, nurses scored significantly higher than doctors on Safety climate and Job satisfaction. Older health care providers scored significantly higher than younger on Safety climate and Working conditions. In GP practices, male health professionals scored significantly higher than female on Teamwork climate, Safety climate, Perceptions of management and Working conditions. Health care providers in GP practices had significant higher mean scores on the factors Safety climate and Working conditions, compared with those working in the OOH clinics. Our study showed that nurses scored higher than doctors, older health professionals scored higher than younger, male GPs scored higher than female GPs, and health professionals in GP practices scored higher than those in OOH clinics - on several patient safety factors.
Agreli, Heloise F; Peduzzi, Marina; Bailey, Christopher
2017-11-01
The concept of team climate is widely used to understand and evaluate working environments. It shares some important features with Interprofessional Collaboration (IPC). The four-factor theory of climate for work group innovation, which underpins team climate, could provide a better basis for understanding both teamwork and IPC. This article examines in detail the common ground between team climate and IPC, and assesses the relevance of team climate as a theoretical approach to understanding IPC. There are important potential areas of overlap between team climate and IPC that we have grouped under four headings: (1) interaction and communication between team members; (2) common objectives around which collective work is organised; (3) responsibility for performing work to a high standard; and (4) promoting innovation in working practices. These overlapping areas suggest common characteristics that could provide elements of a framework for considering the contribution of team climate to collaborative working, both from a conceptual perspective and, potentially, in operational terms as, for example, a diagnostic tool.
Göras, Camilla; Wallentin, Fan Yang; Nilsson, Ulrica; Ehrenberg, Anna
2013-03-19
Tens of millions of patients worldwide suffer from avoidable disabling injuries and death every year. Measuring the safety climate in health care is an important step in improving patient safety. The most commonly used instrument to measure safety climate is the Safety Attitudes Questionnaire (SAQ). The aim of the present study was to establish the validity and reliability of the translated version of the SAQ. The SAQ was translated and adapted to the Swedish context. The survey was then carried out with 374 respondents in the operating room (OR) setting. Data was received from three hospitals, a total of 237 responses. Cronbach's alpha and confirmatory factor analysis (CFA) was used to evaluate the reliability and validity of the instrument. The Cronbach's alpha values for each of the factors of the SAQ ranged between 0.59 and 0.83. The CFA and its goodness-of-fit indices (SRMR 0.055, RMSEA 0.043, CFI 0.98) showed good model fit. Intercorrelations between the factors safety climate, teamwork climate, job satisfaction, perceptions of management, and working conditions showed moderate to high correlation with each other. The factor stress recognition had no significant correlation with teamwork climate, perception of management, or job satisfaction. Therefore, the Swedish translation and psychometric testing of the SAQ (OR version) has good construct validity. However, the reliability analysis suggested that some of the items need further refinement to establish sound internal consistency. As suggested by previous research, the SAQ is potentially a useful tool for evaluating safety climate. However, further psychometric testing is required with larger samples to establish the psychometric properties of the instrument for use in Sweden.
Organizational culture, team climate and diabetes care in small office-based practices.
Bosch, Marije; Dijkstra, Rob; Wensing, Michel; van der Weijden, Trudy; Grol, Richard
2008-08-21
Redesigning care has been proposed as a lever for improving chronic illness care. Within primary care, diabetes care is the most widespread example of restructured integrated care. Our goal was to assess to what extent important aspects of restructured care such as multidisciplinary teamwork and different types of organizational culture are associated with high quality diabetes care in small office-based general practices. We conducted cross-sectional analyses of data from 83 health care professionals involved in diabetes care from 30 primary care practices in the Netherlands, with a total of 752 diabetes mellitus type II patients participating in an improvement study. We used self-reported measures of team climate (Team Climate Inventory) and organizational culture (Competing Values Framework), and measures of quality of diabetes care and clinical patient characteristics from medical records and self-report. We conducted multivariate analyses of the relationship between culture, climate and HbA1c, total cholesterol, systolic blood pressure and a sum score on process indicators for the quality of diabetes care, adjusting for potential patient- and practice level confounders and practice-level clustering. A strong group culture was negatively associated to the quality of diabetes care provided to patients (beta = -0.04; p = 0.04), whereas a more 'balanced culture' was positively associated to diabetes care quality (beta = 5.97; p = 0.03). No associations were found between organizational culture, team climate and clinical patient outcomes. Although some significant associations were found between high quality diabetes care in general practice and different organizational cultures, relations were rather marginal. Variation in clinical patient outcomes could not be attributed to organizational culture or teamwork. This study therefore contributes to the discussion about the legitimacy of the widespread idea that aspects of redesigning care such as teamwork and culture can contribute to higher quality of care. Future research should preferably combine quantitative and qualitative methods, focus on possible mediating or moderating factors and explore the use of instruments more sensitive to measure such complex constructs in small office-based practices.
Variation in Emergency Medical Services Workplace Safety Culture
Patterson, P. Daniel; Huang, David T.; Fairbanks, Rollin J.; Simeone, Scott; Weaver, Matthew; Wang, Henry E.
2010-01-01
Introduction Workplace attitude, beliefs and culture may impact the safety of patient care. This study characterized perceptions of safety culture in a nationwide sample of Emergency Medical Services (EMS) agencies. Methods We conducted a cross-sectional survey involving 61 Advanced Life Support EMS agencies in North America. We administered a modified version of the Safety Attitudes Questionnaire (SAQ), a survey instrument measuring dimensions of workplace safety culture (Safety Climate, Teamwork Climate, Perceptions of Management, Job Satisfaction, Working Conditions, and Stress Recognition). We included full-time and part-time paramedics and Emergency Medical Technicians. We determined the variation in safety culture scores across EMS agencies. Using Hierarchical Linear Models (HLM), we determined associations between safety culture scores and individual and EMS agency characteristics. Results We received 1,715 completed surveys from 61 EMS agencies (mean agency response rate 47%; 95% CI 10%, 83%). There was wide variation in safety culture scores across EMS agencies [mean (min, max)]: Safety Climate 74.5 (Min 49.9, Max 89.7), Teamwork Climate 71.2 (Min 45.1, Max 90.1), Perceptions of Management 67.2 (Min 31.1, Max 92.2), Job Satisfaction 75.4 (Min 47.5, Max 93.8), Working Conditions 66.9 (Min 36.6, Max 91.4), Stress Recognition 55.1 (Min 31.3, Max 70.6). Air medical EMS agencies tended to score higher across all safety culture domains. Lower safety culture scores were associated with increased annual patient contacts. Safety climate domain scores were not associated with other individual or EMS agency characteristics. Conclusion In this sample, workplace safety culture varies between EMS agencies. PMID:20809688
Passauer-Baierl, S; Hofinger, G
2011-09-01
The treatment of patients in the trauma room places extraordinary demands on the multidisciplinary and multiprofessional team with regard to expert qualifications and teamwork. The present study triangulates data extracted from observation, interviews and questionnaires. In general, team climate and teamwork are good, yet some problems could be identified. Not all team members-especially younger physicians and nurses-feel free to express their doubts and uncertainties. Furthermore, the treatment plan is not always clear for all team members. Absent or unclear leadership is seen as a main problem when a treatment proceeds negatively. The establishment of a team leader is therefore recommended.
Predictors of Likelihood of Speaking Up about Safety Concerns in Labour and Delivery
Lyndon, Audrey; Sexton, J. Bryan; Simpson, Kathleen Rice; Rosenstein, Alan; Lee, Kathryn A.; Wachter, Robert M.
2011-01-01
Background Despite widespread emphasis on promoting “assertive communication” by caregivers as essential to patient safety improvement efforts, fairly little is known about when and how clinicians speak up to address safety concerns. In this cross-sectional study we use a new measure of speaking up to begin exploring this issue in maternity care. Methods We developed a scenario-based measure of clinician’s assessment of potential harm and likelihood of speaking up in response to perceived harm. We embedded this scale in a survey with measures of safety climate, teamwork climate, disruptive behaviour, work stress, and personality traits of bravery and assertiveness. The survey was distributed to all registered nurses and obstetricians practicing in two US Labour & Delivery units. Results The response rate was 54% (125 of 230 potential respondents). Respondents were experienced clinicians (13.7 ± 11 years in specialty). Higher perception of harm, respondent role, specialty experience, and site predicted likelihood of speaking up when controlling for bravery and assertiveness. Physicians rated potential harm in common clinical scenarios lower than nurses did (7.5 vs. 8.4 on 2–10 scale; p<0.001). Some participants (12%) indicated they were unlikely to speak up despite perceiving high potential for harm in certain situations. Discussion This exploratory study found nurses and physicians differed in their harm ratings, and harm rating was a predictor of speaking up. This may partially explain persistent discrepancies between physicians and nurses in teamwork climate scores. Differing assessments of potential harms inherent in everyday practice may be a target for teamwork intervention in maternity care. PMID:22927492
Is It Getting Chilly in Here? Men and Women at Work.
ERIC Educational Resources Information Center
Filipczak, Bob
1994-01-01
Discusses the problems that have arisen in the workplace because of the fear of sexual harassment charges. Describes the gender communication training needed to build a climate of understanding and allow teamwork to flourish. (JOW)
Olsen, Espen
2010-09-01
The aim of the present study was to explore the possibility of identifying general safety climate concepts in health care and petroleum sectors, as well as develop and test the possibility of a common cross-industrial structural model. Self-completion questionnaire surveys were administered in two organisations and sectors: (1) a large regional hospital in Norway that offers a wide range of hospital services, and (2) a large petroleum company that produces oil and gas worldwide. In total, 1919 and 1806 questionnaires were returned from the hospital and petroleum organisation, with response rates of 55 percent and 52 percent, respectively. Using a split sample procedure principal factor analysis and confirmatory factor analysis revealed six identical cross-industrial measurement concepts in independent samples-five measures of safety climate and one of safety behaviour. The factors' psychometric properties were explored with satisfactory internal consistency and concept validity. Thus, a common cross-industrial structural model was developed and tested using structural equation modelling (SEM). SEM revealed that a cross-industrial structural model could be identified among health care workers and offshore workers in the North Sea. The most significant contributing variables in the model testing stemmed from organisational management support for safety and supervisor/manager expectations and actions promoting safety. These variables indirectly enhanced safety behaviour (stop working in dangerous situations) through transitions and teamwork across units, and teamwork within units as well as learning, feedback, and improvement. Two new safety climate instruments were validated as part of the study: (1) Short Safety Climate Survey (SSCS) and (2) Hospital Survey on Patient Safety Culture-short (HSOPSC-short). Based on development of measurements and structural model assessment, this study supports the possibility of a common safety climate structural model across health care and the offshore petroleum industry. 2010 Elsevier Ltd. All rights reserved.
Agreli, Heloise F; Peduzzi, Marina; Bailey, Christopher
2017-03-01
Relational and organisational factors are key elements of interprofessional collaboration (IPC) and team climate. Few studies have explored the relationship between IPC and team climate. This article presents a study that aimed to explore IPC in primary healthcare teams and understand how the assessment of team climate may provide insights into IPC. A mixed methods study design was adopted. In Stage 1 of the study, team climate was assessed using the Team Climate Inventory with 159 professionals in 18 interprofessional teams based in São Paulo, Brazil. In Stage 2, data were collected through in-depth interviews with a sample of team members who participated in the first stage of the study. Results from Stage 1 provided an overview of factors relevant to teamwork, which in turn informed our exploration of the relationship between team climate and IPC. Preliminary findings from Stage 2 indicated that teams with a more positive team climate (in particular, greater participative safety) also reported more effective communication and mutual support. In conclusion, team climate provided insights into IPC, especially regarding aspects of communication and interaction in teams. Further research will provide a better understanding of differences and areas of overlap between team climate and IPC. It will potentially contribute for an innovative theoretical approach to explore interprofessional work in primary care settings.
Modak, Isitri; Sexton, J Bryan; Lux, Thomas R; Helmreich, Robert L; Thomas, Eric J
2007-01-01
Provider attitudes about issues pertinent to patient safety may be related to errors and adverse events. We know of no instruments that measure safety-related attitudes in the outpatient setting. To adapt the safety attitudes questionnaire (SAQ) to the outpatient setting and compare attitudes among different types of providers in the outpatient setting. We modified the SAQ to create a 62-item SAQ-ambulatory version (SAQ-A). Patient care staff in a multispecialty, academic practice rated their agreement with the items using a 5-point Likert scale. Cronbach's alpha was calculated to determine reliability of scale scores. Differences in SAQ-A scores between providers were assessed using ANOVA. Of the 409 staff, 282 (69%) returned surveys. One hundred ninety (46%) surveys were included in the analyses. Cronbach's alpha ranged from 0.68 to 0.86 for the scales: teamwork climate, safety climate, perceptions of management, job satisfaction, working conditions, and stress recognition. Physicians had the least favorable attitudes about perceptions of management while managers had the most favorable attitudes (mean scores: 50.4 +/- 22.5 vs 72.5 +/- 19.6, P < 0.05; percent with positive attitudes 18% vs 70%, respectively). Nurses had the most positive stress recognition scores (mean score 66.0 +/- 24.0). All providers had similar attitudes toward teamwork climate, safety climate, job satisfaction, and working conditions. The SAQ-A is a reliable tool for eliciting provider attitudes about the ambulatory work setting. Attitudes relevant to medical error may differ among provider types and reflect behavior and clinic operations that could be improved.
Nurok, Michael; Lipsitz, Stuart; Satwicz, Paul; Kelly, Andrea; Frankel, Allan
2010-05-01
To create and test a reproducible method for measuring emotional climate, surgical team skills, and threats to patient outcome by conducting an observational study to assess the impact of a surgical team skills and communication improvement intervention on these measurements. Observational study. Operating rooms in a high-volume thoracic surgery center from September 5, 2007, through June 30, 2008. Thoracic surgery operating room teams. Two 90-minute team skills training sessions focused on findings from a standardized safety culture survey administered to all participants and highlighting positive and problematic aspects of team skills, communication, and leadership. The sessions created an interactive forum to educate team members on the importance of communication and to role-play optimal interactive and communication strategies. Calculated indices of emotional climate, team skills, and threat to patient outcome. The calculated communication and team skills score improved from the preintervention to postintervention periods, but the improvement extinguished during the 3 months after the intervention (P < .001). The calculated threat-to-outcome score improved following the team training intervention and remained statistically improved 3 months later (P < .001). Using a new method for measuring emotional climate, teamwork, and threats to patient outcome, we were able to determine that a teamwork training intervention can improve a calculated score of team skills and communication and decrease a calculated score of threats to patient outcome. However, the effect is only durable for threats to patient outcome.
Teamwork and communication: an effective approach to patient safety.
Mujumdar, Sandhya; Santos, Diana
2014-01-01
Teamwork and communication failures are leading causes of patient safety incidents in health care. Though health care providers must work in teams, they are not well-trained in teamwork and communication skills. Health care faces the problems of differences in communication styles, communication failures and poor teamwork. There is enough evidence in the literature to show that communication failure is detrimental to patient safety. It is estimated that 80% of serious medical errors worldwide take place because of miscommunication between medical providers. NUH recognizes that effective communication and teamwork are essential in the delivery of high quality safe patient care, especially in a complex organization. NUH is a good example, where there is a rich mix of nationalities and races, in staff and in patients, and there is a rapidly expanding care environment. NUH had to overcome these challenges by adopting a multi-pronged approach. The trials and tribulations of NUH in this journey were worthwhile as the patient safety climate survey scores improved over the years.
Mañas, Miguel A.; Díaz-Fúnez, Pedro; Pecino, Vicente; López-Liria, Remedios; Padilla, David; Aguilar-Parra, José M.
2018-01-01
In the absence of clearly established procedures in the workplace, employees will experience a negative affective state. This situation influences their well-being and their intention to behave in ways that benefit the organization beyond their job demands. This impact is more relevant on teamwork where members share the perception of ambiguity through emotional contagion (role ambiguity climate). In the framework of the job demands-resources model, the present study analyzes how high levels of role ambiguity climate can have such an effect to reduce employee affective engagement. Over time it has been associated with negative results for the organization due to a lack of extra-role performance. The sample included 706 employees from a multinational company, who were divided into 11 work teams. In line with the formulated hypotheses, the results confirm the negative influence of the role ambiguity climate on extra-role performance, and the mediated effect of affective engagement in the relationship between the role ambiguity climate and extra-role performance. These findings indicate that the role ambiguity climate is related to the adequate or inadequate functioning of employees within a work context. PMID:29375424
Mañas, Miguel A; Díaz-Fúnez, Pedro; Pecino, Vicente; López-Liria, Remedios; Padilla, David; Aguilar-Parra, José M
2017-01-01
In the absence of clearly established procedures in the workplace, employees will experience a negative affective state. This situation influences their well-being and their intention to behave in ways that benefit the organization beyond their job demands. This impact is more relevant on teamwork where members share the perception of ambiguity through emotional contagion (role ambiguity climate). In the framework of the job demands-resources model, the present study analyzes how high levels of role ambiguity climate can have such an effect to reduce employee affective engagement. Over time it has been associated with negative results for the organization due to a lack of extra-role performance. The sample included 706 employees from a multinational company, who were divided into 11 work teams. In line with the formulated hypotheses, the results confirm the negative influence of the role ambiguity climate on extra-role performance, and the mediated effect of affective engagement in the relationship between the role ambiguity climate and extra-role performance. These findings indicate that the role ambiguity climate is related to the adequate or inadequate functioning of employees within a work context.
Cross-cultural adaptation and validation of the teamwork climate scale.
Silva, Mariana Charantola; Peduzzi, Marina; Sangaleti, Carine Teles; Silva, Dirceu da; Agreli, Heloise Fernandes; West, Michael A; Anderson, Neil R
2016-08-22
To adapt and validate the Team Climate Inventory scale, of teamwork climate measurement, for the Portuguese language, in the context of primary health care in Brazil. Methodological study with quantitative approach of cross-cultural adaptation (translation, back-translation, synthesis, expert committee, and pretest) and validation with 497 employees from 72 teams of the Family Health Strategy in the city of Campinas, SP, Southeastern Brazil. We verified reliability by the Cronbach's alpha, construct validity by the confirmatory factor analysis with SmartPLS software, and correlation by the job satisfaction scale. We problematized the overlap of items 9, 11, and 12 of the "participation in the team" factor and the "team goals" factor regarding its definition. The validation showed no overlapping of items and the reliability ranged from 0.92 to 0.93. The confirmatory factor analysis indicated suitability of the proposed model with distribution of the 38 items in the four factors. The correlation between teamwork climate and job satisfaction was significant. The version of the scale in Brazilian Portuguese was validated and can be used in the context of primary health care in the Country, constituting an adequate tool for the assessment and diagnosis of teamwork. Adaptar e validar a escala Team Climate Invetory, de medida do clima de trabalho em equipe, para o idioma português, no contexto da atenção primária à saúde no Brasil. Estudo metodológico com abordagem quantitativa de adaptação transcultural (tradução, retrotradução, síntese, comitê de especialistas e pré-teste) e validação com 497 trabalhadores de 72 equipes da Estratégia Saúde da Família no município de Campinas, São Paulo. Verificou-se confiabilidade pelo alfa de Cronbach, validade de construto pela análise fatorial confirmatória pelo software SmartPLS e correlação com escala de satisfação no trabalho. Foi problematizado a sobreposição dos itens 9, 11 e 12 do fator participação na equipe e o fator objetivos da equipe no tocante à sua definição. A validação mostrou que não houve sobreposição dos itens e a confiabilidade variou entre 0,92 a 0,93. A análise fatorial confirmatória indicou adequação do modelo proposto com distribuição dos 38 itens nos quatro fatores. A correlação entre clima de trabalho em equipe e satisfação no trabalho foi significativa. A versão da escala em português falado no Brasil foi validada e pode ser utilizada no contexto da atenção primária à saúde no País, constituindo ferramenta adequada para a avaliação e diagnóstico do trabalho em equipe.
ERIC Educational Resources Information Center
Roffe, Ian
1999-01-01
A literature review identified principles for supporting innovation and creativity in organizations: integrated approach, the right climate, and appropriate incentives. Staff development should focus on such skills as teamwork, communication, vision, change management, and leadership. Internet and intranet communications are beginning to be…
Team Climate and Productivity for Similar Majors versus Mixed Majors
ERIC Educational Resources Information Center
Winter, Janet K.; Waner, Karen K.; Neal-Mansfield, Joan C.
2008-01-01
Teamwork and interpersonal communication are indispensable skills for business workers, and most companies are promoting diversity in teams to gain a competitive edge. Although findings suggest that diversity may not be as valuable as it seems for most teams, business workers need to manage diversity successfully. Therefore, the present authors…
Hastie, Carolyn; Fahy, Kathleen; Parratt, Jenny
2014-09-01
Poor teamwork is cited as one of the major root causes of adverse events in healthcare. Bullying, resulting in illness for staff, is an expression of poor teamwork skills. Despite this knowledge, poor teamwork persists in healthcare and teamwork skills are rarely the focus of teaching and assessment in undergraduate health courses. To develop and implement an assessment tool for use in facilitating midwifery students' learning of teamwork skills. This paper describes how the TeamUP rubric tool was developed. A review of the literature found no research reports on how to teach and assess health students' teamwork skills in standing teams. The literature, however, gives guidance about how university educators should evaluate individual students using peer assessment. The developmental processes of the rubric were grounded in the theoretical literature and feminist collaborative conversations. The rubric incorporates five domains of teamwork skills: Fostering a Team Climate; Project Planning; Facilitating Teams; Managing Conflict and Quality Individual Contribution. The process and outcomes of student and academic content validation are described. The TeamUP rubric is useful for articulating, teaching and assessing teamwork skills for health professional students. The TeamUP rubric is a robust, theoretically grounded model that defines and details effective teamwork skills and related behaviours. If these skills are mastered, we predict that graduates will be more effective in teams. Our assumption is that graduates, empowered by having these skills, are more likely to manage conflict effectively and less likely to engage in bullying behaviours. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Repeated, Close Physician Coronary Artery Bypass Grafting Teams Associated with Greater Teamwork.
Everson, Jordan; Funk, Russell J; Kaufman, Samuel R; Owen-Smith, Jason; Nallamothu, Brahmajee K; Pagani, Francis D; Hollingsworth, John M
2018-04-01
To determine whether observed patterns of physician interaction around shared patients are associated with higher levels of teamwork as perceived by physicians. Michigan Medicare beneficiaries who underwent coronary artery bypass grafting (CABG) procedures at 24 hospitals in the state between 2008 and 2011. We assessed hospital teamwork using the teamwork climate scale in the Safety Attitudes Questionnaire. After aggregating across CABG discharges at these hospitals, we mapped the physician referral networks (including both surgeons and nonsurgeons) that served them and measured three network properties: (1) reinforcement, (2) clustering, and (3) density. We then used multilevel regression models to identify associations between network properties and teamwork at the hospitals on which the networks were anchored. In hospitals where physicians repeatedly cared for patients with the same colleagues, physicians perceived better teamwork (β-reinforcement = 3.28, p = .003). When physicians who worked together also had other colleagues in common, the reported teamwork was stronger (β clustering = 1.71, p = .001). Reported teamwork did not change when physicians worked with a higher proportion of other physicians at the hospital (β density = -0.58, p = .64). In networks with higher levels of reinforcement and clustering, physicians perceive stronger teamwork, perhaps because the strong ties between them create a shared understanding; however, sharing patients with more physicians overall (i.e., density) did not lead to stronger teamwork. Clinical and organizational leaders may consider designing the structure of clinical teams to increase interactions with known colleagues and repeated interactions between providers. © Health Research and Educational Trust.
Howard, Michelle; Brazil, Kevin; Akhtar-Danesh, Noori; Agarwal, Gina
2011-05-01
To determine the organizational predictors of higher scores on team climate measures as an indicator of the functioning of a family health team (FHT). Cross-sectional study using a mailed survey. Family health teams in Ontario. Twenty-one of 144 consecutively approached FHTs; 628 team members were surveyed. Scores on the team climate inventory, which assessed organizational culture type (group, developmental, rational, or hierarchical); leadership perceptions; and organizational factors, such as use of electronic medical records (EMRs), team composition, governance of the FHT, location, meetings, and time since FHT initiation. All analyses were adjusted for clustering of respondents within the FHT using a mixed random-intercepts model. The response rate was 65.8% (413 of 628); 2 were excluded from analysis, for a total of 411 participants. At the time of survey completion, there was a median of 4 physicians, 11 other health professionals, and 4 management and clerical staff per FHT. The average team climate score was 3.8 out of a possible 5. In multivariable regression analysis, leadership score, group and developmental culture types, and use of more EMR capabilities were associated with higher team climate scores. Other organizational factors, such as number of sites and size of group, were not associated with the team climate score. Culture, leadership, and EMR functionality, rather than organizational composition of the teams (eg, number of professionals on staff, practice size), were the most important factors in predicting climate in primary care teams.
Attitudes to teamwork and safety among Italian surgeons and operating room nurses.
Prati, Gabriele; Pietrantoni, Luca
2014-01-01
Previous studies have shown that surgical team members' attitudes about safety and teamwork in the operating theatre may play a role in patient safety. The aim of this study was to assess attitudes about teamwork and safety among Italian surgeons and operating room nurses. Fifty-five surgeons and 48 operating room nurses working in operating theatres at one hospital in Italy completed the Operating Room Management Attitudes Questionnaire (ORMAQ). Results showed several discrepancies in attitudes about teamwork and safety between surgeons and operating room nurses. Surgeons had more positive views on the quality of surgical leadership, communication, teamwork, and organizational climate in the theatre than operating room nurses. Operating room nurses reported that safety rules and procedures were more frequently disregarded than the surgeons. The results are only partially aligned with previous ORMAQ surveys of surgical teams in other countries. The differences emphasize the influence of national culture, as well as the particular healthcare system. This study shows discrepancies on many aspects in attitudes to teamwork and safety between surgeons and operating room nurses. The findings support implementation and use of team interventions and human factor training. Finally, attitude surveys provide a method for assessing safety culture in surgery, for evaluating the effectiveness of training initiatives, and for collecting data for a hospital's quality assurance programme.
[Analysis of the patient safety culture in hospitals of the Spanish National Health System].
Saturno, P J; Da Silva Gama, Z A; de Oliveira-Sousa, S L; Fonseca, Y A; de Souza-Oliveira, A C; Castillo, Carmen; López, M José; Ramón, Teresa; Carrillo, Andrés; Iranzo, M Dolores; Soria, Victor; Saturno, Pedro J; Parra, Pedro; Gomis, Rafael; Gascón, Juan José; Martinez, José; Arellano, Carmen; Gama, Zenewton A Da Silva; de Oliveira-Sousa, Silvana L; de Souza-Oliveira, Adriana C; Fonseca, Yadira A; Ferreira, Marta Sobral
2008-12-01
A safety culture is essential to minimize errors and adverse events. Its measurement is needed to design activities in order to improve it. This paper describes the methods and main results of a study on safety climate in a nation-wide representative sample of public hospitals of the Spanish NHS. The Hospital Survey on Patient Safety Culture questionnaire was distributed to a random sample of health professionals in a representative sample of 24 hospitals, proportionally stratified by hospital size. Results are analyzed to provide a description of safety climate, its strengths and weaknesses. Differences by hospital size, type of health professional and service are analyzed using ANOVA. A total of 2503 responses are analyzed (response rate: 40%, (93% from professionals with direct patient contact). A total of 50% gave patient safety a score from 6 to 8 (on a 10-point scale); 95% reported < 2 events last year. Dimensions "Teamwork within hospital units" (71.8 [1.8]) and "Supervisor/Manager expectations and actions promoting safety" (61.8 [1.7]) have the highest percentage of positive answers. "Staffing", "Teamwork across hospital units", "Overall perceptions of safety" and "Hospital management support for patient safety" could be identified as weaknesses. Significant differences by hospital size, type of professional and service suggest a generally more positive attitude in small hospitals and Pharmacy services, and a more negative one in physicians. Strengths and weaknesses of the safety climate in the hospitals of the Spanish NHS have been identified and they are used to design appropriate strategies for improvement.
Zhu, Junya
2018-06-11
Self-report instruments have been widely used to better understand variations in patient safety climate between physicians and nurses. Research is needed to determine whether differences in patient safety climate reflect true differences in the underlying concepts. This is known as measurement equivalence, which is a prerequisite for meaningful group comparisons. This study aims to examine the degree of measurement equivalence of the responses to a patient safety climate survey of Chinese hospitals and to demonstrate how the measurement equivalence method can be applied to self-report climate surveys for patient safety research. Using data from the Chinese Hospital Survey of Patient Safety Climate from six Chinese hospitals in 2011, we constructed two groups: physicians and nurses (346 per group). We used multiple-group confirmatory factor analyses to examine progressively more stringent restrictions for measurement equivalence. We identified weak factorial equivalence across the two groups. Strong factorial equivalence was found for Organizational Learning, Unit Management Support for Safety, Adequacy of Safety Arrangements, Institutional Commitment to Safety, Error Reporting and Teamwork. Strong factorial equivalence, however, was not found for Safety System, Communication and Peer Support and Staffing. Nevertheless, further analyses suggested that nonequivalence did not meaningfully affect the conclusions regarding physician-nurse differences in patient safety climate. Our results provide evidence of at least partial equivalence of the survey responses between nurses and physicians, supporting mean comparisons of its constructs between the two groups. The measurement equivalence approach is essential to ensure that conclusions about group differences are valid.
Teamwork in Task Analysis. Training Manual V
1975-11-01
Research Programs Psychological Sciences Division Office of Naval Research Contract No. N00014-74-A-0436-0001 NR 151-370 Approved for public...Corps (Code RD) And Monitored By Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research Contract No...survival in the hidden warfare of the destructive psychological win-lose game. Win-lose behavior stems from individual attitudes and manage- ment climate
ERIC Educational Resources Information Center
Park, Julie J.; Denson, Nida; Johnson, Matthew
2014-01-01
Financial aid plays a critical role in college access and student success. It plays an increasingly important role as the college-going population continues to diversify and the cost of college continues to rise at both public and private institutions. In this study, the authors examined whether institutional level financial aid has any direct…
Athanasiou, Thanos; Long, Susannah J; Beveridge, Iain; Sevdalis, Nick
2017-01-01
Objectives Frontline insights into care delivery correlate with patients’ clinical outcomes. These outcomes might be improved through near-real time identification and mitigation of staff concerns. We evaluated the effects of a prospective frontline surveillance system on patient and team outcomes. Design Prospective, stepped wedge, non-randomised, cluster controlled trial; prespecified per protocol analysis for high-fidelity intervention delivery. Participants Seven interdisciplinary medical ward teams from two hospitals in the UK. Intervention Prospective clinical team surveillance (PCTS): structured daily interdisciplinary briefings to capture staff concerns, with organisational facilitation and feedback. Main measures The primary outcome was excess length of stay (eLOS): an admission more than 24 hours above the local average for comparable patients. Secondary outcomes included safety and teamwork climates, and incident reporting. Mixed-effects models adjusted for time effects, age, comorbidity, palliation status and ward admissions. Safety and teamwork climates were measured with the Safety Attitudes Questionnaire. High-fidelity PCTS delivery comprised high engagement and high briefing frequency. Results Implementation fidelity was variable, both in briefing frequency (median 80% working days/month, IQR 65%–90%) and engagement (median 70 issues/ward/month, IQR 34–113). 1714/6518 (26.3%) intervention admissions had eLOS versus 1279/4927 (26.0%) control admissions, an absolute risk increase of 0.3%. PCTS increased eLOS in the adjusted intention-to-treat model (OR 1.32, 95% CI 1.10 to 1.58, p=0.003). Conversely, high-fidelity PCTS reduced eLOS (OR 0.79, 95% CI 0.67 to 0.94, p=0.006). High-fidelity PCTS also increased total, high-yield and non-nurse incident reports (incidence rate ratios 1.28–1.79, all p<0.002). Sustained PCTS significantly improved safety and teamwork climates over time. Conclusions This study highlighted the potential benefits and pitfalls of ward-level interdisciplinary interventions. While these interventions can improve care delivery in complex, fluid environments, the manner of their implementation is paramount. Suboptimal implementation may have an unexpectedly negative impact on performance. Trial registration number ISRCTN 34806867 (http://www.isrctn.com/ISRCTN34806867). PMID:28720612
Facilitators to promoting health in schools: is school health climate the key?
Lucarelli, Jennifer F; Alaimo, Katherine; Mang, Ellen; Martin, Caroline; Miles, Richard; Bailey, Deborah; Kelleher, Deanne K; Drzal, Nicholas B; Liu, Hui
2014-02-01
Schools can promote healthy eating in adolescents. This study used a qualitative approach to examine barriers and facilitators to healthy eating in schools. Case studies were conducted with 8 low-income Michigan middle schools. Interviews were conducted with 1 administrator, the food service director, and 1 member of the coordinated school health team at each school. Barriers included budgetary constraints leading to low prioritization of health initiatives; availability of unhealthy competitive foods; and perceptions that students would not eat healthy foods. Schools had made improvements to foods and increased nutrition education. Support from administrators, teamwork among staff, and acknowledging student preferences facilitated positive changes. Schools with a key set of characteristics, (presence of a coordinated school health team, nutrition policies, and a school health champion) made more improvements. The set of key characteristics identified in successful schools may represent a school's health climate. While models of school climate have been utilized in the educational field in relation to academic outcomes, a health-specific model of school climate would be useful in guiding school health practitioners and researchers and may improve the effectiveness of interventions aimed at improving student dietary intake and other health behaviors. © 2014, American School Health Association.
Facilitators to Promoting Health in Schools: Is School Health Climate the Key?*
Lucarelli, Jennifer F.; Alaimo, Katherine; Mang, Ellen; Martin, Caroline; Miles, Richard; Bailey, Deborah; Kelleher, Deanne K.; Drzal, Nicholas B.; Liu, Hui
2017-01-01
BACKGROUND Schools can promote healthy eating in adolescents. This study used a qualitative approach to examine barriers and facilitators to healthy eating in schools. METHODS Case studies were conducted with 8 low-income Michigan middle schools. Interviews were conducted with 1 administrator, the food service director, and 1 member of the coordinated school health team at each school. RESULTS Barriers included budgetary constraints leading to low prioritization of health initiatives; availability of unhealthy competitive foods; and perceptions that students would not eat healthy foods. Schools had made improvements to foods and increased nutrition education. Support from administrators, teamwork among staff, and acknowledging student preferences facilitated positive changes. Schools with a key set of characteristics, (presence of a coordinated school health team, nutrition policies, and a school health champion) made more improvements. CONCLUSIONS The set of key characteristics identified in successful schools may represent a school’s health climate. While models of school climate have been utilized in the educational field in relation to academic outcomes, a health-specific model of school climate would be useful in guiding school health practitioners and researchers and may improve the effectiveness of interventions aimed at improving student dietary intake and other health behaviors. PMID:25099428
Cancer nurses' perceptions of ethical climate in Greece and Cyprus.
Constantina, Cloconi; Papastavrou, Evridiki; Charalambous, Andreas
2018-01-01
In recent years, the interest in ethical climate has increased in the literature. However, there is limited understanding of the phenomenon within the cancer care context as well as between countries. To evaluate cancer nurses' perceptions of hospital ethical climate in Greece and Cyprus. This was a quantitative descriptive-correlational comparative study with cancer nurses. Data were collected with the Greek version of the Hospital Ethical Climate Survey questionnaire in addition to demographic data. Participants and research context: In total, n = 235 cancer nurses working in cancer care settings in Greece and Cyprus were recruited at two national oncology nursing conferences. Ethical considerations: The study conforms to the principles of the World Medical Association Declaration of Helsinki and the relevant ethical approvals were obtained according to national law. The results showed that in terms of the "Managers" dimension, participants working in Greek hospitals (4.30 ± 0.73) had a higher score compared to the Cyprus participants (3.66 ± 0.93) (t = -5.777, p ≤ 0.001). The perceptions of nurses working in oncology units in Greece regarding the ethical climate were more positive compared to Cyprus (M = 3.67 for Greece and M = 3.53 for Cyprus, p ≤ 0.001). Nurses with a higher level of education had a lower average ethical climate score across all dimensions. All dimensions exhibit positive and moderate to high correlations between them (r = 0.414-0.728, p < 0.01). It is imperative to evaluate and improve the hospital ethical climate that prevails in each cancer care department. This highlights the fact that nurses working in seemingly similar cultural and organizational contexts might still have different perceptions of the ethical climate. Despite these differences, it is necessary to create the right conditions to address ethical issues. A positive ethical climate requires good relationships between healthcare professionals and the presence of good teamwork in order to ensure better healthcare provision.
Kasey Jacobs
2017-01-01
The U.S. Forest Service has found itself in an era of intense human activity, a changing climate; development and loss of open space; resource consumption; and problematic introduced species; and diversity in core beliefs and values. These challenges test our task-relevant maturity and the ability and willingness to meet the growing demands for services. The Forest...
Sawan, Mouna; Jeon, Yun-Hee; Fois, Romano A; Chen, Timothy F
Research concerning the overprescribing of psychotropic medicines in nursing homes suggests that organizational climate plays a significant role in the use of psychotropic medicines. Organizational climate refers to how members of the organization perceive their work environment as well as interactions with each other or outsiders. This study aimed to explore the key dimensions of organizational climate and their subsequent influence on the use of psychotropic medicines. Semi-structured interviews were conducted with 40 on-site and visiting staff from eight nursing homes in Sydney, Australia. Purposive sampling was used to recruit participants representing a broad range of health disciplines and roles. Transcripts were content coded for participants' perceptions related to the work environment and descriptions of psychotropic medicines use. Thematic analysis was used to derive key concepts. Three salient dimensions of organizational climate were linked to the use of psychotropic medicines in nursing homes: staffing, managerial expectations and teamwork among visiting and on-site staff. Inadequate staffing levels were perceived to influence on-site staff requests for initiation of psychotropic medicines to cope with high workload. Participants reported managers that prioritized the non-pharmacological management of behavioral disturbances led other on-site staff to have a reduced preference for psychotropic medicines. In addition, trust and open communication among on-site and visiting staff facilitated the cessation of psychotropic medicines. This study illustrates that organizational climate is an important factor influencing the use of psychotropic medicines. Furthermore, the study highlights what aspects of organizational climate need to be addressed to reduce the inappropriate prescribing of psychotropic medicines. Copyright © 2016 Elsevier Inc. All rights reserved.
Martinez, William; Etchegaray, Jason M; Thomas, Eric J; Hickson, Gerald B; Lehmann, Lisa Soleymani; Schleyer, Anneliese M; Best, Jennifer A; Shelburne, Julia T; May, Natalie B; Bell, Sigall K
2015-11-01
To develop and test the psychometric properties of two new survey scales aiming to measure the extent to which the clinical environment supports speaking up about (a) patient safety concerns and (b) unprofessional behaviour. Residents from six large US academic medical centres completed an anonymous, electronic survey containing questions regarding safety culture and speaking up about safety and professionalism concerns. Confirmatory factor analysis supported two separate, one-factor speaking up climates (SUCs) among residents; one focused on patient safety concerns (SUC-Safe scale) and the other focused on unprofessional behaviour (SUC-Prof scale). Both scales had good internal consistency (Cronbach's α>0.70) and were unique from validated safety and teamwork climate measures (r<0.85 for all correlations), a measure of discriminant validity. The SUC-Safe and SUC-Prof scales were associated with participants' self-reported speaking up behaviour about safety and professionalism concerns (r=0.21, p<0.001 and r=0.22, p<0.001, respectively), a measure of concurrent validity, while teamwork and safety climate scales were not. We created and provided evidence for the reliability and validity of two measures (SUC-Safe and SUC-Prof scales) associated with self-reported speaking up behaviour among residents. These two scales may fill an existing gap in residency and safety culture assessments by measuring the openness of communication about safety and professionalism concerns, two important aspects of safety culture that are under-represented in existing metrics. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Blumenfeld Arens, Olivia; Fierz, Katharina; Zúñiga, Franziska
2017-01-01
In special care units (SCUs) for residents with advanced dementia, both personnel and organizations are adapted to the needs of residents. However, whether these adaptations have a preventive effect on elder abuse has not yet been explored. To describe the prevalence of observed emotional abuse, neglect, and physical abuse in Swiss nursing homes, to compare SCUs with non-SCUs concerning the frequency of observed emotional abuse, neglect, and physical abuse, and to explore how resident-related characteristics, staff outcomes/characteristics, and organizational/environmental factors relate to observed elder abuse. This is a secondary data analysis of the Swiss Nursing Homes Human Resources Project (SHURP), a cross-sectional multicenter study. Data were collected from 2012 to 2013 and are based on observed rather than perpetrated elder abuse. We performed multilevel mixed-effects logistic regressions taking into account the hierarchical structure of the data with personnel nested within units and facilities. Of 4,599 care workers in 400 units and 156 facilities, 50.8% observed emotional abuse, 23.7% neglect, and 1.4% physical abuse. There was no significant difference between SCUs and non-SCUs regarding observed emotional abuse and neglect. Higher scores for 'workload' and sexual aggression towards care workers were associated with higher rates of emotional abuse and neglect. Verbal and physical resident aggression, however, were only associated with higher rates of emotional abuse. Negative associations were found between 'teamwork and resident safety climate' and both forms of abuse. Improving teamwork and the safety climate and reducing work stressors might be promising points of intervention to reduce elder abuse. More specific research about elder abuse in SCUs and the interaction between work climate and elder abuse is required. © 2016 S. Karger AG, Basel.
What are the critical success factors for team training in health care?
Salas, Eduardo; Almeida, Sandra A; Salisbury, Mary; King, Heidi; Lazzara, Elizabeth H; Lyons, Rebecca; Wilson, Katherine A; Almeida, Paula A; McQuillan, Robert
2009-08-01
Ineffective communication among medical teams is a leading cause of preventable patient harm throughout the health care system. A growing body of literature indicates that medical teamwork improves the quality, safety, and cost-effectiveness of health care delivery, and expectations for teamwork in health care have increased. Yet few health care professions' curricula include teamwork training, and few medical practices integrate teamwork principles. Because of this knowledge gap, growing numbers of health care systems are requiring staff to participate in formal teamwork training programs. Seven evidence-based, practical, systematic success factors for preparing, implementing, and sustaining a team training and performance improvement initiative were identified. Each success factor is accompanied by tips for deployment and a real-world example of application. (1) Align team training objectives and safety aims with organizational goals, (2) provide organizational support for the team training initiative, (3) get frontline care leaders on board, (4) prepare the environment and trainees for team training, (5) determine required resources and time commitment and ensure their availability, (6) facilitate application of trained teamwork skills on the job; and (7) measure the effectiveness of the team training program. Although decades of research in other high-risk organizations have clearly demonstrated that properly designed team training programs can improve team performance, success is highly dependent on organizational factors such as leadership support, learning climate, and commitment to data-driven change. Before engaging in a teamwork training initiative, health care organizations should have a clear understanding of these factors and the strategies for their establishment.
Measuring Workplace Climate in Community Clinics and Health Centers.
Friedberg, Mark W; Rodriguez, Hector P; Martsolf, Grant R; Edelen, Maria O; Vargas Bustamante, Arturo
2016-10-01
The effectiveness of community clinics and health centers' efforts to improve the quality of care might be modified by clinics' workplace climates. Several surveys to measure workplace climate exist, but their relationships to each other and to distinguishable dimensions of workplace climate are unknown. To assess the psychometric properties of a survey instrument combining items from several existing surveys of workplace climate and to generate a shorter instrument for future use. We fielded a 106-item survey, which included items from 9 existing instruments, to all clinicians and staff members (n=781) working in 30 California community clinics and health centers, receiving 628 responses (80% response rate). We performed exploratory factor analysis of survey responses, followed by confirmatory factor analysis of 200 reserved survey responses. We generated a new, shorter survey instrument of items with strong factor loadings. Six factors, including 44 survey items, emerged from the exploratory analysis. Two factors (Clinic Workload and Teamwork) were independent from the others. The remaining 4 factors (staff relationships, quality improvement orientation, managerial readiness for change, and staff readiness for change) were highly correlated, indicating that these represented dimensions of a higher-order factor we called "Clinic Functionality." This 2-level, 6-factor model fit the data well in the exploratory and confirmatory samples. For all but 1 factor, fewer than 20 survey responses were needed to achieve clinic-level reliability >0.7. Survey instruments designed to measure workplace climate have substantial overlap. The relatively parsimonious item set we identified might help target and tailor clinics' quality improvement efforts.
Measuring Workplace Climate in Community Clinics and Health Centers
Friedberg, Mark W.; Rodriguez, Hector P.; Martsolf, Grant; Edelen, Maria Orlando; Vargas-Bustamante, Arturo
2018-01-01
Background The effectiveness of community clinics and health centers’ efforts to improve the quality of care might be modified by clinics’ workplace climates. Several surveys to measure workplace climate exist, but their relationships to each other and to distinguishable dimensions of workplace climate are unknown. Objective To assess the psychometric properties of a survey instrument combining items from several existing surveys of workplace climate and to generate a shorter instrument for future use. Methods We fielded a 106-item survey, which included items from 9 existing instruments, to all clinicians and staff members (n=781) working in 30 California community clinics and health centers, receiving 628 responses (80% response rate). We performed exploratory factor analysis of survey responses, followed by confirmatory factor analysis of 200 reserved survey responses. We generated a new, shorter survey instrument of items with strong factor loadings. Results Six factors, including 44 survey items, emerged from the exploratory analysis. Two factors (Clinic Workload and Teamwork) were independent from the others. The remaining 4 factors (Staff Relationships, Quality Improvement Orientation, Managerial Readiness for Change, and Staff Readiness for Change) were highly correlated, indicating that these represented dimensions of a higher-order factor we called “Clinic Functionality.” This two-level, six-factor model fit the data well in the exploratory and confirmatory samples. For all but one factor, fewer than 20 survey responses were needed to achieve clinic-level reliability >0.7. Conclusion Survey instruments designed to measure workplace climate have substantial overlap. The relatively parsimonious item set we identified might help target and tailor clinics’ quality improvement efforts. PMID:27326549
Patient safety culture in Norwegian nursing homes.
Bondevik, Gunnar Tschudi; Hofoss, Dag; Husebø, Bettina Sandgathe; Deilkås, Ellen Catharina Tveter
2017-06-20
Patient safety culture concerns leader and staff interaction, attitudes, routines, awareness and practices that impinge on the risk of patient-adverse events. Due to their complex multiple diseases, nursing home patients are at particularly high risk of adverse events. Studies have found an association between patient safety culture and the risk of adverse events. This study aimed to investigate safety attitudes among healthcare providers in Norwegian nursing homes, using the Safety Attitudes Questionnaire - Ambulatory Version (SAQ-AV). We studied whether variations in safety attitudes were related to professional background, age, work experience and mother tongue. In February 2016, 463 healthcare providers working in five nursing homes in Tønsberg, Norway, were invited to answer the SAQ-AV, translated and adapted to the Norwegian nursing home setting. Previous validation of the Norwegian SAQ-AV for nursing homes identified five patient safety factors: teamwork climate, safety climate, job satisfaction, working conditions and stress recognition. SPSS v.22 was used for statistical analysis, which included estimations of mean values, standard deviations and multiple linear regressions. P-values <0.05 were considered to be significant. Out of the 463 employees invited, 288 (62.2%) answered the questionnaire. Response rates varied between 56.9% and 72.2% across the five nursing homes. In multiple linear regression analysis, we found that increasing age and job position among the healthcare providers were associated with significantly increased mean scores for the patient safety factors teamwork climate, safety climate, job satisfaction and working conditions. Not being a Norwegian native speaker was associated with a significantly higher mean score for job satisfaction and a significantly lower mean score for stress recognition. Neither professional background nor work experience were significantly associated with mean scores for any patient safety factor. Patient safety factor scores in nursing homes were poorer than previously found in Norwegian general practices, but similar to findings in out-of-hours primary care clinics. Patient safety culture assessment may help nursing home leaders to initiate targeted quality improvement interventions. Further research should investigate associations between patient safety culture and the occurrence of adverse events in nursing homes.
Earth Radiation Budget Research at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Smith, G. Louis; Harrison, Edwin F.; Gibson, Gary G.
2014-01-01
In the 1970s research studies concentrating on satellite measurements of Earth's radiation budget started at the NASA Langley Research Center. Since that beginning, considerable effort has been devoted to developing measurement techniques, data analysis methods, and time-space sampling strategies to meet the radiation budget science requirements for climate studies. Implementation and success of the Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) was due to the remarkable teamwork of many engineers, scientists, and data analysts. Data from ERBE have provided a new understanding of the effects of clouds, aerosols, and El Nino/La Nina oscillation on the Earth's radiation. CERES spacecraft instruments have extended the time coverage with high quality climate data records for over a decade. Using ERBE and CERES measurements these teams have created information about radiation at the top of the atmosphere, at the surface, and throughout the atmosphere for a better understanding of our climate. They have also generated surface radiation products for designers of solar power plants and buildings and numerous other applications
Climate Change Concepts and POGIL: Using climate change to teach general chemistry
NASA Astrophysics Data System (ADS)
King, D. B.; Lewis, J. E.; Anderson, K.; Latch, D.; Sutheimer, S.; Webster, G.; Middlecamp, C.; Moog, R.
2013-12-01
Climate change is a topic that can be used to engage students in a variety of courses and disciplines. Through an NSF-funded project, we have written a set of in-class POGIL (Process Oriented Guided Inquiry Learning) activities that use climate change topics to teach general chemistry concepts. POGIL is a pedagogical approach that uses group activities to teach content and process skills. In these group activities an initial model and a series of critical thinking questions are used to guide students through the introduction to or application of course content. Students complete the activities on their own, with the faculty member as a facilitator of learning, rather than a provider of information. Through assigned group roles and intentionally designed activity structure, process skills, such as teamwork, communication, and information processing, are developed during completion of the activity. While POGIL activities were initially developed for chemistry courses, this approach has now been used to create materials for use in other fields, such as biology, math, engineering and computer science. An additional component of this project is the incorporation of questions that relate to socio-scientific issues, e.g., the economic and social effects of climate change policies. The goal is for students to use evidence-based arguments in situations where opinion-based arguments are common. Key components (i.e., models and the corresponding critical thinking questions) of one activity will be presented. We will also report preliminary feedback based on initial classroom testing of several of the activities.
Taylor, Jennifer A; Dominici, Francesca; Agnew, Jacqueline; Gerwin, Daniel; Morlock, Laura; Miller, Marlene R
2012-02-01
Safety climate and nurses' working conditions may have an impact on both patient outcomes and nurse occupational health, but these outcomes have rarely been examined concurrently. To examine the association of unit-level safety climate and specific nurse working conditions with injury outcomes for both nurses and patients in a single hospital. A cross-sectional study was conducted using nursing-unit level and individual-level data at an urban, level-one trauma centre in the USA. Multilevel logistic regressions were used to examine associations among injury outcomes, safety climate and working conditions on 29 nursing units, including a total of 723 nurses and 28 876 discharges. Safety climate was measured in 2004 using the Safety Attitudes Questionnaire (SAQ). Working conditions included registered nursing hours per patient day (RNHPPD) and unit turnover. Patient injuries included 290 falls, 167 pulmonary embolism/deep vein thrombosis (PE/DVT), and 105 decubitus ulcers. Nurse injury was defined as a reported needle-stick, splash, slip, trip, or fall (n=78). Working conditions and outcomes were measured in 2005. The study found a negative association between two SAQ domains, Safety and Teamwork, with the odds of both decubitus ulcers and nurse injury. RNHPPD showed a negative association with patient falls and decubitus ulcers. Unit turnover was positively associated with nurse injury and PE/DVT, but negatively associated with falls and decubitus ulcers. Safety climate was associated with both patient and nurse injuries, suggesting that patient and nurse safety may actually be linked outcomes. The findings also indicate that increased unit turnover should be considered a risk factor for nurse and patient injuries.
The development and psychometric evaluation of a safety climate measure for primary care.
de Wet, C; Spence, W; Mash, R; Johnson, P; Bowie, P
2010-12-01
Building a safety culture is an important part of improving patient care. Measuring perceptions of safety climate among healthcare teams and organisations is a key element of this process. Existing measurement instruments are largely developed for secondary care settings in North America and many lack adequate psychometric testing. Our aim was to develop and test an instrument to measure perceptions of safety climate among primary care teams in National Health Service for Scotland. Questionnaire development was facilitated through a steering group, literature review, semistructured interviews with primary care team members, a modified Delphi and completion of a content validity index by experts. A cross-sectional postal survey utilising the questionnaire was undertaken in a random sample of west of Scotland general practices to facilitate psychometric evaluation. Statistical methods, including exploratory and confirmatory factor analysis, and Cronbach and Raykov reliability coefficients were conducted. Of the 667 primary care team members based in 49 general practices surveyed, 563 returned completed questionnaires (84.4%). Psychometric evaluation resulted in the development of a 30-item questionnaire with five safety climate factors: leadership, teamwork, communication, workload and safety systems. Retained items have strong factor loadings to only one factor. Reliability coefficients was satisfactory (α = 0.94 and ρ = 0.93). This study is the first stage in the development of an appropriately valid and reliable safety climate measure for primary care. Measuring safety climate perceptions has the potential to help primary care organisations and teams focus attention on safety-related issues and target improvement through educational interventions. Further research is required to explore acceptability and feasibility issues for primary care teams and the potential for organisational benchmarking.
[Analysis and modelling of safety culture in a Mexican hospital by Markov chains].
Velázquez-Martínez, J D; Cruz-Suárez, H; Santos-Reyes, J
2016-01-01
The objective of this study was to analyse and model the safety culture with Markov chains, as well as predicting and/or prioritizing over time the evolutionary behaviour of the safety culture of the health's staff in one Mexican hospital. The Markov chain theory has been employed in the analysis, and the input data has been obtained from a previous study based on the Safety Attitude Questionnaire (CAS-MX-II), by considering the following 6 dimensions: safety climate, teamwork, job satisfaction, recognition of stress, perception of management, and work environment. The results highlighted the predictions and/or prioritisation of the approximate time for the possible integration into the evolutionary behaviour of the safety culture as regards the "slightly agree" (Likert scale) for: safety climate (in 12 years; 24.13%); teamwork (8 years; 34.61%); job satisfaction (11 years; 52.41%); recognition of the level of stress (8 years; 19.35%); and perception of the direction (22 years; 27.87%). The work environment dimension was unable to determine the behaviour of staff information, i.e. no information cultural roots were obtained. In general, it has been shown that there are weaknesses in the safety culture of the hospital, which is an opportunity to suggest changes to the mandatory policies in order to strengthen it. Copyright © 2016 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.
Newham, Rosemary; Bennie, Marion; Maxwell, David; Watson, Anne; de Wet, Carl; Bowie, Paul
2014-12-01
A positive and strong safety culture underpins effective learning from patient safety incidents in health care, including the community pharmacy (CP) setting. To build this culture, perceptions of safety climate must be measured with context-specific and reliable instruments. No pre-existing instruments were specifically designed or suitable for CP within Scotland. We therefore aimed to develop a psychometrically sound instrument to measure perceptions of safety climate within Scottish CPs. The first stage, development of a preliminary instrument, comprised three steps: (i) a literature review; (ii) focus group feedback; and (iii) content validation. The second stage, psychometric testing, consisted of three further steps: (iv) a pilot survey; (v) a survey of all CP staff within a single health board in NHS Scotland; and (vi) application of statistical methods, including principal components analysis and calculation of Cronbach's reliability coefficients, to derive the final instrument. The preliminary questionnaire was developed through a process of literature review and feedback. This questionnaire was completed by staff in 50 CPs from the 131 (38%) sampled. 250 completed questionnaires were suitable for analysis. Psychometric evaluation resulted in a 30-item instrument with five positively correlated safety climate factors: leadership, teamwork, safety systems, communication and working conditions. Reliability coefficients were satisfactory for the safety climate factors (α > 0.7) and overall (α = 0.93). The robust nature of the technical design and testing process has resulted in the development of an instrument with sufficient psychometric properties, which can be implemented in the community pharmacy setting in NHS Scotland. © 2014 John Wiley & Sons, Ltd.
Huitt, Tiffany W; Killins, Anita; Brooks, William S
2015-01-01
As the healthcare climate shifts toward increased interdisciplinary patient care, it is essential that students become accomplished at group problem solving and develop positive attitudes toward teamwork. Team-based learning (TBL) has become a popular approach to medical education because of its ability to promote active learning, problem-solving skills, communication, and teamwork. However, its documented use in the laboratory setting and physical therapy education is limited. We used TBL as a substitute for one-third of cadaveric dissections in the gross anatomy laboratories at two Doctor of Physical Therapy programs to study its effect on both students' perceptions and academic performance. We surveyed students at the beginning and completion of their anatomy course as well as students who had previously completed a traditional anatomy course to measure the impact of TBL on students' perceptions of teamwork. We found that the inclusion of TBL in the anatomy laboratory improves students' attitudes toward working with peers (P < 0.01). Non-TBL students had significantly lower attitudes toward teamwork (P < 0.01). Comparison of academic performance between TBL and non-TBL students revealed that students who participated in TBL scored significantly higher on their first anatomy practical examination and on their head/neck written examination (P < 0.001). When asked to rate their role in a team, a 10.5% increase in the mean rank score for Problem Solver resulted after the completion of the TBL-based anatomy course. Our data indicate that TBL is an effective supplement to cadaveric dissection in the laboratory portion of gross anatomy, improving both students' grades and perceptions of teamwork. © 2014 American Association of Anatomists.
Perceptions of safety culture vary across the intensive care units of a single institution.
Huang, David T; Clermont, Gilles; Sexton, J Bryan; Karlo, Crystal A; Miller, Rachel G; Weissfeld, Lisa A; Rowan, Kathy M; Angus, Derek C
2007-01-01
To determine whether safety culture factors varied across the intensive care units (ICUs) of a single hospital, between nurses and physicians, and to explore ICU nursing directors' perceptions of their personnel's attitudes. Cross-sectional surveys using the Safety Attitudes Questionnaire-ICU version, a validated, aviation industry-based safety culture survey instrument. It assesses culture across six factors: teamwork climate, perceptions of management, safety climate, stress recognition, job satisfaction, and work environment. Four ICUs in one tertiary care hospital. All ICU personnel. We conducted the survey from January 1 to April 1, 2003, and achieved a 70.2% response rate (318 of 453). We calculated safety culture factor mean and percent-positive scores (percentage of respondents with a mean score of > or =75 on a 0-100 scale for which 100 is best) for each ICU. We compared mean ICU scores by ANOVA and percent-positive scores by chi-square. Mean and percent-positive scores by job category were modeled using a generalized estimating equations approach and compared using Wald statistics. We asked ICU nursing directors to estimate their personnel's mean scores and generated ratios of their estimates to the actual scores.Overall, factor scores were low to moderate across all factors (range across ICUs: 43.4-74.9 mean scores, 8.6-69.4 percent positive). Mean and percent-positive scores differed significantly (p < .0083, Bonferroni correction) across ICUs, except for stress recognition, which was uniformly low. Compared with physicians, nurses had significantly lower mean working conditions and perceptions of management scores. ICU nursing directors tended to overestimate their personnel's attitudes. This was greatest for teamwork, for which all director estimates exceeded actual scores, with a mean overestimate of 16%. Significant safety culture variation exists across ICUs of a single hospital. ICU nursing directors tend to overestimate their personnel's attitudes, particularly for teamwork. Culture assessments based on institutional level analysis or director opinion may be flawed.
Measuring teamwork in primary care: Triangulation of qualitative and quantitative data.
Brown, Judith Belle; Ryan, Bridget L; Thorpe, Cathy; Markle, Emma K R; Hutchison, Brian; Glazier, Richard H
2015-09-01
This article describes the triangulation of qualitative dimensions, reflecting high functioning teams, with the results of standardized teamwork measures. The study used a mixed methods design using qualitative and quantitative approaches to assess teamwork in 19 Family Health Teams in Ontario, Canada. This article describes dimensions from the qualitative phase using grounded theory to explore the issues and challenges to teamwork. Two quantitative measures were used in the study, the Team Climate Inventory (TCI) and the Providing Effective Resources and Knowledge (PERK) scale. For the triangulation analysis, the mean scores of these measures were compared with the qualitatively derived ratings for the dimensions. The final sample for the qualitative component was 107 participants. The qualitative analysis identified 9 dimensions related to high team functioning such as common philosophy, scope of practice, conflict resolution, change management, leadership, and team evolution. From these dimensions, teams were categorized numerically as high, moderate, or low functioning. Three hundred seventeen team members completed the survey measures. Mean site scores for the TCI and PERK were 3.87 and 3.88, respectively (of 5). The TCI was associated will all dimensions except for team location, space allocation, and executive director leadership. The PERK was associated with all dimensions except team location. Data triangulation provided qualitative and quantitative evidence of what constitutes teamwork. Leadership was pivotal in forging a common philosophy and encouraging team collaboration. Teams used conflict resolution strategies and adapted to the changes they encountered. These dimensions advanced the team's evolution toward a high functioning team. (c) 2015 APA, all rights reserved).
Souba, Wiley W; Mauger, David; Day, David V
2007-03-01
To gain a better understanding of the values that medical school deans and surgery chairs consider most essential for effective leadership, to assess their perceptions of the values and leadership climate in their institutions, and to test the premise that agreement on leadership values and climate predict greater organizational effectiveness and performance. From June 2005 through March 2006, questionnaires designed to assess leadership core values and organizational leadership climate were mailed to medical school deans and surgery chairs of the 125 U.S. academic health centers. Institutional performance measures used were the National Institutes of Health (NIH) standing and U.S. News and World Report ranking of each institution. Sixty-eight surgery chairs (54%) and 60 deans (48%) returned surveys. Q-sort results on 38 positive leadership values indicated that integrity, trust, and vision were considered the most important core values for effective leadership by both chairs and deans. Both groups ranked business acumen, authority, and institutional reputation as least important. Deans consistently ranked the leadership climate as being healthier (more positive) than did their surgery chairs on multiple scale items: leadership is widely shared (P = .005), information is widely shared (P = .002), missions are aligned (P = .003), open communication is the norm (P = .009), good performance is rewarded (P = .01), teamwork is widely practiced (P = .01), and leaders are held accountable (P = 002). Tighter alignment between chairs and deans on core values and on the leadership climate scale correlated with higher school and department NIH standing and higher U.S. News and World Report medical school and hospital ranking (P < .05). Although surgery chairs and deans espouse similar core leadership values, deans believe that a healthier leadership climate exists in their institutions than their surgery chairs do. The study findings suggest that tighter leadership alignment between deans and surgery chairs may predict a higher level of institutional performance in the clinical and academic arenas.
Validation of the Dutch language version of the Safety Attitudes Questionnaire (SAQ-NL).
Haerkens, Marck Htm; van Leeuwen, Wouter; Sexton, J Bryan; Pickkers, Peter; van der Hoeven, Johannes G
2016-08-15
As the first objective of caring for patients is to do no harm, patient safety is a priority in delivering clinical care. An essential component of safe care in a clinical department is its safety climate. Safety climate correlates with safety-specific behaviour, injury rates, and accidents. Safety climate in healthcare can be assessed by the Safety Attitudes Questionnaire (SAQ), which provides insight by scoring six dimensions: Teamwork Climate, Job Satisfaction, Safety Climate, Stress Recognition, Working Conditions and Perceptions of Management. The objective of this study was to assess the psychometric properties of the Dutch language version of the SAQ in a variety of clinical departments in Dutch hospitals. The Dutch version (SAQ-NL) of the SAQ was back translated, and analyzed for semantic characteristics and content. From October 2010 to November 2015 SAQ-NL surveys were carried out in 17 departments in two university and seven large non-university teaching hospitals in the Netherlands, prior to a Crew Resource Management human factors intervention. Statistical analyses were used to examine response patterns, mean scores, correlations, internal consistency reliability and model fit. Cronbach's α's and inter-item correlations were calculated to examine internal consistency reliability. One thousand three hundred fourteen completed questionnaires were returned from 2113 administered to health care workers, resulting in a response rate of 62 %. Confirmatory Factor Analysis revealed the 6-factor structure fit the data adequately. Response patterns were similar for professional positions, departments, physicians and nurses, and university and non-university teaching hospitals. The SAQ-NL showed strong internal consistency (α = .87). Exploratory analysis revealed differences in scores on the SAQ dimensions when comparing different professional positions, when comparing physicians to nurses and when comparing university to non-university hospitals. The SAQ-NL demonstrated good psychometric properties and is therefore a useful instrument to measure patient safety climate in Dutch clinical work settings. As removal of one item resulted in an increased reliability of the Working Conditions dimension, revision or deletion of this item should be considered. The results from this study provide researchers and practitioners with insight into safety climate in a variety of departments and functional positions in Dutch hospitals.
Martinez, William; Lehmann, Lisa Soleymani; Thomas, Eric J; Etchegaray, Jason M; Shelburne, Julia T; Hickson, Gerald B; Brady, Donald W; Schleyer, Anneliese M; Best, Jennifer A; May, Natalie B; Bell, Sigall K
2017-11-01
Open communication between healthcare professionals about care concerns, also known as 'speaking up', is essential to patient safety. Compare interns' and residents' experiences, attitudes and factors associated with speaking up about traditional versus professionalism-related safety threats. Anonymous, cross-sectional survey. Six US academic medical centres, 2013-2014. 1800 medical and surgical interns and residents (47% responded). Attitudes about, barriers and facilitators for, and self-reported experience with speaking up. Likelihood of speaking up and the potential for patient harm in two vignettes. Safety Attitude Questionnaire (SAQ) teamwork and safety scales; and Speaking Up Climate for Patient Safety (SUC-Safe) and Speaking Up Climate for Professionalism (SUC-Prof) scales. Respondents more commonly observed unprofessional behaviour (75%, 628/837) than traditional safety threats (49%, 410/837); p<0.001, but reported speaking up about unprofessional behaviour less commonly (46%, 287/628 vs 71%, 291/410; p<0.001). Respondents more commonly reported fear of conflict as a barrier to speaking up about unprofessional behaviour compared with traditional safety threats (58%, 482/837 vs 42%, 348/837; p<0.001). Respondents were also less likely to speak up to an attending physician in the professionalism vignette than the traditional safety vignette, even when they perceived high potential patient harm (20%, 49/251 vs 71%, 179/251; p<0.001). Positive perceptions of SAQ teamwork climate and SUC-Safe were independently associated with speaking up in the traditional safety vignette (OR 1.90, 99% CI 1.36 to 2.66 and 1.46, 1.02 to 2.09, respectively), while only a positive perception of SUC-Prof was associated with speaking up in the professionalism vignette (1.76, 1.23 to 2.50). Interns and residents commonly observed unprofessional behaviour yet were less likely to speak up about it compared with traditional safety threats even when they perceived high potential patient harm. Measuring SUC-Safe, and particularly SUC-Prof, may fill an existing gap in safety culture assessment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Astrophysics Data System (ADS)
Missingham, Dorothy; Matthews, Robert
2014-07-01
This work examines an innovative and evolving approach to facilitating teamwork learning in a generic first-year mechanical engineering course. Principles of inclusive, student-active and democratic pedagogy were utilised to engage students on both the social and personal planes. Learner opportunities to facilitate, direct and lead the learning direction were emphasised. This emphasis encouraged a rich learning process and motivated students dismissive of the need to examine their communication skills and those who initially perceived the topic as a personal intrusion. Through a sharing of curriculum decisions, a climate of trust, ownership and shared value arose. Students chose from a range of tools across personality-type indicators, learning style indicators and hierarchies of human needs, to assist their capacity to express and discuss engineering designs and concepts. Peer teaching and collaborative exercises were incorporated to provide an authentic learning context and to further the student's sense of ownership.
NASA Astrophysics Data System (ADS)
Hunter, Jane
Tenured and tenure-track faculty members at institutions of higher education, especially those at Research I institutions, are being asked to do more than ever before. With rapidly changing technology, significant decreases in public funding, the shift toward privately funded research, and the ever increasing expectations of students for an education that adequately prepares them for professional careers, engineering faculty are particularly challenged by the escalating demands on their time. In 1996, the primary accreditation organization for engineering programs (ABET) adopted new criteria that required, among other things, engineering programs to teach students to function on multidisciplinary teams and to communicate effectively. In response, most engineering programs utilize project teams as a strategy for teaching these skills. The purpose of this qualitative study of tenured and tenure track engineering faculty at a Research I institution in the southwestern United States was to explore the variety of ways in which the engineering faculty responded to the demands placed upon them as a result of the increased emphasis on project teams in undergraduate engineering education. Social role theory and organizational climate theory guided the study. Some faculty viewed project teams as an opportunity for students to learn important professional skills and to benefit from collaborative learning but many questioned the importance and feasibility of teaching teamwork skills and had concerns about taking time away from other essential fundamental material such as mathematics, basic sciences and engineering sciences. Although the administration of the College of Engineering articulated strong support for the use of project teams in undergraduate education, the prevailing climate did little to promote significant efforts related to effective utilization of project teams. Too often, faculty were unwilling to commit sufficient time or effort to make project teamwork a truly valuable learning opportunity because those efforts were not perceived to be valuable and were rarely rewarded. Few formal professional development opportunities were available and few incentives were in place to encourage other informal efforts to develop the necessary skills. Those who committed significant effort to project teams were challenged by concerns about team composition, student accountability and assigning individual grades for group teamwork.
Torrente, Pedro; Salanova, Marisa; Llorens, Susana; Schaufeli, Wilmar B
2012-02-01
In this study we analyze the mediating role of team work engagement between team social resources (i.e., supportive team climate, coordination, teamwork), and team performance (i.e., in-role and extra-role performance) as predicted by the Job Demands-Resources Model. Aggregated data of 533 employees nested within 62 teams and 13 organizations were used, whereas team performance was assessed by supervisor ratings. Structural equation modeling revealed that, as expected, team work engagement plays a mediating role between social resources perceived at the team level and team performance as assessed by the supervisor.
Andrew, C G
1996-08-01
Manufacturing managements and practitioners alike are at long last realizing that the heartbeat of competitive advantage springs from peopleware, not hardware and software. But despite this heightened awareness the problem persists even among manufacturing professionals--they may talk a good game about priortizing people and quality, but all too many have precious little idea of how to go about it with constancy of purpose. This article bridges the gap and addresses the key issues in adopting the powerful new peopleware paradigm that provides the positive motivational climate for the improvement-change journey toward world-class performance through teamwork, innovation, and continuous improvement.
Zhu, Junya; Li, Liping; Zhao, Hailei; Han, Guangshu; Wu, Albert W; Weingart, Saul N
2014-10-01
Existing patient safety climate instruments, most of which have been developed in the USA, may not accurately reflect the conditions in the healthcare systems of other countries. To develop and evaluate a patient safety climate instrument for healthcare workers in Chinese hospitals. Based on a review of existing instruments, expert panel review, focus groups and cognitive interviews, we developed items relevant to patient safety climate in Chinese hospitals. The draft instrument was distributed to 1700 hospital workers from 54 units in six hospitals in five Chinese cities between July and October 2011, and 1464 completed surveys were received. We performed exploratory and confirmatory factor analyses and estimated internal consistency reliability, within-unit agreement, between-unit variation, unit-mean reliability, correlation between multi-item composites, and association between the composites and two single items of perceived safety. The final instrument included 34 items organised into nine composites: institutional commitment to safety, unit management support for safety, organisational learning, safety system, adequacy of safety arrangements, error reporting, communication and peer support, teamwork and staffing. All composites had acceptable unit-mean reliabilities (≥0.74) and within-unit agreement (Rwg ≥0.71), and exhibited significant between-unit variation with intraclass correlation coefficients ranging from 9% to 21%. Internal consistency reliabilities ranged from 0.59 to 0.88 and were ≥0.70 for eight of the nine composites. Correlations between composites ranged from 0.27 to 0.73. All composites were positively and significantly associated with the two perceived safety items. The Chinese Hospital Survey on Patient Safety Climate demonstrates adequate dimensionality, reliability and validity. The integration of qualitative and quantitative methods is essential to produce an instrument that is culturally appropriate for Chinese hospitals. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Ciceri, Piera
2017-04-01
Pictures and diaries of the legendary Antarctic Expedition of sir E. Shackleton and his crew aboard the Endurance (1914/16) have become the starting point to learn about Natural Science, Earth Science and Climate Change. Students, 12 years old, were involved in hands on activities, took part to a network project, used interactive virtual labs, talked to university researchers on Skype and became the writers of a play. The theater was the place to act the story of Shackleton's expedition, to "stage" some scientific experiments and to tell to the audience about ice cores, climate change, physical and geographical characteristic of polar regions, thermal phenomena related to adaptations of polar animals, solar radiation at different latitude, day/night duration. The project was carried out from teachers of science, letters, geography and English in collaboration with the "Piccolo Teatro di Milano", the association "Scienza Under 18", researchers of the "Byrd Polar and Climate Research Center of Ohio State University" and of "M. Zucchelli Station" based in Antarctica. In our opinion drama activities improve both verbal and non-verbal communication skills and soft skills such as teamwork, responsibility and commitment. To be able to write and to act, students need a deep understanding of contents. To have an audience different from their own teachers and classmates and to interact with university researchers offer real tasks. The project aims to develop a relevant skill for the students: to become awareness citizens in a changing word.
Determinants of workplace violence against clinical physicians in hospitals.
Wu, Jeng-Cheng; Tung, Tao-Hsin; Chen, Peter Y; Chen, Ying-Lin; Lin, Yu-Wen; Chen, Fu-Li
2015-01-01
Workplace violence in the health sector is a worldwide concern. Physicians play an essential role in health-care teamwork; thus, understanding how organizational factors influence workplace violence against physicians is critical. A total of 189 physicians from three public hospitals and one private hospital in Northern Taiwan completed a survey, and the response rate was 47.1%. This study was approved by the institutional review board of each participating hospital. The 189 physicians were selected from the Taipei area, Taiwan. The results showed that 41.5% of the respondents had received at least one workplace-related physical or verbal violent threat, and that 9.8% of the respondents had experienced at least one episode of sexual harassment in the 3 months before the survey. Logistic regression analysis revealed that physicians in psychiatry or emergency medicine departments received more violent threats and sexual harassment than physicians in other departments. Furthermore, physicians with a lower workplace safety climate (OR=0.89; 95% CI=0.81-0.98) and more job demands (OR=1.15; 95% CI=1.02-1.30) were more likely to receive violent threats. This study found that workplace violence was associated with job demands and the workplace safety climate. Therefore, determining how to develop a workplace safety climate and ensure a safe job environment for physicians is a crucial management policy issue for health-care systems.
Sexton, John B; Helmreich, Robert L; Neilands, Torsten B; Rowan, Kathy; Vella, Keryn; Boyden, James; Roberts, Peter R; Thomas, Eric J
2006-04-03
There is widespread interest in measuring healthcare provider attitudes about issues relevant to patient safety (often called safety climate or safety culture). Here we report the psychometric properties, establish benchmarking data, and discuss emerging areas of research with the University of Texas Safety Attitudes Questionnaire. Six cross-sectional surveys of health care providers (n = 10,843) in 203 clinical areas (including critical care units, operating rooms, inpatient settings, and ambulatory clinics) in three countries (USA, UK, New Zealand). Multilevel factor analyses yielded results at the clinical area level and the respondent nested within clinical area level. We report scale reliability, floor/ceiling effects, item factor loadings, inter-factor correlations, and percentage of respondents who agree with each item and scale. A six factor model of provider attitudes fit to the data at both the clinical area and respondent nested within clinical area levels. The factors were: Teamwork Climate, Safety Climate, Perceptions of Management, Job Satisfaction, Working Conditions, and Stress Recognition. Scale reliability was 0.9. Provider attitudes varied greatly both within and among organizations. Results are presented to allow benchmarking among organizations and emerging research is discussed. The Safety Attitudes Questionnaire demonstrated good psychometric properties. Healthcare organizations can use the survey to measure caregiver attitudes about six patient safety-related domains, to compare themselves with other organizations, to prompt interventions to improve safety attitudes and to measure the effectiveness of these interventions.
Organizational culture and climate for patient safety in Intensive Care Units.
Santiago, Thaiana Helena Roma; Turrini, Ruth Natalia Teresa
2015-02-01
Objective To assess the perception of health professionals about patient safety climate and culture in different intensive care units (ICUs) and the relationship between scores obtained on the Hospital Survey on Patient Safety Culture (HSOPSC) and the Safety Attitudes Questionnaire (SAQ). Method A cross-sectional study conducted at a teaching hospital in the state of São Paulo, Brazil, in March and April 2014. As data gathering instruments, the HSOPSC, SAQ and a questionnaire with sociodemographic and professional information about the staff working in an adult, pediatric and neonatal ICU were used. Data analysis was conducted with descriptive statistics. Results The scales presented good reliability. Greater weaknesses in patient safety were observed in the Working conditions andPerceptions of management domains of the SAQ and in the Nonpunitive response to error domain of the HSOPSC. The strengths indicated by the SAQ wereTeamwork climate and Job satisfactionand by the HSOPC, Supervisor/manager expectations and actions promoting safety and Organizational learning-continuous improvement. Job satisfaction was higher among neonatal ICU workers when compared with the other ICUs. The adult ICU presented lower scores for most of the SAQ and HSOPSC domains. The scales presented moderate correlation between them (r=0.66). Conclusion There were differences in perception regarding patient safety among ICUs, which corroborates the existence of local microcultures. The study did not demonstrate equivalence between the SAQ and the HSOPSC.
Impact of the time-out process on safety attitude in a tertiary neurosurgical department.
McLaughlin, Nancy; Winograd, Deborah; Chung, Hallie R; Van de Wiele, Barbara; Martin, Neil A
2014-11-01
In July 2011, the UCLA Health System released its current time-out process protocol used across the Health System. Numerous interventions were performed to improve checklist completion and time-out process observance. This study assessed the impact of the current protocol for the time-out on healthcare providers' safety attitude and operating room safety climate. All members involved in neurosurgical procedures in the main operating room of the Ronald Reagan UCLA Medical Center were asked to anonymously complete an online survey on their overall perception of the time-out process. The survey was completed by 93 of 128 members of the surgical team. Overall, 98.9% felt that performing a pre-incision time-out improves patient safety. The majority of respondents (97.8%) felt that the team member introductions helped to promote a team spirit during the case. In addition, 93.5% felt that performing a time-out helped to ensure all team members were comfortable to voice safety concerns throughout the case. All respondents felt that the attending surgeon should be present during the time-out and 76.3% felt that he/she should lead the time-out. Unanimously, it was felt that the review of anticipated critical elements by the attending surgeon was helpful to respondents' role during the case. Responses revealed that although the time-out brings the team together physically, it does not necessarily reinforce teamwork. The time-out process favorably impacted team members' safety attitudes and perception as well as overall safety climate in neurosurgical ORs. Survey responses identified leadership training and teamwork training as two avenues for future improvement. Copyright © 2014 Elsevier Inc. All rights reserved.
Sparer, Emily H; Catalano, Paul J; Herrick, Robert F; Dennerlein, Jack T
2016-01-01
Objectives This study aimed to evaluate the efficacy of a safety communication and recognition program (B-SAFE), designed to encourage improvement of physical working conditions and hazard reduction in construction. Methods A matched pair cluster randomized controlled trial was conducted on eight worksites (four received the B-SAFE intervention, four served as control sites) for approximately five months per site. Pre- and post-exposure worker surveys were collected at all sites (N=615, pre-exposure response rate of 74%, post-exposure response rate of 88%). Multi-level mixed-effect regression models evaluated the effect of B-SAFE on safety climate as assessed from surveys. Focus groups (N=6–8 workers/site) were conducted following data collection. Transcripts were coded and analyzed for thematic content using Atlas.ti (version 6). Results The mean safety climate score at intervention sites, as measured on a 0–50 point scale, increased 0.5 points (1%) between pre- and post-B-SAFE exposure, compared to control sites that decreased 0.8 points (1.6%). The intervention effect size was 1.64 (3.28%) (P-value=0.01) when adjusted for month the worker started on-site, total length of time on-site, as well as individual characteristics (trade, title, age, and race/ethnicity). At intervention sites, workers noted increased levels of safety awareness, communication, and teamwork compared to control sites. Conclusions B-SAFE led to many positive changes, including an improvement in safety climate, awareness, teambuilding, and communication. B-SAFE was a simple intervention that engaged workers through effective communication infrastructures and had a significant, positive effect on worksite safety. PMID:27158914
Measurement of Employability Skills on Teaching Factory Learning
NASA Astrophysics Data System (ADS)
Subekti, S.; Ana, A.
2018-02-01
Vocational High Schools as one of the educational institutions that has the responsibility in preparing skilled labors has a challenge to improve the quality of human resources as a candidate for skilled labors, to compete and survive in a changing climate of work. BPS noted an increase in the number of non-worker population (BAK) in 2015-2017 on vocational graduates as many as 564,272 people. The ability to adapt and maintain jobs in a variety of conditions is called employability skills. This study purpose to measure the development of employability skills of communication skills, problem-solving skills and teamwork skills on the implementation of teaching factory learning in SMK Negeri 1 Cibadak, THPH Skills Program on bakery competency. This research uses mixed method, with concurrent triangulation mix methods research design. Data collection techniques used interviews and questionnaires. The result shows that there are increasing students’ employability skills in communication skills, problem solving skills, and teamwork skills in teaching factory learning. Principles of learning that apply learning by doing student centering and learning arrangements such as situations and conditions in the workplace have an impact on improving student employability skills.
Hospital safety climate and safety behavior: A social exchange perspective.
Ancarani, Alessandro; Di Mauro, Carmela; Giammanco, Maria D
Safety climate is considered beneficial to the improvement of hospital safety outcomes. Nevertheless, the relations between two of its key constituents, namely those stemming from leader-subordinate relations and coworker support for safety, are still to be fully ascertained. This article uses the theoretical lens of Social Exchange Theory to study the joint impact of leader-member exchange in the safety sphere and coworker support for safety on safety-related behavior at the hospital ward level. Social exchange constructs are further related to the existence of a shame-/blame-free environment, seen as a potential antecedent of safety behavior. A cross-sectional study including 166 inpatients in hospital wards belonging to 10 public hospitals in Italy was undertaken to test the hypotheses developed. Hypothesized relations have been analyzed through a fully mediated multilevel structural equation model. This methodology allows studying behavior at the individual level, while keeping into account the heterogeneity among hospital specialties. Results suggest that the linkage between leader support for safety and individual safety behavior is mediated by coworker support on safety issues and by the creation of a shame-free environment. These findings call for the creation of a safety climate in which managerial efforts should be directed not only to the provision of new safety resources and the enforcement of safety rules but also to the encouragement of teamwork and freedom to report errors as ways to foster the capacity of the staff to communicate, share, and learn from each other.
Sexton, John B; Helmreich, Robert L; Neilands, Torsten B; Rowan, Kathy; Vella, Keryn; Boyden, James; Roberts, Peter R; Thomas, Eric J
2006-01-01
Background There is widespread interest in measuring healthcare provider attitudes about issues relevant to patient safety (often called safety climate or safety culture). Here we report the psychometric properties, establish benchmarking data, and discuss emerging areas of research with the University of Texas Safety Attitudes Questionnaire. Methods Six cross-sectional surveys of health care providers (n = 10,843) in 203 clinical areas (including critical care units, operating rooms, inpatient settings, and ambulatory clinics) in three countries (USA, UK, New Zealand). Multilevel factor analyses yielded results at the clinical area level and the respondent nested within clinical area level. We report scale reliability, floor/ceiling effects, item factor loadings, inter-factor correlations, and percentage of respondents who agree with each item and scale. Results A six factor model of provider attitudes fit to the data at both the clinical area and respondent nested within clinical area levels. The factors were: Teamwork Climate, Safety Climate, Perceptions of Management, Job Satisfaction, Working Conditions, and Stress Recognition. Scale reliability was 0.9. Provider attitudes varied greatly both within and among organizations. Results are presented to allow benchmarking among organizations and emerging research is discussed. Conclusion The Safety Attitudes Questionnaire demonstrated good psychometric properties. Healthcare organizations can use the survey to measure caregiver attitudes about six patient safety-related domains, to compare themselves with other organizations, to prompt interventions to improve safety attitudes and to measure the effectiveness of these interventions. PMID:16584553
Zúñiga, Franziska; Ausserhofer, Dietmar; Hamers, Jan P H; Engberg, Sandra; Simon, Michael; Schwendimann, René
2015-09-01
Implicit rationing of nursing care refers to the withdrawal of or failure to carry out necessary nursing care activities due to lack of resources, in the literature also described as missed care, omitted care, or nursing care left undone. Under time constraints, nurses give priority to activities related to vital medical needs and the safety of the patient, leaving out documentation, rehabilitation, or emotional support of patients. In nursing homes, little is known about the occurrence of implicit rationing of nursing care and possible contributing factors. The purpose of this study was (1) to describe levels and patterns of self-reported implicit rationing of nursing care in Swiss nursing homes and (2) to explore the relationship between staffing level, turnover, and work environment factors and implicit rationing of nursing care. Cross-sectional, multi-center sub-study of the Swiss Nursing Home Human Resources Project (SHURP). Nursing homes from all three language regions of Switzerland. A random selection of 156 facilities with 402 units and 4307 direct care workers from all educational levels (including 25% registered nurses). We utilized data from established scales to measure implicit rationing of nursing care (Basel Extent of Rationing of Nursing Care), perceptions of leadership ability and staffing resources (Practice Environment Scale of the Nursing Work Index), teamwork and safety climate (Safety Attitudes Questionnaire), and work stressors (Health Professions Stress Inventory). Staffing level and turnover at the unit level were measured with self-developed questions. Multilevel linear regression models were used to explore the proposed relationships. Implicit rationing of nursing care does not occur frequently in Swiss nursing homes. Care workers ration support in activities of daily living, such as eating, drinking, elimination and mobilization less often than documentation of care and the social care of nursing homes residents. Statistically significant factors related to implicit rationing of care were the perception of lower staffing resources, teamwork and safety climate, and higher work stressors. Unit staffing and turnover levels were not related to rationing activities. Improving teamwork and reducing work stressors could possibly lead to less implicit rationing of nursing care. Further research on the relationship of implicit rationing of nursing care and resident and care worker outcomes in nursing homes is requested. Copyright © 2015 Elsevier Ltd. All rights reserved.
A dissonant scale: stress recognition in the SAQ.
Taylor, Jennifer A; Pandian, Ravi
2013-07-31
Our previous analyses using the Stress Recognition subscale of the Safety Attitudes Questionnaire (SAQ) resulted in significant effect estimates with equally opposing explanations. We suspected construct validity issues and investigated such using our own data and correlation matrices of previous published studies. The correlation matrices for each of the SAQ subscales from two previous studies by Speroff and Taylor were replicated and compared. The SAS Proc Factor procedure and the PRIORS = SMC option were used to perform Common Factor Analysis. The correlation matrices of both studies were very similar. Teamwork, Safety Climate, Job Satisfaction, Perceptions of Management and Working Conditions were well-correlated. The correlations ranged from 0.53 to 0.76. For Stress Recognition correlations ranged from -0.15 to 0.03. Common Factor Analysis confirmed the isolation of Stress Recognition. CFA returned a strong one-factor model that explained virtually all of the communal variance. Stress Recognition loaded poorly on this factor in both instances, and the CFA indicated that 96.4-100.0% of the variance associated with Stress Recognition was unique to that subscale, and not shared with the other 5 subscales. We conclude that the Stress Recognition subscale does not fit into the overall safety climate construct the SAQ intended to reflect. We recommend that this domain be omitted from overall safety climate scale score calculations, and clearly identified as an important yet distinct organizational construct. We suggest that this subscale be investigated for its true meaning, characterized as such, and findings conveyed to SAQ end users. We make no argument against Stress Recognition as an important organizational metric, rather we suggest that as a stand-alone construct its current packaging within the SAQ may be misleading for those intent on intervention development and evaluation in healthcare settings if they interpret Stress Recognition results as emblematic of safety climate.
Preoperative Safety Briefing Project
DeFontes, James; Surbida, Stephanie
2004-01-01
Context: Increased media attention on surgical procedures that were performed on the wrong anatomic site or wrong patient has prompted the health care industry to identify and address human factors that lead to medical errors. Objective: To increase patient safety in the perioperative setting, our objective was to create a climate of improved communication, collaboration, team-work, and situational awareness while the surgical team reviewed pertinent information about the patient and the pending procedure. Methods: A team of doctors, nurses, and technicians used human factors principles to develop the Preoperative Safety Briefing for use by surgical teams, a briefing similar to the preflight checklist used by the airline industry. A six-month pilot of the briefing began in the Kaiser Permanente (KP) Anaheim Medical Center in February 2002. Four indicators of safety culture were used to measure success of the pilot: occurrence of wrong-site/wrong procedures, attitudinal survey data, near-miss reports, and nursing personnel turnover data. Results: Wrong-site surgeries decreased from 3 to 0 (300%) per year; employee satisfaction increased 19%; nursing personnel turnover decreased 16%; and perception of the safety climate in the operating room improved from “good” to “outstanding.” Operating suite personnel perception of teamwork quality improved substantially. Operating suite personnel perception of patient safety as a priority, of personnel communication, of their taking responsibility for patient safety, of nurse input being well received, of overall morale, and of medical errors being handled appropriately also improved substantially. Conclusions: Team members who work together and communicate well can quickly detect and more easily avoid errors. The Preoperative Safety Briefing is now standard in many operating suites in the KP Orange County Service Area. The concepts and design of this project are transferable, and similar projects are underway in the Departments of Radiology and of Labor and Delivery at KP Anaheim Medical Center. PMID:26704913
Sacks, Greg D; Shannon, Evan M; Dawes, Aaron J; Rollo, Johnathon C; Nguyen, David K; Russell, Marcia M; Ko, Clifford Y; Maggard-Gibbons, Melinda A
2015-07-01
To define the target domains of culture-improvement interventions, to assess the impact of these interventions on surgical culture and to determine whether culture improvements lead to better patient outcomes and improved healthcare efficiency. Healthcare systems are investing considerable resources in improving workplace culture. It remains unclear whether these interventions, when aimed at surgical care, are successful and whether they are associated with changes in patient outcomes. PubMed, Cochrane, Web of Science and Scopus databases were searched from January 1980 to January 2015. We included studies on interventions that aimed to improve surgical culture, defined as the interpersonal, social and organisational factors that affect the healthcare environment and patient care. The quality of studies was assessed using an adapted tool to focus the review on higher-quality studies. Due to study heterogeneity, findings were narratively reviewed. The 47 studies meeting inclusion criteria (4 randomised trials and 10 moderate-quality observational studies) reported on interventions that targeted three domains of culture: teamwork (n=28), communication (n=26) and safety climate (n=19); several targeted more than one domain. All moderate-quality studies showed improvements in at least one of these domains. Two studies also demonstrated improvements in patient outcomes, such as reduced postoperative complications and even reduced postoperative mortality (absolute risk reduction 1.7%). Two studies reported improvements in healthcare efficiency, including fewer operating room delays. These findings were supported by similar results from low-quality studies. The literature provides promising evidence for various strategies to improve surgical culture, although these approaches differ in terms of the interventions employed as well as the techniques used to measure culture. Nevertheless, culture improvement appears to be associated with other positive effects, including better patient outcomes and enhanced healthcare efficiency. CRD42013005987. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Patient Safety Culture in Slovenian out-of-hours Primary Care Clinics.
Klemenc-Ketiš, Zalika; Deilkås, Ellen Tveter; Hofoss, Dag; Bondevik, Gunnar Tschudi
2017-10-01
Patient safety culture is a concept which describes how leader and staff interaction, attitudes, routines and practices protect patients from adverse events in healthcare. We aimed to investigate patient safety culture in Slovenian out-of-hours health care (OOHC) clinics, and determine the possible factors that might be associated with it. This was a cross-sectional study, which took place in Slovenian OOHC, as part of the international study entitled Patient Safety Culture in European Out-of-Hours Services (SAFE-EUR-OOH). All the OOHC clinics in Slovenia (N=60) were invited to participate, and 37 agreed to do so; 438 employees from these clinics were invited to participate. We used the Slovenian version of the Safety Attitudes Questionnaire - an ambulatory version (SAQAV) to measure the climate of safety. Out of 438 invited participants, 250 answered the questionnaire (57.1% response rate). The mean overall score ± standard deviation of the SAQ was 56.6±16.0 points, of Perceptions of Management 53.6±19.6 points, of Job Satisfaction 48.5±18.3 points, of Safety Climate 59.1±22.1 points, of Teamwork Climate 72.7±16.6, and of Communication 51.5±23.4 points. Employees working in the Ravne na Koroškem region, employees with variable work shifts, and those with full-time jobs scored significantly higher on the SAQ-AV. The safety culture in Slovenian OOHC clinics needs improvement. The variations in the safety culture factor scores in Slovenian OOHC clinics point to the need to eliminate variations and improve working conditions in Slovenian OOHC clinics.
Building a safety culture in global health: lessons from Guatemala.
Rice, Henry E; Lou-Meda, Randall; Saxton, Anthony T; Johnston, Bria E; Ramirez, Carla C; Mendez, Sindy; Rice, Eli N; Aidar, Bernardo; Taicher, Brad; Baumgartner, Joy Noel; Milne, Judy; Frankel, Allan S; Sexton, J Bryan
2018-01-01
Programmes to modify the safety culture have led to lasting improvements in patient safety and quality of care in high-income settings around the world, although their use in low-income and middle-income countries (LMICs) has been limited. This analysis explores (1) how to measure the safety culture using a health culture survey in an LMIC and (2) how to use survey data to develop targeted safety initiatives using a paediatric nephrology unit in Guatemala as a field test case. We used the Safety, Communication, Operational Reliability, and Engagement survey to assess staff views towards 13 health climate and engagement domains. Domains with low scores included personal burnout, local leadership, teamwork and work-life balance. We held a series of debriefings to implement interventions targeted towards areas of need as defined by the survey. Programmes included the use of morning briefings, expansion of staff break resources and use of teamwork tools. Implementation challenges included the need for education of leadership, limited resources and hierarchical work relationships. This report can serve as an operational guide for providers in LMICs for use of a health culture survey to promote a strong safety culture and to guide their quality improvement and safety programmes.
Building a safety culture in global health: lessons from Guatemala
Rice, Henry E; Lou-Meda, Randall; Saxton, Anthony T; Johnston, Bria E; Ramirez, Carla C; Mendez, Sindy; Rice, Eli N; Aidar, Bernardo; Taicher, Brad; Baumgartner, Joy Noel; Milne, Judy; Frankel, Allan S; Sexton, J Bryan
2018-01-01
Programmes to modify the safety culture have led to lasting improvements in patient safety and quality of care in high-income settings around the world, although their use in low-income and middle-income countries (LMICs) has been limited. This analysis explores (1) how to measure the safety culture using a health culture survey in an LMIC and (2) how to use survey data to develop targeted safety initiatives using a paediatric nephrology unit in Guatemala as a field test case. We used the Safety, Communication, Operational Reliability, and Engagement survey to assess staff views towards 13 health climate and engagement domains. Domains with low scores included personal burnout, local leadership, teamwork and work–life balance. We held a series of debriefings to implement interventions targeted towards areas of need as defined by the survey. Programmes included the use of morning briefings, expansion of staff break resources and use of teamwork tools. Implementation challenges included the need for education of leadership, limited resources and hierarchical work relationships. This report can serve as an operational guide for providers in LMICs for use of a health culture survey to promote a strong safety culture and to guide their quality improvement and safety programmes. PMID:29607099
Emotions and leadership. Reasons and impact of emotions in organizational context.
Siebert-Adzic, Meike
2012-01-01
Emotions as reasons for dissatisfaction, decreasing job performance or physical and mental strain at work are becoming more and more important. Especially psycho-social interactions with conflicts between employees and managers, caused by leadership behavior, as a source of negative emotions are relevant in this context. Which relevance emotions can have in order to influence human behavior and in order to influence work climate will be demonstrated by two qualitative field surveys in the automotive and the energy sector. The study in the energy sector will explain which leadership behavior fosters an improved employee behavior concerning occupational health and safety. A second study in the automotive industry shows that leadership behavior which causes positive emotions is essential for successful teamwork.
Feu, Sebastián; Ibáñez, Sergio José; Graça, Amândio; Sampaio, Jaime
2007-11-01
The purpose of this study was to develop a questionnaire to investigate volleyball coaches' orientations toward the coaching process. The study was preceded by four developmental stages in order to improve user understanding, validate the content, and refine the psychometric properties of the instrument. Participants for the reliability and validity study were 334 Spanish volleyball team coaches, 86.5% men and 13.2% women. The following 6 factors emerged from the exploratory factor analysis: team-work orientation, technological orientation, innovative orientation, dialogue orientation, directive orientation, and social climate orientation. Statistical results indicated that the instrument produced reliable and valid scores in all the obtained factors (a> .70), showing that this questionnaire is a useful tool to examine coaches' orientations towards coaching.
Crew resource management in the ICU: the need for culture change.
Haerkens, Marck Htm; Jenkins, Donald H; van der Hoeven, Johannes G
2012-08-22
Intensive care frequently results in unintentional harm to patients and statistics don't seem to improve. The ICU environment is especially unforgiving for mistakes due to the multidisciplinary, time-critical nature of care and vulnerability of the patients. Human factors account for the majority of adverse events and a sound safety climate is therefore essential. This article reviews the existing literature on aviation-derived training called Crew Resource Management (CRM) and discusses its application in critical care medicine. CRM focuses on teamwork, threat and error management and blame free discussion of human mistakes. Though evidence is still scarce, the authors consider CRM to be a promising tool for culture change in the ICU setting, if supported by leadership and well-designed follow-up.
Improving Care Teams' Functioning: Recommendations from Team Science.
Fiscella, Kevin; Mauksch, Larry; Bodenheimer, Thomas; Salas, Eduardo
2017-07-01
Team science has been applied to many sectors including health care. Yet there has been relatively little attention paid to the application of team science to developing and sustaining primary care teams. Application of team science to primary care requires adaptation of core team elements to different types of primary care teams. Six elements of teams are particularly relevant to primary care: practice conditions that support or hinder effective teamwork; team cognition, including shared understanding of team goals, roles, and how members will work together as a team; leadership and coaching, including mutual feedback among members that promotes teamwork and moves the team closer to achieving its goals; cooperation supported by an emotionally safe climate that supports expression and resolution of conflict and builds team trust and cohesion; coordination, including adoption of processes that optimize efficient performance of interdependent activities among team members; and communication, particularly regular, recursive team cycles involving planning, action, and debriefing. These six core elements are adapted to three prototypical primary care teams: teamlets, health coaching, and complex care coordination. Implementation of effective team-based models in primary care requires adaptation of core team science elements coupled with relevant, practical training and organizational support, including adequate time to train, plan, and debrief. Training should be based on assessment of needs and tasks and the use of simulations and feedback, and it should extend to live action. Teamlets represent a potential launch point for team development and diffusion of teamwork principles within primary care practices. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.
Evaluation of the impact of interdisciplinarity in cancer care
2011-01-01
Background Teamwork is a key component of the health care renewal strategy emphasized in Quebec, elsewhere in Canada and in other countries to enhance the quality of oncology services. While this innovation would appear beneficial in theory, empirical evidences of its impact are limited. Current efforts in Quebec to encourage the development of local interdisciplinary teams in all hospitals offer a unique opportunity to assess the anticipated benefits. These teams working in hospital outpatient clinics are responsible for treatment, follow-up and patient support. The study objective is to assess the impact of interdisciplinarity on cancer patients and health professionals. Methods/Design This is a quasi-experimental study with three comparison groups distinguished by intensity of interdisciplinarity: strong, moderate and weak. The study will use a random sample of 12 local teams in Quebec, stratified by intensity of interdisciplinarity. The instrument to measure the intensity of the interdisciplinarity, developed in collaboration with experts, encompasses five dimensions referring to aspects of team structure and process. Self-administered questionnaires will be used to measure the impact of interdisciplinarity on patients (health care utilization, continuity of care and cancer services responsiveness) and on professionals (professional well-being, assessment of teamwork and perception of teamwork climate). Approximately 100 health professionals working on the selected teams and 2000 patients will be recruited. Statistical analyses will include descriptive statistics and comparative analysis of the impact observed according to the strata of interdisciplinarity. Fixed and random multivariate statistical models (multilevel analyses) will also be used. Discussion This study will pinpoint to what extent interdisciplinarity is linked to quality of care and meets the complex and varied needs of cancer patients. It will ascertain to what extent interdisciplinary teamwork facilitated the work of professionals. Such findings are important given the growing prevalence of cancer and the importance of attracting and retaining health professionals to work with cancer patients. PMID:21639897
Burnout in the NICU setting and its relation to safety culture
Profit, Jochen; Sharek, Paul J; Amspoker, Amber B; Kowalkowski, Mark A; Nisbet, Courtney C; Thomas, Eric J; Chadwick, Whitney A; Sexton, J Bryan
2014-01-01
Background Burnout is widespread among healthcare providers and is associated with adverse safety behaviours, operational and clinical outcomes. Little is known with regard to the explanatory links between burnout and these adverse outcomes. Objectives (1) Test the psychometric properties of a brief four-item burnout scale, (2) Provide neonatal intensive care unit (NICU) burnout and resilience benchmarking data across different units and caregiver types, (3) Examine the relationships between caregiver burnout and patient safety culture. Research design Cross-sectional survey study. Subjects Nurses, nurse practitioners, respiratory care providers and physicians in 44 NICUs. Measures Caregiver assessments of burnout and safety culture. Results Of 3294 administered surveys, 2073 were returned for an overall response rate of 62.9%. The percentage of respondents in each NICU reporting burnout ranged from 7.5% to 54.4% (mean=25.9%, SD=10.8). The four-item burnout scale was reliable (α=0.85) and appropriate for aggregation (intra-class correlation coefficient−2=0.95). Burnout varied significantly between NICUs, p<0.0001, but was less prevalent in physicians (mean=15.1%, SD=19.6) compared with non-physicians (mean=26.9%, SD=11.4, p=0.0004). NICUs with more burnout had lower teamwork climate (r=−0.48, p=0.001), safety climate (r=−0.40, p=0.01), job satisfaction (r=−0.64, p<0.0001), perceptions of management (r=−0.50, p=0.0006) and working conditions (r=−0.45, p=0.002). Conclusions NICU caregiver burnout appears to have ‘climate-like’ features, is prevalent, and associated with lower perceptions of patient safety culture. PMID:24742780
Crew resource management in the ICU: the need for culture change
2012-01-01
Intensive care frequently results in unintentional harm to patients and statistics don’t seem to improve. The ICU environment is especially unforgiving for mistakes due to the multidisciplinary, time-critical nature of care and vulnerability of the patients. Human factors account for the majority of adverse events and a sound safety climate is therefore essential. This article reviews the existing literature on aviation-derived training called Crew Resource Management (CRM) and discusses its application in critical care medicine. CRM focuses on teamwork, threat and error management and blame free discussion of human mistakes. Though evidence is still scarce, the authors consider CRM to be a promising tool for culture change in the ICU setting, if supported by leadership and well-designed follow-up. PMID:22913855
Tong, Myriam; Schwendimann, René; Zúñiga, Franziska
2017-01-01
As a category of bullying, mobbing is a form of violence in the workplace that damages the employing organization as well as the targeted employee. In Europe, the overall prevalence of mobbing in healthcare is estimated at 4%. However, few studies have explored mobbing among long-term care workers. This study aims to examine the frequency of mobbing in Swiss nursing homes and its relationships with care workers' (i.e. registered nurse, licensed practical nurse, assistant nurse, nurse aide) health status, job satisfaction, and intention to leave, and to explore the work environment as a contributing factor to mobbing. A cross-sectional, multi-center sub-study of the Swiss Nursing Homes Human Resource Project (SHURP). Nursing homes in Switzerland's three language regions. A total of 162 randomly selected nursing homes with 20 or more beds, including 5311 care workers with various educational levels. Controlling for facility and care worker characteristics, generalized estimation equations were used to assess the relationships between mobbing and care workers' health status, job satisfaction, and intention to leave as well as the association of work environment factors with mobbing. In Swiss nursing homes, 4.6% of surveyed care workers (n=242) reported mobbing experiences in the last 6 months. Compared to untargeted persons, those directly affected by mobbing had higher odds of health complaints (Odds Ratios (OR): 7.81, 95% CI 5.56-10.96) and intention to leave (OR: 5.12, 95% CI 3.81-6.88), and lower odds of high job satisfaction (OR: 0.19, 95% CI 0.14-0.26). Odds of mobbing occurrences increased with declining teamwork and safety climate (OR: 0.41, 95% CI 0.30-0.58), less supportive leadership (OR: 0.42, 95% CI 0.30-0.58), and higher perceived inadequacy of staffing resources (OR: 0.66, 95% CI 0.48-0.92). Mobbing experiences in Swiss nursing homes are relatively rare. Alongside teamwork and safety climate, risk factors are strongly associated with superiors' leadership skills. Targeted training is necessary to sensitize managers to mobbing's indicators, effects and potential influencing factors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hospital nurses' working conditions in relation to motivation and patient safety.
Toode, Kristi; Routasalo, Pirkko; Helminen, Mika; Suominen, Tarja
2015-03-01
There is a lack of empirical knowledge about nurses' perceptions of their workplace characteristics and conditions, such as level of autonomy and decision authority, work climate, teamwork, skill exploitation and learning opportunities, and their work motivation in relation to practice outputs such as patient safety. Such knowledge is needed particularly in countries, such as Estonia, where hospital systems for preventing errors and improving patient safety are in the early stages of development. This article reports the findings from a cross-sectional survey of hospital nurses in Estonia that was aimed at determining their perceptions of workplace characteristics, working conditions, work motivation and patient safety, and at exploring the relationship between these. Results suggest that perceptions of personal control over their work can affect nurses' motivation, and that perceptions of work satisfaction might be relevant to patient safety improvement work.
Safety management in a relationship-oriented culture.
Hsu, Shang Hwa; Lee, Chun-Chia
2012-01-01
A relationship-oriented culture predominates in the Greater China region, where it is more important than in Western countries. Some characteristics of this culture influence strongly the organizational structure and interactions among members in an organization. This study aimed to explore the possible influence of relationships on safety management in relationship-oriented cultures. We hypothesized that organizational factors (management involvement and harmonious relationships) within a relationship-oriented culture would influence supervisory work (ongoing monitoring and task instructions), the reporting system (selective reporting), and teamwork (team communication and co-ordination) in safety management at a group level, which would in turn influence individual reliance complacency, risk awareness, and practices. We distributed a safety climate questionnaire to the employees of Taiwanese high-risk industries. The results of structural equation modeling supported the hypothesis. This article also discusses the findings and implications for safety improvement in countries with a relationship-oriented culture.
2014-07-16
VANDENBERG AIR FORCE BASE, Calif. – It takes teamwork to lift the nozzle for the second stage of a United Launch Alliance Delta II rocket from its work stand in the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II will be used to loft NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
NASA Astrophysics Data System (ADS)
Chapanova, V.
2012-04-01
Lesson "Balance in Nature" This simulation game-lesson (Balance in Nature) gives an opportunity for the students to show creativity, work independently, and to create models and ideas. It creates future-oriented thought connected to their experience, allowing them to propose solutions for global problems and personal responsibility for their activities. The class is divided in two teams. Each team chooses questions. 1. Question: Pollution in the environment. 2. Question: Care for nature and climate. The teams work on the chosen tasks. They make drafts, notes and formulate their solutions on small pieces of paper, explaining the impact on nature and society. They express their points of view using many different opinions. This generates alternative thoughts and results in creative solutions. With the new knowledge and positive behaviour defined, everybody realizes that they can do something positive towards nature and climate problems and the importance of individuals for solving global problems is evident. Our main goal is to recover the ecological balance, and everybody explains his or her own well-grounded opinions. In this work process the students obtain knowledge, skills and more responsible behaviour. This process, based on his or her own experience, dialogue and teamwork, helps the participant's self-development. Making the model "human↔ nature" expresses how human activities impact the natural Earth and how these impacts in turn affect society. Taking personal responsibility, we can reduce global warming and help the Earth. By helping nature we help ourselves. Teacher: Veselina Boycheva-Chapanova " Saint Patriarch Evtimii" Scholl Str. "Ivan Vazov"-19 Plovdiv Bulgaria
Applying importance-performance analysis to patient safety culture.
Lee, Yii-Ching; Wu, Hsin-Hung; Hsieh, Wan-Lin; Weng, Shao-Jen; Hsieh, Liang-Po; Huang, Chih-Hsuan
2015-01-01
The Sexton et al.'s (2006) safety attitudes questionnaire (SAQ) has been widely used to assess staff's attitudes towards patient safety in healthcare organizations. However, to date there have been few studies that discuss the perceptions of patient safety both from hospital staff and upper management. The purpose of this paper is to improve and to develop better strategies regarding patient safety in healthcare organizations. The Chinese version of SAQ based on the Taiwan Joint Commission on Hospital Accreditation is used to evaluate the perceptions of hospital staff. The current study then lies in applying importance-performance analysis technique to identify the major strengths and weaknesses of the safety culture. The results show that teamwork climate, safety climate, job satisfaction, stress recognition and working conditions are major strengths and should be maintained in order to provide a better patient safety culture. On the contrary, perceptions of management and hospital handoffs and transitions are important weaknesses and should be improved immediately. Research limitations/implications - The research is restricted in generalizability. The assessment of hospital staff in patient safety culture is physicians and registered nurses. It would be interesting to further evaluate other staff's (e.g. technicians, pharmacists and others) opinions regarding patient safety culture in the hospital. Few studies have clearly evaluated the perceptions of healthcare organization management regarding patient safety culture. Healthcare managers enable to take more effective actions to improve the level of patient safety by investigating key characteristics (either strengths or weaknesses) that healthcare organizations should focus on.
Following the funding trail: Financing, nurses and teamwork in Australian general practice
2011-01-01
Background Across the globe the emphasis on roles and responsibilities of primary care teams is under scrutiny. This paper begins with a review of general practice financing in Australia, and how nurses are currently funded. We then examine the influence on funding structures on the role of the nurse. We set out three dilemmas for policy-makers in this area: lack of an evidence base for incentives, possible untoward impacts on interdisciplinary functioning, and the substitution/enhancement debate. Methods This three year, multimethod study undertook rapid appraisal of 25 general practices and year-long studies in seven practices where a change was introduced to the role of the nurse. Data collected included interviews with nurses (n = 36), doctors (n = 24), and managers (n = 22), structured observation of the practice nurse (51 hours of observation), and detailed case studies of the change process in the seven year-long studies. Results Despite specific fee-for-service funding being available, only 6% of nurse activities generated such a fee. Yet the influence of the funding was to focus nurse activity on areas that they perceived were peripheral to their roles within the practice. Conclusions Interprofessional relationships and organisational climate in general practices are highly influential in terms of nursing role and the ability of practices to respond to and utilise funding mechanisms. These factors need to be considered, and the development of optimal teamwork supported in the design and implementation of further initiatives that financially support nursing in general practice. PMID:21329506
Cluster analysis of Southeastern U.S. climate stations
NASA Astrophysics Data System (ADS)
Stooksbury, D. E.; Michaels, P. J.
1991-09-01
A two-step cluster analysis of 449 Southeastern climate stations is used to objectively determine general climate clusters (groups of climate stations) for eight southeastern states. The purpose is objectively to define regions of climatic homogeneity that should perform more robustly in subsequent climatic impact models. This type of analysis has been successfully used in many related climate research problems including the determination of corn/climate districts in Iowa (Ortiz-Valdez, 1985) and the classification of synoptic climate types (Davis, 1988). These general climate clusters may be more appropriate for climate research than the standard climate divisions (CD) groupings of climate stations, which are modifications of the agro-economic United States Department of Agriculture crop reporting districts. Unlike the CD's, these objectively determined climate clusters are not restricted by state borders and thus have reduced multicollinearity which makes them more appropriate for the study of the impact of climate and climatic change.
Escher, Cecilia; Creutzfeldt, Johan; Meurling, Lisbet; Hedman, Leif; Kjellin, Ann; Felländer-Tsai, Li
2017-02-10
Patient safety education, as well as the safety climate at clinical rotations, has an impact on students' attitudes. We explored medical students' self-reported motivation to participate in simulation-based teamwork training (SBTT), with the hypothesis that high scores in patient safety attitudes would promote motivation to SBTT and that intrinsic motivation would increase after training. In a prospective cohort study we explored Swedish medical students' attitudes to patient safety, their motivation to participate in SBTT and how motivation was affected by the training. The setting was an integrated SBTT course during the surgical semester that focused on non-technical skills and safe treatment of surgical emergencies. Data was collected using the Situational Motivation Scale (SIMS) and the Attitudes to Patient Safety Questionnaire (APSQ). We found a positive correlation between students' individual patient safety attitudes and self-reported motivation (identified regulation) to participate in SBTT. We also found that intrinsic motivation increased after training. Female students in our study scored higher than males regarding some of the APSQ sub-scores and the entire group scored higher or on par with comparable international samples. In order to enable safe practice and professionalism in healthcare, students' engagement in patient safety education is important. Our finding that students' patient safety attitudes show a positive correlation to motivation and that intrinsic motivation increases after training underpins patient safety climate and integrated teaching of patient safety issues at medical schools in order to help students develop the knowledge, skills and attitudes required for safe practice.
The reasons for Chinese nursing staff to report adverse events: a questionnaire survey.
Hong, Su; Li, QiuJie
2017-04-01
To investigate the impact of nurses' perception of patient safety culture and adverse event reporting, and demographic factors on adverse event reporting in Chinese hospitals. Accurate and timely adverse event reporting is integral in promoting patient safety and professional learning around the incident. In a cross-sectional survey, a sample of 919 nurses completed a structured questionnaire composed of two validated instruments measuring nurses' perception of patient safety culture and adverse event reporting. Associations between the variables were examined using multiple linear regression analysis. The positive response rates of five dimensions of the Patient Safety Culture Assessment Scale varied from 47.55% to 80.62%. The accuracy rate of Adverse Event Reporting Perception Scale was 63.16%. Five hundred and thirty-one (58.03%) nurses did not report adverse event in past 12 months. Six variables were found to be associated with nurses' adverse event reporting: total work experience (P = 0.003), overall patient safety culture score (P < 0.001), safety climate (P < 0.001), teamwork climate (P < 0.001), overall the adverse event reporting perception scale score (P = 0.003) and importance or reporting (P = 0.002). The results confirmed that improvements in the patient safety culture and nurses' perception of adverse event reporting were related to an increase in voluntary adverse event reporting. The knowledge of adverse event reporting should be integrated into the patient safety curriculum. Interventions that target a specific domain are necessary to improve the safety culture. © 2017 John Wiley & Sons Ltd.
[The dimensions of the organisational climate as seen by general practitioners].
Delgado Sánchez, Ana; Bellón Saameño, Juan Angel; Martínez-Cañavate López-Montes, María Teresa; Luna del Castillo, Juan de Dios; López Fernández, Luis Andrés; Lardelli Claret, Pablo
2006-05-31
To create and validate a tool to assess the organizational climate (OC) perceived by general practitioners (GP). Descriptive, cross-sectional, and multi-site, study. Health centres (HC) in Jaén and Málaga province Spain. Random sample of 38 HCs and 387 GPs. A self-administered questionnaire in March 2001, with the personal variables of sex, age, graduation date, specialty, kind of contract, time worked in primary care teams, time in current job, list size, case load, tutor of residents and academic qualification. HC variables: urban/rural, team structure, accreditation for teaching residents, service portfolio, out-patient care, and an OC scale of 40 Likert-like questions. We analysed the content validity of the scale by factorial analysis; and its reliability, by Cronbach's alpha and corrected scale-item correlation coefficients. Reply rate was 89.8%, 71% of the GPs were male, mean age was 44, 76% had tenure, and 37% were specialists in family medicine and 28% tutors, 17% with 3rd-year residents, 9% with doctors; 50% of HCs were rural and the mean team structure had 13 GPs and 4 paediatricians. We obtained 12 factors that explained 60% of variance, and 7 factors with reliability coefficients >0.50. We made an OC-positive scale (alpha=.82) with the dimensions for team-work, cohesion and social life; and another OC-negative scale (alpha=.78) composed of team conflict, perceived team failure, excess autonomy, authoritarian management, and GP-nurse tension. We found a questionnaire with good validity and reliability, which was useful for evaluating the OC perceived by GPs.
Elsous, Aymen; Akbari Sari, Ali; Rashidian, Arash; Aljeesh, Yousef; Radwan, Mahmoud; AbuZaydeh, Hatem
2016-12-01
To measure and establish a baseline assessment of the patient safety culture in the Palestinian hospitals. A cross-sectional descriptive study using the Arabic version of the Safety Attitude Questionnaire (Short Form 2006). A total of 339 nurses and physicians returned the questionnaire out of 370 achieving a response rate of 91.6%. Four public general hospitals in the Gaza Strip, Palestine. Nurses and physicians were randomly selected using a proportionate random sampling. Data analysis performed using Statistical Package for the Social Sciences software version 20, and p value less than 0.05 was statistically significant. Current status of patient safety culture among healthcare providers and percentage of positive attitudes. Male to female ratio was 2.16:1, and mean age was 36.5 ± 9.4 years. The mean score of Arabic Safety Attitude Questionnaire across the six dimensions on 100-point scale ranged between 68.5 for Job Satisfaction and 48.5 for Working Condition. The percentage of respondents holding a positive attitude was 34.5% for Teamwork Climate, 28.4% for Safety Climate, 40.7% for Stress Recognition, 48.8% for Job Satisfaction, 11.3% for Working Conditions and 42.8% for Perception of Management. Healthcare workers holding positive attitudes had better collaboration with co-workers than those without positive attitudes. Findings are useful to formulate a policy on patient safety culture and targeted a specific safety culture dimension to improve the safety of patients and improve the clinical outcomes within healthcare organisations.
The Safety Attitudes Questionnaire as a Tool for Benchmarking Safety Culture in the NICU
Profit, Jochen; Etchegaray, Jason; Petersen, Laura A; Sexton, J Bryan; Hysong, Sylvia J; Mei, Minghua; Thomas, Eric J
2014-01-01
background NICU safety culture, as measured by the Safety Attitudes Questionnaire (SAQ), varies widely. Associations with clinical outcomes in the adult ICU setting make the SAQ an attractive tool for comparing clinical performance between hospitals. Little information is available on the use of the SAQ for this purpose in the NICU setting. objectives To determine whether the dimensions of safety culture measured by the SAQ give consistent results when used as a NICU performance measure. methods Cross-sectional survey of caregivers in twelve NICUs, using the six scales of the SAQ: teamwork climate, safety climate, job satisfaction, stress recognition, perceptions of management, and working conditions. NICUs were ranked by quantifying their contribution to overall risk-adjusted variation across the scales. Spearman Rank Correlation coefficients were used to test for consistency in scale performance. We then examined whether performance in the top four NICUs in one scale predicted top four performance in others. results There were 547 respondents in twelve NICUs. Of fifteen NICU-level correlations in performance ranking, two were greater than 0.7, seven were between 0.4 and 0.69, the six remaining were less than 0.4. We found a trend towards significance in comparing the distribution of performance in the top four NICUs across domains with a binomial distribution p = .051, indicating generally consistent performance across dimensions of safety culture. conclusion A culture of safety permeates many aspects of patient care and organizational functioning. The SAQ may be a useful tool for comparative performance assessments among NICUs. PMID:22337935
Research Experiences for Undergraduates in Estuarine and Atmospheric Processes
NASA Astrophysics Data System (ADS)
Aller, J. Y.
2009-12-01
Our program in the School of Marine and Atmospheric Sciences at Stony Brook University is unique in emphasizing the interdisciplinary study of coastal ocean and atmospheric processes. We attract a large number of both male and female undergraduate applicants representing diverse ethnic groups from across the country. Many are multi-discipline majors merging geology, biology, chemistry, or physics with engineering, and/or mathematics and welcome the opportunity to combine their academic training to examine environmental problems. Our goal is a program reflective of today’s world and environmental challenges, one that provides a ‘hands-on’ research experience which illustrates the usefulness of scientific research for understanding real-world problems or phenomena, and one in which students are challenged to apply their academic backgrounds to develop intuition about natural systems and processes. Projects this past summer focused on assessing climate change and its effects on coastal environments and processes. Projects addressed the implications of a changing global climate over the next 50 years on hydrologic cycles and coastal environments like barrier islands and beaches, on seasonal weather conditions and extreme events, on aerosols and the Earth’s radiative balance, and on aquatic habitats and biota. Collaborative field and laboratory or computer-based projects involving two or three REU students, graduate students, and several mentors, enable undergraduate students appreciate the importance of teamwork in addressing specific scientific questions or gaining maximum insight into a particular phenomenon or process. We believe that our approach allows students to understand what their role will be as scientists in the next phase of our earth’s evolution.
Alpbach Summer School - a unique learning experience
NASA Astrophysics Data System (ADS)
Kern, K.; Aulinas, J.; Clifford, D.; Krejci, D.; Topham, R.
2011-12-01
The Alpbach Summer School is a ten-day program that provides a unique opportunity for young european science and engineering students, both undergraduate and graduate, to learn how to approach the entire design process of a space mission. The theme of the 2010 Summer School was "New Space Missions to Understand Climate Change", a current, challenging, very broad and complex topic. The program was established more than 35 years ago and is organised in two interrelated parts: a series of lectures held by renowned experts in the field (in the case of this specific year, climate change and space engineering experts) that provides a technical and scientific background for the workshops that follow, the core of the Summer School. For the workshops the students are split into four international, interdisciplinary teams of about 15 students. In 2010 every team had to complete a number of tasks, four in total: (1) identify climate change research gaps and design a space mission that has not yet been flown or proposed, (2) define the science objectives and requirements of the mission, (3) design a spacecraft that meets the mission requirements, which includes spacecraft design and construction, payload definition, orbit calculations, but also the satellite launch, operation and mission costs and (4) write up a short mission proposal and present the results to an expert review panel. Achieving these tasks in only a few days in a multicultural, interdisciplinary team represents a major challenge for all participants and provides an excellent practical learning experience. Over the course of the program, students do not just learn facts about climate change and space engineering, but scientists also learn from engineers and engineers from scientists. The participants have to deepen their knowledge in an often unfamiliar field, develop organisational and team-work skills and work under pressure. Moreover, teams are supported by team and roving tutors and get the opportunity to meet and learn from international experts. This presentation will provide an overview of the Alpbach Summer School program from a student's perspective. The different stages of this unique and enriching experience will be covered. Special attention will be paid to the workshops, which, as mentioned above, are the core of the Alpbach Summer School. During these intense workshops, participants work towards the proposed goals resulting in the design proposal of a space mission. The Alpbach Summer School is organised by FFG and co-sponsored by ESA, ISSI and the national space authorities of ESA member and cooperating states.
Incorporation of Socio-scientific Content into Active Learning Activities
NASA Astrophysics Data System (ADS)
King, D. B.; Lewis, J. E.; Anderson, K.; Latch, D.; Sutheimer, S.; Webster, G.; Moog, R.
2014-12-01
Active learning has gained increasing support as an effective pedagogical technique to improve student learning. One way to promote active learning in the classroom is the use of in-class activities in place of lecturing. As part of an NSF-funded project, a set of in-class activities have been created that use climate change topics to teach chemistry content. These activities use the Process Oriented Guided Inquiry Learning (POGIL) methodology. In this pedagogical approach a set of models and a series of critical thinking questions are used to guide students through the introduction to or application of course content. Students complete the activities in their groups, with the faculty member as a facilitator of learning. Through assigned group roles and intentionally designed activity structure, process skills, such as teamwork, communication, and information processing, are developed during completion of the activity. Each of these climate change activities contains a socio-scientific component, e.g., social, ethical and economic data. In one activity, greenhouse gases are used to explain the concept of dipole moment. Data about natural and anthropogenic production rates, global warming potential and atmospheric lifetimes for a list of greenhouse gases are presented. The students are asked to identify which greenhouse gas they would regulate, with a corresponding explanation for their choice. They are also asked to identify the disadvantages of regulating the gas they chose in the previous question. In another activity, where carbon sequestration is used to demonstrate the utility of a phase diagram, students use economic and environmental data to choose the best location for sequestration. Too often discussions about climate change (both in and outside the classroom) consist of purely emotional responses. These activities force students to use data to support their arguments and hypothesize about what other data could be used in the corresponding discussion to support their position. In this presentation, we will present examples of the socio-scientific components of several activities, and discuss the challenges associated with incorporating socio-scientific components into content-based class activities.
Our Changing Climate: A Brand New Way to Study Climate Science
NASA Astrophysics Data System (ADS)
Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.
2014-12-01
Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy websites to spur further interest. Faculty support materials are also provided. AMS Climate Studies has been licensed by 130 institutions since Fall 2010. Our Changing Climate reveals the impact that each of us has on the climate. With this understanding come choices and actions for a more sustainable future.
Goldstein, Carly M; Minges, Karl E; Schoffman, Danielle E; Cases, Mallory G
2017-02-01
Behavioral medicine training is due for an overhaul given the rapid evolution of the field, including a tight funding climate, changing job prospects, and new research and industry collaborations. The purpose of the present study was to collect responses from trainee and practicing members of a multidisciplinary professional society about their perceptions of behavioral medicine training and their suggestions for changes to training for future behavioral medicine scientists and practitioners. A total of 162 faculty and 110 students (total n = 272) completed a web-based survey on strengths of their current training programs and ideas for changes. Using a mixed-methods approach, the survey findings are used to highlight seven key areas for improved preparation of the next generation of behavioral medicine scientists and practitioners, which are grant writing, interdisciplinary teamwork, advanced statistics and methods, evolving research program, publishable products from coursework, evolution and use of theory, and non-traditional career paths.
Climate change velocity underestimates climate change exposure in mountainous regions
Dobrowski, Solomon Z.; Parks, Sean A.
2016-01-01
Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545
The culture of patient safety in an Iranian intensive care unit.
Abdi, Zhaleh; Delgoshaei, Bahram; Ravaghi, Hamid; Abbasi, Mohsen; Heyrani, Ali
2015-04-01
To explore nurses' and physicians' attitudes and perceptions relevant to safety culture and to elicit strategies to promote safety culture in an intensive care unit. A strong safety culture is essential to ensure patient safety in the intensive care unit. This case study adopted a mixed method design. The Safety Attitude Questionnaire (SAQ-ICU version), assessing the safety climate through six domains, was completed by nurses and physicians (n = 42) in an academic intensive care unit. Twenty semi-structured interviews and document analyses were conducted as well. Interviews were analysed using a framework analysis method. Mean scores across the six domains ranged from 52.3 to 72.4 on a 100-point scale. Further analysis indicated that there were statistically significant differences between physicians' and nurses' attitudes toward teamwork (mean scores: 64.5/100 vs. 52.6/100, d = 1.15, t = 3.69, P < 0.001) and job satisfaction (mean scores: 78.2/100 vs. 57.7/100, d = 1.5, t = 4.8, P < 0.001). Interviews revealed several safety challenges including underreporting, failure to learn from errors, lack of speaking up, low job satisfaction among nurses and ineffective nurse-physician communication. The results indicate that all the domains need improvements. However, further attention should be devoted to error reporting and analysis, communication and teamwork among professional groups, and nurses' job satisfaction. Nurse managers can contribute to promoting a safety culture by encouraging staff to report errors, fostering learning from errors and addressing inter-professional communication problems. © 2013 John Wiley & Sons Ltd.
Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos
2017-12-01
Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.
2015-12-01
As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.
[Constructing climate. From classical climatology to modern climate research].
Heymann, Matthias
2009-01-01
Both climate researchers and historians of climate science have conceived climate as a stable and well defined category. This article argues that such a conception is flawed. In the course of the 19th and 20th century the very concept of climate changed considerably. Scientists came up with different definitions and concepts of climate, which implied different understandings, interests, and research approaches. Understanding climate shifted from a timeless, spatial concept at the end of the 19th century to a spaceless, temporal concept at the end of the 20th. Climatologists in the 19th and early 20th centuries considered climate as a set of atmospheric characteristics associated with specific places or regions. In this context, while the weather was subject to change, climate remained largely stable. Of particular interest was the impact of climate on human beings and the environment. In modern climate research at the close of the 20th century, the concept of climate lost its temporal stability. Instead, climate change has become a core feature of the understanding of climate and a focus of research interests. Climate has also lost its immediate association with specific geographical places and become global. The interest is now focused on the impact of human beings on climate. The paper attempts to investigate these conceptual shifts and their origins and impacts in order to provide a more comprehensive perspective on the history of climate research.
OpenClimateGIS - A Web Service Providing Climate Model Data in Commonly Used Geospatial Formats
NASA Astrophysics Data System (ADS)
Erickson, T. A.; Koziol, B. W.; Rood, R. B.
2011-12-01
The goal of the OpenClimateGIS project is to make climate model datasets readily available in commonly used, modern geospatial formats used by GIS software, browser-based mapping tools, and virtual globes.The climate modeling community typically stores climate data in multidimensional gridded formats capable of efficiently storing large volumes of data (such as netCDF, grib) while the geospatial community typically uses flexible vector and raster formats that are capable of storing small volumes of data (relative to the multidimensional gridded formats). OpenClimateGIS seeks to address this difference in data formats by clipping climate data to user-specified vector geometries (i.e. areas of interest) and translating the gridded data on-the-fly into multiple vector formats. The OpenClimateGIS system does not store climate data archives locally, but rather works in conjunction with external climate archives that expose climate data via the OPeNDAP protocol. OpenClimateGIS provides a RESTful API web service for accessing climate data resources via HTTP, allowing a wide range of applications to access the climate data.The OpenClimateGIS system has been developed using open source development practices and the source code is publicly available. The project integrates libraries from several other open source projects (including Django, PostGIS, numpy, Shapely, and netcdf4-python).OpenClimateGIS development is supported by a grant from NOAA's Climate Program Office.
On climate prediction: how much can we expect from climate memory?
NASA Astrophysics Data System (ADS)
Yuan, Naiming; Huang, Yan; Duan, Jianping; Zhu, Congwen; Xoplaki, Elena; Luterbacher, Jürg
2018-03-01
Slowing variability in climate system is an important source of climate predictability. However, it is still challenging for current dynamical models to fully capture the variability as well as its impacts on future climate. In this study, instead of simulating the internal multi-scale oscillations in dynamical models, we discussed the effects of internal variability in terms of climate memory. By decomposing climate state x(t) at a certain time point t into memory part M(t) and non-memory part ɛ (t) , climate memory effects from the past 30 years on climate prediction are quantified. For variables with strong climate memory, high variance (over 20% ) in x(t) is explained by the memory part M(t), and the effects of climate memory are non-negligible for most climate variables, but the precipitation. Regarding of multi-steps climate prediction, a power law decay of the explained variance was found, indicating long-lasting climate memory effects. The explained variances by climate memory can remain to be higher than 10% for more than 10 time steps. Accordingly, past climate conditions can affect both short (monthly) and long-term (interannual, decadal, or even multidecadal) climate predictions. With the memory part M(t) precisely calculated from Fractional Integral Statistical Model, one only needs to focus on the non-memory part ɛ (t) , which is an important quantity that determines climate predictive skills.
2014-04-01
Kennedy, “2012 State of the Climate : Arctiv Sea Ice” NOAA Climate.gov, 30 July 2013, http://www.climate.gov/news-features/understanding-climate/2012...Kennedy, Caitlin, “2012 State of the Climate : Arctiv Sea Ice” NOAA Climate.gov, 30 July 2013, http://www.climate.gov/news-features/understanding
Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.
Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R
2017-10-01
Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Targeting climate diversity in conservation planning to build resilience to climate change
Heller, Nicole E.; Kreitler, Jason R.; Ackerly, David; Weiss, Stuart; Recinos, Amanda; Branciforte, Ryan; Flint, Lorraine E.; Flint, Alan L.; Micheli, Elisabeth
2015-01-01
Climate change is raising challenging concerns for systematic conservation planning. Are methods based on the current spatial patterns of biodiversity effective given long-term climate change? Some conservation scientists argue that planning should focus on protecting the abiotic diversity in the landscape, which drives patterns of biological diversity, rather than focusing on the distribution of focal species, which shift in response to climate change. Climate is one important abiotic driver of biodiversity patterns, as different climates host different biological communities and genetic pools. We propose conservation networks that capture the full range of climatic diversity in a region will improve the resilience of biotic communities to climate change compared to networks that do not. In this study we used historical and future hydro-climate projections from the high resolution Basin Characterization Model to explore the utility of directly targeting climatic diversity in planning. Using the spatial planning tool, Marxan, we designed conservation networks to capture the diversity of climate types, at the regional and sub-regional scale, and compared them to networks we designed to capture the diversity of vegetation types. By focusing on the Conservation Lands Network (CLN) of the San Francisco Bay Area as a real-world case study, we compared the potential resilience of networks by examining two factors: the range of climate space captured, and climatic stability to 18 future climates, reflecting different emission scenarios and global climate models. We found that the climate-based network planned at the sub-regional scale captured a greater range of climate space and showed higher climatic stability than the vegetation and regional based-networks. At the same time, differences among network scenarios are small relative to the variance in climate stability across global climate models. Across different projected futures, topographically heterogeneous areas consistently show greater climate stability than homogenous areas. The analysis suggests that utilizing high-resolution climate and hydrological data in conservation planning improves the likely resilience of biodiversity to climate change. We used these analyses to suggest new conservation priorities for the San Francisco Bay Area.
Teaching Climate Social Science and Its Practices: A Two-Pronged Approach to Climate Literacy
NASA Astrophysics Data System (ADS)
Shwom, R.; Isenhour, C.; McCright, A.; Robinson, J.; Jordan, R.
2014-12-01
The Essential Principles of Climate Science Literacy states that a climate-literate individual can: "understand the essential principles of Earth's climate system, assess scientifically credible information about climate change, communicate about climate and climate change in a meaningful way, and make informed and responsible decisions with regard to actions that may affect climate." We argue that further integration of the social science dimensions of climate change will advance the climate literacy goals of communication and responsible actions. The underlying rationale for this argues: 1) teaching the habits of mind and scientific practices that have synergies across the social and natural sciences can strengthen students ability to understand and assess science in general and that 2) understanding the empirical research on the social, political, and economic processes (including climate science itself) that are part of the climate system is an important step for enabling effective action and communication. For example, while climate literacy has often identified the public's faulty mental models of climate processes as a partial explanation of complacency, emerging research suggests that the public's mental models of the social world are equally or more important in leading to informed and responsible climate decisions. Building student's ability to think across the social and natural sciences by understanding "how we know what we know" through the sciences and a scientific understanding of the social world allows us to achieve climate literacy goals more systematically and completely. To enable this integration we first identify the robust social science insights for the climate science literacy principles that involve social systems. We then briefly identify significant social science contributions to climate science literacy that do not clearly fit within the seven climate literacy principles but arguably could advance climate literacy goals. We conclude with suggestions on how the identified social science insights could be integrated into climate literacy efforts.
Waterborne Diseases & Illnesses
... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ...
NASA Astrophysics Data System (ADS)
Goldman, G. T.; Carlson, C.
2014-12-01
To enact effective policies to address climate change, decision makers need both scientific and political support. One major barrier to U.S. climate policy enactment has been the opposition of private sector actors to proposed policies and to climate science itself. Increasingly, the public and investors are holding companies accountable for their actions around climate change—including political activies, affiliations with trade groups, and involvement with climate science. However, this accountability is inhibited by the prominent role that trade associations have played in climate policy debates in recent years. The opaque nature of such groups is problematic, as it inhibits the public from understanding who is obstructing progress on addressing climate change, and in some cases, impedes the public's climate literacy. Voluntary climate reporting can yield some information on companies' climate engagement and demonstrates the need for greater transparency in corporate political activities around climate change. We analyze CDP climate reporting data from 1,824 companies to assess the degree to which corporate actors disclosed their political influence on climate policies through their trade associations. Results demonstrate the limitations of voluntary reporting and the extent to which companies utilize their trade associations to influence climate change policy debates without being held accountable for these positions. Notably, many companies failed to acknowledge their board seat on trade groups with significant climate policy engagement. Of those that did acknowledge their board membership, some claimed not to agree with their trade associations' positions on climate change. These results raise questions about who trade groups are representing when they challenge the science or obstruct policies to address climate change. Recommendations for overcoming this barrier to informed decision making to address climate change will be discussed.
Arsenic (Environmental Health Student Portal)
... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ...
Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning
NASA Technical Reports Server (NTRS)
Monteleoni, Claire; Schmidt, Gavin A.; McQuade, Scott
2014-01-01
The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges.
NASA Astrophysics Data System (ADS)
Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois
2016-08-01
Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.
Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois
2016-08-01
Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.
del Corral, John; Blumenthal, M Benno; Mantilla, Gilma; Ceccato, Pietro; Connor, Stephen J; Thomson, Madeleine C
2012-09-01
Public health professionals are increasingly concerned about the potential impact of climate variability and change on health outcomes. Protecting public health from the vagaries of climate requires new working relationships between the public health sector and the providers of climate data and information. The Climate Information for Public Health Action initiative at the International Research Institute for Climate and Society (IRI) is designed to increase the public health community's capacity to understand, use and demand appropriate climate data and climate information to mitigate the public health impacts of the climate. Significant challenges to building the capacity of health professionals to use climate information in research and decision-making include the difficulties experienced by many in accessing relevant and timely quality controlled data and information in formats that can be readily incorporated into specific analysis with other data sources. We present here the capacities of the IRI climate data library and show how we have used it to build an integrated knowledge system in the support of the use of climate and environmental information in climate-sensitive decision-making with respect to health. Initiated as an aid facilitating exploratory data analysis for climate scientists, the IRI climate data library has emerged as a powerful tool for interdisciplinary researchers focused on topics related to climate impacts on society, including health.
John T. Abatzoglou; Solomon Z. Dobrowski; Sean A. Parks; Katherine C. Hegewisch
2018-01-01
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958â2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from...
Solar Variability in the Context of Other Climate Forcing Mechanisms
NASA Technical Reports Server (NTRS)
Hansen, James E.
1999-01-01
I compare and contrast climate forcings due to solar variability with climate forcings due to other mechanisms of climate change, interpretation of the role of the sun in climate change depends upon climate sensitivity and upon the net forcing by other climate change mechanisms. Among the potential indirect climate forcings due to solar variability, only that due to solar cycle induced ozone changes has been well quantified. There is evidence that the sun has been a significant player in past climate change on decadal to century time scales, and that it has the potential to contribute to climate change in the 21st century.
NASA Astrophysics Data System (ADS)
Torresan, S.; Gallina, V.; Giannini, V.; Rizzi, J.; Zabeo, A.; Critto, A.; Marcomini, A.
2012-04-01
At the international level climate services are recognized as innovative tools aimed at providing and distributing climate data and information according to the needs of end-users. Furthermore, needs-based climate services are extremely effective to manage climate risks and take advantage of the opportunities associated with climate change impacts. To date, climate services are mainly related to climate models that supply climate data (e.g. temperature, precipitations) at different spatial and time scales. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. DESYCO is a GIS-Decision Support System aimed at the integrated assessment of multiple climate change impacts on vulnerable coastal systems (e.g. beaches, river deltas, estuaries and lagoons, wetlands, agricultural and urban areas). It is an open source software that manages different input data (e.g. raster or shapefiles) coming from climate models (e.g. global and regional climate projections) and high resolution impact models (e.g. hydrodynamic, hydrological and biogeochemical simulations) in order to provide hazard, exposure, susceptibility, risk and damage maps for the identification and prioritization of hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies. Within the CLIM-RUN project (FP7) DESYCO is proposed as an helpful tool to bridge the gap between climate data and stakeholder needs and will be applied to the coastal area of the North Adriatic Sea (Italy) in order to provide climate services for local authorities involved in coastal zone management. Accordingly, a first workshop was held in Venice (Italy) with coastal authorities, climate experts and climate change risk experts, in order to start an iterative exchange of information about the knowledge related to climate change, climate models and projections, impact and risk parameters and to know what are stakeholder needs related to climate change in a climate service perspective. The preliminary results gained from the workshop showed that DESYCO is an helpful tool for the impact and risk assessment related to climate change that could be improved in order to fulfill stakeholder needs.
Climate Neutral Research Campuses | NREL
the background. Set an example for climate neutrality. Use NREL's climate action planning process and more. Climate Action Planning Process Identify the best technology options for a climate action plan . Climate Action Planning Tool Identify the best technology options for a climate action plan. Technology
Climate change velocity underestimates climate change exposure in mountainous regions
Solomon Z. Dobrowski; Sean A. Parks
2016-01-01
Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...
The climate change consensus extends beyond climate scientists
NASA Astrophysics Data System (ADS)
Carlton, J. S.; Perry-Hill, Rebecca; Huber, Matthew; Prokopy, Linda S.
2015-09-01
The existence of anthropogenic climate change remains a public controversy despite the consensus among climate scientists. The controversy may be fed by the existence of scientists from other disciplines publicly casting doubt on the validity of climate science. The extent to which non-climate scientists are skeptical of climate science has not been studied via direct survey. Here we report on a survey of biophysical scientists across disciplines at universities in the Big 10 Conference. Most respondents (93.6%) believe that mean temperatures have risen and most (91.9%) believe in an anthropogenic contribution to rising temperatures. Respondents strongly believe that climate science is credible (mean credibility score 6.67/7). Those who disagree about climate change disagree over basic facts (e.g., the effects of CO2 on climate) and have different cultural and political values. These results suggest that scientists who are climate change skeptics are outliers and that the majority of scientists surveyed believe in anthropogenic climate change and that climate science is credible and mature.
Spatial relationship between climatic diversity and biodiversity conservation value.
Wang, Junjun; Wu, Ruidong; He, Daming; Yang, Feiling; Hu, Peijun; Lin, Shiwei; Wu, Wei; Diao, Yixin; Guo, Yang
2018-06-04
Capturing the full range of climatic diversity in a reserve network is expected to improve the resilience of biodiversity to climate change. Therefore, a study on systematic conservation planning for climatic diversity that explicitly or implicitly hypothesizes that regions with higher climatic diversity will support greater biodiversity is needed. However, little is known about the extent and generality of this hypothesis. This study utilized the case of Yunnan, southwest China, to quantitatively classify climatic units and modeled 4 climatic diversity indicators, including the variety of climatic units (VCU), rarity of climatic units (RCU), endemism of climatic units (ECU) and a composite index of climatic units (CICD). We used 5 reliable priority conservation area (PCA) schemes to represent the areas with high biodiversity conservation value. We then investigated the spatial relationships between the 4 climatic diversity indicators and the 5 PCA schemes and assessed the representation of climatic diversity within the existing nature reserves. The CICD exhibited the best performance for indicating high conservation value areas, followed by the ECU and RCU. However, contrary to conventional knowledge, VCU did not show a positive association with biodiversity conservation value. The rarer or more endemic climatic units tended to have higher reserve coverage than the more common units. However, only 28 units covering 10.5% of the land in Yunnan had more than 17% of their areas protected. In addition to climatic factors, topography and human disturbances also significantly affected the relationship between climatic diversity and biodiversity conservation value. This analysis suggests that climatic diversity can be an effective surrogate for establishing a more robust reserve network under climate change in Yunnan. Our study improves the understanding of the relationship between climatic diversity and biodiversity and helps build an evidence-based foundation for systematic conservation planning that targets climatic diversity in response to climate change. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
About Climate Neutral Research Campuses | Climate Neutral Research Campuses
| NREL About Climate Neutral Research Campuses About Climate Neutral Research Campuses Research an example of climate neutrality. To better understand the concept of climate neutral research
Overview of the Implementation of the Climate Data Initiative
NASA Astrophysics Data System (ADS)
Tilmes, C.; Goodman, H. M.; Privette, A. P.
2014-12-01
One of the efforts described in the President's Climate Action Plan is the Climate Data Initiative, a broad effort to leverage the federal government's extensive, freely-available climate-relevant data resources data to spur innovation and private-sector entrepreneurship in order to advance awareness of and preparedness for the impacts of climate change. The Climate Data Initiative, launched in March 2014, leverages commitments from government and the private sector to unleash data and make it accessible in ways that can be used by communities and companies to prepare for climate change. It builds on the White House's other Open Data Initiatives—in areas such as health, education, and safety. The Climate Data Initiative unleashes federal data relevant to addressing climate-related risks and vulnerabilities through the Climate.Data.gov web site. This talk will describe the Climate Data Initiative and its support and interactions with the Climate Resilience Toolkit.
Wieland, Mark L; Halvorsen, Andrew J; Chaudhry, Rajeev; Reed, Darcy A; McDonald, Furman S; Thomas, Kris G
2013-08-01
There have been recent calls for improved internal medicine outpatient training, yet assessment of clinical and educational variables within existing models is lacking. To assess the impact of clinic redesign from a traditional weekly clinic model to a 50/50 outpatient-inpatient model on clinical and educational outcomes. Pre-intervention and post-intervention study intervals, comparing the 2009-2010 and 2010-2011 academic years. Ninety-six residents in a Primary Care Internal Medicine site of a large academic internal medicine residency program who provide care for > 13,000 patients. Continuity clinic redesign from a traditional weekly clinic model to a 50/50 model characterized by 50 % outpatient and 50 % inpatient experiences scheduled in alternating 1 month blocks, with twice weekly continuity clinic during outpatient months and no clinic during inpatient months. 1) Clinical outcomes (panel size, patient visits, adherence with chronic disease and preventive service guidelines, continuity of care, patient satisfaction, and perceived safety/teamwork in clinic); 2) Educational outcomes (attendance at teaching conference, resident and faculty satisfaction, faculty assessment of resident clinic performance, and residents' perceived preparedness for outpatient management). Redesign was associated with increased mean panel size (120 vs. 137.6; p ≤ 0.001), decreased continuity of care (63 % vs. 48 % from provider perspective; 61 % vs. 51 % from patient perspective; p ≤ 0.001 for both; team continuity was preserved), decreased missed appointments (12.5 % vs. 10.9 %; p ≤ 0.01), improved perceived safety and teamwork (3.6 vs. 4.1 on 5-point scale; p ≤ 0.001), improved mean teaching conference attendance (57.1 vs. 64.4; p ≤ 0.001), improved resident clinic performance (3.6 vs. 3.9 on 5-point scale; p ≤ 0.001), and little change in other outcomes. Although this model requires further study in other settings, these results suggest that a 50/50 model may allow residents to manage more patients while enhancing the climate of teamwork and safety in the continuity clinic, compared to traditional models. Future work should explore ways to preserve continuity of care within this model.
Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique
2016-01-01
An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274
Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique
2016-01-01
An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.
Interactions of Mean Climate Change and Climate Variability on Food Security Extremes
NASA Technical Reports Server (NTRS)
Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.
2015-01-01
Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.
NASA Astrophysics Data System (ADS)
Loibl, Wolfgang; Peters-Anders, Jan; Züger, Johann
2010-05-01
To achieve public awareness and thorough understanding about expected climate changes and their future implications, ways have to be found to communicate model outputs to the public in a scientifically sound and easily understandable way. The newly developed Climate Twins tool tries to fulfil these requirements via an intuitively usable web application, which compares spatial patterns of current climate with future climate patterns, derived from regional climate model results. To get a picture of the implications of future climate in an area of interest, users may click on a certain location within an interactive map with underlying future climate information. A second map depicts the matching Climate Twin areas according to current climate conditions. In this way scientific output can be communicated to the public which allows for experiencing climate change through comparison with well-known real world conditions. To identify climatic coincidence seems to be a simple exercise, but the accuracy and applicability of the similarity identification depends very much on the selection of climate indicators, similarity conditions and uncertainty ranges. Too many indicators representing various climate characteristics and too narrow uncertainty ranges will judge little or no area as regions with similar climate, while too little indicators and too wide uncertainty ranges will address too large regions as those with similar climate which may not be correct. Similarity cannot be just explored by comparing mean values or by calculating correlation coefficients. As climate change triggers an alteration of various indicators, like maxima, minima, variation magnitude, frequency of extreme events etc., the identification of appropriate similarity conditions is a crucial question to be solved. For Climate Twins identification, it is necessary to find a right balance of indicators, similarity conditions and uncertainty ranges, unless the results will be too vague conducting a useful Climate Twins regions search. The Climate Twins tool works actually comparing future climate conditions of a certain source area in the Greater Alpine Region with current climate conditions of entire Europe and the neighbouring southern as well south-eastern areas as target regions. A next version will integrate web crawling features for searching information about climate-related local adaptations observed today in the target region which may turn out as appropriate solution for the source region under future climate conditions. The contribution will present the current tool functionally and will discuss which indicator sets, similarity conditions and uncertainty ranges work best to deliver scientifically sound climate comparisons and distinct mapping results.
Successful Massive Open Online Climate Course on Climate Science and Psychology
NASA Astrophysics Data System (ADS)
Nuccitelli, D. A.; Cook, J.
2015-12-01
In 2015, the University of Queensland and edX launched a Massive Open Online Course (MOOC), 'Making Sense of Climate Science Denial.' The MOOC debunked approximately 50 common climate myths using elements of both physical science and psychology. Students learned how to recognise the social and psychological drivers of climate science denial, how to better understand climate change, how to identify the techniques and fallacies that climate myths employ to distort climate science, and how to effectively debunk climate misinformation. Contributors to the website Skeptical Science delivered the lectures, which were reinforced via interviews with climate science and psychology experts. Over 15,000 students from 167 countries enrolled in the course, and student feedback was overwhelmingly positive. This MOOC provides a model for effective climate science education.
Climate and dengue transmission: evidence and implications.
Morin, Cory W; Comrie, Andrew C; Ernst, Kacey
2013-01-01
Climate influences dengue ecology by affecting vector dynamics, agent development, and mosquito/human interactions. Although these relationships are known, the impact climate change will have on transmission is unclear. Climate-driven statistical and process-based models are being used to refine our knowledge of these relationships and predict the effects of projected climate change on dengue fever occurrence, but results have been inconsistent. We sought to identify major climatic influences on dengue virus ecology and to evaluate the ability of climate-based dengue models to describe associations between climate and dengue, simulate outbreaks, and project the impacts of climate change. We reviewed the evidence for direct and indirect relationships between climate and dengue generated from laboratory studies, field studies, and statistical analyses of associations between vectors, dengue fever incidence, and climate conditions. We assessed the potential contribution of climate-driven, process-based dengue models and provide suggestions to improve their performance. Relationships between climate variables and factors that influence dengue transmission are complex. A climate variable may increase dengue transmission potential through one aspect of the system while simultaneously decreasing transmission potential through another. This complexity may at least partly explain inconsistencies in statistical associations between dengue and climate. Process-based models can account for the complex dynamics but often omit important aspects of dengue ecology, notably virus development and host-species interactions. Synthesizing and applying current knowledge of climatic effects on all aspects of dengue virus ecology will help direct future research and enable better projections of climate change effects on dengue incidence.
Evaluation of Historical and Projected Agricultural Climate Risk Over the Continental US
NASA Astrophysics Data System (ADS)
Zhu, X.; Troy, T. J.; Devineni, N.
2016-12-01
Food demands are rising due to an increasing population with changing food preferences, which places pressure on agricultural systems. In addition, in the past decade climate extremes have highlighted the vulnerability of our agricultural production to climate variability. Quantitative analyses in the climate-agriculture research field have been performed in many studies. However, climate risk still remains difficult to evaluate at large scales yet shows great potential of help us better understand historical climate change impacts and evaluate the future risk given climate projections. In this study, we developed a framework to evaluate climate risk quantitatively by applying statistical methods such as Bayesian regression, distribution fitting, and Monte Carlo simulation. We applied the framework over different climate regions in the continental US both historically and for modeled climate projections. The relative importance of any major growing season climate index, such as maximum dry period or heavy precipitation, was evaluated to determine what climate indices play a role in affecting crop yields. The statistical modeling framework was applied using county yields, with irrigated and rainfed yields separated to evaluate the different risk. This framework provides estimates of the climate risk facing agricultural production in the near-term that account for the full uncertainty of climate occurrences, range of crop response, and spatial correlation in climate. In particular, the method provides robust estimates of importance of irrigation in mitigating agricultural climate risk. The results of this study can contribute to decision making about crop choice and water use in an uncertain climate.
Public Perception of Uncertainties Within Climate Change Science.
Visschers, Vivianne H M
2018-01-01
Climate change is a complex, multifaceted problem involving various interacting systems and actors. Therefore, the intensities, locations, and timeframes of the consequences of climate change are hard to predict and cause uncertainties. Relatively little is known about how the public perceives this scientific uncertainty and how this relates to their concern about climate change. In this article, an online survey among 306 Swiss people is reported that investigated whether people differentiate between different types of uncertainty in climate change research. Also examined was the way in which the perception of uncertainty is related to people's concern about climate change, their trust in science, their knowledge about climate change, and their political attitude. The results of a principal component analysis showed that respondents differentiated between perceived ambiguity in climate research, measurement uncertainty, and uncertainty about the future impact of climate change. Using structural equation modeling, it was found that only perceived ambiguity was directly related to concern about climate change, whereas measurement uncertainty and future uncertainty were not. Trust in climate science was strongly associated with each type of uncertainty perception and was indirectly associated with concern about climate change. Also, more knowledge about climate change was related to less strong perceptions of each type of climate science uncertainty. Hence, it is suggested that to increase public concern about climate change, it may be especially important to consider the perceived ambiguity about climate research. Efforts that foster trust in climate science also appear highly worthwhile. © 2017 Society for Risk Analysis.
Amy K. Snover,; Nathan J. Mantua,; Littell, Jeremy; Michael A. Alexander,; Michelle M. McClure,; Janet Nye,
2013-01-01
Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.
Assessment of Human Health Vulnerability to Climate Variability and Change in Cuba
Bultó, Paulo Lázaro Ortíz; Rodríguez, Antonio Pérez; Valencia, Alina Rivero; Vega, Nicolás León; Gonzalez, Manuel Díaz; Carrera, Alina Pérez
2006-01-01
In this study we assessed the potential effects of climate variability and change on population health in Cuba. We describe the climate of Cuba as well as the patterns of climate-sensitive diseases of primary concern, particularly dengue fever. Analyses of the associations between climatic anomalies and disease patterns highlight current vulnerability to climate variability. We describe current adaptations, including the application of climate predictions to prevent disease outbreaks. Finally, we present the potential economic costs associated with future impacts due to climate change. The tools used in this study can be useful in the development of appropriate and effective adaptation options to address the increased climate variability associated with climate change. PMID:17185289
Wallace, J Craig; Popp, Eric; Mondore, Scott
2006-05-01
Building on recent work in occupational safety and climate, the authors examined 2 organizational foundation climates thought to be antecedents of specific safety climate and the relationships among these climates and occupational accidents. It is believed that both foundation climates (i.e., management-employee relations and organizational support) will predict safety climate, which will in turn mediate the relationship between occupational accidents and these 2 distal foundation climates. Using a sample of 9,429 transportation workers in 253 work groups, the authors tested the proposed relationships at the group level. Results supported all hypotheses. Overall it appears that different climates have direct and indirect effects on occupational accidents.
Climate change: Conflict of observational science, theory, and politics
Gerhard, L.C.
2004-01-01
Debate over whether human activity causes Earth climate change obscures the immensity of the dynamic systems that create and maintain climate on the planet. Anthropocentric debate leads people to believe that they can alter these planetary dynamic systems to prevent that they perceive as negative climate impacts on human civilization. Although politicians offer simplistic remedies, such as the Kyoto Protocol, global climate continues to change naturally. Better planning for the inevitable dislocations that have followed natural global climate changes throughout human history requires us to accept the fact that climate will change, and that human society must adapt to the changes. Over the last decade, the scientific literature reported a shift in emphasis from attempting to build theoretical models of putative human impacts on climate to understanding the planetwide dynamic processes that are the natural climate drivers. The current scientific literature is beginning to report the history of past climate change, the extent of natural climate variability, natural system drivers, and the episodicity of many climate changes. The scientific arguments have broadened from focus upon human effects on climate to include the array of natural phenomena that have driven global climate change for eons. However, significant political issues with long-term social consequences continue their advance. This paper summarizes recent scientific progress in climate science and arguments about human influence on climate. ?? 2004. The American Association of Petroleum Geologists. All rights reserved.
Williams, Nathaniel J; Ehrhart, Mark G; Aarons, Gregory A; Marcus, Steven C; Beidas, Rinad S
2018-06-25
Behavioral health organizations are characterized by multiple organizational climates, including molar climate, which encompasses clinicians' shared perceptions of how the work environment impacts their personal well-being, and strategic implementation climate, which includes clinicians' shared perceptions of the extent to which evidence-based practice implementation is expected, supported, and rewarded by the organization. Theory suggests these climates have joint, cross-level effects on clinicians' implementation of evidence-based practice and that these effects may be long term (i.e., up to 2 years); however, no empirical studies have tested these relationships. We hypothesize that molar climate moderates implementation climate's concurrent and long-term relationships with clinicians' use of evidence-based practice such that strategic implementation climate will have its most positive effects when it is accompanied by a positive molar climate. Hypotheses were tested using data collected from 235 clinicians in 20 behavioral health organizations. At baseline, clinicians reported on molar climate and implementation climate. At baseline and at a 2-year follow-up, all clinicians who were present in the organizations reported on their use of cognitive-behavioral psychotherapy techniques, an evidence-based practice for youth psychiatric disorders. Two-level mixed-effects regression models tested whether baseline molar climate and implementation climate interacted in predicting clinicians' evidence-based practice use at baseline and at 2-year follow-up. In organizations with more positive molar climates at baseline, higher levels of implementation climate predicted increased evidence-based practice use among clinicians who were present at baseline and among clinicians who were present in the organizations at 2-year follow-up; however, in organizations with less positive molar climates, implementation climate was not related to clinicians' use of evidence-based practice at either time point. Optimizing clinicians' implementation of evidence-based practice in behavioral health requires attention to both molar climate and strategic implementation climate. Strategies that focus exclusively on implementation climate may not be effective levers for behavior change if the organization does not also engender a positive molar climate. These findings have implications for the development of implementation theory and effective implementation strategies.
Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change.
Carroll, Carlos; Lawler, Joshua J; Roberts, David R; Hamann, Andreas
2015-01-01
Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic conditions. However, "analog-based" velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961-2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site's future climate, can facilitate conservation of diversity at multiple scales in the face of climate change.
Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change
Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas
2015-01-01
Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site’s future climate, can facilitate conservation of diversity at multiple scales in the face of climate change. PMID:26466364
Probabilistic Integrated Assessment of ``Dangerous'' Climate Change
NASA Astrophysics Data System (ADS)
Mastrandrea, Michael D.; Schneider, Stephen H.
2004-04-01
Climate policy decisions are being made despite layers of uncertainty. Such decisions directly influence the potential for ``dangerous anthropogenic interference with the climate system.'' We mapped a metric for this concept, based on Intergovernmental Panel on Climate Change assessment of climate impacts, onto probability distributions of future climate change produced from uncertainty in key parameters of the coupled social-natural system-climate sensitivity, climate damages, and discount rate. Analyses with a simple integrated assessment model found that, under midrange assumptions, endogenously calculated, optimal climate policy controls can reduce the probability of dangerous anthropogenic interference from ~45% under minimal controls to near zero.
Belote, R Travis; Carroll, Carlos; Martinuzzi, Sebastián; Michalak, Julia; Williams, John W; Williamson, Matthew A; Aplet, Gregory H
2018-06-21
Addressing uncertainties in climate vulnerability remains a challenge for conservation planning. We evaluate how confidence in conservation recommendations may change with agreement among alternative climate projections and metrics of climate exposure. We assessed agreement among three multivariate estimates of climate exposure (forward velocity, backward velocity, and climate dissimilarity) using 18 alternative climate projections for the contiguous United States. For each metric, we classified maps into quartiles for each alternative climate projections, and calculated the frequency of quartiles assigned for each gridded location (high quartile frequency = more agreement among climate projections). We evaluated recommendations using a recent climate adaptation heuristic framework that recommends emphasizing various conservation strategies to land based on current conservation value and expected climate exposure. We found that areas where conservation strategies would be confidently assigned based on high agreement among climate projections varied substantially across regions. In general, there was more agreement in forward and backward velocity estimates among alternative projections than agreement in estimates of local dissimilarity. Consensus of climate predictions resulted in the same conservation recommendation assignments in a few areas, but patterns varied by climate exposure metric. This work demonstrates an approach for explicitly evaluating alternative predictions in geographic patterns of climate change.
Examining the recent climate through the lens of ecology: inferences from temporal pattern analysis.
Paul F. Hessburg; Ellen E. Kuhlmann; Thomas W. Swetnam
2005-01-01
Ecological theory asserts that the climate of a region exerts top-down controls on regional ecosystem patterns and processes, across space and time. To provide empirical evidence of climatic controls, it would be helpful to define climatic regions that minimized variance in key climate attributes, within climatic regions-define the periods and features of climatic...
ERIC Educational Resources Information Center
Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew
2012-01-01
Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…
ClimateSpark: An in-memory distributed computing framework for big climate data analytics
NASA Astrophysics Data System (ADS)
Hu, Fei; Yang, Chaowei; Schnase, John L.; Duffy, Daniel Q.; Xu, Mengchao; Bowen, Michael K.; Lee, Tsengdar; Song, Weiwei
2018-06-01
The unprecedented growth of climate data creates new opportunities for climate studies, and yet big climate data pose a grand challenge to climatologists to efficiently manage and analyze big data. The complexity of climate data content and analytical algorithms increases the difficulty of implementing algorithms on high performance computing systems. This paper proposes an in-memory, distributed computing framework, ClimateSpark, to facilitate complex big data analytics and time-consuming computational tasks. Chunking data structure improves parallel I/O efficiency, while a spatiotemporal index is built for the chunks to avoid unnecessary data reading and preprocessing. An integrated, multi-dimensional, array-based data model (ClimateRDD) and ETL operations are developed to address big climate data variety by integrating the processing components of the climate data lifecycle. ClimateSpark utilizes Spark SQL and Apache Zeppelin to develop a web portal to facilitate the interaction among climatologists, climate data, analytic operations and computing resources (e.g., using SQL query and Scala/Python notebook). Experimental results show that ClimateSpark conducts different spatiotemporal data queries/analytics with high efficiency and data locality. ClimateSpark is easily adaptable to other big multiple-dimensional, array-based datasets in various geoscience domains.
Koopmann, Jaclyn; Lanaj, Klodiana; Wang, Mo; Zhou, Le; Shi, Junqi
2016-07-01
The teams literature suggests that team tenure improves team psychological safety climate and climate strength in a linear fashion, but the empirical findings to date have been mixed. Alternatively, theories of group formation suggest that new and longer tenured teams experience greater team psychological safety climate than moderately tenured teams. Adopting this second perspective, we used a sample of 115 research and development teams and found that team tenure had a curvilinear relationship with team psychological safety climate and climate strength. Supporting group formation theories, team psychological safety climate and climate strength were higher in new and longer tenured teams compared with moderately tenured teams. Moreover, we found a curvilinear relationship between team tenure and average team member creative performance as partially mediated by team psychological safety climate. Team psychological safety climate improved average team member task performance only when team psychological safety climate was strong. Likewise, team tenure influenced average team member task performance in a curvilinear manner via team psychological safety climate only when team psychological safety climate was strong. We discuss theoretical and practical implications and offer several directions for future research. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Climate change 101 : understanding and responding to global climate change
DOT National Transportation Integrated Search
2009-01-01
To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...
The GCRP Climate Health Assessment: From Scientific Literature to Climate Health Literacy
NASA Astrophysics Data System (ADS)
Crimmins, A. R.; Balbus, J. M.
2016-12-01
As noted by the new report from the US GCRP, the Impacts of Climate Change on Human Health in the United States: A Scientific Assessment, climate change is a significant threat to the health of the American people. Despite a growing awareness of the significance of climate change in general among Americans, however, recognition of the health significance of climate change is lacking. Not only are the general public and many climate scientists relatively uninformed about the myriad health implications of climate change; health professionals, including physicians and nurses, are in need of enhanced climate literacy. This presentation will provide an overview of the new GCRP Climate Health Assessment, introducing the audience to the systems thinking that underlies the assessment of health impacts, and reviewing frameworks that tie climate and earth systems phenomena to human vulnerability and health. The impacts on health through changes in temperature, precipitation, severity of weather extremes and climate variability, and alteration of ecosystems and phenology will be explored. The process of developing the assessment report will be discussed in the context of raising climate and health literacy within the federal government.
Abatzoglou, John T; Dobrowski, Solomon Z; Parks, Sean A; Hegewisch, Katherine C
2018-01-09
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.
NASA Astrophysics Data System (ADS)
Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.
2018-01-01
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.
NASA Astrophysics Data System (ADS)
Niepold, F.; Karsten, J. L.
2009-12-01
Over the 21st century, climate scientists expect Earth's temperature to continue increasing, very likely more than it did during the 20th century. Two anticipated results are rising global sea level and increasing frequency and intensity of heat waves, droughts, and floods. [IPCC 2007, USGCRP 2009] These changes will affect almost every aspect of human society, including economic prosperity, human and environmental health, and national security. Climate change will bring economic and environmental challenges as well as opportunities, and citizens who have an understanding of climate science will be better prepared to respond to both. Society needs citizens who understand the climate system and know how to apply that knowledge in their careers and in their engagement as active members of their communities. Climate change will continue to be a significant element of public discourse. Understanding the essential principles of climate science will enable all people to assess news stories and contribute to their everyday conversations as informed citizens. Key to our nations response to climate change will be a Climate Literate society that understands their influence on climate and climate’s influence on them and society. In order to ensure the nation increases its literacy, the Climate Literacy: Essential Principles of Climate Science document has been endorsed by the 13 Federal agencies that make up the US Global Change Research Program (http://globalchange.gov/resources/educators/climate-literacy) and twenty-four other science and educational institutions. This session will explore the coordinated efforts by the federal agencies and partner organizations to ensure a climate literate society. "Climate Literacy: The Essential Principles of Climate Sciences: A Guide for Individuals and Communities" produced by the U.S. Global Change Research Program in March 2009
NASA Astrophysics Data System (ADS)
Irimia, Liviu Mihai; Patriche, Cristian Valeriu; Quenol, Hervé; Sfîcă, Lucian; Foss, Chris
2018-02-01
Climate change is causing important shifts in the suitability of regions for wine production. Fine scale mapping of these shifts helps us to understand the evolution of vineyard climates, and to find solutions through viticultural adaptation. The aim of this study is to identify and map the structural and spatial shifts that occurred in the climatic suitability for wine production of the Cotnari wine growing region (Romania) between 1961 and 2013. Discontinuities in trends of temperature were identified, and the averages and trends of 13 climatic parameters for the 1961 to 1980 and 1981 to 2013 time periods were analysed. Using the averages of these climatic parameters, climate suitability for wine production was calculated at a resolution of 30 m and mapped for each time period, and the changes analysed. The results indicate shifts in the area's historic climatic profile, due to an increase of heliothermal resources and precipitation constancy. The area's climate suitability for wine production was modified by the loss of climate suitability for white table wines, sparkling wines and wine for distillates; shifts in suitability to higher altitudes by about 67 m, and a 48.6% decrease in the area suitable for quality white wines; and the occurrence of suitable climates for red wines at lower altitudes. The study showed that climate suitability for wine production has a multi-level spatial structure, with classes requiring a cooler climate being located at a higher altitude than those requiring a warmer climate. Climate change has therefore resulted in the shift of climate suitability classes for wine production to higher altitudes.
Designing ecological climate change impact assessments to reflect key climatic drivers
Sofaer, Helen R.; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian W.; Morisette, Jeffrey T.
2017-01-01
Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.
Coarse climate change projections for species living in a fine-scaled world.
Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R
2017-01-01
Accurately predicting biological impacts of climate change is necessary to guide policy. However, the resolution of climate data could be affecting the accuracy of climate change impact assessments. Here, we review the spatial and temporal resolution of climate data used in impact assessments and demonstrate that these resolutions are often too coarse relative to biologically relevant scales. We then develop a framework that partitions climate into three important components: trend, variance, and autocorrelation. We apply this framework to map different global climate regimes and identify where coarse climate data is most and least likely to reduce the accuracy of impact assessments. We show that impact assessments for many large mammals and birds use climate data with a spatial resolution similar to the biologically relevant area encompassing population dynamics. Conversely, impact assessments for many small mammals, herpetofauna, and plants use climate data with a spatial resolution that is orders of magnitude larger than the area encompassing population dynamics. Most impact assessments also use climate data with a coarse temporal resolution. We suggest that climate data with a coarse spatial resolution is likely to reduce the accuracy of impact assessments the most in climates with high spatial trend and variance (e.g., much of western North and South America) and the least in climates with low spatial trend and variance (e.g., the Great Plains of the USA). Climate data with a coarse temporal resolution is likely to reduce the accuracy of impact assessments the most in the northern half of the northern hemisphere where temporal climatic variance is high. Our framework provides one way to identify where improving the resolution of climate data will have the largest impact on the accuracy of biological predictions under climate change. © 2016 John Wiley & Sons Ltd.
Designing ecological climate change impact assessments to reflect key climatic drivers.
Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T
2017-07-01
Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.
Choice of baseline climate data impacts projected species' responses to climate change.
Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G
2016-07-01
Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. © 2016 John Wiley & Sons Ltd.
Weathercasters' views on climate change: A state-of-the-community review
NASA Astrophysics Data System (ADS)
Timm, K.; Perkins, D. R., IV; Myers, T.; Maibach, E.
2017-12-01
As a community of practice, TV weathercasters are positioned at a crucial intersection between climate scientists and the general public. Weathercasters have the opportunity to use their scientific training and public communication skills to educate viewers about climate change. Though early research found high rates of skepticism about climate change among TV weathercasters, the most current and comprehensive analysis to date of TV weathercasters' views on climate change suggests that their views have evolved in several important ways. Surveys of all working TV weathercasters in the United States conducted in 2015, 2016 and 2017 show that the weathercaster community now holds views of climate change that are similar to that of climate scientists—in particular, that human-caused climate change is happening today and it is impacting American communities in many harmful ways. Ninety-five percent of TV weathercasters now believe that climate change (as defined by the American Meteorological Society) is occurring, and certainty in that belief has grown. Nearly 50% of TV weathercasters believe the climate change that has occurred over the past 50 years has been caused mostly (34%), or largely to entirely (15%), by human activity. Additionally, surveys suggest that weathercasters tend to underestimate the scientific consensus on climate change. Weathercasters, on average, estimate 75% of climate scientists believe humans have caused the majority of recent climate change as compared to the actual value of 97%. Despite convergence in weathercasters' climate change beliefs, this analysis suggests that opportunities remain for building climate literacy among America's TV weathercasters. Increasing this personal knowledge of climate change is one of several factors that empower weathercasters to become public climate educators to increase understanding of climate change causes in communities around the country.
Climate Velocity Can Inform Conservation in a Warming World.
Brito-Morales, Isaac; García Molinos, Jorge; Schoeman, David S; Burrows, Michael T; Poloczanska, Elvira S; Brown, Christopher J; Ferrier, Simon; Harwood, Tom D; Klein, Carissa J; McDonald-Madden, Eve; Moore, Pippa J; Pandolfi, John M; Watson, James E M; Wenger, Amelia S; Richardson, Anthony J
2018-06-01
Climate change is shifting the ranges of species. Simple predictive metrics of range shifts such as climate velocity, that do not require extensive knowledge or data on individual species, could help to guide conservation. We review research on climate velocity, describing the theory underpinning the concept and its assumptions. We highlight how climate velocity has already been applied in conservation-related research, including climate residence time, climate refugia, endemism, historic and projected range shifts, exposure to climate change, and climate connectivity. Finally, we discuss ways to enhance the use of climate velocity in conservation through tailoring it to be more biologically meaningful, informing design of protected areas, conserving ocean biodiversity in 3D, and informing conservation actions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fournier-Level, Alexandre; Perry, Emily O.; Wang, Jonathan A.; Braun, Peter T.; Migneault, Andrew; Cooper, Martha D.; Metcalf, C. Jessica E.; Schmitt, Johanna
2016-01-01
Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico “resurrection experiments” showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation. PMID:27140640
Fournier-Level, Alexandre; Perry, Emily O; Wang, Jonathan A; Braun, Peter T; Migneault, Andrew; Cooper, Martha D; Metcalf, C Jessica E; Schmitt, Johanna
2016-05-17
Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation.
Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning
NASA Astrophysics Data System (ADS)
Ozbay, G.; Sriharan, S.; Fan, C.
2014-12-01
As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.
Research on Climate and Dengue in Malaysia: A Systematic Review.
Hii, Yien Ling; Zaki, Rafdzah Ahmad; Aghamohammadi, Nasrin; Rocklöv, Joacim
2016-03-01
Dengue is a climate-sensitive infectious disease. Climate-based dengue early warning may be a simple, low-cost, and effective tool for enhancing surveillance and control. Scientific studies on climate and dengue in local context form the basis for advancing the development of a climate-based early warning system. This study aims to review the current status of scientific studies in climate and dengue and the prospect or challenges of such research on a climate-based dengue early warning system in a dengue-endemic country, taking Malaysia as a case study. We reviewed the relationship between climate and dengue derived from statistical modeling, laboratory tests, and field studies. We searched electronic databases including PubMed, Scopus, EBSCO (MEDLINE), Web of Science, and the World Health Organization publications, and assessed climate factors and their influence on dengue cases, mosquitoes, and virus and recent development in the field of climate and dengue. Few studies in Malaysia have emphasized the relationship between climate and dengue. Climatic factors such as temperature, rainfall, and humidity are associated with dengue; however, these relationships were not consistent. Climate change projections for Malaysia show a mounting risk for dengue in the future. Scientific studies on climate and dengue enhance dengue surveillance in the long run. It is essential for institutions in Malaysia to promote research on climate and vector-borne diseases to advance the development of climate-based early warning systems. Together, effective strategies that improve existing research capacity, maximize the use of limited resources, and promote local-international partnership are crucial for sustaining research on climate and health.
Climate Prediction Center - Outlooks
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > Outreach > Publications > Climate Diagnostics Bulletin Climate Diagnostics Bulletin - Tropics Climate Diagnostics Bulletin - Forecast Climate Diagnostics
Gross, John E.; Tercek, Michael; Guay, Kevin; Chang, Tony; Talbert, Marian; Rodman, Ann; Thoma, David; Jantz, Patrick; Morisette, Jeffrey T.
2016-01-01
Most of the western United States is experiencing the effects of rapid and directional climate change (Garfin et al. 2013). These effects, along with forecasts of profound changes in the future, provide strong motivation for resource managers to learn about and prepare for future changes. Climate adaptation plans are based on an understanding of historic climate variation and their effects on ecosystems and on forecasts of future climate trends. Frameworks for climate adaptation thus universally identify the importance of a summary of historical, current, and projected climates (Glick, Stein, and Edelson 2011; Cross et al. 2013; Stein et al. 2014). Trends in physical climate variables are usually the basis for evaluating the exposure component in vulnerability assessments. Thus, this chapter focuses on step 2 of the Climate-Smart Conservation framework (chap. 2): vulnerability assessment. We present analyses of historical and current observations of temperature, precipitation, and other key climate measurements to provide context and a baseline for interpreting the ecological impacts of projected climate changes.
The Climate Services Partnership (CSP): Working Together to Improve Climate Services Worldwide
NASA Astrophysics Data System (ADS)
Zebiak, S.; Brasseur, G.; Members of the CSP Coordinating Group
2012-04-01
Throughout the world, climate services are required to address urgent needs for climate-informed decision-making, policy and planning. These needs were explored in detail at the first International Conference on Climate Services (ICCS), held in New York in October 2011. After lengthy discussions of needs and capabilities, the conference culminated in the creation of the Climate Services Partnership (CSP). The CSP is an informal interdisciplinary network of climate information users, providers, donors and researchers interested in improving the provision and development of climate services worldwide. Members of the Climate Services Partnership work together to share knowledge, accelerate learning, develop new capacities, and establish good practices. These collaborative efforts will inform and support the evolution and implementation of the Global Framework for Climate Services. The Climate Services Partnership focuses its efforts on three levels. These include: 1. encouraging and sustaining connections between climate information providers, users, donors, and researchers 2. gathering, synthesizing and disseminating current knowledge on climate services by way of an online knowledge management platform 3. generating new knowledge on critical topics in climate service development and provision, through the creation of focused working groups on specific topics To date, the Climate Services Partnership has made progress on all three fronts. Connections have been fostered through outreach at major international conferences and professional societies. The CSP also maintains a website and a monthly newsletter, which serves as a resource for those interested in climate services. The second International Conference on Climate Services (ICCS2) will be held in Berlin in September. The CSP has also created a knowledge capture system that gathers and disseminates a wide range of information related to the development and provision of climate services. This includes an online-searchable database that allows users to see what climate services activities are underway in what locations, to gather and analyze information. As part of the knowledge capture system, more than 10 CSP members are currently developing case studies to describe specific climate services activities; in a few cases, this involves in-depth evaluations of the service in question. Finally, the Economics Working Group of the Climate Services Partnership is analyzing previous methods to economically value climate services in hopes of generating knew knowledge regarding the methods are best suited to assessing the benefits associated with various climate services. Other groups are working to develop guidance materials for the development and use of climate information to support decision and policy-making. The Climate Services Partnership is an open, informal network that builds on activities that are already underway and works to create synergies to improve the provision and development for climate services. Its members currently number more than 50 organizations; it seeks new participants and new initiatives.
ClimatePad: Enabling public exploration of climate data
NASA Astrophysics Data System (ADS)
Walsh, J. E.; Chapman, W. L.
2012-12-01
Informal learners interested in climate issues can find a wealth of information in the print and online media related to climate and climate change. Throughout these resources, the equal use of generic terms like 'global warming' and 'climate change' suggest a level of nuance in the science that is not easy to convey in this conventional media. Perhaps more than any other discipline, climate literacy has the most potential to be enhanced via the process of cognitive construction and reconstruction, rather than simple transmission of knowledge. Constructionism suggests that meaningful learning happens most effectively if the learner is actively engaged in constructing a product in the real world rather than absorbing information passively. Recent technological innovations have introduced mobile computing devices with sufficient power to do serious data analysis. The potential of these devices to augment climate literacy by turning citizens into scientists has yet to be exploited. We introduce ClimatePad, an iPad application that permits students and public to actively browse climate datasets, construct trends, plot time series, create composite differences and view animations of real-world climate data. Interactions with the ClimatePad permits varying the starting and ending dates of trends and differences. Climate analysis maps and animations can be customized with different color palettes, enticing the user to delve into and absorb the subtleties of the regional and temporal variations of the recent climate record. Finally, user-generated climate visualizations created with ClimatePad can be emailed to friends and shared via Facebook, entraining even more active learners.
Fitzpatrick, Matthew C; Blois, Jessica L; Williams, John W; Nieto-Lugilde, Diego; Maguire, Kaitlin C; Lorenz, David J
2018-03-23
Future climates are projected to be highly novel relative to recent climates. Climate novelty challenges models that correlate ecological patterns to climate variables and then use these relationships to forecast ecological responses to future climate change. Here, we quantify the magnitude and ecological significance of future climate novelty by comparing it to novel climates over the past 21,000 years in North America. We then use relationships between model performance and climate novelty derived from the fossil pollen record from eastern North America to estimate the expected decrease in predictive skill of ecological forecasting models as future climate novelty increases. We show that, in the high emissions scenario (RCP 8.5) and by late 21st century, future climate novelty is similar to or higher than peak levels of climate novelty over the last 21,000 years. The accuracy of ecological forecasting models is projected to decline steadily over the coming decades in response to increasing climate novelty, although models that incorporate co-occurrences among species may retain somewhat higher predictive skill. In addition to quantifying future climate novelty in the context of late Quaternary climate change, this work underscores the challenges of making reliable forecasts to an increasingly novel future, while highlighting the need to assess potential avenues for improvement, such as increased reliance on geological analogs for future novel climates and improving existing models by pooling data through time and incorporating assemblage-level information. © 2018 John Wiley & Sons Ltd.
Romañach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.
2014-01-01
Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.
Impacts of weighting climate models for hydro-meteorological climate change studies
NASA Astrophysics Data System (ADS)
Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe; Caya, Daniel
2017-06-01
Weighting climate models is controversial in climate change impact studies using an ensemble of climate simulations from different climate models. In climate science, there is a general consensus that all climate models should be considered as having equal performance or in other words that all projections are equiprobable. On the other hand, in the impacts and adaptation community, many believe that climate models should be weighted based on their ability to better represent various metrics over a reference period. The debate appears to be partly philosophical in nature as few studies have investigated the impact of using weights in projecting future climate changes. The present study focuses on the impact of assigning weights to climate models for hydrological climate change studies. Five methods are used to determine weights on an ensemble of 28 global climate models (GCMs) adapted from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. Using a hydrological model, streamflows are computed over a reference (1961-1990) and future (2061-2090) periods, with and without post-processing climate model outputs. The impacts of using different weighting schemes for GCM simulations are then analyzed in terms of ensemble mean and uncertainty. The results show that weighting GCMs has a limited impact on both projected future climate in term of precipitation and temperature changes and hydrology in terms of nine different streamflow criteria. These results apply to both raw and post-processed GCM model outputs, thus supporting the view that climate models should be considered equiprobable.
The association between EMS workplace safety culture and safety outcomes.
Weaver, Matthew D; Wang, Henry E; Fairbanks, Rollin J; Patterson, Daniel
2012-01-01
Prior studies have highlighted wide variation in emergency medical services (EMS) workplace safety culture across agencies. To determine the association between EMS workplace safety culture scores and patient or provider safety outcomes. We administered a cross-sectional survey to EMS workers affiliated with a convenience sample of agencies. We recruited these agencies from a national EMS management organization. We used the EMS Safety Attitudes Questionnaire (EMS-SAQ) to measure workplace safety culture and the EMS Safety Inventory (EMS-SI), a tool developed to capture self-reported safety outcomes from EMS workers. The EMS-SAQ provides reliable and valid measures of six domains: safety climate, teamwork climate, perceptions of management, working conditions, stress recognition, and job satisfaction. A panel of medical directors, emergency medical technicians and paramedics, and occupational epidemiologists developed the EMS-SI to measure self-reported injury, medical errors and adverse events, and safety-compromising behaviors. We used hierarchical linear models to evaluate the association between EMS-SAQ scores and EMS-SI safety outcome measures. Sixteen percent of all respondents reported experiencing an injury in the past three months, four of every 10 respondents reported an error or adverse event (AE), and 89% reported safety-compromising behaviors. Respondents reporting injury scored lower on five of the six domains of safety culture. Respondents reporting an error or AE scored lower for four of the six domains, while respondents reporting safety-compromising behavior had lower safety culture scores for five of the six domains. Individual EMS worker perceptions of workplace safety culture are associated with composite measures of patient and provider safety outcomes. This study is preliminary evidence of the association between safety culture and patient or provider safety outcomes.
Zenere, Alessandra; Zanolin, M Elisabetta; Negri, Roberta; Moretti, Francesca; Grassi, Mario; Tardivo, Stefano
2016-04-01
Neonatal intensive care units (NICUs) are a high-risk setting. The Safety Attitude Questionnaire (SAQ) is a widely used tool to measure safety culture. The aims of the study are to verify the psychometric properties of the Italian version of SAQ, to evaluate safety culture in the NICUs and to identify improvement interventions. A cross-sectional study was conducted in 6 level III NICUs. The SAQ was translated into Italian and adapted to the context, a confirmatory factor analysis (CFA) was performed to validate the questionnaire. 193 questionnaires were collected. The mean response rate was 59.7% (range 44.5%-95.7%). The answers were analysed according to six factors: f1 - teamwork climate, f2 - safety climate, f3 - job satisfaction, f4 - stress recognition, f5 - perception of management, f6 - working conditions. The CFA indexes were adequate (McDonald's omega indexes varied from 0.74 to 0.94, the SRMR index was equal to 0.79 and the RMSEA index was 0.070, 95% CI = 0.063-0.078). The mean composite score was 57.6 (SD 17.9), ranging between 42.3 and 69.7 on a standardized 100-point scale. We highlighted significant differences among units and professions (P < 0.05). The Italian version of the SAQ proved to be an effective tool to evaluate and compare the safety culture in the NICUs. The obtained scores significantly varied both within and among the NICUs. The organizational and structural characteristics of the involved hospitals probably affect the safety culture perception by the staff. © 2015 John Wiley & Sons, Ltd.
Safety culture and the 5 steps to safer surgery: an intervention study.
Hill, M R; Roberts, M J; Alderson, M L; Gale, T C E
2015-06-01
Improvements in safety culture have been postulated as one of the mechanisms underlying the association between the introduction of the World Health Organisation (WHO) Surgical Safety Checklist with perioperative briefings and debriefings, and enhanced patient outcomes. The 5 Steps to Safer Surgery (5SSS) incorporates pre-list briefings, the three steps of the WHO Surgical Safety Checklist (SSC) and post-list debriefings in one framework. We aimed to identify any changes in safety culture associated with the introduction of the 5SSS in orthopaedic operating theatres. We assessed the safety culture in the elective orthopaedic theatres of a large UK teaching hospital before and after introduction of the 5SSS using a modified version of the Safety Attitude Questionnaire - Operating Room (SAQ-OR). Primary outcome measures were pre-post intervention changes in the six safety culture domains of the SAQ-OR. We also analysed changes in responses to two items regarding perioperative briefings. The SAQ-OR survey response rate was 80% (60/75) at baseline and 74% (53/72) one yr later. There were significant improvements in both the reported frequency (P<0.001) and perceived importance (P=0.018) of briefings, and in five of the six safety culture domain scores (Working Conditions, Perceptions of Management, Job Satisfaction, Safety Climate and Teamwork Climate) of the SAQ-OR (P<0.001 in all cases). Scores in the sixth domain (Stress Recognition) decreased significantly (P=0.028). Implementation of the 5SSS was associated with a significant improvement in the safety culture of elective orthopaedic operating theatres. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Patient safety attitudes of paediatric trainee physicians.
Parry, G; Horowitz, L; Goldmann, D
2009-12-01
To measure the patient safety attitudes of trainee physicians at an academic paediatric hospital. Cross-sectional survey. An academic paediatric hospital. 209 trainee physicians based at the academic paediatric hospital in January 2004. Patient safety attitudes of trainee physicians measured using the Safety Attitudes Questionnaire (Inpatient Version) and a specific trainee survey. In the Safety Attitudes Questionnaire, responses were most positive in areas associated with independent care: job satisfaction (mean factor score = 77.5) safety climate (76.1), working conditions (75.6), perception of management (70.4) and less positively in areas associated with interdependent care: teamwork climate (64.6) and stress recognition (59.1). In the trainee survey, following a principal component analysis to identify summary factors, responses were most positive in the independent areas of clinical supervision and support (75.0), communication with their immediate senior physician (65.5) and orientation of new personnel (63.9), and less positive in the interdependent areas of handoffs and multiple services, (58.1), role identification during codes (51.0) and support following an adverse event (42.8). The combined independent factor scores were higher than the interdependent (difference = 17.9, 95% CI 16.1 to 19.7, p<0.001). Fellows reported higher independent factor scores than residents (5.5, 95% CI 2.2 to 8.9, p = 0.001), but not for the interdependent scores (-0.5, 95% CI -3.6 to 2.7, p = 0.767). Trainees appear comfortable with caring independently for patients but less so caring interdependently. With experience, trainee physicians may experience improvement in their ability to act independently but not interdependently. Recently developed patient safety culture instruments may enable additional understanding of what could be implemented to make improvements.
Damian, April Joy; Gallo, Joseph; Leaf, Philip; Mendelson, Tamar
2017-11-21
While there is increasing support for training youth-serving providers in trauma-informed care (TIC) as a means of addressing high prevalence of U.S. childhood trauma, we know little about the effects of TIC training on organizational culture and providers' professional quality of life. This mixed-methods study evaluated changes in organizational- and provider-level factors following participation in a citywide TIC training. Government workers and nonprofit professionals (N = 90) who participated in a nine-month citywide TIC training completed a survey before and after the training to assess organizational culture and professional quality of life. Survey data were analyzed using multiple regression analyses. A subset of participants (n = 16) was interviewed using a semi-structured format, and themes related to organizational and provider factors were identified using qualitative methods. Analysis of survey data indicated significant improvements in participants' organizational culture and professional satisfaction at training completion. Participants' perceptions of their own burnout and secondary traumatic stress also increased. Four themes emerged from analysis of the interview data, including "Implementation of more flexible, less-punitive policies towards clients," "Adoption of trauma-informed workplace design," "Heightened awareness of own traumatic stress and need for self-care," and "Greater sense of camaraderie and empathy for colleagues." Use of a mixed-methods approach provided a nuanced understanding of the impact of TIC training and suggested potential benefits of the training on organizational and provider-level factors associated with implementation of trauma-informed policies and practices. Future trainings should explicitly address organizational factors such as safety climate and morale, managerial support, teamwork climate and collaboration, and individual factors including providers' compassion satisfaction, burnout, and secondary traumatic stress, to better support TIC implementation.
Nursing perceptions of patient safety climate in the Gaza Strip, Palestine.
Elsous, A; Akbari Sari, A; AlJeesh, Y; Radwan, M
2017-09-01
This study was undertaken to assess the perception of nurses about patient safety culture and to test whether it is significantly affected by the nurses' position, age, experience and working hours. Patient safety has sparked the interest of healthcare mangers, yet there is limited knowledge about the current patient safety culture among nurses in the Gaza Strip. This was a descriptive cross-sectional study, administering the Arabic Safety Attitude Questionnaire (Short Form 2006) to 210 nurses in four public general hospitals. Job Satisfaction was the most highly perceived factor affecting patient safety, followed by Perception of Management. Safety culture varied across nursing position, age, work experience and working hours. Nurse Managers had more positive attitudes towards patients than frontline clinicians did. The more experience nurses had, the better their attitudes towards patient safety. Nurses who worked the minimum weekly required hours and who were 35 years and older had better attitudes towards all patient safety dimensions except for Stress Recognition. Nurses with a positive attitude had better collaboration with healthcare professionals than those without a positive attitude. Generalization is limited, as nurses who worked in private and specialized hospitals were excluded. Evaluation of the safety culture is the essential starting point to identify hindrances or drivers for safe patient care. Job Satisfaction, Perception of Management and Teamwork necessitate reinforcement, while Working Conditions, Stress Recognition and Safety Climate require improvement. Ensuring job satisfaction through adequate staffing levels, providing incentives and maintaining a collegial environment require both strategic planning and institutional policies at the higher administrative level. Creation of a non-punitive and learning environment, promoting open communication and fostering continuous education should be fundamental aspects of hospital management. A policy of mixing experienced nurses with inexperienced nurses should be considered. © 2017 International Council of Nurses.
Neonatal Intensive Care Unit Safety Culture Varies Widely
Profit, Jochen; Etchegaray, Jason; Petersen, Laura A; Sexton, J Bryan; Hysong, Sylvia J; Mei, Minghua; Thomas, Eric J
2013-01-01
background Variation in health care delivery and outcomes in NICUs may be partly explained by differences in safety culture. objective To describe NICU caregiver assessments of safety culture, explore the variability within and between NICUs on safety culture domains, and test for association with caregiver characteristics. methods We surveyed NICU caregivers in a convenience sample of 12 hospitals from a single health care system, using the Safety Attitudes Questionnaire (SAQ). The six scales of the SAQ include teamwork climate, safety climate, job satisfaction, stress recognition, perception of management, and working conditions. For each NICU we calculated scale means, standard deviations and percent positives (percent agreement). results We found substantial variation in safety culture domains among participating NICUs. A composite mean score across the six safety culture domains ranged from 56.3 to 77.8 on a 100-point scale and NICUs in the top four NICUs were significantly different from the bottom four (p < .001). Across the six domains, respondent assessments varied widely, but were least positive on perceptions of management (3–80% positive; mean 33.3%) and stress recognition (18–61% positive; mean 41.3%). Comparisons of SAQ scale scores between NICUs and a previously published cohort of adult ICUs generally revealed higher scores for NICUs. Physicians composite scores were 8.2 (p = .04) and 9.5 (p =.02) points higher than nurses and ancillary personnel. conclusion Significant variation and scope for improvement in safety culture exists among this sample of NICUs. The NICU variation was similar to variation in adult ICUs, but NICU scores were generally higher than adult ICU scores. Future studies should validate whether safety culture as measured with the SAQ correlates with clinical and operational outcomes in the NICU setting. PMID:21930691
The association between EMS workplace safety culture and safety outcomes
Weaver, Matthew D.; Wang, Henry E.; Fairbanks, Rollin J.; Patterson, Daniel
2012-01-01
Objective Prior studies have highlighted wide variation in EMS workplace safety culture across agencies. We sought to determine the association between EMS workplace safety culture scores and patient or provider safety outcomes. Methods We administered a cross-sectional survey to EMS workers affiliated with a convenience sample of agencies. We recruited these agencies from a national EMS management organization. We used the EMS Safety Attitudes Questionnaire (EMS-SAQ) to measure workplace safety culture and the EMS Safety Inventory (EMS-SI), a tool developed to capture self-reported safety outcomes from EMS workers. The EMS-SAQ provides reliable and valid measures of six domains: safety climate, teamwork climate, perceptions of management, perceptions of working conditions, stress recognition, and job satisfaction. A panel of medical directors, paramedics, and occupational epidemiologists developed the EMS-SI to measure self-reported injury, medical errors and adverse events, and safety-compromising behaviors. We used hierarchical linear models to evaluate the association between EMS-SAQ scores and EMS-SI safety outcome measures. Results Sixteen percent of all respondents reported experiencing an injury in the past 3 months, four of every 10 respondents reported an error or adverse event (AE), and 90% reported safety-compromising behaviors. Respondents reporting injury scored lower on 5 of the 6 domains of safety culture. Respondents reporting an error or AE scored lower for 4 of the 6 domains, while respondents reporting safety-compromising behavior had lower safety culture scores for 5 of 6 domains. Conclusions Individual EMS worker perceptions of workplace safety culture are associated with composite measures of patient and provider safety outcomes. This study is preliminary evidence of the association between safety culture and patient or provider safety outcomes. PMID:21950463
An Interface between Law and Science: The Climate Change Regime
NASA Astrophysics Data System (ADS)
Kuleshov, Y.; Grandbois, M.; Kaniaha, S.
2012-04-01
Law and Science are jointly building the international climate change regime. Up to date, international law and climate science have been unable to take into consideration both regional law and Pacific climate science in this process. Under the International Climate Change Adaptation Initiative (the Australian Government Initiative to assist with high priority climate adaptation needs in vulnerable countries in the Asia-Pacific region) significant efforts were dedicated to improve understanding of climate in the Pacific through the Pacific Climate Change Science Program (PCCSP) and through the Pacific Adaptation Strategy Assistance Program (PASAP). The first comprehensive PCCSP scientific report on the South Pacific climate has been published in 2011. Under the PASAP, web-based information tools for seasonal climate prediction have been developed and now outputs from dynamical climate model are used in 15 countries of the North-West and South Pacific for enhanced prediction of rainfall, air and sea surface temperatures which reduces countries' vulnerability to climate variability in the context of a changing climate. On a regional scale, the Meteorological and Geohazards Department of Vanuatu is preparing a full report on Climate change impacts on the country. These scientific reports and tools could lead to a better understanding of climate change in the South Pacific and to a better understanding of climate change science, for lawyers and policy-makers. The International climate change regime develops itself according to science findings, and at the pace of the four scientific reports issued by the Intergovernmental Panel on Climate Change (IPCC). In return, Law is a contributing factor to climate change, a structural data in the development and perception of environmental issues and it exerts an influence on Science. Because of the dependency of law on science, the PCCSP and PASAP outcomes will also stimulate and orientate developments in law of the Pacific Island countries, as well as it could increase countries' contributions to the future of international environmental law. Vanuatu is pioneering this process in the Pacific and could make a leading contribution to the development of Nationally appropriate mitigation actions by developing country Parties, according to the Bali action Plan and to participate actively in the negotiations of a successor agreement to the Kyoto Protocol. In studying and transposing the national climate change report, Vanuatu would also sensibly improve its own environmental laws in response to climate change. By building a bridge between law and science in the Pacific, we are training scientists to climate change law, and training lawyers and policy-makers to climate change science; increasing the collaborative process and the cooperation between scientists and lawyers, in drafting national environmental laws and in negotiating international climate change agreements; and enhancing the contribution of small vulnerable islands to the development of the international climate change regime, as it regards to law and to science. Training for climate scientists and for lawyers and policy-makers on climate change science and law will be provided through the USP Course on climate change international law and climate change science - the first course on this type in the Pacific.
The climate change-infectious disease nexus: is it time for climate change syndemics?
Heffernan, Claire
2013-12-01
Conceptualizing climate as a distinct variable limits our understanding of the synergies and interactions between climate change and the range of abiotic and biotic factors, which influence animal health. Frameworks such as eco-epidemiology and the epi-systems approach, while more holistic, view climate and climate change as one of many discreet drivers of disease. Here, I argue for a new paradigmatic framework: climate-change syndemics. Climate-change syndemics begins from the assumption that climate change is one of many potential influences on infectious disease processes, but crucially is unlikely to act independently or in isolation; and as such, it is the inter-relationship between factors that take primacy in explorations of infectious disease and climate change. Equally importantly, as climate change will impact a wide range of diseases, the frame of analysis is at the collective rather than individual level (for both human and animal infectious disease) across populations.
Maritime Archaeology and Climate Change: An Invitation
NASA Astrophysics Data System (ADS)
Wright, Jeneva
2016-12-01
Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.
Climate stories: Why do climate scientists and sceptical voices participate in the climate debate?
Sharman, Amelia; Howarth, Candice
2017-10-01
Public perceptions of the climate debate predominantly frame the key actors as climate scientists versus sceptical voices; however, it is unclear why climate scientists and sceptical voices choose to participate in this antagonistic and polarised public battle. A narrative interview approach is used to better understand the underlying rationales behind 22 climate scientists' and sceptical voices' engagement in the climate debate, potential commonalities, as well as each actor's ability to be critically self-reflexive. Several overlapping rationales are identified including a sense of duty to publicly engage, agreement that complete certainty about the complex assemblage of climate change is unattainable and that political factors are central to the climate debate. We argue that a focus on potential overlaps in perceptions and rationales as well as the ability to be critically self-reflexive may encourage constructive discussion among actors previously engaged in purposefully antagonistic exchange on climate change.
Handbook for Conducting School Climate Improvement Projects.
ERIC Educational Resources Information Center
Howard, Eugene; And Others
This book discusses practical ways to improve a school's climate by increasing both productivity and satisfaction concurrently. Chapter 1, "Defining School Climate," identifies the overarching goals of school climate improvement, the basic human needs that school climate must address, the factors that make up a school's climate and…
Climate Stratosphere Pacific Islands International Desks Climate.gov Climate Test Bed (CTB) JAWF USAID FEWS-NET NWS / NCEP Aviation Weather Center Climate Prediction Center Environmental Modeling Center non-operational server hosts the redesigned web pages developed, thus far, as part of the Climate
How is the rate of climatic-niche evolution related to climatic-niche breadth?
Fisher-Reid, M Caitlin; Kozak, Kenneth H; Wiens, John J
2012-12-01
The rate of climatic-niche evolution is important to many research areas in ecology, evolution, and conservation biology, including responses of species to global climate change, spread of invasive species, speciation, biogeography, and patterns of species richness. Previous studies have implied that clades with higher rates of climatic-niche evolution among species should have species with narrower niche breadths, but there is also evidence suggesting the opposite pattern. However, the relationships between rate and breadth have not been explicitly analyzed. Here, we examine the relationships between the rate of climatic-niche evolution and climatic-niche breadth using phylogenetic and climatic data for 250 species in the salamander family Plethodontidae, a group showing considerable variation in both rates of climatic-niche evolution and climatic-niche breadths. Contrary to some expectations, we find no general relationship between climatic-niche breadth and the rate of climatic-niche evolution. Climatic-niche breadths for some ecologically important climatic variables considered separately (temperature seasonality and annual precipitation) do show significant relationships with the rate of climatic-niche evolution, but rates are faster in clades in which species have broader (not narrower) niche breadths. In summary, our results show that narrower niche breadths are not necessarily associated with faster rates of niche evolution. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
The Monash University Interactive Simple Climate Model
NASA Astrophysics Data System (ADS)
Dommenget, D.
2013-12-01
The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.
Climate-driven vital rates do not always mean climate-driven population.
Tavecchia, Giacomo; Tenan, Simone; Pradel, Roger; Igual, José-Manuel; Genovart, Meritxell; Oro, Daniel
2016-12-01
Current climatic changes have increased the need to forecast population responses to climate variability. A common approach to address this question is through models that project current population state using the functional relationship between demographic rates and climatic variables. We argue that this approach can lead to erroneous conclusions when interpopulation dispersal is not considered. We found that immigration can release the population from climate-driven trajectories even when local vital rates are climate dependent. We illustrated this using individual-based data on a trans-equatorial migratory seabird, the Scopoli's shearwater Calonectris diomedea, in which the variation of vital rates has been associated with large-scale climatic indices. We compared the population annual growth rate λ i , estimated using local climate-driven parameters with ρ i , a population growth rate directly estimated from individual information and that accounts for immigration. While λ i varied as a function of climatic variables, reflecting the climate-dependent parameters, ρ i did not, indicating that dispersal decouples the relationship between population growth and climate variables from that between climatic variables and vital rates. Our results suggest caution when assessing demographic effects of climatic variability especially in open populations for very mobile organisms such as fish, marine mammals, bats, or birds. When a population model cannot be validated or it is not detailed enough, ignoring immigration might lead to misleading climate-driven projections. © 2016 John Wiley & Sons Ltd.
Climate Science across the Liberal Arts Curriculum at Gustavus Adolphus College
NASA Astrophysics Data System (ADS)
Bartley, J. K.; Triplett, L.; Dontje, J.; Huber, T.; Koomen, M.; Jeremiason, J.; La Frenierre, J.; Niederriter, C.; Versluis, A.
2014-12-01
The human and social dimensions of climate change are addressed in courses in humanities, social sciences, and arts disciplines. However, faculty members in these disciplines are not climate science experts and thus may feel uncomfortable discussing the science that underpins our understanding of climate change. In addition, many students are interested in the connections between climate change and their program of study, but not all students take courses that address climate science as a principal goal. At Gustavus Adolphus College, the Climate Science Project aims to help non-geoscience faculty introduce climate science content in their courses in order to increase climate science literacy among students and inform discussions of the implications of climate change. We assembled an interdisciplinary team of faculty with climate science expertise to develop climate science modules for use in non-geoscience courses. Faculty from the social sciences, humanities, arts, education, and natural sciences attended workshops in which they developed plans to include climate science in their courses. Based on these workshops, members of the development team created short modules for use by participating faculty that introduce climate science concepts to a non-specialist audience. Each module was tested and modified prior to classroom implementation by a team of faculty and geoscience students. Faculty and student learning are assessed throughout the process, and participating faculty members are interviewed to improve the module development process. The Climate Science Project at Gustavus Adolphus College aims to increase climate science literacy in both faculty members and students by creating accessible climate science content and supporting non-specialist faculty in learning key climate science concepts. In this way, climate science becomes embedded in current course offerings, including non-science courses, reaching many more students than new courses or enhanced content in the geosciences can reach. In addition, this model can be adopted by institutions with limited geoscience course offerings to increase geoscience literacy among a broad cross-section of students.
Batllori, Enric; Parisien, Marc-André; Parks, Sean A; Moritz, Max A; Miller, Carol
2017-08-01
Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform a continent-wide climate change vulnerability assessment whereby we compare the baseline climate of the protected area network in North America (Canada, United States, México-NAM) to the projected end-of-century climate (2071-2100). We estimated the projected pace at which climatic conditions may redistribute across NAM (i.e., climate velocity), and identified future nearest climate analogs to quantify patterns of climate relocation within, among, and outside protected areas. Also, we interpret climatic relocation patterns in terms of associated land-cover types. Our analysis suggests that the conservation capacity of the NAM protection network is likely to be severely compromised by a changing climate. The majority of protected areas (~80%) might be exposed to high rates of climate displacement that could promote important shifts in species abundance or distribution. A small fraction of protected areas (<10%) could be critical for future conservation plans, as they will host climates that represent analogs of conditions currently characterizing almost a fifth of the protected areas across NAM. However, the majority of nearest climatic analogs for protected areas are in nonprotected locations. Therefore, unprotected landscapes could pose additional threats, beyond climate forcing itself, as sensitive biota may have to migrate farther than what is prescribed by the climate velocity to reach a protected area destination. To mitigate future threats to the conservation capacity of the NAM protected area network, conservation plans will need to capitalize on opportunities provided by the existing availability of natural land-cover types outside the current network of NAM protected areas. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Chaudhary, A.; DeMarle, D.; Burnett, B.; Harris, C.; Silva, W.; Osmari, D.; Geveci, B.; Silva, C.; Doutriaux, C.; Williams, D. N.
2013-12-01
The impact of climate change will resonate through a broad range of fields including public health, infrastructure, water resources, and many others. Long-term coordinated planning, funding, and action are required for climate change adaptation and mitigation. Unfortunately, widespread use of climate data (simulated and observed) in non-climate science communities is impeded by factors such as large data size, lack of adequate metadata, poor documentation, and lack of sufficient computational and visualization resources. We present ClimatePipes to address many of these challenges by creating an open source platform that provides state-of-the-art, user-friendly data access, analysis, and visualization for climate and other relevant geospatial datasets, making the climate data available to non-researchers, decision-makers, and other stakeholders. The overarching goals of ClimatePipes are: - Enable users to explore real-world questions related to climate change. - Provide tools for data access, analysis, and visualization. - Facilitate collaboration by enabling users to share datasets, workflows, and visualization. ClimatePipes uses a web-based application platform for its widespread support on mainstream operating systems, ease-of-use, and inherent collaboration support. The front-end of ClimatePipes uses HTML5 (WebGL, Canvas2D, CSS3) to deliver state-of-the-art visualization and to provide a best-in-class user experience. The back-end of the ClimatePipes is built around Python using the Visualization Toolkit (VTK, http://vtk.org), Climate Data Analysis Tools (CDAT, http://uv-cdat.llnl.gov), and other climate and geospatial data processing tools such as GDAL and PROJ4. ClimatePipes web-interface to query and access data from remote sources (such as ESGF). Shown in the figure is climate data layer from ESGF on top of map data layer from OpenStreetMap. The ClimatePipes workflow editor provides flexibility and fine grained control, and uses the VisTrails (http://www.vistrails.org) workflow engine in the backend.
Identification of reliable gridded reference data for statistical downscaling methods in Alberta
NASA Astrophysics Data System (ADS)
Eum, H. I.; Gupta, A.
2017-12-01
Climate models provide essential information to assess impacts of climate change at regional and global scales. However, statistical downscaling methods have been applied to prepare climate model data for various applications such as hydrologic and ecologic modelling at a watershed scale. As the reliability and (spatial and temporal) resolution of statistically downscaled climate data mainly depend on a reference data, identifying the most reliable reference data is crucial for statistical downscaling. A growing number of gridded climate products are available for key climate variables which are main input data to regional modelling systems. However, inconsistencies in these climate products, for example, different combinations of climate variables, varying data domains and data lengths and data accuracy varying with physiographic characteristics of the landscape, have caused significant challenges in selecting the most suitable reference climate data for various environmental studies and modelling. Employing various observation-based daily gridded climate products available in public domain, i.e. thin plate spline regression products (ANUSPLIN and TPS), inverse distance method (Alberta Townships), and numerical climate model (North American Regional Reanalysis) and an optimum interpolation technique (Canadian Precipitation Analysis), this study evaluates the accuracy of the climate products at each grid point by comparing with the Adjusted and Homogenized Canadian Climate Data (AHCCD) observations for precipitation, minimum and maximum temperature over the province of Alberta. Based on the performance of climate products at AHCCD stations, we ranked the reliability of these publically available climate products corresponding to the elevations of stations discretized into several classes. According to the rank of climate products for each elevation class, we identified the most reliable climate products based on the elevation of target points. A web-based system was developed to allow users to easily select the most reliable reference climate data at each target point based on the elevation of grid cell. By constructing the best combination of reference data for the study domain, the accurate and reliable statistically downscaled climate projections could be significantly improved.
NASA Astrophysics Data System (ADS)
Burke, K. D.; Williams, J. W.; Jackson, S. T.
2016-12-01
Climate change is a multivariate process, where changes in the environmental space of a location will likely drive biotic responses of the flora and fauna that inhabit the region. In the face of a rapidly changing climate it is important to understand what the future may hold for ecosystems. One method commonly applied to understand how dissimilar future climates will be relative to the modern period is no-analog analysis. This has been done for 21st century climates relative to the modern period, but has not been extended through the paleorecord. Using HadCM3, CCSM3 TraCE-21ka, PMIP3, PlioMIP2 and EoMIP climate simulations, we assess global and regional climatic novelty by identifying the closest analogs in these periods for both future (21st century) and modern climates. This baseline offers a full range climate space with significant overlap of modern and future projected climates, and allows us to assess both emergences and disappearances of analog climate conditions throughout the past. This extended baseline includes past glacial and interglacial climates, as well as past earth warm periods. Past earth warm periods such as the middle to late Pliocene and the early Eocene may be most similar to projections of future climate, so it is important to evaluate our understanding of these global climates. Here we calculate dissimilarity to quantify novelty and no-analog conditions using the Standardized Euclidian Distance, as well as the Mahalanobis distance. Our work shows that nearest climate analogs for the modern period, as well as future climates, existed and disappeared during past warm periods. These results suggest that though climate change may be regionally novel relative to the modern period for some locations, analogs do exist through the paleorecord which in some cases reduce novelty. Nevertheless, novelty remains high in some locations suggesting that some future climates may be unprecedented.
Violence Prevention and School Climate Reform. School Climate Brief, Number 5
ERIC Educational Resources Information Center
Nader, Kathleen
2012-01-01
Research has demonstrated that a positive school climate is an essential part of violence prevention. Many factors influence the association between school climate and behavioral outcomes. Positive school climate alone cannot prevent all variables that may contribute to the expression of aggression. Nevertheless, positive school climates influence…
Climate Prediction Center - Outlooks
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. Climate Diagnostics Bulletin Climate Diagnostics Bulletin - Home Climate Diagnostics Bulletin - Tropics Climate Diagnostics Bulletin - Extratropics About the Forecast Forum ENSO
2016-01-01
Climate Assessment for Army Enterprise Planning Effects of Climate Change , Urban Development, and... Climate Assessment for Army Enterprise Planning ERDC/CERL TR-16-29 January 2016 Effects of Climate Change , Urban Development, and Threatened and...due to climate change factors. The effects of climate change on DoD in- stallations is increasing in significance and has the potential to impact
Managing climate change refugia for climate adaptation
Morelli, Toni L.; Jackson, Stephen T.
2016-01-01
Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.
Managing Climate Change Refugia for Climate Adaptation.
Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R
2016-01-01
Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.
Managing Climate Change Refugia for Climate Adaptation
Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.
2016-01-01
Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088
[Climate suitability for tea growing in Zhejiang Province].
Jin, Zhi-Feng; Ye, Jian-Gang; Yang, Zai-Qiang; Sun, Rui; Hu, Bo; Li, Ren-Zhong
2014-04-01
It is important to quantitatively assess the climate suitability of tea and its response to climate change. Based on meteorological indices of tea growth and daily meteorological data from 1971 to 2010 in Zhejiang Province, three climate suitability models for single climate factors, including temperature, precipitation and sunshine, were established at a 10-day scale by using the fuzzy mathematics method, and a comprehensive climate suitability model was established with the geometric average method. The results indicated that the climate suitability was high in the tea growth season in Zhejiang Province, and the three kinds of climate suitability were all higher than 0.6. As for the single factor climate suitability, temperature suitability was the highest and sunshine suitability was the lowest. There were obvious inter-annual variations of tea climate suitability, with a decline trend in the 1970s, less variation in the 1980s, and an obvious incline trend after the 1990s. The change tendency of climate suitability for spring tea was similar with that of annual climate suitability, lower in the 1980s, higher in the 1970s and after the 1990s. However, the variation amplitude of the climate suitability for spring tea was larger. The climate suitability for summer tea and autumn tea showed a decline trend from 1971 to 2010.
Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D
2015-01-01
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.
Mosedale, Jonathan R.; Wilson, Robert J.; Maclean, Ilya M. D.
2015-01-01
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions. PMID:26496127
Monitoring Top-of-Atmosphere Radiative Energy Imbalance for Climate Prediction
NASA Technical Reports Server (NTRS)
Lin, Bing; Chambers, Lin H.; Stackhouse, Paul W., Jr.; Minnis, Patrick
2009-01-01
Large climate feedback uncertainties limit the prediction accuracy of the Earth s future climate with an increased CO2 atmosphere. One potential to reduce the feedback uncertainties using satellite observations of top-of-atmosphere (TOA) radiative energy imbalance is explored. Instead of solving the initial condition problem in previous energy balance analysis, current study focuses on the boundary condition problem with further considerations on climate system memory and deep ocean heat transport, which is more applicable for the climate. Along with surface temperature measurements of the present climate, the climate feedbacks are obtained based on the constraints of the TOA radiation imbalance. Comparing to the feedback factor of 3.3 W/sq m/K of the neutral climate system, the estimated feedback factor for the current climate system ranges from -1.3 to -1.0 W/sq m/K with an uncertainty of +/-0.26 W/sq m/K. That is, a positive climate feedback is found because of the measured TOA net radiative heating (0.85 W/sq m) to the climate system. The uncertainty is caused by the uncertainties in the climate memory length. The estimated time constant of the climate is large (70 to approx. 120 years), implying that the climate is not in an equilibrium state under the increasing CO2 forcing in the last century.
Patterns and biases in climate change research on amphibians and reptiles: a systematic review.
Winter, Maiken; Fiedler, Wolfgang; Hochachka, Wesley M; Koehncke, Arnulf; Meiri, Shai; De la Riva, Ignacio
2016-09-01
Climate change probably has severe impacts on animal populations, but demonstrating a causal link can be difficult because of potential influences by additional factors. Assessing global impacts of climate change effects may also be hampered by narrow taxonomic and geographical research foci. We review studies on the effects of climate change on populations of amphibians and reptiles to assess climate change effects and potential biases associated with the body of work that has been conducted within the last decade. We use data from 104 studies regarding the effect of climate on 313 species, from 464 species-study combinations. Climate change effects were reported in 65% of studies. Climate change was identified as causing population declines or range restrictions in half of the cases. The probability of identifying an effect of climate change varied among regions, taxa and research methods. Climatic effects were equally prevalent in studies exclusively investigating climate factors (more than 50% of studies) and in studies including additional factors, thus bolstering confidence in the results of studies exclusively examining effects of climate change. Our analyses reveal biases with respect to geography, taxonomy and research question, making global conclusions impossible. Additional research should focus on under-represented regions, taxa and questions. Conservation and climate policy should consider the documented harm climate change causes reptiles and amphibians.
Developing and Evaluating Workshop Frameworks to Improve Climate Literacy
NASA Astrophysics Data System (ADS)
Averyt, K.; Alvord, C.; Joyce, L. A.; Lukas, J.; Barsugli, J. J.; Owen, G.; Udall, B.
2009-12-01
A burgeoning need for climate information is rising from a variety of stakeholders. A new federal report encourages federal resource management efforts to consider climate in assessments-leaving agency scientists and resource managers searching for appropriate data and methodologies. At the other end of the spectrum, small-scale decision makers realize the need to develop scientifically-informed climate adaptation plans, but are unclear about what science is relevant. It is becoming necessary to improve the climate literacy across all sectors. However, past examples illustrate that climate science has been insufficiently communicated, resulting in perceptions that misinform decision-making and planning. Given the necessity to include climate science in planning on multiple scales, scientific educators must work with stakeholders to determine how best to improve climate literacy. Doing so will reduce uncertainty in the application of climate data in planning, and thus mitigate vulnerabilities to the impacts of climate change. Here, we present the design and assessment of two workshop frameworks intended to improve the climate literacy of two distinct entities with different climate information needs. This work represents initial steps by the Western Water Assessment, a NOAA- Regionally Integrated Sciences and Assessments (RISA) Program, towards the development of a suite of process-oriented frameworks geared toward improving the climate literacy of different users with distinct informational needs. Both workshops focused on water-related climate issues: the first (Dealing with Drought: Climate Change in Colorado) was geared toward an audience with minimal exposure to climate information; the second was for US Forest Service hydrologists and managers with technical backgrounds. In both cases, the workshop format included presentations of relevant climate science, introductions to varied climate tools and products, and a needs-and-gaps assessment. Evaluation of each workshop drew upon a variety of tested social science methods, such as focus groups, decision games, surveys, and structured interviews. The efficacy of the framework developed was assessed by evaluating the relationship among the climate information presented, user perceptions about climate information, and incorporation into decision-making. In addition to climate literacy evaluations, participants were presented with a scenario at the beginning of the meeting, and were asked to report periodically on their thoughts on how to approach the scenario as new information was presented throughout the workshop. This allowed us to track the co-evolution of climate literacy, accuracy of data interpretation, and the sophistication of participants’ decision-making. In the 12-months after each workshop, we will track how the climate literacy of the participants evolves, and how their informational needs for decision-making change. The results here will frame a process for how a larger, federal climate-training program might be conducted, and how training needs can be assessed through climate literacy assessments.
Ireland, Kathryn B; Hansen, Andrew J; Keane, Robert E; Legg, Kristin; Gump, Robert L
2018-06-01
Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We spatially prioritized management actions aimed at mitigating climate impacts to WBP under two management strategies: (1) current management and (2) climate-informed management. The current strategy reflected management actions permissible under existing policy and access constraints. Our goal was to understand how consideration of climate might alter the placement of management actions, so the climate-informed strategies did not include these constraints. The spatial distribution of actions differed among the current and climate-informed management strategies, with 33-60% more wilderness area prioritized for action under climate-informed management. High priority areas for implementing management actions include the 1-8% of the GYE where current and climate-informed management agreed, since this is where actions are most likely to be successful in the long-term and where current management permits implementation. Areas where climate-informed strategies agreed with one another but not with current management (6-22% of the GYE) are potential locations for experimental testing of management actions. Our method for spatial climate adaptation planning is applicable to any species for which information regarding climate vulnerability and climate-mediated risk factors is available.
Balbus, John M.; Christian, Carole; Haque, Ehsanul; Howe, Sally E.; Newton, Sheila A.; Reid, Britt C.; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P.
2013-01-01
Background: According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. Objectives: In this commentary we present a systematic review and categorization of the fiscal year (FY) 2008 NIH climate and health research portfolio. Methods: A list of candidate climate and health projects funded from FY 2008 budget appropriations were identified and characterized based on their relevance to climate change and health and based on climate pathway, health impact, study type, and objective. Results: This analysis identified seven FY 2008 projects focused on climate change, 85 climate-related projects, and 706 projects that focused on disease areas associated with climate change but did not study those associations. Of the nearly 53,000 awards that NIH made in 2008, approximately 0.17% focused on or were related to climate. Conclusions: Given the nature and scale of the potential effects of climate change on human health and the degree of uncertainty that we have about these effects, we think that it is helpful for the NIH to engage in open discussions with science and policy communities about government-wide needs and opportunities in climate and health, and about how NIH’s strengths in human health research can contribute to understanding the health implications of global climate change. This internal review has been used to inform more recent initiatives by the NIH in climate and health. PMID:23552460
NASA Astrophysics Data System (ADS)
Ireland, Kathryn B.; Hansen, Andrew J.; Keane, Robert E.; Legg, Kristin; Gump, Robert L.
2018-06-01
Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We spatially prioritized management actions aimed at mitigating climate impacts to WBP under two management strategies: (1) current management and (2) climate-informed management. The current strategy reflected management actions permissible under existing policy and access constraints. Our goal was to understand how consideration of climate might alter the placement of management actions, so the climate-informed strategies did not include these constraints. The spatial distribution of actions differed among the current and climate-informed management strategies, with 33-60% more wilderness area prioritized for action under climate-informed management. High priority areas for implementing management actions include the 1-8% of the GYE where current and climate-informed management agreed, since this is where actions are most likely to be successful in the long-term and where current management permits implementation. Areas where climate-informed strategies agreed with one another but not with current management (6-22% of the GYE) are potential locations for experimental testing of management actions. Our method for spatial climate adaptation planning is applicable to any species for which information regarding climate vulnerability and climate-mediated risk factors is available.
Jessup, Christine M; Balbus, John M; Christian, Carole; Haque, Ehsanul; Howe, Sally E; Newton, Sheila A; Reid, Britt C; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P
2013-04-01
According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. In this commentary we present a systematic review and categorization of the fiscal year (FY) 2008 NIH climate and health research portfolio. A list of candidate climate and health projects funded from FY 2008 budget appropriations were identified and characterized based on their relevance to climate change and health and based on climate pathway, health impact, study type, and objective. This analysis identified seven FY 2008 projects focused on climate change, 85 climate-related projects, and 706 projects that focused on disease areas associated with climate change but did not study those associations. Of the nearly 53,000 awards that NIH made in 2008, approximately 0.17% focused on or were related to climate. Given the nature and scale of the potential effects of climate change on human health and the degree of uncertainty that we have about these effects, we think that it is helpful for the NIH to engage in open discussions with science and policy communities about government-wide needs and opportunities in climate and health, and about how NIH's strengths in human health research can contribute to understanding the health implications of global climate change. This internal review has been used to inform more recent initiatives by the NIH in climate and health.
Using Local Stories as a Call to Action on Climate Change Adaptation and Mitigation in Minnesota
NASA Astrophysics Data System (ADS)
Phipps, M.
2015-12-01
Climate Generation: A Will Steger Legacy and the University of Minnesota's Regional Sustainability Development Partnerships (RSDP) have developed a novel approach to engaging rural Minnesotans on climate change issues. Through the use of personal, local stories about individuals' paths to action to mitigate and or adapt to climate change, Climate Generation and RSDP aim to spur others to action. Minnesota's Changing Climate project includes 12 Climate Convenings throughout rural Minnesota in a range of communities (tourism-based, agrarian, natural resources-based, university towns) to engage local populations in highly local conversations about climate change, its local impacts, and local solutions currently occurring. Climate Generation and RSDP have partnered with Molly Phipps Consulting to evaluate the efficacy of this approach in rural Minnesota. Data include pre and post convening surveys examining participants' current action around climate change, attitudes toward climate change (using questions from Maibach, Roser-Renouf, and Leiserowitz, 2009), and the strength of their social network to support their current and ongoing work toward mitigating and adapting to climate change. Although the Climate Convenings are tailored to each community, all include a resource fair of local organizations already engaging in climate change mitigation and adaptation activities which participants can participate in, a welcome from a trusted local official, a presentation on the science of climate change, sharing of local climate stories, and break-out groups where participants can learn how to get involved in a particular mitigation or adaptation strategy. Preliminary results have been positive: participants feel motivated to work toward mitigating and adapting to climate change, and more local stories have emerged that can be shared in follow-up webinars and on a project website to continue to inspire others to act.
Snover, Amy K; Mantua, Nathan J; Littell, Jeremy S; Alexander, Michael A; McClure, Michelle M; Nye, Janet
2013-12-01
Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación. © 2013 Society for Conservation Biology.
Probabilistic projections of 21st century climate change over Northern Eurasia
NASA Astrophysics Data System (ADS)
Monier, E.; Sokolov, A. P.; Schlosser, C. A.; Scott, J. R.; Gao, X.
2013-12-01
We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an earth system model of intermediate complexity, with a two-dimensional zonal-mean atmosphere, to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three dimensional atmospheric model; and a statistical downscaling, where a pattern scaling algorithm uses climate-change patterns from 17 climate models. This framework allows for key sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections; climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate); natural variability; and structural uncertainty. Results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also nd that dierent initial conditions lead to dierences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider all sources of uncertainty when modeling climate impacts over Northern Eurasia.
Probabilistic projections of 21st century climate change over Northern Eurasia
NASA Astrophysics Data System (ADS)
Monier, Erwan; Sokolov, Andrei; Schlosser, Adam; Scott, Jeffery; Gao, Xiang
2013-12-01
We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity with a two-dimensional zonal-mean atmosphere to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model, and a statistical downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate models. This framework allows for four major sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections, climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability, and structural uncertainty. The results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also find that different initial conditions lead to differences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider these sources of uncertainty when modeling climate impacts over Northern Eurasia.
Beyond equilibrium climate sensitivity
NASA Astrophysics Data System (ADS)
Knutti, Reto; Rugenstein, Maria A. A.; Hegerl, Gabriele C.
2017-10-01
Equilibrium climate sensitivity characterizes the Earth's long-term global temperature response to increased atmospheric CO2 concentration. It has reached almost iconic status as the single number that describes how severe climate change will be. The consensus on the 'likely' range for climate sensitivity of 1.5 °C to 4.5 °C today is the same as given by Jule Charney in 1979, but now it is based on quantitative evidence from across the climate system and throughout climate history. The quest to constrain climate sensitivity has revealed important insights into the timescales of the climate system response, natural variability and limitations in observations and climate models, but also concerns about the simple concepts underlying climate sensitivity and radiative forcing, which opens avenues to better understand and constrain the climate response to forcing. Estimates of the transient climate response are better constrained by observed warming and are more relevant for predicting warming over the next decades. Newer metrics relating global warming directly to the total emitted CO2 show that in order to keep warming to within 2 °C, future CO2 emissions have to remain strongly limited, irrespective of climate sensitivity being at the high or low end.
Non-climatic thermal adaptation: implications for species' responses to climate warming.
Marshall, David J; McQuaid, Christopher D; Williams, Gray A
2010-10-23
There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky-eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.
Hydrological Climate Classification: Can We Improve on Köppen-Geiger?
NASA Astrophysics Data System (ADS)
Knoben, W.; Woods, R. A.; Freer, J. E.
2017-12-01
Classification is essential in the study of complex natural systems, yet hydrology so far has no formal way to structure the climate forcing which underlies hydrologic response. Various climate classification systems can be borrowed from other disciplines but these are based on different organizing principles than a hydrological classification might use. From gridded global data we calculate a gridded aridity index, an aridity seasonality index and a rain-vs-snow index, which we use to cluster global locations into climate groups. We then define the membership degree of nearly 1100 catchments to each of our climate groups based on each catchment's climate and investigate the extent to which streamflow responses within each climate group are similar. We compare this climate classification approach with the often-used Köppen-Geiger classification, using statistical tests based on streamflow signature values. We find that three climate indices are sufficient to distinguish 18 different climate types world-wide. Climates tend to change gradually in space and catchments can thus belong to multiple climate groups, albeit with different degrees of membership. Streamflow responses within a climate group tend to be similar, regardless of the catchments' geographical proximity. A Wilcoxon two-sample test based on streamflow signature values for each climate group shows that the new classification can distinguish different flow regimes using this classification scheme. The Köppen-Geiger approach uses 29 climate classes but is less able to differentiate streamflow regimes. Climate forcing exerts a strong control on typical hydrologic response and both change gradually in space. This makes arbitrary hard boundaries in any classification scheme difficult to defend. Any hydrological classification should thus acknowledge these gradual changes in forcing. Catchment characteristics (soil or vegetation type, land use, etc) can vary more quickly in space than climate does, which can explain streamflow differences between geographically close locations. Summarizing, this work shows that hydrology needs its own way to structure climate forcing, acknowledging that climates vary gradually on a global scale and explicitly including those climate aspects that drive seasonal changes in hydrologic regimes.
NASA Astrophysics Data System (ADS)
Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.
2012-12-01
A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data shown in the database construction and by the model reinforces the need for high-resolution datasets and stresses the importance of understanding and incorporating climate change scenarios into earth system models.
Accounting for multiple climate components when estimating climate change exposure and velocity
Nadeau, Christopher P.; Fuller, Angela K.
2015-01-01
The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (<1·5% overlap) across most of the global land surface and that exposure is likely to be highest in areas with low historical climate variation. Last, we show that accounting for changes in the variation and correlation between multiple weather variables can dramatically affect velocity estimates; mean velocity estimates in the continental United States were between 3·1 and 19·0 km yr−1when estimated using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.
NASA Astrophysics Data System (ADS)
Girvetz, E. H.; Zganjar, C.; Raber, G. T.; Hoekstra, J.; Lawler, J. J.; Kareiva, P.
2008-12-01
Now that there is overwhelming evidence of global climate change, scientists, managers and planners (i.e. practitioners) need to assess the potential impacts of climate change on particular ecological systems, within specific geographic areas, and at spatial scales they care about, in order to make better land management, planning, and policy decisions. Unfortunately, this application of climate science to real world decisions and planning has proceeded too slowly because we lack tools for translating cutting-edge climate science and climate-model outputs into something managers and planners can work with at local or regional scales (CCSP 2008). To help increase the accessibility of climate information, we have developed a freely-available, easy-to-use, web-based climate-change analysis toolbox, called ClimateWizard, for assessing how climate has and is projected to change at specific geographic locations throughout the world. The ClimateWizard uses geographic information systems (GIS), web-services (SOAP/XML), statistical analysis platforms (e.g. R- project), and web-based mapping services (e.g. Google Earth/Maps, KML/GML) to provide a variety of different analyses (e.g. trends and departures) and outputs (e.g. maps, graphs, tables, GIS layers). Because ClimateWizard analyzes large climate datasets stored remotely on powerful computers, users of the tool do not need to have fast computers or expensive software, but simply need access to the internet. The analysis results are then provided to users in a Google Maps webpage tailored to the specific climate-change question being asked. The ClimateWizard is not a static product, but rather a framework to be built upon and modified to suit the purposes of specific scientific, management, and policy questions. For example, it can be expanded to include bioclimatic variables (e.g. evapotranspiration) and marine data (e.g. sea surface temperature), as well as improved future climate projections, and climate-change impact analyses involving hydrology, vegetation, wildfire, disease, and food security. By harnessing the power of computer and web- based technologies, the ClimateWizard puts local, regional, and global climate-change analyses in the hands of a wider array of managers, planners, and scientists.
Quantifying the Climate Impacts of Land Use Change (Invited)
NASA Astrophysics Data System (ADS)
Anderson-Teixeira, K. J.; Snyder, P. K.; Twine, T. E.
2010-12-01
Climate change mitigation efforts that involve land use decisions call for comprehensive quantification of the climate services of terrestrial ecosystems. This is particularly imperative for analyses of the climate impact of bioenergy production, as land use change is often the single most important factor in determining bioenergy’s sustainability. However, current metrics of the climate services of terrestrial ecosystems used for policy applications—including biofuels life cycle analyses—account only for biogeochemical climate services (greenhouse gas regulation), ignoring biophysical climate regulation services (regulation of water and energy balances). Policies thereby run the risk of failing to advance the best climate solutions. Here, we present a quantitative metric that combines biogeochemical and biophysical climate services of terrestrial ecosystems, the ‘climate regulation value’ (CRV), which characterizes the climate benefit of maintaining an ecosystem over a multiple-year time frame. Using a combination of data synthesis and modeling, we calculate the CRV for a variety of natural and managed ecosystem types within the western hemisphere. Biogeochemical climate services are generally positive in unmanaged ecosystems (clearing the ecosystem has a warming effect), and may be positive or negative (clearing the ecosystem has a cooling effect) for managed ecosystems. Biophysical climate services may be either positive (e.g., tropical forests) or negative (e.g., high latitude forests). When averaged on a global scale, biogeochemical services usually outweigh biophysical services; however, biophysical climate services are not negligible. This implies that effective analysis of the climate impacts of bioenergy production must consider the integrated effects of biogeochemical and biophysical ecosystem climate services.
Wan, Jizhong
2016-01-01
Climate change has the potential to alter the distributions of threatened plant species, and may therefore diminish the capacity of nature reserves to protect threatened plant species. Chinese nature reserves contain a rich diversity of plant species that are at risk of becoming more threatened by climate change. Hence, it is urgent to identify the extent to which future climate change may compromise the suitability of threatened plant species habitats within Chinese nature reserves. Here, we modelled the climate suitability of 82 threatened plant species within 168 nature reserves across climate change scenarios. We used Maxent modelling based on species occurrence localities and evaluated climate change impacts using the magnitude of change in climate suitability and the degree of overlap between current and future climatically suitable habitats. There was a significant relationship between overlap with current and future climate suitability of all threatened plant species habitats and the magnitude of changes in climate suitability. Our projections estimate that the climate suitability of more than 60 threatened plant species will decrease and that climate change threatens the habitat suitability of plant species in more than 130 nature reserves under the low, medium, and high greenhouse gas concentration scenarios by both 2050s and 2080s. Furthermore, future climate change may substantially threaten tree plant species through changes in annual mean temperature. These results indicate that climate change may threaten plant species that occur within Chinese nature reserves. Therefore, we suggest that climate change projections should be integrated into the conservation and management of threatened plant species within nature reserves. PMID:27326373
Climate variability and vulnerability to climate change: a review
Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J
2014-01-01
The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802
Lessons learnt from the Climate Dialogue initiative
NASA Astrophysics Data System (ADS)
Crok, Marcel; Strengers, Bart; Vasileiadou, Eleftheria
2015-04-01
The weblog Climate Dialogue (climatedialogue.org) has been an experimental climate change communication project. It was the result of a motion in the Dutch parliament, which asked the Dutch government "to also involve climate sceptics in future studies on climate change". Climate Dialogue was set up by the Royal Netherlands Meteorological Institute (KNMI), the Netherlands Environmental Assessment Agency (PBL), and Dutch science journalist Marcel Crok. It operated for slightly more than two years (From November 2012 till December 2014). Around 20 climate scientists from all over the world, many of them leading in their respective fields, participated in six dialogues. Climate Dialogue was a moderated blog on controversial climate science topics introducing a combination of several novel elements: a) bringing together scientists with widely separated viewpoints b) strict moderation of the discussion and c) compilation of executive and extended summaries of the discussions that were approved by the invited scientists. In our talk, we will discuss the operation and results of the Climate Dialogue project, focusing more explicitly on the lessons learnt with respect to online climate change communication addressing the question: "To what extent can online climate change communication bring together climate scientists with widely separated viewpoints, and what would be the advantage of such communication practice?" We identify how Climate Dialogue was received and perceived by the participating scientists, but also by different scientific and online communities. Finally, we present our ideas on how Climate Dialogue could evolve in a novel way of contributing to (climate) science and what steps would be necessary and/or beneficial for such a platform to survive and succeed.
Climate Change Education in Earth System Science
NASA Astrophysics Data System (ADS)
Hänsel, Stephanie; Matschullat, Jörg
2013-04-01
The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory data analysis the approaches on climate time series, trend analysis and extreme events analysis are explained. Tools to describe relations within the data sets and significance tests further corroborate this. Within the weekly exercises that have to be prepared at home, the students work with self-selected climate data sets and apply the learned methods. The presentation and discussion of intermediate results by the students is as much part of the exercises as the illustration of possible methodological procedures by the teacher using exemplary data sets. The total time expenditure of the course is 270 hours with 90 attendance hours. The remainder consists of individual studies, e.g., preparation of discussions and presentations, statistical data analysis, and scientific writing. Different forms of examination are applied including written or oral examination, scientific report, presentation and portfolio work.
NASA Astrophysics Data System (ADS)
Valentina, Gallina; Torresan, Silvia; Giannini, Valentina; Rizzi, Jonathan; Zabeo, Alex; Gualdi, Silvio; Bellucci, Alessio; Giorgi, Filippo; Critto, Andrea; Marcomini, Antonio
2013-04-01
At the international level, the interest for climate services is rising due to the social and economic benefits that different stakeholders can achieve to manage climate risks and take advantage of the opportunities associated with climate change impacts. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. Within the CLIM-RUN project (FP7), the case study of the North Adriatic Sea is aimed at analysing the need of climate information and the effectiveness of climate services for the integrated assessment of climate change impacts in coastal zones of the North Adriatic Sea at the regional to local scale. A participative approach was developed and applied to identify relevant stakeholders which have a mandate for coastal zone management and to interact with them in order to elicit their climate information needs. Specifically, the participative approach was carried out by means of two local workshops and trough the administration of a questionnaire related to climate information and services. The results of the process allowed identifying three major themes of interest for local stakeholders (i.e. hydro-climatic regime, coastal and marine environment, agriculture) and their preferences concerning key climate variables (e.g. extreme events, sea-level, wave height), mid-term temporal projections (i.e. for the next 30-40 years) and medium-high spatial resolution (i.e. from 1 to 50 km). Furthermore, the workshops highlighted stakeholder concern about several climate-related impacts (e.g. sea-level rise, storm surge, droughts) and vulnerable receptors (e.g. beaches, wetlands, agricultural areas) to be considered in vulnerability and risk assessment studies for the North Adriatic coastal zones. This information was used by climate and environmental risk experts in order to develop targeted climate information and services (e.g. climate projections and maps) for coastal stakeholders. The final results include climate products developed by climate experts through the analysis of climate observations and scenarios (e.g. standard indices of extreme precipitations and droughts, consecutive days of heavy rain, mean sea level pressure) and risk-based maps supplied by environmental risk experts to facilitate the definition of adaptation strategies (e.g. sea-level rise/storm surge risk maps with the surface of receptor lost; drought risk maps with the percentage of suffering agricultural areas). The preliminary climate products and the results of North Adriatic case study will be here presented and discussed.
Climate Leadership Awards Frequent Questions
Provides answers to frequently asked questions regarding the Climate Leadership Awards, sponsored by EPA's Center for Corporate Climate Leadership with co-sponsorship from the Center for Climate and Energy Solutions and The Climate Registry.
ERIC Educational Resources Information Center
Hibbs, Amber Campbell; Kahl, Daniel; PytlikZillig, Lisa; Champion, Ben; Abdel-Monem, Tarik; Steffensmeier, Timothy; Rice, Charles W.; Hubbard, Kenneth
2014-01-01
The Central Great Plains Climate Education Partnership conducted focus groups throughout Kansas to gain a better understanding of farmer perceptions and attitudes towards climate change education. Results indicate concern about climatic changes, even if producers are unsure that "human caused climate change" is occurring. Participants…
Climate change and forest diseases
R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods
2011-01-01
As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...
Climate Prediction - NOAA's National Weather Service
Statistical Models... MOS Prod GFS-LAMP Prod Climate Past Weather Predictions Weather Safety Weather Radio National Weather Service on FaceBook NWS on Facebook NWS Director Home > Climate > Predictions Climate Prediction Long range forecasts across the U.S. Climate Prediction Web Sites Climate Prediction
PRISM Climate Group, Oregon State U
FAQ PRISM Climate Data The PRISM Climate Group gathers climate observations from a wide range of monitoring networks, applies sophisticated quality control measures, and develops spatial climate datasets to reveal short- and long-term climate patterns. The resulting datasets incorporate a variety of modeling
Public Perception of Climate Change: The Importance of Knowledge and Cultural Worldviews.
Shi, Jing; Visschers, Vivianne H M; Siegrist, Michael
2015-12-01
The importance of knowledge for lay people's climate change concerns has been questioned in recent years, as it had been suggested that cultural values are stronger predictors of concern about climate change than knowledge. Studies that simultaneously measured knowledge related to climate change and cultural values have, however, been missing. We conducted a mail survey in the German-speaking part of Switzerland (N = 1,065). Results suggested that cultural worldviews and climate-related knowledge were significantly related with people's concern about climate change. Also, cultural worldviews and climate-relevant knowledge appeared important for people's willingness to change behaviors and to accept climate change policies. In addition, different types of knowledge were found to have different impacts on people's concern about climate change, their willingness to change behaviors, and their acceptance of policies about climate change. Specifically, causal knowledge significantly increased concern about climate change and willingness to support climate-friendly policies. We therefore concluded that risk communication should focus on causal knowledge, provided this knowledge does not threaten cultural values. © 2015 Society for Risk Analysis.
Tribal engagement strategy of the South Central Climate Science Center, 2014
Andrews, William J.; Taylor, April; Winton, Kimberly T.
2014-01-01
The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.
Askeyev, O V; Tischin, D; Sparks, T H; Askeyev, I V
2005-03-01
Our data, collected in the extreme east of Europe, show that a significant biological effect of climate change has been experienced even in territories where temperature increase has been the lowest. This study documents the climatic response of pedunculate oak (Quercus robur) growing near its north-eastern limits in Europe. It demonstrates the potential of oak trees in old-growth forest to act as proxy climate indicators. Many factors may influence the temporal stability of the growth-climate, acorn crop-climate and first leafing-climate relationships. Climate data, climatic fluctuations, reproduction, genetics and tree-age may relate to this instability. Our results stress that an increase in climate variability or climatic warming resulting from warmer winters or summers could affect the oak population in eastern Europe in a similar way to that in western Europe. These findings, from remnants of oak forest in the middle Volga region of Russia, allow a further understanding of how species could be affected by future climates.
Science Partnerships Contact Us Climate Action Team & Climate Action Initiative The Climate Action . See CAT reports Climate Action Team Pages CAT Home Members Working Groups Reports Back to Top
Current practices and future opportunities for policy on climate change and invasive species.
Pyke, Christopher R; Thomas, Roxanne; Porter, Read D; Hellmann, Jessica J; Dukes, Jeffrey S; Lodge, David M; Chavarria, Gabriela
2008-06-01
Climate change and invasive species are often treated as important, but independent, issues. Nevertheless, they have strong connections: changes in climate and societal responses to climate change may exacerbate the impacts of invasive species, whereas invasive species may affect the magnitude, rate, and impact of climate change. We argue that the design and implementation of climate-change policy in the United States should specifically consider the implications for invasive species; conversely, invasive-species policy should address consequences for climate change. The development of such policies should be based on (1) characterization of interactions between invasive species and climate change, (2) identification of areas where climate-change policies could negatively affect invasive-species management, and (3) identification of areas where policies could benefit from synergies between climate change and invasive-species management.
The interactive roles of mastery climate and performance climate in predicting intrinsic motivation.
Buch, R; Nerstad, C G L; Säfvenbom, R
2017-02-01
This study examined the interplay between perceived mastery and performance climates in predicting increased intrinsic motivation. The results of a two-wave longitudinal study comprising of 141 individuals from three military academies revealed a positive relationship between a perceived mastery climate and increased intrinsic motivation only for individuals who perceived a low performance climate. This finding suggests a positive relationship between a perceived mastery climate and increased intrinsic motivation only when combined with low perceptions of a performance climate. Hence, introducing a performance climate in addition to a mastery climate can be an undermining motivational strategy, as it attenuates the positive relationship between a mastery climate and increased intrinsic motivation. Implications for future research and practice are discussed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; Müller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.
2013-10-01
In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere-Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.
Sutton, William B.; Barrett, Kyle; Moody, Allison T.; Loftin, Cynthia S.; deMaynadier, Phillip G.; Nanjappa, Priya
2015-01-01
Global climate change represents one of the most extensive and pervasive threats to wildlife populations. Amphibians, specifically salamanders, are particularly susceptible to the effects of changing climates due to their restrictive physiological requirements and low vagility; however, little is known about which landscapes and species are vulnerable to climate change. Our study objectives included, (1) evaluating species-specific predictions (based on 2050 climate projections) and vulnerabilities to climate change and (2) using collective species responses to identify areas of climate refugia for conservation priority salamanders in the northeastern United States. All evaluated salamander species were projected to lose a portion of their climatic niche. Averaged projected losses ranged from 3%–100% for individual species, with the Cow Knob Salamander (Plethodon punctatus), Cheat Mountain Salamander (Plethodon nettingi), Shenandoah Mountain Salamander (Plethodon virginia), Mabee’s Salamander (Ambystoma mabeei), and Streamside Salamander (Ambystoma barbouri) predicted to lose at least 97% of their landscape-scale climatic niche. The Western Allegheny Plateau was predicted to lose the greatest salamander climate refugia richness (i.e., number of species with a climatically-suitable niche in a landscape patch), whereas the Central Appalachians provided refugia for the greatest number of species during current and projected climate scenarios. Our results can be used to identify species and landscapes that are likely to be further affected by climate change and potentially resilient habitats that will provide consistent climatic conditions in the face of environmental change.
Harbert, Robert S; Nixon, Kevin C
2015-08-01
• Plant distributions have long been understood to be correlated with the environmental conditions to which species are adapted. Climate is one of the major components driving species distributions. Therefore, it is expected that the plants coexisting in a community are reflective of the local environment, particularly climate.• Presented here is a method for the estimation of climate from local plant species coexistence data. The method, Climate Reconstruction Analysis using Coexistence Likelihood Estimation (CRACLE), is a likelihood-based method that employs specimen collection data at a global scale for the inference of species climate tolerance. CRACLE calculates the maximum joint likelihood of coexistence given individual species climate tolerance characterization to estimate the expected climate.• Plant distribution data for more than 4000 species were used to show that this method accurately infers expected climate profiles for 165 sites with diverse climatic conditions. Estimates differ from the WorldClim global climate model by less than 1.5°C on average for mean annual temperature and less than ∼250 mm for mean annual precipitation. This is a significant improvement upon other plant-based climate-proxy methods.• CRACLE validates long hypothesized interactions between climate and local associations of plant species. Furthermore, CRACLE successfully estimates climate that is consistent with the widely used WorldClim model and therefore may be applied to the quantitative estimation of paleoclimate in future studies. © 2015 Botanical Society of America, Inc.
NASA Astrophysics Data System (ADS)
Bhattacharya, D.; Forbes, C.; Roehrig, G.; Chandler, M. A.
2017-12-01
Promoting climate literacy among in-service science teachers necessitates an understanding of fundamental concepts about the Earth's climate System (USGCRP, 2009). Very few teachers report having any formal instruction in climate science (Plutzer et al., 2016), therefore, rather simple conceptions of climate systems and their variability exist, which has implications for students' science learning (Francies et al., 1993; Libarkin, 2005; Rebich, 2005). This study uses the inferences from a NASA Innovations in Climate Education (NICE) teacher professional development program (CYCLES) to establish the necessity for developing an epistemological perspective among teachers. In CYCLES, 19 middle and high school (male=8, female=11) teachers were assessed for their understanding of global climate change (GCC). A qualitative analysis of their concept maps and an alignment of their conceptions with the Essential Principles of Climate Literacy (NOAA, 2009) demonstrated that participants emphasized on EPCL 1, 3, 6, 7 focusing on the Earth system, atmospheric, social and ecological impacts of GCC. However, EPCL 4 (variability in climate) and 5 (data-based observations and modeling) were least represented and emphasized upon. Thus, participants' descriptions about global climatic patterns were often factual rather than incorporating causation (why the temperatures are increasing) and/or correlation (describing what other factors might influence global temperatures). Therefore, engaging with epistemic dimensions of climate science to understand the processes, tools, and norms through which climate scientists study the Earth's climate system (Huxter et al., 2013) is critical for developing an in-depth conceptual understanding of climate. CLiMES (Climate Modeling and Epistemology of Science), a NSF initiative proposes to use EzGCM (EzGlobal Climate Model) to engage students and teachers in designing and running simulations, performing data processing activities, and analyzing computational models to develop their own evidence-based claims about the Earth's climate system. We describe how epistemological investigations can be conducted using EzGCM to bring the scientific process and authentic climate science practice to middle and high school classrooms.
Convening Young Leaders for Climate Resilience in New York State
NASA Astrophysics Data System (ADS)
Kretser, J.
2017-12-01
This project, led by The Wild Center, will partner with Cornell Cooperative Extension of Delaware County, the Kurt Hahn Expeditionary Learning School in Brooklyn, and the Alliance for Climate Education to do the following over three years: 1) increase climate literacy and preparedness planning in high school students through place-based Youth Climate Summits in the Adirondacks, Catskills, and New York City; 2) enhance young people's capacity to lead on climate issues through a Youth Climate Leadership Practicum 3) increase teacher comprehension and understanding of climate change through a Teacher Climate Institute and 4) communicate climate change impacts and resilience through student-driven Community Climate Outreach activities. The project will align with New York State's climate resiliency planning by collaborating with the NYS Department of Environmental Conservation Office of Climate (OCC), NYS Energy Research Development Authority (NYSERDA), and NOAA's Climate Program Office to provide accurate scientific information, resources, and tools. This collaboration will result in an increase in understanding of the impacts of climate change in rural (Adirondacks, Catskills) and urban (New York City) regions of New York State; a wider awareness of the threats and vulnerabilities that are associated with a community's location; and a stronger connection between current community resilience initiatives, educators, and youth. All three of the project sites are critically underserved in both climate literacy and action, making addressing the need of these sites to be resilient and proactive in the face of climate change critical. Our model will provide pilot lessons for how youth in both rural and urban areas can draw on local assets to address resiliency in ways appropriate for their own areas, and these lessons may be able to be applied across the United States.The proposed project is informed by best practices and specifically strengthens and replicates The Wild Center's past success with the Adirondack Youth Climate Summit, student leadership, and student-led community outreach for climate awareness - all work that has been tested or piloted over the last seven years.
Climate Change, Climate Justice, and Environmental Health: Implications for the Nursing Profession.
Nicholas, Patrice K; Breakey, Suellen
2017-11-01
Climate change is an emerging challenge linked to negative outcomes for the environment and human health. Since the 1960s, there has been a growing recognition of the need to address climate change and the impact of greenhouse gas emissions implicated in the warming of our planet. There are also deleterious health outcomes linked to complex climate changes that are emerging in the 21st century. This article addresses the social justice issues associated with climate change and human health and discussion of climate justice. Discussion paper. A literature search of electronic databases was conducted for articles, texts, and documents related to climate change, climate justice, and human health. The literature suggests that those who contribute least to global warming are those who will disproportionately be affected by the negative health outcomes of climate change. The concept of climate justice and the role of the Mary Robinson Foundation-Climate Justice are discussed within a framework of nursing's professional responsibility and the importance of social justice for the world's people. The nursing profession must take a leadership role in engaging in policy and advocacy discussions in addressing the looming problems associated with climate change. Nursing organizations have adopted resolutions and engaged in leadership roles to address climate change at the local, regional, national, and global level. It is essential that nurses embrace concepts related to social justice and engage in the policy debate regarding the deleterious effects on human health related to global warming and climate change. Nursing's commitment to social justice offers an opportunity to offer significant global leadership in addressing the health implications related to climate change. Recognizing the negative impacts of climate change on well-being and the underlying socioeconomic reasons for their disproportionate and inequitable distribution can expand and optimize the profession's role in education, practice, research, and policy-making efforts to address climate change. © 2017 Sigma Theta Tau International.
Using narratives to motivate climate science
NASA Astrophysics Data System (ADS)
Stiller-Reeve, Mathew; Bremer, Scott; Blanchard, Anne
2015-04-01
This paper presents the lessons learnt by the climate scientists within an interdisciplinary research project called 'TRACKS': Transforming climate knowledge with and for society. The project uses the climate narratives of local people in northeast Bangladesh as a basis for mobilizing high quality climate knowledge for adaptation. To ensure this high quality climate information, the project demands an interdisciplinary approach. This project is therefore a broad, but tight collaboration between climate science and perspectives from social science and the humanities. For the climate scientists involved, the aim was to do research that would provide local people with climate information that would hopefully aid adaptation. The climate research design had to consider the perceptions of the local people in northeast Bangladesh, and what aspects of the local climate that they thought were important. For the climate scientists to gain an appropriate understanding, they were fully integrated into the whole narrative research process. The different disciplines cooperate fully in all aspects of the TRACKS project. The climate scientists were involved in planning the narrative interview survey about weather and how it impacts the lives of local people in northeast Bangladesh. The climate scientists participated in a workshop with social science colleagues from Bangladesh and Norway, to design the research questions, the interview framework, and the data management plan. The climate scientists then travelled to Bangladesh with social scientist colleagues to observe and discuss ten pilot interviews with local people, and to take part in two 'stakeholder-mapping' workshops. On the basis of these interviews and workshops, the climate scientists arranged an interdisciplinary workshop where all the project's researchers designed the climate science research questions together. The climate research questions have therefore been built around a first-hand interdisciplinary experience of the situation in northeast Bangladesh. At no point did we decide on the pertinent climatic issues independently of the local people. The success of this interdisciplinary approach so far has depended on time, patience, and humility. In this presentation, we present the narrative approach we have initiated in TRACKS. We will look at some of local climate narratives from the full-scale survey, as well as the challenges and the research questions that resulted from the process. We will also discuss future perspectives of how we re-integrate the new climate science into the dialogue with the local people.
NASA Astrophysics Data System (ADS)
Wang, Zhu; Shi, Peijun; Zhang, Zhao; Meng, Yongchang; Luan, Yibo; Wang, Jiwei
2017-09-01
Separating out the influence of climatic trend, fluctuations and extreme events on crop yield is of paramount importance to climate change adaptation, resilience, and mitigation. Previous studies lack systematic and explicit assessment of these three fundamental aspects of climate change on crop yield. This research attempts to separate out the impacts on rice yields of climatic trend (linear trend change related to mean value), fluctuations (variability surpassing the "fluctuation threshold" which defined as one standard deviation (1 SD) of the residual between the original data series and the linear trend value for each climatic variable), and extreme events (identified by absolute criterion for each kind of extreme events related to crop yield). The main idea of the research method was to construct climate scenarios combined with crop system simulation model. Comparable climate scenarios were designed to express the impact of each climate change component and, were input to the crop system model (CERES-Rice), which calculated the related simulated yield gap to quantify the percentage impacts of climatic trend, fluctuations, and extreme events. Six Agro-Meteorological Stations (AMS) in Hunan province were selected to study the quantitatively impact of climatic trend, fluctuations and extreme events involving climatic variables (air temperature, precipitation, and sunshine duration) on early rice yield during 1981-2012. The results showed that extreme events were found to have the greatest impact on early rice yield (-2.59 to -15.89%). Followed by climatic fluctuations with a range of -2.60 to -4.46%, and then the climatic trend (4.91-2.12%). Furthermore, the influence of climatic trend on early rice yield presented "trade-offs" among various climate variables and AMS. Climatic trend and extreme events associated with air temperature showed larger effects on early rice yield than other climatic variables, particularly for high-temperature events (-2.11 to -12.99%). Finally, the methodology use to separate out the influences of the climatic trend, fluctuations, and extreme events on crop yield was proved to be feasible and robust. Designing different climate scenarios and feeding them into a crop system model is a potential way to evaluate the quantitative impact of each climate variable.
NASA Astrophysics Data System (ADS)
Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.
2012-12-01
Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the results of the earlier decisions, as simulated by C-ROADS. Preliminary evaluations show that both exercises have the potential to provide powerful learning experiences. University students who played World Climate in a climate change course cited it as one of the course activities "promoting the most learning." Students' responses on anonymous surveys and open-ended questions revealed that the experience affected them at visceral, as well as intellectual levels. All of the students recommended that the exercise be continued in future years and many felt that it was the most important learning experience of the semester. Similarly, understanding of climate change and the dynamics of the climate improved for the majority of Future Climate participants, and 90% of participants stated that they were more likely to take action to address climate change on a personal level because of their experience.
Jaspal, Rusi; Nerlich, Brigitte
2014-02-01
Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.
Some guidelines for helping natural resources adapt to climate change
Baron, Jill S.; Julius, Susan Herrod; West, Jordan M.; Joyce, Linda A.; Blate, Geoffrey; Peterson, Charles H.; Palmer, Margaret; Keller, Brian D.; Kareiva, Peter; Scott, J. Michael; Griffith, Brad
2008-01-01
The changes occurring in mountain regions are an epitome of climate change. The dramatic shrinkage of major glaciers over the past century – and especially in the last 30 years – is one of several iconic images that have come to symbolize climate change. Climate creates the context for ecosystems, and climate variables strongly influence the structure, composition, and processes that characterize distinct ecosystems. Climate change, therefore, is having direct and indirect effects on species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue regardless of emissions mitigation, management strategies to enhance the resilience of ecosystems will become increasingly important. It is essential that management responses to climate change proceed using the best available science despite uncertainties associated with the future path of climate change, the response of ecosystems to climate effects, and the effects of management. Given these uncertainties, management adaptation will require flexibility to reflect our growing understanding of climate change impacts and management effectiveness.
Do Leadership Style, Unit Climate, and Safety Climate Contribute to Safe Medication Practices?
Farag, Amany; Tullai-McGuinness, Susan; Anthony, Mary K; Burant, Christopher
2017-01-01
This study aims at: examining if leadership style and unit climate predict safety climate; and testing the direct, indirect, and total effect of leadership style, unit climate, and safety climate on nurses' safe medication practices. The Institute of Medicine and nursing scholars propose that safety climate is a prerequisite to safety practices. However, there is limited empirical evidence about factors contributing to the development of safety climate and about the association with nurses' safe medication practices. This cross-sectional study used survey data from 246 RNs working in a Magnet® hospital. Leadership style and unit climate predicted 20% to 50% of variance on all safety climate dimensions. Model testing revealed the indirect impact of leadership style and unit climate on nurses' safe medication practices. Our hypothesized model explained small amount of the variance on nurses' safe medication practices. This finding suggests that nurses' safe medication practices are influenced by multiple contextual and personal factors that should be further examined.
Recent Challenges Facing US Government Climate Science Access and Application
NASA Astrophysics Data System (ADS)
Goldman, G. T.; Carter, J. M.; Licker, R.
2017-12-01
Climate scientists have long faced politicization of their work, especially those working within the US federal government. However, political interference in federal government climate change science has escalated in the current political era with efforts by political actors to undermine and disrupt infrastructure supporting climate science. This has included funding changes, decreased access to climate science information on federal agency websites, restrictions on media access to scientific experts within the government, and rolling back of science-based policies designed to incorporate and respond to climate science findings. What are the impacts of such changes for both the climate science community and the broader public? What can be done to ensure that access to and application of climate change-related research to policy decisions continues? We will summarize and analyze the state of climate change research and application in the US government. The impacts of political interference in climate change science as well as opportunities the scientific community has to support climate science in the US government, will be discussed.
The Distribution of Climate Change Public Opinion in Canada.
Mildenberger, Matto; Howe, Peter; Lachapelle, Erick; Stokes, Leah; Marlon, Jennifer; Gravelle, Timothy
2016-01-01
While climate scientists have developed high resolution data sets on the distribution of climate risks, we still lack comparable data on the local distribution of public climate change opinions. This paper provides the first effort to estimate local climate and energy opinion variability outside the United States. Using a multi-level regression and post-stratification (MRP) approach, we estimate opinion in federal electoral districts and provinces. We demonstrate that a majority of the Canadian public consistently believes that climate change is happening. Belief in climate change's causes varies geographically, with more people attributing it to human activity in urban as opposed to rural areas. Most prominently, we find majority support for carbon cap and trade policy in every province and district. By contrast, support for carbon taxation is more heterogeneous. Compared to the distribution of US climate opinions, Canadians believe climate change is happening at higher levels. This new opinion data set will support climate policy analysis and climate policy decision making at national, provincial and local levels.
Blodgett, David L.
2013-01-01
The increasing availability of downscaled climate projections and other data products that summarize or predict climate conditions, is making climate data use more common in research and management. Scientists and decisionmakers often need to construct ensembles and compare climate hindcasts and future projections for particular spatial areas. These tasks generally require an investigator to procure all datasets of interest en masse, integrate the various data formats and representations into commonly accessible and comparable formats, and then extract the subsets of the datasets that are actually of interest. This process can be challenging and time intensive due to data-transfer, -storage, and(or) -processing limits, or unfamiliarity with methods of accessing climate data. Data management for modeling and assessing the impacts of future climate conditions is also becoming increasingly expensive due to the size of the datasets. The Climate Geo Data Portal (http://cida.usgs.gov/climate/gdp/) addresses these limitations, making access to numerous climate datasets for particular areas of interest a simple and efficient task.
The Distribution of Climate Change Public Opinion in Canada
Gravelle, Timothy
2016-01-01
While climate scientists have developed high resolution data sets on the distribution of climate risks, we still lack comparable data on the local distribution of public climate change opinions. This paper provides the first effort to estimate local climate and energy opinion variability outside the United States. Using a multi-level regression and post-stratification (MRP) approach, we estimate opinion in federal electoral districts and provinces. We demonstrate that a majority of the Canadian public consistently believes that climate change is happening. Belief in climate change’s causes varies geographically, with more people attributing it to human activity in urban as opposed to rural areas. Most prominently, we find majority support for carbon cap and trade policy in every province and district. By contrast, support for carbon taxation is more heterogeneous. Compared to the distribution of US climate opinions, Canadians believe climate change is happening at higher levels. This new opinion data set will support climate policy analysis and climate policy decision making at national, provincial and local levels. PMID:27486659
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Kathleen M; Van Riemsdijk, Dr. Micheline
This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decisionmaking process. Asmore » the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Kathleen M; Van Riemsdijk, Dr. Micheline
This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decision-making process. Asmore » the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.« less
Climate change risk perception and communication: addressing a critical moment?
Pidgeon, Nick
2012-06-01
Climate change is an increasingly salient issue for societies and policy-makers worldwide. It now raises fundamental interdisciplinary issues of risk and uncertainty analysis and communication. The growing scientific consensus over the anthropogenic causes of climate change appears to sit at odds with the increasing use of risk discourses in policy: for example, to aid in climate adaptation decision making. All of this points to a need for a fundamental revision of our conceptualization of what it is to do climate risk communication. This Special Collection comprises seven papers stimulated by a workshop on "Climate Risk Perceptions and Communication" held at Cumberland Lodge Windsor in 2010. Topics addressed include climate uncertainties, images and the media, communication and public engagement, uncertainty transfer in climate communication, the role of emotions, localization of hazard impacts, and longitudinal analyses of climate perceptions. Climate change risk perceptions and communication work is critical for future climate policy and decisions. © 2012 Society for Risk Analysis.
Goring, Simon J; Williams, John W
2017-04-01
Contemporary forest inventory data are widely used to understand environmental controls on tree species distributions and to construct models to project forest responses to climate change, but the stability and representativeness of contemporary tree-climate relationships are poorly understood. We show that tree-climate relationships for 15 tree genera in the upper Midwestern US have significantly altered over the last two centuries due to historical land-use and climate change. Realised niches have shifted towards higher minimum temperatures and higher rainfall. A new attribution method implicates both historical climate change and land-use in these shifts, with the relative importance varying among genera and climate variables. Most climate/land-use interactions are compounding, in which historical land-use reinforces shifts in species-climate relationships toward wetter distributions, or confounding, in which land-use complicates shifts towards warmer distributions. Compounding interactions imply that contemporary-based models of species distributions may underestimate species resilience to climate change. © 2017 John Wiley & Sons Ltd/CNRS.
Farmers' perceptions of climate change and agricultural adaptation strategies in rural Sahel.
Mertz, Ole; Mbow, Cheikh; Reenberg, Anette; Diouf, Awa
2009-05-01
Farmers in the Sahel have always been facing climatic variability at intra- and inter-annual and decadal time scales. While coping and adaptation strategies have traditionally included crop diversification, mobility, livelihood diversification, and migration, singling out climate as a direct driver of changes is not so simple. Using focus group interviews and a household survey, this study analyzes the perceptions of climate change and the strategies for coping and adaptation by sedentary farmers in the savanna zone of central Senegal. Households are aware of climate variability and identify wind and occasional excess rainfall as the most destructive climate factors. Households attribute poor livestock health, reduced crop yields and a range of other problems to climate factors, especially wind. However, when questions on land use and livelihood change are not asked directly in a climate context, households and groups assign economic, political, and social rather than climate factors as the main reasons for change. It is concluded that the communities studied have a high awareness of climate issues, but climatic narratives are likely to influence responses when questions mention climate. Change in land use and livelihood strategies is driven by adaptation to a range of factors of which climate appears not to be the most important. Implications for policy-making on agricultural and economic development will be to focus on providing flexible options rather than specific solutions to uncertain climate.
Hu, Xue Qiong; Xu, Meng Ying; He, Yu Qin; Zhang, Ming da; Ji, Wen Juan; Zhu, Yong
2016-04-22
The climatic suitability distribution of flue-cured tobacco planting in Yunnan will be profoundly affected by climate change. According to three key factors influencing climatic suitability of flue-cured tobacco planting in Yunnan, namely, average temperature in July, sunshine duration from July to August, precipitation from April to September, the variations of climatic suitability distribution of flue-cured tobacco planting in Yunnan respectively in 1986-2005, 2021-2040 and 2041-2060 under RCP4.5 and RCP8.5 climate scenarios were investigated by using the climatic simulation data in 1981-2060 and the meteorological observation data during 1986-2005. The results showed that climatic suitability region would expand northward and eastward and plantable area of flue-cured tobacco would gradually increase. The increment of plantable area was more in 2041-2060 than in 2021-2040, and under RCP8.5 scenario than under RCP4.5 scenario. The optimum climatic area and sub-suitable climatic area were expanded considerably, while the suitable climatic area was not much changed. In the future, the north-central Yunnan such as Kunming, Qujing, Dali, Chuxiong, Lijiang would have a big increase in both the optimum climatic area and the cultivable area, meanwhile, the southern Yunnan including Wenshan, Honghe, Puer and Xishuangbanna would have a big decrease in both the optimum climatic area and the cultivable area.
Patterns and biases in climate change research on amphibians and reptiles: a systematic review
2016-01-01
Climate change probably has severe impacts on animal populations, but demonstrating a causal link can be difficult because of potential influences by additional factors. Assessing global impacts of climate change effects may also be hampered by narrow taxonomic and geographical research foci. We review studies on the effects of climate change on populations of amphibians and reptiles to assess climate change effects and potential biases associated with the body of work that has been conducted within the last decade. We use data from 104 studies regarding the effect of climate on 313 species, from 464 species–study combinations. Climate change effects were reported in 65% of studies. Climate change was identified as causing population declines or range restrictions in half of the cases. The probability of identifying an effect of climate change varied among regions, taxa and research methods. Climatic effects were equally prevalent in studies exclusively investigating climate factors (more than 50% of studies) and in studies including additional factors, thus bolstering confidence in the results of studies exclusively examining effects of climate change. Our analyses reveal biases with respect to geography, taxonomy and research question, making global conclusions impossible. Additional research should focus on under-represented regions, taxa and questions. Conservation and climate policy should consider the documented harm climate change causes reptiles and amphibians. PMID:27703684
Geographical limits to species-range shifts are suggested by climate velocity.
Burrows, Michael T; Schoeman, David S; Richardson, Anthony J; Molinos, Jorge García; Hoffmann, Ary; Buckley, Lauren B; Moore, Pippa J; Brown, Christopher J; Bruno, John F; Duarte, Carlos M; Halpern, Benjamin S; Hoegh-Guldberg, Ove; Kappel, Carrie V; Kiessling, Wolfgang; O'Connor, Mary I; Pandolfi, John M; Parmesan, Camille; Sydeman, William J; Ferrier, Simon; Williams, Kristen J; Poloczanska, Elvira S
2014-03-27
The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the 'business as usual' climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.
Conceptual Model of Climate Change Impacts at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewart, Jean Marie
Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual modelmore » of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).« less
Atmospheric Science Data Center
2017-11-27
article title: Is Climate Changing Cloud Heights? Too Soon to Say Climate change may eventually change global cloud heights, but scientists need ... whether that's happening already. For details see: Is Climate Changing Cloud Heights? Too Soon to Say . Climate ...
Climate-FVS Version 2: Content, users guide, applications, and behavior
Nicholas L. Crookston
2014-01-01
Climate change in the 21st Century is projected to cause widespread changes in forest ecosystems. Climate-FVS is a modification to the Forest Vegetation Simulator designed to take climate change into account when predicting forest dynamics at decadal to century time scales. Individual tree climate viability scores measure the likelihood that the climate at a given...
Assessing the sensitivity of avian species abundance to land cover and climate
Jaymi J. LeBrun; Wayne E. Thogmartin; Frank R. Thompson; William D. Dijak; Joshua J. Millspaugh
2016-01-01
Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and...
Developing A Positive School Climate. Newsletter
ERIC Educational Resources Information Center
Center for Comprehensive School Reform and Improvement, 2009
2009-01-01
Decades of research support the role of a positive school climate on teaching and learning. This newsletter takes a look at the topic of school climate and sets out to determine: (1) What is school climate? (2) How can schools assess their school climate? (3) What are some practical examples of how schools are assessing school climate? and (4)…
A Multilevel Analysis of the Effects of Disciplinary Climate Strength on Student Reading Performance
ERIC Educational Resources Information Center
Guo, Siwen; Li, Lingyan; Zhang, Danhui
2018-01-01
Climate strength was first conceptualised in the organisational psychology literature as the within-group agreement on the perceptions of climate. In contrast to the deep study of climate level, climate strength has not been clarified by school climate research. The purpose of this cross-cultural study is to identify the main effect of…
Climate Prediction Center - Outlooks: CFS Forecast of Seasonal Climate
National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site government Web resources and services. CFS Seasonal Climate Forecasts CFS Forecast of Seasonal Climate discontinued after October 2012. This page displays seasonal climate anomalies from the NCEP coupled forecast
Knowing climate change, embodying climate praxis: experiential knowledge in southern Appalachia
Jennifer L. Rice; Brian J. Burke; Nik Heynen
2015-01-01
Whether used to support or impede action, scientific knowledge is now, more than ever, the primary framework for political discourse on climate change. As a consequence, science has become a hegemonic way of knowing climate change by mainstream climate politics, which not only limits the actors and actions deemed legitimate in climate politics but also silences...
Signal Trees: Communicating Attribution of Climate Change Impacts Through Causal Chain Illustrations
NASA Astrophysics Data System (ADS)
Cutting, H.
2016-12-01
Communicating the attribution of current climate change impacts is a key task for engagment with the general public, news media and policy makers, particularly as climate events unfold in real time. The IPCC WGII in AR5 validated the use of causal chain illustrations to depict attribution of individual climate change impacts. Climate Signals, an online digital platform for mapping and cataloging climate change impacts (launched in May of 2016), explores the use of such illustrations for communicating attribution. The Climate Signals project has developed semi-automated graphing software to produce custom attribution trees for numerous climate change events. This effort offers lessons for engagement of the general public and policy makers in the attribution of climate change impacts.
Understanding and managing trust at the climate science-policy interface
NASA Astrophysics Data System (ADS)
Lacey, Justine; Howden, Mark; Cvitanovic, Christopher; Colvin, R. M.
2018-01-01
Climate change effects are accelerating, making the need for appropriate actions informed by sound climate knowledge ever more pressing. A strong climate science-policy relationship facilitates the effective integration of climate knowledge into local, national and global policy processes, increases society's responsiveness to a changing climate, and aligns research activity to policy needs. This complex science-policy relationship requires trust between climate science `producers' and `users', but our understanding of trust at this interface remains largely uncritical. To assist climate scientists and policymakers, this Perspective provides insights into how trust develops and operates at the interface of climate science and policy, and examines the extent to which trust can manage — or even create — risk at this interface.
Regional climate service in Southern Germany
NASA Astrophysics Data System (ADS)
Schipper, Janus; Hackenbruch, Julia
2013-04-01
Climate change challenges science, politics, business and society at the international, national and regional level. The South German Climate Office at the Karlsruhe Institute of Technology (KIT) is a contact for the structuring and dissemination of information on climate and climate change in the South German region. It provides scientifically based and user-oriented climate information. Thereby it builds a bridge between the climate sciences and society and provides scientific information on climate change in an understandable way. The expertise of KIT, in which several institutions operate on fundamental and applied climate research, and of partner institutions is the basis for the work in the climate office. The regional focus is on the south of Germany. Thematic focuses are e.g. regional climate modeling, trends in extreme weather events such as heavy rain and hail event, and issues for energy and water management. The South German Climate Office is one of four Regional Helmholtz Climate Offices, of which each has a regional and thematic focus. The users of the Climate Office can be summarized into three categories. First, there is the general public. This category consists mainly of non-professionals. Here, special attention is on an understandable translation of climate information. Attention is paid to application-related aspects, because each individual is affected in a different way by climate change. Typical examples of this category are school groups, citizens and the media. The second category consists of experts of other disciplines. Unlike the first category they are mainly interested in the exchange of results and data. It is important to the climate office to provide support for the use of climatological results. Typical representatives of this category are ministries, state offices, and companies. In the third and final category are scientists. In addition to the climatologists, this category also holds representatives from other scientific disciplines, which are directly or indirectly cope with climate change. This category encompasses for example hydrologists (estimation of future flood events) and engineers (housing in a changing climate). For these three categories, different approaches are needed. First, the South German Climate Office reaches a wide audience through regular appearance in the media (newspapers, radio, and television). Because for such appearances the information content needs to be simplified quite strongly, experts will be better addressed through workshops and conferences. For example, the Climate Office has carried out a few events on "Climate and Constructions' in recent years. Several collaborations that led to project work between different scientific disciplines resulted from these events. The experience at the South German Climate Office has shown that the demand for information about climate change and its consequences is very diverse. Therefore, part of the activities is to carry out a categorized view on the requests in order to allow such a user-oriented answering. An additional role of the climate office is to enhance the general visibility of climatological results by workshops and conferences.
Public Inaccuracy in Meta-perceptions of Climate Change
NASA Astrophysics Data System (ADS)
Swim, J.; Fraser, J.
2012-12-01
Public perceptions of climate change and meta-perceptions of the public and climate scientist's perceptions of climate change were assessed to benchmark the National Network for Climate Change Interpretation's impacts. Meta-perceptions are important to examine because they can have implications for willingness to take action to address climate change. For instance, recent research suggests a tendency to misperceive that there is disagreement among climate scientists is predictive of lack of support for climate change policies. Underestimating public concern about climate change could also be problematic: it could lead individuals to withdraw from personal efforts to reduce impact and engage others in discussions about climate change. Presented results will demonstrate that respondents in a national survey underestimated the percent of the public who were very concerned, concerned or cautious about climate change and overestimated the extent others were disengaged, doubted, or non-believers. They underestimated the percent of the public who likely believed that humans caused climate change and overestimate the percent that believed climate change was not happening nor human induced. Finally, they underestimated the percent of the public that believed climate change threatened ocean health. The results also explore sources of misperceptions. First, correlates with TV viewing habits suggest that inaccuracy is a result of too little attention to network news, with one exception: Greater attention to FOX among doubters reduced accuracy. Second, adding to other evidence that basic cognitive heuristics (such as availability heuristic) influence perceptions of climate change, we show that that false consensus effects account for meta-perceptions of the public and climate scientists beliefs. The false consensus effect, in combination with underestimating concern among the public, results in those most concerned about climate change and those who believe it to be human caused to be more accurate in their meta-perceptions than their disbelieving counterparts. Yet, even this group underestimates the public's concern about climate change and the presence of the false consensus effect suggests that greater accuracy is not a result of greater knowledge about other's beliefs but rather a result of personal cognitive or motivational biases counteracting a general trend toward underestimating the general public's concern. We conclude that there is need to inform the public about wide-spread agreement that human caused climate change and its impacts on oceans is believed by the majority of the public and to increase the public's confidence in climate scientist agreement about the existence, causes, and impacts of climate change.; Perceptions and metaperceptions of concern about climate change
NOAA's State Climate Summaries for the National Climate Assessment: A Sustained Assessment Product
NASA Astrophysics Data System (ADS)
Kunkel, K.; Champion, S.; Frankson, R.; Easterling, D. R.; Griffin, J.; Runkle, J. D.; Stevens, L. E.; Stewart, B. C.; Sun, L.; Veasey, S.
2016-12-01
A set of State Climate Summaries have been produced for all 50 U.S. states as part of the National Climate Assessment Sustained Assessment and represent a NOAA contribution to this process. Each summary includes information on observed and projected climate change conditions and impacts associated with future greenhouse gas emissions pathways. The summaries focus on the physical climate and coastal issues as a part of NOAA's mission. Core climate data and simulations used to produce these summaries have been previously published, and have been analyzed to represent a targeted synthesis of historical and plausible future climate conditions. As these are intended to be supplemental to major climate assessment development, the scope of the content remains true to a "summary" style document. Each state's Climate Summary includes its climatology and projections of future temperatures and precipitation, which are presented in order to provide a context for the assessment of future impacts. The climatological component focuses on temperature, precipitation, and noteworthy weather events specific to each state and relevant to the climate change discussion. Future climate scenarios are also briefly discussed, using well-known and consistent sets of climate model simulations based on two possible futures of greenhouse gas emissions. These future scenarios present an internally consistent climate picture for every state and are intended to inform the potential impacts of climate change. These 50 State Climate Summaries were produced by NOAA's National Centers for Environmental Information (NCEI) and the North Carolina State University Cooperative Institute for Climate and Satellites - NC (CICS-NC) with additional input provided by climate experts, including the NOAA Regional Climate Centers and State Climatologists. Each summary document also underwent a comprehensive and anonymous peer review. Each summary contains text, figures, and an interactive web presentation. A full suite of the comprehensive analyses and metadata are also available. The audience is targeted as both decision-makers and informed non-scientists. This presentation will discuss the scientific development for the project, demonstrate the suite of information, and provide examples of noteworthy figures from select states.
Butterfield, Bradley J.; Munson, Seth M.
2016-01-01
QuestionHow closely do plant communities track climate? Research suggests that plant species converge toward similar environmental tolerances relative to the environments that they experience. Whether these patterns apply to severe environments or scale up to plant community-level patterns of relative climatic tolerances is poorly understood. Using estimates of species' climatic tolerances acquired from occurrence records, we determined the contributions of individual species' climatic niche breadths and environmental filtering to the relationships between community-average climatic tolerances and the local climates experienced by those communities.LocationSouthwestern United States drylands.MethodsInterspecific variation in niche breadth was assessed as a function of species' climatic optima (median climatic niche value). The relationships between climatic optima and tolerances were used as null expectations for the relationship between abundance-weighted mean climatic tolerances of communities and the local climate of that community. Deviations from this null expectation indicate that species with greater or lesser climatic tolerances are favoured relative to co-occurring species. The intensity of environmental filtering was estimated by comparing the range of climatic tolerances within each community to a null distribution generated from a random assembly algorithm.ResultsThe temperature niches of species were consistently symmetrical and of similar breadths, regardless of their temperature optima. In contrast, precipitation niches were skewed toward wetter conditions, and niche breadth increased with increasing precipitation optima. At the community level, relationships with climate were much stronger for temperature than for precipitation. Furthermore, cold and heat were stronger assembly filters than drought or precipitation, with the intensity of environmental filtering increasing at both ends of climatic gradients. Community-average climatic tolerances did deviate significantly from null expectations, indicating that species with higher or lower relative climatic tolerances were favoured under certain conditions.ConclusionsDespite strong water limitation of plant performance in dryland ecosystems, communities tracked variation in temperature much more closely, intimating strong responses to anticipated temperature increases. Furthermore, abundance distributions were biased toward species with higher or lower relative climatic tolerances under different climatic conditions, but predictably so, indicating the need for assembly models that include processes other than simple environmental filtering.
Climate change and nutrition: creating a climate for nutrition security.
Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A
2013-12-01
Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC), and policies and actions formulated by the UN Framework Convention on Climate Change (UNFCCC). Improved multi-sectoral coordination and political will is required to integrate nutrition-sensitive actions into climate-resilient sustainable development efforts in the UNFCCC work and in the post 2015 development agenda. Placing human rights at the center of strategies to mitigate and adapt to the impacts of climate change and international solidarity is essential to advance sustainable development and to create a climate for nutrition security.
Thom, Dominik; Rammer, Werner; Seidl, Rupert
2017-11-01
Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased disturbance activity in the long run (-10.1%), mainly by reducing the host trees available for bark beetles. Climate change and the resulting future forest dynamics significantly reduced the climate regulation function of the landscape, increasing radiative forcing by up to +10.2% on average over 200 yr. Overall, radiative forcing was most strongly driven by carbon exchange. We conclude that future changes in forest dynamics can cause amplifying climate feedbacks from temperate forest ecosystems.
Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B
2017-06-01
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands. © 2017 by the Ecological Society of America.
Accounting for health in climate change policies: a case study of Fiji.
Morrow, Georgina; Bowen, Kathryn
2014-01-01
Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes.
Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.
2017-01-01
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands.
Assessing the sensitivity of avian species abundance to land cover and climate
LeBrun, Jaymi J.; Thogmartin, Wayne E.; Thompson, Frank R.; Dijak, William D.; Millspaugh, Joshua J.
2016-01-01
Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.
NASA Astrophysics Data System (ADS)
Deser, C.
2017-12-01
Natural climate variability occurs over a wide range of time and space scales as a result of processes intrinsic to the atmosphere, the ocean, and their coupled interactions. Such internally generated climate fluctuations pose significant challenges for the identification of externally forced climate signals such as those driven by volcanic eruptions or anthropogenic increases in greenhouse gases. This challenge is exacerbated for regional climate responses evaluated from short (< 50 years) data records. The limited duration of the observations also places strong constraints on how well the spatial and temporal characteristics of natural climate variability are known, especially on multi-decadal time scales. The observational constraints, in turn, pose challenges for evaluation of climate models, including their representation of internal variability and assessing the accuracy of their responses to natural and anthropogenic radiative forcings. A promising new approach to climate model assessment is the advent of large (10-100 member) "initial-condition" ensembles of climate change simulations with individual models. Such ensembles allow for accurate determination, and straightforward separation, of externally forced climate signals and internal climate variability on regional scales. The range of climate trajectories in a given model ensemble results from the fact that each simulation represents a particular sequence of internal variability superimposed upon a common forced response. This makes clear that nature's single realization is only one of many that could have unfolded. This perspective leads to a rethinking of approaches to climate model evaluation that incorporate observational uncertainty due to limited sampling of internal variability. Illustrative examples across a range of well-known climate phenomena including ENSO, volcanic eruptions, and anthropogenic climate change will be discussed.
Jaakkola, Timo; Wang, C K John; Soini, Markus; Liukkonen, Jarmo
2015-09-01
The purpose of this study was to identify student clusters with homogenous profiles in perceptions of task- and ego-involving, autonomy, and social relatedness supporting motivational climate in school physical education. Additionally, we investigated whether different motivational climate groups differed in their enjoyment in PE. Participants of the study were 2 594 girls and 1 803 boys, aged 14-15 years. Students responded to questionnaires assessing their perception of motivational climate and enjoyment in physical education. Latent profile analyses produced a five-cluster solution labeled 1) 'low autonomy, relatedness, task, and moderate ego climate' group', 2) 'low autonomy, relatedness, and high task and ego climate, 3) 'moderate autonomy, relatedness, task and ego climate' group 4) 'high autonomy, relatedness, task, and moderate ego climate' group, and 5) 'high relatedness and task but moderate autonomy and ego climate' group. Analyses of variance showed that students in clusters 4 and 5 perceived the highest level of enjoyment whereas students in cluster 1 experienced the lowest level of enjoyment. The results showed that the students' perceptions of various motivational climates created differential levels of enjoyment in PE classes. Key pointsLatent profile analyses produced a five-cluster solution labeled 1) 'low autonomy, relatedness, task, and moderate ego climate' group', 2) 'low autonomy, relatedness, and high task and ego climate, 3) 'moderate autonomy, relatedness, task and ego climate' group 4) 'high autonomy, relatedness, task, and moderate ego climate' group, and 5) 'high relatedness and task but moderate autonomy and ego climate' group.Analyses of variance showed that clusters 4 and 5 perceived the highest level of enjoyment whereas cluster 1 experienced the lowest level of enjoyment. The results showed that the students' perceptions of motivational climate create differential levels of enjoyment in PE classes.
Developing Climate Resilience Toolkit Decision Support Training Sectio
NASA Astrophysics Data System (ADS)
Livezey, M. M.; Herring, D.; Keck, J.; Meyers, J. C.
2014-12-01
The Climate Resilience Toolkit (CRT) is a Federal government effort to address the U.S. President's Climate Action Plan and Executive Order for Climate Preparedness. The toolkit will provide access to tools and products useful for climate-sensitive decision making. To optimize the user experience, the toolkit will also provide access to training materials. The National Oceanic and Atmospheric Administration (NOAA) has been building a climate training capability for 15 years. The target audience for the training has historically been mainly NOAA staff with some modified training programs for external users and stakeholders. NOAA is now using this climate training capacity for the CRT. To organize the CRT training section, we collaborated with the Association of Climate Change Officers to determine the best strategy and identified four additional complimentary skills needed for successful decision making: climate literacy, environmental literacy, risk assessment and management, and strategic execution and monitoring. Developing the climate literacy skills requires knowledge of climate variability and change, as well as an introduction to the suite of available products and services. For the development of an environmental literacy category, specific topics needed include knowledge of climate impacts on specific environmental systems. Climate risk assessment and management introduces a process for decision making and provides knowledge on communication of climate information and integration of climate information in planning processes. The strategic execution and monitoring category provides information on use of NOAA climate products, services, and partnership opportunities for decision making. In order to use the existing training modules, it was necessary to assess their level of complexity, catalog them, and develop guidance for users on a curriculum to take advantage of the training resources to enhance their learning experience. With the development of this CRT training section, NOAA has made significant progress in sharing resources with the external community.
A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability
Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.
2013-01-01
We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722
Chakraborty, Debojyoti; Wang, Tongli; Andre, Konrad; Konnert, Monika; Lexer, Manfred J; Matulla, Christoph; Schueler, Silvio
2015-01-01
Identifying populations within tree species potentially adapted to future climatic conditions is an important requirement for reforestation and assisted migration programmes. Such populations can be identified either by empirical response functions based on correlations of quantitative traits with climate variables or by climate envelope models that compare the climate of seed sources and potential growing areas. In the present study, we analyzed the intraspecific variation in climate growth response of Douglas-fir planted within the non-analogous climate conditions of Central and continental Europe. With data from 50 common garden trials, we developed Universal Response Functions (URF) for tree height and mean basal area and compared the growth performance of the selected best performing populations with that of populations identified through a climate envelope approach. Climate variables of the trial location were found to be stronger predictors of growth performance than climate variables of the population origin. Although the precipitation regime of the population sources varied strongly none of the precipitation related climate variables of population origin was found to be significant within the models. Overall, the URFs explained more than 88% of variation in growth performance. Populations identified by the URF models originate from western Cascades and coastal areas of Washington and Oregon and show significantly higher growth performance than populations identified by the climate envelope approach under both current and climate change scenarios. The URFs predict decreasing growth performance at low and middle elevations of the case study area, but increasing growth performance on high elevation sites. Our analysis suggests that population recommendations based on empirical approaches should be preferred and population selections by climate envelope models without considering climatic constrains of growth performance should be carefully appraised before transferring populations to planting locations with novel or dissimilar climate.
NASA Astrophysics Data System (ADS)
Anderegg, L. D. L.; Hillerislambers, J.
2016-12-01
Accurate prediction of climatically-driven range shifts requires knowledge of the dominant forces constraining species ranges, because climatically controlled range boundaries will likely behave differently from biotically controlled range boundaries in a changing climate. Yet the roles of climatic constraints (due to species physiological tolerance) versus biotic constraints (caused by species interactions) on geographic ranges are largely unknown, infusing large uncertainty into projections of future range shifts. Plant species ranges across strong climatic gradients such as elevation gradients are often assumed to represent a tradeoff between climatic constraints on the harsh side of the range and biotic constraints (often competitive constraints) on the climatically benign side. To test this assumption, we collected tree cores from across the elevational range of the three dominant tree species inhabiting each of three climatically disparate mountain slopes and assessed climatic versus competitive constraints on growth at each species' range margins. Across all species and mountains, we found evidence for a tradeoff between climatic and competitve growth constraints. We also found that some individual species did show an apparent trade-off between a climatic constraint at one range margin and a competitive constraint at the other. However, even these simple elevation gradients resulted in complex interactions between temperature, moisture, and competitive constraints such that a climate-competition tradeoff did not explain range constraints for many species. Our results suggest that tree species can be constrained by a simple trade-off between climate and competition, but that the intricacies of real world climate gradients complicate the application of this theory even in apparently harsh environments, such as near high elevation tree line.
Competencies Framework for Climate Services.
NASA Astrophysics Data System (ADS)
Aguilar, Enric
2016-04-01
The World Climate Conference-3 (Geneva, 2009) established the Global Framework for Climate Services (GFCS) to enable better management of the risks of climate variability and change and adaptation to climate change at all levels, through development and incorporation of science-based climate information and prediction into planning, policy and practice. The GFCS defines Climate Services as the result of transforming climate data into climate information in a way that responds to user needs and assists decision-making by individuals and organizations. Capacity Development is a cross-cutting pillar of the GFCS to ensure that services are provided by institutions with professionals whom achieved the adequate set of competencies recommended by WMO, which are yet to be fully defined. The WMO-Commission for Climatology Expert Team on Education and Training, ET-ETR, has been working to define a Competencies Framework for Climate Services to help the institutions to deliver high quality climate services in compliance with WMO standards and regulations, specifically those defined by WMO's Commission for Climatology and the GFCS. This framework is based in 5 areas or competence, closely associated to the areas of work of climate services providers: create and manage climate data sets; derive products from climate data; create and/or interpret climate forecasts and model output; ensure the quality of climate information and services; communicate climatological information with users. With this contribution, we intend to introduce to a wider audience the rationale behind these 5 top-level competency statements and the performance criteria associated with them, as well as the plans of the ET-ETR for further developing them into an instrument to support education and training within the WMO members, specially the National Meteorological and Hydrological Services.
NASA Astrophysics Data System (ADS)
Zebisch, Marc; Schneiderbauer, Stefan; Petitta, Marcello
2015-04-01
In the last decade the scope of climate change science has broadened significantly. 15 years ago the focus was mainly on understanding climate change, providing climate change scenarios and giving ideas about potential climate change impacts. Today, adaptation to climate change has become an increasingly important field of politics and one role of science is to inform and consult this process. Therefore, climate change science is not anymore focusing on data driven approaches only (such as climate or climate impact models) but is progressively applying and relying on qualitative approaches including opinion and expertise acquired through interactive processes with local stakeholders and decision maker. Furthermore, climate change science is facing the challenge of normative questions, such us 'how important is a decrease of yield in a developed country where agriculture only represents 3% of the GDP and the supply with agricultural products is strongly linked to global markets and less depending on local production?'. In this talk we will present examples from various applied research and consultancy projects on climate change vulnerabilities including data driven methods (e.g. remote sensing and modelling) to semi-quantitative and qualitative assessment approaches. Furthermore, we will discuss bottlenecks, pitfalls and opportunities in transferring climate change science to policy and decision maker oriented climate services.
Han, Ying; Hou, Xiang-yang
2011-04-01
Desert steppe is very vulnerable to climate change. The herders caring for their livestock in such a natural environment have to face the challenges of rapid climate change. In this paper, a household-level questionnaire was conducted in the Suniteyou District of Inner Mongolia, China, aimed to analyze the herders' perceptions and adaptation strategies to climate change, extreme climate events in particular. In this Steppe where precipitation is rare and meteorological disasters are frequent, drought is the main extreme climate event with the broadest affecting area, the highest affecting degree, and the greatest frequency. The sensitivity of the herders to drought is far higher than that to other extreme climate events, and also, the perceptions to drought induce the herders having deep perceptions to the extreme climate events such as strong wing, dust storm, and heavy snow. Relative to the perceptions to long-term climate change, the perceptions to short-term climate change are more deep and precise. The herders can estimate the long-term climate change trend according to their perceptions to the latest 10 years climate change. They attribute the poor livestock health and the reduced forage yield greatly to climate change. Yet, the herders are inexperienced in implementing efficient adaptation strategies. Generally, their adaptation measures are quite simplex and rather passive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhiyang; Zhang, Xiong
A dynamic computer simulation is carried out in the climates of 35 cities distributed around the world. The variation of the annual air-conditioning energy loads due to changes in the longwave emissivity and the solar reflectance of the building envelopes is studied to find the most appropriate exterior building finishes in various climates (including a tropical climate, a subtropical climate, a mountain plateau climate, a frigid-temperate climate and a temperate climate). Both the longwave emissivity and the solar reflectance are set from 0.1 to 0.9 with an interval of 0.1 in the simulation. The annual air-conditioning energy loads trends ofmore » each city are listed in a chart. The results show that both the longwave emissivity and the solar reflectance of building envelopes play significant roles in energy-saving for buildings. In tropical climates, the optical parameters of the building exterior surface affect the building energy-saving most significantly. In the mountain plateau climates and the subarctic climates, the impacts on energy-saving in buildings due to changes in the longwave emissivity and the solar reflectance are still considerable, but in the temperate continental climates and the temperate maritime climates, only limited effects are seen. (author)« less
Selection of climate change scenario data for impact modelling.
Sloth Madsen, M; Maule, C Fox; MacKellar, N; Olesen, J E; Christensen, J Hesselbjerg
2012-01-01
Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented in this paper, applied to relative humidity, but it could be adopted to other variables if needed.
Observations from old forests underestimate climate change effects on tree mortality.
Luo, Yong; Chen, Han Y H
2013-01-01
Understanding climate change-associated tree mortality is central to linking climate change impacts and forest structure and function. However, whether temporal increases in tree mortality are attributed to climate change or stand developmental processes remains uncertain. Furthermore, interpreting the climate change-associated tree mortality estimated from old forests for regional forests rests on an un-tested assumption that the effects of climate change are the same for young and old forests. Here we disentangle the effects of climate change and stand developmental processes on tree mortality. We show that both climate change and forest development processes influence temporal mortality increases, climate change-associated increases are significantly higher in young than old forests, and higher increases in younger forests are a result of their higher sensitivity to regional warming and drought. We anticipate our analysis to be a starting point for more comprehensive examinations of how forest ecosystems might respond to climate change.
[Energy policy rather than climate policy].
Kroonenberg, Salomon B
2009-01-01
Energy policy and climate policy are two different issues and should not be treated as if they were the same. Whether the climate gets warmer or colder, saving energy and developing sustainable forms of energy production remain of paramount importance because fossil hydrocarbons are likely to be exhausted soon. But climate policy is a fallacy: it is human arrogance to think we can control the climate by reducing emissions and by storing CO2 underground. In spite of rising CO2 levels, the climate has cooled down slightly over the past decade. Since the International Panel on Climate Change (IPCC) did not predict this, it is questionable whether they can reliably predict warming. Other factors such as solar activity are probably more important for climate than greenhouse gases. The danger of coupling energy policy to climate policy is evident: if the climate cools down, people will lose belief in the greenhouse effect and therefore also lose interest in saving energy.
Rural perspectives of climate change: a study from Saurastra and Kutch of Western India.
Moghariya, Dineshkumar P; Smardon, Richard C
2014-08-01
This research reports on rural people's beliefs and understandings of climate change in the Saurastra/ Kutch region of Western India. Results suggest that although most rural respondents have not heard about the scientific concept of climate change, they have detected changes in the climate. They appear to hold divergent understandings about climate change and have different priorities for causes and solutions. Many respondents appear to base their understandings of climate change upon a mix of ideas drawn from various sources and rely on different kinds of reasoning in relation to both causes of and solutions to climate change to those used by scientists. Environmental conditions were found to influence individuals' understanding of climate change, while demographic factors were not. The results suggest a need to learn more about people's conceptual models and understandings of climate change and a need to include local climate research in communication efforts.
Ecological constraints increase the climatic debt in forests
Bertrand, Romain; Riofrío-Dillon, Gabriela; Lenoir, Jonathan; Drapier, Jacques; de Ruffray, Patrice; Gégout, Jean-Claude; Loreau, Michel
2016-01-01
Biodiversity changes are lagging behind current climate warming. The underlying determinants of this climatic debt are unknown and yet critical to understand the impacts of climate change on the present biota and improve forecasts of biodiversity changes. Here we assess determinants of climatic debt accumulated in French forest herbaceous plant communities between 1987 and 2008 (that is, a 1.05 °C mean difference between the observed and bioindicated temperatures). We show that warmer baseline conditions predispose plant communities to larger climatic debts, and that climate warming exacerbates this response. Forest plant communities, however, are absorbing part of the temperature increase mainly through the species' ability to tolerate changing climate. As climate warming is expected to accelerate during the twenty-first century, plant migration and tolerance to climatic stresses probably will be insufficient to absorb this impact posing threats to the sustainability of forest plant communities. PMID:27561410
Naveh, Eitan; Katz-Navon, Tal
2015-01-01
This study presents and tests an intervention to enhance organizational climate and expands existing conceptualization of organizational climate to include its influence on employee behaviors outside the organization's physical boundaries. In addition, by integrating the literatures of climate and work-family interface, the study explored climate spillover and crossover from work to the home domain. Focusing on an applied practical problem within organizations, we investigated the example of road safety climate and employees' and their families' driving, using a longitudinal study design of road safety intervention versus control groups. Results demonstrated that the intervention increased road safety climate and decreased the number of traffic violation tickets and that road safety climate mediated the relationship between the intervention and the number of traffic violation tickets. Road safety climate spilled over to the family domain but did not cross over to influence family members' driving. (c) 2015 APA, all rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriegler, Elmar; Edmonds, James A.; Hallegatte, Stephane
2014-04-01
The paper presents the concept of shared climate policy assumptions as an important element of the new scenario framework. Shared climate policy assumptions capture key climate policy dimensions such as the type and scale of mitigation and adaptation measures. They are not specified in the socio-economic reference pathways, and therefore introduce an important third dimension to the scenario matrix architecture. Climate policy assumptions will have to be made in any climate policy scenario, and can have a significant impact on the scenario description. We conclude that a meaningful set of shared climate policy assumptions is useful for grouping individual climatemore » policy analyses and facilitating their comparison. Shared climate policy assumptions should be designed to be policy relevant, and as a set to be broad enough to allow a comprehensive exploration of the climate change scenario space.« less
NASA Technical Reports Server (NTRS)
Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.
1988-01-01
A seasonal climate model was developed to test the climate sensitivity and, in particular, the Milankovitch (1941) theory. Four climate model versions were implemented to investigate the range of uncertainty in the parameterizations of three basic feedback mechanisms: the ice albedo-temperature, the outgoing long-wave radiation-temperature, and the eddy transport-meridional temperature gradient. It was found that the differences between the simulation of the present climate by the four versions were generally small, especially for annually averaged results. The climate model was also used to study the effect of growing/shrinking of a continental ice sheet, bedrock sinking/uplifting, and sea level changes on the climate system, taking also into account the feedback effects on the climate of the building of the ice caps.
Ecological constraints increase the climatic debt in forests
NASA Astrophysics Data System (ADS)
Bertrand, Romain; Riofrío-Dillon, Gabriela; Lenoir, Jonathan; Drapier, Jacques; de Ruffray, Patrice; Gégout, Jean-Claude; Loreau, Michel
2016-08-01
Biodiversity changes are lagging behind current climate warming. The underlying determinants of this climatic debt are unknown and yet critical to understand the impacts of climate change on the present biota and improve forecasts of biodiversity changes. Here we assess determinants of climatic debt accumulated in French forest herbaceous plant communities between 1987 and 2008 (that is, a 1.05 °C mean difference between the observed and bioindicated temperatures). We show that warmer baseline conditions predispose plant communities to larger climatic debts, and that climate warming exacerbates this response. Forest plant communities, however, are absorbing part of the temperature increase mainly through the species' ability to tolerate changing climate. As climate warming is expected to accelerate during the twenty-first century, plant migration and tolerance to climatic stresses probably will be insufficient to absorb this impact posing threats to the sustainability of forest plant communities.
Opinions and knowledge about climate change science in high school students.
Harker-Schuch, Inez; Bugge-Henriksen, Christian
2013-10-01
This study investigates the influence of knowledge on opinions about climate change in the emerging adults' age group (16-17 years). Furthermore, the effects of a lecture in climate change science on knowledge and opinions were assessed. A survey was conducted in Austria and Denmark on 188 students in national and international schools before and after a lecture in climate change science. The results show that knowledge about climate change science significantly affects opinions about climate change. Students with a higher number of correct answers are more likely to have the opinion that humans are causing climate change and that both individuals and governments are responsible for addressing climate change. The lecture in climate change science significantly improved knowledge development but did not affect opinions. Knowledge was improved by 11 % after the lecture. However, the percentage of correct answers was still below 60 % indicating an urgent need for improving climate change science education.
Climate change and sustainable development: realizing the opportunity.
Robinson, John; Bradley, Mike; Busby, Peter; Connor, Denis; Murray, Anne; Sampson, Bruce; Soper, Wayne
2006-02-01
Manifold linkages exist between climate change and sustainable development. Although these are starting to receive attention in the climate exchange literature, the focus has typically been on examining sustainable development through a climate change lens, rather than vice versa. And there has been little systematic examination of how these linkages may be fostered in practice. This paper examines climate change through a sustainable development lens. To illustrate how this might change the approach to climate change issues, it reports on the findings of a panel of business, local government, and academic representatives in British Columbia, Canada, who were appointed to advise the provincial government on climate change policy. The panel found that sustainable development may offer a significantly more fruitful way to pursue climate policy goals than climate policy itself. The paper discusses subsequent climate change developments in the province and makes suggestions as how best to pursue such a sustainability approach in British Columbia and other jurisdictions.
Climate Leadership Literacy as a Component of Climate Literacy
NASA Astrophysics Data System (ADS)
Kothavala, D. L.
2014-12-01
How can the 3rd National Climate Assessment be used to go beyond climate change literacy, to include literacy in climate leadership and its improvement? The National Climate Assessment refers to "no-regrets" strategies (i.e., beneficial despite uncertainty), such as, e.g., energy efficiency, cultivating networks, and growing our adaptive capacity. As we cultivate our capacity as a species to pivot, climate leadership performance and its improvement become legitimate - and essential - realms of research, planning, and practice. However, climate leadership across sectors is not yet well-articulated; and operationalizing literacy expressed as 'what to do' may be viewed as overtly prescriptive by scientists. This talk examines approaches and illustrative examples provided in the Climate Assessment at the scale of cities, states, and firms; along with key findings from the National Academies on communicating science to decision makers; in identifying factors to enhance literacy in climate leadership and performance.
Wohl, Ellen E.; Pulwarty, Roger S.; Zhang, Jian Yun
2000-01-01
Assessing climate impacts involves identifying sources and characteristics of climate variability, and mitigating potential negative impacts of that variability. Associated research focuses on climate driving mechanisms, biosphere–hydrosphere responses and mediation, and human responses. Examples of climate impacts come from 1998 flooding in the Yangtze River Basin and hurricanes in the Caribbean and Central America. Although we have limited understanding of the fundamental driving-response interactions associated with climate variability, increasingly powerful measurement and modeling techniques make assessing climate impacts a rapidly developing frontier of science. PMID:11027321
NOAA Climate Information and Tools for Decision Support Services
NASA Astrophysics Data System (ADS)
Timofeyeva, M. M.; Higgins, W.; Strager, C.; Horsfall, F. M.
2013-12-01
NOAA is an active participant of the Global Framework for Climate Services (GFCS) contributing data, information, analytical capabilities, forecasts, and decision support services to the Climate Services Partnership (CSP). These contributions emerge from NOAA's own climate services, which have evolved to respond to the urgent and growing need for reliable, trusted, transparent, and timely climate information across all sectors of the U.S. economy. Climate services not only enhance development opportunities in many regions, but also reduce vulnerability to climate change around the world. The NOAA contribution lies within the NOAA Climate Goal mission, which is focusing its efforts on four key climate priority areas: water, extremes, coastal inundation, and marine ecosystems. In order to make progress in these areas, NOAA is exploiting its fundamental capabilities, including foundational research to advance understanding of the Earth system, observations to preserve and build the climate data record and monitor changes in climate conditions, climate models to predict and project future climate across space and time scales, and the development and delivery of decision support services focused on risk management. NOAA's National Weather Services (NWS) is moving toward provision of Decision Support Services (DSS) as a part of the Roadmap on the way to achieving a Weather Ready National (WRN) strategy. Both short-term and long-term weather, water, and climate information are critical for DSS and emergency services and have been integrated into NWS in the form of pilot projects run by National and Regional Operations Centers (NOC and ROCs respectively) as well as several local offices. Local offices with pilot projects have been focusing their efforts on provision of timely and actionable guidance for specific tasks such as DSS in support of Coastal Environments and Integrated Environmental Studies. Climate information in DSS extends the concept of climate services to provision of information that will help guide long-term preparedness for severe weather events and extreme conditions as well as climate variability and change GFCS recently summarized examples of existing initiatives to advance provision of climate services in the 2012 publication Climate ExChange. In this publication, NWS introduced the new Local Climate Analysis Tool (LCAT), a tool that is used to conduct local climate studies that are needed to create efficient and reliable guidance for DSS. LCAT allows for analyzing trends in local climate variables and identifying local impacts of climate variability (e.g., ENSO) on weather and water conditions. In addition to LCAT, NWS, working in partnership with the North East Regional Climate center, released xmACIS version 2, a climate data mining tool, for NWS field operations. During this talk we will demonstrate LCAT and xmACIS as well as outline several examples of their application to DSS and its potential use for achieving GFCS goals. The examples include LCAT-based temperature analysis for energy decisions, guidance on weather and water events leading to increased algal blooms and red tide months in advance, local climate sensitivities to droughts, probabilities of hot/cold conditions and their potential impacts on agriculture and fish kills or fish stress.
Can We Envision a Bettor's Guide to Climate Prediction Markets?
NASA Astrophysics Data System (ADS)
Trexler, M.
2017-12-01
It's one thing to set up a climate prediction market, it's another to find enough informed traders to make the market work. Climate bets could range widely, from purely scientific or atmospheric metrics, to bets that involve the interplay of science, policy, economic, and behavioral outcomes. For a topic as complex and politicized as climate change, a Bettor's Guide to Climate Predictions could substantially expand and diversify the pool of individuals trading in the market, increasing both its liquidity and decision-support value. The Climate Web is an on-line and publically accessible Beta version of such a Bettor's Guide, implementing the knowledge management adage: "if only we knew what we know." The Climate Web not only curates the key literature, news coverage, and websites relating to more than 100 climate topics, from extreme event exceedance curves to climate economics to climate risk scenarios, it extracts and links together thousands of ideas and graphics across all of those topics. The Climate Web integrates the many disciplinary silos that characterize today's often dysfunctional climate policy conversations, allowing rapid cross-silo exploration and understanding. As a Bettor's Guide it would allow prediction market traders to better research and understand their potential bets, and to quickly survey key thinking and uncertainties relating to those bets. The availability of such a Bettor's Guide to Climate Predictions should make traders willing to place more bets than they otherwise would, and should facilitate higher quality betting. The presentation will introduce the knowledge management dimensions and challenges of climate prediction markets, and introduce the Climate Web as one solution to those challenges.
Strong biotic influences on regional patterns of climate regulation services
NASA Astrophysics Data System (ADS)
Serna-Chavez, H. M.; Swenson, N. G.; Weiser, M. D.; van Loon, E. E.; Bouten, W.; Davidson, M. D.; van Bodegom, P. M.
2017-05-01
Climate regulation services from forests are an important leverage in global-change mitigation treaties. Like most ecosystem services, climate regulation is the product of various ecological phenomena with unique spatial features. Elucidating which abiotic and biotic factors relate to spatial patterns of climate regulation services advances our understanding of what underlies climate-mitigation potential and its variation within and across ecosystems. Here we quantify and contrast the statistical relations between climate regulation services (albedo and evapotranspiration, primary productivity, and soil carbon) and abiotic and biotic factors. We focus on 16,955 forest plots in a regional extent across the eastern United States. We find the statistical effects of forest litter and understory carbon on climate regulation services to be as strong as those of temperature-precipitation interactions. These biotic factors likely influence climate regulation through changes in vegetation and canopy density, radiance scattering, and decomposition rates. We also find a moderate relation between leaf nitrogen traits and primary productivity at this regional scale. The statistical relation between climate regulation and temperature-precipitation ranges, seasonality, and climatic thresholds highlights a strong feedback with global climate change. Our assessment suggests the expression of strong biotic influences on climate regulation services at a regional, temperate extent. Biotic homogenization and management practices manipulating forest structure and succession will likely strongly impact climate-mitigation potential. The identity, strength, and direction of primary influences differed for each process involved in climate regulation. Hence, different abiotic and biotic factors are needed to monitor and quantify the full climate-mitigation potential of temperate forest ecosystems.
Climate change refugia as a tool for climate adaptation
Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...
Climate Prediction Center - Outreach: 41st Annual Climate Diagnostics &
the University of Maine Climate Change Institute and School of Earth and Climate Sciences and is co (drought, heat waves, severe weather, tropical cyclones) in the framework of climate variability and change and including the use of paleoclimate data. Arctic climate variability and change, and linkages to
NOMADS-NOAA Operational Model Archive and Distribution System
Forecast Maps Climate Climate Prediction Climate Archives Weather Safety Storm Ready NOAA Central Library (16km) 6 hours grib filter http OpenDAP-alt URMA hourly - http - Climate Models Climate Forecast System Flux Products 6 hours grib filter http - Climate Forecast System 3D Pressure Products 6 hours grib
USDA-ARS?s Scientific Manuscript database
The mission of the USDA Southwest Regional Climate Hub is to provide farmers, ranchers and forest land owners and managers with information and resources to cope with the impacts of climate change. As such, a clear understanding of landowner needs for weather and climate data and their attitudes abo...
Staff Turnover in Assertive Community Treatment (Act) Teams: The Role of Team Climate.
Zhu, Xi; Wholey, Douglas R; Cain, Cindy; Natafgi, Nabil
2017-03-01
Staff turnover in Assertive Community Treatment (ACT) teams can result in interrupted services and diminished support for clients. This paper examines the effect of team climate, defined as team members' shared perceptions of their work environment, on turnover and individual outcomes that mediate the climate-turnover relationship. We focus on two climate dimensions: safety and quality climate and constructive conflict climate. Using survey data collected from 26 ACT teams, our analyses highlight the importance of safety and quality climate in reducing turnover, and job satisfaction as the main mediator linking team climate to turnover. The findings offer practical implications for team management.
Reconstruction of Past Mediterranean Climate
NASA Astrophysics Data System (ADS)
García-Herrera, Ricardo; Luterbacher, Jürg; Lionello, Piero; Gonzáles-Rouco, Fidel; Ribera, Pedro; Rodó, Xavier; Kull, Christoph; Zerefos, Christos
2007-02-01
First MEDCLIVAR Workshop on Reconstruction of Past Mediterranean Climate; Pablo de Olavide University, Carmona, Spain, 8-11 November 2006; Mediterranean Climate Variability and Predictability (MEDCLIVAR; http://www.medclivar.eu) is a program that coordinates and promotes research on different aspects of Mediterranean climate. The main MEDCLIVAR goals include the reconstruction of past climate, describing patterns and mechanisms characterizing climate space-time variability, extremes at different time and space scales, coupled climate model/empirical reconstruction comparisons, seasonal forecasting, and the identification of the forcings responsible for the observed changes. The program has been endorsed by CLIVAR (Climate Variability and Predictability project) and is funded by the European Science Foundation.
The Swedish Regional Climate Modelling Programme, SWECLIM: a review.
Rummukainen, Markku; Bergström, Sten; Persson, Gunn; Rodhe, Johan; Tjernström, Michael
2004-06-01
The Swedish Regional Climate Modelling Programme, SWECLIM, was a 6.5-year national research network for regional climate modeling, regional climate change projections and hydrological impact assessment and information to a wide range of stakeholders. Most of the program activities focussed on the regional climate system of Northern Europe. This led to the establishment of an advanced, coupled atmosphere-ocean-hydrology regional climate model system, a suite of regional climate change projections and progress on relevant data and process studies. These were, in turn, used for information and educational purposes, as a starting point for impact analyses on different societal sectors and provided contributions also to international climate research.
Wibeck, Victoria
2014-02-01
This paper explores social representations of climate change, investigating how climate change is discussed by Swedish laypeople interacting in focus group interviews. The analysis focuses on prototypical examples and metaphors, which were key devices for objectifying climate change representations. The paper analyzes how the interaction of focus group participants with other speakers, ideas, arguments, and broader social representations shaped their representations of climate change. Climate change was understood as a global but distant issue with severe consequences. There was a dynamic tension between representations of climate change as a gradual vs. unpredictable process. Implications for climate change communication are discussed.
A Climate Change Vulnerability Assessment of California's At-Risk Birds
Gardali, Thomas; Seavy, Nathaniel E.; DiGaudio, Ryan T.; Comrack, Lyann A.
2012-01-01
Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified climate vulnerability by scoring sensitivity (intrinsic characteristics of an organism that make it vulnerable) and exposure (the magnitude of climate change expected) for each taxon. Using the combined sensitivity and exposure scores as an index, we ranked 358 avian taxa, and classified 128 as vulnerable to climate change. Birds associated with wetlands had the largest representation on the list relative to other habitat groups. Of the 29 state or federally listed taxa, 21 were also classified as climate vulnerable, further raising their conservation concern. Integrating climate vulnerability and California's Bird Species of Special Concern list resulted in the addition of five taxa and an increase in priority rank for ten. Our process illustrates a simple, immediate action that can be taken to inform climate change adaptation strategies for wildlife. PMID:22396726
The relationship between organizational climate and quality of chronic disease management.
Benzer, Justin K; Young, Gary; Stolzmann, Kelly; Osatuke, Katerine; Meterko, Mark; Caso, Allison; White, Bert; Mohr, David C
2011-06-01
To test the utility of a two-dimensional model of organizational climate for explaining variation in diabetes care between primary care clinics. Secondary data were obtained from 223 primary care clinics in the Department of Veterans Affairs health care system. Organizational climate was defined using the dimensions of task and relational climate. The association between primary care organizational climate and diabetes processes and intermediate outcomes were estimated for 4,539 patients in a cross-sectional study. All data were collected from administrative datasets. The climate data were drawn from the 2007 VA All Employee Survey, and the outcomes data were collected as part of the VA External Peer Review Program. Climate data were aggregated to the facility level of analysis and merged with patient-level data. Relational climate was related to an increased likelihood of diabetes care process adherence, with significant but small effects for adherence to intermediate outcomes. Task climate was generally not shown to be related to adherence. The role of relational climate in predicting the quality of chronic care was supported. Future research should examine the mediators and moderators of relational climate and further investigate task climate. © Health Research and Educational Trust.
Climate Signals: An On-Line Digital Platform for Mapping Climate Change Impacts in Real Time
NASA Astrophysics Data System (ADS)
Cutting, H.
2016-12-01
Climate Signals is an on-line digital platform for cataloging and mapping the impacts of climate change. The CS platform specifies and details the chains of connections between greenhouse gas emissions and individual climate events. Currently in open-beta release, the platform is designed to to engage and serve the general public, news media, and policy-makers, particularly in real-time during extreme climate events. Climate Signals consists of a curated relational database of events and their links to climate change, a mapping engine, and a gallery of climate change monitors offering real-time data. For each event in the database, an infographic engine provides a custom attribution "tree" that illustrates the connections to climate change. In addition, links to key contextual resources are aggregated and curated for each event. All event records are fully annotated with detailed source citations and corresponding hyper links. The system of attribution used to link events to climate change in real-time is detailed here. This open-beta release is offered for public user testing and engagement. Launched in May 2016, the operation of this platform offers lessons for public engagement in climate change impacts.
Separating sensitivity from exposure in assessing extinction risk from climate change.
Dickinson, Maria G; Orme, C David L; Suttle, K Blake; Mace, Georgina M
2014-11-04
Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk.
Climatic similarity and biological exchange in the worldwide airline transportation network
Tatem, Andrew J; Hay, Simon I
2007-01-01
Recent increases in the rates of biological invasion and spread of infectious diseases have been linked to the continued expansion of the worldwide airline transportation network (WAN). Here, the global structure of the WAN is analysed in terms of climatic similarity to illuminate the risk of deliberate or accidental movements of climatically sensitive organisms around the world. From over 44 000 flight routes, we show, for each month of an average year, (i) those scheduled routes that link the most spatially distant but climatically similar airports, (ii) the climatically best-connected airports, and (iii) clusters of airports with similar climatic features. The way in which traffic volumes alter these findings is also examined. Climatic similarity across the WAN is skewed (most geographically close airports are climatically similar) but heavy-tailed (there are considerable numbers of geographically distant but climatically similar airports), with climate similarity highest in the June–August period, matching the annual peak in air traffic. Climatically matched, geographically distant airports form subnetworks within the WAN that change throughout the year. Further, the incorporation of passenger and freight traffic data highlight at greater risk of invasion those airports that are climatically well connected by numerous high capacity routes. PMID:17426013
A climate change vulnerability assessment of California's at-risk birds.
Gardali, Thomas; Seavy, Nathaniel E; DiGaudio, Ryan T; Comrack, Lyann A
2012-01-01
Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified climate vulnerability by scoring sensitivity (intrinsic characteristics of an organism that make it vulnerable) and exposure (the magnitude of climate change expected) for each taxon. Using the combined sensitivity and exposure scores as an index, we ranked 358 avian taxa, and classified 128 as vulnerable to climate change. Birds associated with wetlands had the largest representation on the list relative to other habitat groups. Of the 29 state or federally listed taxa, 21 were also classified as climate vulnerable, further raising their conservation concern. Integrating climate vulnerability and California's Bird Species of Special Concern list resulted in the addition of five taxa and an increase in priority rank for ten. Our process illustrates a simple, immediate action that can be taken to inform climate change adaptation strategies for wildlife.
The evolution of climatic niches in squamate reptiles.
Pie, Marcio R; Campos, Leonardo L F; Meyer, Andreas L S; Duran, Andressa
2017-07-12
Despite the remarkable diversity found in squamate reptiles, most of their species tend to be found in warm/dry environments, suggesting that climatic requirements played a crucial role in their diversification, yet little is known about the evolution of their climatic niches. In this study, we integrate climatic information associated with the geographical distribution of 1882 squamate species and their phylogenetic relationships to investigate the tempo and mode of climatic niche evolution in squamates, both over time and among lineages. We found that changes in climatic niche dynamics were pronounced over their recent squamate evolutionary history, and we identified extensive evidence for rate heterogeneity in squamate climatic niche evolution. Most rate shifts involved accelerations, particularly over the past 50 Myr. Most squamates occupy similar regions of the climatic niche space, with only a few lineages diversifying into colder and humid climatic conditions. The changes from arid to mesic conditions in some regions of the globe may have provided opportunities for climatic niche evolution, although most lineages tended to remain near their ancestral niche. Variation in rates of climatic niche evolution seems common, particularly in response to the availability of new climatic conditions over evolutionary time. © 2017 The Author(s).
Identifying Decision Support Tools to Bridge Climate and Agricultural Needs in the Midwest
NASA Astrophysics Data System (ADS)
Hall, B. L.; Kluck, D. R.; Hatfield, J.; Black, C.; Kellner, O.; Woloszyn, M.; Timlin, M. S.
2015-12-01
Climate monitoring tools designed to help stakeholders reduce climate impacts have been developed for the primary Midwest field crops of corn and soybean. However, the region also produces vital livestock and specialty crops that currently lack similar climate monitoring and projection tools. In autumn 2015, the National Oceanic and Atmospheric Administration's (NOAA's) National Integrated Drought Information System (NIDIS) and Midwestern Regional Climate Center (MRCC) partnered with the US Department of Agriculture's Midwest Climate Hub to convene agriculture stakeholders, climate scientists, and climate service specialists to discuss climate impacts and needs for these two, often under-represented, sectors. The goals of this workshop were to (1) identify climate impacts that specialty crops and livestock producers face within the Midwest, (2) develop an understanding of the types of climate and weather information and tools currently available in the Midwest that could be applied to decision making, and (3) discover the types of climate and weather information and tools needed to address concerns of specialty crop and livestock commodities across the Midwest. This presentation will discuss the workshop and provide highlights of the outcomes that developed into strategic plans for the future to better serve these sectors of agriculture in the Midwest.
Separating sensitivity from exposure in assessing extinction risk from climate change
Dickinson, Maria G.; Orme, C. David L.; Suttle, K. Blake; Mace, Georgina M.
2014-01-01
Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk. PMID:25367429
Climate and tourism in the Black Forest during the warm season.
Endler, Christina; Matzarakis, Andreas
2011-03-01
Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany - the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971-2000, particularly for the warm period of the year, defined here as the months of March-November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative trend, which is in line with the trend of a decrease in physiologically equivalent temperature as well as in thermal comfort conditions. Due to the rising air temperature, heat stress as well as sultry conditions are projected to become more frequent, affecting human health and recreation, especially at lower lying altitudes. The tops of the mountains and higher elevated areas still have the advantage of offering comfortable climatic conditions.
Factorial validity and internal consistency of the motivational climate in physical education scale.
Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo
2014-01-01
The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key PointsThis study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories.The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions.The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate.Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors.
Factorial Validity and Internal Consistency of the Motivational Climate in Physical Education Scale
Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo
2014-01-01
The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key Points This study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories. The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate. Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors. PMID:24570617
Visualizing interconnections among climate risks
NASA Astrophysics Data System (ADS)
Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.
2015-12-01
It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is therefore imperative to improve our understanding on how climate change may induce a chain of impacts. Our study is a first step toward this goal by mapping out climate risks and their cause-effect relationships based on current literature.
Climate Science Centers: Growing Federal and Academic Expertise in the Nation's Interests
NASA Astrophysics Data System (ADS)
Ryker, S. J.
2014-12-01
The U.S. Department of the Interior's (Interior) natural and cultural resource managers face increasingly complex challenges exacerbated by climate change. In 2009, under Secretarial Order 3289, Interior created eight regional Climate Science Centers managed by the U.S. Geological Survey's (USGS) National Climate Change and Wildlife Science Center and in partnership with universities. Secretarial Order 3289 provides a framework to coordinate climate change science and adaptation efforts across Interior and to integrate science and resource management expertise from Federal, State, Tribal, private, non-profit, and academic partners. In addition to broad research expertise, these Federal/university partnerships provide opportunities to develop a next generation of climate science professionals. These include opportunities to increase the climate science knowledge base of students and practicing professionals; build students' skills in working across the boundary between research and implementation; facilitate networking among researchers, students, and professionals for the application of research to on-the-ground issues; and support the science pipeline in climate-related fields through structured, intensive professional development. In 2013, Climate Science Centers supported approximately 10 undergraduates, 60 graduate students, and 26 postdoctoral researchers. Additional students trained by Climate Science Center-affiliated faculty also contribute valuable time and expertise, and are effectively part of the Climate Science Center network. The Climate Science Centers' education and training efforts have also reached a number of high school students interested in STEM careers, and professionals in natural and cultural resource management. The Climate Science Centers are coordinating to build on each other's successful education and training efforts. Early successes include several intensive education experiences, such as the Alaska Climate Science Center's Girls on Ice, the Northeast's Consortium Retreat, the Northwest's Climate Science Boot Camp; the whole-network Early Career Climate Forum; the South Central Climate Science Center's Minority Internship; and a growing curriculum through Interior's National Conservation Training Center.
NASA Astrophysics Data System (ADS)
Gergel, D. R.; Watts, L. H.; Salathe, E. P.; Mankowski, J. D.
2017-12-01
Climate science, already a highly interdisciplinary field, is rapidly evolving, and natural resource managers are increasingly involved in policymaking and adaptation decisions to address climate change that need to be informed by state-of-the-art climate science. Consequently, there is a strong demand for unique organizations that engender collaboration and cooperation between government, non-profit, academic and for-profit sectors that are addressing issues relating to natural resources management and climate adaptation and resilience. These organizations are often referred to as boundary organizations. The Northwest Climate Science Center (NW CSC) and the North Pacific Landscape Conservation Cooperative (NP LCC) are two such boundary organizations operating in different contexts. Together, the NW CSC and the NP LCC fulfill the need for sites of co-production between researchers and managers working on climate-related issues, and a key component of this work is a monthly climate science newsletter that includes recent climate science journal articles, reports, and climate-related events. Our study evaluates the effectiveness of the climate science digest (CSD) through a three-pronged approach: a) in-depth interviews with natural resource managers who use the CSD, b) poll questions distributed to CSD subscribers, and c) quantitative analysis of CSD effectiveness using analytics from MailChimp distribution. We aim to a) map the reach of the CSD across the Northwest and at a national level; b) understand the efficacy of the CSD at communicating climate science to diverse audiences; c) evaluate the usefulness of CSD content for diverse constituencies of subscribers; d) glean transferrable knowledge for future evaluations of boundary management tools; and e) establish a protocol for designing climate science newsletters for other agencies disseminating climate science information. We will present results from all three steps of our evaluation process and describe their implications for future evaluations of climate science communications products and other boundary management tools in the field of natural resources management.
Potential Impacts of Future Climate Change on Regional Air Quality and Public Health over China
NASA Astrophysics Data System (ADS)
Hong, C.; Zhang, Q.; Zhang, Y.; He, K.
2017-12-01
Future climate change would affect public health through changing air quality. Climate extremes and poor weather conditions are likely to occur at a higher frequency in China under a changing climate, but the air pollution-related health impacts due to future climate change remain unclear. Here the potential impacts of future climate change on regional air quality and public health over China is projected using a coupling of climate, air quality and epidemiological models. We present the first assessment of China's future air quality in a changing climate under the Representative Concentration Pathway 4.5 (RCP4.5) scenario using the dynamical downscaling technique. In RCP4.5 scenario, we estimate that climate change from 2006-2010 to 2046-2050 is likely to adversely affect air quality covering more than 86% of population and 55% of land area in China, causing an average increase of 3% in O3 and PM2.5 concentrations, which are found to be associated with the warmer climate and the more stable atmosphere. Our estimate of air pollution-related mortality due to climate change in 2050 is 26,000 people per year in China. Of which, the PM2.5-related mortality is 18,700 people per year, and the O3-related mortality is 7,300 people per year. The climate-induced air pollution and health impacts vary spatially. The climate impacts are even more pronounced on the urban areas where is densely populated and polluted. 90% of the health loss is concentrated in 20% of land areas in China. We use a simple statistical analysis method to quantify the contributions of climate extremes and find more intense climate extremes play an important role in climate-induced air pollution-related health impacts. Our results indicate that global climate change will likely alter the level of pollutant management required to meet future air quality targets as well as the efforts to protect public health in China.
Advances of NOAA Training Program in Climate Services
NASA Astrophysics Data System (ADS)
Timofeyeva, M. M.
2012-12-01
Since 2002, NOAA's National Weather Service (NWS) Climate Services Division (CSD) has offered numerous training opportunities to NWS staff. After eight-years of development, the training program offers three instructor-led courses and roughly 25 online (distance learning) modules covering various climate topics, such as: climate data and observations, climate variability and change, and NWS national / local climate products (tools, skill, and interpretation). Leveraging climate information and expertise available at all NOAA line offices and partners allows for the delivery of the most advanced knowledge and is a very critical aspect of the training program. The emerging NOAA Climate Service (NCS) requires a well-trained, climate-literate workforce at the local level capable of delivering NOAA's climate products and services as well as providing climate-sensitive decision support. NWS Weather Forecast Offices and River Forecast Centers presently serve as local outlets for the NCS climate services. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-sound messages and amiable communication techniques are important in developing an engaged dialog between the climate service providers and users. Several pilot projects have been conducted by the NWS CSD this past year that apply the program's training lessons and expertise to specialized external user group training. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring instructions to the potential applications for each group of users. Training technical users identified the following critical issues: (1) knowledge of target audience expectations, initial knowledge status, and potential use of climate information; (2) leveraging partnership with climate services providers; and, (3) applying 3H training approach, where the first H stands for Head (trusted science), the second H stands for Heart (make it easy), and the third H for Hand (support with applications).
Training NOAA Staff on Effective Communication Methods with Local Climate Users
NASA Astrophysics Data System (ADS)
Timofeyeva, M. M.; Mayes, B.
2011-12-01
Since 2002 NOAA National Weather Service (NWS) Climate Services Division (CSD) offered training opportunities to NWS staff. As a result of eight-year-long development of the training program, NWS offers three training courses and about 25 online distance learning modules covering various climate topics: climate data and observations, climate variability and change, NWS national and local climate products, their tools, skill, and interpretation. Leveraging climate information and expertise available at all NOAA line offices and partners allows delivery of the most advanced knowledge and is a very critical aspect of the training program. NWS challenges in providing local climate services includes effective communication techniques on provide highly technical scientific information to local users. Addressing this challenge requires well trained, climate-literate workforce at local level capable of communicating the NOAA climate products and services as well as provide climate-sensitive decision support. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-unimpaired messages and amiable communication techniques such as story telling approach are important in developing an engaged dialog between the climate service providers and users. Several pilot projects NWS CSD conducted in the past year applied the NWS climate services training program to training events for NOAA technical user groups. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring the instructions to the potential applications of each group of users. Training technical user identified the following critical issues: (1) Knowledge of target audience expectations, initial knowledge status, and potential use of climate information; (2) Leveraging partnership with climate services providers; and, (3) Applying 3H training approach, where the first H stands for Head (trusted science), the second H stands for Heart (make it easy), and the third H for Hand (support with applications).
Working with Climate Projections to Estimate Disease Burden: Perspectives from Public Health.
Conlon, Kathryn C; Kintziger, Kristina W; Jagger, Meredith; Stefanova, Lydia; Uejio, Christopher K; Konrad, Charles
2016-08-09
There is interest among agencies and public health practitioners in the United States (USA) to estimate the future burden of climate-related health outcomes. Calculating disease burden projections can be especially daunting, given the complexities of climate modeling and the multiple pathways by which climate influences public health. Interdisciplinary coordination between public health practitioners and climate scientists is necessary for scientifically derived estimates. We describe a unique partnership of state and regional climate scientists and public health practitioners assembled by the Florida Building Resilience Against Climate Effects (BRACE) program. We provide a background on climate modeling and projections that has been developed specifically for public health practitioners, describe methodologies for combining climate and health data to project disease burden, and demonstrate three examples of this process used in Florida.
Working with Climate Projections to Estimate Disease Burden: Perspectives from Public Health
Conlon, Kathryn C.; Kintziger, Kristina W.; Jagger, Meredith; Stefanova, Lydia; Uejio, Christopher K.; Konrad, Charles
2016-01-01
There is interest among agencies and public health practitioners in the United States (USA) to estimate the future burden of climate-related health outcomes. Calculating disease burden projections can be especially daunting, given the complexities of climate modeling and the multiple pathways by which climate influences public health. Interdisciplinary coordination between public health practitioners and climate scientists is necessary for scientifically derived estimates. We describe a unique partnership of state and regional climate scientists and public health practitioners assembled by the Florida Building Resilience Against Climate Effects (BRACE) program. We provide a background on climate modeling and projections that has been developed specifically for public health practitioners, describe methodologies for combining climate and health data to project disease burden, and demonstrate three examples of this process used in Florida. PMID:27517942
Climate change and skin disease.
Lundgren, Ashley D
2018-04-01
Despite commanding essentially universal scientific consensus, climate change remains a divisive and poorly understood topic in the United States. Familiarity with this subject is not just for climate scientists. The impact of climate change on human morbidity and mortality may be considerable; thus, physicians also should be knowledgeable in this realm. Climate change science can seem opaque and inferential, creating fertile ground for political polemics and undoubtedly contributing to confusion among the general public. This puts physicians in a pivotal position to facilitate a practical understanding of climate change in the public sphere by discussing changes in disease patterns and their possible relationship to a changing climate. This article provides a background on climate change for dermatologists and highlights how climate change may impact the management of skin disease across the United States.
Mandate for the Nursing Profession to Address Climate Change Through Nursing Education.
Leffers, Jeanne; Levy, Ruth McDermott; Nicholas, Patrice K; Sweeney, Casey F
2017-11-01
The adverse health effects from climate change demand action from the nursing profession. This article examines the calls to action, the status of climate change in nursing education, and challenges and recommendations for nursing education related to climate change and human health. Discussion paper. The integration of climate change into nursing education is essential so that knowledge, skills, and insights critical for clinical practice in our climate-changing world are incorporated in curricula, practice, research, and policy. Our Ecological Planetary Health Model offers a framework for nursing to integrate relevant climate change education into nursing curricula and professional nursing education. Nursing education can offer a leadership role to address the mitigation, adaptation, and resilience strategies for climate change. An ecological framework is valuable for nursing education regarding climate change through its consideration of political, cultural, economic, and environmental interrelationships on human health and the health of the planet. Knowledge of climate change is important for integration into basic and advanced nursing education, as well as professional education for nurses to address adverse health impacts, climate change responses policy, and advocacy roles. For current and future nurses to provide care within a climate-changing environment, nursing education has a mandate to integrate knowledge about climate change issues across all levels of nursing education. Competence in nursing practice follows from knowledge and skill acquisition gained from integration of climate change content into nursing education. © 2017 Sigma Theta Tau International.
Mainstreaming Climate Change Into Geosciences Curriculum of Tertiary Educational Systems in Ghana
NASA Astrophysics Data System (ADS)
Nyarko, B. K.
2015-12-01
The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana and also juxtapose with the WASCAL graduate school curriculum. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognize that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Institutions and Educator should be encouraged to undertake co-curricula activities and finding ways to make Climate Change education practical.
A new dataset for systematic assessments of climate change impacts as a function of global warming
NASA Astrophysics Data System (ADS)
Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; M{ü}ller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.
2012-11-01
In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a~narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships betweenΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.
How school climate relates to chronic absence: A multi-level latent profile analysis.
Van Eck, Kathryn; Johnson, Stacy R; Bettencourt, Amie; Johnson, Sarah Lindstrom
2017-04-01
Chronic absence is a significant problem in schools. School climate may play an important role in influencing chronic absence rates among schools, yet little research has evaluated how school climate constructs relate to chronic absence. Using multilevel latent profile analysis, we evaluated how profiles of student perceptions of school climate at both the student and school level differentiated school-level rates of chronic absence. Participants included 25,776 middle and high school students from 106 schools who completed a district administered school climate survey. Students attended schools in a large urban school district where 89% of 6th through 12th grade students were African-American and 61% were eligible for the federally subsidized school meals program. Three student-level profiles of perceptions of school climate emerged that corresponded to "positive," "moderate," and "negative" climate. Two predominant patterns regarding the distribution of these profiles within schools emerged that corresponded to the two school-level profiles of "marginal climate" and "climate challenged" schools. Students reporting "moderate" and "negative" climate in their schools were more likely to attend schools with higher chronic absence rates than students reporting that their school had "positive" climate. Likewise, "climate challenged" schools had significantly higher chronic absence rates than "marginal climate" schools. These results suggest that school climate shares an important relation with chronic absence among adolescent students attending urban schools. Implications for prevention and intervention programs are discussed. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Assessment of the Effect of Climate Change on Grain Yields in China
NASA Astrophysics Data System (ADS)
Chou, J.
2006-12-01
The paper elaborates the social background and research background; makes clear what the key scientific issues need to be resolved and where the difficulties are. In the research area of parasailing the grain yield change caused by climate change, massive works have been done both in the domestic and in the foreign. It is our upcoming work to evaluate how our countrywide climate change information provided by this pattern influence our economic and social development; and how to make related policies and countermeasures. the main idea in this paper is that the grain yield change is by no means the linear composition of social economy function effect and the climatic change function effect. This paper identifies the economic evaluation object, proposes one new concept - climate change output. The grain yields change affected by the social factors and the climatic change working together. Climate change influences the grain yields by the non ¨C linear function from both climate change and social factor changes, not only by climate change itself. Therefore, in my paper, the appraisal object is defined as: The social factors change based on actual social changing situations; under the two kinds of climate change situation, the invariable climate change situation and variable climate change situation; the difference of grain yield outputs is called " climate change output ", In order to solve this problem, we propose a method to analyze and imitate on the historical materials. Giving the condition that the climate is invariable, the social economic factor changes cause the grain yield change. However, this grain yield change is a tentative quantity index, not an actual quantity number. So we use the existing historical materials to exam the climate change output, based on the characteristic that social factor changes greater in year than in age, but the climate factor changes greater in age than in year. The paper proposes and establishes one economy - climate model (C-D-C model) to appraise the grain yield change caused by the climatic change. Also the preliminary test on this model has been done. In selection of the appraisal methods, we take the C-D production function model, which has been proved more mature in the economic research, as our fundamental model. Then, we introduce climate index (arid index) to the C-D model to develop one new model. This new model utilizes the climatic change factor in the economical model to appraise how the climatic change influence the grain yield change. The new way of appraise should have the better application prospect. The economy - climate model (The C-D-C model) has been applied on the eight Chinese regions that we divide; it has been proved satisfactory in its feasibility, rationality and the application prospect. So we can provide the theoretical fundamentals for policy-making under the more complex and uncertain climate change. Therefore, we open a new possible channel for the global climate change research moving toward the actual social, economic life.
NASA Astrophysics Data System (ADS)
Funk, Daniel
2015-04-01
Climate variability poses major challenges for decision-makers in climate-sensitive sectors. Seasonal to decadal (S2D) forecasts provide potential value for management decisions especially in the context of climate change where information from present or past climatology loses significance. However, usable and decision-relevant tailored climate forecasts are still sparse for Europe and successful examples of application require elaborate and individual producer-user interaction. The assessment of sector-specific vulnerabilities to critical climate conditions at specific temporal scale will be a great step forward to increase the usability and efficiency of climate forecasts. A concept for a sector-specific vulnerability assessment (VA) to climate variability is presented. The focus of this VA is on the provision of usable vulnerability information which can be directly incorporated in decision-making processes. This is done by developing sector-specific climate-impact-decision-pathways and the identification of their specific time frames using data from both bottom-up and top-down approaches. The structure of common VA's for climate change related issues is adopted which envisages the determination of exposure, sensitivity and coping capacity. However, the application of the common vulnerability components within the context of climate service application poses some fundamental considerations: Exposure - the effect of climate events on the system of concern may be modified and delayed due to interconnected systems (e.g. catchment). The critical time-frame of a climate event or event sequence is dependent on system-internal thresholds and initial conditions. But also on decision-making processes which require specific lead times of climate information to initiate respective coping measures. Sensitivity - in organizational systems climate may pose only one of many factors relevant for decision making. The scope of "sensitivity" in this concept comprises both the potential physical response of the system of concern as well as the criticality of climate-related decision-making processes. Coping capacity - in an operational context coping capacity can only reduce vulnerability if it can be applied purposeful. With respect to climate vulnerabilities this refers to the availability of suitable, usable and skillful climate information. The focus for this concept is on existing S2D climate service products and their match with user needs. The outputs of the VA are climate-impact-decision-pathways which characterize critical climate conditions, estimate the role of climate in decision-making processes and evaluate the availability and potential usability of S2D climate forecast products. A classification scheme is developed for each component of the impact-pathway to assess its specific significance. The systemic character of these schemes enables a broad application of this VA across sectors where quantitative data is limited. This concept is developed and will be tested within the context of the EU-FP7 project "European Provision Of Regional Impacts Assessments on Seasonal and Decadal Timescales" EUPORIAS.
NASA Astrophysics Data System (ADS)
Ray, A. J.; Ojima, D. S.; Morisette, J. T.
2012-12-01
The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in these projects is to provide the connections between climate data and running ecological models, and prototype these for future work. NCPP will develop capacities to provide enhanced climate information at relevant spatial and temporal scales, both for historical climate and projections of future climate, and will work to link expert guidance and understanding of modeling processes and evaluation of modeling with the use of numerical climate data. Translational information thus is a suite of information that aids in translation of numerical climate information into usable knowledge for applications, e.g. ecological response models, hydrologic risk studies. This information includes technical and scientific aspects including, but not limited to: 1) results of objective, quantitative evaluation of climate models & downscaling techniques, 2) guidance on appropriate uses and interpretation, i.e., understanding the advantages and limitations of various downscaling techniques for specific user applications, 3) characterizing and interpreting uncertainty, 4) Descriptions meaningful to applications, e.g. narratives. NCPP believes that translational information is best co-developed between climate scientists and applications scientists, such as the NC-CSC pilot.
Using Satellites to Understand Climate and Climate Change
NASA Technical Reports Server (NTRS)
Fetzer, Eric
2007-01-01
This viewgraph presentation reviews the measurement of climate with the use of satellites. The basic greenhouse effect, Ice-albedo feedback, climate models and observations, aerosol-cloud interactions, and the Antarctic are discussed, along with the human effect on climate change.
How does the sensitivity of climate affect stratospheric solar radiation management?
NASA Astrophysics Data System (ADS)
Ricke, K.; Rowlands, D. J.; Ingram, W.; Keith, D.; Morgan, M. G.
2011-12-01
If implementation of proposals to engineer the climate through solar radiation management (SRM) ever occurs, it is likely to be contingent upon climate sensitivity. Despite this, no modeling studies have examined how the effectiveness of SRM forcings differs between the typical Atmosphere-Ocean General Circulation Models (AOGCMs) with climate sensitivities close to the Coupled Model Intercomparison Project (CMIP) mean and ones with high climate sensitivities. Here, we use a perturbed physics ensemble modeling experiment to examine variations in the response of climate to SRM under different climate sensitivities. When SRM is used as a substitute for mitigation its ability to maintain the current climate state gets worse with increased climate sensitivity and with increased concentrations of greenhouse gases. However, our results also demonstrate that the potential of SRM to slow climate change, even at the regional level, grows with climate sensitivity. On average, SRM reduces regional rates of temperature change by more than 90 percent and rates of precipitation change by more than 50 percent in these higher sensitivity model configurations. To investigate how SRM might behave in models with high climate sensitivity that are also consistent with recent observed climate change we perform a "perturbed physics" ensemble (PPE) modelling experiment with the climateprediction.net (cpdn) version of the HadCM3L AOGCM. Like other perturbed physics climate modelling experiments, we simulate past and future climate scenarios using a wide range of model parameter combinations that both reproduce past climate within a specified level of accuracy and simulate future climates with a wide range of climate sensitivities. We chose 43 members ("model versions") from a subset of the 1,550 from the British Broadcasting Corporation (BBC) climateprediction.net project that have data that allow restarts. We use our results to explore how much assessments of SRM that use best-estimate models, and so near-median climate sensitivity, may be ignoring important contingencies associated with implementing SRM in reality. A primary motivation for studying SRM via the injection of aerosols in the stratosphere is to evaluate its potential effectiveness as "insurance" in the case of higher-than-expected climate response to global warming. We find that this is precisely when SRM appears to be least effective in returning regional climates to their baseline states and reducing regional rates of precipitation change. On the other hand, given the very high regional temperature anomalies associated with rising greenhouse gas concentrations in high sensitivity models, it is also where SRM is most effective in reducing rates of change relative to a no SRM alternative.
Understanding global climate change scenarios through bioclimate stratification
NASA Astrophysics Data System (ADS)
Soteriades, A. D.; Murray-Rust, D.; Trabucco, A.; Metzger, M. J.
2017-08-01
Despite progress in impact modelling, communicating and understanding the implications of climatic change projections is challenging due to inherent complexity and a cascade of uncertainty. In this letter, we present an alternative representation of global climate change projections based on shifts in 125 multivariate strata characterized by relatively homogeneous climate. These strata form climate analogues that help in the interpretation of climate change impacts. A Random Forests classifier was calculated and applied to 63 Coupled Model Intercomparison Project Phase 5 climate scenarios at 5 arcmin resolution. Results demonstrate how shifting bioclimate strata can summarize future environmental changes and form a middle ground, conveniently integrating current knowledge of climate change impact with the interpretation advantages of categorical data but with a level of detail that resembles a continuous surface at global and regional scales. Both the agreement in major change and differences between climate change projections are visually combined, facilitating the interpretation of complex uncertainty. By making the data and the classifier available we provide a climate service that helps facilitate communication and provide new insight into the consequences of climate change.
iClimate: a climate data and analysis portal
NASA Astrophysics Data System (ADS)
Goodman, P. J.; Russell, J. L.; Merchant, N.; Miller, S. J.; Juneja, A.
2015-12-01
We will describe a new climate data and analysis portal called iClimate that facilitates direct comparisons between available climate observations and climate simulations. Modeled after the successful iPlant Collaborative Discovery Environment (www.iplantcollaborative.org) that allows plant scientists to trade and share environmental, physiological and genetic data and analyses, iClimate provides an easy-to-use platform for large-scale climate research, including the storage, sharing, automated preprocessing, analysis and high-end visualization of large and often disparate observational and model datasets. iClimate will promote data exploration and scientific discovery by providing: efficient and high-speed transfer of data from nodes around the globe (e.g. PCMDI and NASA); standardized and customized data/model metrics; efficient subsampling of datasets based on temporal period, geographical region or variable; and collaboration tools for sharing data, workflows, analysis results, and data visualizations with collaborators or with the community at large. We will present iClimate's capabilities, and demonstrate how it will simplify and enhance the ability to do basic or cutting-edge climate research by professionals, laypeople and students.
Short-term climate change impacts on Mara basin hydrology
NASA Astrophysics Data System (ADS)
Demaria, E. M.; Roy, T.; Valdés, J. B.; Lyon, B.; Valdés-Pineda, R.; Serrat-Capdevila, A.; Durcik, M.; Gupta, H.
2017-12-01
The predictability of climate diminishes significantly at shorter time scales (e.g. decadal). Both natural variability as well as sampling variability of climate can obscure or enhance climate change signals in these shorter scales. Therefore, in order to assess the impacts of climate change on basin hydrology, it is important to design climate projections with exhaustive climate scenarios. In this study, we first create seasonal climate scenarios by combining (1) synthetic precipitation projections generated from a Vector Auto-Regressive (VAR) model using the University of East Anglia Climate Research Unit (UEA-CRU) data with (2) seasonal trends calculated from 31 models in the Coupled Model Intercomparison Project Phase 5 (CMIP). The seasonal climate projections are then disaggregated to daily level using the Agricultural Modern-Era Retrospective Analysis for Research and Applications (AgMERRA) data. The daily climate data are then bias-corrected and used as forcings to the land-surface model, Variable Infiltration Capacity (VIC), to generate different hydrological projections for the Mara River basin in East Africa, which are then evaluated to study the hydrologic changes in the basin in the next three decades (2020-2050).
Climatic extremes improve predictions of spatial patterns of tree species
Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.
2009-01-01
Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.
Li, Kai; Liu, Xingqi; Herzschuh, Ulrike; Wang, Yongbo
2016-01-01
Abrupt climate changes and fluctuations over short time scales are superimposed on long-term climate changes. Understanding rapid climate fluctuations at the decadal time scale over the past millennium will enhance our understanding of patterns of climate variability and aid in forecasting climate changes in the future. In this study, climate changes on the southeastern Tibetan Plateau over the past millennium were determined from a 4.82-m-long sediment core from Basomtso Lake. At the centennial time scale, the Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and Current Warm Period (CWP) are distinct in the Basomtso region. Rapid climate fluctuations inferred from five episodes with higher sediment input and likely warmer conditions, as well as seven episodes with lower sediment input and likely colder conditions, were well preserved in our record. These episodes with higher and lower sediment input are characterized by abrupt climate changes and short time durations. Spectral analysis indicates that the climate variations at the centennial scale on the southeastern Tibetan Plateau are influenced by solar activity during the past millennium. PMID:27091591
Climate Trends and Farmers' Perceptions of Climate Change in Zambia.
Mulenga, Brian P; Wineman, Ayala; Sitko, Nicholas J
2017-02-01
A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters-notably, rising average temperature-there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.
The Pacific Northwest's Climate Impacts Group: Climate Science in the Public Interest
NASA Astrophysics Data System (ADS)
Mantua, N.; Snover, A.
2006-12-01
Since its inception in 1995, the University of Washington's Climate Impacts Group (CIG) (funded under NOAA's Regional Integrated Science and Assessments (RISA) Program) has become the leader in exploring the impacts of climate variability and climate change on natural and human systems in the U.S. Pacific Northwest (PNW), specifically climate impacts on water, forest, fish and coastal resource systems. The CIG's research provides PNW planners, decision makers, resource managers, local media, and the general public with valuable knowledge of ways in which the region's key natural resources are vulnerable to changes in climate, and how this vulnerability can be reduced. The CIG engages in climate science in the public interest, conducting original research on the causes and consequences of climate variability and change for the PNW and developing forecasts and decision support tools to support the use of this information in federal, state, local, tribal, and private sector resource management decisions. The CIG's focus on the intersection of climate science and public policy has placed the CIG nationally at the forefront of regional climate impacts assessment and integrated analysis.
Making climate change tangible for strategic adaptation planning: The Climate Corridor Approach
NASA Astrophysics Data System (ADS)
Orlowsky, Boris; Calanca, Pierluigi; Ali, Irshad; Ali, Jawad; Elguera Hilares, Agustin; Huggel, Christian; Khan, Inamullah; Neukom, Raphael; Nizami, Arjumand; Qazi, Muhammad Abbas; Robledo, Carmenza; Rohrer, Mario; Salzmann, Nadine; Schmidt, Kaspar
2017-04-01
Climate change is a global phenomenon and difficult to grasp. Although its importance is generally acknowledged, impacts of (future) climate change on human activities are in many cases not taken into account explicitly, in particular when planning development projects. This is due to technical and conceptual challenges, missing financial and human resources and competing priorities. Neglecting climate change can become problematic, if a proposed activity requires specific climatological conditions under which it becomes feasible, a simple example being crop cultivation that needs certain temperature an d precipitation ranges. Comparing such ``climate corridors'' to future climate projections provides an intuitive and low-cost yet quantitative means for assessing needs for, and viability of, adaptation activities under climate change - a "poor man's approach" to climate suitability analysis. A chief advantage of this approach is its modest demand on data. Three case studies from Pakistan, Peru and Tajikistan show that climate corridor analysis can deliver robust results and can be used to efficiently communicate risks and challenges of climate change to partners and stakeholders in the developing countries.
Climate Change Impacts and Adaptation on Southwestern DoD Facilities
2017-03-03
integrating climate change risks into decision priorities. 15. SUBJECT TERMS adaptation, baseline sensitivity, climate change, climate exposure...four bases we found that integrating climate change risks into the current decision matrix, by linking projected risks to current or past impacts...data and decision tools and methods. Bases have some capacity to integrate climate-related information, but they have limited resources to undertake
Modern Climate Analogues of Late-Quaternary Paleoclimates for the Western United States.
NASA Astrophysics Data System (ADS)
Mock, Cary Jeffrey
This study examined spatial variations of modern and late-Quaternary climates for the western United States. Synoptic climatological analyses of the modern record identified the predominate climatic controls that normally produce the principal modes of spatial climatic variability. They also provided a modern standard to assess past climates. Maps of the month-to-month changes in 500 mb heights, sea-level pressure, temperature, and precipitation illustrated how different climatic controls govern the annual cycle of climatic response. The patterns of precipitation ratios, precipitation bar graphs, and the seasonal precipitation maximum provided additional insight into how different climatic controls influence spatial climatic variations. Synoptic-scale patterns from general circulation model (GCM) simulations or from analyses of climatic indices were used as the basis for finding modern climate analogues for 18 ka and 9 ka. Composite anomaly maps of atmospheric circulation, precipitation, and temperature were compared with effective moisture maps compiled from proxy data to infer how the patterns, which were evident from the proxy data, were generated. The analyses of the modern synoptic climatology indicate that smaller-scale climatic controls must be considered along with larger-scale ones in order to explain patterns of spatial climate heterogeneity. Climatic extremes indicate that changes in the spatial patterns of precipitation seasonality are the exception rather than the rule, reflecting the strong influence of smaller-scale controls. Modern climate analogues for both 18 ka and 9 ka clearly depict the dry Northwest/wet Southwest contrast that is suggested by GCM simulations and paleoclimatic evidence. 18 ka analogues also show the importance of smaller-scale climatic controls in explaining spatial climatic variation in the Northwest and northern Great Plains. 9 ka analogues provide climatological explanations for patterns of spatial heterogeneity over several mountainous areas as suggested by paleoclimatic evidence. Modern analogues of past climates supplement modeling approaches by providing information below the resolution of model simulations. Analogues can be used to examine the controls of spatial paleoclimatic variation if sufficient instrumental data and paleoclimatic evidence are available, and if one carefully exercises uniformitarianism when extrapolating modern relationships to the past.
Informing Decisions with a Climate Synthesis Product: Implications for Regional Climate Services
NASA Astrophysics Data System (ADS)
Guido, Z.; Hill, D.; Crimmins, M.; Ferguson, D. B.
2012-12-01
The demand for regional climate information is increasing and spurring efforts to provide a broad slate of climate services that inform policy and resource management and elevate general knowledge. Routine syntheses of existing climate-related information may be an effective strategy for connecting climate information to decision making, but few studies have formally assessed their contribution to informing decisions. During the 2010-2011 winter, drought conditions expanded and intensified in Arizona and New Mexico, creating an opportunity to develop and evaluate a pithy, monthly regional climate communication product—La Niña Drought Tracker—that synthesized and interpreted drought and climate information. Six issues were published and subsequently evaluated through an online survey. On average, 417 people consulted the publication each month. Many of the survey respondents indicated that they made at least one drought-related decision, and the product at least moderately influenced the majority of those decisions, some of which helped mitigate economic losses and reduce climate vulnerability. The product also improved understanding of climate and drought for more than 90 percent of the respondents and helped the majority of them better prepare for drought. These, and other results demonstrate that routine interpretation and synthesis of existing climate information can help enhance access to and understanding and use of climate information in decision-making. Moreover, developing regional, contextual knowledge within climate service programs can facilitate the implementation of activities like the Tracker that enhance the use of climate information without engaging in time-consuming collaborative processes that can prevent the timely production of the services. We present results from the case study of the Tracker and place it within the context of the challenges and opportunities associated with providing climate services, particularly those services that require several-to-many months of work but often do not generate substantial financial sponsorship. These medium-term climate services, like the Tracker, present formidable challenges. However, we argue, they are vital to satisfying stakeholder demand, creating new and strengthening existing partnerships, aiding decisions, advancing climate literacy, and fostering future projects—main goals of climate services.
The meaning and measurement of implementation climate
2011-01-01
Background Climate has a long history in organizational studies, but few theoretical models integrate the complex effects of climate during innovation implementation. In 1996, a theoretical model was proposed that organizations could develop a positive climate for implementation by making use of various policies and practices that promote organizational members' means, motives, and opportunities for innovation use. The model proposes that implementation climate--or the extent to which organizational members perceive that innovation use is expected, supported, and rewarded--is positively associated with implementation effectiveness. The implementation climate construct holds significant promise for advancing scientific knowledge about the organizational determinants of innovation implementation. However, the construct has not received sufficient scholarly attention, despite numerous citations in the scientific literature. In this article, we clarify the meaning of implementation climate, discuss several measurement issues, and propose guidelines for empirical study. Discussion Implementation climate differs from constructs such as organizational climate, culture, or context in two important respects: first, it has a strategic focus (implementation), and second, it is innovation-specific. Measuring implementation climate is challenging because the construct operates at the organizational level, but requires the collection of multi-dimensional perceptual data from many expected innovation users within an organization. In order to avoid problems with construct validity, assessments of within-group agreement of implementation climate measures must be carefully considered. Implementation climate implies a high degree of within-group agreement in climate perceptions. However, researchers might find it useful to distinguish implementation climate level (the average of implementation climate perceptions) from implementation climate strength (the variability of implementation climate perceptions). It is important to recognize that the implementation climate construct applies most readily to innovations that require collective, coordinated behavior change by many organizational members both for successful implementation and for realization of anticipated benefits. For innovations that do not possess these attributes, individual-level theories of behavior change could be more useful in explaining implementation effectiveness. Summary This construct has considerable value in implementation science, however, further debate and development is necessary to refine and distinguish the construct for empirical use. PMID:21781328
NASA Astrophysics Data System (ADS)
Stanier, C. O.; Spak, S.; Neal, T. A.; Herder, S.; Malek, A.; Miller, Z.
2017-12-01
The Iowa Board of Education voted unanimously in 2015 to adopt NGSS performance standards. The CGRER - College of Education Iowa K-12 Climate Science Education Initiative was established in 2016 to work directly with Iowa inservice teachers to provide what teachers need most to teach climate literacy and climate science content through investigational learning aligned with NGSS. Here we present teachers' requests for teaching climate with NGSS, and an approach to provide resources for place-based authentic inquiry on climate, developed, tested, and refined in partnership with inservice and preservice teachers. A survey of inservice middle school and high school science teachers was conducted at the 2016 Iowa Council of Teachers of Mathematics/Iowa Academy of Sciences - Iowa Science Teaching Section Fall Conference and online in fall 2016. Participants (n=383) were asked about their prior experience and education, the resources they use and need, their level of comfort in teaching climate science, perceived barriers, and how they address potential controversy. Teachers indicated preference for professional development on climate content and complete curricula packaged with lessons and interactive models aligned to Iowa standards, as well as training on instructional strategies to enhance students' ability to interpret scientific evidence. We identify trends in responses by teaching experience, climate content knowledge and its source, grade level, and urban and rural districts. Less than 20% of respondents reported controversy or negativity in teaching climate to date, and a majority were comfortable teaching climate science and climate change, with equal confidence in teaching climate and other STEM content through investigational activities. We present an approach and materials to meet these stated needs, created and tested in collaboration with Iowa teachers. We combine professional development and modular curricula with bundled standards, concepts, models, data, field activities, and sequences of individual and group investigational and student-driven inquiry prompts on climate science, climate change, and climate impacts. We identify key resource availability needed to teach place-based climate literacy aligned with NGSS as a standalone curriculum and through local impacts.
Developing Capacity for Cities to Adapt to a Changing Climate-a Case Study in Boulder, Colorado
NASA Astrophysics Data System (ADS)
Sands, R.; Groves, D. G.; Nason, M.; Pandya, R.
2016-12-01
The City of Boulder in Colorado has undertaken many progressive climate-related initiatives, from signing the Kyoto protocol to passing a Climate Action Tax. But as the city prepared to launch its Climate Commitment document and lead a community process, it realized that one critical group that had not been fully engaged in the process was its own staff. It became clear that for organizational change to occur and for the city to meet its goals, city staff needed to develop a deeper understanding of the importance of the climate goals while also learning better how to use these goals to guide their long-term planning. In early 2016, the city launched a year-long "Climate Leaders" initiative which comprised of a series of workshops that brought together over 70 staff members with climate scientists and experts in climate adaptation planning. The first two workshops, billed as Climate 101 and 201, reviewed the best available scientific information about climate threats and potential impacts, and worked with participants to understand how climate changes could affect diverse city functions. These interactive workshops also explored ways to help city staff feel comfortable preparing for a significantly different climate and discussed ways to communicate this information to the public. From there the group split into two tracks. A "mitigation" track focused on the ways in which Boulder could meet its aggressive emissions reduction targets. The "adaptation" track developed integrated scenarios for citywide planning to highlight Boulder's vulnerability to climate change and guide adaptation planning. Bringing these two conversations together is helping city staff to explore critical linkages between mitigation and adaptation, develop common messages to build community support for climate action, and inform comprehensive climate resiliency planning. We will describe how Boulder successfully partnered with scientists and planning experts to program a year of interactive workshops to bring diverse city staff into the climate action process. We will share outcomes from the development of the integrated climate scenarios vulnerability assessment and adaptation planning. Lastly we will share key lessons learned that will be valuable to other cities and jurisdictions engaging in similar climate action.
NASA Astrophysics Data System (ADS)
Niepold, F.
2012-12-01
Societal concern about the impacts of climate change is growing. Citizens in public and private sectors want easy access to credible climate science information to help them make informed decisions affecting their lives and livelihoods. Weather and climate influences almost every sector of society, and affects up to 40 percent of the United States' 10 trillion annual economy. (NRC report, 2003 entitled "Satellite Observations of the Earth's Environment: Accelerating the Transition of Research to Operations"). As the leading provider of climate, weather, and water information to the nation and the world, NOAA is a logical source for citizens to turn to for climate information. NOAA must expand and improve the way it communicates, educates, reaches out to, and engages with public stakeholders to better meet the nation's needs for timely, authoritative climate data and information. Citizens are increasingly going online to seek credible, authoritative climate information. However, users report having difficulty locating and using NOAA's online data products and services. Thus, resolving this online accessibility issue will be one of the Climate Portal's main benefits. The use of portal technology and emerging data integration and visualization tools provide an opportunity for NOAA to bring together multiple datasets from diverse disciplines and sources to deliver a more comprehensive picture of climate in the context of affected resources, communities and businesses. Additional benefits include wider extension of NOAA's data to other media such as television and free-choice learning venues, thereby increasing public exposure and engagement. The Climate Portal teams take an audience-focused approach to promoting climate science literacy among the public. The program communicates the challenges, processes, and results of NOAA-supported climate science through stories and data visualizations on the Web and in popular media. They provide information to a range of audiences to enhance society's ability to understand and plan and respond to climate variability and change. As part of a broad NOAA effort, the Climate Portal teams are working to design, test, and develop the NOAA Climate Services portal (climate.gov) that will provide ready access to climate data, information resources and educational products. The portal features customized interfaces for four audiences: scientists and sectoral data users, policy leaders, educators and students, and the public. The portal delivers climate science content that is free, readily accessible, and easily understandable, provided in flexible formats that maximize its usefulness. Important measures of success for NOAA's climate services will be the ease with which diverse public user communities are able to access and use the data products and information services that NOAA provides, the frequency with which they do so, and the trust they place in NOAA's climate resources. In addition to data and products, the Portal will offer a broad array of climate communications, outreach, and educational materials that demonstrate NOAA's leadership in providing climate science research, observations, and modeling products as a service to society. This session will discuss the partnerships and recent advancements of the climate portal and its plans for the coming year.
The Effects of Climate Model Similarity on Local, Risk-Based Adaptation Planning
NASA Astrophysics Data System (ADS)
Steinschneider, S.; Brown, C. M.
2014-12-01
The climate science community has recently proposed techniques to develop probabilistic projections of climate change from ensemble climate model output. These methods provide a means to incorporate the formal concept of risk, i.e., the product of impact and probability, into long-term planning assessments for local systems under climate change. However, approaches for pdf development often assume that different climate models provide independent information for the estimation of probabilities, despite model similarities that stem from a common genealogy. Here we utilize an ensemble of projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to develop probabilistic climate information, with and without an accounting of inter-model correlations, and use it to estimate climate-related risks to a local water utility in Colorado, U.S. We show that the tail risk of extreme climate changes in both mean precipitation and temperature is underestimated if model correlations are ignored. When coupled with impact models of the hydrology and infrastructure of the water utility, the underestimation of extreme climate changes substantially alters the quantification of risk for water supply shortages by mid-century. We argue that progress in climate change adaptation for local systems requires the recognition that there is less information in multi-model climate ensembles than previously thought. Importantly, adaptation decisions cannot be limited to the spread in one generation of climate models.
Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge
NASA Astrophysics Data System (ADS)
Bakker, Pepijn; Clark, Peter U.; Golledge, Nicholas R.; Schmittner, Andreas; Weber, Michael E.
2017-01-01
Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.
NASA Astrophysics Data System (ADS)
Kibue, Grace Wanjiru; Liu, Xiaoyu; Zheng, Jufeng; zhang, Xuhui; Pan, Genxing; Li, Lianqing; Han, Xiaojun
2016-05-01
Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers' perceptions of climate variability and adaptation. Yet, without an understanding of farmers' perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers' perceptions of climate variability. We found that farmers' were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers' characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads' education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers' perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China's agricultural assets.
Achieving climate connectivity in a fragmented landscape
Lawler, Joshua J.; McRae, Brad H.; Nuñez, Tristan A.; Theobald, David M.
2016-01-01
The contiguous United States contains a disconnected patchwork of natural lands. This fragmentation by human activities limits species’ ability to track suitable climates as they rapidly shift. However, most models that project species movement needs have not examined where fragmentation will limit those movements. Here, we quantify climate connectivity, the capacity of landscape configuration to allow species movement in the face of dynamically shifting climate. Using this metric, we assess to what extent habitat fragmentation will limit species movements in response to climate change. We then evaluate how creating corridors to promote climate connectivity could potentially mitigate these restrictions, and we assess where strategies to increase connectivity will be most beneficial. By analyzing fragmentation patterns across the contiguous United States, we demonstrate that only 41% of natural land area retains enough connectivity to allow plants and animals to maintain climatic parity as the climate warms. In the eastern United States, less than 2% of natural area is sufficiently connected. Introducing corridors to facilitate movement through human-dominated regions increases the percentage of climatically connected natural area to 65%, with the most impactful gains in low-elevation regions, particularly in the southeastern United States. These climate connectivity analyses allow ecologists and conservation practitioners to determine the most effective regions for increasing connectivity. More importantly, our findings demonstrate that increasing climate connectivity is critical for allowing species to track rapidly changing climates, reconfiguring habitats to promote access to suitable climates. PMID:27298349
Vaughan, Catherine; Dessai, Suraje
2014-01-01
Climate services involve the generation, provision, and contextualization of information and knowledge derived from climate research for decision making at all levels of society. These services are mainly targeted at informing adaptation to climate variability and change, widely recognized as an important challenge for sustainable development. This paper reviews the development of climate services, beginning with a historical overview, a short summary of improvements in climate information, and a description of the recent surge of interest in climate service development including, for example, the Global Framework for Climate Services, implemented by the World Meteorological Organization in October 2012. It also reviews institutional arrangements of selected emerging climate services across local, national, regional, and international scales. By synthesizing existing literature, the paper proposes four design elements of a climate services evaluation framework. These design elements include: problem identification and the decision-making context; the characteristics, tailoring, and dissemination of the climate information; the governance and structure of the service, including the process by which it is developed; and the socioeconomic value of the service. The design elements are intended to serve as a guide to organize future work regarding the evaluation of when and whether climate services are more or less successful. The paper concludes by identifying future research questions regarding the institutional arrangements that support climate services and nascent efforts to evaluate them. PMID:25798197
NASA Astrophysics Data System (ADS)
Burroughs, J.; Baldwin, R.; Herring, D.; Lott, N.; Boyd, J.; Handel, S.; Niepold, F.; Shea, E.
2010-09-01
With the rapid rise in the development of Web technologies and climate services across NOAA, there has been an increasing need for greater collaboration regarding NOAA's online climate services. The drivers include the need to enhance NOAA's Web presence in response to customer requirements, emerging needs for improved decision-making capabilities across all sectors of society facing impacts from climate variability and change, and the importance of leveraging climate data and services to support research and public education. To address these needs, NOAA (during fiscal year 2009) embarked upon an ambitious program to develop a NOAA Climate Services Portal (NCS Portal). Four NOAA offices are leading the effort: 1) the NOAA Climate Program Office (CPO), 2) the National Ocean Service's Coastal Services Center (CSC), 3) the National Weather Service's Climate Prediction Center (CPC), and 4) the National Environmental Satellite, Data, and Information Service's (NESDIS) National Climatic Data Center (NCDC). Other offices and programs are also contributing in many ways to the effort. A prototype NCS Portal is being placed online for public access in January 2010, http://www.climate.gov. This website only scratches the surface of the many climate services across NOAA, but this effort, via direct user engagement, will gradually expand the scope and breadth of the NCS Portal to greatly enhance the accessibility and usefulness of NOAA's climate data and services.
Achieving climate connectivity in a fragmented landscape.
McGuire, Jenny L; Lawler, Joshua J; McRae, Brad H; Nuñez, Tristan A; Theobald, David M
2016-06-28
The contiguous United States contains a disconnected patchwork of natural lands. This fragmentation by human activities limits species' ability to track suitable climates as they rapidly shift. However, most models that project species movement needs have not examined where fragmentation will limit those movements. Here, we quantify climate connectivity, the capacity of landscape configuration to allow species movement in the face of dynamically shifting climate. Using this metric, we assess to what extent habitat fragmentation will limit species movements in response to climate change. We then evaluate how creating corridors to promote climate connectivity could potentially mitigate these restrictions, and we assess where strategies to increase connectivity will be most beneficial. By analyzing fragmentation patterns across the contiguous United States, we demonstrate that only 41% of natural land area retains enough connectivity to allow plants and animals to maintain climatic parity as the climate warms. In the eastern United States, less than 2% of natural area is sufficiently connected. Introducing corridors to facilitate movement through human-dominated regions increases the percentage of climatically connected natural area to 65%, with the most impactful gains in low-elevation regions, particularly in the southeastern United States. These climate connectivity analyses allow ecologists and conservation practitioners to determine the most effective regions for increasing connectivity. More importantly, our findings demonstrate that increasing climate connectivity is critical for allowing species to track rapidly changing climates, reconfiguring habitats to promote access to suitable climates.
NASA Astrophysics Data System (ADS)
Choi, H. S.; Schneider, U.; Schmid, E.; Held, H.
2012-04-01
Changes to climate variability and frequency of extreme weather events are expected to impose damages to the agricultural sector. Seasonal forecasting and long range prediction skills have received attention as an option to adapt to climate change because seasonal climate and yield predictions could improve farmers' management decisions. The value of seasonal forecasting skill is assessed with a crop mix adaptation option in Spain where drought conditions are prevalent. Yield impacts of climate are simulated for six crops (wheat, barely, cotton, potato, corn and rice) with the EPIC (Environmental Policy Integrated Climate) model. Daily weather data over the period 1961 to 1990 are used and are generated by the regional climate model REMO as reference period for climate projection. Climate information and its consequent yield variability information are given to the stochastic agricultural sector model to calculate the value of climate information in the agricultural market. Expected consumers' market surplus and producers' revenue is compared with and without employing climate forecast information. We find that seasonal forecasting benefits not only consumers but also producers if the latter adopt a strategic crop mix. This mix differs from historical crop mixes by having higher shares of crops which fare relatively well under climate change. The corresponding value of information is highly sensitive to farmers' crop mix choices.
Vaughan, Catherine; Dessai, Suraje
2014-09-01
Climate services involve the generation, provision, and contextualization of information and knowledge derived from climate research for decision making at all levels of society. These services are mainly targeted at informing adaptation to climate variability and change, widely recognized as an important challenge for sustainable development. This paper reviews the development of climate services, beginning with a historical overview, a short summary of improvements in climate information, and a description of the recent surge of interest in climate service development including, for example, the Global Framework for Climate Services, implemented by the World Meteorological Organization in October 2012. It also reviews institutional arrangements of selected emerging climate services across local, national, regional, and international scales. By synthesizing existing literature, the paper proposes four design elements of a climate services evaluation framework. These design elements include: problem identification and the decision-making context; the characteristics, tailoring, and dissemination of the climate information; the governance and structure of the service, including the process by which it is developed; and the socioeconomic value of the service. The design elements are intended to serve as a guide to organize future work regarding the evaluation of when and whether climate services are more or less successful. The paper concludes by identifying future research questions regarding the institutional arrangements that support climate services and nascent efforts to evaluate them.
Kibue, Grace Wanjiru; Liu, Xiaoyu; Zheng, Jufeng; Zhang, Xuhui; Pan, Genxing; Li, Lianqing; Han, Xiaojun
2016-05-01
Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers' perceptions of climate variability and adaptation. Yet, without an understanding of farmers' perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers' perceptions of climate variability. We found that farmers' were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers' characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads' education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers' perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China's agricultural assets.
New climatic classification of Nepal
NASA Astrophysics Data System (ADS)
Karki, Ramchandra; Talchabhadel, Rocky; Aalto, Juha; Baidya, Saraju Kumar
2016-08-01
Although it is evident that Nepal has an extremely wide range of climates within a short latitudinal distance, there is a lack of comprehensive research in this field. The climatic zoning in a topographically complex country like Nepal has important implications for the selection of scientific station network design and climate model verification, as well as for studies examining the effects of climate change in terms of shifting climatic boundaries and vegetation in highly sensitive environments. This study presents a new high-resolution climate map of Nepal on the basis of long-term (1981-2010) monthly precipitation data for 240 stations and mean air temperature data for 74 stations, using original and modified Köppen-Geiger climate classification systems. Climatic variables used in Köppen-Geiger system were calculated (i) at each station and (ii) interpolated to 1-km spatial resolution using kriging which accounted for latitude, longitude, and elevation. The original Köppen-Geiger scheme could not identify all five types of climate (including tropical) observed in Nepal. Hence, the original scheme was slightly modified by changing the boundary of coldest month mean air temperature value from 18 °C to 14.5 °C in order to delineate the realistic climatic condition of Nepal. With this modification, all five types of climate (including tropical) were identified. The most common dominant type of climate for Nepal is temperate with dry winter and hot summer (Cwa).
Land degradation and climate change: building climate resilience in agriculture
USDA-ARS?s Scientific Manuscript database
Land degradation and climate change pose enormous risks to global food security. Land degradation increases the vulnerability of agroecological systems to climate change and reduces the effectiveness of adaptation options. Yet these interactions have largely been omitted from climate impact assessme...
National Climate Program: Early achievements and future directions
NASA Technical Reports Server (NTRS)
1986-01-01
Activities of the National Climate Program since 1978 are reviewed, and outlines new directions which should be emphasized over the next five years or so. These are discussed under the subentities of climate system research; climate impacts; and climatic data, information, and services.
Physical Processes Controlling Earth's Climate
NASA Technical Reports Server (NTRS)
Genio, Anthony Del
2013-01-01
As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.
Comparative study on Climate Change Policies in the EU and China
NASA Astrophysics Data System (ADS)
Bray, M.; Han, D.
2012-04-01
Both the EU and China are among the largest CO2 emitters in the world; their climate actions and policies have profound impacts on global climate change and may influence the activities in other countries. Evidence of climate change has been observed across Europe and China. Despite the many differences between the two regions, the European Commission and Chinese government support climate change actions. The EU has three priority areas in climate change: 1) understanding, monitoring and predicting climate change and its impact; 2) providing tools to analyse the effectiveness, cost and benefits of different policy options for mitigating climate change and adapting to its impacts; 3) improving, demonstrating and deploying existing climate friendly technologies and developing the technologies of the future. China is very vulnerable to climate change, because of its vast population, fast economic development, and fragile ecological environment. The priority policies in China are: 1) Carbon Trading Policy; 2) Financing Loan Policy (Special Funds for Renewable Energy Development); 3) Energy Efficiency Labelling Policy; 4) Subsidy Policy. In addition, China has formulated the "Energy Conservation Law", "Renewable Energy Law", "Cleaner Production Promotion Law" and "Circular Economy Promotion Law". Under the present EU Framework Programme FP7 there is a large number of funded research activities linked to climate change research. Current climate change research projects concentrate on the carbon cycle, water quality and availability, climate change predictors, predicting future climate and understanding past climates. Climate change-related scientific and technological projects in China are mostly carried out through national scientific and technological research programs. Areas under investigation include projections and impact of global climate change, the future trends of living environment change in China, countermeasures and supporting technologies of global environment change, formation mechanism and prediction theory of major climate and weather disasters in China, technologies of efficient use of clean energy, energy conservation and improvement of energy efficiency, development and utilisation technology of renewable energy and new energy. The EU recognises that developing countries, such as China and India, need to strengthen their economies through industrialisation. However this needs to be achieved at the same time as protecting the environment and sustainable use of energy. The EU has committed itself to assisting developing countries to achieve their goals in four priority areas: 1) raising the policy profile of climate change; 2) support for adaption to climate change; 3) support for mitigation of climate change; and 4) capacity development. This comparative study is part of the EU funded SPRING project which seeks to understand and assess Chinese and European competencies, with the aim of facilitating greater cooperation in future climate and environment research.
Bahamians and Climate Change: An Analysis of Risk Perception and Climate Change Literacy
NASA Astrophysics Data System (ADS)
Neely, R.; Owens, M. A.
2011-12-01
The Commonwealth of the Bahamas is forecasted to be adversely impacted by the effects of climate change. This presentation will present the results of an assessment of the risk perception toward climate change and climate change literacy among Bahamians. 499 Bahamians from the health care and hospitality industries participated in surveys and/or focus groups and three (3) areas of climate change literacy (attitude, behavior and knowledge) were analyzed as well as risk perception. In general, 1) Bahamians demonstrated an elementary understanding of the underlying causes of climate change, 2) possessed positive attitudes toward adopting new climate change policies, and 3) are already adjusting their behaviors in light of the current predictions. This research also resulted in the development of a model of the relationships between the climate literacy subscales (attitude, behavior and knowledge) and risk perception. This study also examined information sources and their impacts on climate change literacy. As the source of information is important in assessing the quality of the information, participants also identified the source(s) of most of their climate change information. The TV news was cited as the most common source for climate change information among Bahamians. As there is limited active research generating specific climate change information in the Bahamas, all the information Bahamians receive as it pertains to climate change is generated abroad. As a result, Bahamians must decipher through to make sense of it on an individual level. From the focus groups, many of the participants have been able to view possible changes through a cultural lens and are willing to make adjustments to maintain the uniqueness and viability of the Bahamas and to preserve it for generations. Continued study of Bahamians' climate change literacy will inform adaption and mitigation policy as well as individual action.
Beyond Quarterly Earnings: Preparing the Business Community for Long-term Climate Risks
NASA Astrophysics Data System (ADS)
Carlson, C.; Goldman, G. T.
2014-12-01
The business community stands to be highly impacted by climate change. In both short and long-term timescales, climate change presents material and financial risks to companies in diverse economic sectors. How the private sector accounts for long-term risks while making short-term decisions about operations is a complex challenge. Companies are accountable to shareholders and must report performance to them on a quarterly basis. At the same time, company investors are exposed to long-term climate-related risks and face losses if companies fail to prepare for climate impacts. The US Securities and Exchange Commission (SEC) obligates publicly traded companies to discuss risks that might materially affect their business and since 2010, the agency recommends that companies consider and discuss any significant risks to their business from climate change. Some companies have complied with this guidance and comprehensively analyze potential climate change impacts, yet others fail to consider climate change at all. Such omissions leave companies without plans for addressing future risks and expose investors and the public to potential catastrophic events from climate change impacts. Climate risk projections can inform companies about the vulnerability of their facilities, supply chains, transportation pathways, and other assets. Such projections can help put climate-related risks in terms of material costs for companies and their investors. Focusing on the vulnerability of coastal facilities, we will use climate change impact projections to demonstrate the economic impacts of climate change faced by the private sector. These risks are then compared to company disclosures to the SEC to assess the degree to which companies have considered their vulnerability to climate change. Finally, we will discuss ways that companies can better assess and manage long-term climate risks.
Mountain landscapes offer few opportunities for high-elevation tree species migration
Bell, David M.; Bradford, John B.; Lauenroth, William K.
2014-01-01
Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high-elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high-elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high-elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high-elevation species to climatic changes.
Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna
2018-06-13
We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Authors.
NASA Astrophysics Data System (ADS)
Helmschrot, J.; Malherbe, J.; Chamunorwa, M.; Muthige, M.; Petitta, M.; Calmanti, S.; Cucchi, M.; Syroka, J.; Iyahen, E.; Engelbrecht, F.
2017-12-01
Climate services are a key component of National Adaptation Plan (NAP) processes, which require the analysis of current climate conditions, future climate change scenarios and the identification of adaptation strategies, including the capacity to finance and implement effective adaptation options. The Extreme Climate Facility (XCF) proposed by the African Risk Capacity (ARC) developed a climate index insurance scheme, which is based on the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events, thus indicating possible shifts to a new climate regime in various regions. The main hazards covered by ECI are extreme dry, wet and heat events, with the possibility of adding other region-specific risk events. The ECI is standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be compared. Initially developed by an Italian company specialized in Climate Services, research is now conducted at the CSIR and SASSCAL, to verify and further develop the ECI for application in southern African countries, through a project initiated by the World Food Programme (WFP) and ARC. The paper will present findings on the most appropriate definitions of extremely wet and dry conditions in Africa, in terms of their impact across a multitude of sub-regional climates of the African continent. Findings of a verification analysis of the ECI, as determined through vegetation monitoring data and the SASSCAL weather station network will be discussed. Changes in the ECI under climate change will subsequently be projected, using detailed regional projections generated by the CSIR and through the Coordinated Regional Downscaling Experiment (CORDEX). This work will be concluded by the development of a web-based climate service informing African Stakeholders on climate extremes.
NASA Astrophysics Data System (ADS)
Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna
2018-06-01
We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.
ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics
NASA Astrophysics Data System (ADS)
Hu, F.; Yang, C. P.; Duffy, D.; Schnase, J. L.; Li, Z.
2016-12-01
Massive array-based climate data is being generated from global surveillance systems and model simulations. They are widely used to analyze the environment problems, such as climate changes, natural hazards, and public health. However, knowing the underlying information from these big climate datasets is challenging due to both data- and computing- intensive issues in data processing and analyzing. To tackle the challenges, this paper proposes ClimateSpark, an in-memory distributed computing framework to support big climate data processing. In ClimateSpark, the spatiotemporal index is developed to enable Apache Spark to treat the array-based climate data (e.g. netCDF4, HDF4) as native formats, which are stored in Hadoop Distributed File System (HDFS) without any preprocessing. Based on the index, the spatiotemporal query services are provided to retrieve dataset according to a defined geospatial and temporal bounding box. The data subsets will be read out, and a data partition strategy will be applied to equally split the queried data to each computing node, and store them in memory as climateRDDs for processing. By leveraging Spark SQL and User Defined Function (UDFs), the climate data analysis operations can be conducted by the intuitive SQL language. ClimateSpark is evaluated by two use cases using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. One use case is to conduct the spatiotemporal query and visualize the subset results in animation; the other one is to compare different climate model outputs using Taylor-diagram service. Experimental results show that ClimateSpark can significantly accelerate data query and processing, and enable the complex analysis services served in the SQL-style fashion.
Climate: Into the 21st Century
NASA Astrophysics Data System (ADS)
Burroughs, William
2003-08-01
Toward the end of the twentieth century, it became evident to professionals working within the meterological arena that the world's climate system was showing signs of change that could not be adequately explained in terms of natural variation. Since that time there has been an increasing recognition that the climate system is changing as a result of human industries and lifestyles, and that the outcomes may prove catastrophic to the world's escalating population. Compiled by an international team formed under the auspices of the World Meteorological Organization (WMO), Climate: Into the 21st Century features an unrivalled collection of essays by the world's leading meteorological experts. These fully integrated contributions provide a perspective of the global climate system across the twentieth century, and describe some of the most arresting and extreme climatic events and their effects that have occurred during that time. In addition, the book traces the development of our capabilities to observe and monitor the climate system, and outlines our understanding of the predictability of climate on time-scales of months and longer. It concludes with a summary of the prospects for applying the twentieth century climate experience in order to benefit society in the twenty-first century. Lavishly illustrated in color, Climate is an accessible acccount of the challenges that climate poses at the start of the twenty-first century. Filled with fascinating facts and diagrams, it is written for a wide audience and will captivate the general reader interested in climate issues, and will be a valuable teaching resource. William Burroughs is a successful science author of books on climate, including Weather (Time Life, 2000), and Climate Change: A Multidisciplinary Approach (2001), Does the Weather Really Matter? (1997) and The Climate Revealed (1999), all published by Cambridge University Press.
NASA Astrophysics Data System (ADS)
Kirchhoff, C.; Vang Rasmussen, L.; Lemos, M. C.
2016-12-01
While there has been considerable focus on understanding how factors related to the creation of climate knowledge affect its uptake and use, less attention has been paid to the actors, decisions, and processes through which climate information supports, or fails to support, action. This is particularly the case concerning how different scales of decision-making influence information uptake. In this study, we seek to understand how water and resource managers' decision space influences climate information use in two Great Lakes watersheds. We find that despite the availability of tailored climate information, actual use of information in decision making remains low. Reasons include: a) lack of willingness to place climate on agendas because local managers perceive climate change as politically risky and a difficult and intangible problem; b) lack of formal mandate or authority at the city and county scale to translate climate information into on-the-ground action, c) problems with the information itself, and d) perceived lack of demand for climate information by those managers who have the mandate and authority (e.g. at the state level) to use (or help others use) climate information. Our findings suggest that 1) climate scientists and information brokers should produce information that meets a range of decision needs and reserve intensive tailoring efforts for decision makers who have authority and willingness to employ climate information, 2) without support from higher levels of decision-making (e.g. state) it is unlikely that climate information use for adaptation decisions will accelerate significantly in the next few years, and 3) the trend towards adopting more sustainability and resilience practices over climate-specific actions should be supported as an important component of the climate adaptation repertoire.
Leveraging federal science data and tools to help communities & business build climate resilience
NASA Astrophysics Data System (ADS)
Herring, D.
2016-12-01
Decision-makers in every sector and region of the United States are seeking actionable science-based information to help them understand and manage their climate-related risks. Translating data, tools and information from the domain of climate science to the domains of municipal, social, and economic decision-making raises complex questions—e.g., how to communicate causes and impacts of climate variability and change; how to show projections of plausible future climate scenarios; how to characterize and quantify vulnerabilities, risks, and opportunities facing communities and businesses; and how to make and implement "win-win" adaptation plans. These are the types of challenges being addressed by a public-private partnership of federal agencies, academic institutions, non-governmental organizations, and private businesses that are contributing to the development of the U.S. Climate Resilience Toolkit (toolkit.climate.gov), a new website designed to help people build resilience to extreme events caused by both natural climate variability and long-term climate change. The site's Climate Explorer is designed to help people understand potential climate conditions over the course of this century. It offers easy access to downloadable maps, graphs, and data tables of observed and projected temperature, precipitation and other decision-relevant climate variables dating back to 1950 and out to 2100. Of course, climate change is only one of many variables affecting decisions about the future so the Toolkit also ties climate information to a wide range of other relevant tools and information to help users to explore their vulnerabilities and risks. In this session, we will describe recent enhancements to the Toolkit, lessons learned from user engagements, and evidence that our approach of coupling scientific information with actionable decision-making processes is helping Americans build resilience to climate-related impacts.
The Data Platform for Climate Research and Action: Introducing Climate Watch
NASA Astrophysics Data System (ADS)
Hennig, R. J.; Ge, M.; Friedrich, J.; Lebling, K.; Carlock, G.; Arcipowska, A.; Mangan, E.; Biru, H.; Tankou, A.; Chaudhury, M.
2017-12-01
The Paris Agreement, adopted through Decision 1/CP.21, brings all nations together to take on ambitious efforts to combat climate change. Open access to climate data supporting climate research, advancing knowledge, and informing decision making is key to encourage and strengthen efforts of stakeholders at all levels to address and respond to effects of climate change. Climate Watch is a robust online data platform developed in response to the urgent needs of knowledge and tools to empower climate research and action, including those of researchers, policy makers, the private sector, civil society, and all other non-state actors. Building on the rapid growing technology of open data and information sharing, Climate Watch is equipped with extensive amount of climate data, informative visualizations, concise yet efficient user interface, and connection to resources users need to gather insightful information on national and global progress towards delivering on the objective of the Convention and the Paris Agreement. Climate Watch brings together hundreds of quantitative and qualitative indicators for easy explore, visualize, compare, download at global, national, and sectoral levels: Greenhouse gas (GHG) emissions for more than 190 countries over the1850-2014 time period, covering all seven Kyoto Gases following IPCC source/sink categories; Structured information on over 150 NDCs facilitating the clarity, understanding and transparency of countries' contributions to address climate change; Over 6500 identified linkages between climate actions in NDCs across the 169 targets of the sustainable development goals (SDG); Over 200 indicators describing low carbon pathways from models and scenarios by integrated assessment models (IAMs) and national sources; and Data on vulnerability and risk, policies, finance, and many more. Climate Watch platform is developed as part of the broader efforts within the World Resources Institute, the NDC Partnership, and in collaboration with GIZ, UNFCCC, World Bank, and Climate Analytics.
Climate Regulation Services of Natural and Managed Ecosystems of the Americas
NASA Astrophysics Data System (ADS)
Anderson-Teixeira, K. J.; Snyder, P. K.; Twine, T. E.; Costa, M. H.; Cuadra, S.; DeLucia, E. H.
2011-12-01
Terrestrial ecosystems regulate climate through both biogeochemical mechanisms (greenhouse gas regulation) and biophysical mechanisms (regulation of water and energy). Land management therefore provides some of the most effective strategies for climate change mitigation. However, most policies aimed at climate protection through land management, including UNFCCC mechanisms and bioenergy sustainability standards, account only for biogeochemical climate services. By ignoring biophysical climate regulation services that in some cases offset the biogeochemical regulation services, these policies run the risk of failing to advance the best climate solutions. Quantifying the combined value of biogeochemical and biophysical climate regulation services remains an important challenge. Here, we use a combination of data synthesis and modeling to quantify how biogeochemical and biophysical effects combine to shape the climate regulation value (CRV) of 18 natural and managed ecosystem types across the Western Hemisphere. Natural ecosystems generally had higher CRVs than agroecosystems, largely driven by differences in biogeochemical services. Biophysical contributions ranged from minimal to dominant. They were highly variable in space and across ecosystem types, and their relative importance varied strongly with the spatio-temporal scale of analysis. Our findings pertain to current efforts to protect climate through land management. Specifically, they reinforce the importance of protecting tropical forests and recent findings that the climatic effects of bioenergy production may be somewhat more positive than previously estimated. Given that biophysical effects in some cases dominate, ensuring effective climate protection through land management requires consideration of combined biogeochemical and biophysical climate regulation services. While quantification of ecosystem climate services is necessarily complex, our CRV index serves as one potential approach to measure the full climate services of terrestrial ecosystems.
Population trends influence species ability to track climate change.
Ralston, Joel; DeLuca, William V; Feldman, Richard E; King, David I
2017-04-01
Shifts of distributions have been attributed to species tracking their fundamental climate niches through space. However, several studies have now demonstrated that niche tracking is imperfect, that species' climate niches may vary with population trends, and that geographic distributions may lag behind rapid climate change. These reports of imperfect niche tracking imply shifts in species' realized climate niches. We argue that quantifying climate niche shifts and analyzing them for a suite of species reveal general patterns of niche shifts and the factors affecting species' ability to track climate change. We analyzed changes in realized climate niche between 1984 and 2012 for 46 species of North American birds in relation to population trends in an effort to determine whether species differ in the ability to track climate change and whether differences in niche tracking are related to population trends. We found that increasingly abundant species tended to show greater levels of niche expansion (climate space occupied in 2012 but not in 1980) compared to declining species. Declining species had significantly greater niche unfilling (climate space occupied in 1980 but not in 2012) compared to increasing species due to an inability to colonize new sites beyond their range peripheries after climate had changed at sites of occurrence. Increasing species, conversely, were better able to colonize new sites and therefore showed very little niche unfilling. Our results indicate that species with increasing trends are better able to geographically track climate change compared to declining species, which exhibited lags relative to changes in climate. These findings have important implications for understanding past changes in distribution, as well as modeling dynamic species distributions in the face of climate change. © 2016 John Wiley & Sons Ltd.
Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna
2018-01-01
We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712797
NASA Astrophysics Data System (ADS)
Rango, A.; Crimmins, M.; Elias, E.; Steele, C. M.; Weiss, J. L.
2015-12-01
The mission of the USDA Southwest Regional Climate Hub is to provide farmers, ranchers and forest land owners and managers with information and resources to cope with the impacts of climate change. As such, a clear understanding of landowner needs for weather and climate data and their attitudes about climate change is required. Here we present a summary of results from 17 peer-reviewed articles on studies pertaining to landowner needs and attitudes towards climate change adaptation and mitigation that span much of the continental U.S. and ideally represent a cross-section of different geographies. In general, approximately 75% of landowners and farm advisors believe climate change is occurring, but disagree on the human contribution. Studies found that most farmers were supportive of adaptation responses, but fewer endorsed farm-based greenhouse gas reduction mitigation strategies. Adaptation is often driven by local concerns and requires locally specific strategies. Perceiving weather variability increased belief in human-caused climate change. Presently farmers and ranchers rely on past experience and short-range forecasts (weeks to seasons) whereas some foresters are requesting long-term predictions on the order of years to decades. Foresters indicated that most of them (74%) are presently unable to find needed long-term information. We augment peer-reviewed literature with observations from landowner workshops conducted in Nevada and Arizona during 2014, the first year of Climate Hub operation. To better collect information about climate change needs and attitudes of farmers, ranchers and foresters across the globe, we created a Climate Change Attitudes collection in JournalMap (https://journalmap.org/usda-southwest-regional-climate-hub/climate-change-attitudes). Users anywhere can add articles to this collection, ultimately generating a comprehensive spatial resource in support of adaptation and mitigation efforts on working lands.
Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.
Qiao, Jianmin; Yu, Deyong; Liu, Yupeng
2017-10-01
Climate change plays a critical role in crop yield variations, which has attracted a great deal of concern worldwide. However, the mechanisms of how climatic trend and fluctuations affect crop yields are not well understood and need to be further investigated. Thus, using the GIS-based Environmental Policy Integrated Climate (EPIC) model, we simulated the yields of major crops (i.e., wheat, maize, and rice) and evaluated the impacts of climatic factors on crop yields in the Agro-Pastoral Transitional Zone (APTZ) of northern China between 1980 and 2010. The partial least squares regression model was used to assess the contribution rates of climatic factors (i.e., precipitation, photosynthetically active radiation (PAR), minimum temperature (T min ), maximum temperature (T max )) to the variation of crop yields. The Breaks for Additive Season and Trend (BFAST) model was adopted to decompose the climate factors into trend and fluctuation components, and the relative contributions of climate trend and fluctuation were then evaluated. The results indicated that the contributions of climatic factors to yield variations of wheat, maize, and rice were 31.7, 37.7, and 23.1%, respectively. That is, climate change had larger impacts on maize than wheat and rice. More cultivated areas were significantly and positively correlated with precipitation than with other climatic factors due to the limited precipitation in the APTZ. Also, climatic trend component had positive impacts on crop yields in the whole region, whereas the climate fluctuation was associated mainly with the areas where the crop yields decreased. This study helps improve our understanding of the mechanisms of climate change impacts on crop yields, and provides useful scientific information for designing regional-scale strategies of adaptation to climate change.
Lombarts, Kiki M J M H; Heineman, Maas Jan; Scherpbier, Albert J J A; Arah, Onyebuchi A
2014-01-01
To understand teaching performance of individual faculty, the climate in which residents' learning takes place, the learning climate, may be important. There is emerging evidence that specific climates do predict specific outcomes. Until now, the effect of learning climate on the performance of the individual faculty who actually do the teaching was unknown. THIS STUDY: (i) tested the hypothesis that a positive learning climate was associated with better teaching performance of individual faculty as evaluated by residents, and (ii) explored which dimensions of learning climate were associated with faculty's teaching performance. We conducted two cross-sectional questionnaire surveys amongst residents from 45 residency training programs and multiple specialties in 17 hospitals in the Netherlands. Residents evaluated the teaching performance of individual faculty using the robust System for Evaluating Teaching Qualities (SETQ) and evaluated the learning climate of residency programs using the Dutch Residency Educational Climate Test (D-RECT). The validated D-RECT questionnaire consisted of 11 subscales of learning climate. Main outcome measure was faculty's overall teaching (SETQ) score. We used multivariable adjusted linear mixed models to estimate the separate associations of overall learning climate and each of its subscales with faculty's teaching performance. In total 451 residents completed 3569 SETQ evaluations of 502 faculty. Residents also evaluated the learning climate of 45 residency programs in 17 hospitals in the Netherlands. Overall learning climate was positively associated with faculty's teaching performance (regression coefficient 0.54, 95% confidence interval: 0.37 to 0.71; P<0.001). Three out of 11 learning climate subscales were substantially associated with better teaching performance: 'coaching and assessment', 'work is adapted to residents' competence', and 'formal education'. Individual faculty's teaching performance evaluations are positively affected by better learning climate of residency programs.
Hargreaves, A L; Bailey, S F; Laird, R A
2015-08-01
Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low-latitude/low-elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: (i) climate-induced fitness declines towards range limits and (ii) local adaptation to a shifting climate gradient. We simulate a species distributed continuously along a temperature gradient using a spatially explicit, individual-based model. We compare range-wide dispersal evolution during climate stability vs. directional climate change, with uniform fitness vs. fitness that declines towards range limits (RLs), and for a single climate genotype vs. multiple genotypes locally adapted to temperature. During climate stability, dispersal decreased towards RLs when fitness was uniform, but increased when fitness declined towards RLs, due to highly dispersive genotypes maintaining sink populations at RLs, increased kin selection in smaller populations, and an emergent fitness asymmetry that favoured dispersal in low-quality habitat. However, this initial dispersal advantage at low-fitness RLs did not facilitate climate tracking, as it was outweighed by an increased probability of extinction. Locally adapted genotypes benefited from staying close to their climate optima; this selected against dispersal under stable climates but for increased dispersal throughout shifting ranges, compared to cases without local adaptation. Dispersal increased at expanding RLs in most scenarios, but only increased at the range centre and contracting RLs given local adaptation to climate. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Regional-Scale Climate Change: Observations and Model Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Raymond S; Diaz, Henry F
2010-12-14
This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, andmore » we conducted studies of changes in phonological indicators based on various climatic thresholds.« less
Climate change in the Pacific - is it real or not?
NASA Astrophysics Data System (ADS)
Kuleshov, Yuriy
2013-04-01
In this presentation, novel approaches and new ideas for students and young researchers to appreciate the importance of climate science are discussed. These approaches have been applied through conducting a number of training workshops in the Pacific Island Countries and teaching a course on climate change international law and climate change science at the University of the South Pacific (USP) - the first course on this type in the Pacific. Particular focus of this presentation is on broadening students' experience with application of web-based information tools for analysis of climatic extremes and natural hazards such as tropical cyclones. Over the past few years, significant efforts of Australian climate scientists have been dedicated to improving understanding of climate in the Pacific through the International Climate Change Adaptation Initiative (the Australian Government Initiative to assist with high priority climate adaptation needs in vulnerable countries in the Asia-Pacific region). The first comprehensive scientific report about the Pacific climate has been published in 2011, as an outcome of the Pacific Climate Change Science Program (PCCSP). A range of web-based information tools such as the Pacific Tropical Cyclone Data Portal, the Pacific Climate Change Data Portal and the Pacific Seasonal Climate Prediction Portal has been also developed through the PCCSP and the Pacific Adaptation Strategy Assistance Program. Currently, further advancement in seasonal climate prediction science and developing enhanced software tools for the Pacific is undertaken through the Theme 1 of the Pacific Australia Climate Change Science and Adaptation Planning (PACCSAP) Program. This new scientific knowledge needs to be transferred to students to provide them with true information about climate change and its impact on the Pacific Island Countries. Teachers and educators need their knowledge-base regularly updated and tools that will help their students critically evaluate information transmitted via the mass media. This is particularly important when educators present to students cutting edge science knowledge on climate change. Climate change skeptics through mass media attack climate scientists and dismiss their findings about magnitude of climate change. A novel approach implemented in our training workshops and teaching courses gives students practical hands on experience in examining climate data using the developed web-based information tools. Using the tools, students can examine climate of the Pacific Island Countries, derive trends in climate variables such as temperature and rainfall and make their own conclusions. An open forum "Is climate change real or not?" has also been included as an integral part of these workshops and teaching, giving an opportunity for students to present their findings. They have also been asked to provide examples of observed change in the environment in their countries which may be related to climate change. Tropical cyclones are the most destructive severe weather events in the Pacific which regularly affect countries in the region. Understanding importance of updating knowledge about cyclones, extensive training in using the Pacific Tropical Cyclone Data Portal (http://www.bom.gov.au/cyclone/history/tracks/) has also been provided. Using this sophisticated web-based tool, students can learn about occurrences of cyclones in waters around their countries and over the whole Pacific. Positive feedback from university students and participants of training workshops has been obtained and this approach may be recommended for educators to include in their courses. Acknowledgement The research discussed in this paper was conducted through the PASAP, PCCSP and PACCSAP supported by the AusAID and Department of Climate Change and Energy Efficiency and delivered by the Bureau of Meteorology and CSIRO.
[Organizational climate and burnout syndrome].
Lubrańska, Anna
2011-01-01
The paper addresses the issue of organizational climate and burnout syndrome. It has been assumed that burnout syndrome is dependent on work climate (organizational climate), therefore, two concepts were analyzed: by D. Kolb (organizational climate) and by Ch. Maslach (burnout syndrome). The research involved 239 persons (122 woman, 117 men), aged 21-66. In the study Maslach Burnout Inventory (MBI) and Inventory of Organizational Climate were used. The results of statistical methods (correlation analysis, one-variable analysis of variance and regression analysis) evidenced a strong relationship between organizational climate and burnout dimension. As depicted by the results, there are important differences in the level of burnout between the study participants who work in different types of organizational climate. The results of the statistical analyses indicate that the organizational climate determines burnout syndrome. Therefore, creating supportive conditions at the workplace might reduce the risk of burnout.
Hartmann, Christine W; Meterko, Mark; Rosen, Amy K; Shibei Zhao; Shokeen, Priti; Singer, Sara; Gaba, David M
2009-06-01
Improving safety climate could enhance patient safety, yet little evidence exists regarding the relationship between hospital characteristics and safety climate. This study assessed the relationship between hospitals' organizational culture and safety climate in Veterans Health Administration (VA) hospitals nationally. Data were collected from a sample of employees in a stratified random sample of 30 VA hospitals over a 6-month period (response rate = 50%; n = 4,625). The Patient Safety Climate in Healthcare Organizations (PSCHO) and the Zammuto and Krakower surveys were used to measure safety climate and organizational culture, respectively. Higher levels of safety climate were significantly associated with higher levels of group and entrepreneurial cultures, while lower levels of safety climate were associated with higher levels of hierarchical culture. Hospitals could use these results to design specific interventions aimed at improving safety climate.
Thom, Dominik; Rammer, Werner; Seidl, Rupert
2018-01-01
Currently, the temperate forest biome cools the earth’s climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased disturbance activity in the long run (−10.1%), mainly by reducing the host trees available for bark beetles. Climate change and the resulting future forest dynamics significantly reduced the climate regulation function of the landscape, increasing radiative forcing by up to +10.2% on average over 200 yr. Overall, radiative forcing was most strongly driven by carbon exchange. We conclude that future changes in forest dynamics can cause amplifying climate feedbacks from temperate forest ecosystems. PMID:29628526
Accounting for health in climate change policies: a case study of Fiji
Morrow, Georgina; Bowen, Kathryn
2014-01-01
Background Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. Objective The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. Design The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. Results The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. Conclusions The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes. PMID:24836442
Climate Change Schools Project...
ERIC Educational Resources Information Center
McKinzey, Krista
2010-01-01
This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…
Houet, Thomas; Pigeon, Grégoire
2011-01-01
Facing the concern of the population to its environment and to climatic change, city planners are now considering the urban climate in their choices of planning. The use of climatic maps, such Urban Climate Zone‑UCZ, is adapted for this kind of application. The objective of this paper is to demonstrate that the UCZ classification, integrated in the World Meteorological Organization guidelines, first can be automatically determined for sample areas and second is meaningful according to climatic variables. The analysis presented is applied on Toulouse urban area (France). Results show first that UCZ differentiate according to air and surface temperature. It has been possible to determine the membership of sample areas to an UCZ using landscape descriptors automatically computed with GIS and remote sensed data. It also emphasizes that climate behavior and magnitude of UCZ may vary from winter to summer. Finally we discuss the influence of climate data and scale of observation on UCZ mapping and climate characterization. Copyright © 2011 Elsevier Ltd. All rights reserved.
Estimation of biogeochemical climate regulation services in Chinese forest ecosystems
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, S.
2016-12-01
As the global climate is changing, the climate regulation service of terrestrial ecosystem has been widely studied. Forests, as one of the most important terrestrial ecosystem types, is the biggest carbon pool or sink on land and can regulate climate through both biophysical and biogeochemical means. China is a country with vast forested areas and a variety of forest ecosystems types. Although current studies have related the climate regulation service of forest in China with biophysical or biogeochemical mechanism, there is still a lack of quantitative estimation of climate regulation services, especially for the biogeochemical climate regulation service. The GHGV (greenhouse gas value) is an indicator that can quantify the biochemical climate regulation service using ecosystems' stored organic matter, annual greenhouse gas flux, and potential greenhouse gas exchange rates during disturbances over a multiple year time frame. Therefore, we used GHGV to estimate the contribution of China's ten main forest types to biogeochemical climate regulation and generate the pattern of biochemical climate regulation service in Chinese forest ecosystems.
Madhusoodhanan, C G; Sreeja, K G; Eldho, T I
2016-10-01
Climate change is a major concern in the twenty-first century and its assessments are associated with multiple uncertainties, exacerbated and confounded in the regions where human interventions are prevalent. The present study explores the challenges for climate change impact assessment on the water resources of India, one of the world's largest human-modified systems. The extensive human interventions in the Energy-Land-Water-Climate (ELWC) nexus significantly impact the water resources of the country. The direct human interventions in the landscape may surpass/amplify/mask the impacts of climate change and in the process also affect climate change itself. Uncertainties in climate and resource assessments add to the challenge. Formulating coherent resource and climate change policies in India would therefore require an integrated approach that would assess the multiple interlinkages in the ELWC nexus and distinguish the impacts of global climate change from that of regional human interventions. Concerted research efforts are also needed to incorporate the prominent linkages in the ELWC nexus in climate/earth system modelling.
Seasonal Climate Forecasts and Adoption by Agriculture
NASA Astrophysics Data System (ADS)
Garbrecht, Jurgen; Meinke, Holger; Sivakumar, Mannava V. K.; Motha, Raymond P.; Salinger, Michael J.
2005-06-01
Recent advances in atmospheric and ocean sciences and a better understanding of the global climate have led to skillful climate forecasts at seasonal to interannual timescales, even in midlatitudes. These scientific advances and forecasting capabilities have opened the door to practical applications that benefit society. The benefits include the reduction of weather/climate related risks and vulnerability, increased economic opportunities, enhanced food security, mitigation of adverse climate impacts, protection of environmental quality, and so forth. Agriculture in particular can benefit substantially from accurate long-lead seasonal climate forecasts. Indeed, agricultural production very much depends on weather, climate, and water availability, and unexpected departures from anticipated climate conditions can thwart the best laid management plans. Timely climate forecasts offer means to reduce losses in drought years, increase profitability in good years, deal more effectively with climate variability, and choose from targeted risk-management strategies. In addition to benefiting farmers, forecasts can also help marketing systems and downstream users prepare for anticipated production outcomes and associated consequences.
Improving the Accuracy of Estimation of Climate Extremes
NASA Astrophysics Data System (ADS)
Zolina, Olga; Detemmerman, Valery; Trenberth, Kevin E.
2010-12-01
Workshop on Metrics and Methodologies of Estimation of Extreme Climate Events; Paris, France, 27-29 September 2010; Climate projections point toward more frequent and intense weather and climate extremes such as heat waves, droughts, and floods, in a warmer climate. These projections, together with recent extreme climate events, including flooding in Pakistan and the heat wave and wildfires in Russia, highlight the need for improved risk assessments to help decision makers and the public. But accurate analysis and prediction of risk of extreme climate events require new methodologies and information from diverse disciplines. A recent workshop sponsored by the World Climate Research Programme (WCRP) and hosted at United Nations Educational, Scientific and Cultural Organization (UNESCO) headquarters in France brought together, for the first time, a unique mix of climatologists, statisticians, meteorologists, oceanographers, social scientists, and risk managers (such as those from insurance companies) who sought ways to improve scientists' ability to characterize and predict climate extremes in a changing climate.
Global Warming: Discussion for EOS Science Writers Workshop
NASA Technical Reports Server (NTRS)
Hansen, James E
1999-01-01
The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.
Asplund, Therese
2016-07-01
While previous research into understandings of climate change has usually examined general public perceptions, this study offers an audience-specific departure point. This article analyses how Swedish farmers perceive climate change and how they jointly shape their understandings. The agricultural sector is of special interest because it both contributes to and is directly affected by climate change. Through focus group discussions with Swedish farmers, this study finds that (1) farmers relate to and understand climate change through their own experiences, (2) climate change is understood either as a natural process subject to little or no human influence or as anthropogenic and (3) various communication tools contribute to the formation of natural and anthropogenic climate change frames. The article ends by discussing frame resonance and frame clash in public understanding of climate change and by comparing potential similarities and differences in how various segments of the public make sense of climate change. © The Author(s) 2014.
Big Data Challenges in Climate Science: Improving the Next-Generation Cyberinfrastructure
NASA Technical Reports Server (NTRS)
Schnase, John L.; Lee, Tsengdar J.; Mattmann, Chris A.; Lynnes, Christopher S.; Cinquini, Luca; Ramirez, Paul M.; Hart, Andre F.; Williams, Dean N.; Waliser, Duane; Rinsland, Pamela;
2016-01-01
The knowledge we gain from research in climate science depends on the generation, dissemination, and analysis of high-quality data. This work comprises technical practice as well as social practice, both of which are distinguished by their massive scale and global reach. As a result, the amount of data involved in climate research is growing at an unprecedented rate. Climate model intercomparison (CMIP) experiments, the integration of observational data and climate reanalysis data with climate model outputs, as seen in the Obs4MIPs, Ana4MIPs, and CREATE-IP activities, and the collaborative work of the Intergovernmental Panel on Climate Change (IPCC) provide examples of the types of activities that increasingly require an improved cyberinfrastructure for dealing with large amounts of critical scientific data. This paper provides an overview of some of climate science's big data problems and the technical solutions being developed to advance data publication, climate analytics as a service, and interoperability within the Earth System Grid Federation (ESGF), the primary cyberinfrastructure currently supporting global climate research activities.
Pace of shifts in climate regions increases with global temperature
NASA Astrophysics Data System (ADS)
Mahlstein, Irina; Daniel, John S.; Solomon, Susan
2013-08-01
Human-induced climate change causes significant changes in local climates, which in turn lead to changes in regional climate zones. Large shifts in the world distribution of Köppen-Geiger climate classifications by the end of this century have been projected. However, only a few studies have analysed the pace of these shifts in climate zones, and none has analysed whether the pace itself changes with increasing global mean temperature. In this study, pace refers to the rate at which climate zones change as a function of amount of global warming. Here we show that present climate projections suggest that the pace of shifting climate zones increases approximately linearly with increasing global temperature. Using the RCP8.5 emissions pathway, the pace nearly doubles by the end of this century and about 20% of all land area undergoes a change in its original climate. This implies that species will have increasingly less time to adapt to Köppen zone changes in the future, which is expected to increase the risk of extinction.
Predictors of public climate change awareness and risk perception around the world
NASA Astrophysics Data System (ADS)
Lee, Tien Ming; Markowitz, Ezra M.; Howe, Peter D.; Ko, Chia-Ying; Leiserowitz, Anthony A.
2015-11-01
Climate change is a threat to human societies and natural ecosystems, yet public opinion research finds that public awareness and concern vary greatly. Here, using an unprecedented survey of 119 countries, we determine the relative influence of socio-demographic characteristics, geography, perceived well-being, and beliefs on public climate change awareness and risk perceptions at national scales. Worldwide, educational attainment is the single strongest predictor of climate change awareness. Understanding the anthropogenic cause of climate change is the strongest predictor of climate change risk perceptions, particularly in Latin America and Europe, whereas perception of local temperature change is the strongest predictor in many African and Asian countries. However, other key factors associated with public awareness and risk perceptions highlight the need to develop tailored climate communication strategies for individual nations. The results suggest that improving basic education, climate literacy, and public understanding of the local dimensions of climate change are vital to public engagement and support for climate action.
Integrating Climate Information and Decision Processes for Regional Climate Resilience
NASA Astrophysics Data System (ADS)
Buizer, James; Goddard, Lisa; Guido, Zackry
2015-04-01
An integrated multi-disciplinary team of researchers from the University of Arizona and the International Research Institute for Climate and Society at Columbia University have joined forces with communities and institutions in the Caribbean, South Asia and West Africa to develop relevant, usable climate information and connect it to real decisions and development challenges. The overall objective of the "Integrating Climate Information and Decision Processes for Regional Climate Resilience" program is to build community resilience to negative impacts of climate variability and change. We produce and provide science-based climate tools and information to vulnerable peoples and the public, private, and civil society organizations that serve them. We face significant institutional challenges because of the geographical and cultural distance between the locale of climate tool-makers and the locale of climate tool-users and because of the complicated, often-inefficient networks that link them. To use an accepted metaphor, there is great institutional difficulty in coordinating the supply of and the demand for useful climate products that can be put to the task of building local resilience and reducing climate vulnerability. Our program is designed to reduce the information constraint and to initiate a linkage that is more demand driven, and which provides a set of priorities for further climate tool generation. A demand-driven approach to the co-production of appropriate and relevant climate tools seeks to meet the direct needs of vulnerable peoples as these needs have been canvassed empirically and as the benefits of application have been adequately evaluated. We first investigate how climate variability and climate change affect the livelihoods of vulnerable peoples. In so doing we assess the complex institutional web within which these peoples live -- the public agencies that serve them, their forms of access to necessary information, the structural constraints under which they make their decisions, and the non-public institutions of support that are available to them. We then interpret this complex reality in terms of the demand for science-based climate products and analyze the channels through which such climate support must pass, thus linking demand assessment with the scientific capacity to create appropriate decision support tools. In summary, the approach we employ is: 1) Demand-driven, beginning with a knowledge of the impacts of climate variability and change upon targeted populations, 2) Focused on vulnerability and resilience, which requires an understanding of broader networks of institutional actors who contribute to the adaptive capacity of vulnerable peoples, 3) Needs-based in that the climate needs matrix set priorities for the assessment of relevant climate products, 4) Dynamic in that the producers of climate products are involved at the point of demand assessment and can respond directly to stated needs, 5) Reflective in that the impacts of climate product interventions are subject to monitoring and evaluation throughout the process. Methods, approaches and preliminary results of our work in the Caribbean will be presented.
CIRUN: Climate Information Responding to User Needs
NASA Astrophysics Data System (ADS)
Busalacchi, A. J.
2009-12-01
The Earth System will experience real climate change over the next 50 years, exceeding the scope of natural climate variability. A paramount question facing society is how to adapt to this certainty of climate variability and change. In response, OSTP and NOAA are considering how comprehensive climate services would best inform decisions about adaptation. Similarly, NASA is considering the optimal configuration of the next generation of Earth, environmental, and climate observations to be deployed over the coming 10-20 years. Moreover, much of the added-value information for specific climate-related decisions will be provided by private, academic and non-governmental organizations. In this context, over the past several years the University of Maryland has established the CIRUN (Climate Information: Responding to User Needs) initiative to identify the nature of national needs for climate information and services from a decision support perspective. To date, CIRUN has brought together decisionmakers in a number of sectors to help understand their perspectives on climate with the goal of improving the usefulness of climate information, observations and prediction products to specific user communities. CIRUN began with a major workshop in October 2007 that convened 430 participants in agriculture, parks and recreation, terrestrial ecosystems, insurance/investment, energy, national security, state/local/municipal, water, human health, commerce and manufacturing, transportation, and coastal/marine sectors. Plenary speakers such as Norman Augustine, R. James Woolsey, James Mahoney, and former Senator Joseph Tydings, breakout panel sessions, and participants provided input based on the following: - How would you characterize the exposure or vulnerability to climate variability or change impacting your organization? - Does climate variability and/or change currently factor into your organization's objectives or operations? - Are any of your existing plans being affected by climate or projections of climate change? - Is your organization developing a plan for adapting to climate change? - What are your needs for climate observations, predictions, and services? Please cite one or more specific examples when possible. - Do you currently have access to the climate information your organization needs? - What next steps are needed to assure effective use of climate services in your decision making? As a result, a dialogue with various user communities and a subsequent series of more sector specific workshops has been established regarding how significantly enhanced climate observations, data management, modeling, and predictions can provide valuable decision support for business and policy decisions. In particular, CIRUN has helped - To identify how users, stakeholders, and decision makers are influenced by climate on time scales from seasons to decades - To identify the needs and requirements of users, stakeholders, and decision makers for climate information, observations, predictions, and services from global to local scales - To identify what adaptation measures are being considered in the private and public sectors, and how this might result in new classes of information for decision support - To recommend principal elements of the path forward toward more effective use of climate services in decision making.
Real options analysis for photovoltaic project under climate uncertainty
NASA Astrophysics Data System (ADS)
Kim, Kyeongseok; Kim, Sejong; Kim, Hyoungkwan
2016-08-01
The decision on photovoltaic project depends on the level of climate environments. Changes in temperature and insolation affect photovoltaic output. It is important for investors to consider future climate conditions for determining investments on photovoltaic projects. We propose a real options-based framework to assess economic feasibility of photovoltaic project under climate change. The framework supports investors to evaluate climate change impact on photovoltaic projects under future climate uncertainty.
Global Climate Change: Federal Research on Possible Human Health Effects
2006-02-10
unrelated to climate change per se. This report does not address the underlying question of climate change itself. Rather, it identifies the array of...climate-relevant human health research and discusses the interconnections. Approximately $57 million each year since FY2005 supports climate change research...infectious diseases. Three conclusions are common to several studies on possible health effects of climate change : the infirm, the elderly, and the poor
Future warming patterns linked to today’s climate variability
Dai, Aiguo
2016-01-11
The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less
The influence of authentic leadership on safety climate in nursing.
Dirik, Hasan Fehmi; Seren Intepeler, Seyda
2017-07-01
This study analysed nurses' perceptions of authentic leadership and safety climate and examined the contribution of authentic leadership to the safety climate. It has been suggested and emphasised that authentic leadership should be used as a guidance to ensure quality care and the safety of patients and health-care personnel. This predictive study was conducted with 350 nurses in three Turkish hospitals. The data were collected using the Authentic Leadership Questionnaire and the Safety Climate Survey and analysed using hierarchical regression analysis. The mean authentic leadership perception and the safety climate scores of the nurses were 2.92 and 3.50, respectively. The percentage of problematic responses was found to be less than 10% for only four safety climate items. Hierarchical regression analysis revealed that authentic leadership significantly predicted the safety climate. Procedural and political improvements are required in terms of the safety climate in institutions, where the study was conducted, and authentic leadership increases positive perceptions of safety climate. Exhibiting the characteristics of authentic leadership, or improving them and reflecting them on to personnel can enhance the safety climate. Planning information sharing meetings to raise the personnel's awareness of safety climate and systemic improvements can contribute to creating safe care climates. © 2017 John Wiley & Sons Ltd.
The Relationship between Organizational Climate and Quality of Chronic Disease Management
Benzer, Justin K; Young, Gary; Stolzmann, Kelly; Osatuke, Katerine; Meterko, Mark; Caso, Allison; White, Bert; Mohr, David C
2011-01-01
Objective To test the utility of a two-dimensional model of organizational climate for explaining variation in diabetes care between primary care clinics. Data Sources/Study Setting Secondary data were obtained from 223 primary care clinics in the Department of Veterans Affairs health care system. Study Design Organizational climate was defined using the dimensions of task and relational climate. The association between primary care organizational climate and diabetes processes and intermediate outcomes were estimated for 4,539 patients in a cross-sectional study. Data Collection/Extraction Methods All data were collected from administrative datasets. The climate data were drawn from the 2007 VA All Employee Survey, and the outcomes data were collected as part of the VA External Peer Review Program. Climate data were aggregated to the facility level of analysis and merged with patient-level data. Principal Findings Relational climate was related to an increased likelihood of diabetes care process adherence, with significant but small effects for adherence to intermediate outcomes. Task climate was generally not shown to be related to adherence. Conclusions The role of relational climate in predicting the quality of chronic care was supported. Future research should examine the mediators and moderators of relational climate and further investigate task climate. PMID:21210799
Health Aspects of Climate Change in Cities with Mediterranean Climate, and Local Adaptation Plans
Paz, Shlomit; Negev, Maya; Clermont, Alexandra; Green, Manfred S.
2016-01-01
Cities with a Mediterranean-type climate (Med-cities) are particularly susceptible to health risks from climate change since they are located in biogeographical hot-spots that experience some of the strongest effects of the changing climate. The study aims to highlight health impacts of climate change in Med-cities, analyze local climate adaptation plans and make adaptation policy recommendations for the Med-city level. We identified five Med-cities with a climate change adaptation plan: Adelaide, Barcelona, Cape Town, Los Angeles and Santiago. Beyond their similar Med-climate features (although Santiago’s are slightly different), the cities have different socio-economic characteristics in various aspects. We analyzed each plan according to how it addresses climate change-related drivers of health impacts among city dwellers. For each driver, we identified the types of policy adaptation tools that address it in the urban climate adaptation plans. The surveyed cities address most of the fundamental climate change-related drivers of risks to human health, including rising temperatures, flooding and drought, but the policy measures to reduce negative impacts vary across cities. We suggest recommendations for Med-cities in various aspects, depending on their local needs and vulnerability challenges: assessment of health risks, extreme events management and long-term adaptation, among others. PMID:27110801
Outstanding challenges limiting the development of climate services in Europe
NASA Astrophysics Data System (ADS)
Buontempo, Carlo; Soares, Marta Bruno; Liggins, Felicity
2016-04-01
Climate services attempt to make the available (or forthcoming) climate knowledge more usable by decision and policy makers in the development of a climate smart society. Since the launch of the Global Framework for Climate Services in 2009 there has been an exponential increase in investment in the development and delivery of climate services, leading to an array of projects and initiatives across Europe. However, to date little attention has been given to understanding the different ways in which climate services are defined, implemented, and evaluated in Europe. In addition, other aspects such as how to pursue the necessary processes of co-production, which business models to apply, and the implications for the careers of scientists and others involved in the development of climate services are also crucial elements that need to be further examined and discussed. Such aspects are critical to the future development of climate services as they have the potential to significantly constrain the growth of climate services in Europe. Starting from a set of questions that have arisen within some of the most prominent climate services projects and initiatives in Europe, our paper highlights and expands on the outstanding challenges that need to be resolved by both the scientific community and the funders in order to ensure climate services can prosper and grow in Europe.
Regional Climate Service in Northern Germany -The North German Climate Office
NASA Astrophysics Data System (ADS)
Meinke, I.; Von Storch, H.
2012-12-01
The North German Climate Office was established in 2006 at the Institute for Coastal Research at the Helmholtz-Zentrum Geesthacht, Germany as consequence of an increased public information need regarding coastal climate change and its impacts in Northern Germany. The service is characterized by an intensive dialogue between regional climate research and stakeholders in Northern Germany. About once a week scientists of the North German climate office are invited to contribute to public dialogue events. Also numerous direct inquiries are answered and expert interviews are conducted. From this dialogue process specific stakeholder information needs are localized and analysed to develop tailored information products. To provide easy and user specific access to research results interactive web tools are developed. One example is the North German climate atlas, an interactive web tool on possible future climate change in Northern Germany. Another interactive web tool is informing on present and future coastal protection needs in Northern Germany. Another aim of our information products is to assess and summarize the existing scientific knowledge on climate, climate change and impacts in Northern Germany. A mini IPCC-like regional assessment report has been published in 2010, which is summarizing, discussing and assessing the scientific knowledge on regional climate, climate change and impacts as well as possible adaptation strategies in the metropolitan region of Hamburg.
A method for screening climate change-sensitive infectious diseases.
Wang, Yunjing; Rao, Yuhan; Wu, Xiaoxu; Zhao, Hainan; Chen, Jin
2015-01-14
Climate change is a significant and emerging threat to human health, especially where infectious diseases are involved. Because of the complex interactions between climate variables and infectious disease components (i.e., pathogen, host and transmission environment), systematically and quantitatively screening for infectious diseases that are sensitive to climate change is still a challenge. To address this challenge, we propose a new statistical indicator, Relative Sensitivity, to identify the difference between the sensitivity of the infectious disease to climate variables for two different climate statuses (i.e., historical climate and present climate) in non-exposure and exposure groups. The case study in Anhui Province, China has demonstrated the effectiveness of this Relative Sensitivity indicator. The application results indicate significant sensitivity of many epidemic infectious diseases to climate change in the form of changing climatic variables, such as temperature, precipitation and absolute humidity. As novel evidence, this research shows that absolute humidity has a critical influence on many observed infectious diseases in Anhui Province, including dysentery, hand, foot and mouth disease, hepatitis A, hemorrhagic fever, typhoid fever, malaria, meningitis, influenza and schistosomiasis. Moreover, some infectious diseases are more sensitive to climate change in rural areas than in urban areas. This insight provides guidance for future health inputs that consider spatial variability in response to climate change.
Challenges and Opportunities for Advancing Work on Climate Change and Public Health.
Gould, Solange; Rudolph, Linda
2015-12-09
Climate change poses a major threat to public health. Strategies that address climate change have considerable potential to benefit health and decrease health inequities, yet public health engagement at the intersection of public health, equity, and climate change has been limited. This research seeks to understand the barriers to and opportunities for advancing work at this nexus. We conducted semi-structured in-depth interviews (N = 113) with public health and climate change professionals and thematic analysis. Barriers to public health engagement in addressing climate change include individual perceptions that climate change is not urgent or solvable and insufficient understanding of climate change's health impacts and programmatic connections. Institutional barriers include a lack of public health capacity, authority, and leadership; a narrow framework for public health practice that limits work on the root causes of climate change and health; and compartmentalization within and across sectors. Opportunities include integrating climate change into current public health practice; providing inter-sectoral support for climate solutions with health co-benefits; and using a health frame to engage and mobilize communities. Efforts to increase public health sector engagement should focus on education and communications, building leadership and funding, and increasing work on the shared root causes of climate change and health inequities.
NASA Astrophysics Data System (ADS)
Nkhonjera, German K.; Dinka, Megersa O.
2017-11-01
This paper considers the extent and usefulness of reviewing existing literature on the significance of direct and indirect impacts of climate change on groundwater resources with emphasis on examples from the Olifants River basin. Here, the existing literature were extensively reviewed, with discussions centred mainly on the impacts of climate change on groundwater resources and challenges in modelling climate change impacts on groundwater resources. Since in the hydrological cycle, the hydrological components such as evaporation, temperature, precipitation, and groundwater, are the major drivers of the present and future climate, a detailed discussion is done on the impact of climate change on these hydrological components to determine to what extent the hydrological cycle has already been affected as a result of climate change. The uncertainties, constraints and limitations in climate change research have also been reviewed. In addition to the research gaps discussed here, the emphasis on the need of extensive climate change research on the continent, especially as climate change impacts on groundwater, is discussed. Overall, the importance of conducting further research in climate change, understanding the significance of the impact of climate change on water resources such as groundwater, and taking actions to effectively meet the adaptation needs of the people, emerge as an important theme in this review.
NASA Astrophysics Data System (ADS)
Sun, L. Qing; Feng, Feng X.
2014-11-01
In this study, we first built and compared two different climate datasets for Wuling mountainous area in 2010, one of which considered topographical effects during the ANUSPLIN interpolation was referred as terrain-based climate dataset, while the other one did not was called ordinary climate dataset. Then, we quantified the topographical effects of climatic inputs on NPP estimation by inputting two different climate datasets to the same ecosystem model, the Boreal Ecosystem Productivity Simulator (BEPS), to evaluate the importance of considering relief when estimating NPP. Finally, we found the primary contributing variables to the topographical effects through a series of experiments given an overall accuracy of the model output for NPP. The results showed that: (1) The terrain-based climate dataset presented more reliable topographic information and had closer agreements with the station dataset than the ordinary climate dataset at successive time series of 365 days in terms of the daily mean values. (2) On average, ordinary climate dataset underestimated NPP by 12.5% compared with terrain-based climate dataset over the whole study area. (3) The primary climate variables contributing to the topographical effects of climatic inputs for Wuling mountainous area were temperatures, which suggest that it is necessary to correct temperature differences for estimating NPP accurately in such a complex terrain.
Health Aspects of Climate Change in Cities with Mediterranean Climate, and Local Adaptation Plans.
Paz, Shlomit; Negev, Maya; Clermont, Alexandra; Green, Manfred S
2016-04-21
Cities with a Mediterranean-type climate (Med-cities) are particularly susceptible to health risks from climate change since they are located in biogeographical hot-spots that experience some of the strongest effects of the changing climate. The study aims to highlight health impacts of climate change in Med-cities, analyze local climate adaptation plans and make adaptation policy recommendations for the Med-city level. We identified five Med-cities with a climate change adaptation plan: Adelaide, Barcelona, Cape Town, Los Angeles and Santiago. Beyond their similar Med-climate features (although Santiago's are slightly different), the cities have different socio-economic characteristics in various aspects. We analyzed each plan according to how it addresses climate change-related drivers of health impacts among city dwellers. For each driver, we identified the types of policy adaptation tools that address it in the urban climate adaptation plans. The surveyed cities address most of the fundamental climate change-related drivers of risks to human health, including rising temperatures, flooding and drought, but the policy measures to reduce negative impacts vary across cities. We suggest recommendations for Med-cities in various aspects, depending on their local needs and vulnerability challenges: assessment of health risks, extreme events management and long-term adaptation, among others.
Challenges and Opportunities for Advancing Work on Climate Change and Public Health
Gould, Solange; Rudolph, Linda
2015-01-01
Climate change poses a major threat to public health. Strategies that address climate change have considerable potential to benefit health and decrease health inequities, yet public health engagement at the intersection of public health, equity, and climate change has been limited. This research seeks to understand the barriers to and opportunities for advancing work at this nexus. We conducted semi-structured in-depth interviews (N = 113) with public health and climate change professionals and thematic analysis. Barriers to public health engagement in addressing climate change include individual perceptions that climate change is not urgent or solvable and insufficient understanding of climate change’s health impacts and programmatic connections. Institutional barriers include a lack of public health capacity, authority, and leadership; a narrow framework for public health practice that limits work on the root causes of climate change and health; and compartmentalization within and across sectors. Opportunities include integrating climate change into current public health practice; providing inter-sectoral support for climate solutions with health co-benefits; and using a health frame to engage and mobilize communities. Efforts to increase public health sector engagement should focus on education and communications, building leadership and funding, and increasing work on the shared root causes of climate change and health inequities. PMID:26690194
Future warming patterns linked to today’s climate variability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Aiguo
The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less
Iler, Amy M; Inouye, David W; Schmidt, Niels M; Høye, Toke T
2017-03-01
Time series have played a critical role in documenting how phenology responds to climate change. However, regressing phenological responses against climatic predictors involves the risk of finding potentially spurious climate-phenology relationships simply because both variables also change across years. Detrending by year is a way to address this issue. Additionally, detrending isolates interannual variation in phenology and climate, so that detrended climate-phenology relationships can represent statistical evidence of phenotypic plasticity. Using two flowering phenology time series from Colorado, USA and Greenland, we detrend flowering date and two climate predictors known to be important in these ecosystems: temperature and snowmelt date. In Colorado, all climate-phenology relationships persist after detrending. In Greenland, 75% of the temperature-phenology relationships disappear after detrending (three of four species). At both sites, the relationships that persist after detrending suggest that plasticity is a major component of sensitivity of flowering phenology to climate. Finally, simulations that created different strengths of correlations among year, climate, and phenology provide broader support for our two empirical case studies. This study highlights the utility of detrending to determine whether phenology is related to a climate variable in observational data sets. Applying this as a best practice will increase our understanding of phenological responses to climatic variation and change. © 2016 by the Ecological Society of America.
Climate change and vector-borne diseases of public health significance.
Ogden, Nicholas H
2017-10-16
There has been much debate as to whether or not climate change will have, or has had, any significant effect on risk from vector-borne diseases. The debate on the former has focused on the degree to which occurrence and levels of risk of vector-borne diseases are determined by climate-dependent or independent factors, while the debate on the latter has focused on whether changes in disease incidence are due to climate at all, and/or are attributable to recent climate change. Here I review possible effects of climate change on vector-borne diseases, methods used to predict these effects and the evidence to date of changes in vector-borne disease risks that can be attributed to recent climate change. Predictions have both over- and underestimated the effects of climate change. Mostly under-estimations of effects are due to a focus only on direct effects of climate on disease ecology while more distal effects on society's capacity to control and prevent vector-borne disease are ignored. There is increasing evidence for possible impacts of recent climate change on some vector-borne diseases but for the most part, observed data series are too short (or non-existent), and impacts of climate-independent factors too great, to confidently attribute changing risk to climate change. © Crown copyright 2017.
Climate change: believing and seeing implies adapting.
Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc
2012-01-01
Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.
A Method for Screening Climate Change-Sensitive Infectious Diseases
Wang, Yunjing; Rao, Yuhan; Wu, Xiaoxu; Zhao, Hainan; Chen, Jin
2015-01-01
Climate change is a significant and emerging threat to human health, especially where infectious diseases are involved. Because of the complex interactions between climate variables and infectious disease components (i.e., pathogen, host and transmission environment), systematically and quantitatively screening for infectious diseases that are sensitive to climate change is still a challenge. To address this challenge, we propose a new statistical indicator, Relative Sensitivity, to identify the difference between the sensitivity of the infectious disease to climate variables for two different climate statuses (i.e., historical climate and present climate) in non-exposure and exposure groups. The case study in Anhui Province, China has demonstrated the effectiveness of this Relative Sensitivity indicator. The application results indicate significant sensitivity of many epidemic infectious diseases to climate change in the form of changing climatic variables, such as temperature, precipitation and absolute humidity. As novel evidence, this research shows that absolute humidity has a critical influence on many observed infectious diseases in Anhui Province, including dysentery, hand, foot and mouth disease, hepatitis A, hemorrhagic fever, typhoid fever, malaria, meningitis, influenza and schistosomiasis. Moreover, some infectious diseases are more sensitive to climate change in rural areas than in urban areas. This insight provides guidance for future health inputs that consider spatial variability in response to climate change. PMID:25594780
Humpenöder, Florian; Popp, Alexander; Stevanovic, Miodrag; Müller, Christoph; Bodirsky, Benjamin Leon; Bonsch, Markus; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Biewald, Anne; Rolinski, Susanne
2015-06-02
Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.
Climate change and coastal vulnerability assessment: Scenarios for integrated assessment
Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J.
2008-01-01
Coastal vulnerability assessments still focus mainly on sea-level rise, with less attention paid to other dimensions of climate change. The influence of non-climatic environmental change or socio-economic change is even less considered, and is often completely ignored. Given that the profound coastal changes of the twentieth century are likely to continue through the twenty-first century, this is a major omission, which may overstate the importance of climate change, and may also miss significant interactions of climate change with other non-climate drivers. To better support climate and coastal management policy development, more integrated assessments of climatic change in coastal areas are required, including the significant non-climatic changes. This paper explores the development of relevant climate and non-climate drivers, with an emphasis on the non-climate drivers. While these issues are applicable within any scenario framework, our ideas are illustrated using the widely used SRES scenarios, with both impacts and adaptation being considered. Importantly, scenario development is a process, and the assumptions that are made about future conditions concerning the coast need to be explicit, transparent and open to scientific debate concerning their realism and likelihood. These issues are generic across other sectors. ?? Integrated Research System for Sustainability Science and Springer 2008.
Future Warming Patterns Linked to Today's Climate Variability.
Dai, Aiguo
2016-01-11
The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models' ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21(st) century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today's climate, with areas of larger variations during 1950-1979 having more GHG-induced warming in the 21(st) century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950-2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21(st) century in models and in the real world. They support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.
High-Resolution Climate Data Visualization through GIS- and Web-based Data Portals
NASA Astrophysics Data System (ADS)
WANG, X.; Huang, G.
2017-12-01
Sound decisions on climate change adaptation rely on an in-depth assessment of potential climate change impacts at regional and local scales, which usually requires finer resolution climate projections at both spatial and temporal scales. However, effective downscaling of global climate projections is practically difficult due to the lack of computational resources and/or long-term reference data. Although a large volume of downscaled climate data has been make available to the public, how to understand and interpret the large-volume climate data and how to make use of the data to drive impact assessment and adaptation studies are still challenging for both impact researchers and decision makers. Such difficulties have become major barriers preventing informed climate change adaptation planning at regional scales. Therefore, this research will explore new GIS- and web-based technologies to help visualize the large-volume regional climate data with high spatiotemporal resolutions. A user-friendly public data portal, named Climate Change Data Portal (CCDP, http://ccdp.network), will be established to allow intuitive and open access to high-resolution regional climate projections at local scales. The CCDP offers functions of visual representation through geospatial maps and data downloading for a variety of climate variables (e.g., temperature, precipitation, relative humidity, solar radiation, and wind) at multiple spatial resolutions (i.e., 25 - 50 km) and temporal resolutions (i.e., annual, seasonal, monthly, daily, and hourly). The vast amount of information the CCDP encompasses can provide a crucial basis for assessing impacts of climate change on local communities and ecosystems and for supporting better decision making under a changing climate.
Fernández, Miguel; Hamilton, Healy H; Kueppers, Lara M
2015-11-01
Studies that model the effect of climate change on terrestrial ecosystems often use climate projections from downscaled global climate models (GCMs). These simulations are generally too coarse to capture patterns of fine-scale climate variation, such as the sharp coastal energy and moisture gradients associated with wind-driven upwelling of cold water. Coastal upwelling may limit future increases in coastal temperatures, compromising GCMs' ability to provide realistic scenarios of future climate in these coastal ecosystems. Taking advantage of naturally occurring variability in the high-resolution historic climatic record, we developed multiple fine-scale scenarios of California climate that maintain coherent relationships between regional climate and coastal upwelling. We compared these scenarios against coarse resolution GCM projections at a regional scale to evaluate their temporal equivalency. We used these historically based scenarios to estimate potential suitable habitat for coast redwood (Sequoia sempervirens D. Don) under 'normal' combinations of temperature and precipitation, and under anomalous combinations representative of potential future climates. We found that a scenario of warmer temperature with historically normal precipitation is equivalent to climate projected by GCMs for California by 2020-2030 and that under these conditions, climatically suitable habitat for coast redwood significantly contracts at the southern end of its current range. Our results suggest that historical climate data provide a high-resolution alternative to downscaled GCM outputs for near-term ecological forecasts. This method may be particularly useful in other regions where local climate is strongly influenced by ocean-atmosphere dynamics that are not represented by coarse-scale GCMs. © 2015 John Wiley & Sons Ltd.
Zhao, Wei; Shen, Wei Shou; Liu, Hai Yue
2016-12-01
According to the theoretical framework of addressing climate change based on risk mana-gement and the challenge to nature reserve management under climate change, climate change risk of nature reserve was analyzed and defined. Focus on birds and water habitat, grassland habitat, forest habitat, wetland habitat in Dalinuoer Nature Reserve, risk assessment method of nature reserve under climate change was formulated, climate change risks to Dalinuoer Nature Reserve and its habitats were assessed and predicted. The results showed that, during the period from 1997 to 2010, there was significant volatility in dynamic changes of climate change risks to Dalinuoer Nature Reserve and waterbody, grassland, forest, wetland in the region, Dalinuoer Nature Reserve and its habitats were in status of risk in 1999, 2001, 2005 and 2008, wetland habitat was also in status of risk in 2002 and 2004. Under scenario A, B and C, climate change risks to Dalinuoer Nature Reserve and waterbody, grassland, forest, wetland in the region would be more serious in 2020 and 2030, compared with the 2010 level. Climate change risks to different habitats were different significantly, with most serious climate change risk to wetland habitat due to its sensitivity to climate change and rich bird resources. The effect of climate change on nature reserve and related risk would be aggravated by excess utilization of water resource and grassland resource. As climate change risks had appeared in Dalinuoer Nature Reserve, risk management associated with climate change could greatly help to maintain and enhance biodiversity protection function of nature reserves.
NASA Astrophysics Data System (ADS)
Goderniaux, Pascal; BrouyèRe, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley J.; Orban, Philippe; Dassargues, Alain
2011-12-01
Several studies have highlighted the potential negative impact of climate change on groundwater reserves, but additional work is required to help water managers plan for future changes. In particular, existing studies provide projections for a stationary climate representative of the end of the century, although information is demanded for the near future. Such time-slice experiments fail to account for the transient nature of climatic changes over the century. Moreover, uncertainty linked to natural climate variability is not explicitly considered in previous studies. In this study we substantially improve upon the state-of-the-art by using a sophisticated transient weather generator in combination with an integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the finite element modeling software "HydroGeoSphere." This version of the weather generator enables the stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and used to assess impacts in a probabilistic way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of six different regional climate models (RCMs). Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. Additionally, the weather generator's ability to simulate transient climate change enabled the assessment of the likely time scale and associated uncertainty of a specific impact, providing managers with additional information when planning further investment. This methodology constitutes a real improvement in the field of groundwater projections under climate change conditions.
Mainstreaming of Climate Change into the Ghanaian Tertiary Educational System
NASA Astrophysics Data System (ADS)
Nyarko, B. K.
2013-12-01
The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognise that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Various Ministries should be challenged to develop and integrate climate change into education policies. In the design of curriculum, there is a need to integrate Climate Change Education into curricula without compromising already overstretched programmes of study. There is a need to encourage and enhance innovative teaching approaches such as Problem-based learning (PBL) is an approach that challenges students to learn through engagement in a real problem. Institutions and Educator should be encouraged to undertake co-curricula activities and finding ways to practicalize Climate Change education.
Climate Penalty on Air Quality and Human Health in China and India
NASA Astrophysics Data System (ADS)
Li, M.; Zhang, S.; Garcia-Menendez, F.; Monier, E.; Selin, N. E.
2017-12-01
Climate change, favoring more heat waves and episodes of stagnant air, may deteriorate air quality by increasing ozone and fine particulate matter (PM2.5) concentrations and high pollution episodes. This effect, termed as "climate penalty", has been quantified and explained by many earlier studies in the U.S. and Europe, but research efforts in Asian countries are limited. We evaluate the impact of climate change on air quality and human health in China and India using a modeling framework that links the Massachusetts Institute of Technology Integrated Global System Model to the Community Atmosphere Model (MIT IGSM-CAM). Future climate fields are projected under three climate scenarios including a no-policy reference scenario and two climate stabilization scenarios with 2100 total radiative forcing targets of 9.7, 4.5 and 3.7 W m-2, respectively. Each climate scenario is run for five representations of climate variability to account for the role of natural variability. Thirty-year chemical transport simulations are conducted in 1981-2010 and 2086-2115 under the three climate scenarios with fixed anthropogenic emissions at year 2000 levels. We find that 2000—2100 climate change under the no-policy reference scenario would increase ozone concentrations in eastern China and northern India by up to 5 ppb through enhancing biogenic emissions and ozone production efficiency. Ozone extreme episodes also become more frequent in these regions, while climate policies can offset most of the increase in ozone episodes. Climate change between 2000 and 2100 would slightly increase anthropogenic PM2.5 concentrations in northern China and Sichuan province, but significantly reduce anthropogenic PM2.5 concentrations in southern China and northern India, primarily due to different chemical responses of sulfate-nitrate-ammonium aerosols to climate change in these regions. Our study also suggests that the mitigation costs of climate policies can be partially offset by health benefits from reduced climate-induced air pollution in China.
Challenges of coordinating global climate observations - Role of satellites in climate monitoring
NASA Astrophysics Data System (ADS)
Richter, C.
2017-12-01
Global observation of the Earth's atmosphere, ocean and land is essential for identifying climate variability and change, and for understanding their causes. Observation also provides data that are fundamental for evaluating, refining and initializing the models that predict how the climate system will vary over the months and seasons ahead, and that project how climate will change in the longer term under different assumptions concerning greenhouse gas emissions and other human influences. Long-term observational records have enabled the Intergovernmental Panel on Climate Change to deliver the message that warming of the global climate system is unequivocal. As the Earth's climate enters a new era, in which it is forced by human activities, as well as natural processes, it is critically important to sustain an observing system capable of detecting and documenting global climate variability and change over long periods of time. High-quality climate observations are required to assess the present state of the ocean, cryosphere, atmosphere and land and place them in context with the past. The global observing system for climate is not a single, centrally managed observing system. Rather, it is a composite "system of systems" comprising a set of climate-relevant observing, data-management, product-generation and data-distribution systems. Data from satellites underpin many of the Essential Climate Variables(ECVs), and their historic and contemporary archives are a key part of the global climate observing system. In general, the ECVs will be provided in the form of climate data records that are created by processing and archiving time series of satellite and in situ measurements. Early satellite data records are very valuable because they provide unique observations in many regions which were not otherwise observed during the 1970s and which can be assimilated in atmospheric reanalyses and so extend the satellite climate data records back in time.
Where the Rubber Hits the Road: The Politics and Science of Climate Change in Congress
NASA Astrophysics Data System (ADS)
Koppes, M.
2004-12-01
Scientific understanding of the magnitude and rate of global and regional climate change is being actively communicated to Capitol Hill, however this information is being framed within the political debate that has brought climate change policy in the U.S. to a practical standstill. Efforts by scientists to communicate to Congress advances in the understanding of climate change have been obscured by policy-makers, lobbyists and some scientists themselves, into two polarized camps: those that who claim that current climate change is insignificant and/or of non-anthropogenic origin, and those who predict irreversible climate change in the near future and advocate a precautionary approach to anthropogenic contributions. As a science policy advisor to a Member of Congress active in the climate policy debate over the past year, I have observed firsthand most of the scientific information on climate change presented to Congress being partitioned into these camps. The political debate surrounding climate change policy has centered on the policymakers' understanding of scientific uncertainty. Communication by researchers of the definition of risk and uncertainty in climate science, in the language and framework of the legislative debate, is of utmost importance in order for policymakers to effectively understand and utilize science in the decision-making process. A comparison with the recent white paper on climate change policy developed by the UK Science and Technology council and currently adopted by UK policymakers demonstrates the importance of a general public understanding of the existing magnitude of climate change, uncertainties in the rate of future climate variability and its associated economic and social costs. Communication of research results on climate change has been most effective in the policy debate when framed within the context of economic or security risks in the short term. Other effective methods include communicating local and regional climate scenarios and associated probabilities to individual policy-makers, as is currently being utilized to promote sponsorship of the Climate Stewardship Act in Congress.
Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt
2014-01-01
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change. PMID:24823495
Campos, Fernando A; Morris, William F; Alberts, Susan C; Altmann, Jeanne; Brockman, Diane K; Cords, Marina; Pusey, Anne; Stoinski, Tara S; Strier, Karen B; Fedigan, Linda M
2017-11-01
Earth's rapidly changing climate creates a growing need to understand how demographic processes in natural populations are affected by climate variability, particularly among organisms threatened by extinction. Long-term, large-scale, and cross-taxon studies of vital rate variation in relation to climate variability can be particularly valuable because they can reveal environmental drivers that affect multiple species over extensive regions. Few such data exist for animals with slow life histories, particularly in the tropics, where climate variation over large-scale space is asynchronous. As our closest relatives, nonhuman primates are especially valuable as a resource to understand the roles of climate variability and climate change in human evolutionary history. Here, we provide the first comprehensive investigation of vital rate variation in relation to climate variability among wild primates. We ask whether primates are sensitive to global changes that are universal (e.g., higher temperature, large-scale climate oscillations) or whether they are more sensitive to global change effects that are local (e.g., more rain in some places), which would complicate predictions of how primates in general will respond to climate change. To address these questions, we use a database of long-term life-history data for natural populations of seven primate species that have been studied for 29-52 years to investigate associations between vital rate variation, local climate variability, and global climate oscillations. Associations between vital rates and climate variability varied among species and depended on the time windows considered, highlighting the importance of temporal scale in detection of such effects. We found strong climate signals in the fertility rates of three species. However, survival, which has a greater impact on population growth, was little affected by climate variability. Thus, we found evidence for demographic buffering of life histories, but also evidence of mechanisms by which climate change could affect the fates of wild primates. © 2017 John Wiley & Sons Ltd.
Chakraborty, Debojyoti; Wang, Tongli; Andre, Konrad; Konnert, Monika; Lexer, Manfred J.; Matulla, Christoph; Schueler, Silvio
2015-01-01
Identifying populations within tree species potentially adapted to future climatic conditions is an important requirement for reforestation and assisted migration programmes. Such populations can be identified either by empirical response functions based on correlations of quantitative traits with climate variables or by climate envelope models that compare the climate of seed sources and potential growing areas. In the present study, we analyzed the intraspecific variation in climate growth response of Douglas-fir planted within the non-analogous climate conditions of Central and continental Europe. With data from 50 common garden trials, we developed Universal Response Functions (URF) for tree height and mean basal area and compared the growth performance of the selected best performing populations with that of populations identified through a climate envelope approach. Climate variables of the trial location were found to be stronger predictors of growth performance than climate variables of the population origin. Although the precipitation regime of the population sources varied strongly none of the precipitation related climate variables of population origin was found to be significant within the models. Overall, the URFs explained more than 88% of variation in growth performance. Populations identified by the URF models originate from western Cascades and coastal areas of Washington and Oregon and show significantly higher growth performance than populations identified by the climate envelope approach under both current and climate change scenarios. The URFs predict decreasing growth performance at low and middle elevations of the case study area, but increasing growth performance on high elevation sites. Our analysis suggests that population recommendations based on empirical approaches should be preferred and population selections by climate envelope models without considering climatic constrains of growth performance should be carefully appraised before transferring populations to planting locations with novel or dissimilar climate. PMID:26288363
Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt
2014-01-01
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species' occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species' occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.
10 CFR 63.342 - Limits on performance assessments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... biosphere, atmosphere, or ground water. (2) DOE must assess the effects of climate change. The climate... of climate change, and the resulting transport and release of radionuclides to the accessible environment. The nature and degree of climate change may be represented by constant-in-time climate conditions...
10 CFR 63.342 - Limits on performance assessments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... biosphere, atmosphere, or ground water. (2) DOE must assess the effects of climate change. The climate... of climate change, and the resulting transport and release of radionuclides to the accessible environment. The nature and degree of climate change may be represented by constant-in-time climate conditions...
10 CFR 63.342 - Limits on performance assessments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... biosphere, atmosphere, or ground water. (2) DOE must assess the effects of climate change. The climate... of climate change, and the resulting transport and release of radionuclides to the accessible environment. The nature and degree of climate change may be represented by constant-in-time climate conditions...
10 CFR 63.342 - Limits on performance assessments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... biosphere, atmosphere, or ground water. (2) DOE must assess the effects of climate change. The climate... of climate change, and the resulting transport and release of radionuclides to the accessible environment. The nature and degree of climate change may be represented by constant-in-time climate conditions...
CLIMATE CHANGE IN THAILAND AND ITS POTENTIAL IMPACT ON RICE YIELD
Because of the uncertainties surrounding prediction of climate change, it is common to employ climate scenarios to estimate its impacts on a system. Climate scenarios are sets of climatic perturbations used with models to test system sensitivity to projected changes. In this stud...
Flight Testing Under Extreme Climatic Conditions
1988-09-01
30 Categorizing Hazards and Risk Levels .. ......... 31 CLIMATIC LABORATORIES ..... .............. 33 UNITED KINGDOM ENVIRONMENTAL...FACILITY .. ........ 33 MCKINLEY CIMATIC LABORATORY .... ............ 34 Climatic Laboratory Description ... ........... 35 Climatic Laboratory...Profile 10 3 Risk Level Chart .... ............. . 32 4 Plan View of Climatic Laboratory Main Chamber 36 5 Relative Humidity vs Ambient Air Temperature for
USDA Southwest climate hub for climate change
USDA-ARS?s Scientific Manuscript database
The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made up...
10 CFR 63.342 - Limits on performance assessments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... biosphere, atmosphere, or ground water. (2) DOE must assess the effects of climate change. The climate... of climate change, and the resulting transport and release of radionuclides to the accessible environment. The nature and degree of climate change may be represented by constant-in-time climate conditions...
Managing climate change refugia for climate adaptation
Toni Lyn Morelli; Christopher Daly; Solomon Z. Dobrowski; Deanna M. Dulen; Joseph L. Ebersole; Stephen T. Jackson; Jessica D. Lundquist; Connie Millar; Sean P. Maher; William B. Monahan; Koren R. Nydick; Kelly T. Redmond; Sarah C. Sawyer; Sarah Stock; Steven R. Beissinger
2016-01-01
Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that...
Climate programs update: USDA Southwest Regional Climate Hub update
USDA-ARS?s Scientific Manuscript database
PROGRAM OVERVIEW: The overarching goal of the USDA SW Climate Hub is to assist farmers, ranchers and foresters in addressing the effects of climate change including prolonged drought, increased insect outbreaks and severe wildfires. In the first year of operations, the SW Climate Hub (est. Februa...
7 CFR 2.72 - Chairman, World Agricultural Outlook Board.
Code of Federal Regulations, 2014 CFR
2014-01-01
... climate. (i) Advise the Secretary on climate and weather activities, and coordinate the development of policy options on weather and climate. (ii) Coordinate all weather and climate information and monitoring activities within the Department and provide a focal point in the Department for weather and climate...
7 CFR 2.72 - Chairman, World Agricultural Outlook Board.
Code of Federal Regulations, 2011 CFR
2011-01-01
... climate. (i) Advise the Secretary on climate and weather activities, and coordinate the development of policy options on weather and climate. (ii) Coordinate all weather and climate information and monitoring activities within the Department and provide a focal point in the Department for weather and climate...
7 CFR 2.72 - Chairman, World Agricultural Outlook Board.
Code of Federal Regulations, 2012 CFR
2012-01-01
... climate. (i) Advise the Secretary on climate and weather activities, and coordinate the development of policy options on weather and climate. (ii) Coordinate all weather and climate information and monitoring activities within the Department and provide a focal point in the Department for weather and climate...
7 CFR 2.72 - Chairman, World Agricultural Outlook Board.
Code of Federal Regulations, 2013 CFR
2013-01-01
... climate. (i) Advise the Secretary on climate and weather activities, and coordinate the development of policy options on weather and climate. (ii) Coordinate all weather and climate information and monitoring activities within the Department and provide a focal point in the Department for weather and climate...
Climate change; Confronting the global experiment
Constance I. Millar
2006-01-01
Earth’s natural climate system is characterized by continually changing climates, with climate regimes that oscillate quasi-cyclically at multiple and nested scales from annual to multi-millennial, and commonly change abruptly. Under naturally changing climates, plant species track changes at all scales in individualistic manner, with plant communities...
Climate Climate Prediction Climate Archives Weather Safety Storm Ready NOAA Central Library Photo Library NCO's MISSION * Execute the NCEP operational model suite - Create climate, weather, ocean, space and ) NCO Organizational Chart NOAA's Weather and Climate Operational Supercomputing System is known as
Science questions for implementing climate refugia for salmon as a conservation strategy
The recognition and protection of climate refugia has been proposed as a potential adaptation strategy that may be useful for protecting the biotic integrity of watersheds under a changing climate. Climate refugia are areas that are buffered from climate change effects relative t...
Hinde, Theresa; Gale, Thomas; Anderson, Ian; Roberts, Martin; Sice, Paul
2016-01-01
Interprofessional point of care or in situ simulation is used as a training tool in our operating theatre directorate with the aim of improving crisis behaviours. This study aimed to assess the impact of interprofessional point of care simulation on the safety culture of operating theatres. A validated Safety Attitude Questionnaire was administered to staff members before each simulation scenario and then re-administered to the same staff members after 6-12 months. Pre- and post-training Safety Attitude Questionnaire-Operating Room (SAQ-OR) scores were compared using paired sample t-tests. Analysis revealed a statistically significant perceived improvement in both safety (p < 0.001) and teamwork (p = 0.013) climate scores (components of safety culture) 6-12 months after interprofessional simulation training. A growing body of literature suggests that a positive safety culture is associated with improved patient outcomes. Our study supports the implementation of point of care simulation as a useful intervention to improve safety culture in theatres.
NASA Astrophysics Data System (ADS)
Cailleret, Maxime; Snell, Rebecca; von Waldow, Harald; Kotlarski, Sven; Bugmann, Harald
2015-04-01
Different levels of uncertainty should be considered in climate impact projections by Dynamic Vegetation Models (DVMs), particularly when it comes to managing climate risks. Such information is useful to detect the key processes and uncertainties in the climate model - impact model chain and may be used to support recommendations for future improvements in the simulation of both climate and biological systems. In addition, determining which uncertainty source is dominant is an important aspect to recognize the limitations of climate impact projections by a multi-model ensemble mean approach. However, to date, few studies have clarified how each uncertainty source (baseline climate data, greenhouse gas emission scenario, climate model, and DVM) affects the projection of ecosystem properties. Focusing on one greenhouse gas emission scenario, we assessed the uncertainty in the projections of a forest landscape model (LANDCLIM) and a stand-scale forest gap model (FORCLIM) that is caused by linking climate data with an impact model. LANDCLIM was used to assess the uncertainty in future landscape properties of the Visp valley in Switzerland that is due to (i) the use of different 'baseline' climate data (gridded data vs. data from weather stations), and (ii) differences in climate projections among 10 GCM-RCM chains. This latter point was also considered for the projections of future forest properties by FORCLIM at several sites along an environmental gradient in Switzerland (14 GCM-RCM chains), for which we also quantified the uncertainty caused by (iii) the model chain specific statistical properties of the climate time-series, and (iv) the stochasticity of the demographic processes included in the model, e.g., the annual number of saplings that establish, or tree mortality. Using methods of variance decomposition analysis, we found that (i) The use of different baseline climate data strongly impacts the prediction of forest properties at the lowest and highest, but not so much at medium elevations. (ii) Considering climate change, the variability that is due to the GCM-RCM chains is much greater than the variability induced by the uncertainty in the initial climatic conditions. (iii) The uncertainties caused by the intrinsic stochasticity in the DVMs and by the random generation of the climate time-series are negligible. Overall, our results indicate that DVMs are quite sensitive to the climate data, highlighting particularly (1) the limitations of using one single multi-model average climate change scenario in climate impact studies and (2) the need to better consider the uncertainty in climate model outputs for projecting future vegetation changes.
Integrated approaches to climate-crop modelling: needs and challenges.
Betts, Richard A
2005-11-29
This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate-vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (03) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate-chemistry-crop-hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models.
Abrupt climate change: can society cope?
Hulme, Mike
2003-09-15
Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being anticipated and prepared for may reverse and, second, the probability of such a scenario occurring remains fundamentally unknown. The implications of both problems for climate policy and for decision making have not been researched. It is premature to argue therefore that abrupt climate change - in the sense referred to here - imposes unacceptable costs on society or the world economy, represents a catastrophic impact of climate change or constitutes a dangerous change in climate that should be avoided at all reasonable cost. We conclude by examining the implications of this contention for future research and policy formation.
School Climate and Restructuring for Low-Achieving Students.
ERIC Educational Resources Information Center
Smey-Richman, Barbara
Although analogous and vague definitions of school climate may help in determining whether low-achieving students are experiencing a more positive or negative school climate, more clarity is needed to render the climate construct more observable, measurable, and malleable. Tagiuri conceptualizes climate as the total environmental quality within an…
Improving Undergraduate Climate Change Literacy through Writing: A Pilot Study
ERIC Educational Resources Information Center
Small Griswold, Jennifer D.
2017-01-01
A climate-literate population, capable of making informed decisions related to climate change, is of critical importance as society faces ever-increasing global temperatures and changes in the climate system. This project evaluates the effectiveness of a novel instructional approach that incorporates climate change science into a first-year…
Measure and Evaluate Progress Toward a Carbon-Neutral Campus | Climate
Measure and Evaluate Progress Toward a Carbon-Neutral Campus Successful implementation of a climate action University Climate Action Planning: Among its other recommendations, AASHE recommends holding a yearly climate to build support for the climate action plan. The Educational Facilities Professional's Practical
Changing feedbacks in the climate-biosphere system
F. Stuart Chapin; James T. Randerson; A. David McGuire; Jonathan A. Foley; Christopher B. Field
2008-01-01
Ecosystems influence climate through multiple pathways, primarily by changing the energy, water, and greenhouse-gas balance of the atmosphere. Consequently, efforts to mitigate climate change through modification of one pathway, as with carbon in the Kyoto Protocol, only partially address the issue of ecosystem-climate interactions. For example, the cooling of climate...
Le Climat d'Apprentissage; Analyse Conceptuelle=Learning Climate: A Conceptual Analysis.
ERIC Educational Resources Information Center
Michaud, Pierre; And Others
1989-01-01
Analyzes and defines the concept of "learning climate." Discusses the conceptual models of Biddle and Brookover. Considers the use of observation techniques and surveys to measure learning climate. Reviews research on the relationship between learning climate and the attainment of course and institutional objectives. (DMM)