... Chapter . Additional information regarding the health effects of climate change and references to supporting literature can be found ... globalchange.gov/engage/activities-products/NCA3/technical-inputs . Climate change, together with other natural and human-made health ...
NASA Astrophysics Data System (ADS)
Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Pulwarty, R. S.; Klein-Tank, A.; Kolli, R. K.; Hechler, P.; Dilley, M.; Ceron, J. P.; Goodess, C.
2017-12-01
The WMO Commission on Climatology (CCl) supports the implementation of the Global Framework for Climate Services (GFCS) with a particular focus on the Climate Services Information System (CSIS), which is the core operational component of GFCS at the global, regional, and national level. CSIS is designed for producing, packaging and operationally delivering authoritative climate information data and products through appropriate operational systems, practices, data exchange, technical standards, authentication, communication, and product delivery. Its functions include climate analysis and monitoring, assessment and attribution, prediction (monthly, seasonal, decadal), and projection (centennial scale) as well as tailoring the associated products tUEAo suit user requirements. A central, enabling piece of implementation of CSIS is a Climate Services Toolkit (CST). In its development phase, CST exists as a prototype (www.wmo.int/cst) as a compilation of tools for generating tailored data and products for decision-making, with a special focus on national requirements in developing countries. WMO provides a server to house the CST prototype as well as support operations and maintenance. WMO members provide technical expertise and other in-kind support, including leadership of the CSIS development team. Several recent WMO events have helped with the deployment of CST within the eight countries that have been recognized by GFCS as illustrative for developing their climate services at national levels. Currently these countries are developing climate services projects focusing service development and delivery for selected economic sectors, such as for health, agriculture, energy, water resources, and hydrometeorological disaster risk reduction. These countries are working together with their respective WMO Regional Climate Centers (RCCs), which provide technical assistance with implementation of climate services projects at the country level and facilitate development of regional climate products, starting with the CST. The paper will introduce the CST prototype to the wider meteorological, hydrological, and climatological communities and provide details of its implementation in the context of the global framework.
Training NOAA Staff on Effective Communication Methods with Local Climate Users
NASA Astrophysics Data System (ADS)
Timofeyeva, M. M.; Mayes, B.
2011-12-01
Since 2002 NOAA National Weather Service (NWS) Climate Services Division (CSD) offered training opportunities to NWS staff. As a result of eight-year-long development of the training program, NWS offers three training courses and about 25 online distance learning modules covering various climate topics: climate data and observations, climate variability and change, NWS national and local climate products, their tools, skill, and interpretation. Leveraging climate information and expertise available at all NOAA line offices and partners allows delivery of the most advanced knowledge and is a very critical aspect of the training program. NWS challenges in providing local climate services includes effective communication techniques on provide highly technical scientific information to local users. Addressing this challenge requires well trained, climate-literate workforce at local level capable of communicating the NOAA climate products and services as well as provide climate-sensitive decision support. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-unimpaired messages and amiable communication techniques such as story telling approach are important in developing an engaged dialog between the climate service providers and users. Several pilot projects NWS CSD conducted in the past year applied the NWS climate services training program to training events for NOAA technical user groups. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring the instructions to the potential applications of each group of users. Training technical user identified the following critical issues: (1) Knowledge of target audience expectations, initial knowledge status, and potential use of climate information; (2) Leveraging partnership with climate services providers; and, (3) Applying 3H training approach, where the first H stands for Head (trusted science), the second H stands for Heart (make it easy), and the third H for Hand (support with applications).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stout, Sherry; Hotchkiss, Eliza
Distributed generation can play a critical role in supporting climate adaptation goals. This infographic style poster will showcase the role of distributed generation in achieving a wide range of technical and policy goals and social services associated with climate adaptation.
Creating a Campus Climate That Supports Academic Excellence.
ERIC Educational Resources Information Center
Adams, Howard G.
This paper discusses the campus climate as a critical element in the academic development of college students, with emphasis on minority and women students pursuing engineering and other technical degrees. Reforming the campus climate to make it more receptive to minority and women students requires: (1) a clear mandate from top administrators to…
Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training
2016-03-01
identifying the model’s elements and influential individuals, define spheres of influence and construct a model that details the ecological systems...Research Report 1997 Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training...Technical review by: Sena Garven, U.S. Army Research Institute Michael D. Wood , Walter Reed Army Institute of Research
Climate Risk Assessment: Technical Guidance Manual for DoD Installations and Built Environment
2016-09-06
climate change risks to DoD installations and the built environment. The approach, which we call “decision-scaling,” reveals the core sensitivity of...DoD installations to climate change . It is designed to illuminate the sensitivity of installations and their supporting infrastructure systems...including water and energy, to climate changes and other uncertainties without dependence on climate change projections. In this way the analysis and
Big Data Challenges in Climate Science: Improving the Next-Generation Cyberinfrastructure
NASA Technical Reports Server (NTRS)
Schnase, John L.; Lee, Tsengdar J.; Mattmann, Chris A.; Lynnes, Christopher S.; Cinquini, Luca; Ramirez, Paul M.; Hart, Andre F.; Williams, Dean N.; Waliser, Duane; Rinsland, Pamela;
2016-01-01
The knowledge we gain from research in climate science depends on the generation, dissemination, and analysis of high-quality data. This work comprises technical practice as well as social practice, both of which are distinguished by their massive scale and global reach. As a result, the amount of data involved in climate research is growing at an unprecedented rate. Climate model intercomparison (CMIP) experiments, the integration of observational data and climate reanalysis data with climate model outputs, as seen in the Obs4MIPs, Ana4MIPs, and CREATE-IP activities, and the collaborative work of the Intergovernmental Panel on Climate Change (IPCC) provide examples of the types of activities that increasingly require an improved cyberinfrastructure for dealing with large amounts of critical scientific data. This paper provides an overview of some of climate science's big data problems and the technical solutions being developed to advance data publication, climate analytics as a service, and interoperability within the Earth System Grid Federation (ESGF), the primary cyberinfrastructure currently supporting global climate research activities.
Preparing Teachers to Support the Development of Climate Literate Students
NASA Astrophysics Data System (ADS)
Haddad, N.; Ledley, T. S.; Ellins, K. K.; Bardar, E. W.; Youngman, E.; Dunlap, C.; Lockwood, J.; Mote, A. S.; McNeal, K.; Libarkin, J. C.; Lynds, S. E.; Gold, A. U.
2014-12-01
The EarthLabs climate project includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at increasing high school teachers' and students' understanding of the factors that shape our planet's climate. The project has developed four new modules which focus on climate literacy and which are part of the larger Web based EarthLabs collection of Earth science modules. Climate related themes highlighted in the new modules include the Earth system with its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. EarthLabs climate modules use two central strategies to help students navigate the multiple challenges inherent in understanding climate science. The first is to actively engage students with the content by using a variety of learning modes, and by allowing students to pace themselves through interactive visualizations that address particularly challenging content. The second strategy, which is the focus of this presentation, is to support teachers in a subject area where few have substantive content knowledge or technical skills. Teachers who grasp the processes and interactions that give Earth its climate and the technical skills to engage with relevant data and visualizations are more likely to be successful in supporting students' understanding of climate's complexities. This presentation will briefly introduce the EarthLabs project and will describe the steps the project takes to prepare climate literate teachers, including Web based resources, teacher workshops, and the development of a cadre of teacher leaders who are prepared to continue leading the workshops after project funding ends.
Linda A. Joyce; David T. Price; David P. Coulson; Daniel W. McKenney; R. Martin Siltanen; Pia Papadopol; Kevin Lawrence
2014-01-01
A set of climate change projections for the United States was developed for use in the 2010 USDA Forest Service RPA Assessment. These climate projections, along with projections for population dynamics, economic growth, and land use change in the United States, comprise the RPA scenarios and are used in the RPA Assessment to project future renewable resource conditions...
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.
2012-01-01
As an integral part of the National Climate Assessment (NCA), technical assessment reports for 13 regions in the U.S. that describe the scientific rationale to support climate change impacts within the purview of these regions, and provide adaptation or mitigation measures in response to these impacts. These technical assessments focus on climate change impacts on sectors that are important environmental, biophysical, and social and economic aspects of sustainability within the U.S.: Climate change science, Ecosystems and biodiversity, Water resources, Human health, Energy supply and use, Water/energy/land use, Transportation, Urban/infrastructure/vulnerability, Agriculture, Impacts of climate change on tribal/indigenous and native lands and resources, Forestry, Land use/land cover change, Rural communities development, and Impacts on biogeochemical cycles, with implications for ecosystems and biodiversity. There is a critical and timely need for the development of mitigation and adaptation strategies in response to climate change by the policy and decision making communities, to insure resiliency and sustainability of the built environment in the future.
Student Perceptions on the Impact of Career and Technical Education Programs: A Mixed-Methods Study
ERIC Educational Resources Information Center
Eimers, Kimberly
2017-01-01
This mixed-methods study analyzed student perceptions regarding the impact of career and technical education (CTE) programs on student engagement, mind-set, support of teachers, and school climate. The Tripod 7C instrument was utilized to gather quantitative data, while focus groups were utilized for gathering qualitative data. Survey results…
A decision support system for rainfed agricultural areas of Mexico
USDA-ARS?s Scientific Manuscript database
Rural inhabitants of arid lands lack sufficient water to fulfill their agricultural and household needs. They do not have readily available technical information to support decisions regarding the course of action they should follow to handle the agro-climatic risk. In this paper, a computer model (...
Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.
2012-01-01
Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The second cross-cutting topic is the rapidly advancing field of climate adaptation, where there has been significant progress in developing the conceptual framework, planning approaches, and strategies for safeguarding biodiversity and other ecological resources. At the same time, ecosystem-based adaptation is becoming more prominent as a way to utilize ecosystem services to help human systems adapt to climate change. In this summary, we present key findings of the technical input, focusing on themes that can be found throughout the report. Thus, this summary takes a more integrated look at the question of how climate change is affecting our ecological resources, the implications for humans, and possible response strategies. This integrated approach better reflects the impacts of climate in the real world, where changes in ecosystem structure or function will alter the viability of different species and the efficacy of ecosystem services. Likewise, adaptation to climate change will simultaneously address a range of conservation goals. Case studies are used to illustrate this complete picture throughout the report; a snapshot of one case study, 2011 Las Conchas, New Mexico Fire, is included in this summary.
Modeling technical change in climate analysis: evidence from agricultural crop damages.
Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem
2017-05-01
This study accounts for the Hicks neutral technical change in a calibrated model of climate analysis, to identify the optimum level of technical change for addressing climate changes. It demonstrates the reduction to crop damages, the costs to technical change, and the net gains for the adoption of technical change for a climate-sensitive Pakistan economy. The calibrated model assesses the net gains of technical change for the overall economy and at the agriculture-specific level. The study finds that the gains of technical change are overwhelmingly higher than the costs across the agriculture subsectors. The gains and costs following technical change differ substantially for different crops. More importantly, the study finds a cost-effective optimal level of technical change that potentially reduces crop damages to a minimum possible level. The study therefore contends that the climate policy for Pakistan should consider the role of technical change in addressing climate impacts on the agriculture sector.
Advances of NOAA Training Program in Climate Services
NASA Astrophysics Data System (ADS)
Timofeyeva, M. M.
2012-12-01
Since 2002, NOAA's National Weather Service (NWS) Climate Services Division (CSD) has offered numerous training opportunities to NWS staff. After eight-years of development, the training program offers three instructor-led courses and roughly 25 online (distance learning) modules covering various climate topics, such as: climate data and observations, climate variability and change, and NWS national / local climate products (tools, skill, and interpretation). Leveraging climate information and expertise available at all NOAA line offices and partners allows for the delivery of the most advanced knowledge and is a very critical aspect of the training program. The emerging NOAA Climate Service (NCS) requires a well-trained, climate-literate workforce at the local level capable of delivering NOAA's climate products and services as well as providing climate-sensitive decision support. NWS Weather Forecast Offices and River Forecast Centers presently serve as local outlets for the NCS climate services. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-sound messages and amiable communication techniques are important in developing an engaged dialog between the climate service providers and users. Several pilot projects have been conducted by the NWS CSD this past year that apply the program's training lessons and expertise to specialized external user group training. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring instructions to the potential applications for each group of users. Training technical users identified the following critical issues: (1) knowledge of target audience expectations, initial knowledge status, and potential use of climate information; (2) leveraging partnership with climate services providers; and, (3) applying 3H training approach, where the first H stands for Head (trusted science), the second H stands for Heart (make it easy), and the third H for Hand (support with applications).
NASA Astrophysics Data System (ADS)
Stewart, M. M.; Pratt, M.
2002-05-01
This paper examines the effectiveness of FM and digital radio in disseminating weather and climate information to remote rural populations in Niger and Uganda. In Niger, poor communications infrastructure necessitated the establishment of a basic radio system as a first step towards disseminating climate information. Dissemination via digital radio is limited, in this context, by lack of technical support and the difficulty of maintaining computer equipment in the hot and dusty climate. Community FM stations have supported a range of mitigation activities that reduced vulnerability in all sites studied. Digital radio proved a more effective tool for disseminating climate information in Uganda, where technical knowledge is more prevalent and infrastructure networks are stronger. The primary challenge in Uganda lies in maintaining equipment in remote locations and disseminating information to a wider audience by linking with FM radio. Climate and weather information is already demonstrating positive impacts on agricultural production in Uganda, health and civil society in Niger, and on vulnerability reduction in both countries. Radio,particularly FM, was an excellent medium for disseminating information to women, youth, and other hard to reach populations. Discussion will focus on recommendations for improving the effectiveness of both systems and for practically linking FM and digital dissemination systems for better communication of climate information. Implications of the case studies will also be discussed in the context of digital and FM radio as media for disseminating other types of scientific information.
Tribal Air Programs in the Pacific Southwest (Region 9)
The Region 9 Air Division can assist the 148 tribes in Region 9 with air quality planning, permitting, rulemaking, enforcement/compliance, indoor air, monitoring and related technical support, air grants, and climate change.
Climate Change and Agriculture in the U.S.: Effects and Adaptation (Invited)
NASA Astrophysics Data System (ADS)
Walsh, M. K.; Rippey, B.; Walthall, C. L.; Hatfield, J.; Backlund, P. W.; Lengnick, L.; Marshall, E.
2013-12-01
Agriculture in the United States has followed a path of continual adaptation to a wide range of factors throughout its history. However, observational evidence, supported by an understanding of the physical climate system, shows that human-induced climate change is underway in the U.S. and even now causing changes for which there is no historical reference for producers. Temperatures have increased and precipitation patterns have changed; the incidence, frequency, and extent of pest infestations have been altered, as well as the natural resource base (water, air, and soils) upon which production depends. Each factor challenges agricultural management as atmospheric concentrations of greenhouse gases rise. These trends are likely to continue over the next century. Importantly, a gap exists between U.S. agricultural producers and managers' needs related to climate-driven problems and the information that research currently offers them. In the past, agricultural research into climate change effects has largely focused on mean values of precipitation and temperature. Today's management requirements, however, often demand immediate response on shorter time scales to address abrupt, often novel needs. Further complicating this reality, future decisions will likely require even greater emphasis on managing under increasing levels of uncertainty, and planning for and adjusting to the extremes. Research is moving to better address these emerging issues for the relevant timescales and parameters in order to allow the formulation of improved and resilient management strategies that apply to a future in which past experience has become less applicable. A climate-ready U.S. agricultural system requires easy access to useable climate knowledge and technical resources, improved climate risk management strategies, new processes to support effective adaptive actions, and the development of sustainable production systems resilient to climate effects. Mainstreaming climate knowledge improves adaptive capacity of the agricultural system by ensuring that land managers, technical advisors, researchers, private businesspeople, government program managers, and policymakers are aware of current and projected climate impacts and can access best management practices to reduce risks and capture opportunities.
Loveland, Thomas; Mahmood, Rezaul; Patel-Weynand, Toral; Karstensen, Krista; Beckendorf, Kari; Bliss, Norman; Carleton, Andrew
2012-01-01
This technical report responds to the recognition by the U.S. Global Change Research Program (USGCRP) and the National Climate Assessment (NCA) of the importance of understanding how land use and land cover (LULC) affects weather and climate variability and change and how that variability and change affects LULC. Current published, peer-reviewed, scientific literature and supporting data from both existing and original sources forms the basis for this report's assessment of the current state of knowledge regarding land change and climate interactions. The synthesis presented herein documents how current and future land change may alter environment processes and in turn, how those conditions may affect both land cover and land use by specifically investigating, * The primary contemporary trends in land use and land cover, * The land-use and land-cover sectors and regions which are most affected by weather and climate variability,* How land-use practices are adapting to climate change, * How land-use and land-cover patterns and conditions are affecting weather and climate, and * The key elements of an ongoing Land Resources assessment. These findings present information that can be used to better assess land change and climate interactions in order to better assess land management and adaptation strategies for future environmental change and to assist in the development of a framework for an ongoing national assessment.
Making work safer: testing a model of social exchange and safety management.
DeJoy, David M; Della, Lindsay J; Vandenberg, Robert J; Wilson, Mark G
2010-04-01
This study tests a conceptual model that focuses on social exchange in the context of safety management. The model hypothesizes that supportive safety policies and programs should impact both safety climate and organizational commitment. Further, perceived organizational support is predicted to partially mediate both of these relationships. Study outcomes included traditional outcomes for both organizational commitment (e.g., withdrawal behaviors) as well as safety climate (e.g., self-reported work accidents). Questionnaire responses were obtained from 1,723 employees of a large national retailer. Using structural equation modeling (SEM) techniques, all of the model's hypothesized relationships were statistically significant and in the expected directions. The results are discussed in terms of social exchange in organizations and research on safety climate. Maximizing safety is a social-technical enterprise. Expectations related to social exchange and reciprocity figure prominently in creating a positive climate for safety within the organization. Copyright 2010 Elsevier Ltd. All rights reserved.
The Global Climate Dashboard: a Software Interface to Stream Comprehensive Climate Data
NASA Astrophysics Data System (ADS)
Gardiner, N.; Phillips, M.; NOAA Climate Portal Dashboard
2011-12-01
The Global Climate Dashboard is an integral component of NOAA's web portal to climate data, services, and value-added content for decision-makers, teachers, and the science-attentive public (www.clmate.gov). The dashboard provides a rapid view of observational data that demonstrate climate change and variability, as well as outputs from the Climate Model Intercomparison Project version 3, which was built to support the Intergovernmental Panel on Climate Change fourth assessment. The data shown in the dashboard therefore span a range of climate science disciplines with applications that serve audiences with diverse needs. The dashboard is designed with reusable software components that allow it to be implemented incrementally on a wide range of platforms including desktops, tablet devices, and mobile phones. The underlying software components support live streaming of data and provide a way of encapsulating graph sytles and other presentation details into a device-independent standard format that results in a common visual look and feel across all platforms. Here we describe the pedagogical objectives, technical implementation, and the deployment of the dashboard through climate.gov and partner web sites and describe plans to develop a mobile application using the same framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
New houses designed by Ideal Homes, with technical support from the U.S. Department of Energy's Building America Program, save their homeowners money by applying the principles of "whole-building" design. The homes are in Norman, Oklahoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, L.; Anderson, R.
New houses designed by Ideal Homes, with technical support from the U.S. Department of Energy's Building America Program, save their homeowners money by applying the principles of ''whole-building'' design. The homes are in Norman, Oklahoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Benjamin L
2012-01-01
Technical assessments of vulnerability and/or risk are increasingly being undertaken to assess the impacts of climate change. Underlying this is the belief that they will bring clarity to questions regarding the scale of institutional investments required, plausible adaptation policies and measures, and the timing of their implementation. Despite the perceived importance of technical assessments in 'evidence-based' decision environments, assessments cannot be undertaken independent of values and politics, nor are they capable of eliminating the uncertainty that clouds decision-making on climate adaptation As such, assessments can trigger as many questions as they answer, leaving practitioners and stakeholders to question their value.more » This paper explores the value of vulnerability/risk assessments in climate change adaptation planning processes as a catalyst for learning in four case studies in Southeastern Australia. Data were collected using qualitative interviews with stakeholders involved in the assessments and analysed using a social learning framework. This analysis revealed that detailed and tangible strategies or actions often do not emerge directly from technical assessments. However, it also revealed that the assessments became important platforms for social learning. In providing these platforms, assessments present opportunities to question initial assumptions, explore multiple framings of an issue, generate new information, and galvanise support for collective actions. This study highlights the need for more explicit recognition and understanding of the important role social learning plays in climate change vulnerability assessments and adaptation planning more broadly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb Aldrich; Lois Arena; Dianne Griffiths
2010-12-31
This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis bymore » 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).« less
Dryland ecohydrology and climate change: critical issues and technical advances
NASA Astrophysics Data System (ADS)
Wang, L.; D'Odorico, P.; Evans, J. P.; Eldridge, D.; McCabe, M. F.; Caylor, K. K.; King, E. G.
2012-04-01
Drylands cover about 40% of the terrestrial land surface and account for approximately 40% of global net primary productivity. Water is fundamental to the biophysical processes that sustain ecosystem function and food production, particularly in drylands, where a tight coupling exists between water resource availability and ecosystem productivity, surface energy balance, and biogeochemical cycles. Currently, drylands support at least 2 billion people and comprise both natural and managed ecosystems. In this synthesis, we identify some current critical issues in the understanding of dryland systems and discuss how arid and semiarid environments are responding to the changes in climate and land use. Specifically, we focus on dryland agriculture and food security, dryland population growth, desertification, shrub encroachment and dryland development issues as factors of change requiring increased understanding and management. We also review recent technical advances in the quantitative assessment of human versus climate change related drivers of desertification, evapotranspiration partitioning using field deployable stable water isotope systems and the remote sensing of key ecohydrological processes. These technological advances provide new tools that assist in addressing major critical issues in dryland ecohydrology under climate change
Report on Assessment of Work Atmosphere.
ERIC Educational Resources Information Center
Platte Technical Community Coll., Columbus, NE.
Seven sets of fifteen bi-polar adjectives corresponding to seven elements of organizational climate were compiled as a testing instrument which was administered to 124 working personnel at Platte Technical Community College in the fall of 1975. Respondents included faculty, students, support staff, and administrative personnel. Analysis of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skaggs, Richard; Hibbard, Kathleen A.; Frumhoff, Peter
2012-03-01
This report provides a framework to characterize and understand the important elements of climate and energy-water-land (EWL) system interactions. It identifies many of the important issues, discusses our understanding of those issues, and presents a long-term research program research needs to address the priority scientific challenges and gaps in our understanding. Much of the discussion is organized around two discrete case studies with the broad themes of (1) extreme events and (2) regional intercomparisons. These case studies help demonstrate unique ways in which energy-water-land interactions can occur and be influenced by climate.
Distributed Energy Planning for Climate Resilience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stout, Sherry R; Hotchkiss, Elizabeth L; Day, Megan H
At various levels of government across the United States and globally climate resilient solutions are being adopted and implemented. Solutions vary based on predicted hazards, community context, priorities, complexity, and available resources. Lessons are being learned through the implementation process, which can be replicated regardless of level or type of government entity carrying out the resiliency planning. Through a number of analyses and technical support across the world, NREL has learned key lessons related to resilience planning associated with power generation and water distribution. Distributed energy generation is a large factor in building resilience with clean energy technologies and solutions.more » The technical and policy solutions associated with distributed energy implementation for resilience fall into a few major categories, including spatial diversification, microgrids, water-energy nexus, policy, and redundancy.« less
ERIC Educational Resources Information Center
Song, Ji Hoon; Martens, Jon; McCharen, Belinda; Ausburn, Lynna J.
2011-01-01
This study investigated structural relationships among the constructs of supportive learning culture, school innovative climate, task-related job autonomy, and teacher turnover intention in career and technical education. The study applied organizational concepts to a problem typically approached from the perspective of teacher characteristics and…
Global Climate Change and Children's Health.
Ahdoot, Samantha; Pacheco, Susan E
2015-11-01
Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. Copyright © 2015 by the American Academy of Pediatrics.
Sustained Assessment Metadata as a Pathway to Trustworthiness of Climate Science Information
NASA Astrophysics Data System (ADS)
Champion, S. M.; Kunkel, K.
2017-12-01
The Sustained Assessment process has produced a suite of climate change reports: The Third National Climate Assessment (NCA3), Regional Surface Climate Conditions in CMIP3 and CMIP5 for the United States: Differences, Similarities, and Implications for the U.S. National Climate Assessment, Impacts of Climate Change on Human Health in the United States: A Scientific Assessment, The State Climate Summaries, as well as the anticipated Climate Science Special Report and Fourth National Climate Assessment. Not only are these groundbreaking reports of climate change science, they are also the first suite of climate science reports to provide access to complex metadata directly connected to the report figures and graphics products. While the basic metadata documentation requirement is federally mandated through a series of federal guidelines as a part of the Information Quality Act, Sustained Assessment products are also deemed Highly Influential Scientific Assessments, which further requires demonstration of the transparency and reproducibility of the content. To meet these requirements, the Technical Support Unit (TSU) for the Sustained Assessment embarked on building a system for not only collecting and documenting metadata to the required standards, but one that also provides consumers unprecedented access to the underlying data and methods. As our process and documentation have evolved, the value of both continue to grow in parallel with the consumer expectation of quality, accessible climate science information. This presentation will detail the how the TSU accomplishes the mandated requirements with their metadata collection and documentation process, as well as the technical solution designed to demonstrate compliance while also providing access to the content for the general public. We will also illustrate how our accessibility platforms guide consumers through the Assessment science at a level of transparency that builds trust and confidence in the report content.
GLOBAL CHANGE RESEARCH NEWS #9: ORD PROVIDES TECHNICAL SUPPORT TO EPA/OIA & DOS INITIATIVE IN EGYPT
This ninth edition reports on a workshop on global climate change that was held in Cairo, Egypt, on May 10-12, 1999. The workshop represented a successful partnership between EPA's Office of International Affairs, Office of Research and Development (ORD), Office of Air and Radiat...
NASA Astrophysics Data System (ADS)
Huffman, L. T.; Blythe, D.; Dahlman, L. E.; Fischbein, S.; Johnson, K.; Kontar, Y.; Rack, F. R.; Kulhanek, D. K.; Pennycook, J.; Reed, J.; Youngman, B.; Reeves, M.; Thomas, R.
2010-12-01
The challenges of communicating climate change science to non-technical audiences present a daunting task, but one that is recognized in the science community as urgent and essential. ANDRILL's (ANtarctic geological DRILLing) international network of scientists, engineers, technicians and educators work together to convey a deeper understanding of current geoscience research as well as the process of science to non-technical audiences. One roadblock for educators who recognize the need to teach climate change has been the lack of a comprehensive, integrated set of resources and activities that are related to the National Science Education Standards. Pieces of the climate change puzzle can be found in the excellent work of the groups of science and education professionals who wrote the Essential Principles of Ocean Sciences, Climate Literacy: The Essential Principles of Climate Science, Earth Science Literacy Principles: The Big Ideas and Supporting Concepts of Earth Science, and Essential Principals and Fundamental Concepts for Atmospheric Science Literacy, but teachers have precious little time to search out the climate change goals and objectives in those frameworks and then find the resources to teach them. Through NOAA funding, ANDRILL has created a new framework, The Environmental Literacy Framework with a Focus on Climate Change (ELF), drawing on the works of the aforementioned groups, and promoting an Earth Systems approach to teaching climate change through five units: Atmosphere, Biosphere, Geosphere, Hydrosphere/Cryosphere, and Energy as the driver of interactions within and between the “spheres.” Each key concept in the framework has a hands-on, inquiry activity and matching NOAA resources for teaching the objectives. In its present form, we present a ‘road map’ for teaching climate change and a set of resources intended to continue to evolve over time.
NASA Astrophysics Data System (ADS)
Ozturk, Tugba; Cenk Demiroglu, O.; Tufan Turp, M.; Türkeş, Murat; Kurnaz, M. Levent
2014-05-01
Climate change has been and increasingly will be a major threat to the ski tourism industry whose survival is highly dependent on existence of snow cover of sufficient depth and duration. The common knowledge requires that in order for a ski resort to be viable, it has to perform operations for at least 100 days in seven out of ten winters. For this matter, it is now even more usual for the ski resorts to adapt to this issue by technical snowmaking. In this study, projected future changes for the period of 2010-2040, 2040-2070, and 2070-2100 in air temperature, relative humidity, and snow depth climatology and variability with respect to the control period of 1970-2000 were assessed for the domain of a major ski resort in Turkey. Regional Climate Model (RegCM4.3.5) of ICTP (International Centre for Theoretical Physics) was used for projections of future and present climate conditions. HadGEM2 global climate model of the Met Office Hadley Centre, MPI-ESM-MR of the Max Planck Institute for Meteorology, GFDL-ESM2M of the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory were downscaled to 10 km for the resort and its surrounding region. Both the projections and the downscaling were realized according to the RCP4.5 and the RCP8.5 emission scenarios of the IPCC. The outputs on snow depth were used for a count of the changes on snow cover duration sufficient for skiing actitivies, signaling natural snow-reliability, whereas the outputs on air temperature and relative humidity were utilized for determination of wet-bulb temperatures. The latter measure was used to interpret the changes in the snowmaking capacity, in other words; technical snow-reliability, of the resort. This work was supported by the BU Reasearch Fund under the project number 7362. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.
Final Scientific/Technical Report from Hofstra University on DE-SC0001985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, E. Christa
The U.S. Department of Energy award DE-SC0001985 funded the Hofstra University Center for Climate Study (HUCCS) from 29 September 2009 through 1 October 2016. This support enabled several activities over the period of the grant, including 1) the pursuit of several research projects, including sediment coring of coastal marshes, analysis of habitat impact due to climate change, and effects of raindrops of CO2 transfer; 2) support for multiple graduate and undergraduate students, and sponsorship of research projects that involved high school students; 3) fostering mentoring relationships and networking; 4) the design, creation, and installation of an exhibit on climate changemore » at the Cradle of Aviation Museum in Garden City, NY as an effort of public outreach. A total of 11 presentations at conferences, one book, and one peer-reviewed journal article resulted from these activities.« less
Impact relevance and usability of high resolution climate modeling and data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnott, James C.
2016-10-30
The Aspen Global Change Institute hosted a technical science workshop entitled, “Impact Relevance and Usability of High-Resolution Climate Modeling and Datasets,” on August 2-7, 2015 in Aspen, CO. Kate Calvin (Pacific Northwest National Laboratory), Andrew Jones (Lawrence Berkeley National Laboratory) and Jean-François Lamarque (NCAR) served as co-chairs for the workshop. The meeting included the participation of 29 scientists for a total of 145 participant days. Following the workshop, workshop co-chairs authored a meeting report published in Eos on April 27, 2016. Insights from the workshop directly contributed to the formation of a new DOE-supported project co-led by workshop co-chair Andymore » Jones. A subset of meeting participants continue to work on a publication on institutional innovations that can support the usability of high resolution modeling, among other sources of climate information.« less
Decision-support tools for Extreme Weather and Climate Events in the Northeast United States
NASA Astrophysics Data System (ADS)
Kumar, S.; Lowery, M.; Whelchel, A.
2013-12-01
Decision-support tools were assessed for the 2013 National Climate Assessment technical input document, "Climate Change in the Northeast, A Sourcebook". The assessment included tools designed to generate and deliver actionable information to assist states and highly populated urban and other communities in assessment of climate change vulnerability and risk, quantification of effects, and identification of adaptive strategies in the context of adaptation planning across inter-annual, seasonal and multi-decadal time scales. State-level adaptation planning in the Northeast has generally relied on qualitative vulnerability assessments by expert panels and stakeholders, although some states have undertaken initiatives to develop statewide databases to support vulnerability assessments by urban and local governments, and state agencies. The devastation caused by Superstorm Sandy in October 2012 has raised awareness of the potential for extreme weather events to unprecedented levels and created urgency for action, especially in coastal urban and suburban communities that experienced pronounced impacts - especially in New Jersey, New York and Connecticut. Planning approaches vary, but any adaptation and resiliency planning process must include the following: - Knowledge of the probable change in a climate variable (e.g., precipitation, temperature, sea-level rise) over time or that the climate variable will attain a certain threshold deemed to be significant; - Knowledge of intensity and frequency of climate hazards (past, current or future events or conditions with potential to cause harm) and their relationship with climate variables; - Assessment of climate vulnerabilities (sensitive resources, infrastructure or populations exposed to climate-related hazards); - Assessment of relative risks to vulnerable resources; - Identification and prioritization of adaptive strategies to address risks. Many organizations are developing decision-support tools to assist in the urban planning process by addressing some of these needs. In this paper we highlight the decision tools available today, discuss their application in selected case studies, and present a gap analysis with opportunities for innovation and future work.
Terrestrial essential climate variables (ECVs) at a glance
Stitt, Susan; Dwyer, John; Dye, Dennis; Josberger, Edward
2011-01-01
The Global Terrestrial Observing System, Global Climate Observing System, World Meteorological Organization, and Committee on Earth Observation Satellites all support consistent global land observations and measurements. To accomplish this goal, the Global Terrestrial Observing System defined 'essential climate variables' as measurements of atmosphere, oceans, and land that are technically and economically feasible for systematic observation and that are needed to meet the United Nations Framework Convention on Climate Change and requirements of the Intergovernmental Panel on Climate Change. The following are the climate variables defined by the Global Terrestrial Observing System that relate to terrestrial measurements. Several of them are currently measured most appropriately by in-place observations, whereas others are suitable for measurement by remote sensing technologies. The U.S. Geological Survey is the steward of the Landsat archive, satellite imagery collected from 1972 to the present, that provides a potential basis for deriving long-term, global-scale, accurate, timely and consistent measurements of many of these essential climate variables.
Engaging Communities Where They Are: New Hampshire's Coastal Adaptation Workgroup
NASA Astrophysics Data System (ADS)
Wake, C. P.; Godlewski, S.; Howard, K.; Labranche, J.; Miller, S.; Peterson, J.; Ashcraft, C.
2015-12-01
Rising seas are expected to have significant impacts on infrastructure and natural and cultural resources on New Hampshire's 18 mile open-ocean coastline and 235 miles of tidal shoreline. However, most coastal municipalities in NH lack financial and human resources to even assess vulnerability, let alone plan for climate change. This gap has been filled since 2010 by the NH Coastal Adaptation Workgroup (CAW), composed of 21 regional, state, and federal agencies, businesses, municipalities, academics, and NGOs that bring together stakeholders to discuss climate change challenges and collaboratively develop and implement effective coastal adaptation strategies. Our grassroot efforts serve to nurture existing and build new relationships, disseminate coastal watershed climate assessments, and tap into state, federal, and foundation funds for specific coastal adaptation projects. CAW has achieved collective impact in by connecting federal and state resources to communities by raising money and facilitating projects, translating climate science, educating community members, providing direct technical assistance and general capacity, and sharing success stories and lessons learned. Indicators of success include: 12 coastal communities improved their technical, financial, and human resources for climate adaptation; 80% of the 300 participants in the eleven CAW 'Water, Weather, Climate, and Community Workshops' have increased knowledge, motivation, and capacity to address climate adaptation; $3 million in grants to help communities with climate adaptation; winner of the 2015 EPA Region 1 Environmental Merit Award; and ongoing support for community-led adaptation efforts. In addition, the NH Climate Summit attracts over 100 participants each year, over 90% whom attest to the applicability of what they learn there. CAW also plays a central role in the Coastal Risks and Hazards Commission (established by the state legislature in 2013) to help communities and businesses prepare for the impacts of rising seas and coastal storms.
Gregersen, I B; Arnbjerg-Nielsen, K
2012-01-01
Several extraordinary rainfall events have occurred in Denmark within the last few years. For each event, problems in urban areas occurred as the capacity of the existing drainage systems were exceeded. Adaptation to climate change is necessary but also very challenging as urban drainage systems are characterized by long technical lifetimes and high, unrecoverable construction costs. One of the most important barriers for the initiation and implementation of the adaptation strategies is therefore the uncertainty when predicting the magnitude of the extreme rainfall in the future. This challenge is explored through the application and discussion of three different theoretical decision support strategies: the precautionary principle, the minimax strategy and Bayesian decision support. The reviewed decision support strategies all proved valuable for addressing the identified uncertainties, at best applied together as they all yield information that improved decision making and thus enabled more robust decisions.
Stanley J. Zarnoch; H. Ken Cordell; Carter J. Betz
2010-01-01
County-level population projections from 2010 to 2060 are developed under three national population growth scenarios for reporting in the 2010 Renewable Resources Planning Act (RPA) Assessment. These population growth scenarios are tied to global futures scenarios defined by the Intergovernmental Panel on Climate Change (IPCC), a program within the United Nations...
Vulnerability Assessments and Resilience Planning at Federal Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, Richard H.; Blohm, Andrew; Delgado, Alison
2016-02-01
U.S. government agencies are now directed to assess the vulnerability of their operations and facilities to climate change and to develop adaptation plans to increase their resilience. Specific guidance on methods is still evolving based on the many different available frameworks. This technical paper synthesizes lessons and insights from a series of research case studies conducted by the investigators at facilities of the U.S. Departments of Energy and Defense. The paper provides a framework of steps for climate vulnerability assessments at Federal facilities and elaborates on three sets of methods required for assessments, regardless of the detailed framework used. Inmore » a concluding section, the paper suggests a roadmap to further develop methods to support agencies in preparing for climate change.« less
NASA Astrophysics Data System (ADS)
Abshire, W. E.; Brekke, L. D.; Arnold, J. R.
2015-12-01
Beginning in 2010 the COMET® Program (www.comet.ucar.edu), a part of the UCAR Community Programs (UCP) at UCAR, entered into partnership with several Climate Change and Water Working Group (CCAWWG, http://www.ccawwg.us/) agencies to pilot a new training program. With funding coming from the Bureau of Reclamation and the US Army Corps of Engineers, a series of self-paced online lessons and live courses targeted at technical climate change and water science professionals have already been delivered. Since it's release in 2012, the first self-paced lesson developed under this partnership entitled, "Preparing Hydro-climate Inputs for Climate Change in Water Resource Planning", has been taken over 2600 times. Users have come from federal, state, and local agencies as well as academia, government and private sectors around the US as well as from other countries. Additionally, the most popular multi-day course, Hydrologic Impacts Under Climate Change (HIUCC), has been offered to a diverse audience in both residence and virtual formats. This presentation provides an overview of the training materials developed through this partnership as well as plans for future offerings. A recommended set of lessons for all users who wish explore the open materials will be highlighted, including excerpts from the newest materials covering climate change influences on water temperature for inland streams and watershed and channel sedimentation. These self-paced, online materials are currently freely available on the of the MetEd Web site (http://www.meted.ucar.edu) via the "Education & Training", "Climate" topic area. Users interested in directly accessing the materials can take these and many other lessons at http://meted.ucar.edu/climate. Additionally, the presentation highlights opportunities for learners to register for ongoing multi-day courses taught both live in person and at a distance. Now, in the beginning of the 6th year of partnership, new initiatives to train non-technical staff in many areas of climate science and water change management as well as training technical staff in topics related to coastal vulnerabilities and sea level change are underway. New self-paced training and live instructor courses will be developed to support these efforts and details will be provided in the presentation.
Thomas Loveland; Rezaul Mahmood; Toral Patel-Weynand; Krista Karstensen; Kari Beckendorf; Norman Bliss; Andrew Carleton
2012-01-01
This technical report responds to the recognition by the U.S. Global Change Research Program (USGCRP) and the National Climate Assessment (NCA) of the importance of understanding how land use and land cover (LULC) affects weather and climate variability and change and how that variability and change affects LULC. Current published, peer-reviewed, scientific literature...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sarah L; Hotchkiss, Elizabeth L; Bilello, Daniel E
Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growingmore » electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.« less
Decision Support System for Aquifer Recharge (AR) and ...
Aquifer recharge (AR) is a technical method being utilized to enhance groundwater resources through man-made replenishment means, such as infiltration basins and injections wells. Aquifer storage and recovery (ASR) furthers the AR techniques by withdrawal of stored groundwater at a later time for beneficial use. It is a viable adaptation technique for water availability problems. Variants of the water storage practices include recharge through urban green infrastructure and the subsurface injection of reclaimed water, i.e., wastewater, which has been treated to remove solids and impurities. In addition to a general overview of ASR variations, this report focuses on the principles and technical basis for an ASR decision support system (DSS), with the necessary technical references provided. The DSS consists of three levels of tools and methods for ASR system planning and assessment, design, and evaluation. Level 1 of the system is focused on ASR feasibility, for which four types of data and technical information are organized around: 1) ASR regulations and permitting needs, 2) Water demand projections, 3) Climate change and water availability, and 4) ASR sites and technical information. These technical resources are integrated to quantify water availability gaps and the feasibility of using ASR to meet the volume and timing of the water resource shortages. A systemic analysis of water resources was conducted for sustainable water supplies in Las Vegas, Nevada f
General Circulation Model Output for Forest Climate Change Research and Applications
Ellen J. Cooter; Brian K. Eder; Sharon K. LeDuc; Lawrence Truppi
1993-01-01
This report reviews technical aspects of and summarizes output from four climate models. Recommendations concerning the use of these outputs in forest impact assessments are made. This report reviews technical aspects of and summarizes output from four climate models. Recommendations concerning the use of these outputs in forest impact assessments are made.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
...-01] Technical Inputs and Assessment Capacity on Topics Related to 2013 U.S. National Climate... Capacity Related to Regional, Sectoral, and Cross-Cutting Assessments for the 2013 U.S. National Climate... if applicable, institutional affiliation(s) if applicable). In addition, it is recommended that EOIs...
[Lake eutrophication modeling in considering climatic factors change: a review].
Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng
2012-11-01
Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.
Romano Foti; Jorge A. Ramirez; Thomas C. Brown
2012-01-01
Comparison of projected future water demand and supply across the conterminous United States indicates that, due to improving efficiency in water use, expected increases in population and economic activity do not by themselves pose a serious threat of large-scale water shortages. However, climate change can increase water demand and decrease water supply to the extent...
Eric J. Greenfield; David J. Nowak
2013-01-01
Future projections of tree cover and climate change are useful to natural resource managers as they illustrate potential changes to our natural resources and the ecosystem services they provide. This report a) details three projections of tree cover change across the conterminous United States based on predicted land-use changes from 2000 to 2060; b) evaluates nine...
Joseph Buongiorno; Shushuai Zhu; Ronald Raunikar; Jeffrey P. Prestemon
2012-01-01
Four RPA scenarios corresponding with scenarios from the Third and Fourth Assessments of the Intergovernmental Panel on Climate Change were simulated with the Global Forest Products Model to project forest area, volume, products demand and supply, international trade, prices, and value added up to 2060 for Africa, Asia, Europe, North America, Oceania, South America,...
J.M. Bowker; Ashley E. Askew
2013-01-01
We develop projections of participation and use for 17 nature-based outdoor recreation activities through 2060 for the Northern United States. Similar to the 2010 Resources Planning Act (RPA) assessment, this report develops recreation projections under futures wherein population growth, socioeconomic conditions, land use changes, and climate are allowed to change over...
1980-07-01
and concludes that task is a vital ingredient in assessing overall organizational climate. He identifies satisfaction , tension performance and...Generation Performances and Perceived Satisfaction Levels...", Proceedings of the American Institute of Decision Sciences , 1978, pp. 171-173. Jackson...to Organization and Management Technical S. PERFORMING ORG. REPORT NUMBER 7. AUTHORS 8. CONTRACT OR GRANT NUMBERfsj Ronald J. Roland 9. PERFORMING
NASA Astrophysics Data System (ADS)
Fujisawa, Mariko; Kanamaru, Hideki
2016-04-01
Many existing climate change impact studies, carried out by academic researchers, are disconnected from decision making processes of stakeholders. On the other hand many climate change adaptation projects in developing countries lack a solid evidence base of current and future climate impacts as well as vulnerabilities assessment at different scales. In order to fill this information gap, FAO has developed and implemented a tool "MOSAICC (Modelling System for Agricultural Impacts of Climate Change)" in several developing countries such as Morocco, the Philippines and Peru, and recently in Malawi and Zambia. MOSAICC employs a multi-disciplinary assessment approach to addressing climate change impacts and adaptation planning in the agriculture and food security sectors, and integrates five components from different academic disciplines: 1. Statistical downscaling of climate change projections, 2. Yield simulation of major crops at regional scale under climate change, 3. Surface hydrology simulation model, 4. Macroeconomic model, and 5. Forestry model. Furthermore MOSAICC has been developed as a capacity development tool for the national scientists so that they can conduct the country assessment themselves, using their own data, and reflect the outcome into the national adaptation policies. The outputs are nation-wide coverage, disaggregated at sub-national level to support strategic planning, investments and decisions by national policy makers. MOSAICC is designed in such a way to promote stakeholders' participation and strengthen technical capacities in developing countries. The paper presents MOSAICC and projects that used MOSAICC as a tool with case studies from countries.
NASA Astrophysics Data System (ADS)
Grecni, Z. N.; Keener, V. W.
2017-12-01
An external evaluation found that the inclusion of users of climate information and diverse regional experts in developing the 2012 Pacific Islands Regional Climate Assessment was a key factor in the report's perceived credibility and usefulness (Moser 2013). The 2012 assessment is seen as a foundational summary for Hawai`i and the U.S.-Affiliated Pacific Islands and is still used in vulnerability assessments and to support decisions by public- and private-sector actors. Recently, lessons learned from the 2012 assessment process were applied in engaging technical experts and potential future users in developing a chapter for the U.S. National Climate Assessment, as a regional update that builds on previous assessment activities. In the absence of downscaled climate projection scenarios and products available to the contiguous U.S., the Pacific Islands chapter continued to draw on projections from regional climate models and extensive user engagement. Through surveys, webinars, technical sectoral workshops, and peer review networks, the regional author team received input from a range of stakeholders. In particular, engagement aimed to identify key risks in sectors of importance to the Hawai`i and U.S.-Affiliated Pacific Islands region and cases in which stakeholder groups are already implementing measures toward resilience and adaptation. Data collection began during the chapter development process and will continue at the release of the 4th National Climate Assessment in 2018, with the aim of evaluating how stakeholder engagement affects the assessment's usefulness in assisting island communities to understand risks and vulnerabilities and review potential adaptation strategies.
NASA Astrophysics Data System (ADS)
Ines, A. V. M.; Han, E.; Baethgen, W.
2017-12-01
Advances in seasonal climate forecasts (SCFs) during the past decades have brought great potential to improve agricultural climate risk managements associated with inter-annual climate variability. In spite of popular uses of crop simulation models in addressing climate risk problems, the models cannot readily take seasonal climate predictions issued in the format of tercile probabilities of most likely rainfall categories (i.e, below-, near- and above-normal). When a skillful SCF is linked with the crop simulation models, the informative climate information can be further translated into actionable agronomic terms and thus better support strategic and tactical decisions. In other words, crop modeling connected with a given SCF allows to simulate "what-if" scenarios with different crop choices or management practices and better inform the decision makers. In this paper, we present a decision support tool, called CAMDT (Climate Agriculture Modeling and Decision Tool), which seamlessly integrates probabilistic SCFs to DSSAT-CSM-Rice model to guide decision-makers in adopting appropriate crop and agricultural water management practices for given climatic conditions. The CAMDT has a functionality to disaggregate a probabilistic SCF into daily weather realizations (either a parametric or non-parametric disaggregation method) and to run DSSAT-CSM-Rice with the disaggregated weather realizations. The convenient graphical user-interface allows easy implementation of several "what-if" scenarios for non-technical users and visualize the results of the scenario runs. In addition, the CAMDT also translates crop model outputs to economic terms once the user provides expected crop price and cost. The CAMDT is a practical tool for real-world applications, specifically for agricultural climate risk management in the Bicol region, Philippines, having a great flexibility for being adapted to other crops or regions in the world. CAMDT GitHub: https://github.com/Agro-Climate/CAMDT
New chairman takes helm at Climate Change Panel
NASA Astrophysics Data System (ADS)
Showstack, Randy
An Indian industrial engineer and economist who supports the Kyoto Protocol, and who has sharply criticized the administration of George W. Bush on the climate change issue for not doing enough to curb greenhouse gas emissions, won the first-ever contested election for chairman of the Intergovernmental Panel on Climate Change (IPCC) during a meeting on 19 April.Rajendra Pachauri is the first representative from a developing country to chair the IPCC, a panel of about 2,500 experts on a wide range of areas related to climate change. The IPCC was established in 1988 by the World Meteorological Organization and the United Nations Environment Programme. In total, the IPCC currently includes 192 member states. Although the bulk of the IPCC's work is conducted by three technical working groups, the chairman plays a key role in facilitating the overall process of the IPCC, organizing the scientific debate within the IPCC, and serving as chief spokesman.
NASA Astrophysics Data System (ADS)
Githungo, W. N.; Shaka, A.; Kniveton, D.; Muithya, L.; Powell, R.; Visman, E. L.
2014-12-01
The Arid and Semi-Arid Land (ASAL) counties of Kitui and Makueni in Kenya are experiencing increasing climate variability in seasonal rainfall, including changes in the onset, cessation and distribution of the two principal rains upon which the majority of the population's small-holder farmers and livestock keepers depend. Food insecurity is prevalent with significant numbers also affected by flooding during periods of intense rainfall. As part of a multi-partner Adaptation Consortium, Kenya Meteorological Services (KMS) are developing Climate Information Services (CIS) which can better support decision making amongst the counties' principal livelihoods groups and across County Government ministries. Building on earlier pilots and stakeholder discussion, the system combines the production of climate information tailored for transmission via regional and local radio stations with the establishment of a new SMS service. SMS are provided through a network of CIS intermediaries drawn from across key government ministries, religious networks, non-governmental and community groups, aiming to achieve one SMS recipient per 3-500 people. It also introduces a demand-led, premium-rate SMS weather information service which is designed to be self-financing in the long term. Supporting the ongoing process of devolution, KMS is downscaling national forecasts for each county, and providing seasonal, monthly, weekly and daily forecasts, as well as warnings of weather-related hazards. Through collaboration with relevant ministries, government bodies and research institutions, including livestock, agriculture, drought management and health, technical advisories are developed to provide guidance on application of the climate information. The system seeks to provide timely, relevant information which can enable people to use weather and climate information to support decisions which protect life and property and build resilience to ongoing climate variability and future change.
NASA Astrophysics Data System (ADS)
Ray, A. J.; Ojima, D. S.; Morisette, J. T.
2012-12-01
The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in these projects is to provide the connections between climate data and running ecological models, and prototype these for future work. NCPP will develop capacities to provide enhanced climate information at relevant spatial and temporal scales, both for historical climate and projections of future climate, and will work to link expert guidance and understanding of modeling processes and evaluation of modeling with the use of numerical climate data. Translational information thus is a suite of information that aids in translation of numerical climate information into usable knowledge for applications, e.g. ecological response models, hydrologic risk studies. This information includes technical and scientific aspects including, but not limited to: 1) results of objective, quantitative evaluation of climate models & downscaling techniques, 2) guidance on appropriate uses and interpretation, i.e., understanding the advantages and limitations of various downscaling techniques for specific user applications, 3) characterizing and interpreting uncertainty, 4) Descriptions meaningful to applications, e.g. narratives. NCPP believes that translational information is best co-developed between climate scientists and applications scientists, such as the NC-CSC pilot.
Quevauviller, Philippe; Barceló, Damia; Beniston, Martin; Djordjevic, Slobodan; Harding, Richard J; Iglesias, Ana; Ludwig, Ralf; Navarra, Antonio; Navarro Ortega, Alícia; Mark, Ole; Roson, Roberto; Sempere, Daniel; Stoffel, Markus; van Lanen, Henny A J; Werner, Micha
2012-12-01
The integration of scientific knowledge about possible climate change impacts on water resources has a direct implication on the way water policies are being implemented and evolving. This is particularly true regarding various technical steps embedded into the EU Water Framework Directive river basin management planning, such as risk characterisation, monitoring, design and implementation of action programmes and evaluation of the "good status" objective achievements (in 2015). The need to incorporate climate change considerations into the implementation of EU water policy is currently discussed with a wide range of experts and stakeholders at EU level. Research trends are also on-going, striving to support policy developments and examining how scientific findings and recommendations could be best taken on board by policy-makers and water managers within the forthcoming years. This paper provides a snapshot of policy discussions about climate change in the context of the WFD river basin management planning and specific advancements of related EU-funded research projects. Perspectives for strengthening links among the scientific and policy-making communities in this area are also highlighted. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kunkel, K.; Champion, S.
2015-12-01
Data Management and the National Climate Assessment: A Data Quality Solution Sarah M. Champion and Kenneth E. Kunkel Cooperative Institute for Climate and Satellites, Asheville, NC The Third National Climate Assessment (NCA), anticipated for its authoritative climate change analysis, was also a vanguard in climate communication. From the cutting-edge website to the organization of information, the Assessment content appealed to, and could be accessed by, many demographics. One such pivotal presentation of information in the NCA was the availability of complex metadata directly connected to graphical products. While the basic metadata requirement is federally mandated through a series of federal guidelines as a part of the Information Quality Act, the NCA is also deemed a Highly Influential Scientific Assessment, which requires demonstration of the transparency and reproducibility of the content. To meet these requirements, the Technical Support Unit (TSU) for the NCA embarked on building a system for collecting and presenting metadata that not only met these requirements, but one that has since been employed in support of additional Assessments. The metadata effort for this NCA proved invaluable for many reasons, one of which being that it showcased that there is a critical need for a culture change within the scientific community to support collection and transparency of data and methods to the level produced with the NCA. Irregardless of being federally mandated, it proves to simply be a good practice in science communication. This presentation will detail the collection system built by the TSU, the improvements employed with additional Assessment products, as well as illustrate examples of successful transparency. Through this presentation, we hope to impel the discussion in support of detailed metadata becoming the cultural norm within the scientific community to support influential and highly policy-relevant documents such as the NCA.
Global and Regional Sea Level Rise Scenarios for the United States
NASA Technical Reports Server (NTRS)
Sweet, William V.; Kopp, Robert E.; Weaver, Christopher P.; Obeysekera, Jayantha; Horton, Radley M.; Thieler, E. Robert; Zervas, Chris
2017-01-01
The Sea Level Rise and Coastal Flood Hazard Scenarios and Tools Interagency Task Force, jointly convened by the U.S. Global Change Research Program (USGCRP) and the National Ocean Council (NOC), began its work in August 2015. The Task Force has focused its efforts on three primary tasks: 1) updating scenarios of global mean sea level (GMSL) rise, 2) integrating the global scenarios with regional factors contributing to sea level change for the entire U.S. coastline, and 3) incorporating these regionally appropriate scenarios within coastal risk management tools and capabilities deployed by individual agencies in support of the needs of specific stakeholder groups and user communities. This technical report focuses on the first two of these tasks and reports on the production of gridded relative sea level (RSL, which includes both ocean-level change and vertical land motion) projections for the United States associated with an updated set of GMSL scenarios. In addition to supporting the longer-term Task Force effort, this new product will be an important input into the USGCRP Sustained Assessment process and upcoming Fourth National Climate Assessment (NCA4) due in 2018. This report also serves as a key technical input into the in-progress USGCRP Climate Science Special Report (CSSR).
Extending Climate Analytics-As to the Earth System Grid Federation
NASA Astrophysics Data System (ADS)
Tamkin, G.; Schnase, J. L.; Duffy, D.; McInerney, M.; Nadeau, D.; Li, J.; Strong, S.; Thompson, J. H.
2015-12-01
We are building three extensions to prior-funded work on climate analytics-as-a-service that will benefit the Earth System Grid Federation (ESGF) as it addresses the Big Data challenges of future climate research: (1) We are creating a cloud-based, high-performance Virtual Real-Time Analytics Testbed supporting a select set of climate variables from six major reanalysis data sets. This near real-time capability will enable advanced technologies like the Cloudera Impala-based Structured Query Language (SQL) query capabilities and Hadoop-based MapReduce analytics over native NetCDF files while providing a platform for community experimentation with emerging analytic technologies. (2) We are building a full-featured Reanalysis Ensemble Service comprising monthly means data from six reanalysis data sets. The service will provide a basic set of commonly used operations over the reanalysis collections. The operations will be made accessible through NASA's climate data analytics Web services and our client-side Climate Data Services (CDS) API. (3) We are establishing an Open Geospatial Consortium (OGC) WPS-compliant Web service interface to our climate data analytics service that will enable greater interoperability with next-generation ESGF capabilities. The CDS API will be extended to accommodate the new WPS Web service endpoints as well as ESGF's Web service endpoints. These activities address some of the most important technical challenges for server-side analytics and support the research community's requirements for improved interoperability and improved access to reanalysis data.
Klimanavigator - Climate Navigator - Gateway to climate knowledge in Germany
NASA Astrophysics Data System (ADS)
Schuck-Zöller, Susanne
2013-04-01
Objective More than 50 German research institutions and networks are represented on www.klimanavigator.de, a common platform, where information about their work, and the latest findings from climate research and adaptation can be found. Thus Klimanavigator as a gateway to climate knowledge provides a information portal for those who have to respond to climate change. The internet portal gives an overview of the present state of research and is estimated as a decision support tool for appropriate mitigation and adaptation measures. Target Groups The portal collects the German climate research institutions to publish their scientific knowledge in a non-scientific language. Economists, policymakers, administration and the media are bound to find the names of scientific experts and institutions by an elaborated research tool. Methodology The chapter "Dossiers" is edited by the Klimanavigator-Coordinator CSC. It gathers information to a special issue looked upon from various points of view. Publications of outstanding German scientists are presented side by side, current knowledge is being synthesized, scientifically reviewed and disseminated. The latest news from climate and adaptation research is presented in an own chapter, dedicated to the press releases of the portal members. Via RSS-feed the press releases are collected from the different partner institutions. Thirdly, portraits of the member institutions, that are individually edited by themselves, draw a map of science in Germany and help to find appropriate cooperation partners. For the future further development is being planned. Common Management Klimanavigator is being managed by the partners in common. The main decisions concerning the concept and shape of the portal are made by the partners' assembly. An elected editorial committee decides about the content between the assemblies. The Climate Service Center (part of the Helmholtz-Zentrum Geesthacht) concentrates on facilitating the cooperation, and delivering the technical support. Results/Outcome/Products Map and navigator of climate and adaptation science in Germany Representation of science in Germany and Germany as a country of science Synthesis of knowledge Network of science institutions and projects Decision support tool
ERIC Educational Resources Information Center
Clifford, Matthew; Menon, Roshni; Gangi, Tracy; Condon, Christopher; Hornung, Katie
2012-01-01
This policy brief provides principal evaluation system designers information about the technical soundness and cost (i.e., time requirements) of publicly available school climate surveys. The authors focus on the technical soundness of school climate surveys because they believe that using validated and reliable surveys as an outcomes measure can…
NASA Astrophysics Data System (ADS)
Walton, P.; Lamb, R.
2010-09-01
The UK Climate Impacts Programme (UKCIP) was established by government in 1997 to support the UK's engagement with becoming better adapted to a changing climate. As the lead organisation in the UK on climate change adaptation, UKCIP oversaw the development of the UK Climate Projections (UKCP09) which were launched in June 2009 providing, for the first time, probabilistic climate projections for the UK. As with previous generations of UKCIP climate scenarios, they were freely accessible and intended for a whole spectrum of users, from technical experts to a lay audience. . Prior to the launch of UKCP09 it was acknowledged that users would need support in understanding key concepts, such as the uncertainty inherent in the projections, to be able to use them appropriately. The user support strategy was therefore developed. It is founded on robust pedagogical principles and draws on the latest thinking on public understanding of science (PUS) that places the user at the centre of the communication process. The adopted approach first identifies profiles of the key users of the climate projections and the ways in which they would use and access the data. Based on these profiles it is possible to identify a range of mechanisms that allow the user to engage with understanding the projections in different ways and situations including lectures, workshops and online learning. Within this blended strategy an exercise was developed specifically to support users' understanding of the concept of uncertainty within the probabilistic climate projections. The ‘Crossing the River' exercise encourages the participants to actively consider the nature of information they are using, and how it could be applied in a specific decision. Reflection and discussion are key elements in supporting the users' understanding of the concept and allowing them to apply the principles in the exercise to their own context. Their reflection is facilitated through a range of mechanisms that provide social and personal spaces and is guided by the communicator. The exercise has been used successfully with a broad range of users (from government officers to environmental managers) in groups ranging from small community events to large corporate conferences. Feedback has shown that the majority of people who completed the exercise had a better understanding of the concept of uncertainty within the probabilistic climate projections as a result. We are now working to create an online version that can be freely accessed by users along with other resources that develop understanding of other key concepts associated with UKCP09 and the broader climate change adaptation agenda. This paper evaluates the development and application of the user support strategy and provides a practical illustration of how it can be used within a face-to-face group setting and also as an online resource.
climwin: An R Toolbox for Climate Window Analysis.
Bailey, Liam D; van de Pol, Martijn
2016-01-01
When studying the impacts of climate change, there is a tendency to select climate data from a small set of arbitrary time periods or climate windows (e.g., spring temperature). However, these arbitrary windows may not encompass the strongest periods of climatic sensitivity and may lead to erroneous biological interpretations. Therefore, there is a need to consider a wider range of climate windows to better predict the impacts of future climate change. We introduce the R package climwin that provides a number of methods to test the effect of different climate windows on a chosen response variable and compare these windows to identify potential climate signals. climwin extracts the relevant data for each possible climate window and uses this data to fit a statistical model, the structure of which is chosen by the user. Models are then compared using an information criteria approach. This allows users to determine how well each window explains variation in the response variable and compare model support between windows. climwin also contains methods to detect type I and II errors, which are often a problem with this type of exploratory analysis. This article presents the statistical framework and technical details behind the climwin package and demonstrates the applicability of the method with a number of worked examples.
NASA Astrophysics Data System (ADS)
McNeeley, S.; Ojima, D. S.; Beeton, T.
2015-12-01
The Wind River Reservation in west-central Wyoming is home of the Eastern Shoshone and Northern Arapaho Tribes. The reservation has experienced severe drought impacts on Tribal livelihoods and cultural activities in recent years. Scientists from the North Central Climate Science Center, the National Drought Mitigation Center, the High Plains Regional Climate Center, and multiple others are working in close partnership with the tribal water managers on a reservation-wide drought preparedness project that includes a technical assessment of drought risk, capacity building to train managers on drought and climate science and indicators, and drought planning. This talk will present project activities to date along with the valuable and transferrable lessons learned on effective co-production of actionable science for decision making in a tribal context.
NASA Technical Reports Server (NTRS)
Meeson, Blanche W.
2000-01-01
The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.
Zhai, Shiyan; Song, Genxin; Qin, Yaochen; Ye, Xinyue; Lee, Jay
2017-01-01
This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.
Qin, Yaochen; Lee, Jay
2017-01-01
This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention. PMID:28950027
NASA Astrophysics Data System (ADS)
Chen, Liang; Zong, Jianfang; Guo, Huiting; Sun, Liang; Liu, Mei
2018-05-01
Standardization is playing an increasingly important role in reducing greenhouse gas emission and in climatic change adaptation, especially in the “three” greenhouse gas emission aspects (measurement, report, verification). Standardization has become one of the most important ways in mitigating the global climate change. Standardization Administration of China (SAC) has taken many productive measures in actively promoting standardization work to cope with climate change. In April 2014, SAC officially approved the establishment of “National Carbon Emission Management Standardization Technical Committee” In November 2015, SAC officially issued the first 11 national standards on carbon management including <
NASA Technical Reports Server (NTRS)
Roberts, Barry C.
2004-01-01
Supported Return-to-Flight activities by providing surface climate data from Kennedy Space Center used primarily for ice and dew formation studies, and upper air wind analysis primarily used for ascent loads analyses. The MSFC Environments Group's Terrestrial and Planetary Environments Team documented Space Shuttle day-of-launch support activities by publishing a document in support of SSP Return-to-Flight activities entitled "Space Shuttle Program Flight Operations Support". The team also formalized the Shuttle Natural Environments Technical Panel and chaired the first special session of the SSP Natural Environments Panel meeting at KSC, November 4-7,2003.58 participants from NASA, DOD and other government agencies from across the country attended the meeting.
Developing rural community health risk assessments for climate change: a Tasmanian pilot study.
Bell, Erica J; Turner, Paul; Meinke, Holger; Holbrook, Neil J
2015-01-01
This article examines the development and pilot implementation of an approach to support local community decision-makers to plan health adaptation responses to climate change. The approach involves health and wellbeing risk assessment supported through the use of an electronic tool. While climate change is a major foreseeable public health threat, the extent to which health services are prepared for, or able to adequately respond to, climate change impact-related risks remains unclear. Building health decision-support mechanisms in order to involve and empower local stakeholders to help create the basis for agreement on these adaptive actions is an important first step. The primary research question was 'What can be learned from pilot implementation of a community health and well-being risk assessment (CHWRA) information technology-based tool designed to support understanding of, and decision-making on, local community challenges and opportunities associated with health risks posed by climate change? The article examines the complexity of climate change science to adaptation translational processes, with reference to existing research literature on community development. This is done in the context of addressing human health risks for rural and remote communities in Tasmania, Australia. This process is further examined through the pilot implementation of an electronic tool designed to support the translation of physically based climate change impact information into community-level assessments of health risks and adaptation priorities. The procedural and technical nature of the CHWRA tool is described, and the implications of the data gathered from stakeholder workshops held at three rural Tasmanian local government sites are considered and discussed. Bushfire, depression and waterborne diseases were identified by community stakeholders as being potentially 'catastrophic' health effects 'likely' to 'almost certain' to occur at one or more Tasmanian rural sites - based on an Intergovernmental Panel on Climate Change style of assessment. Consensus statements from stakeholders also suggested concern with health sector adaptation capacity and community resilience, and what community stakeholders defined as 'last straw' climate effects in already stressed communities. Preventative action and community engagement were also seen as important, especially with regard to managing the ways that climate change can multiply socioeconomic and health outcome inequality. Above all, stakeholder responses emphasised the importance of an applied, complexity-oriented understanding of how climate and climate change impacts affect local communities and local services to compromise the overall quality of human health in these communities. Complex community-level assessments about climate change and related health risks and responses can be captured electronically in ways that offer potentially actionable information about priorities for health sector adaptation, as a first step in planning. What is valuable about these community judgements is the creation of shared values and commitments. Future iteration of the IT tool could include decision-support modules to support best practice health sector adaptation scenarios, providing participants with opportunities to develop their know-how about health sector adaptation to climate change. If managed carefully, such tools could work within a balanced portfolio of measures to help reduce the rising health burden from climate change.
Water Resources Risks and the Climate Resilience Toolkit: Tools, Case Studies, and Partnerships
NASA Astrophysics Data System (ADS)
Read, E. K.; Blodgett, D. L.; Booth, N.
2014-12-01
The Water Resources Risk topic of the Climate Resilience Toolkit (CRT) is designed to provide decision support, technical, and educational resources to communities, water resource managers, policy analysts, and water utilities working to increase the resilience of water resources to climate change. We highlight the partnerships (between federal and state agencies, non-governmental organizations, and private partners), tools (e.g., downscaled climate products, historical and real-time water data, and decision support) and success stories that are informing the CRT Water Resources Risks Theme content, and identify remaining needs in available resources for building resilience of water resources to climate change. The following questions will frame the content of the Water Resources Risk CRT: How are human and natural components of the hydrologic cycle changing? How can communities and water managers plan for uncertain future conditions? How will changing water resources impact food production, energy resources, ecosystems, and human health? What water resources data are of high value to society and are they easily accessible? Input on existing tools, resources, or potential partnerships that could be used to further develop content and fill gaps in the Water Resources CRT is welcome. We also invite ideas for water resources 'innovation challenges', in which technology developers work to create tools to that enhance the capacity of communities and managers to increase resilience of water resources at the local and regional scales.
National Climate Change and Wildlife Science Center project accomplishments: highlights
Holl, Sally
2011-01-01
The National Climate Change and Wildlife Science Center (NCCWSC) has invested more than $20M since 2008 to put cutting-edge climate science research in the hands of resource managers across the Nation. With NCCWSC support, more than 25 cooperative research initiatives led by U.S. Geological Survey (USGS) researchers and technical staff are advancing our understanding of habitats and species to provide guidance to managers in the face of a changing climate. Projects focus on quantifying and predicting interactions between climate, habitats, species, and other natural resources such as water. Spatial scales of the projects range from the continent of North America, to a regional scale such as the Pacific Northwest United States, to a landscape scale such as the Florida Everglades. Time scales range from the outset of the 20th century to the end of the 21st century. Projects often lead to workshops, presentations, publications and the creation of new websites, computer models, and data visualization tools. Partnership-building is also a key focus of the NCCWSC-supported projects. New and on-going cooperative partnerships have been forged and strengthened with resource managers and scientists at Federal, tribal, state, local, academic, and non-governmental organizations. USGS scientists work closely with resource managers to produce timely and relevant results that can assist managers and policy makers in current resource management decisions. This fact sheet highlights accomplishments of five NCCWSC projects.
NASA Astrophysics Data System (ADS)
Rooney-varga, J. N.; Sterman, J.; Jones, A.; Johnston, E.; Rath, K.; Nease, J.
2014-12-01
A rapid transition to a low-carbon, climate-resilient society is not only possible, but could also bring many co-benefits for public health, economic wellbeing, social equity, and more. The science supporting an urgent need for such a transition has never been clearer. Yet, social science data are also clear: the public in the US (and many other similar developed economies) does not, on average, share this sense of urgency, nor have policymakers shown a willingness to put scientific evidence above the perceptions of their constituents. The gulf between scientific and public understanding of climate change has spurred research on climate change communication, learning, and decision-making, identifying barriers such as misconceptions and faulty mental models of the climate and energy systems; poor understanding of complex, dynamic systems generally; and affective and social barriers to learning and action. There is also a growing opportunity to address these barriers, through tools that rely on active learning, that are social, engaging (and even fun), and that are grounded in rigorous science. An increasing number of decision-support computer simulations are being developed, intended to make complex technical problems accessible to non-experts in an interactive format. At the same time, the use of scenario planning, role-playing games, and active learning approaches are gaining ground in policy and education spheres. Simulation-based role-playing games bring these approaches together and can provide powerful learning experiences: they offer the potential to compress time and reality; create experiences without requiring the 'real thing;' explore the consequences of our decisions that often unfold over decades; and open affective and social learning pathways. Here, we offer a perspective on the potential of these tools in climate change education, communication, and decision-support, and a brief demonstration of one tool we have developed, World Energy.
Using Data-Rich Instruction for Climate Change Education: Road Blocks and Pathways
NASA Astrophysics Data System (ADS)
Nyman, M.; Ellwein, A. L.; Daniel, M.; Connealy, S.
2011-12-01
The plethora of web-based databases provides an opportunity to develop and support authentic, inquiry-based teaching strategies that use real climate data in K-12 science classrooms. Classroom use of real climate data has the potential to improve student ability to "do" science by developing students' critical thinking skills such as evaluation of data, using evidence to support conclusions, and providing opportunities to build scientific, technical and communication skills in addressing real-world problems. However, there are roadblocks to implementing data-rich instruction including the fact that many climate datasets are not accessible to those without training and may require advanced technical, math and data skills to utilize. In June 2011 we convened an Innovation Working Group (IWG), Using Climate Data in Classrooms, sponsored by NM EPSCoR to consider issues and strategies for effective data-rich climate science education. The IWG participants concluded that developing data literacy skills is essential for students and teachers to participate in data-rich projects. This includes knowledge of models, facility with working and interpreting data and comfort with ambiguity that is inherent in climate science. As an outcome of the workshop, we are developing a data literacy survey that will be used to gather information from pre- and in-service teachers about their data skills and the instructional methods that teachers use to develop students' data literacy. Survey results will be used to re-design pre-service teacher training and develop teacher professional development programs at two institutions, the University of New Mexico and Western State. A challenge to using data-rich instruction is the volume of data available and the myriad formats in which it is presented. A first-level web search on "climate data" results in well over 10 million hits, a signature of the formidable task of choosing which site is best suited for instruction. During the IWG, participants reviewed 14 data portals and data-rich climate websites and found that they generally lacked sufficient organization or documentation to be useful for K-12 teachers or their students. For example, in rating the 'ease of data access' only 4 websites out of 14 were rated as being easy to use. Clearly, the accessibility of web-hosted climate data must be improved in order to catalyze the development and use of data-rich, inquiry-based climate change instruction in K-12 classrooms. Another outcome of the IWG is the formation of a teacher advisory board that will develop specific guidelines to make climate data portals useful to K-12 teachers and students. The advisory group will work with developers of one climate data website in an iterative process that will be documented for dissemination to other related projects. Only through teacher input can large-scale efforts to coordinate and disseminate climate information be successfully translated to K-12 science instruction.
NASA Astrophysics Data System (ADS)
Ledley, T. S.; McCaffrey, M. S.; Gold, A. U.; Buhr, S. M.; Manduca, C. A.; Fox, S.; Kirk, K. B.; Grogan, M.; Niepold, F.; Lynds, S. E.; Howell, C.
2011-12-01
The US Global Change Research Program and a consortium of science and education partners in 2009 concluded "climate change will bring economic and environmental challenges as well as opportunities, and citizens who have an understanding of climate science will be better prepared to respond to both." In order for citizens to achieve that understanding there is a clear need to support teachers, students, and the public in becoming climate and energy literate and to enable them to make responsible decisions about the environment and energy use for themselves and for society. However, to pursue climate and energy literacy it is necessary to identify and access educational materials that are scientifically accurate, pedagogically effective, and technically robust, and to use them effectively. The CLEAN Pathway (http://cleanet.org) is a National Science Digital Library (http://www.nsdl.org) project that is stewarding a collection of materials for teaching climate and energy science in grades 6-16. The collection contains classroom activities, lab demonstrations, visualizations, simulations and more. Each resource is extensively reviewed for scientific accuracy, pedagogical effectiveness, and technical quality. Once accepted into the CLEAN collection, a resource is aligned with the Climate Literacy Essential Principles for Climate Science, the AAAS Project 2061 Benchmarks for Science Literacy and other national standards. The CLEAN website hosts a growing collection of currently 300+ resources that represent the leading edge of climate and energy science resources for the classroom. In this presentation we will demonstrate the various avenues of how the CLEAN portal that can help educators improve their own climate and energy literacy, help them determine why and how to effectively integrate the climate and energy principles into their teaching, and facilitate educators successfully using the resources with their students. This will include a brief overview of the: a) Breath of the collection and the faceted search that can help educators quickly find what is relevant to their needs; b) Teaching Climate Science and Energy Awareness pages that describe why each principle is important, why it is difficult to teach, information on how to effectively teach it, and links to resources in the collection that can be used to teach it at various levels; c) Annotations of an individual resource that provide information extracted from the reviews about the science, pedagogy, teaching tips as well as the climate or energy principles and the AAAS Benchmarks for Science Literacy addressed; d) Strandmap service that connects the benchmarks addressed by an individual resource to those that come immediately before and immediately after in a learning sequence, and to the resources that can help educators teach those benchmarks; and e) Professional development opportunities that can help teachers improve their own climate and energy literacy and explore how to integrate the materials into their classroom.
Climate change and pastoralism: impacts, consequences and adaptation.
Herrero, M; Addison, J; Bedelian, C; Carabine, E; Havlík, P; Henderson, B; Van De Steeg, J; Thornton, P K
2016-11-01
The authors discuss the main climate change impacts on pastoralist societies, including those on rangelands, livestock and other natural resources, and their extended repercussions on food security, incomes and vulnerability. The impacts of climate change on the rangelands of the globe and on the vulnerability of the people who inhabit them will be severe and diverse, and will require multiple, simultaneous responses. In higher latitudes, the removal of temperature constraints might increase pasture production and livestock productivity, but in tropical arid lands, the impacts are highly location specific, but mostly negative. The authors outline several adaptation options, ranging from implementing new technical practices and diversifying income sources to finding institutional support and introducing new market mechanisms, all of which are pivotal for enhancing the capacity of pastoralists to adapt to climate variability and change. Due to the dynamism of all the changes affecting pastoral societies, strategies that lock pastoral societies into specified development pathways could be maladaptive. Flexible and evolving combinations of practices and policies are the key to successful pastoral adaptation.
Exploring the climate change concerns of striped catfish producers in the Mekong Delta, Vietnam.
Nguyen, Anh Lam; Truong, Minh Hoang; Verreth, Johan Aj; Leemans, Rik; Bosma, Roel H; De Silva, Sena S
2015-01-01
This study investigated the perceptions on and adaptations to climate change impacts of 235 pangasius farmers in the Mekong Delta, Vietnam. Data were collected using semi-structured household surveys in six provinces, from three regions along the Mekong river branches. A Chi-Square test was used to determine the association between variables, and a logit regression model was employed to identify factors correlated with farmer's perception and adaptation. Less than half of respondents were concerned about climate change and sought suitable adaptation measures to alleviate its impacts. Improving information on climate change and introducing early warning systems could improve the adaptive capacity of pangasius farmers, in particularly for those farmers, who were not concerned yet. Farmers relied strongly on technical support from government agencies, but farmers in the coastal provinces did not express the need for training by these institutions. This contrasting result requires further assessment of the effectiveness of adaptation measures such as breeding salinity tolerant pangasius.
Tolstoy, Maya
2016-07-15
Olive et al (Reports, 16 October 2015, p. 310) and Goff (Technical Comment, 4 September 2015, p. 1065) raise important concerns with respect to recent findings of Milankovitch cycles in seafloor bathymetry. However, their results inherently support that the Southern East Pacific Rise is the optimum place to look for such signals and, in fact, models match those observations quite closely. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Ray, A. J.; Barsugli, J. J.; Averyt, K. B.; Deheza, V.; Udall, B.
2008-12-01
In 2007 Colorado's Governor Ritter issued a Colorado Climate Action Plan, in response to the risks associated with climate change and sets a goal to adapt to those climate changes "that cannot be avoided." The Western Water Assessment, a NOAA funded RISA program, was commissioned to do a synthesis of the science on climate change aimed at planners, decisionmakers, and policymakers in water in Colorado. Changes in Colorado's climate and implications for water resources are occurring in a global context. The objective of the report is to communicate the state of the science regarding the physical aspects of climate change that are important for evaluating impacts on Colorado's water resources, and to support state efforts to develop a water adaptation plan. However, the identification of specific climate change impacts on water resources is beyond the scope of this report. Water managers have a long history of adapting to changing circumstances, including changes in economies and land use, environmental concerns, and population growth. Climate change will further affect the decisions made about use of water. However, current water management practices may not be robust enough to cope with this climate change. This presentation reports on the process of developing the report and challenges we faced. We developed the report based on ongoing interactions with the water management community and discussions with them about their decision processes and needs. A second presentation (see Barsugli et al) presents the synthesis findings from the report. We followed the IPCC WG1 model of observations, attribution, and projections. However, many published studies and datasets include information about Colorado, there are few climate studies that focus only on the state. Consequently, many important scientific analyses for Colorado have not been done, and Colorado- specific information is often imbedded in or averaged with studies of the larger Western U.S. We used findings from peer-reviewed regional studies, and conducted new analyses derived from existing datasets and model projections, and took advantage of new regional analyses. In addition to the IPCC Fourth Assessment, we also took advantage of very new Climate Change Science Program Assessments. Many water managers, although often technically savvy engineers, hydrologists and other professionals, but are not trained as climate or atmospheric scientists, and seeks to complexity by using Fahrenheit units, minimizing use of or defining jargon terms, and re-plotting published figures/data for simplicity. The report is written at a less technical level than the IPCC reports, and some features are intended to raise the level of climate literacy of our audience about climate and how climate science is done. For example, the report includes a primer on climate models and theory that situates Colorado in the context of global climate change and describes how the unique features of the state -- such as the complex topography -- relate to interpreting and using climate change projections. This report responds to Colorado state agencies' and water management community needs to understanding of climate change and is an initial step in establishing Colorado's water-related adaptation needs. Another impact of this report is as an experiment in climate services for climate change information and exploring the challenges of communicating the information to diverse decisionmakers.
Programming Makes Software; Support Makes Users
NASA Astrophysics Data System (ADS)
Batcheller, A. L.
2010-12-01
Skilled software engineers may build fantastic software for climate modeling, yet fail to achieve their project’s objectives. Software support and related activities are just as critical as writing software. This study followed three different software projects in the climate sciences, using interviews, observation, and document analysis to examine the value added by support work. Supporting the project and interacting with users was a key task for software developers, who often spent 50% of their time on it. Such support work most often involved replying to questions on an email list, but also included talking to users on teleconference calls and in person. Software support increased adoption by building the software’s reputation and showing individuals how the software can meet their needs. In the process of providing support, developers often learned new of requirements as users reported features they desire and bugs they found. As software matures and gains widespread use, support work often increases. In fact, such increases can be one signal that the software has achieved broad acceptance. Maturing projects also find demand for instructional classes, online tutorials and detailed examples of how to use the software. The importance of support highlights the fact that building software systems involves both social and technical aspects. Yes, we need to build the software, but we also need to “build” the users and practices that can take advantage of it.
An integrated land change model for projecting future climate and land change scenarios
Wimberly, Michael; Sohl, Terry L.; Lamsal, Aashis; Liu, Zhihua; Hawbaker, Todd J.
2013-01-01
Climate change will have myriad effects on ecosystems worldwide, and natural and anthropogenic disturbances will be key drivers of these dynamics. In addition to climatic effects, continual expansion of human settlement into fire-prone forests will alter fire regimes, increase human vulnerability, and constrain future forest management options. There is a need for modeling tools to support the simulation and assessment of new management strategies over large regions in the context of changing climate, shifting development patterns, and an expanding wildland-urban interface. To address this need, we developed a prototype land change simulator that combines human-driven land use change (derived from the FORE-SCE model) with natural disturbances and vegetation dynamics (derived from the LADS model) and incorporates novel feedbacks between human land use and disturbance regimes. The prototype model was implemented in a test region encompassing the Denver metropolitan area along with its surrounding forested and agricultural landscapes. Initial results document the feasibility of integrated land change modeling at a regional scale but also highlighted conceptual and technical challenges for this type of model integration. Ongoing development will focus on improving climate sensitivities and modeling constraints imposed by climate change and human population growth on forest management activities.
Stochastic investigation of wind process for climatic variability identification
NASA Astrophysics Data System (ADS)
Deligiannis, Ilias; Tyrogiannis, Vassilis; Daskalou, Olympia; Dimitriadis, Panayiotis; Markonis, Yannis; Iliopoulou, Theano; Koutsoyiannis, Demetris
2016-04-01
The wind process is considered one of the hydrometeorological processes that generates and drives the climate dynamics. We use a dataset comprising hourly wind records to identify statistical variability with emphasis on the last period. Specifically, we investigate the occurrence of mean, maximum and minimum values and we estimate statistical properties such as marginal probability distribution function and the type of decay of the climacogram (i.e., mean process variance vs. scale) for various time periods. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.
NASA Technical Reports Server (NTRS)
Antle, John M.; Valdivia, Roberto O.; Boote, Kenneth J.; Janssen, Sander; Jones, James W.; Porter, Cheryl H.; Rosenzweig, Cynthia; Ruane, Alexander C.; Thorburn, Peter J.
2015-01-01
This chapter describes methods developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) to implement a transdisciplinary, systems-based approach for regional-scale (local to national) integrated assessment of agricultural systems under future climate, biophysical, and socio-economic conditions. These methods were used by the AgMIP regional research teams in Sub-Saharan Africa and South Asia to implement the analyses reported in their respective chapters of this book. Additional technical details are provided in Appendix 1.The principal goal that motivates AgMIP's regional integrated assessment (RIA) methodology is to provide scientifically rigorous information needed to support improved decision-making by various stakeholders, ranging from local to national and international non-governmental and governmental organizations.
Regional Integrated Assessments in Support of Decision-making: Process, Product, and Policy
NASA Astrophysics Data System (ADS)
Luers, A. L.; Hayhoe, K.
2006-12-01
Regional integrated climate assessments are increasingly viewed as critical for informing sound climate policy. Yet, the scientific information in many assessments often is not effectively transformed in to policies to protect the environment. Why are some assessments more effective at informing policies than others? We will provide some insight into this question by describing the lessons learned from a series of regional assessments organized by the Union of Concerned Scientists (UCS). Working with independent experts in the global change research community, UCS has produced assessments in three regions of the US California, the Great Lakes, and the Gulf Coast. The reports from each of these assessments continue to be used by local, state and regional decision-makers in related management and policy initiatives. We attribute the success of these assessments in motivating and supporting climate-related decisions to four factors: (1) credibility, attained both through scientific peer-review and by engaging local scientific and community leaders; (2) regional relevance of assessment focus areas; (3) accessible presentation of the results to non-technical audiences; and (4) wide communication and distribution of the report to the media, the public, civic groups, and public officials.
Climate Model Diagnostic Analyzer Web Service System
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.
2015-12-01
Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the new methodology as web services and incorporated the system into the Cloud. We have also developed a provenance management system for CMDA where CMDA service semantics modeling, service search and recommendation, and service execution history management are designed and implemented.
The Climate Data Analytic Services (CDAS) Framework.
NASA Astrophysics Data System (ADS)
Maxwell, T. P.; Duffy, D.
2016-12-01
Faced with unprecedented growth in climate data volume and demand, NASA has developed the Climate Data Analytic Services (CDAS) framework. This framework enables scientists to execute data processing workflows combining common analysis operations in a high performance environment close to the massive data stores at NASA. The data is accessed in standard (NetCDF, HDF, etc.) formats in a POSIX file system and processed using vetted climate data analysis tools (ESMF, CDAT, NCO, etc.). A dynamic caching architecture enables interactive response times. CDAS utilizes Apache Spark for parallelization and a custom array framework for processing huge datasets within limited memory spaces. CDAS services are accessed via a WPS API being developed in collaboration with the ESGF Compute Working Team to support server-side analytics for ESGF. The API can be accessed using either direct web service calls, a python script, a unix-like shell client, or a javascript-based web application. Client packages in python, scala, or javascript contain everything needed to make CDAS requests. The CDAS architecture brings together the tools, data storage, and high-performance computing required for timely analysis of large-scale data sets, where the data resides, to ultimately produce societal benefits. It is is currently deployed at NASA in support of the Collaborative REAnalysis Technical Environment (CREATE) project, which centralizes numerous global reanalysis datasets onto a single advanced data analytics platform. This service permits decision makers to investigate climate changes around the globe, inspect model trends and variability, and compare multiple reanalysis datasets.
Climate change adaptation: a panacea for food security in Ondo State, Nigeria
NASA Astrophysics Data System (ADS)
Fatuase, A. I.
2017-08-01
This paper examines the likely perceived causes of climate change, adaptation strategies employed and technical inefficiency of arable crop farmers in Ondo State, Nigeria. Data were obtained from primary sources using a set of structured questionnaire assisted with interview schedule. Multistage sampling technique was used. Data were analyzed using the following: descriptive statistics and the stochastic frontier production function. The findings showed that majority of the respondents (59.1 %) still believed that climate change is a natural phenomenon that is beyond man's power to abate while industrial release, improper sewage disposal, fossil fuel use, deforestation and bush burning were perceived as the most human factors that influence climate change by the category that chose human activities (40.9 %) as the main causes of climate change. The main employed adaptation strategies by the farmers were mixed cropping, planting early matured crop, planting of resistant crops and use of agrochemicals. The arable crop farmers were relatively technically efficient with about 53 % of them having technical efficiency above the average of 0.784 for the study area. The study observed that education, adaptation, perception, climate information and farming experience were statistically significant in decreasing inefficiency of arable crop production. Therefore, advocacy on climate change and its adaptation strategies should be intensified in the study area.
The IRI/LDEO Climate Data Library: Helping People use Climate Data
NASA Astrophysics Data System (ADS)
Blumenthal, M. B.; Grover-Kopec, E.; Bell, M.; del Corral, J.
2005-12-01
The IRI Climate Data Library (http://iridl.ldeo.columbia.edu/) is a library of datasets. By library we mean a collection of things, collected from both near and far, designed to make them more accessible for the library's users. Our datasets come from many different sources, many different "data cultures", many different formats. By dataset we mean a collection of data organized as multidimensional dependent variables, independent variables, and sub-datasets, along with the metadata (particularly use-metadata) that makes it possible to interpret the data in a meaningful manner. Ingrid, which provides the infrastructure for the Data Library, is an environment that lets one work with datasets: read, write, request, serve, view, select, calculate, transform, ... . It hides an extraordinary amount of technical detail from the user, letting the user think in terms of manipulations to datasets rather that manipulations of files of numbers. Among other things, this hidden technical detail could be accessing data on servers in other places, doing only the small needed portion of an enormous calculation, or translating to and from a variety of formats and between "data cultures". These operations are presented as a collection of virtual directories and documents on a web server, so that an ordinary web client can instantiate a calculation simply by requesting the resulting document or image. Building on this infrastructure, we (and others) have created collections of dynamically-updated images to faciliate monitoring aspects of the climate system, as well as linking these images to the underlying data. We have also created specialized interfaces to address the particular needs of user groups that IRI needs to support.
NASA Astrophysics Data System (ADS)
Jurado, J.
2016-12-01
Southeast Florida is widely recognized as one of the most vulnerable regions in the United States to the impacts of climate change, especially sea level rise. Dense urban populations, low land elevations, flat topography, complex shorelines and a porous geology all contribute to the region's challenges. Regional and local governments have been working collaboratively to address shared climate mitigation and adaptation concerns as part of the four-county Southeast Florida Regional Climate Change Compact (Compact). This partnership has emphasized, in part, the use of climate data and the development of advanced technical tools and visualizations to help inform decision-making, improve communications, and guide investments. Prominent work products have included regional vulnerability maps and assessments, a unified sea level rise projection for southeast Florida, the development and application of hydrologic models in scenario planning, interdisciplinary resilient redesign planning workshops, and the development of regional climate indicators. Key to the Compact's efforts has been the engagement and expertise of academic and agency partners, including a formal collaboration between the Florida Climate Institute and the Compact to improve research and project collaborations focused on southeast Florida. This presentation will focus on the collaborative processes and work products that have served to accelerate resiliency planning and investments in southeast Florida, with specific examples of how local governments are using these work products to modernize agency processes, and build support among residents and business leaders.
Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar
Harvey, Celia A.; Rakotobe, Zo Lalaina; Rao, Nalini S.; Dave, Radhika; Razafimahatratra, Hery; Rabarijohn, Rivo Hasinandrianina; Rajaofara, Haingo; MacKinnon, James L.
2014-01-01
Across the tropics, smallholder farmers already face numerous risks to agricultural production. Climate change is expected to disproportionately affect smallholder farmers and make their livelihoods even more precarious; however, there is limited information on their overall vulnerability and adaptation needs. We conducted surveys of 600 households in Madagascar to characterize the vulnerability of smallholder farmers, identify how farmers cope with risks and explore what strategies are needed to help them adapt to climate change. Malagasy farmers are particularly vulnerable to any shocks to their agricultural system owing to their high dependence on agriculture for their livelihoods, chronic food insecurity, physical isolation and lack of access to formal safety nets. Farmers are frequently exposed to pest and disease outbreaks and extreme weather events (particularly cyclones), which cause significant crop and income losses and exacerbate food insecurity. Although farmers use a variety of risk-coping strategies, these are insufficient to prevent them from remaining food insecure. Few farmers have adjusted their farming strategies in response to climate change, owing to limited resources and capacity. Urgent technical, financial and institutional support is needed to improve the agricultural production and food security of Malagasy farmers and make their livelihoods resilient to climate change. PMID:24535397
A University-Level Curriculum in Climate Change for SE Asia and the Asian Pacific
NASA Astrophysics Data System (ADS)
Furniss, M. J.; Saah, D. S.; Hines, S. J.; Radel, C. A.; McGroddy, M. E.; Ganz, D. J.
2014-12-01
A university-level curriculum has been developed for the SE Asia and Asia Pacific region and is currently being implemented by 12+ universities; in Vietnam, Cambodia, Laos, Thailand, Malaysia, and Papua New Guinea. The curriculum is supported by USAID (U.S. Agency for International Development) through the LEAF program (Lowering Emissions in Asian Forests), under the technical leadership of the U.S. Forest Service. Four modules have been developed: Basic Climate Change, Low-Emissions Land Use Planning, Social and Environmental Soundness, and Carbon Measurement and Monitoring. This presentation will focus on the Basic Climate Change module. This is a survey course that covers a wide range of climate change topics, including causes, effects, and responses. The level of detail in each of the covered topics is calibrated to current issues in the region. The module is elaborated in English and will be translated into the national language of the participating countries. The module is designed to be flexible and can be tailored to both degree and non-degree programs; as well as for trainings for natural resources professionals and policy-makers. Important training topics can be selected as short course trainings for practitioners and leaders working on climate change.
Regional climate change-Science in the Southeast
Jones, Sonya A.
2010-01-01
Resource managers are at the forefront of a new era of management. They must consider the potential impacts of climate change on the Nation's resources and proactively develop strategies for dealing with those impacts on plants, animals, and ecosystems. This requires rigorous, scientific understanding of environmental change. The role of the U.S. Geological Survey (USGS) in this effort is to analyze climate-change data and develop tools for assessing how changing conditions are likely to impact resources. This information will assist Federal, State, local, and tribal partners manage resources strategically. The 2008 Omnibus Budget Act and Secretarial Order 3289 established a new network of eight Department of Interior Regional Climate Science Centers to provide technical support for resource managers. The Southeast Regional Assessment Project (SERAP) is the first regional assessment to be funded by the USGS National Climate Change and Wildlife Science Center (http://nccw.usgs.gov/). The USGS is working closely with the developing Department of Interior Landscape Conservation Cooperatives to ensure that the project will meet the needs of resource managers in the Southeast. In addition, the U.S. Fish and Wildlife Service is providing resources to the SERAP to expand the scope of the project.
Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar.
Harvey, Celia A; Rakotobe, Zo Lalaina; Rao, Nalini S; Dave, Radhika; Razafimahatratra, Hery; Rabarijohn, Rivo Hasinandrianina; Rajaofara, Haingo; Mackinnon, James L
2014-04-05
Across the tropics, smallholder farmers already face numerous risks to agricultural production. Climate change is expected to disproportionately affect smallholder farmers and make their livelihoods even more precarious; however, there is limited information on their overall vulnerability and adaptation needs. We conducted surveys of 600 households in Madagascar to characterize the vulnerability of smallholder farmers, identify how farmers cope with risks and explore what strategies are needed to help them adapt to climate change. Malagasy farmers are particularly vulnerable to any shocks to their agricultural system owing to their high dependence on agriculture for their livelihoods, chronic food insecurity, physical isolation and lack of access to formal safety nets. Farmers are frequently exposed to pest and disease outbreaks and extreme weather events (particularly cyclones), which cause significant crop and income losses and exacerbate food insecurity. Although farmers use a variety of risk-coping strategies, these are insufficient to prevent them from remaining food insecure. Few farmers have adjusted their farming strategies in response to climate change, owing to limited resources and capacity. Urgent technical, financial and institutional support is needed to improve the agricultural production and food security of Malagasy farmers and make their livelihoods resilient to climate change.
ERIC Educational Resources Information Center
Zirkle, Christopher J.; Jeffery, Jeremy O.
2017-01-01
The current climate of career and technical administration requirements in all 50 states was detailed and explored. An increasing number of states are not requiring specific career-technical administration certification/licensure in order to oversee secondary career and technical education (CTE) programs, with more states moving towards a general…
NASA Astrophysics Data System (ADS)
Valentin, M. M.; Hay, L.; Van Beusekom, A. E.; Viger, R. J.; Hogue, T. S.
2016-12-01
Forecasting the hydrologic response to climate change in Alaska's glaciated watersheds remains daunting for hydrologists due to sparse field data and few modeling tools, which frustrates efforts to manage and protect critical aquatic habitat. Approximately 20% of the 64,000 square kilometer Copper River watershed is glaciated, and its glacier-fed tributaries support renowned salmon fisheries that are economically, culturally, and nutritionally invaluable to the local communities. This study adapts a simple, yet powerful, conceptual hydrologic model to simulate changes in the timing and volume of streamflow in the Copper River, Alaska as glaciers change under plausible future climate scenarios. The USGS monthly water balance model (MWBM), a hydrologic tool used for two decades to evaluate a broad range of hydrologic questions in the contiguous U.S., was enhanced to include glacier melt simulations and remotely sensed data. In this presentation we summarize the technical details behind our MWBM adaptation and demonstrate its use in the Copper River Basin to evaluate glacier and streamflow responses to climate change.
Stochastic investigation of temperature process for climatic variability identification
NASA Astrophysics Data System (ADS)
Lerias, Eleutherios; Kalamioti, Anna; Dimitriadis, Panayiotis; Markonis, Yannis; Iliopoulou, Theano; Koutsoyiannis, Demetris
2016-04-01
The temperature process is considered as the most characteristic hydrometeorological process and has been thoroughly examined in the climate-change framework. We use a dataset comprising hourly temperature and dew point records to identify statistical variability with emphasis on the last period. Specifically, we investigate the occurrence of mean, maximum and minimum values and we estimate statistical properties such as marginal probability distribution function and the type of decay of the climacogram (i.e., mean process variance vs. scale) for various time periods. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.
Arctic Climate Systems Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivey, Mark D.; Robinson, David G.; Boslough, Mark B.
2015-03-01
This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in themore » Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.« less
The Urban Leaders Adaptation Initiative: Climate Resilient Local Governments
NASA Astrophysics Data System (ADS)
Foster, J. G.
2008-12-01
Local governments, the first responders to public health, safety and environmental hazards, must act now to lessen vulnerabilities to climate change. They must plan for and invest in "adapting" to inevitable impacts such as flood, fire, and draught that will occur notwithstanding best efforts to mitigate climate change. CCAP's Urban Leaders Adaptation Initiative is developing a framework for informed decision making on climate adaptation. Looking ahead to projected climate impacts and 'back casting' can identify what is needed now to both reduce greenhouse gas emissions and build local resiliency to climate change. CCAP's partnership with King County (WA), Chicago, Los Angeles, Miami-Dade County (FL), Milwaukee, Nassau County (NY), Phoenix, San Francisco, and Toronto is advancing policy discussions to ensure that state and local governments consider climate change when making decisions about infrastructure, transportation, land use, and resource management. Through the Initiative, local leaders will incorporate climate change into daily urban management and planning activities, proactively engage city and county managers and the public in developing solutions, and build community resilience. One goal is to change both institutional and public attitudes and behaviors. Determining appropriate adaptation strategies for each jurisdiction requires Asking the Climate Question: "How does what we are doing increase our resilience to climate change?" Over the next three years, the Initiative will design and implement specific adaptation plans, policies and 'catalytic' projects, collect and disseminate "best practices," and participate in framing national climate policy discussions. In the coming years, policy-makers will have to consider climate change in major infrastructure development decisions. If they are to be successful and have the resources they need, national climate change policy and emerging legislation will have to support these communities. The Urban Leaders Adaptation Initiative will equip CCAP partners with the knowledge and tools to get started on planning and implementing adaptation measures. Drawing on the best and brightest state, local and national policy experts, it will recommend a comprehensive set of actions that will enable the federal government to support local resiliency efforts. Toward that end, CCAP has identified three core principles for national climate adaptation policy: 1. National climate policy should support state and local adaptation planning and implementation, such as through use of cap-and-trade allowance auction proceeds; 2. Federal agencies should provide adaptation assistance to state and local governments, including regional impact assessments, downscaled climate model data, updated flood maps, planning tools, drought early warning, and implementation guidance; and 3. A national climate service and extension network needs to be established to aid local governments implementing resilience measures in collaboration with universities, companies and technical experts around the country.
Enhancing the Communication of Climate Change Science
NASA Astrophysics Data System (ADS)
Somerville, R. C.; Hassol, S. J.
2011-12-01
Climate scientists have an important role to play in the critical task of informing the public, media and policymakers. Scientists can help in publicizing and illuminating climate science. However, this task requires combining climate science expertise with advanced communication skills. For example, it is entirely possible to convey scientific information accurately without using jargon or technical concepts unfamiliar to non-scientists. However, making this translation into everyday language is a job that few scientists have been trained to do. In this talk, we give examples from our recent experience working with scientists to enhance their ability to communicate well. Our work includes providing training, technical assistance, and communications tools to climate scientists and universities, government agencies, and research centers. Our experience ranges from preparing Congressional testimony to writing major climate science reports to appearing on television. We have also aided journalists in gathering reliable scientific information and identifying trustworthy experts. Additionally, we are involved in developing resources freely available online at climatecommunication.org. These include a feature on the links between climate change and extreme weather, a climate science primer, and graphics and video explaining key developments in climate change science.
School Climate Assessment Programs. Technical Assistance Bulletin 38.
ERIC Educational Resources Information Center
National School Resource Network, Washington, DC.
Numerous studies indicate that climate, the prevailing "feeling" of the environment, not only contributes to behavioral and situational outcomes, but that climate can be changed to help bring about the behaviors and outcomes desired. Researchers have identified characteristics of positive school climates and ways of determining the presence or…
Climate Change Challenges for Extension Educators: Technical Capacity and Cultural Attitudes
ERIC Educational Resources Information Center
Becerra, Terrie A.; Middendorf, Gerad; Campbell, Amber; Tomlinson, Peter
2016-01-01
We surveyed Extension educators in the southern Great Plains about their attitudes and beliefs regarding climate change, their interactions with constituents surrounding climate change, and challenges they face in engaging constituents on the topic of climate change. Production-oriented and sociocultural challenges in meeting constituents'…
Asilomar moments: formative framings in recombinant DNA and solar climate engineering research.
Schäfer, Stefan; Low, Sean
2014-12-28
We examine the claim that in governance for solar climate engineering research, and especially field tests, there is no need for external governance beyond existing mechanisms such as peer review and environmental impact assessments that aim to assess technically defined risks to the physical environment. By drawing on the historical debate on recombinant DNA research, we show that defining risks is not a technical question but a complex process of narrative formation. Governance emerges from within, and as a response to, narratives of what is at stake in a debate. In applying this finding to the case of climate engineering, we find that the emerging narrative differs starkly from the narrative that gave meaning to rDNA technology during its formative period, with important implications for governance. While the narrative of rDNA technology was closed down to narrowly focus on technical risks, that of climate engineering continues to open up and includes social, political and ethical issues. This suggests that, in order to be legitimate, governance must take into account this broad perception of what constitutes the relevant issues and risks of climate engineering, requiring governance that goes beyond existing mechanisms that focus on technical risks. Even small-scale field tests with negligible impacts on the physical environment warrant additional governance as they raise broader concerns that go beyond the immediate impacts of individual experiments. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Mendoza, G.; Tkach, M.; Kucharski, J.; Chaudhry, R.
2017-12-01
This discussion is focused around the application of a bottom-up vulnerability assessment procedure for planning of climate resilience to a water treament plant for teh city of Iolanda, Zambia. This project is a Millennium Challenge Corporation (MCC) innitiaive with technical support by the UNESCO category II, International Center for Integrated Water Resources Management (ICIWaRM) with secretariat at the US Army Corps of Engineers Institute for Water Resources. The MCC is an innovative and independent U.S. foreign aid agency that is helping lead the fight against global poverty. The bottom-up vulnerability assessmentt framework examines critical performance thresholds, examines the external drivers that would lead to failure, establishes plausibility and analytical uncertainty that would lead to failure, and provides the economic justification for robustness or adaptability. This presentation will showcase the experiences in the application of the bottom-up framework to a region that is very vulnerable to climate variability, has poor instituional capacities, and has very limited data. It will illustrate the technical analysis and a decision process that led to a non-obvious climate robust solution. Most importantly it will highlight the challenges of utilizing discounted cash flow analysis (DCFA), such as net present value, in justifying robust or adaptive solutions, i.e. comparing solution under different future risks. We highlight a solution to manage the potential biases these DCFA procedures can incur.
A Professional Development Climate Course for Sustainable Agriculture in Australia
ERIC Educational Resources Information Center
George, David; Clewett, Jeff; Birch, Colin; Wright, Anthony; Allen, Wendy
2009-01-01
There are few professional development courses in Australia for the rural sector concerned with climate variability, climate change and sustainable agriculture. The lack of educators with a sound technical background in climate science and its applications in agriculture prevents the delivery of courses either stand-alone or embedded in other…
DOT National Transportation Integrated Search
2009-08-01
According to the Intergovernmental Panel on Climate Changea United Nations organization that assesses scientific, technical, and economic information on the effects of climate changeglobal atmospheric concentrations of greenhouse gases have inc...
Uncertainty Management in Urban Water Engineering Adaptation to Climate Change
Current water resource planning and engineering assume a stationary climate, in which the observed historical water flow rate and water quality variations are often used to define the technical basis. When the non-stationarity is considered, however, climate change projection co...
Embedding climate change risk assessment within a governance context
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Benjamin L
Climate change adaptation is increasingly being framed in the context of climate risk management. This has contributed to the proliferation of climate change vulnerability and/or risk assessments as means of supporting institutional decision-making regarding adaptation policies and measures. To date, however, little consideration has been given to how such assessment projects and programs interact with governance systems to facilitate or hinder the implementation of adaptive responses. An examination of recent case studies involving Australian local governments reveals two key linkages between risk assessment and the governance of adaptation. First, governance systems influence how risk assessment processes are conducted, by whommore » they are conducted, and whom they are meant to inform. Australia s governance system emphasizes evidence-based decision-making that reinforces a knowledge deficit model of decision support. Assessments are often carried out by external experts on behalf of local government, with limited participation by relevant stakeholders and/or civil society. Second, governance systems influence the extent to which the outputs from risk assessment activities are translated into adaptive responses and outcomes. Technical information regarding risk is often stranded by institutional barriers to adaptation including poor uptake of information, competition on the policy agenda, and lack of sufficient entitlements. Yet, risk assessments can assist in bringing such barriers to the surface, where they can be debated and resolved. In fact, well-designed risk assessments can contribute to multi-loop learning by institutions, and that reflexive problem orientation may be one of the more valuable benefits of assessment.« less
Technical Feasibility Study for Zero Energy K-12 Schools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pless, Shanti D.; Torcellini, Paul A.; Bonnema, Eric
A simulation-based technical feasibility study was completed to show the types of technologies required to achieve ZEB status with this building type. These technologies are prioritized across the building's subsystem such that design teams can readily integrate the ideas. Energy use intensity (EUI) targets were established for U.S. climate zones such that K-12 schools can be zero-ready or can procure solar panels or other renewable energy production sources to meet the zero energy building definition. Results showed that it is possible for K-12 schools to achieve zero energy when the EUI is between 20 and 26 kBtu/ft2/yr. Temperate climates requiredmore » a smaller percentage of solar panel coverage than very hot or very cold climates. The paper provides a foundation for technically achieving zero energy schools with a vision of transforming the school construction market to mainstream zero energy buildings within typical construction budgets.« less
Science initiative for international development
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-07-01
A new initiative to use science to address global development challenges was launched by the U.S. National Science Foundation (NSF) and the U.S. Agency for International Development (USAID) on 7 July. Partnerships for Enhanced Engagement in Research (PEER) will capitalize on competitively awarded investments to support and build scientific and technical capacity in the developing world, according to the agencies. USAID has allocated $7 million for PEER, which the agencies indicate could leverage an additional $25-50 million in NSFfunded research at U.S. institutions to focus on issues including climate change, disaster mitigation, water, renewable energy, and food security. The program is beginning with six pilot programs in Asia and Africa, including fostering a Bangladeshi seismological community, studying the impacts of land use on biodiversity dynamics in Burkina Faso, and examining climate change and integrated resource management around Agougou Natural Pond in Mali.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... (c) Weather and climate. (1) Serve as a focal point within the Department for coordination of weather, climate, and related crop monitoring activities. (d) Remote sensing. (1) Provide technical assistance...
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (c) Weather and climate. (1) Serve as a focal point within the Department for coordination of weather, climate, and related crop monitoring activities. (d) Remote sensing. (1) Provide technical assistance...
Code of Federal Regulations, 2014 CFR
2014-01-01
.... (c) Weather and climate. (1) Serve as a focal point within the Department for coordination of weather, climate, and related crop monitoring activities. (d) Remote sensing. (1) Provide technical assistance...
Code of Federal Regulations, 2012 CFR
2012-01-01
.... (c) Weather and climate. (1) Serve as a focal point within the Department for coordination of weather, climate, and related crop monitoring activities. (d) Remote sensing. (1) Provide technical assistance...
Firing Range Contaminants and Climate Change Tool: Spreadsheet User Instructions
2017-09-18
Chief, CEERD-EPR; Mr. Warren Lorenz was Branch Chief, CEERD-EP; and Dr. Elizabeth Ferguson, CEERD- EM -J was the Technical Director for Environmental...changes. 15. SUBJECT TERMS Bombing and gunnery ranges, Rifle-ranges, Pollutants, Soil pollution-- Climatic factors, Climatic changes 16. SECURITY
Great plains regional climate assessment technical report
USDA-ARS?s Scientific Manuscript database
The Great Plains region (GP) plays important role in providing food and energy to the economy of the United States. Multiple climatic and non-climatic stressors put multiple sectors, livelihoods and communities at risk, including agriculture, water, ecosystems and rural and tribal communities. The G...
Uncertainty Management in Urban Water Engineering Adaptation to Climate Change - abstract
Current water resource planning and engineering assume a stationary climate, in which the observed historical water flow rate and water quality variations are often used to define the technical basis. When the non-stationarity is considered, however, climate change projection co...
Glisson, Charles; Schoenwald, Sonja K; Kelleher, Kelly; Landsverk, John; Hoagwood, Kimberly Eaton; Mayberg, Stephen; Green, Philip
2008-03-01
The present study incorporates organizational theory and organizational characteristics in examining issues related to the successful implementation of mental health services. Following the theoretical foundations of socio-technical and cultural models of organizational effectiveness, organizational climate, culture, legal and service structures, and workforce characteristics are examined as correlates of therapist turnover and new program sustainability in a nationwide sample of mental health clinics. Results of General Linear Modeling (GLM) with the organization as the unit of analysis revealed that organizations with the best climates as measured by the Organizational Social Context (OSC) profiling system, had annual turnover rates (10%) that were less than half the rates found in organizations with the worst climates (22%). In addition, organizations with the best culture profiles sustained new treatment or service programs over twice as long (50 vs. 24 months) as organizations with the worst cultures. Finally, clinics with separate children's services units had higher turnover rates than clinics that served adults and children within the same unit. The findings suggest that strategies to support the implementation of new mental health treatments and services should attend to organizational culture and climate, and to the compatibility of organizational service structures with the demand characteristics of treatments.
Developing a Climate Change Boundary Organization: the Montana Adaptation Knowledge Exchange
NASA Astrophysics Data System (ADS)
Whitlock, C. L.; Brooks, S.; Armstrong, T.; Bryan, B.
2017-12-01
States, like Montana, with small populations and large areas, are challenged by a need to offer timely and relevant climate-science information that addresses diverse and widely dispersed stakeholder groups. In Montana, filling the gap between science and practice has motivated the first Montana Climate Assessment (MCA), released September 2017 with a focus on climate impacts on the agriculture, water and forestry sectors. The MCA is an outcome of a science-stakeholder partnership that has identified critical climate-change information and knowledge gaps for the state through listening sessions and questionnaires. From the initial feedback, it became clear that stakeholder groups were deeply concerned about the challenges posed by rising temperatures and wanted to know how recent and projected warming will affect Montana's natural and managed resources. As part of the next phase of the MCA project, we are now creating the Montana Adaptation Knowledge Exchange (MAKE), a "boundary organization" as described by the National Academy of Sciences. MAKE moves beyond information sharing by bringing scientists and practitioners together to seek solutions related to climate-change adaptation and other pressing environmental and socio-economic concerns. Through a collaborative partnership that involves Montana universities, state and federal agencies, businesses and non-governmental organizations, MAKE is designed to communicate current research findings and support revision and expansion of state-of-the-knowledge assessments like the MCA. Stakeholder partners will provide guidance to the science community to help prioritize research directions and activities of high importance. Significant, but often technical, scientific results will be translated and delivered to stakeholder groups through a variety of print, web, and mobile products. MAKE will support an extensive online database, host an online portal, gather a network of experts in respective fields, and maintain a knowledgeable customer service staff. Boundary organizations, such as MAKE, offer a path to effectively move from science to knowledge to action in the climate change arena while at the same time engaging practitioners and managers in the development of research agendas.
Malloy, Margaret; Acock, Alan; DuBois, David L; Vuchinich, Samuel; Silverthorn, Naida; Ji, Peter; Flay, Brian R
2015-11-01
Organizational climate has been proposed as a factor that might influence a school's readiness to successfully implement school-wide prevention programs. The aim of this study was to evaluate the influence of teachers' perceptions of three dimensions of school organizational climate on the dosage and quality of teacher implementation of Positive Action, a social-emotional and character development (SECD) program. The dimensions measured were teachers' perceptions of (a) the school's openness to innovation, (b) the extent to which schools utilize participatory decision-making practices, and (c) the existence of supportive relationships among teachers (teacher-teacher affiliation). Data from 46 teachers in seven schools enrolled in the treatment arm of a longitudinal, cluster-randomized, controlled trial were analyzed. Teacher perceptions of a school's tendency to be innovative was associated with a greater number of lessons taught and self-reported quality of delivery, and teacher-teacher affiliation was associated with a higher use of supplementary activities. The findings suggest that perceptions of a school's organizational climate impact teachers' implementation of SECD programs and have implications for school administrators and technical assistance providers as they work to implement and sustain prevention programs in schools.
EPA Center for Corporate Climate Leadership
EPA's Center for Corporate Climate Leadership is a comprehensive resource to help organizations measure & manage GHG emissions. The Center provides technical tools, educational resources, opportunities for information sharing & highlights best practices.
NASA Astrophysics Data System (ADS)
Abrash Walton, A.
2017-12-01
There is broad scientific consensus that climate change is occurring; however, there is limited implementation of measures to create resilient local communities (Abrash Walton, Simpson, Rhoades, & Daniels, 2016; Adger, Arnell, & Tompkins, 2005; Glavovic & Smith, 2014; Moser & Ekstrom, 2010; Picketts, Déry, & Curry, 2014). Communities that are considered climate leaders in the United States may have adopted climate change plans, yet few have actually implemented the policies, projects and recommendations in those plans. A range of innovative, education strategies have proven effective in building the capacity of local decision makers to strengthen community resilience. This presentation draws on the results of two years of original research regarding the information and support local decision makers require for effective action. Findings are based on information from four datasets, with more than 600 respondents from 48 U.S. states and 19 other countries working on local adaptation in a range of capacities. These research results can inform priority setting for public policy, budget setting, and action as well as private sector funding and investment. The presentation will focus, in particular, on methods and results of a pioneering Facilitated Community of Practice model (FCoP) for building climate preparedness and community resilience capacity, among local-level decision makers. The FCoP process includes group formation and shared capacity building experience. The process can also support collective objective setting and creation of structures and processes for ongoing sustainable collaboration. Results from two FCoPs - one fully online and the other hybrid - suggest that participants viewed the interpersonal and technical assistance elements of the FCoP as highly valuable. These findings suggest that there is an important need for facilitated networking and other relational aspects of building capacity among those advancing resilience at the local level.
NASA Astrophysics Data System (ADS)
Gyakum, J. R.; Austin, B. N.; Curtis, D. C.; Anderson, M.; Alpert, H.; Young, S.; Herson, A.; Schwarz, A.; Kavvas, M. L.; Langridge, R.; Lynn, E.; Anderson, J.; Redmond, K. T.; Dettinger, M. D.; Correa, M.; Franco, G.; Cayan, D.; Georgakakos, K.
2015-12-01
Diverse areas of expertise are needed to describe and assess a changing climate and provide guidance for the agency that runs the largest state-built, multi-purpose water project in the U.S. California's State Water Project provides: drinking water for more than 25 million people, flood control, power generation, recreation, fish and wildlife protection, and water quality improvements. Hydrologic impacts under a changing climate include rising seas, reduced ratio of snow to rain, earlier snowmelt and higher temperatures; all of which are being detected. To improve the scientific basis for decisions and enhance the consistency of climate change approaches, the California Department of Water Resources (DWR) empaneled a Climate Change Technical Advisory Group (CCTAG) for guidance on the scientific aspects of climate change, its impacts on water resources, the use and creation of planning approaches and analytical tools, and the development of adaptation responses. To carry out DWR's mission, incorporation of climate change into DWR's planning, projects, and other activities must be consistent, science-based, and continually improved through an iterative process. Hydrologists, academicians, modelers, planners, lawyers and practitioners convened regularly to tackle these complicated issues in water management policy, including climate change impacts on extreme events. Actions taken in response to the CCTAG recommendations will move California toward more sustainable management of water and related resources. DWR will release a technical report of CCTAG guidance and perspectives in 2015. The process to convene, collaborate and distribute the findings of this CCTAG will be the focus of this presentation. An academician and water resources practitioner will share their perspectives on the processes driving CCTAG's work.
NASA Astrophysics Data System (ADS)
Heyn, K.; Campbell, E.
2016-12-01
The Portland Water Bureau has been studying the anticipated effects of climate change on its primary surface water source, the Bull Run Watershed, since the early 2000's. Early efforts by the bureau were almost exclusively reliant on outside expertise from climate modelers and researchers, particularly those at the Climate Impacts Group (CIG) at the University of Washington. Early work products from CIG formed the basis of the bureau's understanding of the most likely and consequential impacts to the watershed from continued GHG-caused warming. However, by mid-decade, as key supply and demand conditions for the bureau changed, it found it lacked the technical capacity and tools to conduct more refined and updated research to build on the outside analysis it had obtained. Beginning in 2010 through its participation in the Pilot Utility Modeling Applications (PUMA) project, the bureau identified and began working to address the holes in its technical and institutional capacity by embarking on a process to assess and select a hydrologic model while obtaining downscaled climate change data to utilize within it. Parallel to the development of these technical elements, the bureau made investments in qualified staff to lead the model selection, development and utilization, while working to establish productive, collegial and collaborative relationships with key climate research staff at the Oregon Climate Change Research Institute (OCCRI), the University of Washington and the University of Idaho. This presentation describes the learning process of a major metropolitan area drinking water utility as its approach to addressing the complex problem of climate change evolves, matures, and begins to influence broader aspects of the organization's planning efforts.
Report on the projected future climate of the Walnut Gulch Watershed, AZ
USDA-ARS?s Scientific Manuscript database
This report is one of several that provides technical information on projected climate change at selected ARS experimental watersheds across the continental United States. The report is an attachment to the main report of the multi-location project titled “Estimating impacts of projected climate cha...
Accelerated Climate Modeling for Energy (ACME) Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhary, Aashish
Seven Department of Energy (DOE) national laboratories, Universities, and Kitware, undertook a coordinated effort to build an Earth system modeling capability tailored to meet the climate change research strategic objectives of the DOE Office of Science, as well as the broader climate change application needs of other DOE programs.
Sustainable hydropower in Lower Mekong Countries: Technical assessment and training travel report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjerioua, Boualem; Witt, Adam M.
The U.S. Agency for International Development (USAID), through their partnership with the U.S. Department of the Interior (DOI), requested the support of Oak Ridge National Laboratory (ORNL) to provide specialized technical assistance as part of the Smart Infrastructure for the Mekong (SIM) Program in Thailand. Introduced in July 2013 by U.S. Secretary of State John Kerry, SIM is a U.S. Government Inter-Agency program that provides Lower Mekong partner countries with targeted, demand-driven technical and scientific assistance to support environmentally sound, climate conscious and socially equitable infrastructure, clean energy development, and water resources optimization. The U.S. Government is committed to supportingmore » sustainable economic development within the region by providing tools, best practices, technical assistance, and lessons learned for the benefit of partner countries. In response to a request from the Electricity Generating Authority of Thailand (EGAT), a SIM project was developed with two main activities: 1) to promote hydropower sustainability and efficiency through technical assessment training at two existing hydropower assets in Thailand, and 2) the design and implementation of one national and two or three regional science and policy workshops, to be co-hosted with EGAT, to build common understanding of and commitment to environmental and social safeguards for Mekong Basin hydropower projects. The U.S. Department of Energy (DOE) is leading the technical assessment (Activity 1), and has contracted ORNL to provide expert technical assistance focused on increasing efficiency at existing projects, with the goal of increasing renewable energy generation at little to no capital cost. ORNL is the leading national laboratory in hydropower analysis, with a nationally recognized and highly qualified team of scientists addressing small to large-scale systems (basin-, regional-, and national-scale) energy generation optimization analysis for DOE. The mission of the ORNL Water Power Program is to develop technologies, decision-support tools, and methods of analysis that enable holistic management of water-dependent energy infrastructure and natural resources in support of the DOE Energy Efficiency and Renewable Energy Office (DOE-EERE), Federal hydropower agencies, Federal Energy Regulatory Commission (FERC), Nuclear Regulatory Commission (NRC), energy producers, and other entities. In support of SIM, ORNL completed technical assessments of two hydropower plants owned and operated by the Electricity Generating Authority of Thailand (EGAT): Vajiralongkorn (VRK), with an installed capacity of 300 MW, and Rajjaprabha (RPB), with an installed capacity of 240MW. Technical assessment is defined as the assessment of hydropower operation and performance, and the identification of potential opportunities for performance improvement through plant optimization. At each plant, the assessment included an initial analysis of hydropower operating and performance metrics, provided by dam owners. After this analysis, ORNL engaged with the plant management team in a skills exchange, where best practices, operational methods, and technical challenges were discussed. The technical assessment process was outlined to plant management followed by a presentation of preliminary results and analysis based on 50 days of operational data. EGAT has agreed to provide a full year of operational data so a complete and detailed assessment that captures seasonal variability can be completed. The results of these assessments and discussions will be used to develop a set of best practices, training, and procedure recommendations to improve the efficiency of the two assessed plants« less
Global climate change and children's health.
Shea, Katherine M
2007-11-01
There is broad scientific consensus that Earth's climate is warming rapidly and at an accelerating rate. Human activities, primarily the burning of fossil fuels, are very likely (>90% probability) to be the main cause of this warming. Climate-sensitive changes in ecosystems are already being observed, and fundamental, potentially irreversible, ecological changes may occur in the coming decades. Conservative environmental estimates of the impact of climate changes that are already in process indicate that they will result in numerous health effects to children. The nature and extent of these changes will be greatly affected by actions taken or not taken now at the global level. Physicians have written on the projected effects of climate change on public health, but little has been written specifically on anticipated effects of climate change on children's health. Children represent a particularly vulnerable group that is likely to suffer disproportionately from both direct and indirect adverse health effects of climate change. Pediatric health care professionals should understand these threats, anticipate their effects on children's health, and participate as children's advocates for strong mitigation and adaptation strategies now. Any solutions that address climate change must be developed within the context of overall sustainability (the use of resources by the current generation to meet current needs while ensuring that future generations will be able to meet their needs). Pediatric health care professionals can be leaders in a move away from a traditional focus on disease prevention to a broad, integrated focus on sustainability as synonymous with health. This policy statement is supported by a technical report that examines in some depth the nature of the problem of climate change, likely effects on children's health as a result of climate change, and the critical importance of responding promptly and aggressively to reduce activities that are contributing to this change.
Environmental Land Management in Tajikistan
NASA Astrophysics Data System (ADS)
Makhmudov, Zafar; Ergashev, Murod
2015-04-01
Tackling Environmental Land Management in Tajikistan "Project approach" Khayrullo Ibodzoda, Zafar Mahmoudov, Murod Ergashev, Kamoliddin Abdulloev Among 28 countries in Europe and Central Asia, Tajikistan is estimated to be the most vulnerable to the climate change impacts depending on its high exposure and sensitivity combined with a very low adaptive capacity. The agricultural sector of Tajikistan is subject to lower and more erratic rainfalls, as well as dryness of water resources due to the possible temperature rising in the region, high evaporation, reducing the accumulation of snow in the mountain glaciers and increased frequency of extreme events. Climate change and variability are likely to pose certain risks, especially for those who prefer natural agriculture or pasture management that just reinforces the need for sound, adapted to new climatic conditions and improved principles of land management. Adoption of new strategies and best practices on sustainable land and water management for agricultural ecosystems will help the farmers and communities in addressing the abovementioned problems, adapt and become more resilient to changing climate by increasing wellbeing of local population, and contributing to food security and restoring productive natural resources. The Environmental Land Management and Rural Livelihoods Project is being financed by the Pilot Program for Climate Resilience (PPCR) and Global Environment Facility (GEF). The Project goal is to enable the rural population to increase their productive assets by improving management of natural resources and building resilience to climate change in selected climate vulnerable sites. The project will facilitate introduction of innovative measures on land use and agricultural production by providing small grants at the village level and grants for the Pasture User Groups (PUGs) at jamoat level in order to implement joint plans of pasture management and wellbred livestock, also for the Water User Associations (WUAs) to introduce sustainable on-farm water management practices. The Project comprises three components to be implemented in five years: 1. Rural Production and Land Resource Management Investments; 2. Knowledge Management and Institutional Support, and 3. Project Management and Coordination. These components include a set of grants from the PPCR and GEF that betrays the particular importance of the grant sources for the Project funding. This innovative combination of the PPCR and GEF grant funding will help in scheduling a scope of work under the Project and enable to implement certain activities on a pilot basis that otherwise could not be implemented at this level. Key partners are the Committee for Environmental Protection (Implementing Agency), the Ministry of Finance, the PPCR Secretariat in Tajikistan, Farkhor, Kulyab, Khovaling, Baljuvan, Tavildara and Jirgatal districts, the German Agency for International Development (GIZ) with its GREAT program which provides additional support to the community-based Project planning and institutional development, as well as technical agricultural advisory services. Currently the project has Project Implementation Group and most of its Facilitating Organizations in place that will carry out financial management, disbursements, procurement process, environmental management, social development, monitoring and evaluation. Workshops on coordinating the Project were held in the districts, as well as a series of Trainings of trainings and meetings were conducted for specialists and technical personnel. Next step is to initiate supporting local initiatives for climate adaptive land management and improved livelihoods based on Community Action Plans.
Deaf college students' attitudes toward racial/ethnic diversity, campus climate, and role models.
Parasnis, Ila; Samar, Vincent J; Fischer, Susan D
2005-01-01
Deaf college students' attitudes toward a variety of issues related to racial/ethnic diversity were surveyed by contacting all racial/ethnic minority deaf students and a random sample of Caucasian deaf students attending the National Technical Institute for the Deaf (NTID), Rochester Institute of Technology; 38% completed the survey. Although racial/ethnic groups similarly perceived NTID's commitment and efforts related to diversity, they differed significantly on some items related to campus climate and role models. Furthermore, the racial/ethnic minority groups differed from each other in their perceptions of campus comfort level, racial conflict, friendship patterns, and availability of role models. Educational satisfaction was positively correlated with campus comfort level; both correlated negatively with perception of discrimination and racial conflict. Qualitative data analyses supported quantitative data analyses and provided rich detail that facilitated interpretation of deaf students' experiences related to racial/ethnic diversity.
Final Scientific/Technical Report: National Institute for Climatic Change Research Coastal Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tornqvist, Torbjorn; Chambers, Jeffrey
It is widely recognized that coastal environments are under particular threat due to changes associated with climate change. Accelerated sea-level rise, in some regions augmented by land subsidence, plus the possibility of a changing storm climate, renders low-lying coastal landscapes and their ecosystems vulnerable to future change. This is a pressing problem, because these ecosystems commonly rank as some of the most valuable on the planet. The objective of the NICCR Coastal Center was to support basic research that aims at reducing uncertainty about ecosystem changes during the next century, carried out along the U.S. coastlines. The NICCR Coastal Centermore » has funded 20 projects nationwide (carried out at 27 institutions) that addressed numerous aspects of the problems outlined above. The research has led to a variety of new insights, a significant number of which published in elite scientific journals. It is anticipated that the dissemination of this work in the scientific literature will continue for several more years, given that a number of projects have only recently reached their end date. In addition, NICCR funds have been used to support research at Tulane University. The lion’s share of these funds has been invested in the development of unique facilities for experimental research in coastal ecosystems. This aspect of the work could have a lasting impact in the future.« less
Adaptation to Climate change Impacts on the Mediterranean islands' Agriculture (ADAPT2CLIMA)
NASA Astrophysics Data System (ADS)
Giannakopoulos, Christos; Karali, Anna; Lemesios, Giannis; Loizidou, Maria; Papadaskalopoulou, Christina; Moustakas, Konstantinos; Papadopoulou, Maria; Moriondo, Marco; Markou, Marinos; Hatziyanni, Eleni; Pasotti, Luigi
2016-04-01
Agriculture is one of the economic sectors that will likely be hit hardest by climate change, since it directly depends on climatic factors such as temperature, sunlight, and precipitation. The EU LIFE ADAPT2CLIMA (http://adapt2clima.eu/en/) project aims to facilitate the development of adaptation strategies for agriculture by deploying and demonstrating an innovative decision support tool. The ADAPT2CLIMA tool will make it possible to simulate the impacts of climate change on crop production and the effectiveness of selected adaptation options in decreasing vulnerability to climate change in three Mediterranean islands, namely Crete (Greece), Sicily (Italy), and Cyprus. The islands were selected for two reasons: firstly, they figure among the most important cultivation areas at national level. Secondly, they exhibit similarities in terms of location (climate), size, climate change threats faced (coastal agriculture, own water resources), agricultural practices, and policy relevance. In particular, the tool will provide: i) climate change projections; ii) hydrological conditions related to agriculture: iii) a vulnerability assessment of selected crops; iv) an evaluation of the adaptation options identified. The project is expected to contribute significantly to increasing climate resilience of agriculture areas in Sicily, Cyprus and Crete as well as at EU and international level by: • Developing, implementing and demonstrating an innovative and interactive decision support tool (ADAPT2CLIMA tool) for adaptation planning in agriculture that estimates future climate change impacts on local water resources, as well as the climate change vulnerability of the agricultural crop production in the project areas; • Evaluating the technical and economic viability of the implementation of the ADAPT2CLIMA tool; • Developing climate change adaptation strategies for agriculture (including a monitoring plan) for the three project areas and presenting them to the competent authorities for adoption; • Simulating the effectiveness of the implementation of certain adaptation measures to address climate change impacts on agriculture; • Developing a stakeholder engagement strategy; • Increasing the knowledge of the impacts of climate change on the agricultural areas covered by the project, thus enabling well informed decision-making and enhancing readiness for early action in order to address the potential damages and minimize threats posed by climate change; • Developing a framework for mainstreaming agricultural adaptation measures into relevant national and regional policies; • Promoting the replication of the proposed methodology in order to ensure proper coordination of national and regional policies and between authorities.
Supervising simulations with the Prodiguer Messaging Platform
NASA Astrophysics Data System (ADS)
Greenslade, Mark; Carenton, Nicolas; Denvil, Sebastien
2015-04-01
At any one moment in time, researchers affiliated with the Institut Pierre Simon Laplace (IPSL) climate modeling group, are running hundreds of global climate simulations. These simulations execute upon a heterogeneous set of High Performance Computing (HPC) environments spread throughout France. The IPSL's simulation execution runtime is called libIGCM (library for IPSL Global Climate Modeling group). libIGCM has recently been enhanced so as to support realtime operational use cases. Such use cases include simulation monitoring, data publication, environment metrics collection, automated simulation control … etc. At the core of this enhancement is the Prodiguer messaging platform. libIGCM now emits information, in the form of messages, for remote processing at IPSL servers in Paris. The remote message processing takes several forms, for example: 1. Persisting message content to database(s); 2. Notifying an operator of changes in a simulation's execution status; 3. Launching rollback jobs upon simulation failure; 4. Dynamically updating controlled vocabularies; 5. Notifying downstream applications such as the Prodiguer web portal; We will describe how the messaging platform has been implemented from a technical perspective and demonstrate the Prodiguer web portal receiving realtime notifications.
Assessing bio-economic impacts and climate adaptation potential in Flanders
NASA Astrophysics Data System (ADS)
Gobin, A.
2009-04-01
According to Global Circulation Model predictions, Belgium is situated on a wedge between a wetter and drier climatic regime. Observed changes show an increase of 1.3°C during the past decade, a higher frequency of warm summer days and a 6% increase in rainfall with a pronounced rise in winter precipitation of about 25% as compared to the normal (1961-1990). Since agriculture is particularly sensitive to climate variability and occupies more than 61% of the land surface in Flanders, the rural landscape will be confronted with profound changes. A combination of climate scenarios, production models and economic evaluation was used to assess climate impacts on agricultural goods & services, adaptation costs due to production losses and adaptation options. Agro-ecosystems offer a wide range of productive, supporting, regulating and cultural services to society. Productive services relate to crop, animal and energy production, but will alter with climate change. Supporting services such as biodiversity, soil and water quality will be negatively affected by a higher climate variability, increasing erosion and sediment transport, enhancing the breakdown of soil organic matter, lowering soil quality and increasing runoff or leaching of agri-chemicals. The effect of a warmer climate on regulating services is an intensification of most nutrient cycles with increased emissions, which may be compensated for by carbon storage in faster and longer growing crops. The need for flooding areas may result in a net-reduction of the agricultural area. A higher probability of dry weather during summer time and a longer growing season may enlarge the attraction of recreating in rural areas. Knowledge on the interaction of agro-ecosystem services and climate change is required to formulate sustainable adaptation measures. Heat stress and water shortages lead to reduced crop growth, whereas increased CO2-concentrations and a prolonged growing season have a positive effect on crop yields. The interaction between these effects depends on the crop type. The impact on crop production was simulated with a dynamic vegetation model for eight crops (winter wheat, potatoes, sugar beet, fodder maize, grass, grain maize, cauliflower spring, cauliflower autumn), three soil types (loamy sand, loam, clay) and four climatic data series (historic and three cc-scenarios). The three climate change scenarios were selected on the basis of multi-criteria analysis of the PRUDENCE RCM runs. In total 3480 year simulations were executed with a daily modelling step. Pronounced yield losses mainly due to water shortages and heat stress occur for all climate change scenario's, to a lesser extent in the case of winter and spring crops. Yield losses of up to 30% are simulated for sugar beet, whereas winter wheat losses are only 6 % on loamy sand. High critical temperatures lead to heat stress, decreased fodder uptake, outbreaks of diseases and ultimately to animal production losses. Changes in animal production were calculated with a threshold model, whereby a daily maximum temperature of 30°C was taken as the production limit. Calculated animal production losses are up to 9 % for sheep, 8 % for cattle, 6 % for pigs and 3% for poultry. An economic prognosis of the technical productivity, the price effect, the required agricultural area and number of animals was used to estimate the potential productivity for 16 agricultural activities. The impact of climate change was included through aggregating the modelled production losses for Flanders and assuming the agricultural area, the number of animals and the prices constant to the economic prognosis. The total financial impacts are 0.1 % or 6.6 million euro for the first scenario, 1.5% or 71 million euro for the second scenario and 4.1% or 201 million euro for the third scenario. The results represent the acceptable cost of adaptation measures to maintain current efficiencies and production levels. Three gradations of adaptation were defined as different adoption rates. In total 22 adaptation measures were identified. Measures for crop production include cultivation techniques, prevention of pests and diseases, and sustainable use of genetic resources. Measures for animal production relate to stables, feed composition, selection of breeds and prevention of diseases. Measures for agro-ecosystem services other than production concern the sustainable use of natural resources and the quality of the environment and overall community support. The extent of adaptation depends on the farm's economic buoyancy, its vulnerability and the severity of climate variability. Climate change issues therefore have to be integrated in agricultural policy by means of instruments that allow for refined insurance against natural hazards, sustainable management of natural resources, sustaining agro-ecosystem services, supporting sustainable measures and combating vulnerability through adapting infrastructure. This requires sufficient technical and institutional capacity to develop timely information systems.
ERIC Educational Resources Information Center
Engstrom, Gerald A.
Classroom climate has been found to predict a significant portion of the variance in student achievement, independent of student background and intelligence quotient scores. This study sought to more clearly define classroom climate by determining to what extent climate measures teacher characteristics, student characteristics, and classroom…
Climate profoundly shapes forests. Forest species composition, productivity, availability of goods and services, disturbance regimes, and location on the landscape are all regulated by climate. Much research attention has focused on the problem of predicting the response of fores...
Livestock and food security: vulnerability to population growth and climate change
Godber, Olivia F; Wall, Richard
2014-01-01
Livestock production is an important contributor to sustainable food security for many nations, particularly in low-income areas and marginal habitats that are unsuitable for crop production. Animal products account for approximately one-third of global human protein consumption. Here, a range of indicators, derived from FAOSTAT and World Bank statistics, are used to model the relative vulnerability of nations at the global scale to predicted climate and population changes, which are likely to impact on their use of grazing livestock for food. Vulnerability analysis has been widely used in global change science to predict impacts on food security and famine. It is a tool that is useful to inform policy decision making and direct the targeting of interventions. The model developed shows that nations within sub-Saharan Africa, particularly in the Sahel region, and some Asian nations are likely to be the most vulnerable. Livestock-based food security is already compromised in many areas on these continents and suffers constraints from current climate in addition to the lack of economic and technical support allowing mitigation of predicted climate change impacts. Governance is shown to be a highly influential factor and, paradoxically, it is suggested that current self-sufficiency may increase future potential vulnerability because trade networks are poorly developed. This may be relieved through freer trade of food products, which is also associated with improved governance. Policy decisions, support and interventions will need to be targeted at the most vulnerable nations, but given the strong influence of governance, to be effective, any implementation will require considerable care in the management of underlying structural reform. PMID:24692268
Technical Report Series on Global Modeling and Data Assimilation, Volume 41 : GDIS Workshop Report
NASA Technical Reports Server (NTRS)
Koster, Randal D. (Editor); Schubert, Siegfried; Pozzi, Will; Mo, Kingtse; Wood, Eric F.; Stahl, Kerstin; Hayes, Mike; Vogt, Juergen; Seneviratne, Sonia; Stewart, Ron;
2015-01-01
The workshop "An International Global Drought Information System Workshop: Next Steps" was held on 10-13 December 2014 in Pasadena, California. The more than 60 participants from 15 countries spanned the drought research community and included select representatives from applications communities as well as providers of regional and global drought information products. The workshop was sponsored and supported by the US National Integrated Drought Information System (NIDIS) program, the World Climate Research Program (WCRP: GEWEX, CLIVAR), the World Meteorological Organization (WMO), the Group on Earth Observations (GEO), the European Commission Joint Research Centre (JRC), the US Climate Variability and Predictability (CLIVAR) program, and the US National Oceanic and Atmospheric Administration (NOAA) programs on Modeling, Analysis, Predictions and Projections (MAPP) and Climate Variability & Predictability (CVP). NASA/JPL hosted the workshop with logistical support provided by the GEWEX program office. The goal of the workshop was to build on past Global Drought Information System (GDIS) progress toward developing an experimental global drought information system. Specific goals were threefold: (i) to review recent research results focused on understanding drought mechanisms and their predictability on a wide range of time scales and to identify gaps in understanding that could be addressed by coordinated research; (ii) to help ensure that WRCP research priorities mesh with efforts to build capacity to address drought at the regional level; and (iii) to produce an implementation plan for a short duration pilot project to demonstrate current GDIS capabilities. See http://www.wcrp-climate.org/gdis-wkshp-2014-objectives for more information.
Developing mechanisms for estimating carbon footprint in farming systems
NASA Astrophysics Data System (ADS)
Anaya-Romero, María; Fernández Luque, José Enrique; Rodríguez Merino, Alejandro; José Moreno Delgado, Juan; Rodado, Concepción Mira; Romero Vicente, Rafael; Perez-Martin, Alfonso; Muñoz-Rojas, Miriam
2015-04-01
Sustainable land management is critical to avoid land degradation and to reclaim degraded land for its productive use and for reaping the benefits of crucial ecosystem services and protecting biodiversity. It also helps in mitigating and adapting to climate change. Land and its various uses are affected severely by climate change too (flooding, droughts, etc.). Existing tools and technologies for efficient land management need to be adapted and their application expanded. A large number of human livelihoods and ecosystems can benefit from these tools and techniques since these yield multiple benefits. Disseminating and scaling up the implementation of sustainable land management approaches will, however, need to be backed up by mobilizing strong political will and financial resources. The challenge is to provide an integral decision support tool that can establish relationships between soil carbon content, climate change and land use and management aspects that allow stakeholders to detect, cope with and intervene into land system change in a sustainable way. In order to achieve this goal an agro-ecological meta-model called CarboLAND will be calibrated in several plots located in Andalusia region, Southern Spain, under different scenarios of climate and agricultural use and management. The output will be the CLIMALAND e-platform, which will also include protocols in order to support stakeholders for an integrated ecosystem approach, taking into account biodiversity, hydrological and soil capability, socio-economic aspects, and regional and environmental policies. This tool will be made available at the European context for a regional level, providing user-friendly interfaces and a scientifically-technical platform for the assessment of sustainable land use and management.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
..., and Cross-Cutting Assessments for the 2013 U.S. National Climate Assessment (NCA) Report and the... Climate Assessment (NCA) regional, sectoral, and cross-cutting topics proposed for the 2013 NCA report and... report outline, and information about the National Climate Assessment Development and Advisory Committee...
Geoengineering the climate: an overview and update.
Shepherd, J G
2012-09-13
The climate change that we are experiencing now is caused by an increase in greenhouse gases due to human activities, including burning fossil fuels, agriculture and deforestation. There is now widespread belief that a global warming of greater than 2(°)C above pre-industrial levels would be dangerous and should therefore be avoided. However, despite growing concerns over climate change and numerous international attempts to agree on reductions of global CO(2) emissions, these have continued to climb. This has led some commentators to suggest more radical 'geoengineering' alternatives to conventional mitigation by reductions in CO(2) emissions. Geoengineering is deliberate intervention in the climate system to counteract man-made global warming. There are two main classes of geoengineering: direct carbon dioxide removal and solar radiation management that aims to cool the planet by reflecting more sunlight back to space. The findings of the review of geoengineering carried out by the UK Royal Society in 2009 are summarized here, including the climate effects, costs, risks and research and governance needs for various approaches. The possible role of geoengineering in a portfolio of responses to climate change is discussed, and various recent initiatives to establish good governance of research activity are reviewed. Key findings include the following.- Geoengineering is not a magic bullet and not an alternative to emissions reductions. - Cutting global greenhouse gas emissions must remain our highest priority. (i) But this is proving to be difficult, and geoengineering may be useful to support it. - Geoengineering is very likely to be technically possible. (i) However, there are major uncertainties and potential risks concerning effectiveness, costs and social and environmental impacts. - Much more research is needed, as well as public engagement and a system of regulation (for both deployment and for possible large-scale field tests). - The acceptability of geoengineering will be determined as much by social, legal and political issues as by scientific and technical factors. Some methods of both types would involve release of materials to the environment, either to the atmosphere or to the oceans, in areas beyond national jurisdiction. The intended impacts on climate would in any case affect many or all countries, possibly to a variable extent. There are therefore inherent international implications for deployment of such geoengineering methods (and possibly also for some forms of research), which need early and collaborative consideration, before any deployment or large-scale experiments could be undertaken responsibly.
Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development ofmore » these technologies, should DOE choose to support non-vapor-compression technology further.« less
Engineering Technical Support Center Annual Report Fiscal Year 2015
The United States Environmental Protection Agency (EPA or Agency) Office of Research and Development (ORD) created the Engineering Technical Support Center (ETSC) in 1987, one of several technical support centers created as part of the Technical Support Project (TSP). ETSC provid...
NASA Astrophysics Data System (ADS)
Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Fazliev, Alexander
2017-04-01
Description and the first results of the Russian Science Foundation project "Virtual computational information environment for analysis, evaluation and prediction of the impacts of global climate change on the environment and climate of a selected region" is presented. The project is aimed at development of an Internet-accessible computation and information environment providing unskilled in numerical modelling and software design specialists, decision-makers and stakeholders with reliable and easy-used tools for in-depth statistical analysis of climatic characteristics, and instruments for detailed analysis, assessment and prediction of impacts of global climate change on the environment and climate of the targeted region. In the framework of the project, approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platform of the Russian leading institution involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research laboratory focused on interdisciplinary environmental studies. VRE under development will comprise best features and functionality of earlier developed information and computing system CLIMATE (http://climate.scert.ru/), which is widely used in Northern Eurasia environment studies. The Project includes several major directions of research listed below. 1. Preparation of geo-referenced data sets, describing the dynamics of the current and possible future climate and environmental changes in detail. 2. Improvement of methods of analysis of climate change. 3. Enhancing the functionality of the VRE prototype in order to create a convenient and reliable tool for the study of regional social, economic and political consequences of climate change. 4. Using the output of the first three tasks, compilation of the VRE prototype, its validation, preparation of applicable detailed description of climate change in Western Siberia, and dissemination of the Project results. Results of the first stage of the Project implementation are presented. This work is supported by the Russian Science Foundation grant No16-19-10257.
eSACP - a new Nordic initiative towards developing statistical climate services
NASA Astrophysics Data System (ADS)
Thorarinsdottir, Thordis; Thejll, Peter; Drews, Martin; Guttorp, Peter; Venälainen, Ari; Uotila, Petteri; Benestad, Rasmus; Mesquita, Michel d. S.; Madsen, Henrik; Fox Maule, Cathrine
2015-04-01
The Nordic research council NordForsk has recently announced its support for a new 3-year research initiative on "statistical analysis of climate projections" (eSACP). eSACP will focus on developing e-science tools and services based on statistical analysis of climate projections for the purpose of helping decision-makers and planners in the face of expected future challenges in regional climate change. The motivation behind the project is the growing recognition in our society that forecasts of future climate change is associated with various sources of uncertainty, and that any long-term planning and decision-making dependent on a changing climate must account for this. At the same time there is an obvious gap between scientists from different fields and between practitioners in terms of understanding how climate information relates to different parts of the "uncertainty cascade". In eSACP we will develop generic e-science tools and statistical climate services to facilitate the use of climate projections by decision-makers and scientists from all fields for climate impact analyses and for the development of robust adaptation strategies, which properly (in a statistical sense) account for the inherent uncertainty. The new tool will be publically available and include functionality to utilize the extensive and dynamically growing repositories of data and use state-of-the-art statistical techniques to quantify the uncertainty and innovative approaches to visualize the results. Such a tool will not only be valuable for future assessments and underpin the development of dedicated climate services, but will also assist the scientific community in making more clearly its case on the consequences of our changing climate to policy makers and the general public. The eSACP project is led by Thordis Thorarinsdottir, Norwegian Computing Center, and also includes the Finnish Meteorological Institute, the Norwegian Meteorological Institute, the Technical University of Denmark and the Bjerknes Centre for Climate Research, Norway. This poster will present details of focus areas in the project and show some examples of the expected analysis tools.
Renewable Energy and Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chum, H. L.
2012-01-01
The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as theirmore » integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.« less
Technical Support for Contaminated Sites | Science Inventory ...
In 1987, the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD), Office of Land and Emergency Management, and EPA Regional waste management offices established the Technical Support Project. The creation of the Technical Support Project enabled ORD to provide effective technical assistance by ensuring ORD scientists and engineers were accessible to the Agency’s Office and Regional decision makers, including Remedial Project Managers, On-Scene Coordinators, and corrective action staff. Five ORD Technical Support Centers (TSCs) were created to facilitate this technical assistance. Three of the five TSCs are supported by the Sustainable and Healthy Communities Research Program, and are summarized in the poster being presented:• Engineering Technical Support Center (ETSC) in Cincinnati, Ohio• Ground Water Technical Support Center (GWTSC) in Ada, Oklahoma• Site Characterization and Monitoring Technical Support Center (SCMTSC) in Atlanta, GeorgiaOver the past 29 years, the Technical Support Centers have provided numerous influential products to its internal Agency clients and to those at the State level (through the EPA Regions). These products include, but are not limited to the following: Annual TSC reports from the three Centers, a hard-rock mining conference every other year, PRO-UCL software development for site characterization statistics, groundwater modeling using state-of-the-art modeling software, numerical mo
Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Vaughan, William W.
2004-01-01
Aerospace Meteorology provides the identification of that aspect of meteorology that is concerned with the definition and modeling of atmospheric parameters for use in aerospace vehicle development, mission planning and operational capability assessments. One of the principal sources of this information is the NASA-HDBK-1001 "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development'. This handbook was approved by the NASA Chief Engineer in 2000 as a NASA Preferred Technical Standard . Its technical contents were based on natural environment statistics/models and criteria developed mostly in the early 1990's. A task was approved to completely update the handbook to reflect the current state-of-the-art in the various terrestrial environment climatic areas.
Morelli, Toni Lyn; DeLuca, William; Ellison, Colton; Jane, Stephen F.; Matthews, Stephen
2015-01-01
This chapter reviews the responses to climate change on the 367 Regional Species of Greatest Conservation Need (RSGCN) identified by the Northeast Fish and Wildlife Diversity Technical Committee (NEFWDTC), technical experts from states’ natural resource agencies (Appendix 3.1). These species were chosen based on their conservation status, listing in SWAPs, and the percentage of their range that occurs in the Northeast. The objectives of this chapter are to: summarize how regional biodiversity has already responded and is expected to respond to climate change; summarize information on specific RSGCN species responses to climate change to date and anticipated under future scenarios; characterize the greatest uncertainties about how biodiversity and RSGCN species will respond to climate change in the future; and highlight where other factors are expected to exacerbate the effects of climate change. This information was obtained through a systematic review of the peer-reviewed literature, primarily using the ISI Web of Knowledge to search for papers on each species related to “climate”, “temperature”, or “precipitation”. Although we undoubtedly missed some sources, the following allows us to review some of the ways climate change will affect regional species of conservation concern
Climate hazards, adaptation and "resilience" of societies (early Little Ice Age, west of France).
NASA Astrophysics Data System (ADS)
Athimon, Emmanuelle; Maanan, Mohamed
2016-04-01
Over the past ten to fifteen years, climate hazards and adaptation have received more attention due to the current climate change. Climate historians have gathered strong evidence that the world's climate has evolved over the past millennium and one of the most significant changes took place during the Little Ice Age. Recently, a set of questions has emerged: what were the effects of the Little Ice Age on human's societies? How did humans adapt to these climate changes? How did they react to extreme weather-related events? Using examples of climate hazards from the West of France during the beginning of the Little Ice Age (xivth-xviith centuries) such as storms, flooding, drought, harsh winters, the poster aims at showing how the past societies can constitute a source of inspiration for present ones. Through schemas, this research exposes the system's rebound capacity, points out the importance of the historical depth in research on human's adaptation and resilience and shows the value of integrating a historical approach. It reveals that History contributes to the knowledge of the relationship between societies and climate hazards. Data on climate hazards and adaptation of societies stem from historical sources such as chronicles, diaries, books of accounts, records of cities repairs. To protect themselves and their goods, medieval and modern societies had developed specific skills, practices and strategies. From the xivth to the xviiith century, there is an increase of defense by dikes in the low Loire, as for example the construction of those amongst Longué and Ponts-de-Cé between the early xivth century and 1407. The French kingdom's authorities also tried increasingly to provide technical, material, logistical and fiscal support: for instance, during the winter 1564-1565, several bridges have been destroyed by a river flooding in Nantes. The King Charles IX then offered to people of Nantes part of the funds from taxes on the main activities such as the exports of wine or salt to finance the restoration of the bridges. So it appears that these societies have been able to adapt through a collective memory, a lifestyle, a significant perception of risks, a territory management, the construction of infrastructures, etc. Key words : Little Ice Age, West of France, climate hazards, resilience, adaptation. This work was supported by grants from the Fondation de France through the research program « Quels littoraux pour demain? ».
ORD Scientific and Engineering Technical Support for RPMs – Ground Water Technical Support Center
ORD Scientific and Engineering Technical Support for RPMs (and Others) is a hybrid informational and panel session that focuses on the technical support available from EPA’s Office of Research and Development (ORD) to RPMs and other EPA cleanup program staff. Examples of technica...
Judson G. Isebrands; Richard E. Dickson; Joanne Rebbeck; David F. Karnosky
2000-01-01
Global climate chagnge is a complex and controversial subject, both technically and politically. Recently, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations concluded that "the balance of evidence suggests a discernible human influence on global climate" and that "further accumulation of greenhouse gases will commit the earth...
NASA Astrophysics Data System (ADS)
Roesch-McNally, G.; Prendeville, H. R.
2017-12-01
A lack of coproduction, the joint production of new technologies or knowledge among technical experts and other groups, is arguably one of the reasons why much scientific information and resulting decision support systems are not very usable. Increasingly, public agencies and academic institutions are emphasizing the importance of coproduction of scientific knowledge and decision support systems in order to facilitate greater engagement between the scientific community and key stakeholder groups. Coproduction has been embraced as a way for the scientific community to develop actionable scientific information that will assist end users in solving real-world problems. Increasing the level of engagement and stakeholder buy-in to the scientific process is increasingly necessary, particularly in the context of growing politicization of science and the scientific process. Coproduction can be an effective way to build trust and can build-on and integrate local and traditional knowledge. Employing coproduction strategies may enable the development of more relevant and useful information and decision support tools that address stakeholder challenges at relevant scales. The USDA Northwest Climate Hub has increasingly sought ways to integrate coproduction in the development of both applied research projects and the development of decision support systems. Integrating coproduction, however, within existing institutions is not always simple, given that coproduction is often more focused on process than products and products are, for better or worse, often the primary focus of applied research and tool development projects. The USDA Northwest Climate Hub sought to integrate coproduction into our FY2017 call for proposal process. As a result we have a set of proposals and fledgling projects that fall along the engagement continuum (see Figure 1- attached). We will share the challenges and opportunities that emerged from this purposeful integration of coproduction into the work that we prioritized for funding. This effort highlights strategies for how federal agencies might consider how and whether to codify coproduction tenets into their collaborations and agenda setting.
The Second Assessment of the Effects of Climate Change on Federal Hydropower
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Shih-Chieh; Ashfaq, Moetasim; Naz, Bibi S.
Hydropower is a key contributor to the US renewable energy portfolio due to its established development history and the diverse benefits it provides to the electric power system. Ensuring the sustainable operation of existing hydropower facilities is of great importance to the US renewable energy portfolio and the reliability of electricity grid. As directed by Congress in Section 9505 of the SECURE Water Act (SWA) of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, has prepared a second quinquennial report on examining the potential effectsmore » of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities. This Oak Ridge National Laboratory (ORNL) Technical Memorandum, referred to as the 9505 assessment, describes the technical basis for the report to Congress that was called for in the SWA. To evaluate the potential climate change effects on 132 federal hydropower plants across the entire US, a spatially consistent assessment approach is designed to enable an interregional comparison. This assessment uses a series of models and methods with different spatial resolutions to gradually downscale the global climate change signals into watershed-scale hydrologic projections to support hydropower impact assessment. A variety of historic meteorological and hydrologic observations, hydropower facility characteristics, and geospatial datasets is collected to support model development, calibration, and verification. Among most of the federal hydropower plants throughout the US, the most important climate change effect on hydrology is likely to be the trend toward earlier snowmelt and change of runoff seasonality. Under the projections of increasing winter/spring runoff and decreasing summer/fall runoff, water resource managers may need to consider different water use allocations. With the relatively large storage capacity in the most of the US federal hydropower reservoirs, the system is likely to be able to absorb part of the runoff variability and hence may continue to provide stable annual hydropower generation in the projected near-term and midterm future periods. Nevertheless, the findings are based on the assumption that there is no significant change in the future installed capacity and operation. The issues of aging infrastructures, competing water demand, and environmental requirements may reduce the system s ability to mitigate runoff variability and increase the difficulty of future operation. These issues are not quantitatively analyzed in this study. This study presents a regional assessment at each of the eighteen PMA study areas. This generalized approach allows for spatial consistency throughout all study areas, enabling policymakers to evaluate potential climate change impacts across the entire federal hydropower fleet. This effort is expected to promote better understanding of the sensitivity of federal power plants to water availability and provides a basis for planning future actions that will enable adaptation to climate variability and change.« less
ERIC Educational Resources Information Center
White, Robert H., Ed.
A summary is presented of the proceedings of a South Carolina conference of vocational and technical college presidents and directors which focused on (1) the articulation of selected secondary level vocational education and similar postsecondary level technical institution programs and (2) mutual concerns of vocational directors and technical…
Obtaining Technical Support for Superfund, RCRA and Brownfields Site Issues Fact Sheet
EPA’s Technical Support Centers (TSCs) and other technical support services are available to Regional RemedialProject Managers, Corrective Action Staff, and On-Scene Coordinators needing specialized technical expertisefor specific tasks or projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).
NASA Astrophysics Data System (ADS)
Howell, C.
2013-05-01
In reviewing studies evaluating trends in greenhouse gasses, weather, climate and/or ecosystems, it becomes apparent that climate change is a reality. It has also become evident that the energy sector accounts for most of the greenhouse gas emissions with worldwide emissions of carbon dioxide increasing by 31 percent from 1990 to 2005, higher than in the previous thousands of years. While energy courses and topics are presented in high school and community college classes the topic of Climate Change Science is not always a part of the conversation. During the summer of 2011 and 2012, research undergraduates conducted interviews with a total of 39 national community college and 8 high school instructors who participated in a two week Sustainable Energy Education Training (SEET) workshop. Interview questions addressed the barriers and opportunities to the incorporation of climate change as a dimension of an energy/renewable energy curriculum. Barriers found included: there is not enough instruction time to include it; some school administrators including community members do not recognize climate change issues; quality information about climate change geared to students is difficult to find; and, most climate change information is too scientific for most audiences. A Solution to some barriers included dialogue on sustainability as a common ground in recognizing environmental changes/concerns among educators, administrators and community members. Sustainability discussions are already supported in school business courses as well as in technical education. In conclusion, we cannot expect climate change to dissipate without humans making more informed energy and environmental choices. With global population growth producing greater emissions resulting in increased climate change, we must include the topic of climate change to students in high school and community college classrooms, preparing our next generation of leaders and workforce to be equipped to find solutions, (such as renewable energy and sustainability practices), to climate change and environmental sustainability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Kyle B.; Tagestad, Jerry D.; Perkins, Casey J.
This study was conducted with the support of the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office (WWPTO) as part of ongoing efforts to minimize key risks and reduce the cost and time associated with permitting and deploying ocean renewable energy. The focus of the study was to discuss a possible approach to exploring scenarios for ocean renewable energy development in Hawaii that attempts to optimize future development based on technical, economic, and policy criteria. The goal of the study was not to identify potentially suitable or feasible locations for development, but to discuss how such anmore » approach may be developed for a given offshore area. Hawaii was selected for this case study due to the complex nature of the energy climate there and DOE’s ongoing involvement to support marine spatial planning for the West Coast. Primary objectives of the study included 1) discussing the political and economic context for ocean renewable energy development in Hawaii, especially with respect to how inter-island transmission may affect the future of renewable energy development in Hawaii; 2) applying a Geographic Information System (GIS) approach that has been used to assess the technical suitability of offshore renewable energy technologies in Washington, Oregon, and California, to Hawaii’s offshore environment; and 3) formulate a mathematical model for exploring scenarios for ocean renewable energy development in Hawaii that seeks to optimize technical and economic suitability within the context of Hawaii’s existing energy policy and planning.« less
Advancements in the use of speleothems as climate archives
NASA Astrophysics Data System (ADS)
Wong, Corinne I.; Breecker, Daniel O.
2015-11-01
Speleothems have become a cornerstone of the approach to better understanding Earth's climatic teleconnections due to their precise absolute chronologies, their continuous or semicontinuous deposition and their global terrestrial distribution. We review the last decade of speleothem-related research, building off a similar review by McDermott (2004), in three themes - i) investigation of global teleconnections using speleothem-based climate reconstructions, ii) refinement of climate interpretations from speleothem proxies through cave monitoring, and iii) novel, technical methods of speleothem-based climate reconstructions. Speleothem records have enabled critical insight into the response of global hydroclimate to large climate changes. This includes the relevant forcings and sequence of climatic responses involved in glacial terminations and recognition of a global monsoon response to climate changes on orbital and millennial time scales. We review advancements in understanding of the processes that control speleothem δ13C values and introduce the idea of a direct atmospheric pCO2 influence. We discuss progress in understanding kinetic isotope fractionation, which, with further advances, may help quantify paleoclimate changes despite non-equilibrium formation of speleothems. This feeds into the potential of proxy system modeling to consider climatic, hydrological and biogeochemical processes with the objective of quantitatively interpreting speleothem proxies. Finally, we provide an overview of emerging speleothem proxies and novel approaches using existing proxies. Most recently, technical advancements made in the measurement of fluid inclusions are now yielding reliable determinations of paleotemperatures.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
... OFFICE OF MANAGEMENT AND BUDGET Technical Support Document: Technical Update of the Social Cost of... Budget, Executive Office of the President. ACTION: Notice of availability and request for comments. SUMMARY: The Office of Management and Budget (OMB) requests comments on the Technical Support Document...
Policy Considerations for Commercializing Natural Gas and Biomass CCUS
NASA Astrophysics Data System (ADS)
Abrahams, L.; Clavin, C.
2017-12-01
Captured CO2 from power generation has been discussed as an opportunity to improve the environmental sustainability of fossil fuel-based electricity generation and likely necessary technological solution necessary for meeting long-term climate change mitigation goals. In our presentation, we review the findings of a study of natural gas CCUS technology research and development and discuss their applications to biomass CCUS technology potential. Based on interviews conducted with key stakeholders in CCUS technology development and operations, this presentation will discuss these technical and economic challenges and potential policy opportunities to support commercial scale CCUS deployment. In current domestic and electricity and oil markets, CCUS faces economic challenges for commercial deployment. In particular, the economic viability of CCUS has been impacted by the sustained low oil prices that have limited the potential for enhanced oil recovery (EOR) to serve as a near-term utilization opportunity for the captured CO2. In addition, large scale commercial adoption of CCUS is constrained by regulatory inconsistencies and uncertainties across the United States, high initial capital costs, achieving familiarity with new technology applications to existing markets, developing a successful performance track record to acquire financing agreements, and competing against well-established incumbent technologies. CCUS also has additional technical hurdles for measurement, verification, and reporting within states that have existing policy and regulatory frameworks for climate change mitigation. In addition to fossil-fuel based CCUS, we will discuss emerging opportunities to utilize CCUS fueled by gasified biomass resulting in carbon negative power generation with expanded economic opportunities associated with the enhanced carbon sequestration. Successful technology development of CCUS technology requires a portfolio of research leading to technical advances, advances in financial instruments to leverage the benefits of multiple commodity markets (e.g. natural gas, oil, biomass), and policy instruments that address regulatory hurdles posed CCUS technology deployment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Max; Greenblatt, Jeffrey; Donovan, Sally
2014-06-01
This study provides an updated analysis of long-term energy system scenarios for California consistent with the State meeting its 2050 climate goal, including detailed analysis and assessment of electricity system build-out, operation, and costs across the Western Electricity Coordinating Council (WECC) region. Four key elements are found to be critical for the State to achieve its 2050 goal of 80 percent greenhouse (GHG) reductions from the 1990 level: aggressive energy efficiency; clean electricity; widespread electrification of passenger vehicles, building heating, and industry heating; and large-scale production of low-carbon footprint biofuels to largely replace petroleum-based liquid fuels. The approach taken heremore » is that technically achievable energy efficiency measures are assumed to be achieved by 2050 and aggregated with the other key elements mentioned above to estimate resultant emissions in 2050. The energy and non-energy sectors are each assumed to have the objective of meeting an 80 percent reduction from their respective 1990 GHG levels for the purposes of analysis. A different partitioning of energy and non-energy sector GHG greenhouse reductions is allowed if emission reductions in one sector are more economic or technically achievable than in the other. Similarly, within the energy or non-energy sectors, greater or less than 80 percent reduction from 1990 is allowed for sub-sectors within the energy or non-energy sectors as long as the overall target is achieved. Overall emissions for the key economy-wide scenarios are considered in this report. All scenarios are compliant or nearly compliant with the 2050 goal. This finding suggests that multiple technical pathways exist to achieve the target with aggressive policy support and continued technology development of largely existing technologies.« less
NASA's Climate Data Services Initiative
NASA Astrophysics Data System (ADS)
McInerney, M.; Duffy, D.; Schnase, J. L.; Webster, W. P.
2013-12-01
Our understanding of the Earth's processes is based on a combination of observational data records and mathematical models. The size of NASA's space-based observational data sets is growing dramatically as new missions come online. However a potentially bigger data challenge is posed by the work of climate scientists, whose models are regularly producing data sets of hundreds of terabytes or more. It is important to understand that the 'Big Data' challenge of climate science cannot be solved with a single technological approach or an ad hoc assemblage of technologies. It will require a multi-faceted, well-integrated suite of capabilities that include cloud computing, large-scale compute-storage systems, high-performance analytics, scalable data management, and advanced deployment mechanisms in addition to the existing, well-established array of mature information technologies. It will also require a coherent organizational effort that is able to focus on the specific and sometimes unique requirements of climate science. Given that it is the knowledge that is gained from data that is of ultimate benefit to society, data publication and data analytics will play a particularly important role. In an effort to accelerate scientific discovery and innovation through broader use of climate data, NASA Goddard Space Flight Center's Office of Computational and Information Sciences and Technology has embarked on a determined effort to build a comprehensive, integrated data publication and analysis capability for climate science. The Climate Data Services (CDS) Initiative integrates people, expertise, and technology into a highly-focused, next-generation, one-stop climate science information service. The CDS Initiative is providing the organizational framework, processes, and protocols needed to deploy existing information technologies quickly using a combination of enterprise-level services and an expanding array of cloud services. Crucial to its effectiveness, the CDS Initiative is developing the technical expertise to move new information technologies from R&D into operational use. This combination enables full, end-to-end support for climate data publishing and data analytics, and affords the flexibility required to meet future and unanticipated needs. Current science efforts being supported by the CDS Initiative include IPPC, OBS4MIP, ANA4MIPS, MERRA II, National Climate Assessment, the Ocean Data Assimilation project, NASA Earth Exchange (NEX), and the RECOVER Burned Area Emergency Response decision support system. Service offerings include an integrated suite of classic technologies (FTP, LAS, THREDDS, ESGF, GRaD-DODS, OPeNDAP, WMS, ArcGIS Server), emerging technologies (iRODS, UVCDAT), and advanced technologies (MERRA Analytic Services, MapReduce, Ontology Services, and the CDS API). This poster will describe the CDS Initiative, provide details about the Initiative's advanced offerings, and layout the CDS Initiative's deployment roadmap.
The Swedish Research Infrastructure for Ecosystem Science - SITES
NASA Astrophysics Data System (ADS)
Lindroth, A.; Ahlström, M.; Augner, M.; Erefur, C.; Jansson, G.; Steen Jensen, E.; Klemedtsson, L.; Langenheder, S.; Rosqvist, G. N.; Viklund, J.
2017-12-01
The vision of SITES is to promote long-term field-based ecosystem research at a world class level by offering an infrastructure with excellent technical and scientific support and services attracting both national and international researchers. In addition, SITES will make data freely and easily available through an advanced data portal which will add value to the research. During the first funding period, three innovative joint integrating facilities were established through a researcher-driven procedure: SITES Water, SITES Spectral, and SITES AquaNet. These new facilities make it possible to study terrestrial and limnic ecosystem processes across a range of ecosystem types and climatic gradients, with common protocols and similar equipment. In addition, user-driven development at the nine individual stations has resulted in e.g. design of a long-term agricultural systems experiment, and installation of weather stations, flux systems, etc. at various stations. SITES, with its integrative approach and broad coverage of climate and ecosystem types across Sweden, constitutes an excellent platform for state-of-the-art research projects. SITES' support the development of: A better understanding of the way in which key ecosystems function and interact with each other at the landscape level and with the climate system in terms of mass and energy exchanges. A better understanding of the role of different organisms in controlling different processes and ultimately the functioning of ecosystems. New strategies for forest management to better meet the many and varied requirements from nature conservation, climate and wood, fibre, and energy supply points of view. Agricultural systems that better utilize resources and minimize adverse impacts on the environment. Collaboration with other similar infrastructures and networks is a high priority for SITES. This will enable us to make use of each others' experiences, harmonize metadata for easier exchange of data, and support each other to widen the user community.
Climate Change Science Teaching through Integration of Technology in Instruction and Research
NASA Astrophysics Data System (ADS)
Sriharan, S.; Ozbay, G.; Robinson, L.; Klimkowski, V.
2015-12-01
This presentation demonstrates the importance of collaborations between the institutions with common focus on offering the academic program on climate change science. Virginia State University (VSU) developed and established the course on climate change and adaptation, AGRI 350 for undergraduates, in cooperation with two HBCUs, Delaware State University (DSU) and Morgan State University (MSU). This program was developed to enhance the science curriculum with funding from the USDA NIFA. The hands-on research opportunities for students were supported by the NSF HBCU UP Supplement Grant at VSU. The technical guidance and lesson plans were available through the courtesy of the AMS and faculty/student team training at the NCAR. In the initial stages, the faculty members participated in faculty development workshops hosted by the AMS and NCAR. This contributed to trained faculty members developing the courses on Climate Change at VSU, DSU, and MSU. To create awareness of global climate change and exposure of students to international programs, seven students from VSU, MSU, and DSU participated in the Climate Change course (ENS 320) at the University of Sunshine Coast (USC), Australia. This international experience included faculty members in using SimCLIM for climate change data into decision-making with regard to potential changes to cropping systems and tree growth. The Climate Change program at VSU, DSU, and MSU is emerging into comprehensive academic program which includes use of case studies and exchange of students' reflections with their peers through discussion board and videoconferencing, hands-on research on water quality monitoring and mapping the study sites, and integration of geospatial technologies and i-Tree. In addition, the students' engagement in intensive research was conducted through hands-on experience with Scanning Electron Microscopy in the Marine Science Department, University of Hawaii at Hilo in summer 2015.
NASA Astrophysics Data System (ADS)
Tsontos, V. M.; Huang, T.; Holt, B.
2015-12-01
The earth science enterprise increasingly relies on the integration and synthesis of multivariate datasets from diverse observational platforms. NASA's ocean salinity missions, that include Aquarius/SAC-D and the SPURS (Salinity Processes in the Upper Ocean Regional Study) field campaign, illustrate the value of integrated observations in support of studies on ocean circulation, the water cycle, and climate. However, the inherent heterogeneity of resulting data and the disparate, distributed systems that serve them complicates their effective utilization for both earth science research and applications. Key technical interoperability challenges include adherence to metadata and data format standards that are particularly acute for in-situ data and the lack of a unified metadata model facilitating archival and integration of both satellite and oceanographic field datasets. Here we report on efforts at the PO.DAAC, NASA's physical oceanographic data center, to extend our data management and distribution support capabilities for field campaign datasets such as those from SPURS. We also discuss value-added services, based on the integration of satellite and in-situ datasets, which are under development with a particular focus on DOMS. The distributed oceanographic matchup service (DOMS) implements a portable technical infrastructure and associated web services that will be broadly accessible via the PO.DAAC for the dynamic collocation of satellite and in-situ data, hosted by distributed data providers, in support of mission cal/val, science and operational applications.
NASA Astrophysics Data System (ADS)
Strasser, Ulrich; Hanzer, Florian; Marke, Thomas; Rothleitner, Michael
2017-04-01
The production of technical snow today is a self-evident feature of modern alpine skiing resort management. Millions of Euros are invested every year for the technical infrastructure and its operation to produce a homogeneous and continuing snow cover on the skiing slopes for the winter season in almost every larger destination in the Alps. In Austria, skiing tourism is a significant factor of the national economic structure. We present the framing conditions of technical snow production in the mid-size skiing resort of Mayrhofen (Zillertal Alps/Austria, 136 km slopes, elevation range 630 - 2.500 m a.s.l.). Production conditions are defined by the availability of water, the planned date for the season opening, and the climatic conditions in the weeks before. By means of an adapted snow production strategy an attempt is made to ecologically and economically optimize the use of water and energy resources. Monitoring of the snow cover is supported by a network of low-cost sensors and mobile snow depth recordings. Finally, technical snow production is simulated with the spatially distributed, physically based hydroclimatological model AMUNDSEN. The model explicitly considers individual snow guns and distributes the produced snow along the slopes. The amount of simulated snow produced by each device is a function of its type, of actual wet-bulb temperature at the location, of ski area infrastructure (in terms of water supply and pumping capacity), and of snow demand.
Educational and Scientific Applications of Climate Model Diagnostic Analyzer
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Zhang, J.; Bao, Q.
2016-12-01
Climate Model Diagnostic Analyzer (CMDA) is a web-based information system designed for the climate modeling and model analysis community to analyze climate data from models and observations. CMDA provides tools to diagnostically analyze climate data for model validation and improvement, and to systematically manage analysis provenance for sharing results with other investigators. CMDA utilizes cloud computing resources, multi-threading computing, machine-learning algorithms, web service technologies, and provenance-supporting technologies to address technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. As CMDA infrastructure and technology have matured, we have developed the educational and scientific applications of CMDA. Educationally, CMDA supported the summer school of the JPL Center for Climate Sciences for three years since 2014. In the summer school, the students work on group research projects where CMDA provide datasets and analysis tools. Each student is assigned to a virtual machine with CMDA installed in Amazon Web Services. A provenance management system for CMDA is developed to keep track of students' usages of CMDA, and to recommend datasets and analysis tools for their research topic. The provenance system also allows students to revisit their analysis results and share them with their group. Scientifically, we have developed several science use cases of CMDA covering various topics, datasets, and analysis types. Each use case developed is described and listed in terms of a scientific goal, datasets used, the analysis tools used, scientific results discovered from the use case, an analysis result such as output plots and data files, and a link to the exact analysis service call with all the input arguments filled. For example, one science use case is the evaluation of NCAR CAM5 model with MODIS total cloud fraction. The analysis service used is Difference Plot Service of Two Variables, and the datasets used are NCAR CAM total cloud fraction and MODIS total cloud fraction. The scientific highlight of the use case is that the CAM5 model overall does a fairly decent job at simulating total cloud cover, though simulates too few clouds especially near and offshore of the eastern ocean basins where low clouds are dominant.
NASA Astrophysics Data System (ADS)
Lu, Y.; Hu, H.; Tian, F.
2016-12-01
The Aral Sea Crisis and the deterioration of Tarim River Basin are representative cases of emergent water deficit problems in arid areas. Comparing cases of water deficit problems in different regions and considering the in the perspective of socio-hydrology is helpful to obtain guidance on integrated management of arid area basins. Analyzing the interplay between decadal climate variability and human activities in both basins, the important role of human activities is observed. Decadal climate variability tempts people to adapt fast to increasing water resources and slowly to decreasing water resources, while using unsustainable technical measures to offset water shortage. Due to this asymmetry the situation deteriorates with technically enhanced capabilities of societies to exploit water resources, and more integrated long-term management capacity is in high demand.
NASA Astrophysics Data System (ADS)
Ferguson, I. M.; McGuire, M.; Broman, D.; Gangopadhyay, S.
2017-12-01
The Bureau of Reclamation is a Federal agency tasked with developing and managing water supply and hydropower projects in the Western U.S. Climate and hydrologic variability and change significantly impact management actions and outcomes across Reclamation's programs and initiatives, including water resource planning and operations, infrastructure design and maintenance, hydropower generation, and ecosystem restoration, among others. Planning, design, and implementation of these programs therefore requires consideration of future climate and hydrologic conditions will impact program objectives. Over the past decade, Reclamation and other Federal agencies have adopted new guidelines, directives, and mandates that require consideration of climate change in water resources planning and decision making. Meanwhile, the scientific community has developed a large number of climate projections, along with an array of models, methods, and tools to facilitate consideration of climate projections in planning and decision making. However, water resources engineers, planners, and decision makers continue to face challenges regarding how best to use the available data and tools to support major decisions, including decisions regarding infrastructure investments and long-term operating criteria. This presentation will discuss recent and ongoing research towards understanding, improving, and expanding consideration of climate projections and related uncertainties in Federal water resources planning and decision making. These research efforts address a variety of challenges, including: How to choose between available climate projection datasets and related methods, models, and tools—many of which are considered experimental or research tools? How to select an appropriate decision framework when design or operating alternatives may differ between climate scenarios? How to effectively communicate results of a climate impacts analysis to decision makers? And, how to improve robustness and resilience of water resources systems in the face of significant uncertainty? Discussion will focus on the intersection between technical challenges and decision making paradigms and the need for improved scientist-decision maker engagement through the lens of this Federal water management agency.
Building climate adaptation capabilities through technology and community
NASA Astrophysics Data System (ADS)
Murray, D.; McWhirter, J.; Intsiful, J. D.; Cozzini, S.
2011-12-01
To effectively plan for adaptation to changes in climate, decision makers require infrastructure and tools that will provide them with timely access to current and future climate information. For example, climate scientists and operational forecasters need to access global and regional model projections and current climate information that they can use to prepare monitoring products and reports and then publish these for the decision makers. Through the UNDP African Adaption Programme, an infrastructure is being built across Africa that will provide multi-tiered access to such information. Web accessible servers running RAMADDA, an open source content management system for geoscience information, will provide access to the information at many levels: from the raw and processed climate model output to real-time climate conditions and predictions to documents and presentation for government officials. Output from regional climate models (e.g. RegCM4) and downscaled global climate models will be accessible through RAMADDA. The Integrated Data Viewer (IDV) is being used by scientists to create visualizations that assist the understanding of climate processes and projections, using the data on these as well as external servers. Since RAMADDA is more than a data server, it is also being used as a publishing platform for the generated material that will be available and searchable by the decision makers. Users can wade through the enormous volumes of information and extract subsets for their region or project of interest. Participants from 20 countries attended workshops at ICTP during 2011. They received training on setting up and installing the servers and necessary software and are now working on deploying the systems in their respective countries. This is the first time an integrated and comprehensive approach to climate change adaptation has been widely applied in Africa. It is expected that this infrastructure will enhance North-South collaboration and improve the delivery of technical support and services. This improved infrastructure will enhance the capacity of countries to provide a wide range of robust products and services in a timely manner.
EPA Technical Support Centers (TSC): FY14 Lessons ...
EPA’s Technical Support Centers (TSC) included in ORD’s Safe and Healthy Communities (SHC) Research Action Plan fill the need for supplying subject-matter experts to continually assess state-of-the-art research and practices and channel this information to users in both direct applications (i.e., site-specific technical support) and general applications (i.e., technical transfer activities such as technical guidance documents, conferences, or workshops) . The TSCs are charged with providing solutions by: 1) linking EPA research to Agency decision-makers; 2) applying best practices to real world field applications; and 3) channeling feedback from field application to research communities. The TSP goal is to provide Regional Remedial Project Managers (RPMs), Corrective Action Staff, and On-Scene Coordinators (OSCs) with a diverse set of readily-accessible resources for technical assistance. This research summary provides six case studies – two from each of the three TSCs (Ground Water Technical Support Center, Engineering Technical Support Center, and Site Characterization Technical Support Center) – to exemplify and summarize the variety of TSC approaches that contribute to fulfilling the TSP mission. EPA’s Technical Support Centers (TSC) included in ORD’s Safe and Healthy Communities (SHC) Research Action Plan fill the need for supplying subject-matter experts to continually assess state-of-the-art research and practices and channel this informati
Livestock and food security: vulnerability to population growth and climate change.
Godber, Olivia F; Wall, Richard
2014-10-01
Livestock production is an important contributor to sustainable food security for many nations, particularly in low-income areas and marginal habitats that are unsuitable for crop production. Animal products account for approximately one-third of global human protein consumption. Here, a range of indicators, derived from FAOSTAT and World Bank statistics, are used to model the relative vulnerability of nations at the global scale to predicted climate and population changes, which are likely to impact on their use of grazing livestock for food. Vulnerability analysis has been widely used in global change science to predict impacts on food security and famine. It is a tool that is useful to inform policy decision making and direct the targeting of interventions. The model developed shows that nations within sub-Saharan Africa, particularly in the Sahel region, and some Asian nations are likely to be the most vulnerable. Livestock-based food security is already compromised in many areas on these continents and suffers constraints from current climate in addition to the lack of economic and technical support allowing mitigation of predicted climate change impacts. Governance is shown to be a highly influential factor and, paradoxically, it is suggested that current self-sufficiency may increase future potential vulnerability because trade networks are poorly developed. This may be relieved through freer trade of food products, which is also associated with improved governance. Policy decisions, support and interventions will need to be targeted at the most vulnerable nations, but given the strong influence of governance, to be effective, any implementation will require considerable care in the management of underlying structural reform. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Sea Level Rise Decision Support Tools for Adaptation Planning in Vulnerable Coastal Communities
NASA Astrophysics Data System (ADS)
Rozum, J. S.; Marcy, D.
2015-12-01
NOAA is involved in a myriad of climate related research and projects that help decision makers and the public understand climate science as well as climate change impacts. The NOAA Office for Coastal Management (OCM) provides data, tools, trainings and technical assistance to coastal resource managers. Beginning in 2011, NOAA OCM began developing a sea level rise and coastal flooding impacts viewer which provides nationally consistent data sets and analyses to help communities with coastal management goals such as: understanding and communicating coastal flood hazards, performing vulnerability assessments and increasing coastal resilience, and prioritizing actions for different inundation/flooding scenarios. The Viewer is available on NOAA's Digital Coast platform: (coast.noaa.gov/ditgitalcoast/tools/slr). In this presentation we will share the lessons learned from our work with coastal decision-makers on the role of coastal flood risk data and tools in helping to shape future land use decisions and policies. We will also focus on a recent effort in California to help users understand the similarities and differences of a growing array of sea level rise decision support tools. NOAA staff and other partners convened a workshop entitled, "Lifting the Fog: Bringing Clarity to Sea Level Rise and Shoreline Change Models and Tools," which was attended by tool develops, science translators and coastal managers with the goal to create a collaborative communication framework to help California coastal decision-makers navigate the range of available sea level rise planning tools, and to inform tool developers of future planning needs. A sea level rise tools comparison matrix will be demonstrated. This matrix was developed as part of this effort and has been expanded to many other states via a partnership with NOAA, Climate Central, and The Nature Conservancy.
Capacity Building to Support Governmental Meteorological and Agricultural Communities in East Africa
NASA Astrophysics Data System (ADS)
Granger, S. L.; Macharia, D.; Das, N.; Andreadis, K.; Ines, A.
2016-12-01
There is a recognized need for data to support decision-making and planning in East Africa where people and national economies depend on rain fed agriculture and are vulnerable to a changing climate and extreme weather events. However, capacity to use existing global data stores and transition promising tools is a gap that severely limits the use and adoption of these data and tools. Although most people think of capacity building as simply training, it is really much more than that and has been more thoroughly described in the public health community as…."the process of developing and strengthening the skills, instincts, abilities, processes and resources that organizations and communities need to survive, adapt, and thrive in the fast-changing world." Data and tools from NASA and other providers are often not used as they could be for technical and institutional reasons. On the technical side, there is the perception that global data stores are impenetrable requiring special expertise to access them, even if the data can be accessed, the technical expertise to understand and use the data and tools may be lacking, and there can be a mismatch between science data and existing user tools. On the institutional side, it may be perceived that remote sensing data and tools are too "expensive", support from upper management may be non-existent due to limited resources or lack of interest, and there can be a lack of appreciation of data and statistics in decision making. How do we overcome some of these barriers to advance the use of remote sensing for applications and to ease transition of data and tools to stakeholders? Experience from recent capacity building efforts in East Africa in support of a NASA-SERVIR Applied Science Project to provide estimates of hydrologic extremes tied to crop yield will be discussed.
The Ogallala Agro-Climate Tool (Technical Description)
USDA-ARS?s Scientific Manuscript database
A Visual Basic agro-climate application capable of estimating irrigation demand and crop water use over the Ogallala Aquifer region is described here. The application’s meteorological database consists of daily precipitation and temperature data from 141 U.S. Historical Climatology Network stations ...
DOT National Transportation Integrated Search
2015-03-01
This report provides information about potential climate change impacts in central New Mexico and their possible implications for the Bureau of Land Management (BLM) Rio Puerco Field Office (RPFO) transportation network. The report considers existing...
An Assessment of Institutional Capacity for Integrated Landscape Management in Eastern Cameroon.
Brown, H Carolyn Peach
2018-07-01
Landscape approaches have become prominent in efforts to address issues of conservation and development through bringing together different actors and sectors, to reconcile diverse land uses, and promote synergies. Some have suggested that integrated landscape management approaches are consistent with the goals of REDD+ and offer a strategy to address multiple goals of climate change mitigation, biodiversity conservation, maintenance of ecosystem services, and socio-economic development. Institutional or governance arrangements have been shown to be a critical component in influencing outcomes in landscapes. Using diverse methodologies, this study investigated the capacity of institutions to support the planning, implementation, and resource mobilization needed to integrate climate change mitigation, conservation, and livelihood goals in a forest mosaic landscape in East Cameroon. Results showed that diverse institutions are present in the landscape, including institutions of relevant government agencies, local government, local non-government, the private sector, and hybrid institutions of conservation, development and research institutions. However, the overall institutional capacity for integrated landscape planning and management in the study area is limited, although some institutions exhibit increased capacity in some areas over others. Multiple strategies can be employed to build the necessary human, financial, and leadership capacity, and facilitate the institutional planning and coordination that is foundational to multi-stakeholder landscape governance. Given the complexity of integrating climate change mitigation, conservation and livelihood goals in a landscape, building such institutional capacity is a long term endeavour that requires sustained effort and ongoing financial, technical and human resource support.
Contextual factors related to implementation of classroom physical activity breaks.
Carlson, Jordan A; Engelberg, Jessa K; Cain, Kelli L; Conway, Terry L; Geremia, Carrie; Bonilla, Edith; Kerner, Jon; Sallis, James F
2017-09-01
Brief structured physical activity in the classroom is effective for increasing student physical activity. The present study investigated the association between implementation-related contextual factors and intervention implementation after adoption of a structured classroom physical activity intervention. Six elementary-school districts adopted structured classroom physical activity programs in 2013-2014. Implementation contextual factors and intervention implementation (structured physical activity provided in past week or month, yes/no) were assessed using surveys of 337 classroom teachers from 24 schools. Mixed-effects models accounted for the nested design. Availability of resources (yes/no, ORs = 1.91-2.93) and implementation climate z-scores (ORs = 1.36-1.47) were consistently associated with implementation. Teacher-perceived classroom behavior benefits (OR = 1.29) but not student enjoyment or health benefits, and time (OR = 2.32) and academic (OR = 1.63) barriers but not student cooperation barriers were associated with implementation (all z-scores). Four implementation contextual factor composites had an additive association with implementation (OR = 1.64 for each additional favorable composite). Training and technical assistance alone may not support a large proportion of teachers to implement structured classroom physical activity. In addition to lack of time and interference with academic lessons, school climate related to whether administrators and other teachers were supportive of the intervention were key factors explaining whether teachers implemented the intervention. Evidence-based implementation strategies are needed for effectively communicating the benefits of classroom physical activity on student behavior and improving teacher and administrator climate/attitudes around classroom physical activity.
NASA Astrophysics Data System (ADS)
Villoria, Nelson B.; Elliott, Joshua; Müller, Christoph; Shin, Jaewoo; Zhao, Lan; Song, Carol
2018-01-01
Access to climate and spatial datasets by non-specialists is restricted by technical barriers involving hardware, software and data formats. We discuss an open-source online tool that facilitates downloading the climate data from the global circulation models used by the Inter-Sectoral Impacts Model Intercomparison Project. The tool also offers temporal and spatial aggregation capabilities for incorporating future climate scenarios in applications where spatial aggregation is important. We hope that streamlined access to these data facilitates analysis of climate related issues while considering the uncertainties derived from future climate projections and temporal aggregation choices.
A local scale assessment of the climate change sensitivity of snow in Pyrenean ski resorts
NASA Astrophysics Data System (ADS)
Pesado, Cristina; Pons, Marc; Vilella, Marc; López-Moreno, Juan Ignacio
2016-04-01
The Pyrenees host one of the largest ski area in Europe after the Alps that encompasses the mountain area of the south of France, the north of Spain and the small country of Andorra. In this region, winter tourism is one of the main source of income and driving force of local development on these mountain communities. However, this activity was identified as one of the most vulnerable to a future climate change due to the projected decrease of natural snow and snowmaking capacity. However, within the same ski resorts different areas showed to have a very different vulnerability within the same resort based on the geographic features of the area and the technical management of the slopes. Different areas inside a same ski resort could have very different vulnerability to future climate change based on aspect, steepness or elevation. Furthermore, the technical management of ski resorts, such as snowmaking and grooming were identified to have a significant impact on the response of the snowpack in a warmer climate. In this line, two different ski resorts were deeply analyzed taken into account both local geographical features as well as the effect of the technical management of the runs. Principal Component Analysis was used to classify the main areas of the resort based on the geographic features (elevation, aspect and steepness) and identify the main representative areas with different local features. Snow energy and mass balance was simulated in the different representative areas using the Cold Regions Hydrological Model (CRHM) assuming different magnitudes of climate warming (increases of 2°C and 4°C in the mean winter temperature) both in natural conditions and assuming technical management of the slopes. Theses first results showed the different sensitivity and vulnerability to climate changes based on the local geography of the resort and the management of the ski runs, showing the importance to include these variables when analyzing the local vulnerability of a ski resort and the potential adaptation measures in each particular case.
USDA Northeast climate hub greenhouse gas mitigation workshop technical report
USDA-ARS?s Scientific Manuscript database
In April 2015, USDA Secretary Vilsack announced the Greenhouse Gas Building Blocks for Climate Smart Agriculture and Forestry in an effort to reduce greenhouse gas emissions, increase carbon sequestration, and expand renewable energy production in the agricultural and forestry sectors. This initiati...
James M. Vose; David L. Peterson; Toral Patel-Weynand
2012-01-01
This report is a scientific assessment of the current condition and likely future condition of forest resources in the United States relative to climatic variability and change. It serves as the U.S. Forest Service forest sector technical report for the National Climate Assessment and includes descriptions of key regional issues and examples of a risk-based framework...
NASA Astrophysics Data System (ADS)
Kuruppu, N.; Willie, R.
2015-12-01
Small Island Developing States (SIDS) classified as Least Developed Countries (LDCs) are particularly vulnerable to the projected impacts of climate change. Given their particular vulnerabilities, climate adaptation investments are being made through both national and international efforts to build the capacity of various sectors and communities to reduce climate risks and associated disasters. Despite these efforts, reducing climate risks is not free of various challenges and barriers. This paper aims to synthesise a set of critical socio-economic barriers present at various spatial scales that are specific to Least Developed Country SIDS. It also aims to identify the processes that give rise to these barriers. Drawing on theories from natural hazards, a systematic literature review method was adopted to identify and organise the set of barriers by focussing both on academic papers and grey literature. The data revealed a notable lack of studies on adaptation within African and Caribbean LDC-SIDS. In general, there was a paucity of academic as well as grey literature being produced by authors from LDC-SIDS to challenge existing discourses related to adaptation barriers. The most common barriers identified included those related to governance, technical, cognitive and cultural. Three key findings can be drawn from this study in relation to formal adaptation initiatives. Firstly, the lack of focus on the adaptive capacity needs of Local Government or Island Councils and communities was a key barrier to ensuring success of adaptation interventions. Secondly, international adaptation funding modalities did little to address root causes of vulnerability or support system transformations. These funds were geared at supporting sectoral level adaptation initiatives for vulnerable natural resource sectors such as water, biodiversity and coastal zones. Thirdly, there is a need to recognise the significance of cultural knowledge and practices in shaping adaptive choices of communities in SIDS.
NASA Astrophysics Data System (ADS)
Goodwin, M.; Pandya, R.; Weaver, C. P.; Zerbonne, S.; Bennett, N.; Spangler, B.
2017-12-01
Inclusive, multi-stakeholder dialogue, participatory planning and actionable science are necessary for just and effective climate resilience outcomes. How can we support that in practice? The Resilience Dialogues launched a public Beta in 2016-2017 to allow scientists and resilience practitioners to engage with local leaders from 10 communities around the US through a series of facilitated, online dialogues. We developed two, one-week dialogues for each community: one to consider ways to respond to observed and anticipated climate impacts through a resilience lens, and one to identify next steps and resources to advance key priorities. We divided the communities into three cohorts and refined the structure and facilitation strategy for these dialogues from one to the next based on participant feedback. This adaptive method helped participants engage in the dialogues more effectively and develop useful results. We distributed a survey to all participants following each cohort to capture feedback on the use and utility of the dialogues. While there was room for improvement in the program's technical interface, survey participants valued the dialogues and the opportunity to engage as equals. Local leaders said the dialogues helped identify new local pathways to approach resilience priorities. They felt they benefited from focused conversation and personalized introductions to best-matched resources. Practitioners learned how local leaders seek to apply climate science, and how to effectively communicate their expertise to community leaders in support of local planning efforts. We learned there is demand for specialized dialogues on issues like communication, financing and extreme weather. Overall, the desire of participants to continue to engage through this program, and others to enter, indicates that facilitated, open conversations between experts and local leaders can break down communication and access barriers between climate services providers and end-users. This presentation will share lessons learned from this process and methods that we found most effective.
Evidence and implications of recent climate change in Northern Alaska and other Arctic regions
Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, Allen; Huntington, H.P.; Jensen, A.M.; Jia, G.J.; Jorgenson, T.; Kane, D.L.; Klein, D.R.; Kofinas, G.; Lynch, A.H.; Lloyd, A.H.; McGuire, A.D.; Nelson, Frederick E.; Oechel, W.C.; Osterkamp, T.E.; Racine, C.H.; Romanovsky, V.E.; Stone, R.S.; Stow, D.A.; Sturm, M.; Tweedie, C.E.; Vourlitis, G.L.; Walker, M.D.; Walker, D.A.; Webber, P.J.; Welker, J.M.; Winker, K.S.; Yoshikawa, K.
2005-01-01
The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling. ?? Springer 2005.
DRIAS project : A component of French Climate Services
NASA Astrophysics Data System (ADS)
Lémond, J.; Dandin, P.; Moisselin, J. M.; Franchistéguy, L.; Kerdoncuff, M.; Pagé, C.; Vautard, R.; Déqué, M.; Planton, S.
2010-09-01
DRIAS (Providing access to French Regionalized climate scenarios for the Impact and the Adaptation of our Societies and environment) is a 2 years project, funded by the GICC (Management and Impacts of Climate Change) programme of the French Ministery of Ecology and Sustainable Development. Its aim is to provide regionalized climate simulations, data and products performed by French climate modeling, as well as to support users of these informations. In addition to numerical data, the project aims to make available probabilistic products, allowing the user to apprehend and take into account in studies the uncertainty inherent in modeling. From a technical perspective, the challenge will be to provide standardized informations between different producers. The combined accompaniment should be under different forms (metadata, hotline, training, forum), which will allow optimal use of products supplied. DRIAS gathers different partners and expertises. Its composed by representatives of French laboratories in which regionalized numerical simulations are produced : IPSL, CERFACS, and CNRM. The project is coordonned by the Climatology Departement of Météo-France which will provide expertise in the production and tools of availability of climatological data, acquired through the development of an existing data service access called Climathèque (http://climatheque.meteo.fr). In addition, a multidisciplinary committee of users representing different sectors concerned by climate change and different kind of structures (public, parapublic, private, association) accompanies the project. Its role is to express needs, validate the choices made, do tests... and thus facilitate communication between producers and users. Thus, the DRIAS project participates in the development effort of French Climate Services. The aim of this work is to present and introduce these key aspects.
Technical Support Documents Used to Develop the Chesapeake Bay TMDL
The Chesapeake Bay TMDL development was supported by several technical documents for water quality standards and allocation methodologies specific to the Chesapeake Bay. This page provides the technical support documents.
Under this task, technical support is provided to Regional Remedial Project Managers (RPMs)/On-Scene Coordinators (OSCs) at Superfund, RCRA, and Brownfields sites contaminated with hazardous materials by the Technical Support Center (TSC) for Monitoring and Site Characterization....
Nilsson, Kerstin; Hertting, Anna; Petterson, Inga-Lill
2009-01-01
This study focuses on employees' experience of occupational health in a radiology department within a Swedish university hospital during years of continual reorganisations. This department's stable personal health trends in terms of self-rated mental health and sick-leave rates diverged from the general trends of deteriorating working conditions in the hospital. The aim was to identify dimensions of working conditions as positive determinants contributing to occupational health in a department of radiology undergoing continual reorganisations. Open-ended interviews with twelve employees were transcribed and analyzed using content-analysis. The employees experienced their new stimulating working tasks and a supporting organizational climate as important contributors to the healthy work condition. The positive effects of handling new technical challenges and the positive organisational climate, which were characterized by mutual trust, as well as work-confidence and respect for each others' competence, seem to function as buffering factors, balancing the negative effects of parallel downsizing and restructuring processes.
Innovations in information management and access for assessments
Champion, Sarah M.; Kunkel, Kenneth E.; Tilmes, Curt
2017-01-01
The third National Climate Assessment (NCA3) included goals for becoming a more timely, inclusive, rigorous, and sustained process, and for serving a wider variety of decision makers. In order to accomplish these goals, it was necessary to deliberately design an information management strategy that could serve multiple stakeholders and manage different types of information - from highly mature government-supported climate science data, to isolated practitioner-generated case study information - and to do so in ways that are consistent and appropriate for a highly influential assessment. Meeting the information management challenge for NCA3 meant balancing relevance and authority, complexity and accessibility, inclusivity and rigor. Increasing traceability of data behind figures and graphics, designing a public-facing website, managing hundreds of technical inputs to the NCA, and producing guidance for over 300 participants on meeting the Information Quality Act were all aspects of a deliberate, multi-faceted, and strategic information management approach that nonetheless attempted to be practical and usable for a variety of participants and stakeholders. PMID:29081560
High performance solutions and data for nZEBs offices located in warm climates.
Congedo, Paolo Maria; Baglivo, Cristina; Zacà, Ilaria; D Agostino, Delia
2015-12-01
This data article contains eleven tables supporting the research article entitled: Cost-Optimal Design For Nearly Zero Energy Office Buildings Located In Warm Climates [1]. The data explain the procedure of minimum energy performance requirements presented by the European Directive (EPBD) [2] to establish several variants of energy efficiency measures with the integration of renewable energy sources in order to reach nZEBs (nearly zero energy buildings) by 2020. This files include the application of comparative methodological framework and give the cost-optimal solutions for non-residential building located in Southern Italy. The data describe office sector in which direct the current European policies and investments [3], [4]. In particular, the localization of the building, geometrical features, thermal properties of the envelope and technical systems for HVAC are reported in the first sections. Energy efficiency measures related to orientation, walls, windows, heating, cooling, dhw and RES are given in the second part of the group; this data article provides 256 combinations for a financial and macroeconomic analysis.
Providing Services to Virtual Patrons.
ERIC Educational Resources Information Center
Hulshof, Robert
1999-01-01
Discusses the types of services libraries need to support patrons who access the library via the Internet or e-mail. Highlights include issues in technical support; establishing policies and procedures; tools for technical support, including hardware and software; impacts of technical support on staff; and future possibilities. (LRW)
Technical Challenges and Solutions in Representing Lakes when using WRF in Downscaling Applications
The Weather Research and Forecasting (WRF) model is commonly used to make high resolution future projections of regional climate by downscaling global climate model (GCM) outputs. Because the GCM fields are typically at a much coarser spatial resolution than the target regional ...
CORAL REEF BIOLOGICAL CRITERIA: USING THE CLEAN ...
Coral reefs are declining at unprecedented rates worldwide due to multiple interactive stressors including climate change and land-based sources of pollution. The Clean Water Act (CWA) can be a powerful legal instrument for protecting water resources, including the biological inhabitants of coral reefs. The objective of the CWA is to restore and maintain the chemical, physical and biological integrity of water resources. Coral reef protection and restoration under the Clean Water Act begins with water quality standards - provisions of state or Federal law that consist of a designated use(s) for the waters of the United States and water quality criteria sufficient to protect the uses. Aquatic life use is the designated use that is measured by biological criteria (biocriteria). Biocriteria are expectations set by a jurisdiction for the quality and quantity of living aquatic resources in a defined waterbody. Biocriteria are an important addition to existing management tools for coral reef ecosystems. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework to aid States and Territories in their development, adoption, and implementation of coral reef biocriteria in their respective water quality standards. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework for coral re
24 CFR 583.140 - Technical assistance.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Technical assistance. 583.140... Technical assistance. (a) General. HUD may set aside funds annually to provide technical assistance, either... technical assistance is for the purpose of promoting the development of supportive housing and supportive...
The Prodiguer Messaging Platform
NASA Astrophysics Data System (ADS)
Denvil, S.; Greenslade, M. A.; Carenton, N.; Levavasseur, G.; Raciazek, J.
2015-12-01
CONVERGENCE is a French multi-partner national project designed to gather HPC and informatics expertise to innovate in the context of running French global climate models with differing grids and at differing resolutions. Efficient and reliable execution of these models and the management and dissemination of model output are some of the complexities that CONVERGENCE aims to resolve.At any one moment in time, researchers affiliated with the Institut Pierre Simon Laplace (IPSL) climate modeling group, are running hundreds of global climate simulations. These simulations execute upon a heterogeneous set of French High Performance Computing (HPC) environments. The IPSL's simulation execution runtime libIGCM (library for IPSL Global Climate Modeling group) has recently been enhanced so as to support hitherto impossible realtime use cases such as simulation monitoring, data publication, metrics collection, simulation control, visualizations … etc. At the core of this enhancement is Prodiguer: an AMQP (Advanced Message Queue Protocol) based event driven asynchronous distributed messaging platform. libIGCM now dispatches copious amounts of information, in the form of messages, to the platform for remote processing by Prodiguer software agents at IPSL servers in Paris. Such processing takes several forms: Persisting message content to database(s); Launching rollback jobs upon simulation failure; Notifying downstream applications; Automation of visualization pipelines; We will describe and/or demonstrate the platform's: Technical implementation; Inherent ease of scalability; Inherent adaptiveness in respect to supervising simulations; Web portal receiving simulation notifications in realtime.
A survey of urban climate change experiments in 100 cities
Castán Broto, Vanesa; Bulkeley, Harriet
2013-01-01
Cities are key sites where climate change is being addressed. Previous research has largely overlooked the multiplicity of climate change responses emerging outside formal contexts of decision-making and led by actors other than municipal governments. Moreover, existing research has largely focused on case studies of climate change mitigation in developed economies. The objective of this paper is to uncover the heterogeneous mix of actors, settings, governance arrangements and technologies involved in the governance of climate change in cities in different parts of the world. The paper focuses on urban climate change governance as a process of experimentation. Climate change experiments are presented here as interventions to try out new ideas and methods in the context of future uncertainties. They serve to understand how interventions work in practice, in new contexts where they are thought of as innovative. To study experimentation, the paper presents evidence from the analysis of a database of 627 urban climate change experiments in a sample of 100 global cities. The analysis suggests that, since 2005, experimentation is a feature of urban responses to climate change across different world regions and multiple sectors. Although experimentation does not appear to be related to particular kinds of urban economic and social conditions, some of its core features are visible. For example, experimentation tends to focus on energy. Also, both social and technical forms of experimentation are visible, but technical experimentation is more common in urban infrastructure systems. While municipal governments have a critical role in climate change experimentation, they often act alongside other actors and in a variety of forms of partnership. These findings point at experimentation as a key tool to open up new political spaces for governing climate change in the city. PMID:23805029
USDA-ARS?s Scientific Manuscript database
Changes in climate and extreme weather have already occurred and are increasing challenges for agriculture nationally and globally, and many of these impacts will continue into the future. This technical bulletin contains information and resources designed to help agricultural producers, service pro...
NASA Technical Reports Server (NTRS)
Livingston, John M.
1999-01-01
This report documents the research performed under NASA Ames Cooperative Agreement NCC 2-991, which covered the period 1 April 1997 through 31 March 1999. Previously, an interim technical report (Technical Report No. 1, 20 March 1998) summarized the work completed during the period 1 April 1997 through 31 March 1998. The objective of the proposed research was to advance our understanding of atmospheric aerosol behavior, aerosol-induced climatic effects, and the remote measurement and retrieval capabilities of spaceborne sensors such as SAGE II by combining and comparing data from these instruments and from airborne and ground-based instruments.
Economic Impacts of Climate Change on Winter Tourism: Challenges for Ski Area Operators
NASA Astrophysics Data System (ADS)
Damm, A.; Köberl, J.; Prettenthaler, F.; Töglhofer, C.
2012-04-01
Increasing temperatures and snow scarce winter seasons pose a big challenge for the winter tourism industry. Changing natural snow reliability influences tourism demand and ski area operators are faced with an enhanced need of technical snow production. The goal of the present research work is to analyze the economic effects of technical snow production under future climate conditions. Snowmaking as an adaptation strategy to climate change impacts on the ski tourism industry is already taken into consideration in several studies from a scientific perspective concerning snowmaking potentials under future climate conditions and the impacts on ski season length (e.g. Scott et al. 2003; Scott & McBoyle 2007; Hennessy et al. 2008; Steiger 2010). A few studies considered economic aspects of technical snowmaking (e.g. Teich et al. 2007; Gonseth 2008). However, a detailed analysis of the costs and benefits of snowmaking under future climate and snow conditions based on sophisticated climate and snow models has not been carried out yet. The present study addresses the gap of knowledge concerning the economic profitability of prospective snowmaking requirements under future climate scenarios. We carry out a detailed cost-revenue analysis of snowmaking under current and future climate conditions for a case study site in Styria (Austria) using dynamic investment models. The starting point of all economic calculations is the daily demand for artificial snow that determines the requirements for additional snowmaking investments and additional operating costs. The demand for artificial snow is delivered by the snow cover model AMUNDSEN (see Strasser et al. 2011) and is driven by four climate scenarios. Apart from future climate conditions the profitability of snowmaking depends on changes in costs and visitor numbers. The results of a ski tourism demand model analyzing daily visitor numbers and their dependencies of prevailing weather conditions enter the cost-revenue analysis of snowmaking and enable the determination of the immediate benefits in terms of additional revenues of ski ticket sales. Furthermore, we conduct an econometric analysis of how snowmaking investments changed ski ticket prices in previous years, as the positive effects of snowmaking on snow reliability could be offset in the longer term by the effects of higher prices for skiing, possibly resulting in lower demand.
NASA Astrophysics Data System (ADS)
Jones, K. D.; Wee, B.; Kuslikis, A.
2015-12-01
Response of Tribal nations and Tribal communities to current and emerging climate change challenges requires active participation of stakeholders who have effective access to relevant data, information and analytical tools. The Tribal Lands Collaboratory (TLC), currently under development, is a joint effort between the American Indian Higher Education Consortium (AIHEC), the Environmental Systems Research Institute (Esri), and the National Ecological Observatory Network (NEON). The vision of the TLC is to create an integrative platform that enables coordination between multiple stakeholders (e.g. Tribal resource managers, Tribal College faculty and students, farmers, ranchers, and other local community members) to collaborate on locally relevant climate change issues. The TLC is intended to facilitate the transformation of data into actionable information that can inform local climate response planning. The TLC will provide the technical mechanisms to access, collect and analyze data from both internal and external sources (e.g. NASA's Giovanni climate data portal, Ameriflux or USA National Phenology Network) while also providing the social scaffolds to enable collaboration across Tribal communities and with members of the national climate change research community. The prototype project focuses on phenology, a branch of science focused on relationships between climate and the seasonal timing of biological phenomena. Monitoring changes in the timing and duration of phenological stages in plant and animal communities on Tribal lands can provide insight to the direct impacts of climate change on culturally and economically significant Tribal resources . The project will leverage existing phenological observation protocols created by the USA-National Phenology Network and NEON to direct data collection efforts and will be tailored to the specific needs and concerns of the community. Phenology observations will be captured and managed within the Collaboratory environment where these data may then be correlated with regional climate data to investigate interactions between large-scale environmental changes and local impacts. Esri's Story Maps is a candidate mechanism for sharing of those findings among Tribal stakeholders.
Technical Support for Contaminated Sites
In 1987, the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD), Office of Land and Emergency Management, and EPA Regional waste management offices established the Technical Support Project. The creation of the Technical Support Project enabled...
Laser technology developments in support of ESA's earth observation missions
NASA Astrophysics Data System (ADS)
Durand, Y.; Bézy, J.-L.; Meynart, R.
2008-02-01
Within the context of ESA's Living Planet Programme, the European Space Agency has selected three missions embarking lidar instruments: ADM-Aeolus (Atmospheric Dynamics Mission) planed for launch in 2009 with a Doppler Wind Lidar, ALADIN, as unique payload; EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer) planed for launch in 2013 including an ATmospheric backscatter LIDar (ATLID); at last, A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), candidate for the 7 th Earth Explorer, relying on a CO II Total Column Differential Absorption Lidar. To mitigate the technical risks for selected missions associated with the different sorts of lidar, ESA has undertaken critical technology developments, from the transmitter to the receiver and covering both components and sub-systems development and characterization. The purpose of this paper is to present the latest results obtained in the area of laser technology that are currently ongoing in support to EarthCARE, A-SCOPE and ADM-Aeolus.
NASA Astrophysics Data System (ADS)
Sedlmeier, Katrin; Gubler, Stefanie; Spierig, Christoph; Flubacher, Moritz; Maurer, Felix; Quevedo, Karim; Escajadillo, Yury; Avalos, Griña; Liniger, Mark A.; Schwierz, Cornelia
2017-04-01
Seasonal climate forecast products potentially have a high value for users of different sectors. During the first phase (2012-2015) of the project CLIMANDES (a pilot project of the Global Framework for Climate Services led by WMO [http://www.wmo.int/gfcs/climandes]), a demand study conducted with Peruvian farmers indicated a large interest in seasonal climate information for agriculture. The study further showed that the required information should by precise, timely, and understandable. In addition to the actual forecast, two complex measures are essential to understand seasonal climate predictions and their limitations correctly: forecast uncertainty and forecast skill. The former can be sampled by using an ensemble of climate simulations, the latter derived by comparing forecasts of past time periods to observations. Including uncertainty and skill information in an understandable way for end-users (who are often not technically educated) poses a great challenge. However, neglecting this information would lead to a false sense of determinism which could prove fatal to the credibility of climate information. Within the second phase (2016-2018) of the project CLIMANDES, one goal is to develop a prototype of a user-tailored seasonal forecast for the agricultural sector in Peru. In this local context, the basic education level of the rural farming community presents a major challenge for the communication of seasonal climate predictions. This contribution proposes different graphical presentations of climate forecasts along with possible approaches to visualize and communicate the associated skill and uncertainties, considering end users with varying levels of technical knowledge.
Forest Carbon Monitoring and Reporting for REDD+: What Future for Africa?
Gizachew, Belachew; Duguma, Lalisa A
2016-11-01
A climate change mitigation mechanism for emissions reduction from reduced deforestation and forest degradation, plus forest conservation, sustainable management of forest, and enhancement of carbon stocks (REDD+), has received an international political support in the climate change negotiations. The mechanism will require, among others, an unprecedented technical capacity for monitoring, reporting and verification of carbon emissions from the forest sector. A functional monitoring, reporting and verification requires inventories of forest area, carbon stock and changes, both for the construction of forest reference emissions level and compiling the report on the actual emissions, which are essentially lacking in developing countries, particularly in Africa. The purpose of this essay is to contribute to a better understanding of the state and prospects of forest monitoring and reporting in the context of REDD+ in Africa. We argue that monitoring and reporting capacities in Africa fall short of the stringent requirements of the methodological guidance for monitoring, reporting and verification for REDD+, and this may weaken the prospects for successfully implementing REDD+ in the continent. We presented the challenges and prospects in the national forest inventory, remote sensing and reporting infrastructures. A North-South, South-South collaboration as well as governments own investments in monitoring, reporting and verification system could help Africa leapfrog in monitoring and reporting. These could be delivered through negotiations for the transfer of technology, technical capacities, and experiences that exist among developed countries that traditionally compile forest carbon reports in the context of the Kyoto protocol.
NASA Astrophysics Data System (ADS)
Roncoli, Carla; Kirshen, Paul; Etkin, Derek; Sanon, Moussa; Somé, Léopold; Dembélé, Youssouf; Sanfo, Bienvenue J.; Zoungrana, Jacqueline; Hoogenboom, Gerrit
2009-10-01
This study focuses on the potential role of technical and institutional innovations for improving water management in a multi-user context in Burkina Faso. We focus on a system centered on three reservoirs that capture the waters of the Upper Comoé River Basin and servicing a diversity of users, including a sugar manufacturing company, a urban water supply utility, a farmer cooperative, and other downstream users. Due to variable and declining rainfall and expanding users’ needs, drastic fluctuations in water supply and demand occur during each dry season. A decision support tool was developed through participatory research to enable users to assess the impact of alternative release and diversion schedules on deficits faced by each user. The tool is meant to be applied in the context of consultative planning by a local user committee that has been created by a new national integrated water management policy. We contend that both solid science and good governance are instrumental in realizing efficient and equitable water management and adaptation to climate variability and change. But, while modeling tools and negotiation platforms may assist users in managing climate risk, they also introduce additional uncertainties into the deliberative process. It is therefore imperative to understand how these technological and institutional innovations frame water use issues and decisions to ensure that such framing is consistent with the goals of integrated water resource management.
EPA'S GROUND WATER TECHNICAL SUPPORT CENTER
The purpose and the services provided by EPA's Ground Water Technical Support Center (GWTSC) will be presented. In 1987 the Office of Solid Waste and Emergency Response, Regional Waste Management Offices, and ORD established the Technical Support Project (TSP)
The purpos...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... Strategy. The Committee will oversee the Technical (writing) Teams, ensure a robust engagement process with... the Strategy's Technical Teams and stakeholder engagement. DATES: The second Steering Committee... public comment during the meeting at approximately 3 p.m., and written comments may be submitted via the...
Using a Global Climate Model in an On-line Climate Change Course
NASA Astrophysics Data System (ADS)
Randle, D. E.; Chandler, M. A.; Sohl, L. E.
2012-12-01
Seminars on Science: Climate Change is an on-line, graduate-level teacher professional development course offered by the American Museum of Natural History. It is an intensive 6-week course covering a broad range of global climate topics, from the fundamentals of the climate system, to the causes of climate change, the role of paleoclimate investigations, and a discussion of potential consequences and risks. The instructional method blends essays, videos, textbooks, and linked websites, with required participation in electronic discussion forums that are moderated by an experienced educator and a course scientist. Most weeks include additional assignments. Three of these assignments employ computer models, including two weeks spent working with a full-fledged 3D global climate model (GCM). The global climate modeling environment is supplied through a partnership with Columbia University's Educational Global Climate Modeling Project (EdGCM). The objective is to have participants gain hands-on experience with one of the most important, yet misunderstood, aspects of climate change research. Participants in the course are supplied with a USB drive that includes installers for the software and sample data. The EdGCM software includes a version of NASA's global climate model fitted with a graphical user interface and pre-loaded with several climate change simulations. Step-by-step assignments and video tutorials help walk people through these challenging exercises and the course incorporates a special assignment discussion forum to help with technical problems and questions about the NASA GCM. There are several takeaways from our first year and a half of offering this course, which has become one of the most popular out of the twelve courses offered by the Museum. Participants report a high level of satisfaction in using EdGCM. Some report frustration at the initial steps, but overwhelmingly claim that the assignments are worth the effort. Many of the difficulties that arise are due to a lack of computer literacy amongst participants and we have found, through iterative improvements in the materials, that breaking assignments into discrete, well-supported tasks has been key to the success.
Surface Observation Climatic Summaries for Nellis AFB, Nevada
1992-05-01
DISTRIBUTION OF THIS DOMWI! TO THE PUBLIC AT LARGE, OR BY THE DEFENSE TECHNICAL IMKNMTI1M CENTER (DTIC) TO THE NATIOAL T•ECICRL INFO TION SERVICE (NTS). JOSEPH...DOCUMENTS FORMERLY KNOW AS THE REVISED UNIFON4 StlMMRRY OF SURFACE OBSERVATIONS (RUSSW) AND THE LIMITED SURFACE OBSERVATIONS CLIMATIC SWSU.R (LISOCS...RECORD (POR). -SUMMARY OF DAY- (SOD) INFOEATIOR IS SUMMARIZED )FRO ALL AVAILABLE DATA IN THE OL-A, USARETJC CLIMATIC DATABASE. 14. SUBJECT TOM
7 CFR 652.35 - State Conservationist decision.
Code of Federal Regulations, 2010 CFR
2010-01-01
... technical service provider, the technical service provider will be given written notice of that... technical service provider's written response and supporting documentation. Both a copy of the decision and..., DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES TECHNICAL SERVICE PROVIDER ASSISTANCE Decertification § 652.35...
NASA Astrophysics Data System (ADS)
Hanzer, F.; Marke, T.; Steiger, R.; Strasser, U.
2012-04-01
Tourism and particularly winter tourism is a key factor for the Austrian economy. Judging from currently available climate simulations, the Austrian Alps show a particularly high vulnerability to climatic changes. To reduce the exposure of ski areas towards changes in natural snow conditions as well as to generally enhance snow conditions at skiing sites, technical snowmaking is widely utilized across Austrian ski areas. While such measures result in better snow conditions at the skiing sites and are important for the local skiing industry, its economic efficiency has also to be taken into account. The current work emerges from the project CC-Snow II, where improved future climate scenario simulations are used to determine future natural and artificial snow conditions and their effects on tourism and economy in the Austrian Alps. In a first step, a simple technical snowmaking approach is incorporated into the process based snow model AMUNDSEN, which operates at a spatial resolution of 10-50 m and a temporal resolution of 1-3 hours. Locations of skiing slopes within a ski area in Styria, Austria, were digitized and imported into the model environment. During a predefined time frame in the beginning of the ski season, the model produces a maximum possible amount of technical snow and distributes the associated snow on the slopes, whereas afterwards, until to the end of the ski season, the model tries to maintain a certain snow depth threshold value on the slopes. Due to only few required input parameters, this approach is easily transferable to other ski areas. In our poster contribution, we present first results of this snowmaking approach and give an overview of the data and methodology applied. In a further step in CC-Snow, this simple bulk approach will be extended to consider actual snow cannon locations and technical specifications, which will allow a more detailed description of technical snow production as well as cannon-based recordings of water and energy consumption.
EDITORIAL: Tropical deforestation and greenhouse gas emissions
NASA Astrophysics Data System (ADS)
Gibbs, Holly K.; Herold, Martin
2007-10-01
Carbon emissions from tropical deforestation have long been recognized as a key component of the global carbon budget, and more recently of our global climate system. Tropical forest clearing accounts for roughly 20% of anthropogenic carbon emissions and destroys globally significant carbon sinks (IPCC 2007). Global climate policy initiatives are now being proposed to address these emissions and to more actively include developing countries in greenhouse gas mitigation (e.g. Santilli et al 2005, Gullison et al 2007). In 2005, at the Conference of the Parties (COP) in Montreal, the United Nations Framework Convention on Climate Change (UNFCCC) launched a new initiative to assess the scientific and technical methods and issues for developing policy approaches and incentives to reduce emissions from deforestation and degradation (REDD) in developing countries (Gullison et al 2007). Over the last two years the methods and tools needed to estimate reductions in greenhouse gas emissions from deforestation have quickly evolved, as the scientific community responded to the UNFCCC policy needs. This focus issue highlights those advancements, covering some of the most important technical issues for measuring and monitoring emissions from deforestation and forest degradation and emphasizing immediately available methods and data, as well as future challenges. Elements for effective long-term implementation of a REDD mechanism related to both environmental and political concerns are discussed in Mollicone et al. Herold and Johns synthesize viewpoints of national parties to the UNFCCC on REDD and expand upon key issues for linking policy requirements and forest monitoring capabilities. In response to these expressed policy needs, they discuss a remote-sensing-based observation framework to start REDD implementation activities and build historical deforestation databases on the national level. Achard et al offer an assessment of remote sensing measurements across the world's tropical forests that can provide key consistency and prioritization for national-level efforts. Gibbs et al calculate a range of national-level forest carbon stock estimates that can be used immediately, and also review ground-based and remote sensing approaches to estimate national-level tropical carbon stocks with increased accuracy. These papers help illustrate that methodologies and tools are indeed available to estimate emissions from deforestation. Clearly, important technical challenges remain (e.g. quantifying degradation, assessing uncertainty, verification procedures, capacity building, and Landsat data continuity) but we now have a sufficient technical base to support REDD early actions and readiness mechanisms for building national monitoring systems. Thus, we enter the COP 13 in Bali, Indonesia with great hope for a more inclusive climate policy encompassing all countries and emissions sources from both land-use and energy sectors. Our understanding of tropical deforestation and carbon emissions is improving and with that, opportunities to conserve tropical forests and the host of ecosystem services they provide while also increasing revenue streams in developing countries through economic incentives to avoid deforestation and degradation. References Gullison R E et al 2007 Tropical forests and climate policy Science 316 985 6 Intergovernmental Panel on Climate Change (IPCC) 2007 Climate Change 2007: The Physical Science Basis: Summary for Policymakers http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf Santilli M et al 2005 Tropical deforestation and the Kyoto Protocol: an editorial essay Clim. Change 71 267 76 Focus on Tropical Deforestation and Greenhouse Gas Emissions Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Pan-tropical monitoring of deforestation F Achard, R DeFries, H Eva, M Hansen, P Mayaux and H-J Stibig Monitoring and estimating tropical forest carbon stocks: making REDD a reality Holly K Gibbs, Sandra Brown, John O Niles and Jonathan A Foley Elements for the expected mechanisms on 'reduced emissions from deforestation and degradation, REDD' under UNFCCC D Mollicone, A Freibauer, E D Schulze, S Braatz, G Grassi and S Federici
status of ENSO go to the ENSO Advisory (issued when appropriate) or the latest monthly Climate Diagnostics Bulletin. More technical information on the global patterns of abnormal precipitation and , J. Climate, 5, 577-593). A general description of a warm (ENSO) episode and its composite evolution
ERIC Educational Resources Information Center
Vermeulen, Marjan; Kreijns, Karel; van Buuren, Hans; Van Acker, Frederik
2017-01-01
This study investigated whether school organizational variables (ie, transformative leadership (TL), ICT-infrastructure (technical and social) and organizational learning climate were related to teachers' dispositional variables (ie, attitude, perceived norm and perceived behavior control [PBC]). The direct and indirect influences of the…
DOE Scientists Contribute to 2007 Nobel Peace Prize Research about Climate
and resources were devoted to modeling the interactive effects of consequences, that is to say effects are more immediate and profound than previously anticipated, and old questions (are humans the Lawrence Livermore National Laboratory, DOE Technical Report, May 2005 Climate Effects of Global Land Cover
Global Climate Change Pathfinder: A Guide to Information Resources. Second Edition.
ERIC Educational Resources Information Center
Pintozzi, Chestalene; Jones, Douglas E.
This pathfinder is a guide to scientific and technical aspects of global climate change including meteorological and climatological aspects; biological, agricultural, and public policy implications; and the chemical processes involved. Sources are arranged by type of publication and include: (1) 10 reference sources; (2) 12 bibliographies; (3) 44…
Randalls, Samuel
2011-01-01
Historical accounts of climate change science and policy have reflected rather infrequently upon the debates, discussions, and policy advice proffered by economists in the 1980s. While there are many forms of economic analysis, this article focuses upon cost-benefit analysis, especially as adopted in the work of William Nordhaus. The article addresses the way in which climate change economics subtly altered debates about climate policy from the late 1970s through the 1990s. These debates are often technical and complex, but the argument in this article is that the development of a philosophy of climate change as an issue for cost-benefit analysis has had consequences for how climate policy is made today.
Technical Support Document for Version 3.6.1 of the COMcheck Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan
2009-09-29
This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards.
Developing a Climate Change Boundary Organization: the Montana Adaptation Exchange
NASA Astrophysics Data System (ADS)
Whitlock, C. L.; Brooks, S.; Armstrong, T.; Bryan, B.
2016-12-01
Small-population large-area states like Montana are often challenged by a need to offer timely and relevant climate-change information that addresses diverse and widely dispersed stakeholder groups. In Montana, filling the gap between science and various types of decision-makers has motivated development of the first Montana Climate Assessment (MCA1), to be released in 2017 with a focus on climate-change impacts for agricultural, water and forestry sectors. To sustain and build on the MCA1 effort, we are also in the process of creating a Boundary Organization (defined by the National Academy of Sciences) called the Montana Adaptation Exchange (the Exchange); this entity will facilitate the flow of information across the boundaries between science, knowledge and implementation. In Montana, the Exchange brings scientists and practitioners together to seek solutions related to climate-change adaptation and other pressing environmental and social-economic challenges. The Montana Adaptation Exchange (1) is a collaborative partnership of members from the science and practitioner communities under a shared governance and participatory model; (2) presents research that has been vetted by the scientific community at large and represents the current state of knowledge; (3) allows for revision and expansion of assessments like the MCA; (4) communicates relevant, often technical, research and findings to a wide variety of resource managers and other stakeholders; (5) develops and maintains an extensive online database that organizes, regularly updates, and makes research data products readily available; and (6) offers an online portal and expert network of affiliated researchers and climate adaptation specialists to provide effective customer support. Boundary organizations, such as the Montana Adaptation Exchange, offer a scalable path to effectively move from "science to knowledge to action" while also allowing stakeholder needs to help inform research agendas.
Ground Water Technical Support Center (GWTSC) Annual ...
The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Support Centersthat were established under the Technical Support Project (TSP). The GWTSC provides technical support on issues related to groundwater. Specifically, the GWTSC provides technical support to U.S. EPA and State regulators for issues and problems related to:1. subsurface contamination (contaminants in ground water, soils and sediments),2. cross-media transfer (movement of contaminants from the subsurface to other media such as surface water or air), and3. restoration of impacted ecosystems.The GWTSC works with Remedial Project Managers (RPMs) and other decision makers to solve specific problems at Superfund, RCRA (Resource Conservation and Recovery Act), Brownfields sites, and ecosystem restoration sites. The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Suppo
Uddin, Shahadat; Mahmood, Hana; Senarath, Upul; Zahiruddin, Quazi; Karn, Sumit; Rasheed, Sabrina; Dibley, Michael
2017-06-13
Effective public policies are needed to support appropriate infant and young child feeding (IYCF) to ensure adequate child growth and development, especially in low and middle income countries. The aim of this study was to: (i) capture stakeholder networks in relation to funding and technical support for IYCF policy across five countries in South Asia (i.e. Sri Lanka, India, Nepal, Bangladesh and Pakistan); and (ii) understand how stakeholder networks differed between countries, and identify common actors and their patterns in network engagement across the region. The Net-Map method, which is an interview-based mapping technique to visualise and capture connections among different stakeholders that collaborate towards achieving a focused goal, has been used to map funding and technical support networks in all study sites. Our study was conducted at the national level in Bangladesh, India, Nepal, and Sri Lanka, as well as in selected states or provinces in India and Pakistan during 2013-2014. We analysed the network data using a social network analysis software (NodeXL). The number of stakeholders identified as providing technical support was higher than the number of stakeholders providing funding support, across all study sites. India (New Delhi site - national level) site had the highest number of influential stakeholders for both funding (43) and technical support (86) activities. Among all nine study sites, India (New Delhi - national level) and Sri Lanka had the highest number of participating government stakeholders (22) in their respective funding networks. Sri Lanka also had the highest number of participating government stakeholders for technical support (34) among all the study sites. Government stakeholders are more engaged in technical support activities compared with their involvement in funding activities. The United Nations Children's Emergency Fund (UNICEF) and the World Health Organization (WHO) were highly engaged stakeholders for both funding and technical support activities across all study sites. International stakeholders were highly involved in both the funding and technical support activities related to IYCF practices across these nine study sites. Government stakeholders received more support for funding and technical support activities from other stakeholders compared with the support that they offered. Stakeholders were, in general, more engaged for technical support activities compared with the funding activities.
Public Engagement on Climate Change
NASA Astrophysics Data System (ADS)
Curry, J.
2011-12-01
Climate change communication is complicated by complexity of the scientific problem, multiple perspectives on the magnitude of the risk from climate change, often acrimonious disputes between scientists, high stakes policy options, and overall politicization of the issue. Efforts to increase science literacy as a route towards persuasion around the need for a policy like cap and trade have failed, because the difficulty that a scientist has in attempting to make sense of the social and political complexity is very similar to the complexity facing the general public as they try to make sense of climate science itself. In this talk I argue for a shift from scientists and their institutions as information disseminators to that of public engagement and enablers of public participation. The goal of engagement is not just to inform, but to enable, motivate and educate the public regarding the technical, political, and social dimensions of climate change. Engagement is a two-way process where experts and decision-makers seek input and learn from the public about preferences, needs, insights, and ideas relative to climate change impacts, vulnerabilities, solutions and policy options. Effective public engagement requires that scientists detach themselves from trying to control what the public does with the acquired knowledge and motivation. The goal should not be to "sell" the public on particular climate change solutions, since such advocacy threatens public trust in scientists and their institutions. Conduits for public engagement include the civic engagement approach in the context of community meetings, and perhaps more significantly, the blogosphere. Since 2006, I have been an active participant in the climate blogosphere, focused on engaging with people that are skeptical of AGW. A year ago, I started my own blog Climate Etc. at judithcurry.com. The demographic that I have focused my communication/engagement activities are the technically educated and scientifically literate public, many of whom have become increasingly skeptical of climate science the more they investigate the topic. Specific issues that this group has with climate science include concerns that science that cannot easily be separated from risk assessment and value judgments; concern that assessments (e.g. IPCC) have become a Maxwell's daemon for climate research; inadequate assessment of our ignorance of this complex scientific issue; elite scientists and scientific institutions losing credibility with the public; political exploitation of the public's lack of understanding; and concerns about the lack of public accountability of climate science and climate models that are being used as the basis for far reaching decisions and policies. Individuals in this group have the technical ability to understand and examine climate science arguments and are not prepared to cede judgment on this issue to the designated and self-proclaimed experts. This talk will describe my experiences in engaging with this group and what has been learned, both by myself and by participants in the discussion at Climate Etc.
Climate Change 2014: Technical Summary
Field, Chrisopher B.; Barros, Vicente; Mach, Katherine; Mastrandrea, Michael; van Aalst, Maarten; Adger, Niel; Arent, Douglas J; Barnett, Jonathan; Betts, Richard; Bilir, Eren; Birkmann, Joern; Carmin, Joann; Chadee, Dave; Challinor, Andrew; Chaterjee, Monalisa; Cramer, Wolfgang; Davidson, Debra; Estrada, Yuka; Gatusso, Jean-Pierre; Hijioka, Yasuakai; Yohe, Gary; Hiza, Margaret; Hoegh-Guldberg, Ove; Huang, He-Qing; Insarov, Gregory; Jones, Roger; Kovats, Sari; Lankao, Patricia Romero; Larsen, Joan Nymand; Losada, Iñigo; Marengo, José; McLean, Roger; Mearns, Linda; Mechler, Reinhard; Morton, John; Niang, Isabelle; Oki, Taikan; Olwoch, Jane Mukarugwiza; Opondo, Maggie; Poloczanska, Elvira; Pörtner, Hans -O.; Reisinger, Andy; Revi, Aromar; Schmidt, Daniela; Shaw, Rebecca; Solecki, William; Stone, Dáithí; Stone, John; Strzepek, Ken; Suarez, Avelino G.; Tschakert, Petra; Valentini, Riccardo; Vicuna, Sebastian; Villamizar, Alicia; Vincent, Katharine; Warren, Rachel; White, Leslie; Wilbanks, Thomas; Wong, Poh Poh
2014-01-01
Human interference with the climate system is occurring (WGI AR5 SPM Section D.3; WGI AR5 Sections 2.2, 6.3, 10.3 to 10.6, 10.9). Climate change poses risks for human and natural systems. The assessment of impacts, adaptation, and vulnerability in the Working Group II contribution to the IPCC’s Fifth Assessment Report (WGII AR5) evaluates how patterns of risks and potential benefits are shifting due to climate change. It considers how impacts and risks related to climate change can be reduced and managed through adaptation and mitigation. The report assesses needs, options, opportunities, constraints, resilience, limits, and other aspects associated with adaptation. It recognizes that risks of climate change will vary across regions and populations, through space and time, dependent on myriad factors including the extent of adaptation and mitigation. For the past 2 decades, IPCC’s Working Group II has developed assessments of climate change impacts, adaptation, and vulnerability. The WGII AR5 builds from the WGII contribution to the IPCC’s Fourth Assessment Report (WGII AR4), published in 2007, and the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), published in 2012. It follows the Working Group I contribution to the AR5. The WGII AR5 is presented in two parts (Part A: Global and Sectoral Aspects, and Part B: Regional Aspects), reflecting the expanded literature basis and multidisciplinary approach, increased focus on societal impacts and responses, and continued regionally comprehensive coverage. [1.1 to 1.3] The number of scientific publications available for assessing climate change impacts, adaptation, and vulnerability more than doubled between 2005 and 2010, with especially rapid increases in publications related to adaptation, allowing for a more robust assessment that supports policymaking (high confidence). The diversity of the topics and regions covered has similarly expanded, as has the geographic distribution of authors contributing to the knowledge base for climate change assessments. Authorship of climate change publications from developing countries has increased, although it still represents a small fraction of the total. The unequal distribution of publications presents a challenge to the production of a comprehensive and balanced global assessment.
Laursen, Scott; Puniwai, Noelani; Genz, Ayesha S; Nash, Sarah A B; Canale, Lisa K; Ziegler-Chong, Sharon
2018-05-30
Complex socio-ecological issues, such as climate change have historically been addressed through technical problem solving methods. Yet today, climate science approaches are increasingly accounting for the roles of diverse social perceptions, experiences, cultural norms, and worldviews. In support of this shift, we developed a research program on Hawai'i Island that utilizes knowledge coproduction to integrate the diverse worldviews of natural and cultural resource managers, policy professionals, and researchers within actionable science products. Through their work, local field managers regularly experience discrete land and waterscapes. Additionally, in highly interconnected rural communities, such as Hawai'i Island, managers often participate in the social norms and values of communities that utilize these ecosystems. Such local manager networks offer powerful frameworks within which to co-develop and implement actionable science. We interviewed a diverse set of local managers with the aim of incorporating their perspectives into the development of a collaborative climate change research agenda that builds upon existing professional networks utilized by managers and scientists while developing new research products. We report our manager needs assessment, the development process of our climate change program, our interactive forums, and our ongoing research products. Our needs assessment showed that the managers' primary source of information were other professional colleagues, and our in-person forums informed us that local managers are very interested in interacting with a wider range of networks to build upon their management capacities. Our initial programmatic progress suggests that co-created research products and in-person forums strengthen the capacities of local managers to adapt to change.
Trends and Correlation Estimation in Climate Sciences: Effects of Timescale Errors
NASA Astrophysics Data System (ADS)
Mudelsee, M.; Bermejo, M. A.; Bickert, T.; Chirila, D.; Fohlmeister, J.; Köhler, P.; Lohmann, G.; Olafsdottir, K.; Scholz, D.
2012-12-01
Trend describes time-dependence in the first moment of a stochastic process, and correlation measures the linear relation between two random variables. Accurately estimating the trend and correlation, including uncertainties, from climate time series data in the uni- and bivariate domain, respectively, allows first-order insights into the geophysical process that generated the data. Timescale errors, ubiquitious in paleoclimatology, where archives are sampled for proxy measurements and dated, poses a problem to the estimation. Statistical science and the various applied research fields, including geophysics, have almost completely ignored this problem due to its theoretical almost-intractability. However, computational adaptations or replacements of traditional error formulas have become technically feasible. This contribution gives a short overview of such an adaptation package, bootstrap resampling combined with parametric timescale simulation. We study linear regression, parametric change-point models and nonparametric smoothing for trend estimation. We introduce pairwise-moving block bootstrap resampling for correlation estimation. Both methods share robustness against autocorrelation and non-Gaussian distributional shape. We shortly touch computing-intensive calibration of bootstrap confidence intervals and consider options to parallelize the related computer code. Following examples serve not only to illustrate the methods but tell own climate stories: (1) the search for climate drivers of the Agulhas Current on recent timescales, (2) the comparison of three stalagmite-based proxy series of regional, western German climate over the later part of the Holocene, and (3) trends and transitions in benthic oxygen isotope time series from the Cenozoic. Financial support by Deutsche Forschungsgemeinschaft (FOR 668, FOR 1070, MU 1595/4-1) and the European Commission (MC ITN 238512, MC ITN 289447) is acknowledged.
Identifying Effective Strategies to Providing Technical Support to One-to-One Programs
ERIC Educational Resources Information Center
Thomas, Mark W.
2013-01-01
The problem of this study was that while one-to-one initiatives in the K-12 environment are growing, the technical support personnel that work in these environments are experiencing problems supporting these initiatives. The purposes of this study were to: (a) identify common problems of providing technical support in a one-to-one laptop program,…
ERIC Educational Resources Information Center
Winstead, Ann S.; Adams, Barbara L.; Sillah, Marion Rogers
2009-01-01
Today's business climate requires that management recruits not only know the technical aspects of their jobs, but also possess communication, teambuilding and leadership skills. Most business school curricula, however, focus only on technical skills, and do not address the "soft skills" in a formal setting or on a consistent basis. As…
Adaptation Challenges in Complex River Basins: Lessons Learned and Unlearned for the Colorado
NASA Astrophysics Data System (ADS)
Pulwarty, R. S.
2008-12-01
Climate variations affect the function and operation of existing water infrastructure - including hydropower, structural flood defenses, drainage and irrigation systems - as well as water management practices in support of efficiency and environmental needs. Selected basins around the world, including the Colorado, show agreements in model projections of increasing aridity. Adverse effects of climate change on freshwater systems aggravate the impacts of other stresses, such as population growth, changing economic activity, land-use change and urbanization and most importantly upstream-downstream winners and losers. Thus current water management practices may not be robust enough to cope with the impacts of climate change on water supply reliability. In many locations, water management does not even satisfactorily cope with current climate variability, so that large flood and drought-related environmental and economic damages occur on seasonal to decadal timescales. The recently released IPCC Technical Paper notes that adaptation procedures and risk management practices that incorporate projected hydrological changes with related uncertainties are being developed in some countries and regions.In this presentation we will review the challenges and lessons provided in drought and water resources management and optimization in the context of climate variability and projected change in the Western U.S., the European Union (including the Iberian Peninsula), the Murray-Darling Basin, and elsewhere. Since the release of the IPCC report several of the authors (including the presenter) have held meetings on comparative assessments of adaptation and its challenges in interstate and international river basins. As a first step, improved incorporation of information about current climate variability into water-related management could assist adaptation to longer-term climate change impacts. Future adaptations include technical changes that improve water use efficiency, demand management (e.g. through metering and pricing), and institutional changes that improve the tradability of water rights. The co-evolution of climate history and adaptation did not start with the release of IPCC scenarios. The development of the Colorado River Basin was itself influenced by water resources planners from around the world (including the Middle East) in the late 1800s. As such lessons identified, but not always learned, abound. These hold considerable promise for water savings and the reallocation of water to highly valued uses. Supply-side strategies generally involve increases in storage capacity, abstraction from watercourses, and water transfers. Integrated water resources management provides an important governance framework to achieve adaptation measures across socio-economic, environmental and administrative systems. However, several paradoxes in water management and governance mitigate against the effectiveness of scientific information for meeting short term needs in the context of reducing longer-term vulnerabilities and for providing water to meet environmental needs. Consequently a complete analysis of the effects of climate change on human water uses would consider cross-sector interactions, including the impacts of changes in water use efficiency and intentional transfers of the use of water from one sector to another.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-14
... Conservation Program: Public Meeting and Availability of the Preliminary Technical Support Document for Walk-In... and availability of the preliminary technical support document regarding energy conservation standards..., the deadline for requesting to speak at the public meeting, and the deadline for submitting written...
40 CFR Appendix A to Part 67 - Technical Support Document
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Technical Support Document A Appendix A to Part 67 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...—Technical Support Document Note: EPA will make copies of appendix A available from: Director, Stationary...
40 CFR Appendix A to Part 66 - Technical Support Document
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Technical Support Document A Appendix A to Part 66 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...—Technical Support Document Note: For text of appendix A see appendix A to part 67. ...
Qian, Ying-Jun; Li, Shi-Zhu; Xu, Jun-Fang; Zhang, Li; Fu, Qing; Zhou, Xiao-Nong
2013-12-01
To set up a framework of indicators for schistosomiasis and malaria to guide the formulation and evaluation of vector-borne disease control policies focusing on adaptation to the negative impact of climate change. A 2-level indicator framework was set up on the basis of literature review, and Delphi method was applied to a total of 22 and 19 experts working on schistosomiasis and malaria, respectively. The result was analyzed to calculate the weight of various indicators. A total of 41 questionnaires was delivered, and 38 with valid response (92.7%). The system included 4 indicators at first level, i.e. surveillance, scientific research, disease control and intervention, and adaptation capacity building, with 25 indicators for schistosomiasis and 21 for malaria at the second level. Among indicators at the first level, disease surveillance ranked first with a weight of 0.32. Among the indicators at the second level, vector monitoring scored the highest in terms of both schistosomiasis and malaria. The indicators set up by Delphi method are practical,universal and effective ones using in the field, which is also useful to technically support the establishment of adaptation to climate change in the field of public health.
Evaluation of safety climate and employee injury rates in healthcare.
Cook, Jacqueline M; Slade, Martin D; Cantley, Linda F; Sakr, Carine J
2016-09-01
Safety climates that support safety-related behaviour are associated with fewer work-related injuries, and prior research in industry suggests that safety knowledge and motivation are strongly related to safety performance behaviours; this relationship is not well studied in healthcare settings. We performed analyses of survey results from a Veterans Health Administration (VHA) Safety Barometer employee perception survey, conducted among VHA employees in 2012. The employee perception survey assessed 6 safety programme categories, including management participation, supervisor participation, employee participation, safety support activities, safety support climate and organisational climate. We examined the relationship between safety climate from the survey results on VHA employee injury and illness rates. Among VHA facilities in the VA New England Healthcare System, work-related injury rate was significantly and inversely related to overall employee perception of safety climate, and all 6 safety programme categories, including employee perception of employee participation, management participation, organisational climate, supervisor participation, safety support activities and safety support climate. Positive employee perceptions of safety climate in VHA facilities are associated with lower work-related injury and illness rates. Employee perception of employee participation, management participation, organisational climate, supervisor participation, safety support activities and safety support climate were all associated with lower work-related injury rates. Future implications include fostering a robust safety climate for patients and healthcare workers to reduce healthcare worker injuries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Environmental Sciences Division annual progress report for period ending September 30, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-04-01
The Environmental Sciences Division (ESD) of Oak Ridge National Laboratory (ORNL) conducts research on the environmental aspects of existing and emerging energy systems and applies this information to ensure that technology development and energy use are consistent with national environmental health and safety goals. Offering an interdisciplinary resource of staff and facilities to address complex environmental problems, the division is currently providing technical leadership for major environmental issues of national concern: (1) acidic deposition and related environmental effects, (2) effects of increasing concentrations of atmospheric CO{sub 2} and the resulting climatic changes to ecosystems and natural and physical resources, (3)more » hazardous chemical and radioactive waste disposal and remediation research and development, and (4) development of commercial biomass energy production systems. This progress report outlines ESD's accomplishments in these and other areas in FY 1990. Individual reports are processed separately for the data bases in the following areas: ecosystem studies; environmental analyses; environmental toxicology; geosciences; technical and administrative support; biofuels feedstock development program; carbon dioxide information analysis and research program; and environmental waste program.« less
Terraforming the Moon: a Viable Step in the Colonization of the Solar System?
NASA Astrophysics Data System (ADS)
Renn, H. W.
2002-01-01
One potential option for the colonization of other celestial bodies is Terraforming. The latter involves, as a first step, the creation of a breathable, artificial atmosphere. While terraforming other planets, especially Mars, has been under discussion for several decades, applying the same concept to Earth's closest neighbor, namely the Moon, plays virtually no role in existing plans for space colonization. This paper investigates the technical and economical feasibility of supplying the Moon with an artificial atmosphere. Based on existing concepts for life support systems, essential requirements for an artificial Lunar atmosphere are defined. Various alternatives for the atmospheric composition are investigated and the parameters of a preferred `reference atmosphere' are described in detail. In order to assess the latter's habitability, particularly with respect to wind speeds and temperature cycles, the Moon's wind system and temperature field are analyzed by using a customized climate simulation model. Aspects of technical feasibility are evaluated and major obstacles are identified. Finally, various assessment criteria with particular respect to economical and ethical considerations are discussed and preliminary conclusions are presented.
Mass support for global climate agreements depends on institutional design.
Bechtel, Michael M; Scheve, Kenneth F
2013-08-20
Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation--costs and distribution, participation, and enforcement--affect individuals' willingness to support these international efforts. We find that design features have significant effects on public support. Specifically, our results indicate that support is higher for global climate agreements that involve lower costs, distribute costs according to prominent fairness principles, encompass more countries, and include a small sanction if a country fails to meet its emissions reduction targets. In contrast to well-documented baseline differences in public support for climate mitigation efforts, opinion responds similarly to changes in climate policy design in all four countries. We also find that the effects of institutional design features can bring about decisive changes in the level of public support for a global climate agreement. Moreover, the results appear consistent with the view that the sensitivity of public support to design features reflects underlying norms of reciprocity and individuals' beliefs about the potential effectiveness of specific agreements.
Maria K. Janowiak; Daniel D. Dostie; Michael A. Wilson; Michael J. Kucera; R. Howard Skinner; Jerry L. Hatfield; David Hollinger; Christopher W. Swanston
2016-01-01
Changes in climate and extreme weather are already increasing challenges for agriculture nationally and globally, and many of these impacts will continue into the future. This technical bulletin contains information and resources designed to help agricultural producers, service providers, and educators in the Midwest and Northeast regions of the United States integrate...
Hannah Gosnell; Nicole Robinson-Maness; Susan Charnley
2011-01-01
Unsustainable rangeland management and land conversion are significant sources of greenhouse gas emissions and global warming; however, rangelands also can be managed to mitigate climate change by enhancing carbon uptake through increased plant production and biological sequestration. According to a 2000 USFS General Technical Report, there are opportunities to make...
NASA Astrophysics Data System (ADS)
Obriejetan, Michael; Rauch, Hans Peter; Florineth, Florin
2013-04-01
Erosion control systems consisting of technical and biological components are widely accepted and proven to work well if installed properly with regard to site-specific parameters. A wide range of implementation measures for this specific protection purpose is existent and new, in particular technical solutions are constantly introduced into the market. Nevertheless, especially vegetation aspects of erosion control measures are frequently disregarded and should be considered enhanced against the backdrop of the development and realization of adaptation strategies in an altering environment due to climate change associated effects. Technical auxiliaries such as geotextiles typically used for slope protection (nettings, blankets, turf reinforcement mats etc.) address specific features and due to structural and material diversity, differing effects on sediment yield, surface runoff and vegetational development seem evident. Nevertheless there is a knowledge gap concerning the mutual interaction processes between technical and biological components respectively specific comparable data on erosion-reducing effects of technical-biological erosion protection systems are insufficient. In this context, an experimental arrangement was set up to study the correlated influences of geotextiles and vegetation and determine its (combined) effects on surface runoff and soil loss during simulated heavy rainfall events. Sowing vessels serve as testing facilities which are filled with top soil under application of various organic and synthetic geotextiles and by using a reliable drought resistant seed mixture. Regular vegetational monitoring as well as two rainfall simulation runs with four repetitions of each variant were conducted. Therefore a portable rainfall simulator with standardized rainfall intensity of 240 mm h-1 and three minute rainfall duration was used to stress these systems on different stages of plant development at an inclination of 30 degrees. First results show significant differences between the systems referring to sediment yield and runoff amount respectively vegetation development.
Code of Federal Regulations, 2010 CFR
2010-07-01
... supporting technical analysis and any other relevant information and data that would support such site... event. The technical analysis of the discharge of pollutants must include: (A) All daily inputs to the... the supporting technical analysis, including inspection of the CAFO. (3) The CAFO shall attain the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... supporting technical analysis and any other relevant information and data that would support such site... event. The technical analysis of the discharge of pollutants must include: (A) All daily inputs to the... the supporting technical analysis, including inspection of the CAFO. (3) The CAFO shall attain the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Beverly E.
Investigate the effects of disturbance and climate variables on processes controlling carbon and water processes at AmeriFlux cluster sites in semi-arid and mesic forests in Oregon. The observations were made at three existing and productive AmeriFlux research sites that represent climate and disturbance gradients as a natural experiment of the influence of climatic and hydrologic variability on carbon sequestration and resulting atmospheric CO 2 feedback that includes anomalies during the warm/ dry phase of the Pacific Decadal Oscillation.
Active Climate Stabilization: Practical Physics-Based Approaches to Prevention of Climate Change
DOE R&D Accomplishments Database
Teller, E.; Hyde, T.; Wood, L.
2002-04-18
We offer a case for active technical management of the radiative forcing of the temperatures of the Earth's fluid envelopes, rather than administrative management of atmospheric greenhouse gas inputs, in order to stabilize both the global- and time-averaged climate and its mesoscale features. We suggest that active management of radiative forcing entails negligible--indeed, likely strongly negative--economic costs and environmental impacts, and thus best complies with the pertinent mandate of the UN Framework Convention on Climate Change. We propose that such approaches be swiftly evaluated in sub-scale in the course of an intensive international program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, A.W.; Ghil, M.; Kravtsov, K.
2011-04-08
This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs,more » we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravtsov, S.; Robertson, Andrew W.; Ghil, Michael
2011-04-08
This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs,more » we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.« less
Climate Risk assessment and management in rainfed agriculture areas in Jordan
NASA Astrophysics Data System (ADS)
Khresat, Saeb
2017-04-01
Agricultural production is closely tied to climate, making agriculture one of the most climate-sensitive of all economic sectors. Figures and data from official resources and previous studies demonstrated that most of agricultural areas in Jordan were rainfed which made agriculture in the country more susceptible to climate change. The percentage of harvested to cultivated areas in those areas over the past ten years ranged from 45-55%, indicating a high risk associated with rainfed agriculture in Jordan. The anticipated increase in temperature and decrease in precipitation would adversely affect crops and water availability, critically influencing the patterns of future agricultural production, threatens livelihoods and keeps vulnerable people insecure. The anticipated increase in temperature and decrease in precipitation would result in 15-20% yield reduction for major field crops and vegetable crops by 2050 and 2070. This study was conducted to help in formulating action plans to adapt to climate change by assessing the risk from climate change on rainfed agriculture. The scenarios of climate change were used to assess the impact of climate change on rainfed agriculture. The overall risk level was based on possible land use shifts and crop yield under the most probable climate change scenarios. Accordingly, adaptive measures were proposed to reduce the impacts of climate change on agriculture in Jordan. The adaptation measures included the improvement of soil water storage to maximize plant water availability, the management of crop residue and tillage to conserve soil and water, the selection of drought-tolerant crop varieties, the expansion of water harvesting schemes through encouraging the farmers to adopt and apply the in-situ water harvesting systems (micro-catchment). Finally, the study emphasized the need for capacity building and awareness creation at the levels of farmers and extension staff. This would require the formulation of plans and strategies to support services that would promote adoption and adaptation. The empowerment of farmer service centers to provide technical advice and information on viable adaptation options would be needed. This also would require the development of micro-credit/revolving grants to farmers to apply the developed adaptation systems.
McIver, Lachlan; Kim, Rokho; Woodward, Alistair; Hales, Simon; Spickett, Jeffery; Katscherian, Dianne; Hashizume, Masahiro; Honda, Yasushi; Kim, Ho; Iddings, Steven; Naicker, Jyotishma; Bambrick, Hilary; McMichael, Anthony J; Ebi, Kristie L
2016-11-01
Between 2010 and 2012, the World Health Organization Division of Pacific Technical Support led a regional climate change and health vulnerability assessment and adaptation planning project, in collaboration with health sector partners, in 13 Pacific island countries-Cook Islands, Federated States of Micronesia, Fiji, Kiribati, Marshall Islands, Nauru, Niue, Palau, Samoa, Solomon Islands, Tonga, Tuvalu, and Vanuatu. We assessed the vulnerabilities of Pacific island countries to the health impacts of climate change and planned adaptation strategies to minimize such threats to health. This assessment involved a combination of quantitative and qualitative techniques. The former included descriptive epidemiology, time series analyses, Poisson regression, and spatial modeling of climate and climate-sensitive disease data, in the few instances where this was possible; the latter included wide stakeholder consultations, iterative consensus building, and expert opinion. Vulnerabilities were ranked using a "likelihood versus impact" matrix, and adaptation strategies were prioritized and planned accordingly. The highest-priority climate-sensitive health risks in Pacific island countries included trauma from extreme weather events, heat-related illnesses, compromised safety and security of water and food, vector-borne diseases, zoonoses, respiratory illnesses, psychosocial ill-health, non-communicable diseases, population pressures, and health system deficiencies. Adaptation strategies relating to these climate change and health risks could be clustered according to categories common to many countries in the Pacific region. Pacific island countries are among the most vulnerable in the world to the health impacts of climate change. This vulnerability is a function of their unique geographic, demographic, and socioeconomic characteristics combined with their exposure to changing weather patterns associated with climate change, the health risks entailed, and the limited capacity of the countries to manage and adapt in the face of such risks. Citation: McIver L, Kim R, Woodward A, Hales S, Spickett J, Katscherian D, Hashizume M, Honda Y, Kim H, Iddings S, Naicker J, Bambrick H, McMichael AJ, Ebi KL. 2016. Health impacts of climate change in Pacific island countries: a regional assessment of vulnerabilities and adaptation priorities. Environ Health Perspect 124:1707-1714; http://dx.doi.org/10.1289/ehp.1509756.
McIver, Lachlan; Kim, Rokho; Woodward, Alistair; Hales, Simon; Spickett, Jeffery; Katscherian, Dianne; Hashizume, Masahiro; Honda, Yasushi; Kim, Ho; Iddings, Steven; Naicker, Jyotishma; Bambrick, Hilary; McMichael, Anthony J.; Ebi, Kristie L.
2015-01-01
Background: Between 2010 and 2012, the World Health Organization Division of Pacific Technical Support led a regional climate change and health vulnerability assessment and adaptation planning project, in collaboration with health sector partners, in 13 Pacific island countries—Cook Islands, Federated States of Micronesia, Fiji, Kiribati, Marshall Islands, Nauru, Niue, Palau, Samoa, Solomon Islands, Tonga, Tuvalu, and Vanuatu. Objective: We assessed the vulnerabilities of Pacific island countries to the health impacts of climate change and planned adaptation strategies to minimize such threats to health. Methods: This assessment involved a combination of quantitative and qualitative techniques. The former included descriptive epidemiology, time series analyses, Poisson regression, and spatial modeling of climate and climate-sensitive disease data, in the few instances where this was possible; the latter included wide stakeholder consultations, iterative consensus building, and expert opinion. Vulnerabilities were ranked using a “likelihood versus impact” matrix, and adaptation strategies were prioritized and planned accordingly. Results: The highest-priority climate-sensitive health risks in Pacific island countries included trauma from extreme weather events, heat-related illnesses, compromised safety and security of water and food, vector-borne diseases, zoonoses, respiratory illnesses, psychosocial ill-health, non-communicable diseases, population pressures, and health system deficiencies. Adaptation strategies relating to these climate change and health risks could be clustered according to categories common to many countries in the Pacific region. Conclusion: Pacific island countries are among the most vulnerable in the world to the health impacts of climate change. This vulnerability is a function of their unique geographic, demographic, and socioeconomic characteristics combined with their exposure to changing weather patterns associated with climate change, the health risks entailed, and the limited capacity of the countries to manage and adapt in the face of such risks. Citation: McIver L, Kim R, Woodward A, Hales S, Spickett J, Katscherian D, Hashizume M, Honda Y, Kim H, Iddings S, Naicker J, Bambrick H, McMichael AJ, Ebi KL. 2016. Health impacts of climate change in Pacific island countries: a regional assessment of vulnerabilities and adaptation priorities. Environ Health Perspect 124:1707–1714; http://dx.doi.org/10.1289/ehp.1509756 PMID:26645102
Engineering Technical Support Center Annual Report Fiscal ...
The United States Environmental Protection Agency (EPA or Agency) Office of Research and Development (ORD) created the Engineering Technical Support Center (ETSC) in 1987, one of several technical support centers created as part of the Technical Support Project (TSP). ETSC provides engineering expertise to Agency program and regional offices and remediation teams working at contaminated sites across the country. The ETSC is operated within ORD’s Land Remediation and Pollution Control Division (LRPCD) of the National Risk Management Research Laboratory (NRMRL) in Cincinnati, Ohio. The ETSC’s mission is to provide site-specific scientific and engineering technical support to Remedial Project Managers, On-Scene Coordinators, and other remediation personnel at contaminated sites. This allows local, regional, or national authorities to work more quickly, efficiently, and cost effectively, while also increasing the technical experience of the remediation team. Since its inception, the ETSC has supported countless projects across all EPA Regions in almost all states and territories. This report highlights significant projects the ETSC supported in fiscal year 2015 (FY15). These projects addressed an array of environmental scenarios, such as remote mining contamination, expansive landfill waste, cumulative impacts from multiple contamination sources, and persistent threats from abandoned industrial sites. Constructing and testing new and innovative treatment technol
Hybrid and Online Climate Instruction at Madison Area Technical College
NASA Astrophysics Data System (ADS)
Lindstrom, S. S.; Lazzara, M. A.; Harkey, M. K.; Lynds, S. E.
2012-12-01
A NASA-funded initiative to develop climate instruction to underserved populations, such as those enrolled in Community Colleges, has funded the development of a hybrid and an online class on Climate and Climate Change. We will present here the class structure, topics, results from the first course offering and plans for future improvement, as well as a discussion of differences resulting from course delivery format. Because this class was offered in Wisconsin, some of the readings focused on possible agricultural changes due to changing climate as well as how the climate normals changed this year. The class also sponsored two internships for students at Madison's local Electric/Gas supplier, and how that furthered their education will be discussed as well.
Key factors of low carbon development strategy for sustainable transport
NASA Astrophysics Data System (ADS)
Thaveewatanaseth, K.; Limjirakan, S.
2018-02-01
Cities become more vulnerable to climate change impacts causing by urbanization, economic growth, increasing of energy consumption and carbon dioxide (CO2) emissions. People who live in the cities have already been affected from the impacts in terms of socioeconomic and environmental aspects. Sustainable transport plays the key role in CO2 mitigation and contributes positive impacts on sustainable development for the cities. Several studies in megacities both in developed and developing countries support that mass transit system is an important transportation mode in CO2 mitigation and sustainable transport development. This paper aims to study key factors of low carbon development strategy for sustainable transport. The Bangkok Mass Rapid Transit System (MRT) located in Bangkok was the study area. Data collection was using semi-structured in-depth interview protocol with thirty respondents consisting of six groups i.e. governmental agencies, the MRT operators, consulting companies, international organizations, non-profit organizations, and experts. The research findings highlighted the major factors and supplemental elements composing of institution and technical capacity, institutional framework, policy setting and process, and plan of implementation that would support more effective strategic process for low carbon development strategy (LCDS) for sustainable transport. The study would highly recommend on readiness of institution and technical capacities, stakeholder mapping, high-level decision- makers participation, and a clear direction of the governmental policies that are strongly needed in achieving the sustainable transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-11-01
Many countries around the globe are designing and implementing low emission development strategies (LEDS). These LEDS seek to achieve social, economic, and environmental development goals while reducing long-term greenhouse gas (GHG) emissions and increasing resiliency to climate change impacts. The LEDS Global Partnership (LEDS GP) harnesses the collective knowledge and resources of more than 120 countries and international donor and technical organizations to strengthen climate-resilient low emission development efforts around the world.
From Crew Communication to Coordination: A Fundamental Means to an End
NASA Technical Reports Server (NTRS)
Kanki, Barbara G.; Connors, Mary M. (Technical Monitor)
1998-01-01
This viewgraph presentation describes the purposes and contexts of communication, factors which affect the interpretation of communication, and the advantages of effective, systematic communication to and from crews. Communication accomplishes information transfer, team/task management, shared problem solving and decision making, and establishment of the interpersonal climate. These accomplishments support outcomes: Technical task performance; CRM (crew resource management); Procedures and ATC (air traffic control); and Work/team atmosphere. The presentation lists various types of management inefficiency which can result from a lack of each of the four accomplishments. Communication skills are used within the following contexts: physical; social and organizational; task and operational; and speech and linguistic. Crew communication can be evaluated through investigation (case study), research (experimentation), and training.
Stochastic investigation of precipitation process for climatic variability identification
NASA Astrophysics Data System (ADS)
Sotiriadou, Alexia; Petsiou, Amalia; Feloni, Elisavet; Kastis, Paris; Iliopoulou, Theano; Markonis, Yannis; Tyralis, Hristos; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris
2016-04-01
The precipitation process is important not only to hydrometeorology but also to renewable energy resources management. We use a dataset consisting of daily and hourly records around the globe to identify statistical variability with emphasis on the last period. Specifically, we investigate the occurrence of mean, maximum and minimum values and we estimate statistical properties such as marginal probability distribution function and the type of decay of the climacogram (i.e., mean process variance vs. scale). Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.
A Unified Approach for Reporting ARM Measurement Uncertainties Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, E; Sisterson, DL
The Atmospheric Radiation Measurement (ARM) Climate Research Facility is observationally based, and quantifying the uncertainty of its measurements is critically important. With over 300 widely differing instruments providing over 2,500 datastreams, concise expression of measurement uncertainty is quite challenging. The ARM Facility currently provides data and supporting metadata (information about the data or data quality) to its users through a number of sources. Because the continued success of the ARM Facility depends on the known quality of its measurements, the Facility relies on instrument mentors and the ARM Data Quality Office (DQO) to ensure, assess, and report measurement quality. Therefore,more » an easily-accessible, well-articulated estimate of ARM measurement uncertainty is needed.« less
Do the Math - The Role of Physicists in the Climate Movement
NASA Astrophysics Data System (ADS)
Nesbitt, Nathan
2014-03-01
``It's simple math: we can emit 565 more gigatons of carbon dioxide and stay below 2°C of warming - anything more than that risks catastrophe for life on earth. The only problem? Burning the fossil fuel that corporations now have in their reserves would result in emitting 2,795 gigatons of carbon dioxide - five times the safe amount.\\xE2\\x80[2] Physicists stand in a powerful position to help the world wiggle out of this circumstance: our profession not only has the technical capacity to work on renewable energy development but also is popularly recognized as a source of scientific authority. This ability to influence public perception and politics is arguably even more important than our technological skills in the fight to stop rapid climate change. I will discuss several strategic campaigns presently underway at universities across the country, such as fossil fuel divestment, and how the physics community can become a valuable asset. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).
The ARGO Project: assessing NA-TECH risks on off-shore oil platforms
NASA Astrophysics Data System (ADS)
Capuano, Paolo; Basco, Anna; Di Ruocco, Angela; Esposito, Simona; Fusco, Giannetta; Garcia-Aristizabal, Alexander; Mercogliano, Paola; Salzano, Ernesto; Solaro, Giuseppe; Teofilo, Gianvito; Scandone, Paolo; Gasparini, Paolo
2017-04-01
ARGO (Analysis of natural and anthropogenic risks on off-shore oil platforms) is a 2 years project, funded by the DGS-UNMIG (Directorate General for Safety of Mining and Energy Activities - National Mining Office for Hydrocarbons and Georesources) of Italian Ministry of Economic Development. The project, coordinated by AMRA (Center for the Analysis and Monitoring of Environmental Risk), aims at providing technical support for the analysis of natural and anthropogenic risks on offshore oil platforms. In order to achieve this challenging objective, ARGO brings together climate experts, risk management experts, seismologists, geologists, chemical engineers, earth and coastal observation experts. ARGO has developed methodologies for the probabilistic analysis of industrial accidents triggered by natural events (NA-TECH) on offshore oil platforms in the Italian seas, including extreme events related to climate changes. Furthermore the environmental effect of offshore activities has been investigated, including: changes on seismicity and on the evolution of coastal areas close to offshore platforms. Then a probabilistic multi-risk framework has been developed for the analysis of NA-TECH events on offshore installations for hydrocarbon extraction.
Havermans, Bo M; Boot, Cécile R L; Houtman, Irene L D; Brouwers, Evelien P M; Anema, Johannes R; van der Beek, Allard J
2017-06-08
Health care workers are exposed to psychosocial work factors. Autonomy and social support are psychosocial work factors that are related to stress, and are argued to largely result from the psychosocial safety climate within organisations. This study aimed to assess to what extent the relation between psychosocial safety climate and stress in health care workers can be explained by autonomy and social support. In a cross-sectional study, psychosocial safety climate, stress, autonomy, co-worker support, and supervisor support were assessed using questionnaires, in a sample of health care workers (N = 277). Linear mixed models analyses were performed to assess to what extent social support and autonomy explained the relation between psychosocial safety climate and stress. A lower psychosocial safety climate score was associated with significantly higher stress (B = -0.21, 95% CI = -0.27 - -0.14). Neither co-worker support, supervisor support, nor autonomy explained the relation between psychosocial safety climate and stress. Taken together, autonomy and both social support measures diminished the relation between psychosocial safety climate and stress by 12% (full model: B = -0.18, 95% CI = -0.25 - -0.11). Autonomy and social support together seemed to bring about a small decrease in the relation between psychosocial safety climate and stress in health care workers. Future research should discern whether other psychosocial work factors explain a larger portion of this relation. This study was registered in the Netherlands National Trial Register, trial code: NTR5527 .
NASA Technical Reports Server (NTRS)
Reph, M. G.
1984-01-01
This document provides a summary of information available in the NASA Climate Data Catalog. The catalog provides scientific users with technical information about selected climate parameter data sets and the associated sensor measurements from which they are derived. It is an integral part of the Pilot Climate Data System (PCDS), an interactive, scientific management system for locating, obtaining, manipulating, and displaying climate research data. The catalog is maintained in a machine readable representation which can easily be accessed via the PCDS. The purposes, format and content of the catalog are discussed. Summarized information is provided about each of the data sets currently described in the catalog. Sample detailed descriptions are included for individual data sets or families of related data sets.
Chemical stabilization of subgrade soil for the strategic expeditionary landing field
NASA Astrophysics Data System (ADS)
Conaway, M. H.
1983-06-01
The Strategic Expeditionary Landing Field (SELF) is a military expeditionary-type airfield with an aluminum matted surface that is designed for sustained tactical and cargo airlift operations in an amphibious objective area. Because of the operational traffic parameters such as loads of the various types of aircraft, tire pressures and volume of traffic, a base layer must be constructed over subgrade soil support conditions which may be only marginal. The base layer could be constructed with conventional soil construction techniques (compaction) and yield the required strength. It would be difficult, however, to maintain this strength for the required one-year service life under many climatic conditions due to the degrading effects of water on the support capacity of many soils. Chemical soil stabilization with lime, portland cement and asphalt stabilizing agents could be used to treat the soil. These additives, when properly mixed with certain types of soils, initiate reactions which will increase soil support strength and enhance durability (resistance to the degrading effects of water). Technically, this procedure is quite viable but logistically, it may not be feasible.
A WPS Based Architecture for Climate Data Analytic Services (CDAS) at NASA
NASA Astrophysics Data System (ADS)
Maxwell, T. P.; McInerney, M.; Duffy, D.; Carriere, L.; Potter, G. L.; Doutriaux, C.
2015-12-01
Faced with unprecedented growth in the Big Data domain of climate science, NASA has developed the Climate Data Analytic Services (CDAS) framework. This framework enables scientists to execute trusted and tested analysis operations in a high performance environment close to the massive data stores at NASA. The data is accessed in standard (NetCDF, HDF, etc.) formats in a POSIX file system and processed using trusted climate data analysis tools (ESMF, CDAT, NCO, etc.). The framework is structured as a set of interacting modules allowing maximal flexibility in deployment choices. The current set of module managers include: Staging Manager: Runs the computation locally on the WPS server or remotely using tools such as celery or SLURM. Compute Engine Manager: Runs the computation serially or distributed over nodes using a parallelization framework such as celery or spark. Decomposition Manger: Manages strategies for distributing the data over nodes. Data Manager: Handles the import of domain data from long term storage and manages the in-memory and disk-based caching architectures. Kernel manager: A kernel is an encapsulated computational unit which executes a processor's compute task. Each kernel is implemented in python exploiting existing analysis packages (e.g. CDAT) and is compatible with all CDAS compute engines and decompositions. CDAS services are accessed via a WPS API being developed in collaboration with the ESGF Compute Working Team to support server-side analytics for ESGF. The API can be executed using either direct web service calls, a python script or application, or a javascript-based web application. Client packages in python or javascript contain everything needed to make CDAS requests. The CDAS architecture brings together the tools, data storage, and high-performance computing required for timely analysis of large-scale data sets, where the data resides, to ultimately produce societal benefits. It is is currently deployed at NASA in support of the Collaborative REAnalysis Technical Environment (CREATE) project, which centralizes numerous global reanalysis datasets onto a single advanced data analytics platform. This service permits decision makers to investigate climate changes around the globe, inspect model trends, compare multiple reanalysis datasets, and variability.
Snow Based Winter Tourism and Kinds of Adaptations to Climate Change
NASA Astrophysics Data System (ADS)
Breiling, M.
2009-04-01
Austria is the most intensive winter tourism country in the world with some 4% contribution in the national GNP. Snow based winter tourism became the lead economy of mountain areas, covering two thirds of the country and is by far economically more important than agriculture and forestry. While natural snow was the precondition for the establishment of winter tourism, artificial snow is nowadays the precondition to maintain winter tourism in the current economic intensity. Skiing originally low tech, is developing increasingly into high tech. While skiing was comparatively cheap in previous days due to natural snow, skiing is getting more expensive and exclusive for a higher income class due to the relative high production costs. Measures to adapt to a warmer climate can be divided into three principle types: physical adaptation, technical adaptation - where artificial snow production plays a major role - and social adaptation. It will be discussed under which conditions each adaptation type seems feasible in dependence of the level of warming. In particular physical and technical adaptations are related to major investments. Practically every ski resort has to decide about what is an appropriate, economically cost efficient level of adaptation. Adapting too much reduces profits. Adapting too little does not bring enough income. The optimal level is often not clear. In many cases public subsidies help to collect funds for adaptation and to keep skiing profitable. The possibility to adapt on local, regional or on national scales will depend on the degree of warming, the future price of artificial snow production and the public means foreseen to support the winter tourism industry.
Developing the evidence base for mainstreaming adaptation of stormwater systems to climate change.
Gersonius, B; Nasruddin, F; Ashley, R; Jeuken, A; Pathirana, A; Zevenbergen, C
2012-12-15
In a context of high uncertainty about hydro-climatic variables, the development of updated methods for climate impact and adaptation assessment is as important, if not more important than the provision of improved climate change data. In this paper, we introduce a hybrid method to facilitate mainstreaming adaptation of stormwater systems to climate change: i.e., the Mainstreaming method. The Mainstreaming method starts with an analysis of adaptation tipping points (ATPs), which is effect-based. These are points of reference where the magnitude of climate change is such that acceptable technical, environmental, societal or economic standards may be compromised. It extends the ATP analysis to include aspects from a bottom-up approach. The extension concerns the analysis of adaptation opportunities in the stormwater system. The results from both analyses are then used in combination to identify and exploit Adaptation Mainstreaming Moments (AMMs). Use of this method will enhance the understanding of the adaptive potential of stormwater systems. We have applied the proposed hybrid method to the management of flood risk for an urban stormwater system in Dordrecht (the Netherlands). The main finding of this case study is that the application of the Mainstreaming method helps to increase the no-/low-regret character of adaptation for several reasons: it focuses the attention on the most urgent effects of climate change; it is expected to lead to potential cost reductions, since adaptation options can be integrated into infrastructure and building design at an early stage instead of being applied separately; it will lead to the development of area-specific responses, which could not have been developed on a higher scale level; it makes it possible to take account of local values and sensibilities, which contributes to increased public and political support for the adaptive strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Grimm, Nancy B.; Groffman, Peter M; Staudinger, Michelle D.; Tallis, Heather
2016-01-01
The third United States National Climate Assessment emphasized an evaluation of not just the impacts of climate change on species and ecosystems, but also the impacts of climate change on the benefits that people derive from nature, known as ecosystem services. The ecosystems, biodiversity, and ecosystem services component of the assessment largely drew upon the findings of a transdisciplinary workshop aimed at developing technical input for the assessment, involving participants from diverse sectors. A small author team distilled and synthesized this and hundreds of other technical input to develop the key findings of the assessment. The process of developing and ranking key findings hinged on identifying impacts that had particular, demonstrable effects on the U.S. public via changes in national ecosystem services. Findings showed that ecosystem services are threatened by the impacts of climate change on water supplies, species distributions and phenology, as well as multiple assaults on ecosystem integrity that, when compounded by climate change, reduce the capacity of ecosystems to buffer against extreme events. As ecosystems change, such benefits as water sustainability and protection from storms that are afforded by intact ecosystems are projected to decline across the continent due to climate change. An ongoing, sustained assessment that focuses on the co-production of actionable climate science will allow scientists from a range of disciplines to ascertain the capability of their forecasting models to project environmental and ecological change and link it to ecosystem services; additionally, an iterative process of evaluation, development of management strategies, monitoring, and reevaluation will increase the applicability and usability of the science by the U.S. public.
Flexible Environments for Grand-Challenge Simulation in Climate Science
NASA Astrophysics Data System (ADS)
Pierrehumbert, R.; Tobis, M.; Lin, J.; Dieterich, C.; Caballero, R.
2004-12-01
Current climate models are monolithic codes, generally in Fortran, aimed at high-performance simulation of the modern climate. Though they adequately serve their designated purpose, they present major barriers to application in other problems. Tailoring them to paleoclimate of planetary simulations, for instance, takes months of work. Theoretical studies, where one may want to remove selected processes or break feedback loops, are similarly hindered. Further, current climate models are of little value in education, since the implementation of textbook concepts and equations in the code is obscured by technical detail. The Climate Systems Center at the University of Chicago seeks to overcome these limitations by bringing modern object-oriented design into the business of climate modeling. Our ultimate goal is to produce an end-to-end modeling environment capable of configuring anything from a simple single-column radiative-convective model to a full 3-D coupled climate model using a uniform, flexible interface. Technically, the modeling environment is implemented as a Python-based software component toolkit: key number-crunching procedures are implemented as discrete, compiled-language components 'glued' together and co-ordinated by Python, combining the high performance of compiled languages and the flexibility and extensibility of Python. We are incrementally working towards this final objective following a series of distinct, complementary lines. We will present an overview of these activities, including PyOM, a Python-based finite-difference ocean model allowing run-time selection of different Arakawa grids and physical parameterizations; CliMT, an atmospheric modeling toolkit providing a library of 'legacy' radiative, convective and dynamical modules which can be knitted into dynamical models, and PyCCSM, a version of NCAR's Community Climate System Model in which the coupler and run-control architecture are re-implemented in Python, augmenting its flexibility and adaptability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurancemore » requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.« less
Making Homes Part of the Climate Solution: Policy Options To Promote Energy Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Dr. Marilyn Ann; Chandler, Jess; Lapsa, Melissa Voss
In the area of energy efficiency, advanced technologies combined with best practices appear to afford not only large, but also cost-effective options to conserve energy and reduce greenhouse gas emissions (McKinsey & Company, 2007). In practice, however, the realization of this potential has often proven difficult. Progress appears to require large numbers of individuals to act knowledgeably, and each individual must often act with enabling assistance from others. Even when consumer education is effective and social norms are supportive, the actions of individuals and businesses can be impeded by a broad range of barriers, many of which are non-technical inmore » nature. Title XVI of the Energy Policy Act of 2005 included a mandate to examine barriers to progress and make recommendations in this regard. A detailed report on barriers as well as the National strategy for overcoming barriers met this requirement (Brown et al, 2008; CCCSTI, 2009). Following up on this mandate, the U.S. Climate Change Technology Program (CCTP) chose to focus next on the development of policy options to improve energy efficiency in residential buildings, with supporting analysis of pros and cons, informed in part by behavioral research. While this work is sponsored by CCTP, it has been undertaken in coordination with DOE's Building Technologies Program and Office of Electricity Delivery and Energy Reliability.« less
The Five Attributes of a Supportive Midwifery Practice Climate: A Review of the Literature.
Thumm, E Brie; Flynn, Linda
2018-01-01
A supportive work climate is associated with decreased burnout and attrition, and increased job satisfaction and employee health. A review of the literature was conducted in order to determine the unique attributes of a supportive practice climate for midwives. The midwifery literature was reviewed and synthesized using concept analysis technique guided by literature from related professions. The search was conducted primarily in PubMed, CINAHL, Web of Science, and Google Scholar. Articles were included if they were conducted between 2006 and 2016 and addressed perceptions of the midwifery practice climate as it related to patient, provider, and organizational outcomes. The literature identified 5 attributes consistent with a supportive midwifery practice climate: effective leadership, adequate resources, collaboration, control of one's work, and support of the midwifery model of care. Effective leadership styles include situational and transformational, and 9 traits of effective leaders are specified. Resources consist of time, personnel, supplies, and equipment. Collaboration encompasses relationships with all members of the health care team, including midwives inside and outside of one's practice. Additionally, the patients are considered collaborating members of the team. Characteristics of effective collaboration include a shared vision, role clarity, and respectful communication. Support for the midwifery model of care includes value congruence, developing relationships with women, and providing high-quality care. The attributes of a supportive midwifery practice climate are generally consistent with theoretical models of supportive practice climates of advanced practice nurses and physicians, with the exception of a more inclusive definition of collaboration and support of the midwifery model of care. The proposed Midwifery Practice Climate Model can guide instrument development, determining relationships between the attributes of the practice climate and outcomes, and creating interventions to improve the practice climate, workforce stability, and patient outcomes. © 2018 by the American College of Nurse-Midwives.
Engineering Technical Support Center (ETSC)
ETSC is EPA’s technical support and resource centers responsible for providing specialized scientific and engineering support to decision-makers in the Agency’s ten regional offices, states, communities, and local businesses.
EPA's Office of Research and Development is responsible to EPA's Office of Solid Waste to provide research and technical support for waste site closures and the development of technical guidance in support of environmental regulations and programmatic policies. ORD is also respo...
Space Environments and Spacecraft Effects Organization Concept
NASA Technical Reports Server (NTRS)
Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope of the TWGs and their relationship to the functional areas, and discuss an organizational structure for this space environments and spacecraft effects organization.
An Overview of the Space Environments and Spacecraft Effects Organization Concept
NASA Technical Reports Server (NTRS)
Edwards, David L.; Burns, Howard D.; Garrett, Henry B.; Miller, Sharon K.; Peddie, Darilyn; Porter Ron; Spann, James F.; Xapsos, Michael A.
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore our Earth, and the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge on the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments fields that will serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environment and spacecraft effects (SESE) organization. This SESE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems, and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system, and system-level response to the space environment and include the selection and testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope and purpose of the space environments and spacecraft effects organization and describe the TWG's and their relationship to the functional areas.
2000-04-01
AD Award Number: DAMD17-98-2-8012 TITLE: Technical Assistance and Program Support; DOD Historical Black Colleges and Universities and Minority...2000 3. REPORT TYPE AND DATES COVERED Annual (1 May 99 - 30 Apr 00): 4. TITLE AND SUBTITLE Technical Assistance and Program Support; DOD...UNCF’s Infrastructure Development Assistance Program (IDAP) has been involved myriad of tasks to support the Department of Defense’s interest to
The National Climate Assessment as a Resource for Science Communication
NASA Astrophysics Data System (ADS)
Somerville, R. C. J.
2014-12-01
The 2014 Third National Climate Assessment (NCA3) is scientifically authoritative and features major advances, relative to other assessments produced by several organizations. NCA3 is a valuable resource for communicating climate science to a wide variety of audiences. Other assessments were often overly detailed and laden with scientific jargon that made them appear too complex and technical to many in their intended audiences, especially policymakers, the media, and the broad public. Some other assessments emphasized extensive scientific caveats, quantitative uncertainty estimates and broad consensus support. All these attributes, while valuable in research, carry the risk of impeding science communication to non-specialists. Without compromising scientific accuracy and integrity, NCA3 is written in exceptionally clear and vivid English. It includes outstanding graphics and employs powerful techniques aimed at conveying key results unambiguously to a wide range of audiences. I have used NCA3 as a resource in speaking about climate change in three very different settings: classroom teaching for undergraduate university students, presenting in academia to historians and other non-scientists, and briefing corporate executives working on renewable energy. NCA3 proved the value of developing a climate assessment with communication goals and strategies given a high priority throughout the process, not added on as an afterthought. I draw several lessons. First, producing an outstanding scientific assessment is too complex and demanding a task to be carried out by scientists alone. Many types of specialized expertise are also needed. Second, speaking about science to a variety of audiences requires an assortment of communication skills and tools, all tailored to specific groups of listeners. Third, NCA3 is scientifically impeccable and is also an outstanding example of effective communication as well as a valuable resource for communicators.
77 FR 40026 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... and contractor logistics, Quality Assurance Team support services, engineering and technical support..., engineering and technical support, and other related elements of program support. The estimated cost is $49..., maintenance, or training is Confidential. Reverse engineering could reveal Confidential information...
energy solutions for emission mitigation, international climate change strategies, and renewable energy technical decision making. Andrea's expertise lies in strategic planning, change strategies, and decision
48 CFR 2052.215-75 - Proposal presentation and format.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., i.e., competitive vs. noncompetitive, and the cost evaluation. (c) “Written Technical and Management... * copies. (1) The written Technical and Management Proposal or Oral Presentation and Supporting... objectives of this procurement. (3) The written Technical Proposal or Oral Presentation and Supporting...
Chilenski, Sarah M.; Perkins, Daniel F.; Olson, Jonathan; Hoffman, Lesa; Feinberg, Mark E.; Greenberg, Mark; Welsh, Janet; Crowley, D. Max; Spoth, Richard
2015-01-01
Background Historically, effectiveness of community collaborative prevention efforts has been mixed. Consequently, research has been undertaken to better understand the factors that support their effectiveness; theory and some related empirical research suggests that the provision of technical assistance is one important supporting factor. The current study examines one aspect of technical assistance that may be important in supporting coalition effectiveness, the collaborative relationship between the technical assistance provider and site lead implementer. Methods Four and one-half years of data were collected from technical assistance providers and prevention team members from the 14 community prevention teams involved in the PROSPER project. Results Spearman correlation analyses with longitudinal data show that the levels of the collaborative relationship during one phase of collaborative team functioning associated with characteristics of internal team functioning in future phases. Conclusions Results suggest that community collaborative prevention work should consider the collaborative nature of the technical assistance provider – prevention community team relationship when designing and conducting technical assistance activities, and it may be important to continually assess these dynamics to support high quality implementation. PMID:26476860
2005 v4.2 Technical Support Document
Technical Support Document for the Final Transport Rule describes how updated 2005 NEI, version 2 emissions and were processed for air quality modeling in support of the Cross-state Air Pollution Rule (CSAPR).
NASA Astrophysics Data System (ADS)
Mueller, J. A.; Runci, P. J.
2009-12-01
The recent passage of the American Climate and Energy Security Act by the U.S. House of Representatives in June of this year was a landmark in U.S. efforts to move climate change legislation through Congress. Although an historic achievement, the bill (and surrounding debate) highlights many concerns about the processes by which lawmakers and the public inform themselves about scientifically relevant problems and, subsequently, by which policy responses are crafted in a context of complexity, uncertainty, and competition for resources and attention. In light of the ever-increasing specialization of expertise in the sciences and other technical fields, and the inherent complexity of scientifically relevant problems such as climate change, society faces significant hurdles in its efforts to integrate knowledge and develop sufficient understanding of these problems to which it must respond with legislation or other effective collective or individual action. The emergence of a new class of experts who act as science-policy brokers may not be sufficient to cross these hurdles. Herein, we explore how society and the scientific community in particular can work toward closing the ever-growing gap between technical knowledge and society’s ability to comprehend and use it. Both authors are currently legislative fellows working on energy and climate change issues in the U.S. Senate.
Augmenting your own reality: student authoring of science-based augmented reality games.
Klopfer, Eric; Sheldon, Josh
2010-01-01
Augmented Reality (AR) simulations superimpose a virtual overlay of data and interactions onto a real-world context. The simulation engine at the heart of this technology is built to afford elements of game play that support explorations and learning in students' natural context--their own community and surroundings. In one of the more recent games, TimeLab 2100, players role-play citizens of the early 22nd century when global climate change is out of control. Through AR, they see their community as it might be nearly one hundred years in the future. TimeLab and other similar AR games balance location specificity and portability--they are games that are tied to a location and games that are movable from place to place. Focusing students on developing their own AR games provides the best of both virtual and physical worlds: a more portable solution that deeply connects young people to their own surroundings. A series of initiatives has focused on technical and pedagogical solutions to supporting students authoring their own games.
ERIC Educational Resources Information Center
Morrison, Julie Q.; Russell, Christine; Dyer, Stephanie; Metcalf, Terri; Rahschulte, Rebecca L.
2014-01-01
Despite the national proliferation of technical assistance as a driver for school reform and as a model for embedded and sustained professional development, very little is known about the organizational structures and processes needed to support technical assistance. The purpose of this paper is to describe a structured needs assessment process…
A climate robust integrated modelling framework for regional impact assessment of climate change
NASA Astrophysics Data System (ADS)
Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet
2013-04-01
Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change scenarios developed by KNMI for precipitation and reference evapotranspiration according to Penman-Monteith. Special focus in the project was on the role of uncertainty. How valid is the information that is generated by this modelling framework? What are the most important uncertainties of the input data, how do they affect the results of the model chain and how can the uncertainties of the data, results, and model concepts be quantified and communicated? Besides these technical issues, an important part of the study was devoted to the perception of stakeholders. Stakeholder analysis and additional working sessions yielded insight into how the models, their results and the uncertainties are perceived, how the modelling framework and results connect to the stakeholders' information demands and what kind of additional information is needed for adequate support on decision making.
NCAR CSM ocean model by the NCAR oceanography section. Technical note
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This technical note documents the ocean component of the NCAR Climate System Model (CSM). The ocean code has been developed from the Modular Ocean Model (version 1.1) which was developed and maintained at the NOAA Geophysical Fluid Dynamics Laboratory in Princeton. As a tribute to Mike Cox, and because the material is still relevant, the first four sections of this technical note are a straight reproduction from the GFDL Technical Report that Mike wrote in 1984. The remaining sections document how the NCAR Oceanography Section members have developed the MOM 1.1 code, and how it is forced, in order tomore » produce the NCAR CSM Ocean Model.« less
Minnesota Deaf-Blind Technical Assistance Project. Final Report.
ERIC Educational Resources Information Center
Kloos, Eric
This final report describes activities and accomplishments of the 3-year federally supported Minnesota Deaf-Blind Technical Assistance Project. The project provided training and technical assistance, information sharing, and support services to families of children with deaf-blindness. Activities and accomplishments included: collaboration with…
76 FR 69612 - Amendment to the International Traffic in Arms Regulations: Sudan
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... related technical training and assistance to monitoring, verification, or peace support operations... uses, and related technical training and assistance; (3) personal protective gear for the personal use... technical training and assistance to monitoring, verification, or peace support operations, including those...
75 FR 12740 - Wyoming Interstate Company, Inc.; Notice of Technical Conference
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... additional technical, engineering, and operational support for its proposed gas quality allocation procedures... should be prepared to support its position with adequate technical, engineering, and operational information. FERC conferences are accessible under section 508 of the Rehabilitation Act of 1973. For...
DCERP Annual Technical Report 4: March 2010 - February 2011
2011-05-01
of monitoring may be necessary to fully characterize and model the impact of major climatic events (e.g., tropical cyclones, major droughts ) and...stressors (past, present, and future) at local and regional scales; take account of extreme climatic events (e.g., hurricanes, droughts ); and integrate...the longleaf pine ( Pinus palustris), savannas, and pocosins (shrub bog) that dominate MCBCL’s terrestrial environments. Variation in the biota and
The Role of the Technical Specialist in Disaster Response and Recovery
NASA Astrophysics Data System (ADS)
Curtis, J. C.
2017-12-01
Technical Specialists provide scientific expertise for making operational decisions during natural hazards emergencies. Technical Specialists are important members of any Incident Management Team (IMT) as is described in in the National Incident Management System (NIMS) that has been designed to respond to emergencies. Safety for the responders and the threatened population is the foremost consideration in command decisions and objectives, and the Technical Specialist is on scene and in the command post to support and promote safety while aiding decisions for incident objectives. The Technical Specialist's expertise can also support plans, logistics, and even finance as well as operations. This presentation will provide actual examples of the value of on-scene Technical Specialists, using National Weather Service "Decision Support Meteorologists" and "Incident Meteorologists". These examples will demonstrate the critical role of scientists that are trained in advising and presenting life-critical analysis and forecasts during emergencies. A case will be made for local, state, and/or a national registry of trained and deployment-ready scientists that can support emergency response.
City-integrated renewable energy for urban sustainability.
Kammen, Daniel M; Sunter, Deborah A
2016-05-20
To prepare for an urban influx of 2.5 billion people by 2050, it is critical to create cities that are low-carbon, resilient, and livable. Cities not only contribute to global climate change by emitting the majority of anthropogenic greenhouse gases but also are particularly vulnerable to the effects of climate change and extreme weather. We explore options for establishing sustainable energy systems by reducing energy consumption, particularly in the buildings and transportation sectors, and providing robust, decentralized, and renewable energy sources. Through technical advancements in power density, city-integrated renewable energy will be better suited to satisfy the high-energy demands of growing urban areas. Several economic, technical, behavioral, and political challenges need to be overcome for innovation to improve urban sustainability. Copyright © 2016, American Association for the Advancement of Science.
Scaffolding Collaborative Technical Writing with Procedural Facilitation and Synchronous Discussion
ERIC Educational Resources Information Center
Yeh, Shiou-Wen; Lo, Jia-Jiunn; Huang, Jeng-Jia
2011-01-01
With the advent of computer technology, researchers and instructors are attempting to devise computer support for effective collaborative technical writing. In this study, a computer-supported environment for collaborative technical writing was developed. This system (Process-Writing Wizard) provides process-oriented scaffolds and a synchronous…
Quantitative Assessment of Temperature Sensitivity of the ...
The Total Maximum Daily Load (TMDL) program, established by the Clean Water Act, is used to establish limits on loading of pollutants from point and nonpoint sources necessary to achieve water quality standards. One important use of a temperature TMDL is to allocate thermal loads to achieve water temperature criteria established for the protection of cold water fisheries. The pollutant in this case is thermal load and allocations to reduce the load often involve restoration of stream shading, which reduces the solar input. While many temperature TMDLs have been established, the supporting analyses have generally assumed a stationary climate under which historical data on flow and air temperature can serve as an adequate guide to future conditions. Projected changes in climate over the 21st century contradict this assumption. Air temperature is expected to increase in most parts of the US, accompanied in many areas by seasonal shifts in the timing and amount of precipitation, which in turn will alter stream flow. This study evaluates the implications of climate change for the water temperature TMDL developed for the South Fork Nooksack River in northwest Washington by the Department of Ecology, where multiple water body segments exceed temperature criteria established for the protection of cold water salmonid populations (Ecology, 2016). The purpose of this report is to provide a “companion technical methods manual” as documentation for the draft SFNR tempera
Limiting climate change: what’s most worth doing?
NASA Astrophysics Data System (ADS)
Stern, Paul C.; Wolske, Kimberly S.
2017-09-01
Wynes and Nicholas (2017 Environ. Res. Lett. 12 074024) claim that some of the most important actions individuals can take to mitigate climate change have been overlooked, particularly in educational messages for adolescents, and estimate the potential impact of some of these, including having fewer children and living car free. These estimates raise questions that deserve serious analysis, but they are based only on the technical potential of the actions and do not consider the plasticity of the behaviors and the feasibility of policies to support them. The actions identified as having the greatest potential are lifestyle changes that accrue benefits over a lifetime or longer, so are not realistic alternatives to actions that can be enacted immediately. But presenting lifestyle choices and the relative impacts of different actions as discussion starters for adolescents could be promising, especially if the discussions highlight issues of behavioral plasticity, policy plasticity, and time scale. Research has identified design principles for interventions to achieve the strongest emissions reductions at time scales up to the decadal. Design principles for achieving longer-lasting changes deserve careful analytic attention, as well as a stronger focus in adolescent textbooks and messages to the general population. Both adolescents and researchers would do well to think carefully about what could promote the generational changes needed to reach a climate change target such as ‘well below 2 °C’.
A climate analysis using CORDEX simulations in a cooperation framework: the case of Paraguay
NASA Astrophysics Data System (ADS)
Mercogliano, Paola; Bucchignani, Edoardo; Ciervo, Fabio; Montesarchio, Myriam; Zollo, Alessandra Lucia; Villani, Veronica; Barbato, Giuliana; Vendemia, Rosalba; Polato, Raul; Baez, Julian; Pasten, Max
2017-04-01
In recent years, changes in climate have entailed variations in surface temperature and precipitation patterns in various countries of the South America, among which Paraguay. Climate change-attributed effects on weather impacts, such as river and urban floods, droughts and heat waves could severely affect the actual conditions of the country. In fact, Paraguay exhibits significant vulnerabilities to climate changes, especially because of its dependence on commodities production (e.g. agriculture, livestock, etc.) and its infrastructural and logistic asset not yet fully formed. In this context, climate change analysis can be an important technical support for practitioners to assist - under uncertainty - national/regional planning, financial resources managing and development (e.g. land-use practices, population growth, economic and community behavior, health, etc.). Moreover, actions in adaptation, disaster risk reduction (DRR), social protection and impacts mitigation may involve high costs if not properly contextualized. The assessment of 21st century climate change and development of whatever response strategies requires climate scenarios at high resolution, including an accurate evaluation of projection uncertainties (i.e. robustness of the analysis). This should ensure adequate insights into the potential impacts of climate change and allow practitioners, usually ill equipped to consider uncertain climate outputs into a broader context (e.g. planning, designing, managing), to make appropriate choices. In the framework of CORDEX initiative, Paraguay is included into the SOUTH-AMERICA-CORDEX one. Three climate simulations over this area are available at the spatial resolution of 0.44° (about 50km), obtained with RCM SMHI-RCA4 (forced by GCMs ICHEC-EC-EARTH and MPI-M-MPI-ESM-LR) and RCM MPI-CSC-REMO2009 (forced by MPI-M-MPI-ESM-LR). Simulations over the 21st century have been performed according with IPCC RCP2.6, RCP4.5 and RCP8.5 scenarios. The plausibility of the acquired climate simulations has been determined by comparison with different observational datasets over the baseline period. Three future periods have been selected for the analysis: 2011-2040, 2041-2070 and 2071-2100. The analysis is carried out in order to address the mean changes in seasonal mean temperature and total precipitation, and of some indicators suitable to quantify the impact of climate extreme events. The analysis is performed in the framework of the Chake Ou project "Strengthening of institutional and community preparedness and coordination capacities for disaster risk reduction in Paraguay" funded by the European Commission's Humanitarian Aid and Civil Protection Department (ECHO), in the context of the Disaster Preparedness Action Plan (DIPECHO) (code ECHO/-SM/BUD/2015/91028). The partners of the project are COOPI (a humanitarian, no-confessional and independent organization that works to support civil, economic and social development of populations struck by emergencies (disasters and conflicts), PLAN International (a child-centered community development organization) and CMCC Foundation (Euro-Mediterranean Center on Climate Change). The consortium works in close collaboration with the local institutions such as the Secretaria de Emergencia Nacional (SEN) and the Dirección de Meteorología e Hidrología (DMH - DINAC).
USACE AIS Transmit Technical Support Summary Report
2014-09-01
the TAG block for the correct transmitters, and then send to the USACE AIS network. B. Outbound openings in the USCG firewall for the USCG Message...USACE AIS Transmit Technical Support Summary Report Distribution Statement A: Approved for public release; distribution is unlimited...September 2014 Report No. CD-D-09-15 USACE AIS Transmit Technical Support Summary Report ii UNCLAS//Public | CG-926 RDC | I. Gonin et al. Public
An Alternative to EPA Method 9 -- Field Validation of the Digital Opacity Compliance System (DOCS)
2005-03-15
at the completion of the Phase I and Phase II DOCS field demonstration. These included the following 1) anemometer, 2) sling psychrometer , 3) Abney...anemometer (Eastern Technical Associates, Inc.) Sky conditions Visual observation Relative Humidity Sling Psychrometer (Eastern Technical Associates...least have access to a range of climatic monitoring equipment including the following 1) anemometer, 2) sling psychrometer , 3) Abney Level (sun angle
Transforming South-South technical support to fight noncommunicable diseases.
Shakow, Aaron D A; Bukhman, Gene; Adebona, Olumuyiwa; Greene, Jeremy; de Dieu Ngirabega, Jean; Binagwaho, Agnès
2012-03-01
At the UN High-Level Meeting on non-communicable diseases (NCD) in September 2011, each member state was challenged to create a multisectoral national policy and plan for the prevention and control of non-communicable disease by 2013. Few low-income countries, however, currently have such plans. Their governments are likely to turn for assistance in drafting and implementation to multilateral agencies and Contract Technical Support Organizations recommended by development partners. Yet because many NCD seen in the lowest-income countries differ significantly from those prevalent elsewhere, existing providers of external technical support may lack the necessary experience to support strategic planning for NCD interventions in these settings. This article reviews currently available mechanisms of technical support for health sector planning. It places them in the broader historical context of post- World War II international development assistance and the more recent campaigns for horizontal "South-South" cooperation and aid effectiveness. It proposes bilateral technical assistance by low income-countries themselves as the natural evolution of development assistance in health. Such programs, it argues, may be able to improve the quality of technical support to low-income countries for strategic planning in the NCD area while directing resources to the regions where they are most needed. Copyright © 2012 World Heart Federation (Geneva). Published by Elsevier B.V. All rights reserved.
A Theory of Sex Differences in Technical Aptitude and Some Supporting Evidence.
Schmidt, Frank L
2011-11-01
In this article, I present a theory that explains the origin of sex differences in technical aptitudes. The theory takes as proven that there are no sex differences in general mental ability (GMA), and it postulates that sex differences in technical aptitude (TA) stem from differences in experience in technical areas, which is in turn based on sex differences in technical interests. Using a large data set, I tested and found support for four predictions made by this theory: (a) the construct level correlation between technical aptitude and GMA is larger for females than males, (b) the observed and true score variability of technical aptitude is greater among males than females, (c) at every level of GMA females have lower levels of technical aptitude, and (d) technical aptitude measures used as estimates of GMA for decision purposes would result in underestimation of GMA levels for girls and women. Given that GMA carries the weight of prediction of job performance, the support found for this last prediction suggests that, for many jobs, technical aptitude tests may underpredict the job performance of female applicants and employees. Future research should examine this question. © Association for Psychological Science 2011.
States at Risk: America's Preparedness Report Card
NASA Astrophysics Data System (ADS)
Yu, R. M. S.; Strauss, B.; Kulp, S. A.; Bronzan, J.; Rodehorst, B.; Bhat, C.; Dix, B.; Savonis, M.; Wiles, R.
2015-12-01
Many states are already experiencing the costly impacts of extreme climate and weather events. The occurrence, frequency and intensity of these events may change under future climates. Preparing for these changes takes time, and state government agencies and communities need to recognize the risks they could potentially face and the response actions already undertaken. The States at Risk: America's Preparedness Report Card project is the first-ever study that quantifies five climate-change-driven hazards, and the relevant state government response actions in each of the 50 states. The changing characteristics of extreme heat, drought, wildfires, inland and coastal flooding were assessed for the baseline period (around year 2000) through the years 2030 and 2050 across all 50 states. Bias-corrected statistically-downscaled (BCSD) climate projections (Reclamation, 2013) and hydrology projections (Reclamation, 2014) from the Coupled Model Intercomparison Project phase 5 (CMIP5) under RCP8.5 were used. The climate change response action analysis covers five critical sectors: Transportation, Energy, Water, Human Health and Communities. It examined whether there is evidence that the state is taking action to (1) reduce current risks, (2) raise its awareness of future risks, (3) plan for adaptation to the future risks, and (4) implement specific actions to reduce future risks for each applicable hazards. Results from the two analyses were aggregated and translated into a rating system that standardizes assessments across states, which can be easily understood by both technical and non-technical audiences. The findings in this study not only serve as a screening tool for states to recognize the hazards they could potentially face as climate changes, but also serve as a roadmap for states to address the gaps in response actions, and to improve climate preparedness and resilience.
GROUND WATER TECHNICAL SUPPORT CENTER
EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...
2005 v4.3 Technical Support Document
Emissions Modeling for the Final Mercury and Air Toxics Standards Technical Support Document describes how updated 2005 NEI, version 2 emissions were processed for air quality modeling in support of the final Mercury and Air Toxics Standards (MATS).
[Stability of disintegration in health food].
Ma, Lan; Zhao, Xin; Zhou, Shuang; Yang, Dajin
2012-11-01
To study the change of disintegration of different formulation samples which stored in the artificial climate box or room temperature and provide the technical support for health food monitoring. According to the method of Chinese Pharmacopoeia and British Pharmacopoeia. Appendix XII A. Disintegration 2010. Disintegration of the non-accelerate, accelerated after 1, 2 and 3 months samples were determined by the disintegrator, respectively. Sample properties, the ingredients of the samples, the proportions of the capsule and treatment methods have some effect on the stability of the disintegration. The disintegration time of health food will be changed particularly after they were accelerated under the condition of (38 +/- 1) degrees C/75% RH. Especially the disintegration time of soft capsules were significantly prolonged. The composition and properties of samples were the main factors that affected the disintegration.
Atmospheric Research 2012 Technical Highlights
NASA Technical Reports Server (NTRS)
Lau, William K -M.
2013-01-01
This annual report, as before, is intended for a broad audience. Our readers include colleagues within NASA, scientists outside the Agency, science graduate students, and members of the general public. Inside are descriptions of atmospheric research science highlights and summaries of our education and outreach accomplishments for calendar year 2012.The report covers research activities from the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office under the Office of Deputy Director for Atmospheres, Earth Sciences Division in the Sciences and Exploration Directorate of NASAs Goddard Space Flight Center. The overall mission of the office is advancing knowledge and understanding of the Earths atmosphere. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential to our continuing research.
NASA Astrophysics Data System (ADS)
Yakunin, A. G.; Hussein, H. M.
2017-08-01
An example of information-measuring systems for climate monitoring and operational control of energy resources consumption of the university campus that is functioning in the Altai State Technical University since 2009. The advantages of using such systems for studying various physical processes are discussed. General principles of construction of similar systems, their software, hardware and algorithmic support are considered. It is shown that their fundamental difference from traditional SCADA - systems is the use of databases for storing the results of the observation with a specialized data structure, and by preprocessing of the input signal for its compression. Another difference is the absence of clear criteria for detecting the anomalies in the time series of the observed process. The examples of algorithms that solve this problem are given.
Differentiated Technical Assistance for Sustainable Transformation. Technical Assistance Brief #2
ERIC Educational Resources Information Center
McCart, Amy; McSheehan, Michael; Sailor, Wayne
2015-01-01
Schoolwide Integrated Framework for Transformation (SWIFT) Center's technical assistance process supports states, districts, and schools as they become excellent and equitable teaching and learning environments for "all" students. Each school with support from its district begins this process from its own starting point and travels its…
31 CFR 543.301 - Arms or any related materiel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... solely for humanitarian or protective use, and related technical assistance and training; (c) Supplies of... of arms and related materiel and technical training and assistance intended solely for support of or... technical assistance intended solely for the support of or use by the United Nations Operation in Côte d...
31 CFR 547.301 - Arms or any related materiel.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Supplies of arms and related materiel, technical training, and assistance intended solely for support of or... of arms and related materiel, technical training, and assistance described in paragraphs (a)(1... technical training and assistance intended solely for support of or use by MONUC; (c) Supplies of non-lethal...
Feldman, Lauren; Hart, P Sol
2018-03-01
Using a national sample, this study experimentally tests the effects of news visuals and texts that emphasize either the causes and impacts of climate change or actions that can be taken to address climate change. We test the effects of variations in text and imagery on discrete emotions (i.e., hope, fear, and anger) and, indirectly, on support for climate mitigation policies. Political ideology is examined as a moderator. The findings indicate that news images and texts that focus on climate-oriented actions can increase hope and, in the case of texts, decrease fear and anger, and these effects generally hold across the ideological spectrum. In turn, the influence of emotions on policy support depends on ideology: Hope and fear increase support for climate policies for all ideological groups but particularly conservatives, whereas anger polarizes the opinions of liberals and conservatives. Implications for climate change communication that appeals to emotions are discussed. © 2017 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Klasic, M. R.; Ekstrom, J.; Bedsworth, L. W.; Baker, Z.
2017-12-01
Extreme events such as wildfires, droughts, and flooding are projected to be more frequent and intense under a changing climate, increasing challenges to water quality management. To protect and improve public health, drinking water utility managers need to understand and plan for climate change and extreme events. This three year study began with the assumption that improved climate projections were key to advancing climate adaptation at the local level. Through a survey (N = 259) and interviews (N = 61) with California drinking water utility managers during the peak of the state's recent drought, we found that scientific information was not a key barrier hindering adaptation. Instead, we found that managers fell into three distinct mental models based on their interaction with, perceptions, and attitudes, towards scientific information and the future of water in their system. One of the mental models, "modeled futures", is a concept most in line with how climate change scientists talk about the use of information. Drinking water utilities falling into the "modeled future" category tend to be larger systems that have adequate capacity to both receive and use scientific information. Medium and smaller utilities in California, that more often serve rural low income communities, tend to fall into the other two mental models, "whose future" and "no future". We show evidence that there is an implicit presumption that all drinking water utility managers should strive to align with "modeled future" mental models. This presentation questions this assumption as it leaves behind many utilities that need to adapt to climate change (several thousand in California alone), but may not have the technical, financial, managerial, or other capacity to do so. It is clear that no single solution or pathway to drought resilience exists for water utilities, but we argue that a more explicit understanding and definition of what it means to be a resilient drinking water utility is necessary. By highlighting, then questioning, the assumption that all utility managers should strive to have "modeled future" mentalities, this presentation seeks to foster an open dialogue around which pathway or pathways are most feasible for supporting drinking water utility managers planning for climate change.
Making climate change tangible for strategic adaptation planning: The Climate Corridor Approach
NASA Astrophysics Data System (ADS)
Orlowsky, Boris; Calanca, Pierluigi; Ali, Irshad; Ali, Jawad; Elguera Hilares, Agustin; Huggel, Christian; Khan, Inamullah; Neukom, Raphael; Nizami, Arjumand; Qazi, Muhammad Abbas; Robledo, Carmenza; Rohrer, Mario; Salzmann, Nadine; Schmidt, Kaspar
2017-04-01
Climate change is a global phenomenon and difficult to grasp. Although its importance is generally acknowledged, impacts of (future) climate change on human activities are in many cases not taken into account explicitly, in particular when planning development projects. This is due to technical and conceptual challenges, missing financial and human resources and competing priorities. Neglecting climate change can become problematic, if a proposed activity requires specific climatological conditions under which it becomes feasible, a simple example being crop cultivation that needs certain temperature an d precipitation ranges. Comparing such ``climate corridors'' to future climate projections provides an intuitive and low-cost yet quantitative means for assessing needs for, and viability of, adaptation activities under climate change - a "poor man's approach" to climate suitability analysis. A chief advantage of this approach is its modest demand on data. Three case studies from Pakistan, Peru and Tajikistan show that climate corridor analysis can deliver robust results and can be used to efficiently communicate risks and challenges of climate change to partners and stakeholders in the developing countries.
National Satellite Land Monitoring Systems for REDD+ : the UN-REDD support to countries
NASA Astrophysics Data System (ADS)
Jonckheere, I. G. C.
2015-12-01
REDD+, which stands for 'Reducing Emissions from Deforestation and Forest Degradation in Developing Countries' - is a climate mitigation effort and aims to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. The UN-REDD Programme, a collaborative partnership between FAO, UNDP and UNEP launched in September 2008, supports nationally-led REDD+ processes and promotes the imeaningful involvement of all stakeholders, including Indigenous Peoples and other forest-dependent communities, in national and international REDD+ implementation.The Programme supports national REDD+ readiness efforts in partner countries spanning Africa, Asia-Pacific and Latin America, in two ways: (i) direct support to the design and implementation of UN-REDD National Programmes; and (ii) complementary support to national REDD+ action through common approaches, analyses, methodologies, tools, data and best practices. The UN-REDD Programme currently supports 62 partner countries. The UN-REDD Programme gathers technical teams from around the world to develop common approaches, analyses and guidelines on issues such as measurement, reporting and verification (MRV) of carbon emissions and flows, remote sensing, and greenhouse gas inventories. Within the partnership, FAO supports countries on technical issues related to forestry and the development of cost effective and credible MRV processes for emission reductions. While at the international level, it fosters improved guidance on MRV approaches, including consensus on principles and guidelines for MRV and training programmes. It provides guidance on how best to design and implement REDD, to ensure that forests continue to provide multiple benefits for livelihoods and biodiversity to societies while storing carbon at the same time. Other areas of work include national forest assessments and monitoring of in-country policy and institutional change. The outcomes about the role of satellite remote sensing technologies as a tool for national monitoring under the REDD+ mechanism are here presented. Some specific country examples will be shown and the current use(fulness) of radar and high resolution data is discussed.
NASA Astrophysics Data System (ADS)
Kindermann, Stephan; Berger, Katharina; Toussaint, Frank
2014-05-01
The integration of well-established legacy data centers into newly developed data federation infrastructures is a key requirement to enhance climate data access based on widely agreed interfaces. We present the approach taken to integrate the ICSU World Data Center for Climate (WDCC) located in Hamburg, Germany into the European ENES climate data Federation which is part of the international ESGF data federation. The ENES / ESGF data federation hosts petabytes of climate model data and provides scalable data search and access services across the worldwide distributed data centers. Parts of the data provided by the ENES / ESGF data federation is also long term archived and curated at the WDCC data archive, allowing e.g. for DOI based data citation. An integration of the WDCC into the ENES / ESGF federation allows end users to search and access WDCC data using consistent interfaces worldwide. We will summarize the integration approach we have taken for WDCC legacy system and ESGF infrastructure integration. On the technical side we describe the provisioning of ESGF consistent metadata and data interfaces as well as the security infrastructure adoption. On the non-technical side we describe our experiences in integrating a long-term archival center with costly quality assurance procedures with an integrated distributed data federation putting emphasis on providing early and consistent data search and access services to scientists. The experiences were gained in the process of curating ESGF hosted CMIP5 data at the WDCC. Approximately one petabyte of CMIP5 data which was used for the IPCC climate report is being replicated and archived at the WDCC.
Air Quality Modeling Technical Support Document for the Final Cross State Air Pollution Rule Update
In this technical support document (TSD) we describe the air quality modeling performed to support the final Cross State Air Pollution Rule for the 2008 ozone National Ambient Air Quality Standards (NAAQS).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... Number 0750-AG38 Defense Federal Acquisition Regulation Supplement; Government Support Contractor Access... Government support contractors to have access to proprietary technical data belonging to prime contractors and other third parties, provided that the technical data owner may require the support contractor to...
NASA Astrophysics Data System (ADS)
Powers, S. E.; DeWaters, J.; Dhaniyala, S.
2015-12-01
Engineers must take a leading role in addressing the challenges of mitigating climate change and adapting to the inevitable changes that our world is facing. Yet climate change classes targeting engineering students are scarce. Technical education must focus on the problem formulation and solutions that consider multiple, complex interactions between engineered systems and the Earth's climate system and recognize that transformation raises societal challenges, including trade-offs among benefits, costs, and risks. Moreover, improving engineering students' climate science literacy will require strategies that also inspire students' motivation to work toward their solution. A climate science course for engineers has been taught 5 semesters as part of a NASA Innovations in Climate Education program grant (NNXlOAB57A). The basic premise of this project was that effective instruction must incorporate scientifically-based knowledge and observations and foster critical thinking, problem solving, and decision-making skills. Lecture, in-class cooperative and computer-based learning and a semester project provide the basis for engaging students in evaluating effective mitigation and adaptation solutions. Policy and social issues are integrated throughout many of the units. The objective of this presentation is to highlight the content and pedagogical approach used in this class that helped to contribute to significant gains in engineering students' climate literacy and critical thinking competencies. A total of 89 students fully participated in a pre/post climate literacy questionnaire. As a whole, students demonstrated significant gains in climate-related content knowledge (p<0.001), affect (p<0.001), and behavior (p=0.002). Mean post scores were above a 'passing' cutoff (70%) for all three subscales. Assessment of semester project reports with a critical thinking rubric showed that the students did an excellent job of formulating problem statements and solutions in a manner that incorporated a multidimensional systems perspective. These skills are sometimes foreign to technically focused, number crunching engineering students, but are critical for using their engineering skills and profession to address climate change mitigation and adaptation strategies.
Chilenski, Sarah M; Perkins, Daniel F; Olson, Jonathan; Hoffman, Lesa; Feinberg, Mark E; Greenberg, Mark; Welsh, Janet; Crowley, D Max; Spoth, Richard
2016-02-01
Historically, effectiveness of community collaborative prevention efforts has been mixed. Consequently, research has been undertaken to better understand the factors that support their effectiveness; theory and some related empirical research suggests that the provision of technical assistance is one important supporting factor. The current study examines one aspect of technical assistance that may be important in supporting coalition effectiveness, the collaborative relationship between the technical assistance provider and site lead implementer. Four and one-half years of data were collected from technical assistance providers and prevention team members from the 14 community prevention teams involved in the PROSPER project. Spearman correlation analyses with longitudinal data show that the levels of the collaborative relationship during one phase of collaborative team functioning associated with characteristics of internal team functioning in future phases. Results suggest that community collaborative prevention work should consider the collaborative nature of the technical assistance provider - prevention community team relationship when designing and conducting technical assistance activities, and it may be important to continually assess these dynamics to support high quality implementation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Flores, A. N.; Gelb, L.; Watson, K. A.; Steimke, A.; Chang, C.; Busche, C.; Breidenbach, J.
2016-12-01
A climate literate citizenry is essential to the long-term success of climate change adaptation and to enhancing resilience of communities to climate change impacts. In support of a National Science Foundation CAREER award, we developed a teacher training workshop on a project that engages students in creating functioning, low-cost weather stations using open source electronics. The workshop aims to improve climate literacy among K-12 students while providing an authentic opportunity to acquire and hone STEM skills. Each station measures temperature, humidity, barometric pressure, light level, soil moisture, and precipitation occurrence. Our day-long workshop focuses on three elements: (1) providing context on the scientific importance of climate observation, (2) equipping teachers with technical skills needed to assemble and use a station from provided components, and (3) highlighting relevant educational standards met by the weather station activities. The workshop was attended by twelve 4th-9th grade teachers from southwest Idaho, all of whom teach at rural and/or Title I schools. Attendees reported having minimal or no previous experience with open source electronics, but all were able to effectively use their weather station with less than two hours of hands-on training. In written and oral post-workshop reflections teachers expressed a strong desire to integrate these activities into classrooms, but also revealed barriers associated with rigid curricular constraints and risk-averse administrators. Continued evolution of the workshop will focus on: (1) extending the duration and exploratory depth of the workshop, (2) refining pre- and post-assessments and performing longitudinal monitoring of teacher participants to measure short- and long-term efficacy of the workshop, and (3) partnering with colleagues to engage school district administrators in dialog on how to integrate authentic activities like this one into K-12 curriculum.
Advancing NOAA NWS Arctic Program Development
NASA Astrophysics Data System (ADS)
Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Meyers, J. C.; Churma, M.; Thoman, R.
2016-12-01
Environmental changes in the Arctic require changes in the way the National Oceanic and Atmospheric Administration (NOAA) delivers hydrological and meteorological information to prepare the region's societies and indigenous population for emerging challenges. These challenges include changing weather patterns, changes in the timing and extent of sea ice, accelerated soil erosion due to permafrost decline, increasing coastal vulnerably, and changes in the traditional food supply. The decline in Arctic sea ice is opening new opportunities for exploitation of natural resources, commerce, tourism, and military interest. These societal challenges and economic opportunities call for a NOAA integrated approach for delivery of environmental information including climate, water, and weather data, forecasts, and warnings. Presently the NOAA Arctic Task Force provides leadership in programmatic coordination across NOAA line offices. National Weather Service (NWS) Alaska Region and the National Centers for Environmental Prediction (NCEP) provide the foundational operational hydro-meteorological products and services in the Arctic. Starting in 2016, NOAA's NWS will work toward improving its role in programmatic coordination and development through assembling an NWS Arctic Task Team. The team will foster ties in the Arctic between the 11 NWS national service programs in climate, water, and weather information, as well as between Arctic programs in NWS and other NOAA line offices and external partners. One of the team outcomes is improving decision support tools for the Arctic. The Local Climate Analysis Tool (LCAT) currently has more than 1100 registered users, including NOAA staff and technical partners. The tool has been available online since 2013 (http://nws.weather.gov/lcat/ ). The tool links trusted, recommended NOAA data and analytical capabilities to assess impacts of climate variability and climate change at local levels. A new capability currently being developed will enable analysis of sea ice changes in different parts of the Arctic, and allow users to link those change to phases of climate variability such as El Nino Southern Oscillation Arctic Oscillation, etc.
ERLN Technical Support for Labs
The Environmental Response Laboratory Network provides policies and guidance on lab and data requirements, Standardized Analytical Methods, and technical support for water and radiological sampling and analysis
,
2009-01-01
In the Southeast, U.S. Geological Survey (USGS) scientists are researching issues through technical studies of water availability and quality, geologic processes (marine, coastal, and terrestrial), geographic complexity, and biological resources. The USGS is prepared to tackle multifaceted questions associated with global climate change and resulting weather patterns such as drought through expert scientific skill, innovative research approaches, and accurate information technology.
The Distribution of Climate Change Public Opinion in Canada.
Mildenberger, Matto; Howe, Peter; Lachapelle, Erick; Stokes, Leah; Marlon, Jennifer; Gravelle, Timothy
2016-01-01
While climate scientists have developed high resolution data sets on the distribution of climate risks, we still lack comparable data on the local distribution of public climate change opinions. This paper provides the first effort to estimate local climate and energy opinion variability outside the United States. Using a multi-level regression and post-stratification (MRP) approach, we estimate opinion in federal electoral districts and provinces. We demonstrate that a majority of the Canadian public consistently believes that climate change is happening. Belief in climate change's causes varies geographically, with more people attributing it to human activity in urban as opposed to rural areas. Most prominently, we find majority support for carbon cap and trade policy in every province and district. By contrast, support for carbon taxation is more heterogeneous. Compared to the distribution of US climate opinions, Canadians believe climate change is happening at higher levels. This new opinion data set will support climate policy analysis and climate policy decision making at national, provincial and local levels.
The Distribution of Climate Change Public Opinion in Canada
Gravelle, Timothy
2016-01-01
While climate scientists have developed high resolution data sets on the distribution of climate risks, we still lack comparable data on the local distribution of public climate change opinions. This paper provides the first effort to estimate local climate and energy opinion variability outside the United States. Using a multi-level regression and post-stratification (MRP) approach, we estimate opinion in federal electoral districts and provinces. We demonstrate that a majority of the Canadian public consistently believes that climate change is happening. Belief in climate change’s causes varies geographically, with more people attributing it to human activity in urban as opposed to rural areas. Most prominently, we find majority support for carbon cap and trade policy in every province and district. By contrast, support for carbon taxation is more heterogeneous. Compared to the distribution of US climate opinions, Canadians believe climate change is happening at higher levels. This new opinion data set will support climate policy analysis and climate policy decision making at national, provincial and local levels. PMID:27486659
Spatially explicit multi-criteria decision analysis for managing vector-borne diseases
2011-01-01
The complex epidemiology of vector-borne diseases creates significant challenges in the design and delivery of prevention and control strategies, especially in light of rapid social and environmental changes. Spatial models for predicting disease risk based on environmental factors such as climate and landscape have been developed for a number of important vector-borne diseases. The resulting risk maps have proven value for highlighting areas for targeting public health programs. However, these methods generally only offer technical information on the spatial distribution of disease risk itself, which may be incomplete for making decisions in a complex situation. In prioritizing surveillance and intervention strategies, decision-makers often also need to consider spatially explicit information on other important dimensions, such as the regional specificity of public acceptance, population vulnerability, resource availability, intervention effectiveness, and land use. There is a need for a unified strategy for supporting public health decision making that integrates available data for assessing spatially explicit disease risk, with other criteria, to implement effective prevention and control strategies. Multi-criteria decision analysis (MCDA) is a decision support tool that allows for the consideration of diverse quantitative and qualitative criteria using both data-driven and qualitative indicators for evaluating alternative strategies with transparency and stakeholder participation. Here we propose a MCDA-based approach to the development of geospatial models and spatially explicit decision support tools for the management of vector-borne diseases. We describe the conceptual framework that MCDA offers as well as technical considerations, approaches to implementation and expected outcomes. We conclude that MCDA is a powerful tool that offers tremendous potential for use in public health decision-making in general and vector-borne disease management in particular. PMID:22206355
The role of satellite remote sensing in REDD/MRV
NASA Astrophysics Data System (ADS)
Jonckheere, Inge; Sandoval, Alberto
2010-05-01
REDD, which stands for 'Reducing Emissions from Deforestation and Forest Degradation in Developing Countries' - is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. The UN-REDD Programme, a collaborative partnership between FAO, UNDP and UNEP launched in September 2008, supports countries to develop capacity to REDD and to implement a future REDD mechanism in a post- 2012 climate regime. The programme works at both the national and global scale, through support mechanisms for country-driven REDD strategies and international consensus-building on REDD processes. The UN-REDD Programme gathers technical teams from around the world to develop common approaches, analyses and guidelines on issues such as measurement, reporting and verification (MRV) of carbon emissions and flows, remote sensing, and greenhouse gas inventories. Within the partnership, FAO supports countries on technical issues related to forestry and the development of cost effective and credible MRV processes for emission reductions. While at the international level, it fosters improved guidance on MRV approaches, including consensus on principles and guidelines for MRV and training programmes.It provides guidance on how best to design and implement REDD, to ensure that forests continue to provide multiple benefits for livelihoods and biodiversity to societies while storing carbon at the same time. Other areas of work include national forest assessments and monitoring of in-country policy and institutional change. The outcomes about the role of satellite remote sensing technologies as a tool for monitoring, assessment, reporting and verification of carbon credits and co-benefits under the REDD mechanism are here presented.
Optimization of controlled processes in combined-cycle plant (new developments and researches)
NASA Astrophysics Data System (ADS)
Tverskoy, Yu S.; Muravev, I. K.
2017-11-01
All modern complex technical systems, including power units of TPP and nuclear power plants, work in the system-forming structure of multifunctional APCS. The development of the modern APCS mathematical support allows bringing the automation degree to the solution of complex optimization problems of equipment heat-mass-exchange processes in real time. The difficulty of efficient management of a binary power unit is related to the need to solve jointly at least three problems. The first problem is related to the physical issues of combined-cycle technologies. The second problem is determined by the criticality of the CCGT operation to changes in the regime and climatic factors. The third problem is related to a precise description of a vector of controlled coordinates of a complex technological object. To obtain a joint solution of this complex of interconnected problems, the methodology of generalized thermodynamic analysis, methods of the theory of automatic control and mathematical modeling are used. In the present report, results of new developments and studies are shown. These results allow improving the principles of process control and the automatic control systems structural synthesis of power units with combined-cycle plants that provide attainable technical and economic efficiency and operational reliability of equipment.
In this technical support document (TSD) we describe the air quality modeling performed to support the proposed Cross-State Air Pollution Rule for the 2008 ozone National Ambient Air Quality Standards (NAAQS)
In this technical support document (TSD) EPA describes the air quality modeling performed to support the 2015 ozone National Ambient Air Quality Standards (NAAQS) preliminary interstate transport assessment Notice of Data Availability (NODA).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... of Montana's submission because the submission did not include any technical analysis to support its..., EPA disagrees with that concern. Our technical analysis confirmed that emissions from Montana in total... irrelevant factors and lacks any technical analysis to support the State's conclusion with respect to...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... the state's conclusion should be supported by an adequate technical analysis. EPA recommended the...)(2)(D)(i)(I) must be supported by an adequate technical analysis.\\5\\ EPA recommended the various..., the state did not further evaluate or demonstrate with a technical analysis that these measures...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-20
... stated that the state's conclusion should be supported by an adequate technical analysis. Second, EPA... revision must be supported by an adequate technical analysis, including, but not limited to, information... disapproval where the Agency states: ``* * * without an adequate technical analysis EPA does not believe that...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... State's conclusion should be supported by an adequate technical analysis. EPA recommended the various...) must be supported by an adequate technical analysis.\\5\\ EPA recommended the various types of... evaluate or demonstrate with a technical analysis that these measures address the requirements of 110(a)(2...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-20
... stated that the state's conclusion should be supported by an adequate technical analysis. Second, EPA...'' provisions, the state's SIP revision must be supported by an adequate technical analysis, including, but not..., proposed disapproval where the Agency states: ``* * * without an adequate technical analysis EPA does not...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-20
..., if so, address the impact. The state's conclusion must be supported by an adequate technical analysis...'' provisions, the state's SIP revision must be supported by an adequate technical analysis, including, but not... disapproval where the Agency states: ``* * *without an adequate technical analysis EPA does not believe that...
Design Study for Project on Standard Operating Procedures for Technical Library Services.
ERIC Educational Resources Information Center
Libbey, Miles A.; And Others
The overall objective of the Technical Information Support Activities (TISA) Project is the production of a "Post Commander's Handbook." The handbook will be instrumental in achieving greater utilization of available technical information resources to assist army scientists and engineers engaged in the support of army combat and other…
Computer Supported Education at Fox Valley Technical Institute. IBM Application Brief.
ERIC Educational Resources Information Center
International Business Machines Corp., White Plains, NY.
Fox Valley Technical Institute (FVTI) has developed an approach to education which emphasizes competency-based, round-the-clock education entailing short terms, flexible class schedules, and individualized instruction and which has as its focus strong computer support at classroom, technical, and management levels. The college provides 6,000…
NASA Technical Reports Server (NTRS)
1993-01-01
Trace Laboratories is an independent testing laboratory specializing in testing printed circuit boards, automotive products and military hardware. Technical information from NASA Tech Briefs and two subsequent JPL Technical Support packages have assisted Trace in testing surface insulation resistance on printed circuit board materials. Testing time was reduced and customer service was improved because of Jet Propulsion Laboratory technical support packages.
Multiple paths to encephalization and technical civilizations.
Schwartzman, David; Middendorf, George
2011-12-01
We propose consideration of at least two possible evolutionary paths for the emergence of intelligent life with the potential for technical civilization. The first is the path via encephalization of homeothermic animals; the second is the path to swarm intelligence of so-called superorganisms, in particular the social insects. The path to each appears to be facilitated by environmental change: homeothermic animals by decreased climatic temperature and for swarm intelligence by increased oxygen levels.
ERIC Educational Resources Information Center
Köse, Akif
2016-01-01
The purpose of this study is to examine the relationship between work engagement and perceived organizational support and organizational climate. The present study, in which quantitative methods have been used, is carried out in the relational screening model. Perceived organizational support scale, organizational climate scale, and work…
NASA Astrophysics Data System (ADS)
Morin, Samuel; Ghislain, Dubois
2017-04-01
Snow on the ground is a critical resource for mountain regions to sustain river flow, to provide freshwater input to ecosystems and to support winter tourism, in particular in ski resorts. The level of activity, employment, turnover and profit of hundreds of ski resorts in the European Alps primarily depends on meteorological conditions, in particular natural snowfall but also increasingly conditions favourable for snowmaking (production of machine made snow, also referred to as technical snow). Ski resorts highly depend on appropriate conditions for snowmaking (mainly the availability of cold water, as well as sub-freezing temperature with sufficiently low humidity conditions). However, beyond the time scale of weather forecasts (a few days), managers of ski resorts have to rely on various and scattered sources of information, hampering their ability to cope with highly variable meteorological conditions. Improved anticipation capabilities at all time scales, spanning from "weather forecast" (up to 5 days typically) to "climate prediction" at the seasonal scale (up to several months) holds significant potential to increase the resilience of socio-economic stakeholders and supports their real-time adaptation potential. To address this issue, the recently funded (2017-2020) H2020 PROSNOW project will build a demonstrator of a meteorological and climate prediction and snow management system from one week to several months ahead, specifically tailored to the needs of the ski industry. PROSNOW will apply state-of-the-art knowledge relevant to the predictability of atmospheric and snow conditions, and investigate and document the added value of such services. The project proposes an Alpine-wide system (including ski resorts located in France, Switzerland, Germany, Austria and Italy). It will join and link providers of weather forecasts and climate predictions at the seasonal scale, research institutions specializing in snowpack modelling, a relevant ensemble of at least 8 representative resorts in the Alps, technical bodies representing ski resorts managers, and private technology companies. These companies are already providing services for snow management such as snow depth monitoring, snowmaking operations monitoring and planning using latest technologies. The added value of the demonstrator will be assessed for the ski industry, but also for additional stakeholders including local and regional tourism authorities, hydropower managers, and natural hazard forecasters and planners. This presentation will introduce the main goals and concepts of the PROSNOW project, in order to foster interactions with the specialized scientific communities relevant to this challenge.
Trawöger, Lisa
2014-02-01
Its focus on snow-dependent activities makes Alpine winter tourism especially sensitive to climate change. Stakeholder risk perceptions are a key factor in adaptation to climate change because they fundamentally drive or constrain stakeholder action. This paper examines climate change perceptions of winter tourism stakeholders in Tyrol (Austria). Using a qualitative approach, expert interviews were conducted. Four opinion categories reflecting different attitudes toward climate change issues were identified: convinced planners , annoyed deniers , ambivalent optimists , convinced wait-and-seers . Although the findings generally indicate a growing awareness of climate change, this awareness is mainly limited to perceiving the issue as a global phenomenon. Awareness of regional and branch-specific consequences of climate change that lead to a demand for action could not be identified. Current technical strategies, like snowmaking, are not primarily climate-induced. At present, coping with climate change is not a priority for risk management. The findings point out the importance of gaining and transferring knowledge of regional and branch-specific consequences of climate change in order to induce action at the destination level.
Trawöger, Lisa
2014-01-01
Its focus on snow-dependent activities makes Alpine winter tourism especially sensitive to climate change. Stakeholder risk perceptions are a key factor in adaptation to climate change because they fundamentally drive or constrain stakeholder action. This paper examines climate change perceptions of winter tourism stakeholders in Tyrol (Austria). Using a qualitative approach, expert interviews were conducted. Four opinion categories reflecting different attitudes toward climate change issues were identified: convinced planners, annoyed deniers, ambivalent optimists, convinced wait-and-seers. Although the findings generally indicate a growing awareness of climate change, this awareness is mainly limited to perceiving the issue as a global phenomenon. Awareness of regional and branch-specific consequences of climate change that lead to a demand for action could not be identified. Current technical strategies, like snowmaking, are not primarily climate-induced. At present, coping with climate change is not a priority for risk management. The findings point out the importance of gaining and transferring knowledge of regional and branch-specific consequences of climate change in order to induce action at the destination level. PMID:27064520
NASA Astrophysics Data System (ADS)
Dubois, Ghislain
2017-04-01
Alpine ski resorts are highly dependent on snow, which availability is characterized by a both a high inter-annual variability and a gradual diminution due to climate change. Due to this dependency to climatic resources, the ski industry is increasingly affected by climate change: higher temperatures limit snow falls, increase melting and limit the possibilities of technical snow making. Therefore, since the seventies, managers drastically improved their practices, both to adapt to climate change and to this inter-annual variability of snow conditions. Through slope preparation and maintenance, snow stock management, artificial snow making, a typical resort can approximately keep the same season duration with 30% less snow. The ski industry became an activity of high technicity The EUPORIAS FP7 (www.euporias.eu) project developed between 2012 and 2016 a deep understanding of the supply and demand conditions for the provision of climate services disseminating seasonal forecasts. In particular, we developed a case study, which allowed conducting several activities for a better understanding of the demand and of the business model of future services applied to the ski industry. The investigations conducted in France inventoried the existing tools and databases, assessed the decision making process and data needs of ski operators, and provided evidences that some discernable skill of seasonal forecasts exist. This case study formed the basis of the recently funded PROSNOW H2020 project. We will present the main results of EUPORIAS project for the ski industry.
78 FR 78939 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... Quantity or Quantities of Articles or Services under Consideration for Purchase: C-130J technical, engineering and software support; software updates and patches; familiarization training for Portable Flight... and contractor technical support services; and other related elements of logistics and program support...
ERIC Educational Resources Information Center
Piscatelli, Jennifer; Lee, Chiqueena
2011-01-01
The National School Climate Center (NSCC) completed a 50-state policy scan on state school climate and anti-bullying policies to better understand the current state policy infrastructure supporting the development of positive school climates. This policy brief examines the current status of school climate and anti-bullying policies in each state,…
International Land Model Benchmarking (ILAMB) Workshop Report, Technical Report DOE/SC-0186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M.; Koven, Charles D.; Kappel-Aleks, Gretchen
2016-11-01
As Earth system models become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistry–climate feedbacks and ecosystem processes in these models are essential for reducing uncertainties associated with projections of climate change during the remainder of the 21st century.
Data near processing support for climate data analysis
NASA Astrophysics Data System (ADS)
Kindermann, Stephan; Ehbrecht, Carsten; Hempelmann, Nils
2016-04-01
Climate data repositories grow in size exponentially. Scalable data near processing capabilities are required to meet future data analysis requirements and to replace current "data download and process at home" workflows and approaches. On one hand side, these processing capabilities should be accessible via standardized interfaces (e.g. OGC WPS), on the other side a large variety of processing tools, toolboxes and deployment alternatives have to be supported and maintained at the data/processing center. We present a community approach of a modular and flexible system supporting the development, deployment and maintenace of OGC-WPS based web processing services. This approach is organized in an open source github project (called "bird-house") supporting individual processing services ("birds", e.g. climate index calculations, model data ensemble calculations), which rely on basic common infrastructural components (e.g. installation and deployment recipes, analysis code dependencies management). To support easy deployment at data centers as well as home institutes (e.g. for testing and development) the system supports the management of the often very complex package dependency chain of climate data analysis packages as well as docker based packaging and installation. We present a concrete deployment scenario at the German Climate Computing Center (DKRZ). The DKRZ one hand side hosts a multi-petabyte climate archive which is integrated e.g. into the european ENES and worldwide ESGF data infrastructure, and on the other hand hosts an HPC center supporting (model) data production and data analysis. The deployment scenario also includes openstack based data cloud services to support data import and data distribution for bird-house based WPS web processing services. Current challenges for inter-institutionnal deployments of web processing services supporting the european and international climate modeling community as well as the climate impact community are highlighted. Also aspects supporting future WPS based cross community usage scenarios supporting data reuse and data provenance aspects are reflected.
NASA Astrophysics Data System (ADS)
Murray, B.; Alston, E. J.; Chambers, L. H.; Bynum, A.; Montgomery, C.; Blue, S.; Kowalczak, C.; Leighton, A.; Bosman, L.
2017-12-01
NASA Earth Systems, Technology and Energy Education for Minority University Research & Education Program - MUREP (ESTEEM) activities enhance institutional capacity of minority serving institutions (MSIs) related to Earth System Science, Technology and energy education; in turn, increasing access of underrepresented groups to science careers and opportunities. ESTEEM is a competitive portfolio that has been providing funding to institutions across the United States for 10 years. Over that time 76 separate activities have been funded. Beginning in 2011 ESTEEM awards focused on MSIs and public-school districts with high under-represented enrollment. Today ESTEEM awards focus on American Indian/Alaska Native serving institutions (Tribal Colleges and Universities), the very communities most severely in need of ability to deal with climate adaptation and resiliency. ESTEEM engages a multi-faceted approach to address economic and cultural challenges facing MSI communities. PIs (Principal Investigators) receive support from a management team at NASA, and are supported by a larger network, the ESTEEM Cohort, which connects regularly through video calls, virtual video series and in-person meetings. The cohort acts as a collective unit to foster interconnectivity and knowledge sharing in both physical and virtual settings. ESTEEM partners with NASA's Digital Learning Network (DLNTM) in a unique non-traditional model to leverage technical expertise. DLN services over 10,000 participants each year through interactive web-based synchronous and asynchronous events. These events allow for cost effective (no travel) engagement of multiple, geographically dispersed audiences to share local experiences with one another. Events allow PIs to grow their networks, technical base, professional connections, and develop a sense of community, encouraging expansion into larger and broader interactions. Over 256 connections, beyond the 76 individual members, exist within the cohort. PIs report significant improvement in student retention and increased interest in STEM coursework as outcomes. This presentation will delve into specifics of these metrics, provide details of various successes and explore future opportunities for expanding the impact of large-scale culturally relevant collaborative networks.
Predictors of Attitudes Toward Non-Technical Skills in Farming.
Irwin, Amy; Poots, Jill
2018-01-01
Farming is a high-risk sector with up to 170,000 worldwide fatalities reported per year; it is therefore vital to identify methods of mitigating the dangers of this industry. Research within high-risk industries, such as aviation, shipping, and agriculture, has identified the importance of non-technical skills (NTS) in maintaining effective, safe performance and reducing error and injury. However, there is a lack of research evaluating factors that may contribute to NTS attitudes and behaviors. As a first step to address this literature gap, the current study evaluated a range of individual and environmental factors as potential predictors of attitudes toward NTS in agriculture. A sample of 170 farmers from within the United Kingdom and Ireland were surveyed using an online questionnaire. The questionnaire included measures of personality, stress, attitudes toward safety (safety climate, motivation, and risk), environmental stressors (workload, work-life imbalance), and non-technical skills (team and lone worker). Attitudes toward safety climate, compliance, and motivation showed a significant association with both team-based and lone worker NTS. Conscientiousness correlated positively with the majority of the NTS elements. Multiple regression analysis indicated neuroticism and conscientiousness demonstrated capacity to predict NTS attitudes. Concerns about costs and equipment, attitudes toward safety climate, and safety motivation were also found to be significant predictors of NTS attitudes. The results indicate the utility of individual characteristics and environmental factors when predicting farming NTS attitudes. As a result, these elements could be important when evaluating engagement with NTS and developing NTS training initiatives in agriculture.
Exploring early public responses to geoengineering.
Pidgeon, Nick; Corner, Adam; Parkhill, Karen; Spence, Alexa; Butler, Catherine; Poortinga, Wouter
2012-09-13
Proposals for geoengineering the Earth's climate are prime examples of emerging or 'upstream' technologies, because many aspects of their effectiveness, cost and risks are yet to be researched, and in many cases are highly uncertain. This paper contributes to the emerging debate about the social acceptability of geoengineering technologies by presenting preliminary evidence on public responses to geoengineering from two of the very first UK studies of public perceptions and responses. The discussion draws upon two datasets: qualitative data (from an interview study conducted in 42 households in 2009), and quantitative data (from a subsequent nationwide survey (n=1822) of British public opinion). Unsurprisingly, baseline awareness of geoengineering was extremely low in both cases. The data from the survey indicate that, when briefly explained to people, carbon dioxide removal approaches were preferred to solar radiation management, while significant positive correlations were also found between concern about climate change and support for different geoengineering approaches. We discuss some of the wider considerations that are likely to shape public perceptions of geoengineering as it enters the media and public sphere, and conclude that, aside from technical considerations, public perceptions are likely to prove a key element influencing the debate over questions of the acceptability of geoengineering proposals.
"Going the Extra Mile in Downscaling: Why Downscaling is not ...
This presentation provides an example of doing additional work for preprocessing global climate model data for use in regional climate modeling simulations with the Weather Research and Forecasting (WRF) model. In this presentation, results from 15 months of downscaling the Community Earth System Model (CESM) were shown, both using the out-of-the-box downscaling of CESM and also with a modification to setting the inland lake temperatures. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.
Strategies to Save 50% Site Energy in Grocery and General Merchandise Stores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, A.; Hale, E.; Leach, M.
2011-03-01
This paper summarizes the methodology and main results of two recently published Technical Support Documents. These reports explore the feasibility of designing general merchandise and grocery stores that use half the energy of a minimally code-compliant building, as measured on a whole-building basis. We used an optimization algorithm to trace out a minimum cost curve and identify designs that satisfy the 50% energy savings goal. We started from baseline building energy use and progressed to more energy-efficient designs by sequentially adding energy design measures (EDMs). Certain EDMs figured prominently in reaching the 50% energy savings goal for both building types:more » (1) reduced lighting power density; (2) optimized area fraction and construction of view glass or skylights, or both, as part of a daylighting system tuned to 46.5 fc (500 lux); (3) reduced infiltration with a main entrance vestibule or an envelope air barrier, or both; and (4) energy recovery ventilators, especially in humid and cold climates. In grocery stores, the most effective EDM, which was chosen for all climates, was replacing baseline medium-temperature refrigerated cases with high-efficiency models that have doors.« less
NASA Astrophysics Data System (ADS)
Campbell, S. W.; Williams, K.; Marston, L.; Kreutz, K. J.; Osterberg, E. C.; Wake, C. P.
2013-12-01
For the past six years, a multi-institution effort has undertaken a broad glaciological and climate research project in Denali National Park. Most recently, two ~208 m long surface to bedrock ice cores were recovered from the Mt. Hunter plateau with supporting geophysical and weather data collected. Twenty two individuals have participated in the field program providing thousands of person-hours towards completing our research goals. Technical and scientific results have been disseminated to the broader scientific community through dozens of professional presentations and six peer-reviewed publications. In addition, we have pursued the development of interactive computer applications that use our results for educational purposes, publically available fact sheets through Denali National Park, and most recently, with assistance from PolarTREC and other affiliations, the development of a children's book and roll-out of K-8 science curriculum based on this project. The K-8 curriculum will provide students with an opportunity to use real scientific data to meet their educational requirements through alternative, interactive, and exciting methods relative to more standard educational programs. Herein, we present examples of this diverse approach towards incorporating polar research into K-12 STEM classrooms.
NASA Astrophysics Data System (ADS)
Buxbaum, T. M.; Trainor, S.; Warner, N.; Timm, K.
2015-12-01
Climate change is impacting ecological systems, coastal processes, and environmental disturbance regimes in Alaska, leading to a pressing need to communicate reliable scientific information about climate change, its impacts, and future projections for land and resource management and decision-making. However, little research has been done to dissect and analyze the process of making the results of scientific inquiry directly relevant and usable in resource management. Based within the Science Application division of the US Fish and Wildlife Service, Landscape Conservation Cooperatives (LCCs) are regional conservation science partnerships that provide scientific and technical expertise needed to support conservation planning at landscape scales and promote collaboration in defining shared conservation goals. The five LCCs with jurisdiction in Alaska recently held a training workshop with the goals of advancing staff understanding and skills related to science communication and translation. We report here preliminary results from analysis of workshop discussions and pre- and post- workshop interviews and surveys revealing expectations, assumptions, and mental models regarding science communication and the process of conducting use-inspired science. Generalizable conclusions can assist scientists and boundary organizations bridge knowledge gaps between science and resource management.
Malaria in Europe: emerging threat or minor nuisance?
Piperaki, E T; Daikos, G L
2016-06-01
Malaria was eradicated from Europe in the 1970s through a combination of insecticide spraying, drug therapy and environmental engineering. Since then, it has been mostly imported into the continent by international travellers and immigrants from endemic regions. Despite the substantial number of imported malaria cases and the documented presence of suitable anopheline vectors, autochthonous transmission has not been widely observed in Europe, probably as a result of early diagnosis and treatment, afforded by efficient healthcare systems. Current climatic conditions are conducive to malaria transmission in several areas of Southern Europe, and climate change might favour mosquito proliferation and parasite development, further facilitating malaria transmission. Moreover, the continuing massive influx of refugee and migrant populations from endemic areas could contribute to building up of an infectious parasite reservoir. Although the malariogenic potential of Europe is currently low, particularly in the northern and western parts of the continent, strengthening of disease awareness and maintaining robust public health infrastructures for surveillance and vector control are of the utmost importance and should be technically and financially supported to avert the possibility of malaria transmission in Europe's most vulnerable areas. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Wesselink, Anna; de Vriend, Huib; Barneveld, Hermjan; Krol, Maarten; Bijker, Wiebe
2009-01-01
Many scientists feel that scientific outcomes are not sufficiently taken into account in policy-making. The research reported in this paper shows what happens with scientific information during such a process. In 2001 the Dutch Ministry of Transport, Public Works and Water Management commissioned their regional office in Limburg to assess how flood management objectives could be achieved in future in the Dutch Meuse valley, assuming climate change will increase peak discharges. To ensure political support, regional discussion rounds were to help assess the measures previously identified. This paper discusses the ways in which hydrological and hydraulic expertise was input, understood and used in this assessment process. Project participants as a group had no trouble contesting assumptions and outcomes. Nevertheless, water expertise was generally accepted as providing facts, once basic choices such as starting situation had been discussed and agreed. The technical constraints determined that politically unacceptable measures would have to be selected to achieve the legally binding flood management objective. As a result, no additional space will be set aside for future flood management beyond the already reserved floodplain. In this case, political arguments clearly prevail over policy objectives, with hydraulic expertise providing decisive arbitration between the two.
BASINs 4.0 Climate Assessment Tool (CAT): Supporting ...
EPA announced the availability of the report, BASINS 4.0 Climate Assessment Tool (CAT): Supporting Documentation and User's Manual. This report was prepared by the EPA's Global Change Research Program (GCRP), an assessment-oriented program, that sits within the Office of Research and Development, that focuses on assessing how potential changes in climate and other global environmental stressors may impact water quality, air quality, aquatic ecosystems, and human health in the United States. The Program’s focus on water quality is consistent with the Research Strategy of the U.S. Climate Change Research Program—the federal umbrella organization for climate change science in the U.S. government—and is responsive to U.S. EPA’s mission and responsibilities as defined by the Clean Water Act and the Safe Drinking Water Act. A central goal of the EPA GCRP is to provide EPA program offices, Regions, and other stakeholders with tools and information for assessing and responding to any potential future impacts of climate change. In 2007, the EPA Global Change Research Program (GCRP), in partnership with the EPA Office of Water, supported development of a Climate Assessment Tool (CAT) for version 4 of EPA’s BASINS modeling system. This report provides supporting documentation and user support materials for the BASINS CAT tool. The purpose of this report is to provide in a single document a variety of documentation and user support materials supporting the use
ERIC Educational Resources Information Center
National Center on Safe Supportive Learning Environments, 2017
2017-01-01
Improving school climate takes time and commitment from a variety of people in a variety of roles. This document outlines key action steps that district leaders--including superintendents, assistant superintendents, directors of student support services, or others--can take to support school climate improvements. Key action steps are provided for…
ERIC Educational Resources Information Center
Wang, Ming-Te; Dishion, Thomas J.
2012-01-01
This longitudinal study examined trajectories of change in adolescents' perceptions of four dimensions of school climate (academic support, behavior management, teacher social support, and peer social support) and the effects of such trajectories on adolescent problem behaviors. We also tested whether school climate moderated the associations…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... supported by an adequate technical analysis. EPA recommended the various types of information that could be...) must be supported by an adequate technical analysis. In the 2009 Guidance, EPA recommended the various...) because the State did not evaluate or demonstrate with a technical analysis that the emissions reduction...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... conclusion must be supported by an adequate technical analysis. Second, EPA recommended the various types of... requirement of section 110(a)(2)(D)(i)(I) must be supported by an adequate technical analysis. Additionally... evaluate or demonstrate with a technical analysis that this measure and their intention to rely to the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
... supporting technical analyses, can be found on the EPA's Internet Web site at http://www.epa.gov... you for clarification due to technical difficulties, the EPA may not be able to consider your input... possible in supporting your views. Describe any assumptions and provide any technical information and/or...
Wallace, J Craig; Popp, Eric; Mondore, Scott
2006-05-01
Building on recent work in occupational safety and climate, the authors examined 2 organizational foundation climates thought to be antecedents of specific safety climate and the relationships among these climates and occupational accidents. It is believed that both foundation climates (i.e., management-employee relations and organizational support) will predict safety climate, which will in turn mediate the relationship between occupational accidents and these 2 distal foundation climates. Using a sample of 9,429 transportation workers in 253 work groups, the authors tested the proposed relationships at the group level. Results supported all hypotheses. Overall it appears that different climates have direct and indirect effects on occupational accidents.
2011-05-01
of monitoring may be necessary to fully characterize and model the impact of major climatic events (e.g., tropical cyclones, major droughts ) and...stressors (past, present, and future) at local and regional scales; take account of extreme climatic events (e.g., hurricanes, droughts ); and integrate...the longleaf pine ( Pinus palustris), savannas, and pocosins (shrub bog) that dominate MCBCL’s terrestrial environments. Variation in the biota and
Canadian advanced life support capacities and future directions
NASA Astrophysics Data System (ADS)
Bamsey, M.; Graham, T.; Stasiak, M.; Berinstain, A.; Scott, A.; Vuk, T. Rondeau; Dixon, M.
2009-07-01
Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada's contribution of the Higher Plant Compartment of the European Space Agency's MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity applications). To advance the technical readiness for the proposed lunar missions, including a lunar plant growth lander, lunar "salad machine" (i.e. small scale plant production unit) and a full scale lunar plant production system, a suite of terrestrial developments and analogue systems are proposed. As has been successfully demonstrated by past Canadian advanced life support activities, terrestrial technology transfer and the development of highly qualified personnel will serve as key outputs for Canadian advanced life support system research programs. This approach is designed to serve the Canadian greenhouse industry by developing compliance measures for mitigating environmental impact, reducing labour and energy costs as well as improving Canadian food security, safety and benefit northern/remote communities.
This report highlights significant projects that the ETSC has supported throughout fiscal year 2014. Projects have addressed an array of environmental scenarios, including but not limited to remote mining contamination, expansive landfill waste, sediment remediation by capping, ...
NASA Astrophysics Data System (ADS)
Vaganova, N. A.
2017-12-01
Technogenic and climatic influences have a significant impact on the degradation of permafrost. Long-term forecasts of such changes during long-time periods have to be taken into account in the oil and gas and construction industries in view to development the Arctic and Subarctic regions. There are considered constantly operating technical systems (for example, oil and gas wells) that affect changes in permafrost, as well as the technical systems that have a short-term impact on permafrost (for example, flare systems for emergency flaring of associated gas). The second type of technical systems is rather complex for simulation, since it is required to reserve both short and long-scales in computations with variable time steps describing the complex technological processes. The main attention is paid to the simulation of long-term influence on the permafrost from the second type of the technical systems.
25 CFR 216.4 - Technical examination of prospective surface exploration and mining operations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... mining sites and mining operations vary widely with respect to topography, climate, surrounding land uses... quality below standards established by the appropriate State water pollution control agency, or by the...
25 CFR 216.4 - Technical examination of prospective surface exploration and mining operations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... mining sites and mining operations vary widely with respect to topography, climate, surrounding land uses... quality below standards established by the appropriate State water pollution control agency, or by the...
25 CFR 216.4 - Technical examination of prospective surface exploration and mining operations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... mining sites and mining operations vary widely with respect to topography, climate, surrounding land uses... quality below standards established by the appropriate State water pollution control agency, or by the...
25 CFR 216.4 - Technical examination of prospective surface exploration and mining operations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... mining sites and mining operations vary widely with respect to topography, climate, surrounding land uses... quality below standards established by the appropriate State water pollution control agency, or by the...
Solar heating and cooling technical data and systems analysis
NASA Technical Reports Server (NTRS)
Christensen, D. L.
1977-01-01
The research activities described herein were concentrated on the areas of economics, heating and cooling systems, architectural design, materials characteristics, climatic conditions, educational information packages, and evaluation of solar energy systems and components.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., climate, and related crop monitoring activities. (d) Remote sensing. (1) Provide technical assistance, coordination, and guidance to Department agencies in planning, developing, and carrying out satellite remote... administrative, management, and budget information relating to Department's remote sensing activities. ...
Urban Rail Supporting Technology Program Fiscal Year 1974 Year End Summary
DOT National Transportation Integrated Search
1975-03-01
Major areas include program management, technical support and application engineering, facilities development, test and evaluation, and technology development. Specific technical discussion includes track measurement systems; UMTA facilities developm...
Climate change, vector-borne diseases and working population.
Vonesch, Nicoletta; D'Ovidio, Maria Concetta; Melis, Paola; Remoli, Maria Elena; Ciufolini, Maria Grazia; Tomao, Paola
2016-01-01
Risks associated with climate change are increasing worldwide and the global effects include altered weather and precipitation patterns, rising temperatures and others; human health can be affected directly and indirectly. This paper is an overview of literature regarding climate changes, their interaction with vector-borne diseases and impact on working population. Articles regarding climate changes as drivers of vector-borne diseases and evidences of occupational cases have been picked up by public databank. Technical documents were also included in the study. Evidences regarding the impact of climate changes on vector-borne diseases in Europe, provided by the analysis of the literature, are presented. Climate-sensitive vector-borne diseases are likely to be emerging due to climate modifications, with impacts on public and occupational health. However, other environmental and anthropogenic drivers such as increasing travelling and trade, deforestation and reforestation, altered land use and urbanization can influence their spread. Further studies are necessary to better understand the phenomenon and implementation of adaptation strategies to protect human health should be accelerated and strengthened.
NASA Astrophysics Data System (ADS)
Shiklomanov, A. I.; Okladnikov, I.; Gordov, E. P.; Proussevitch, A. A.; Titov, A. G.
2016-12-01
Presented is a collaborative project carrying out by joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center, University of New Hampshire, USA. Its main objective is development of a hardware and software prototype of Distributed Research Center (DRC) for monitoring and projecting of regional climatic and and their impacts on the environment over the Northern extratropical areas. In the framework of the project new approaches to "cloud" processing and analysis of large geospatial datasets (big geospatial data) are being developed. It will be deployed on technical platforms of both institutions and applied in research of climate change and its consequences. Datasets available at NCEI and IMCES include multidimensional arrays of climatic, environmental, demographic, and socio-economic characteristics. The project is aimed at solving several major research and engineering tasks: 1) structure analysis of huge heterogeneous climate and environmental geospatial datasets used in the project, their preprocessing and unification; 2) development of a new distributed storage and processing model based on a "shared nothing" paradigm; 3) development of a dedicated database of metadata describing geospatial datasets used in the project; 4) development of a dedicated geoportal and a high-end graphical frontend providing intuitive user interface, internet-accessible online tools for analysis of geospatial data and web services for interoperability with other geoprocessing software packages. DRC will operate as a single access point to distributed archives of spatial data and online tools for their processing. Flexible modular computational engine running verified data processing routines will provide solid results of geospatial data analysis. "Cloud" data analysis and visualization approach will guarantee access to the DRC online tools and data from all over the world. Additionally, exporting of data processing results through WMS and WFS services will be used to provide their interoperability. Financial support of this activity by the RF Ministry of Education and Science under Agreement 14.613.21.0037 (RFMEFI61315X0037) and by the Iola Hubbard Climate Change Endowment is acknowledged.
NASA Astrophysics Data System (ADS)
Kim, J. B.; Kerns, B. K.; Halofsky, J.
2014-12-01
GCM-based climate projections and downscaled climate data proliferate, and there are many climate-aware vegetation models in use by researchers. Yet application of fine-scale DGVM based simulation output in national forest vulnerability assessments is not common, because there are technical, administrative and social barriers for their use by managers and policy makers. As part of a science-management climate change adaptation partnership, we performed simulations of vegetation response to climate change for four national forests in the Blue Mountains of Oregon using the MC2 dynamic global vegetation model (DGVM) for use in vulnerability assessments. Our simulation results under business-as-usual scenarios suggest a starkly different future forest conditions for three out of the four national forests in the study area, making their adoption by forest managers a potential challenge. However, using DGVM output to structure discussion of potential vegetation changes provides a suitable framework to discuss the dynamic nature of vegetation change compared to using more commonly available model output (e.g. species distribution models). From the onset, we planned and coordinated our work with national forest managers to maximize the utility and the consideration of the simulation results in planning. Key lessons from this collaboration were: (1) structured and strategic selection of a small number climate change scenarios that capture the range of variability in future conditions simplified results; (2) collecting and integrating data from managers for use in simulations increased support and interest in applying output; (3) a structured, regionally focused, and hierarchical calibration of the DGVM produced well-validated results; (4) simple approaches to quantifying uncertainty in simulation results facilitated communication; and (5) interpretation of model results in a holistic context in relation to multiple lines of evidence produced balanced guidance. This latest point demonstrates the importance of using model out as a forum for discussion along with other information, rather than using model output in an inappropriately predictive sense. These lessons are being applied currently to other national forests in the Pacific Northwest to contribute in vulnerability assessments.
Doyle, Thomas W.
2015-01-01
Coastal wetlands of the Southeastern United States are undergoing retreat and migration from increasing tidal inundation and saltwater intrusion attributed to climate variability and sea-level rise. Much of the literature describing potential sea-level rise projections and modeling predictions are found in peer-reviewed academic journals or government technical reports largely suited to reading by other Ph.D. scientists who are more familiar or engaged in the climate change debate. Various sea-level rise and coastal wetland models have been developed and applied of different designs and scales of spatial and temporal complexity for predicting habitat and environmental change that have not heretofore been synthesized to aid natural resource managers of their utility and limitations. Training sessions were conducted with Federal land managers with U.S. Fish and Wildlife Service, National Park Service, and NOAA National Estuarine Research Reserves as well as state partners and nongovernmental organizations across the northern Gulf Coast from Florida to Texas to educate and to evaluate user needs and understanding of concepts, data, and modeling tools for projecting sea-level rise and its impact on coastal habitats and wildlife. As a result, this handbook was constructed from these training and feedback sessions with coastal managers and biologists of published decision-support tools and simulation models for sea-level rise and climate change assessments. A simplified tabular context was developed listing the various kinds of decision-support tools and ecological models along with criteria to distinguish the source, scale, and quality of information input and geographic data sets, physical and biological constraints and relationships, datum characteristics of water and land elevation components, utility options for setting sea-level rise and climate change scenarios, and ease or difficulty of storing, displaying, or interpreting model output. The handbook is designed to be a primer to understanding sea-level rise and a practical synthesis of the current state of knowledge and modeling tools as a resource guide for DOl land management needs and facilitating Landscape Conservation Cooperative (LCC) research and conservation initiatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smyth, Padhraic
2013-07-22
This is the final report for a DOE-funded research project describing the outcome of research on non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. The main results consist of extensive development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies ofmore » climate variability in terms of the dynamics of atmospheric flow regimes.« less
NASA Astrophysics Data System (ADS)
Connor, C. L.; Prakash, A.
2007-12-01
Alaska's secondary school teachers are increasingly required to provide Earth systems science (ESS) education that integrates student observations of local natural processes related to rapid climate change with geospatial datasets and satellite imagery using Geographic Information Systems (GIS) technology. Such skills are also valued in various employment sectors of the state where job opportunities requiring Earth science and GIS training are increasing. University of Alaska's EDGE (Experiential Discoveries in Geoscience Education) program has provided training and classroom resources for 3 cohorts of inservice Alaska science and math teachers in GIS and Earth Systems Science (2005-2007). Summer workshops include geologic field experiences, GIS instruction, computer equipment and technical support for groups of Alaska high school (HS) and middle school (MS) science teachers each June and their students in August. Since 2005, EDGE has increased Alaska science and math teachers' Earth science content knowledge and developed their GIS and computer skills. In addition, EDGE has guided teachers using a follow-up, fall online course that provided more extensive ESS knowledge linked with classroom standards and provided course content that was directly transferable into their MS and HS science classrooms. EDGE teachers were mentored by University faculty and technical staff as they guided their own students through semester-scale, science fair style projects using geospatial data that was student- collected. EDGE program assessment indicates that all teachers have improved their ESS knowledge, GIS knowledge, and the use of technology in their classrooms. More than 230 middle school students have learned GIS, from EDGE teachers and 50 EDGE secondary students have conducted original research related to landscape change and its impacts on their own communities. Longer-term EDGE goals include improving student performance on the newly implemented (spring 2008) 10th grade, standards-based, High School Qualifying Exam, on recruiting first-generation college students, and on increasing the number of Earth science majors in the University of Alaska system.
Dynamics of sustained use and abandonment of clean cooking systems: lessons from rural India
NASA Astrophysics Data System (ADS)
Chalise, Nishesh; Kumar, Praveen; Priyadarshini, Pratiti; Yadama, Gautam N.
2018-03-01
Clean cooking technologies—ranging from efficient cookstoves to clean fuels—are widely deployed to reduce household air pollution and alleviate adverse health and climate consequences. Although much progress has been made on the technical aspects, sustained and proper use of clean cooking technologies by populations with the most need has been problematic. Only by understanding how clean cooking as an intervention is embedded within complex community processes can we ensure its sustained implementation. Using a community-based system dynamics approach, we engaged two rural communities in co-creating a dynamic model to explain the processes influencing the uptake and transition to sustained use of biogas (an anaerobic methane digester), a clean fuel and cooking technology. The two communities provided contrasting cases: one abandoned biogas while the other continues to use it. We present a system dynamics simulation model, associated analyses, and experiments to understand what factors drive transition and sustained use. A central insight of the model is community processes influencing the capacity to solve technical issues. Model analysis shows that families begin to abandon the technology when it takes longer to solve problems. The momentum in the community then shifts from a determination to address issues with the cooking technology toward caution in further adhering to it. We also conducted experiments using the simulation model to understand the impact of interventions aimed at renewing the use of biogas. A combination of theoretical interventions, including repair of non-functioning biogas units and provision of embedded technical support in communities, resulted in a scenario where the community can continue using the technology even after support is retracted. Our study also demonstrates the utility of a systems approach for engaging local stakeholders in delineating complex community processes to derive significant insights into the dynamic feedback mechanisms involved in the sustained use of biogas by the poor.
Solar Technical Assistance Team Webinars | State, Local, and Tribal
Governments | NREL Solar Technical Assistance Team Webinars Solar Technical Assistance Team Webinars NREL's Solar Technical Assistance Team (STAT), with support from the U.S. Department of Energy
NASA Astrophysics Data System (ADS)
Burke, Sophia; Mulligan, Mark
2017-04-01
WaterWorld is a widely used spatial hydrological policy support system. The last user census indicates regular use by 1029 institutions across 141 countries. A key feature of WaterWorld since 2001 is that it comes pre-loaded with all of the required data for simulation anywhere in the world at a 1km or 1 ha resolution. This means that it can be easily used, without specialist technical ability, to examine baseline hydrology and the impacts of scenarios for change or management interventions to support policy formulation, hence its labelling as a policy support system. WaterWorld is parameterised by an extensive global gridded database of more than 600 variables, developed from many sources, since 1998, the so-called simTerra database. All of these data are available globally at 1km resolution and some variables (terrain, land cover, urban areas, water bodies) are available globally at 1ha resolution. If users have access to better data than is pre-loaded, they can upload their own data. WaterWorld is generally applied at the national or basin scale at 1km resolution, or locally (for areas of <10,000km2) at 1ha resolution, though continental (1km resolution) and global (10km resolution) applications are possible so it is a model with local to global applications. WaterWorld requires some 140 maps to run including monthly climate data, land cover and use, terrain, population, water bodies and more. Whilst publically-available terrain and land cover data are now well developed for local scale application, climate and land use data remain a challenge, with most global products being available at 1km or 10km resolution or worse, which is rather coarse for local application. As part of the EartH2Observe project we have used WFDEI (WATCH Forcing Data methodology applied to ERA-Interim data) at 1km resolution to provide an alternative input to WaterWorld's preloaded climate data. Here we examine the impacts of that on key hydrological outputs: water balance, water quality and outline the remaining challenges of using datasets like these for local scale application.
ERIC Educational Resources Information Center
Alazzam, Abu-Obaideh; Bakar, Ab Rahim; Hamzah, Ramlah; Asimiran, S.
2012-01-01
The aim of this study was to examine ICT readiness and the effects of demographic characteristics, educational background, and support factors on the ICT readiness of technical and vocational teachers in Malaysia. The questionnaire was administered to 329 technical and vocational teachers who are teaching engineering subjects in Malaysian…
This report summarizes a variety of significant projects that the ETSC, located in the Land Remediation and Pollution Control Division (LRPCD), National Risk Management Research Laboratory (NRMRL), has supported throughout fiscal year 2013. Projects have addressed an array of env...
2005-09-30
Technical Support Services for the Office of Naval Research Littoral Warfare Advanced Development Project William R. Metzger Marine...Support Services for the Office of Naval Research Littoral Warfare Advanced Development Project 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
... Support Post Earthquake Reconstruction, Cholera and HIV/AIDS Response, FOA GH12-001, and Research and Technical Assistance for Public Health Laboratories in Haiti to Support Post Earthquake Reconstruction... and Technical Assistance for Public Health Interventions in Haiti to Support Post Earthquake...
Levelized cost of energy for a Backward Bent Duct Buoy
Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; ...
2016-07-18
The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publicly available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied withinmore » the Reference Model Project. Furthermore, comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.« less
Levelized cost of energy for a Backward Bent Duct Buoy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bull, Diana; Jenne, D. Scott; Smith, Christopher S.
2016-12-01
The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publically available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied withinmore » the Reference Model Project. Comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.« less
Investigation of the stochastic nature of temperature and humidity for energy management
NASA Astrophysics Data System (ADS)
Hadjimitsis, Evanthis; Demetriou, Evangelos; Sakellari, Katerina; Tyralis, Hristos; Iliopoulou, Theano; Koutsoyiannis, Demetris
2017-04-01
Atmospheric temperature and dew point, in addition to their role in atmospheric processes, influence the management of energy systems since they highly affect the energy demand and production. Both temperature and humidity depend on the climate conditions and geographical location. In this context, we analyze numerous of observations around the globe and we investigate the long-term behaviour and periodicities of the temperature and humidity processes. Also, we present and apply a parsimonious stochastic double-cyclostationary model for these processes to an island in the Aegean Sea and investigate their link to energy management. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.
NASA Astrophysics Data System (ADS)
Kirchhoff, C.; Vang Rasmussen, L.; Lemos, M. C.
2016-12-01
While there has been considerable focus on understanding how factors related to the creation of climate knowledge affect its uptake and use, less attention has been paid to the actors, decisions, and processes through which climate information supports, or fails to support, action. This is particularly the case concerning how different scales of decision-making influence information uptake. In this study, we seek to understand how water and resource managers' decision space influences climate information use in two Great Lakes watersheds. We find that despite the availability of tailored climate information, actual use of information in decision making remains low. Reasons include: a) lack of willingness to place climate on agendas because local managers perceive climate change as politically risky and a difficult and intangible problem; b) lack of formal mandate or authority at the city and county scale to translate climate information into on-the-ground action, c) problems with the information itself, and d) perceived lack of demand for climate information by those managers who have the mandate and authority (e.g. at the state level) to use (or help others use) climate information. Our findings suggest that 1) climate scientists and information brokers should produce information that meets a range of decision needs and reserve intensive tailoring efforts for decision makers who have authority and willingness to employ climate information, 2) without support from higher levels of decision-making (e.g. state) it is unlikely that climate information use for adaptation decisions will accelerate significantly in the next few years, and 3) the trend towards adopting more sustainability and resilience practices over climate-specific actions should be supported as an important component of the climate adaptation repertoire.
Sulda, Heidi; Coveney, John; Bentley, Michael
2010-03-01
To develop a framework to guide action in the public health nutrition workforce to develop policies and practices addressing factors contributing to climate change. Action/consultative research. Interviews - South Australia, questionnaire - Australia. Interviews - key informants (n 6) were from various government, academic and non-government positions, invited through email. Questionnaire - participants were members of the public health nutrition workforce (n 186), recruited to the study through emails from public health nutrition contacts for each State in Australia (with the exception of South Australia). Support by participants for climate change as a valid role for dietitians and nutritionists was high (78 %). However, climate change was ranked low against other public health nutrition priorities. Support of participants to conduct programmes to address climate change from professional and work organisations was low. The final framework developed included elements of advocacy/lobbying, policy, professional recognition/support, organisational support, knowledge/skills, partnerships and programmes. This research demonstrates a need for public health nutrition to address climate change, which requires support by organisations, policy, improved knowledge and increased professional development opportunities.
Gower, Amy L; Forster, Myriam; Gloppen, Kari; Johnson, Abigail Z; Eisenberg, Marla E; Connett, John E; Borowsky, Iris W
2017-10-14
Lesbian, gay, bisexual, and transgender (LGBT) youth experience disproportionate rates of bullying compared to their heterosexual peers. Schools are well-positioned to address these disparities by creating supportive school climates for LGBT youth, but more research is needed to examine the variety of practices and professional development opportunities put in place to this end. The current study examines how school practices to create supportive LGBT student climate relate to student reports of bullying. Student-level data come from the 2013 Minnesota Student Survey, a state-wide survey of risk and protective factors. Ninth and eleventh grade students (N = 31,183) reported on frequency of physical and relational bullying victimization and perpetration and sexual orientation-based harassment. School administrators reported on six practices related to creating supportive LGBT school climate (N = 103 schools): having a point person for LGBT student issues, displaying sexual orientation-specific content, having a gay-straight alliance, discussing bullying based on sexual orientation, and providing professional development around LGBT inclusion and LGBT student issues. An index was created to indicate how many practices each school used (M = 2.45; SD = 1.76). Multilevel logistic regressions indicated that students attending schools with more supportive LGBT climates reported lower odds of relational bullying victimization, physical bullying perpetration, and sexual orientation-based harassment compared to students in schools with less supportive LGBT climates. Sexual orientation did not moderate these relations, indicating that LGBT-supportive practices may be protective for all students, regardless of their sexual orientation. Findings support school-wide efforts to create supportive climates for LGBQ youth as part of a larger bullying prevention strategy.
NASA Astrophysics Data System (ADS)
Maslowski, W.
2017-12-01
The Regional Arctic System Model (RASM) has been developed to better understand the operation of Arctic System at process scale and to improve prediction of its change at a spectrum of time scales. RASM is a pan-Arctic, fully coupled ice-ocean-atmosphere-land model with marine biogeochemistry extension to the ocean and sea ice models. The main goal of our research is to advance a system-level understanding of critical processes and feedbacks in the Arctic and their links with the Earth System. The secondary, an equally important objective, is to identify model needs for new or additional observations to better understand such processes and to help constrain models. Finally, RASM has been used to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook of the Sea Ice Prediction Network. Future RASM forecasts, are likely to include increased resolution for model components and ecosystem predictions. Such research is in direct support of the US environmental assessment and prediction needs, including those of the U.S. Navy, Department of Defense, and the recent IARPC Arctic Research Plan 2017-2021. In addition to an overview of RASM technical details, selected model results are presented from a hierarchy of climate models together with available observations in the region to better understand potential oceanic contributions to polar amplification. RASM simulations are analyzed to evaluate model skill in representing seasonal climatology as well as interannual and multi-decadal climate variability and predictions. Selected physical processes and resulting feedbacks are discussed to emphasize the need for fully coupled climate model simulations, high model resolution and sensitivity of simulated sea ice states to scale dependent model parameterizations controlling ice dynamics, thermodynamics and coupling with the atmosphere and ocean.
Climate change impacts on selected global rangeland ecosystem services.
Boone, Randall B; Conant, Richard T; Sircely, Jason; Thornton, Philip K; Herrero, Mario
2018-03-01
Rangelands are Earth's dominant land cover and are important providers of ecosystem services. Reliance on rangelands is projected to grow, thus understanding the sensitivity of rangelands to future climates is essential. We used a new ecosystem model of moderate complexity that allows, for the first time, to quantify global changes expected in rangelands under future climates. The mean global annual net primary production (NPP) may decline by 10 g C m -2 year -1 in 2050 under Representative Concentration Pathway (RCP) 8.5, but herbaceous NPP is projected to increase slightly (i.e., average of 3 g C m -2 year -1 ). Responses vary substantially from place-to-place, with large increases in annual productivity projected in northern regions (e.g., a 21% increase in productivity in the US and Canada) and large declines in western Africa (-46% in sub-Saharan western Africa) and Australia (-17%). Soil organic carbon is projected to increase in Australia (9%), the Middle East (14%), and central Asia (16%) and decline in many African savannas (e.g., -18% in sub-Saharan western Africa). Livestock are projected to decline 7.5 to 9.6%, an economic loss of from $9.7 to $12.6 billion. Our results suggest that forage production in Africa is sensitive to changes in climate, which will have substantial impacts on the livelihoods of the more than 180 million people who raise livestock on those rangelands. Our approach and the simulation tool presented here offer considerable potential for forecasting future conditions, highlight regions of concern, and support analyses where costs and benefits of adaptations and policies may be quantified. Otherwise, the technical options and policy and enabling environment that are needed to facilitate widespread adaptation may be very difficult to elucidate. © 2017 John Wiley & Sons Ltd.
Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS)
NASA Astrophysics Data System (ADS)
Muratori, Matteo; Calvin, Katherine; Wise, Marshall; Kyle, Page; Edmonds, Jae
2016-09-01
Bioenergy with carbon capture and storage (BECCS) is considered a potential source of net negative carbon emissions and, if deployed at sufficient scale, could help reduce carbon dioxide emissions and concentrations. However, the viability and economic consequences of large-scale BECCS deployment are not fully understood. We use the Global Change Assessment Model (GCAM) integrated assessment model to explore the potential global and regional economic impacts of BECCS. As a negative-emissions technology, BECCS would entail a net subsidy in a policy environment in which carbon emissions are taxed. We show that by mid-century, in a world committed to limiting climate change to 2 °C, carbon tax revenues have peaked and are rapidly approaching the point where climate mitigation is a net burden on general tax revenues. Assuming that the required policy instruments are available to support BECCS deployment, we consider its effects on global trade patterns of fossil fuels, biomass, and agricultural products. We find that in a world committed to limiting climate change to 2 °C, the absence of CCS harms fossil-fuel exporting regions, while the presence of CCS, and BECCS in particular, allows greater continued use and export of fossil fuels. We also explore the relationship between carbon prices, food-crop prices and use of BECCS. We show that the carbon price and biomass and food crop prices are directly related. We also show that BECCS reduces the upward pressure on food crop prices by lowering carbon prices and lowering the total biomass demand in climate change mitigation scenarios. All of this notwithstanding, many challenges, both technical and institutional, remain to be addressed before BECCS can be deployed at scale.
Atmospheric Research 2016 Technical Highlights
NASA Technical Reports Server (NTRS)
Platnick, Steven
2017-01-01
Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Divisions goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the Earth Sciences Division in atmospheric science research. Figure 1.1 shows the 22-year record of peer-reviewed publications and proposals among the various laboratories.
NASA Astrophysics Data System (ADS)
Weller, N.; Bennett, I.; Bernstein, M.; Farooque, M.; Lloyd, J.; Lowenthal, C.; Sittenfeld, D.
2016-12-01
Actionable science seeks to align scientific inquiry with decision-making priorities to overcome rifts between scientific knowledge and the needs of decision makers. Combining actionable science with explorations of public values and priorities creates useful support for decision makers facing uncertainty, tradeoffs, and limited resources. As part of a broader project to create public forums about climate change resilience, we convened workshops with decision makers, resilience experts, and community stakeholders to discuss climate change resilience. Our goals were 1) to create case studies of resilience strategies for use in public deliberations at science museums across 8 U.S. cities; and 2) to build relationships with decision makers and stakeholders interested in these public deliberations. Prior to workshops, we created summaries of resilience strategies using academic literature, government assessments, municipal resilience plans, and conversations with workshop participants. Workshops began with example deliberation activities followed by semi-structured discussions of resilience strategies centered on 4 questions: 1) What are the key decisions to be made regarding each strategy? 2) What stakeholders and perspectives are relevant to each strategy? 3) What available data are relevant to each strategy? 4) What visualizations or other resources are useful for communicating things about each strategy? Workshops yielded actionable dialogue regarding issues of justice, feasibility, and the socio-ecological-technical systems impacted by climate change hazards and resilience strategies. For example, discussions of drought revealed systemic and individual-level challenges and opportunities; discussions of sea level rise included ways to account for the cultural significance of many coastal communities. The workshops provide a model for identifying decision-making priorities and tradeoffs and building partnerships among stakeholders, scientists, and decision makers.
NASA Astrophysics Data System (ADS)
Garcia de Cortazar-Atauri, Iñaki; Audergon, Jean Marc; Bertuzzi, Patrick; Anger, Christel; Bonhomme, Marc; Chuine, Isabelle; Davi, Hendrik; Delzon, Sylvain; Duchêne, Eric; Legave, Jean Michel; Raynal, Hélène; Pichot, Christian; Van Leeuwen, Cornelis; Perpheclim Team
2015-04-01
Phenology is a bio-indicator of climate evolutions. Measurements of phenological stages on perennial species provide actually significant illustrations and assessments of the impact of climate change. Phenology is also one of the main key characteristics of the capacity of adaptation of perennial species, generating questions about their consequences on plant growth and development or on fruit quality. Predicting phenology evolution and adaptative capacities of perennial species need to override three main methodological limitations: 1) existing observations and associated databases are scattered and sometimes incomplete, rendering difficult implementation of multi-site study of genotype-environment interaction analyses; 2) there are not common protocols to observe phenological stages; 3) access to generic phenological models platforms is still very limited. In this context, the PERPHECLIM project, which is funded by the Adapting Agriculture and Forestry to Climate Change Meta-Program (ACCAF) from INRA (French National Institute of Agronomic Research), has the objective to develop the necessary infrastructure at INRA level (observatories, information system, modeling tools) to enable partners to study the phenology of various perennial species (grapevine, fruit trees and forest trees). Currently the PERPHECLIM project involves 27 research units in France. The main activities currently developed are: define protocols and observation forms to observe phenology for various species of interest for the project; organizing observation training; develop generic modeling solutions to simulate phenology (Phenological Modelling Platform and modelling platform solutions); support in building research projects at national and international level; develop environment/genotype observation networks for fruit trees species; develop an information system managing data and documentation concerning phenology. Finally, PERPHECLIM project aims to build strong collaborations with public (Observatoire des Saisons) and private sector partners (technical institutes) in order to allow a more direct transfer of knowledge.
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Habib, E. H.; Deshotel, M.; Merck, M. F.; Lall, U.; Farnham, D. J.
2016-12-01
Traditional approaches to undergraduate hydrology and water resource education are textbook based, adopt unit processes and rely on idealized examples of specific applications, rather than examining the contextual relations in the processes and the dynamics connecting climate and ecosystems. The overarching goal of this project is to address the needed paradigm shift in undergraduate education of engineering hydrology and water resources education to reflect parallel advances in hydrologic research and technology, mainly in the areas of new observational settings, data and modeling resources and web-based technologies. This study presents efforts to develop a set of learning modules that are case-based, data and simulation driven and delivered via a web user interface. The modules are based on real-world case studies from three regional hydrologic settings: Coastal Louisiana, Utah Rocky Mountains and Florida Everglades. These three systems provide unique learning opportunities on topics such as: regional-scale budget analysis, hydrologic effects of human and natural changes, flashflood protection, climate-hydrology teleconnections and water resource management scenarios. The technical design and contents of the modules aim to support students' ability for transforming their learning outcomes and skills to hydrologic systems other than those used by the specific activity. To promote active learning, the modules take students through a set of highly engaging learning activities that are based on analysis of hydrologic data and model simulations. The modules include user support in the form of feedback and self-assessment mechanisms that are integrated within the online modules. Module effectiveness is assessed through an improvement-focused evaluation model using a mixed-method research approach guiding collection and analysis of evaluation data. Both qualitative and quantitative data are collected through student learning data, product analysis, and staff interviews. The presentation shares with the audience lessons learned from the development and implementation of the modules, students' feedback, guidelines on design and content attributes that support active learning in hydrology, and challenges encountered during the class implementation and evaluation of the modules.
Planning a DSN support section technical library
NASA Technical Reports Server (NTRS)
Bailey, T.; Chatburn, C. C.
1980-01-01
The planning procedure being used to establish a technical library for the Deep Space Network support section is described. The inventory and survey methods employed are described and the preliminary results of these methods are discussed.
Draft federal GHG accounting and reporting : technical support document
DOT National Transportation Integrated Search
2010-07-01
This is a technical support document (TSD) that accompanies the Federal Greenhouse Gas Accounting and Reporting Guidance (or Guidance). This document provides detailed information on the inventory reporting process and accepted calculation methodolog...
Job characteristics and safety climate: the role of effort-reward and demand-control-support models.
Phipps, Denham L; Malley, Christine; Ashcroft, Darren M
2012-07-01
While safety climate is widely recognized as a key influence on organizational safety, there remain questions about the nature of its antecedents. One potential influence on safety climate is job characteristics (that is, psychosocial features of the work environment). This study investigated the relationship between two job characteristics models--demand-control-support (Karasek & Theorell, 1990) and effort-reward imbalance (Siegrist, 1996)--and safety climate. A survey was conducted with a random sample of 860 British retail pharmacists, using the job contents questionnaire (JCQ), effort-reward imbalance indicator (ERI) and a measure of safety climate in pharmacies. Multivariate data analyses found that: (a) both models contributed to the prediction of safety climate ratings, with the demand-control-support model making the largest contribution; (b) there were some interactions between demand, control and support from the JCQ in the prediction of safety climate scores. The latter finding suggests the presence of "active learning" with respect to safety improvement in high demand, high control settings. The findings provide further insight into the ways in which job characteristics relate to safety, both individually and at an aggregated level.
Climate change may restrict dryland forest regeneration in the 21st century
Petrie, M.D.; Bradford, John B.; Hubbard, R.M.; Lauenroth, W.K.; Andrews, Caitlin; Schlaepfer, D.R.
2017-01-01
The persistence and geographic expansion of dryland forests in the 21st century will be influenced by how climate change supports the demographic processes associated with tree regeneration. Yet, the way that climate change may alter regeneration is unclear. We developed a quantitative framework that estimates forest regeneration potential (RP) as a function of key environmental conditions for ponderosa pine, a key dryland forest species. We integrated meteorological data and climate projections for 47 ponderosa pine forest sites across the western United States, and evaluated RP using an ecosystem water balance model. Our primary goal was to contrast conditions supporting regeneration among historical, mid-21st century and late-21st century time frames. Future climatic conditions supported 50% higher RP in 2020–2059 relative to 1910–2014. As temperatures increased more substantially in 2060–2099, seedling survival decreased, RP declined by 50%, and the frequency of years with very low RP increased from 25% to 58%. Thus, climate change may initially support higher RP and increase the likelihood of successful regeneration events, yet will ultimately reduce average RP and the frequency of years with moderate climate support of regeneration. Our results suggest that climate change alone may begin to restrict the persistence and expansion of dryland forests by limiting seedling survival in the late 21st century.
Climate change may restrict dryland forest regeneration in the 21st century.
Petrie, M D; Bradford, J B; Hubbard, R M; Lauenroth, W K; Andrews, C M; Schlaepfer, D R
2017-06-01
The persistence and geographic expansion of dryland forests in the 21st century will be influenced by how climate change supports the demographic processes associated with tree regeneration. Yet, the way that climate change may alter regeneration is unclear. We developed a quantitative framework that estimates forest regeneration potential (RP) as a function of key environmental conditions for ponderosa pine, a key dryland forest species. We integrated meteorological data and climate projections for 47 ponderosa pine forest sites across the western United States, and evaluated RP using an ecosystem water balance model. Our primary goal was to contrast conditions supporting regeneration among historical, mid-21st century and late-21st century time frames. Future climatic conditions supported 50% higher RP in 2020-2059 relative to 1910-2014. As temperatures increased more substantially in 2060-2099, seedling survival decreased, RP declined by 50%, and the frequency of years with very low RP increased from 25% to 58%. Thus, climate change may initially support higher RP and increase the likelihood of successful regeneration events, yet will ultimately reduce average RP and the frequency of years with moderate climate support of regeneration. Our results suggest that climate change alone may begin to restrict the persistence and expansion of dryland forests by limiting seedling survival in the late 21st century. © 2017 by the Ecological Society of America.
The coevolution of innovation and technical intelligence in primates
Street, Sally E.; Whalen, Andrew; Laland, Kevin N.
2016-01-01
In birds and primates, the frequency of behavioural innovation has been shown to covary with absolute and relative brain size, leading to the suggestion that large brains allow animals to innovate, and/or that selection for innovativeness, together with social learning, may have driven brain enlargement. We examined the relationship between primate brain size and both technical (i.e. tool using) and non-technical innovation, deploying a combination of phylogenetically informed regression and exploratory causal graph analyses. Regression analyses revealed that absolute and relative brain size correlated positively with technical innovation, and exhibited consistently weaker, but still positive, relationships with non-technical innovation. These findings mirror similar results in birds. Our exploratory causal graph analyses suggested that technical innovation shares strong direct relationships with brain size, body size, social learning rate and social group size, whereas non-technical innovation did not exhibit a direct relationship with brain size. Nonetheless, non-technical innovation was linked to brain size indirectly via diet and life-history variables. Our findings support ‘technical intelligence’ hypotheses in linking technical innovation to encephalization in the restricted set of primate lineages where technical innovation has been reported. Our findings also provide support for a broad co-evolving complex of brain, behaviour, life-history, social and dietary variables, providing secondary support for social and ecological intelligence hypotheses. The ability to gain access to difficult-to-extract, but potentially nutrient-rich, resources through tool use may have conferred on some primates adaptive advantages, leading to selection for brain circuitry that underlies technical proficiency. PMID:26926276
The coevolution of innovation and technical intelligence in primates.
Navarrete, Ana F; Reader, Simon M; Street, Sally E; Whalen, Andrew; Laland, Kevin N
2016-03-19
In birds and primates, the frequency of behavioural innovation has been shown to covary with absolute and relative brain size, leading to the suggestion that large brains allow animals to innovate, and/or that selection for innovativeness, together with social learning, may have driven brain enlargement. We examined the relationship between primate brain size and both technical (i.e. tool using) and non-technical innovation, deploying a combination of phylogenetically informed regression and exploratory causal graph analyses. Regression analyses revealed that absolute and relative brain size correlated positively with technical innovation, and exhibited consistently weaker, but still positive, relationships with non-technical innovation. These findings mirror similar results in birds. Our exploratory causal graph analyses suggested that technical innovation shares strong direct relationships with brain size, body size, social learning rate and social group size, whereas non-technical innovation did not exhibit a direct relationship with brain size. Nonetheless, non-technical innovation was linked to brain size indirectly via diet and life-history variables. Our findings support 'technical intelligence' hypotheses in linking technical innovation to encephalization in the restricted set of primate lineages where technical innovation has been reported. Our findings also provide support for a broad co-evolving complex of brain, behaviour, life-history, social and dietary variables, providing secondary support for social and ecological intelligence hypotheses. The ability to gain access to difficult-to-extract, but potentially nutrient-rich, resources through tool use may have conferred on some primates adaptive advantages, leading to selection for brain circuitry that underlies technical proficiency. © 2016 The Author(s).
7 CFR 653.3 - Adaptation of technical standards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 6 2012-01-01 2012-01-01 false Adaptation of technical standards. 653.3 Section 653.3..., DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES TECHNICAL STANDARDS § 653.3 Adaptation of technical standards. Technical standards and criteria developed on a national basis may require special adaptation to meet local...
7 CFR 653.3 - Adaptation of technical standards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 6 2014-01-01 2014-01-01 false Adaptation of technical standards. 653.3 Section 653.3..., DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES TECHNICAL STANDARDS § 653.3 Adaptation of technical standards. Technical standards and criteria developed on a national basis may require special adaptation to meet local...
7 CFR 653.3 - Adaptation of technical standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 6 2011-01-01 2011-01-01 false Adaptation of technical standards. 653.3 Section 653.3..., DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES TECHNICAL STANDARDS § 653.3 Adaptation of technical standards. Technical standards and criteria developed on a national basis may require special adaptation to meet local...
7 CFR 653.3 - Adaptation of technical standards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 6 2013-01-01 2013-01-01 false Adaptation of technical standards. 653.3 Section 653.3..., DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES TECHNICAL STANDARDS § 653.3 Adaptation of technical standards. Technical standards and criteria developed on a national basis may require special adaptation to meet local...
Cox, Anne; Williams, Lavon
2008-04-01
Research illustrates the positive roles of perceived competence, autonomy, and mastery climate and the negative role of performance climate in student motivation in physical education. Less research has examined perceptions of relationships within this setting (i.e., perceived teacher support and relatedness) and their role in student motivation. The purpose of this study was to test the mediating roles of perceived competence, autonomy, and relatedness in the relationship between social contextual factors and motivation in physical education students (N = 508). Results from structural equation modeling showed that perceived competence, autonomy, and relatedness partially mediated the relationship between perceived teacher support and self-determined motivation and that mastery climate related directly to self-determined motivation. The results highlight the importance of perceived teacher support, mastery climate, and relatedness to motivation in physical education.
Technical support for Life Sciences communities on a production grid infrastructure.
Michel, Franck; Montagnat, Johan; Glatard, Tristan
2012-01-01
Production operation of large distributed computing infrastructures (DCI) still requires a lot of human intervention to reach acceptable quality of service. This may be achievable for scientific communities with solid IT support, but it remains a show-stopper for others. Some application execution environments are used to hide runtime technical issues from end users. But they mostly aim at fault-tolerance rather than incident resolution, and their operation still requires substantial manpower. A longer-term support activity is thus needed to ensure sustained quality of service for Virtual Organisations (VO). This paper describes how the biomed VO has addressed this challenge by setting up a technical support team. Its organisation, tooling, daily tasks, and procedures are described. Results are shown in terms of resource usage by end users, amount of reported incidents, and developed software tools. Based on our experience, we suggest ways to measure the impact of the technical support, perspectives to decrease its human cost and make it more community-specific.
32 CFR 203.10 - Eligible activities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... with technical reports that summarize data and support cleanup decisions. Technical assistance may be provided to review plans and interpret technical reports for community members of RABs and TRCs. These...) MISCELLANEOUS TECHNICAL ASSISTANCE FOR PUBLIC PARTICIPATION (TAPP) IN DEFENSE ENVIRONMENTAL RESTORATION...
32 CFR 203.10 - Eligible activities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... with technical reports that summarize data and support cleanup decisions. Technical assistance may be provided to review plans and interpret technical reports for community members of RABs and TRCs. These...) MISCELLANEOUS TECHNICAL ASSISTANCE FOR PUBLIC PARTICIPATION (TAPP) IN DEFENSE ENVIRONMENTAL RESTORATION...
32 CFR 203.10 - Eligible activities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... with technical reports that summarize data and support cleanup decisions. Technical assistance may be provided to review plans and interpret technical reports for community members of RABs and TRCs. These...) MISCELLANEOUS TECHNICAL ASSISTANCE FOR PUBLIC PARTICIPATION (TAPP) IN DEFENSE ENVIRONMENTAL RESTORATION...
Geotechnical support and topical studies for nuclear waste geologic repositories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
The present report lists the technical reviews and comments made during the fiscal year 1988 and summarizes the technical progress of the topical studies. In the area of technical assistance, there were numerous activities detailed in the next section. These included 24 geotechnical support activities, including reviews of 6 Study Plans (SP) and participation in 6 SP Review Workshops, review of one whole document Site Characterization Plan (SCP) and participation in the Assembled Document SCP Review Workshops by 6 LBL reviewers; the hosting of a DOE program review, the rewriting of the project statement of work, 2 trips to technicalmore » and planning meetings; preparation of proposed work statements for two new topics for DOE, and 5 instances of technical assistance to DOE. These activities are described in a Table in the following section entitled Geoscience Technical Support for Nuclear Waste Geologic Repositories.''« less
Bleakley, Alan; Allard, Jon; Hobbs, Adrian
2013-03-01
Focused dialogue, as good communication between practitioners, offers a condition of possibility for development of high levels of situation awareness in surgical teams. This has been termed "achieving ensemble". Situation awareness grasps what is happening in time and space with regard to one's own unfolding work in relation to that of colleagues, and is necessary to maintain patient safety throughout a surgical list. We refined a typology, initially developed for use in studying the dynamics of teams in aviation safety, of 10 kinds of communication within two broad areas: 'Reports', or authoritative acts of communication setting up a monological or authoritative climate; and 'Requests', or facilitative acts of communication setting up a dialogical or participatory climate. We systematically mapped how orthopaedic surgical teams use verbal communication through analysis of videotaped operations using the typology. We asked: 'do orthopaedic surgical teams set up the conditions of possibility for the emergence of situation awareness through effective communication?' We found that orthopaedic surgical teams tend to produce monological rather than dialogical climates. Dialogue increases with more complex cases, but in routine work, communication levels are depressed and one-way, influenced by surgeons working within a traditionally hierarchical and authoritative culture. We suggest that such a monological climate inhibits development of situation awareness and then compromises patient safety. The same teams, however, generate potentially rich educational climates through exchange of profession-specific knowledge and skills, and we suggest that where technical skill exchange is good, non-technical or interpersonal communication skill levels can follow.
Koppelaar, E; Knibbe, J J; Miedema, H S; Burdorf, A
2013-07-01
This study evaluates the influence of individual and organisational factors on nurses' behaviour to use lifting devices in healthcare. Interviews among nurses were conducted to collect individual characteristics and to establish their behaviour regarding lifting devices use. Organisational factors were collected by questionnaires and walk-through-surveys, comprising technical facilities, organisation of care, and management-efforts. Generalised-Estimating-Equations for repeated measurements were used to estimate determinants of nurses' behaviour. Important determinants of nurses' behaviour to use lifting devices were knowledge of workplace procedures (OR = 5.85), strict guidance on required lifting devices use (OR = 2.91), and sufficient lifting devices (OR = 1.92). Management-support and supportive-management-climate were associated with these determinants. Since nurses' behaviour to use lifting devices is influenced by factors at different levels, studies in ergonomics should consider how multi-level factors impact each other. An integral approach, addressing individual and organisational levels, is necessary to facilitate appropriate implementation of ergonomic interventions, like lifting devices. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Surface Observation Climatic Summaries for Myrtle Beach AFB, South Carolina.
1992-02-01
UNLIMITED DISTRIBUTION OF THIS DOCUMENT TO THE PUBLIC AT LARGE, OR BY THE DEFENSE TECHNICAL INMFOM ON CENTER (DTIC) TO THE fiATICVAL TECHNICAL INFOAm9... THE oNANDER Distribution I Availability Codes SCITEN A. - .4MDist Avail andIor SCMTECHNICAL I Dt Special 2 8 S ;E 1992 d.I USA MTAC/D8--92/269 - Page...PRODUCT REPLACED TWO USAFETAC DOCUMENTS FORMERLY NNONN AS THE REVISED UNIFORM SUM=RY OF SURFACE OBSERVATIONS (RUSSTO) AND THE LIMITED SURFACE
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Takacs, Lawrence L.; Molod, Andrea; Wang, Tina
1994-01-01
This technical report documents Version 1 of the Goddard Earth Observing System (GEOS) General Circulation Model (GCM). The GEOS-1 GCM is being used by NASA's Data Assimilation Office (DAO) to produce multiyear data sets for climate research. This report provides a documentation of the model components used in the GEOS-1 GCM, a complete description of model diagnostics available, and a User's Guide to facilitate GEOS-1 GCM experiments.
This report summarizes a variety of significant projects that ETSC and its colleagues in the Land Remediation and Pollution Control Division (LRPCD) have supported during the last five years. Projects have addressed an array of environmental scenarios, including remote mining co...
Hope, Interpreter Self-efficacy, and Social Impacts: Assessment of the NNOCCI Training
NASA Astrophysics Data System (ADS)
Fraser, J.; Swim, J.
2012-12-01
Conservation educators at informal science learning centers are well-positioned to teach climate science and motivate action but have resisted the topic. Our research demonstrates their resist is due to self-doubt about climate science facts and the belief they will encounter negative audience feedback. Further, this self-doubt and self-silencing is emotional taxing. As a result we have developed a National Network for Ocean Climate Change Interpretation's (NNOCCI) program that addresses educators' needs for technical training and emotional scaffolding to help them fully engage with this work. The evaluation of this program sought to understand how to support educators interested in promoting public literacy on climate change through engagement with a structured training program aimed at increased the efficacy of interpreters through teaching strategic framing strategies. The program engaged educator dyads from informal science learning sites to attend an online and in-person program that initiated a new community of practice focused on sharing techniques and tools for ocean climate change interpretation. The presentation will summarize a model for embedded assessment across all aspects of a program and how social vectors, based upon educators' interpersonal and professional relationships, impact the understanding of an educator's work across their life-world. This summary will be followed by results from qualitative front-end research that demonstrated the psychologically complex emotional conditions that describe the experience of being an environmental educator. The project evaluators will then present results from their focus groups and social network analysis to demonstrate how training impacted in-group relationships, skill development, and the layered social education strategies that help communities engage with the content. Results demonstrated that skill training increased educator's hope--in the form of increased perceived agency and plans for educational objectives. Subsequent to the program, educators experienced socially supportive feedback from colleagues and peers and increased actions to engage the public in productive discussions about climate change at informal science learning venues. The front-end and formative assessment of this program suggests new strategies for measuring interpreter training, and a way of thinking holistically about an educator's impact in their community. The results challenge the concept that interpretation is limited to the workplace and suggest that the increased likelihood of effectiveness in interpretation across all social vectors is more likely to result in changed public understanding of climate science in ways that will promote public action toward remediation strategies.Emotions before and after study circlet; Personal hope scale was rescaled to range from 1 "strongly disagree"; 4 "strongly agree"; Distress, Anxiety vs. hopeful and Energized vs. Overwhelmed range from 1 "not at all" to 4 "very much."
Towards the IPCC Special Report on Global Warming of 1.5°C
NASA Astrophysics Data System (ADS)
Masson-Delmotte, Valérie
2017-04-01
The Intergovernemental Panel on Climate Change (IPCC) has accepted the invitation from the Paris Agreement to prepare a special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. This special report is prepared under the scientific leadership of the co-chairs of the IPCC Working Groups I, II and III, and with operational support from the Technical Support Unit of Working Group I. It will consist of 5 chapters, providing (i) framing and context, (ii) exploring mitigation pathways compatible with 1.5°C in the context of sustainable development, (iii) assessing impacts of 1.5°C global warming on natural and human systems, and (iv) options for strengthening and implementing the global response to the threat of climate change, with a final chapter on sustainable development, poverty eradication and reducing inequalities. The timeline of preparation of the report is extremely short, with four lead author meetings taking place from March 2017 to April 2018, and an approval session scheduled in September 2018. It is crucial that new knowledge is being produced and submitted / published in the literature in time for contributing new material to be assessed by the authors of the report (with deadlines in late fall 2017 and spring 2018). With respect to the additional impacts expected for 1.5°C warming compared to present-day, and impacts avoided with respect to larger warming, new research is expected to build on existing CMIP5 projections, including new information on regional change, methods to provide knowledge for the most vulnerable ecosystems and regions, but also information from ongoing projects aiming to produce large ensembles of simulations, and new simulations driven by low carbon pathways. This is important for identifying climate change signals from climate variability (e.g. changes in water cycle, extremes...), for assessing strengths and limitations of methodologies using high end climate scenarios versus true stabilisation pathways, and for exploring long term risks beyond transient response, with consideration for overshoots and the full timescale of Earth system feedbacks. Lessons learnt from past warm climatic phases may also provide insights complementary to projections, albeit without the perspective of rates of changes that is specific to the issue of 1.5°C global warming. This special report is also designed to be complementary from the other reports in preparation for the IPCC Sixth Assessment cycle (AR6), including the special reports on the ocean and the cryosphere, on land use issues, both scheduled for 2019, and the Working Group main assessment reports, scheduled for 2021-2022.
Arbuckle, J Gordon; Morton, Lois Wright; Hobbs, Jon
2015-02-01
Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers' trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management).
Climatic Characteristics of Slovakia in the Years 1971 to 2011 from the Aspect of Pavement Design
NASA Astrophysics Data System (ADS)
Decky, Martin; Remisova, Eva; Kovalcik, Lubomír; Dibdiakova, Jana; Hajek, Matej
2017-12-01
Contribution follows the previous work of authors in the field of implementation of objectified results of climate change in the design of roads, especially their pavement [1] to [3]. Climate conditions are besides traffic load, one of the permanent external factors adversely affecting the physical and mechanical properties of the construction layers. For designing concrete pavements is used in SR conditions average annual air temperature Tm and frost index for design of asphalt and concrete pavements. As part of the research activities carried out at the workplace, the authors statistically evaluated average daily temperatures of SR meteorological stations covering most of the SR territory with altitude from 115 to 695 m above sea level in the years 1971 to 2011. Act No. 135/1961 Coll. (Road Act) states that the design of road pavements is performed according to valid Slovak technical standards, technical regulations and objectively identified results of research and development for road infrastructure. On the basis of the presented correlations, it can be stated that the presented research results can be used immediately for SR conditions in the design of road pavements.
USAF/SCEEE Graduate Student Summer Support Program (1982). Management and Technical Report.
1982-10-01
AD-A130 767 USAF/SCEEE GRADUATE STUDENT SUMMER SUPPORT PROGRAM (1982) MANAGEMENT AND..(U) SOUTHEASTERN CENTER FORELECTRICAL ENGINEERING EDUCATION INC...SUMMER SUPPORT PROGRAM Conducted by Southeastern Center for Electrical Engineering Education under USAF Contract Number F49620-82-C-0035 MANAGEMENT ...UNITED STATES AIR FORCE GRADUATE STUDENT SL24MER SUPPORT PROGRAM 1982 PROGRAM MANAGEMENT AND TECHNICAL REPORT SOUTHEASTERN CENTER FOR ELECTRICAL
Quality user support: Supporting quality users
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolley, T.C.
1994-12-31
During the past decade, fundamental changes have occurred in technical computing in the oil industry. Technical computing systems have moved from local, fragmented quantity, to global, integrated, quality. The compute power available to the average geoscientist at his desktop has grown exponentially. Technical computing applications have increased in integration and complexity. At the same time, there has been a significant change in the work force due to the pressures of restructuring, and the increased focus on international opportunities. The profile of the user of technical computing resources has changed. Users are generally more mature, knowledgeable, and team oriented than theirmore » predecessors. In the 1990s, computer literacy is a requirement. This paper describes the steps taken by Oryx Energy Company to address the problems and opportunities created by the explosive growth in computing power and needs, coupled with the contraction of the business. A successful user support strategy will be described. Characteristics of the program include: (1) Client driven support; (2) Empowerment of highly skilled professionals to fill the support role; (3) Routine and ongoing modification to the support plan; (4) Utilization of the support assignment to create highly trained advocates on the line; (5) Integration of the support role to the reservoir management team. Results of the plan include a highly trained work force, stakeholder teams that include support personnel, and global support from a centralized support organization.« less
ERIC Educational Resources Information Center
Gkotzos, Dimitrios
2017-01-01
This article presents an effort to integrate the issues of climate change and children's rights into the Greek primary school curriculum through the use of information and communication technologies (ICTs). The curriculum Act for Climate was developed through the lens of children's rights and with the support of a web-based learning environment…
ERIC Educational Resources Information Center
Eacho, Thomas Christopher
2013-01-01
The primary purpose of this study was to examine the relationship between school climate and student outcome variables. The secondary purpose was to examine the relationship between the use of Positive Behavioral Interventions and Supports (PBIS) and the same student outcome variables. Variables depicting student perceptions of school climate,…
77 FR 29322 - Updating State Residential Building Energy Efficiency Codes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... supporting the change to the SHGC requirements in climate zone 4. Specifically, RECA supported the... to change Climate Zone 3 from R13 to either R20 or R13+5 ci.'' (CFEC, No. 2 at p. 2) In response, DOE... difference of 50 Pascals (5 ACH50) in climate zone 1 and climate zone 2; and 3 air changes/hour (3 ACH50) in...
Teleconnection Locator: TeleLoc
NASA Astrophysics Data System (ADS)
Bowen, M. K.; Duffy, D.
2016-12-01
Extreme climate events, such as tropical storms, droughts, and floods, have an enormous impact on all aspects of society. Being able to detect the causes of such events on a global scale is paramount to being able to predict when and where these events will occur. These teleconnections, where a small change in a closed, complex system creates drastic disturbances elsewhere in the system, are generally represented by an index, one of the most famous being the El Nino Southern Oscillation (ENSO). However, due to the enormity, complexity, and technical challenges surrounding climate and its data, it is hypothesized that many of these teleconnections have as of yet gone undiscovered. TeleLoc (Teleconnection Locator) is a machine-learning framework combining a number of techniques for finding correlations between weather trends and extreme climate events. The current focus is on connecting global trends with tropical cyclones. A combination of two data sets, The International Best Track Archive for Climate Stewardship (IBTrACS) and the Modern-Era Retrospective analysis for Research and Applications (MERRA2), are being utilized. PostGIS is used for raw data storage, and a Python API has been developed as the core of the framework. Cyclones are first clustered using a combination of Symbolic Aggregate ApproXimation (this allows for a symbolic, sequential representation of the various time-series variables of interest) and DBSCAN. This serves to break the events into subcategories, which alleviates computational load for the next step. Events which are clustered together (those with similar characteristics) are compared against global climate variables of interest, which are also converted to a symbolic form, leading up to the event using Association Rule Mining. Results will be shown where cyclones have been clustered, specifically in the West Pacific storm basin, as well as the global variable symbolic subsections with a high support that have been singled out for analysis.
NASA Astrophysics Data System (ADS)
Olguin, Marcela; Wayson, Craig; Fellows, Max; Birdsey, Richard; Smyth, Carolyn E.; Magnan, Michael; Dugan, Alexa J.; Mascorro, Vanessa S.; Alanís, Armando; Serrano, Enrique; Kurz, Werner A.
2018-03-01
The Paris Agreement of the United Nation Framework Convention on Climate Change calls for a balance of anthropogenic greenhouse emissions and removals in the latter part of this century. Mexico indicated in its Intended Nationally Determined Contribution and its Climate Change Mid-Century Strategy that the land sector will contribute to meeting GHG emission reduction goals. Since 2012, the Mexican government through its National Forestry Commission, with international financial and technical support, has been developing carbon dynamics models to explore climate change mitigation options in the forest sector. Following a systems approach, here we assess the biophysical mitigation potential of forest ecosystems, harvested wood products and their substitution benefits (i.e. the change in emissions resulting from substitution of wood for more emissions-intensive products and fossil fuels), for policy alternatives considered by the Mexican government, such as a net zero deforestation rate and sustainable forest management. We used available analytical frameworks (Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model), parameterized with local input data in two contrasting Mexican states. Using information from the National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data), we demonstrate that activities aimed at reaching a net-zero deforestation rate can yield significant CO2e mitigation benefits by 2030 and 2050 relative to a baseline scenario (‘business as usual’), but if combined with increasing forest harvest to produce long-lived products and substitute more energy-intensive materials, emissions reductions could also provide other co-benefits (e.g. jobs, illegal logging reduction). We concluded that the relative impact of mitigation activities is locally dependent, suggesting that mitigation strategies should be designed and implemented at sub-national scales. We were also encouraged about the ability of the modeling framework to effectively use Mexico’s data, and showed the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation.
NASA Astrophysics Data System (ADS)
Ling, F. H.; Yasuhara, K.; Tamura, M.; Tabayashi, Y.; Mimura, N.
2011-12-01
As the international climate regime continues to evolve, adaptation has emerged as a key component of responding to climate change. Due to limited scientific, financial, and institutional capacities, as well as perceived competition with multiple priorities, strategies for adaptive measures are not being implemented at the pace needed to address current and future climate risks. Adaptation networks, both global and in the Asia-Pacific region, have formed to overcome the lack of sufficient communication and collaboration among different stakeholders and domains of expertise. In this presentation, we discuss various efforts at Ibaraki University in Japan to integrate technical and social aspects of adaptation into a multidisciplinary effort, to foster synergies among various networks, to clarify the roles of developed and developing countries, and to develop a standard for assessing vulnerability and adaptability across various geographical contexts.
An Overview of Climatic Elements
NASA Technical Reports Server (NTRS)
Crutcher, H. L.; Johnson, D. L.
2007-01-01
This Technical Publication (TP) addresses some climatic elements with emphasis on atmospheric composition, including gas radiative characteristics. Solar radiation is discussed with considerable information on the mathematical and statistical formulae. On a worldwide basis, temperature and precipitation for the globe are discussed along with interaction in drought. Also included is the simultaneous interaction with winds, humidity, and solar radiation. Volcanology gets minimum treatment. The oceans and seas are treated in chart form along with the interrelationship of oceanic currents and El Nino and La Nina, and ENSO phenomena. Upper air circulations are discussed. Various cloud formations up to 85-95 km altitude are described. Information on tornadoes and hurricanes is also included. One section is devoted to the climate physical-chemical elements. A short discussion is given on the importance for the quality of data and/or information in descriptions of the climate. This TP presents only an overview or survey of these and other various climatic elements.
Final Technical Report for DOE Award SC0006616
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Andrew
2015-08-01
This report summarizes research carried out by the project "Collaborative Research, Type 1: Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoonal Asia. This collaborative project brought together climate dynamicists (UCLA, IRI), dendroclimatologists (LDEO Tree Ring Laboratory), computer scientists (UCI), and hydrologists (Columbia Water Center, CWC), together with applied scientists in climate risk management (IRI) to create new scientific approaches to quantify and exploit the role of climate variability and change in the growing water crisis across southern and eastern Asia. This project developed new tree-ring based streamflow reconstructions for rivers in monsoonal Asia; improved understanding of hydrologic spatio-temporal modesmore » of variability over monsoonal Asia on interannual-to-centennial time scales; assessed decadal predictability of hydrologic spatio-temporal modes; developed stochastic simulation tools for creating downscaled future climate scenarios based on historical/proxy data and GCM climate change; and developed stochastic reservoir simulation and optimization for scheduling hydropower, irrigation and navigation releases.« less
Climate Literacy: Supporting Teacher Professional Development
NASA Astrophysics Data System (ADS)
Haddad, N.; Ledley, T. S.; Dunlap, C.; Bardar, E.; Youngman, B.; Ellins, K. K.; McNeal, K. S.; Libarkin, J.
2012-12-01
Confronting the Challenges of Climate Literacy (CCCL) is an NSF-funded (DRK-12) project that includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at high school teachers and students. The project's evaluation efforts inform and guide all major components of the project. The research effort addresses the question of what interventions are most effective in helping high school students grasp the complexities of the Earth system and climate processes, which occur over a range of spatial and temporal scales. The curriculum unit includes three distinct but related modules: Climate and the Cryosphere; Climate, Weather, and the Biosphere; and Climate and the Carbon Cycle. Climate-related themes that cut across all three modules include the Earth system, with the complexities of its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. The professional development component of the project includes online science resources to support the teaching of the curriculum modules, summer workshops for high school teachers, and a support system for developing the teacher leaders who plan and implement those summer workshops. When completed, the project will provide a model high school curriculum with online support for implementing teachers and a cadre of leaders who can continue to introduce new teachers to the resource. This presentation will introduce the curriculum and the university partnerships that are key to the project's success, and describe how the project addresses the challenge of helping teachers develop their understanding of climate science and their ability to convey climate-related concepts articulated in the Next Generation Science Standards to their students. We will also describe the professional development and support system to develop teacher leaders and explain some of the challenges that accompany this approach of developing teacher leaders in the area of climate literacy.
Technical Support Project for Cleaning Up Contaminated Sites - Expertise Directory
This directory is searchable and provides a snapshot of the various types of expertise possessed by the current members of the three Technical Support Project forums. It is based on input provided by the members themselves.
76 FR 68429 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... documentation, U.S. Government and contractor engineering, technical, and logistics personnel support services, and other related elements of logistics support. (iv) Military Department: Navy (USMC) (SDH). (v.... Government and contractor engineering, technical, and logistics personnel [[Page 68432
Technical Support Document for Title V Permitting of Printing Facilities
Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules, including Title V. This document provides the technical support for compliance in the printing and publishing industry.
AHMCT Intelligent Roadway Information System (IRIS) technical support and testing
DOT National Transportation Integrated Search
2011-12-31
This report documents the research project AHMCT IRIS Technical Support and Testing, : performed under contract 65A0275, Task ID 1777. It presents an overview of the Intelligent : Roadway Information System (IRIS), and its design and function. ...
AHMCT Intelligent Roadway Information System (IRIS) technical support and testing.
DOT National Transportation Integrated Search
2011-12-01
This report documents the research project AHMCT IRIS Technical Support and Testing, : performed under contract 65A0275, Task ID 1777. It presents an overview of the Intelligent : Roadway Information System (IRIS), and its design and function. ...
A systems approach to implementation of eLearning in medical education: five MEPI schools' journeys.
Vovides, Yianna; Chale, Selamawit Bedada; Gadhula, Rumbidzayi; Kebaetse, Masego B; Nigussie, Netsanet Animut; Suleman, Fatima; Tibyampansha, Dativa; Ibrahim, Glory Ramadhan; Ntabaye, Moshi; Frehywot, Seble; Nkomazana, Oathokwa
2014-08-01
How should eLearning be implemented in resource-constrained settings? The introduction of eLearning at four African medical schools and one school of pharmacy, all part of the Medical Education Partnership Initiative (MEPI) eLearning Technical Working Group, highlighted the need for five factors essential for successful and sustainable implementation: institutional support; faculty engagement; student engagement; technical expertise; and infrastructure and support systems. All five MEPI schools reported strengthening technical expertise, infrastructure, and support systems; four schools indicated that they were also successful in developing student engagement; and three reported making good progress in building institutional support. Faculty engagement was the one core component that all five schools needed to enhance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.
We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less
Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.; ...
2017-02-17
We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less
External Technical Support for School Improvement: Critical Issues from the Chilean Experience
ERIC Educational Resources Information Center
Osses, Alejandra; Bellei, Cristián; Valenzuela, Juan Pablo
2015-01-01
To what extent school improvement processes can be initiated and sustained from the outside has been a relevant question for policy-makers seeking to increase quality in education. Since 2008, the Chilean Government is strongly promoting the use of external technical support (ETS) services to support school improvement processes, as part of the…
Designing water demand management schemes using a socio-technical modelling approach.
Baki, Sotiria; Rozos, Evangelos; Makropoulos, Christos
2018-05-01
Although it is now widely acknowledged that urban water systems (UWSs) are complex socio-technical systems and that a shift towards a socio-technical approach is critical in achieving sustainable urban water management, still, more often than not, UWSs are designed using a segmented modelling approach. As such, either the analysis focuses on the description of the purely technical sub-system, without explicitly taking into account the system's dynamic socio-economic processes, or a more interdisciplinary approach is followed, but delivered through relatively coarse models, which often fail to provide a thorough representation of the urban water cycle and hence cannot deliver accurate estimations of the hydrosystem's responses. In this work we propose an integrated modelling approach for the study of the complete socio-technical UWS that also takes into account socio-economic and climatic variability. We have developed an integrated model, which is used to investigate the diffusion of household water conservation technologies and its effects on the UWS, under different socio-economic and climatic scenarios. The integrated model is formed by coupling a System Dynamics model that simulates the water technology adoption process, and the Urban Water Optioneering Tool (UWOT) for the detailed simulation of the urban water cycle. The model and approach are tested and demonstrated in an urban redevelopment area in Athens, Greece under different socio-economic scenarios and policy interventions. It is suggested that the proposed approach can establish quantifiable links between socio-economic change and UWS responses and therefore assist decision makers in designing more effective and resilient long-term strategies for water conservation. Copyright © 2017 Elsevier B.V. All rights reserved.
Distributed Generation to Support Development-Focused Climate Action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sadie; Gagnon, Pieter; Stout, Sherry
2016-09-01
This paper explores the role of distributed generation, with a high renewable energy contribution, in supporting low emission climate-resilient development. The paper presents potential impacts on development (via energy access), greenhouse gas emission mitigation, and climate resilience directly associated with distributed generation, as well as specific actions that may enhance or increase the likelihood of climate and development benefits. This paper also seeks to provide practical and timely insights to support distributed generation policymaking and planning within the context of common climate and development goals as the distributed generation landscape rapidly evolves globally. Country-specific distributed generation policy and program examples,more » as well as analytical tools that can inform efforts internationally, are also highlighted throughout the paper.« less
Transformational leadership and team innovation: integrating team climate principles.
Eisenbeiss, Silke A; van Knippenberg, Daan; Boerner, Sabine
2008-11-01
Fostering team innovation is increasingly an important leadership function. However, the empirical evidence for the role of transformational leadership in engendering team innovation is scarce and mixed. To address this issue, the authors link transformational leadership theory to principles of M. A. West's (1990) team climate theory and propose an integrated model for the relationship between transformational leadership and team innovation. This model involves support for innovation as a mediating process and climate for excellence as a moderator. Results from a study of 33 research and development teams confirmed that transformational leadership works through support for innovation, which in turn interacts with climate for excellence such that support for innovation enhances team innovation only when climate for excellence is high.
Maritime Archaeology and Climate Change: An Invitation
NASA Astrophysics Data System (ADS)
Wright, Jeneva
2016-12-01
Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Sassani, David
The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less
Fort Collins Science Center fiscal year 2010 science accomplishments
Wilson, Juliette T.
2011-01-01
The scientists and technical professionals at the U.S. Geological Survey (USGS), Fort Collins Science Center (FORT), apply their diverse ecological, socioeconomic, and technological expertise to investigate complicated ecological problems confronting managers of the Nation's biological resources. FORT works closely with U.S. Department of the Interior (DOI) agency scientists, the academic community, other USGS science centers, and many other partners to provide critical information needed to help answer complex natural-resource management questions. In Fiscal Year 2010 (FY10), FORT's scientific and technical professionals conducted ongoing, expanded, and new research vital to the science needs and management goals of DOI, other Federal and State agencies, and nongovernmental organizations in the areas of aquatic systems and fisheries, climate change, data and information integration and management, invasive species, science support, security and technology, status and trends of biological resources (including the socioeconomic aspects), terrestrial and freshwater ecosystems, and wildlife resources, including threatened and endangered species. This report presents selected FORT science accomplishments for FY10 by the specific USGS mission area or science program with which each task is most closely associated, though there is considerable overlap. The report also includes all FORT publications and other products published in FY10, as well as staff accomplishments, appointments, committee assignments, and invited presentations.
Canadian Federal Support for Climate Change and Health Research Compared With the Risks Posed
Smith, Tanya R.; Berrang-Ford, Lea
2011-01-01
For emerging public health risks such as climate change, the Canadian federal government has a mandate to provide information and resources to protect citizens' health. Research is a key component of this mandate and is essential if Canada is to moderate the health effects of a changing climate. We assessed whether federal support for climate change and health research is consistent with the risks posed. We audited projects receiving federal support between 1999 and 2009, representing an investment of Can$16 million in 105 projects. Although funding has increased in recent years, it remains inadequate, with negligible focus on vulnerable populations, limited research on adaptation, and volatility in funding allocations. A federal strategy to guide research support is overdue. PMID:21490335
78 FR 2449 - Office of Small Credit Unions (OSCUI) Grant Program Access for Credit Unions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-11
... availability. The OSCUI Grant Program serves as a source of financial support, in the form of technical... provides financial support in the form of technical assistance grants to LICUs. These funds help improve...
NASA Astrophysics Data System (ADS)
Niepold, F., III; Crim, H.; Fiorile, G.; Eldadah, S.
2017-12-01
Since 2012, the Climate and Energy Literacy community have realized that as cities, nations and the international community seek solutions to global climate change over the coming decades, a more comprehensive, interdisciplinary approach to climate literacy—one that includes economic and social considerations—will play a vital role in knowledgeable planning, decision-making, and governance. City, county and state leaders are now leading the American response to a changing climate by incubating social innovation to prevail in the face of unprecedented change. Cities are beginning to realize the importance of critical investments to support the policies and strategies that will foster the climate literacy necessary for citizens to understand the urgency of climate actions and to succeed in a resilient post-carbon economy and develop the related workforce. Over decade of federal and non-profit Climate Change Education effective methods have been developed that can support municipality's significant educational capabilities for the purpose of strengthening and scaling city, state, business, and education actions designed to sustain and effectively address this significant social change. Looking to foster the effective and innovative strategies that will enable their communities several networks have collaborated to identify recommendations for effective education and communication practices when working with different types of audiences. U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, the National Wildlife Federation, NOAA Climate Program Office, Tri-Agency Climate Change Education Collaborative and the Climate Literacy and Energy Awareness Network (CLEAN) are working to develop a new web portal that will highlight "effective" practices that includes the acquisition and use of climate change knowledge to inform decision-making. The purpose of the web portal is to transfer effective practice to support communities to be empowered to address the challenges of a new climate reality and ensure that all people are capable of taking an active role in shaping a sustainable future.
77 FR 52698 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... training equipment, publications and technical data, U.S. Government and contractor technical and logistics personnel services and other related elements of program and logistics support. (iv) Military Department..., publications and technical data, U.S. Government and contractor technical and logistics personnel services and...
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Burns, H. D.; Clinton, R. G.; Schumacher, D.; Spann, J. F.
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous organizations specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline organizations, a concept is presented focusing on the development of a space environment and spacecraft effects organization. This includes space climate, space weather, natural and induced space environments, and effects on spacecraft materials and systems. This space environment and spacecraft effects organization would be comprised of Technical Working Groups (TWG) focusing on, for example: a) Charged Particles (CP), b) Space Environmental Effects (SEE), and c) Interplanetary and Extraterrestrial Environments (IEE). These technical working groups will generate products and provide knowledge supporting four functional areas: design environments, environment effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather observations to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA and other federal agencies to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lesson learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and spacecraft effects organization are suitable for use in anomaly investigations. This paper will describe the organizational structure for this space environments and spacecraft effects organization, and outline the scope of conceptual TWG's and their relationship to the functional areas.
Sustainable dryland agroecosystems management
USDA-ARS?s Scientific Manuscript database
The Dryland Agroecosystem Project was established in the fall of 1985 with 1986 being the first harvest year. Grain and stover yields, crop residue amounts, soil water measurements, crop management, crop nutrient content and climate data have been reported annually in previously published technical...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vine, E.
1990-11-01
As part of Lawrence Berkeley Laboratory's (LBL) technical assistance to the Sustainable City Project, compliance and enforcement activities related to local and state building codes for existing and new construction were evaluated in two case studies. The analysis of the City of San Francisco's Residential Energy Conservation Ordinance (RECO) showed that a limited, prescriptive energy conservation ordinance for existing residential construction can be enforced relatively easily with little administrative costs, and that compliance with such ordinances can be quite high. Compliance with the code was facilitated by extensive publicity, an informed public concerned with the cost of energy and knowledgeablemore » about energy efficiency, the threat of punishment (Order of Abatement), the use of private inspectors, and training workshops for City and private inspectors. The analysis of California's Title 24 Standards for new residential and commercial construction showed that enforcement of this type of code for many climate zones is more complex and requires extensive administrative support for education and training of inspectors, architects, engineers, and builders. Under this code, prescriptive and performance approaches for compliance are permitted, resulting in the demand for alternative methods of enforcement: technical assistance, plan review, field inspection, and computer analysis. In contrast to existing to construction, building design and new materials and construction practices are of critical importance in new construction, creating a need for extensive technical assistance and extensive interaction between enforcement personnel and the building community. Compliance problems associated with building design and installation did occur in both residential and nonresidential buildings. 12 refs., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.
The Hanford Waste Treatment and Immobilization Plant (WTP) is currently being designed and constructed to pretreat and vitrify a large portion of the waste in the 177 underground waste storage tanks at the Hanford Site. A number of technical issues related to the design of the pretreatment facility (PTF) of the WTP have been identified. These issues must be resolved prior to the U.S. Department of Energy (DOE) Office of River Protection (ORP) reaching a decision to proceed with engineering, procurement, and construction activities for the PTF. One of the issues is Technical Issue T1 - Hydrogen Gas Release frommore » Vessels (hereafter referred to as T1). The focus of T1 is identifying controls for hydrogen release and completing any testing required to close the technical issue. In advance of selecting specific controls for hydrogen gas safety, a number of preliminary technical studies were initiated to support anticipated future testing and to improve the understanding of hydrogen gas generation, retention, and release within PTF vessels. These activities supported the development of a plan defining an overall strategy and approach for addressing T1 and achieving technical endpoints identified for T1. Preliminary studies also supported the development of a test plan for conducting testing and analysis to support closing T1. Both of these plans were developed in advance of selecting specific controls, and in the course of working on T1 it was decided that the testing and analysis identified in the test plan were not immediately needed. However, planning activities and preliminary studies led to significant technical progress in a number of areas. This report summarizes the progress to date from the preliminary technical studies. The technical results in this report should not be used for WTP design or safety and hazards analyses and technical results are marked with the following statement: “Preliminary Technical Results for Planning – Not to be used for WTP Design or Safety Analyses.”« less
The Independent Technical Analysis Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duberstein, Corey A.; Ham, Kenneth D.; Dauble, Dennis D.
2007-04-13
The Bonneville Power Administration (BPA) contracted with the Pacific Northwest National Laboratory (PNNL) to provide technical analytical support for system-wide fish passage information (BPA Project No. 2006-010-00). The goal of this project was to produce rigorous technical analysis products using independent analysts and anonymous peer reviewers. In the past, regional parties have interacted with a single entity, the Fish Passage Center to access the data, analyses, and coordination related to fish passage. This project provided an independent technical source for non-routine fish passage analyses while allowing routine support functions to be performed by other well-qualified entities.
Susceptibility of the Batoka Gorge hydroelectric scheme to climate change
NASA Astrophysics Data System (ADS)
Harrison, Gareth P.; Whittington, H.(Bert) W.
2002-07-01
The continuing and increased use of renewable energy sources, including hydropower, is a key strategy to limit the extent of future climate change. Paradoxically, climate change itself may alter the availability of this natural resource, adversely affecting the financial viability of both existing and potential schemes. Here, a model is described that enables the assessment of the relationship between changes in climate and the viability, technical and financial, of hydro development. The planned Batoka Gorge scheme on the Zambezi River is used as a case study to validate the model and to predict the impact of climate change on river flows, electricity production and scheme financial performance. The model was found to perform well, given the inherent difficulties in the task, although there is concern regarding the ability of the hydrological model to reproduce the historic flow conditions of the upper Zambezi Basin. Simulations with climate change scenarios illustrate the sensitivity of the Batoka Gorge scheme to changes in climate. They suggest significant reductions in river flows, declining power production, reductions in electricity sales revenue and consequently an adverse impact on a range of investment measures.
Australians' views on carbon pricing before and after the 2013 federal election
NASA Astrophysics Data System (ADS)
Dreyer, Stacia J.; Walker, Iain; McCoy, Shannon K.; Teisl, Mario F.
2015-12-01
As climate policies change through the legislative process, public attitudes towards them may change as well. Therefore, it is important to assess how people accept and support controversial climate policies as the policies change over time. Policy acceptance is a positive evaluation of, or attitude towards, an existing policy; policy support adds an active behavioural component. Acceptance does not necessarily lead to support. We conducted a national survey of Australian residents to investigate acceptance of, and support for, the Australian carbon pricing policy before and after the 2013 federal election, and how perceptions of the policy, economic ideology, and voting behaviour affect acceptance and support. We found acceptance and support were stable across the election period, which was surprising given that climate policy was highly contentious during the election. Policy acceptance was higher than policy support at both times and acceptance was a necessary but insufficient condition of support. We conclude that acceptance is an important process through which perceptions of the policy and economic ideology influence support. Therefore, future climate policy research needs to distinguish between acceptance and support to better understand this process, and to better measure these concepts.
NASA Astrophysics Data System (ADS)
Gordov, Evgeny; Shiklomanov, Alexander; Okladinikov, Igor; Prusevich, Alex; Titov, Alexander
2016-04-01
Description and first results of the cooperative project "Development of Distributed Research Center for monitoring and projecting of regional climatic and environmental changes" recently started by SCERT IMCES and ESRC UNH are reported. The project is aimed at development of hardware and software platform prototype of Distributed Research Center (DRC) for monitoring and projecting regional climatic and environmental changes over the areas of mutual interest and demonstration the benefits of such collaboration that complements skills and regional knowledge across the northern extratropics. In the framework of the project, innovative approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platforms of two U.S. and Russian leading institutions involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research centers focused on interdisciplinary environmental studies by international research teams. DRC under development will comprise best features and functionality of earlier developed by the cooperating teams' information-computational systems RIMS (http://rims.unh.edu) and CLIMATE(http://climate.scert.ru/), which are widely used in Northern Eurasia environment studies. The project includes several major directions of research (Tasks) listed below. 1. Development of architecture and defining major hardware and software components of DRC for monitoring and projecting of regional environmental changes. 2. Development of an information database and computing software suite for distributed processing and analysis of large geospatial data hosted at ESRC and IMCES SB RAS. 3. Development of geoportal, thematic web client and web services providing international research teams with an access to "cloud" computing resources at DRC; two options will be executed: access through a basic graphical web browser and using geographic information systems - (GIS). 4. Using the output of the first three tasks, compilation of the DRC prototype, its validation, and testing the DRC feasibility for analyses of the recent regional environmental changes over Northern Eurasia and North America. Results of the first stage of the Project implementation are presented. This work is supported by the Ministry of Education and Science of the Russian Federation, Agreement № 14.613.21.0037.
Communicating Climate and Ecosystem Change in the Arctic
NASA Astrophysics Data System (ADS)
Soreide, N. N.; Overland, J. E.; Calder, J. A.; Rodionov, S.
2005-12-01
There is an explosion of interest in Northern Hemisphere climate, highlighting the importance of recent changes in the Arctic on mid-latitude climate and its impact on marine and terrestrial ecosystems. Traditional sea ice and tundra dominated arctic ecosystems are being reorganizing into warmer sub-arctic ecosystem types. Over the previous two years we have developed a comprehensive, near real-time arctic change detection protocol to track physical and biological changes for presentation on the web: http://www.arctic.noaa.gov/detect. The effort provides a continuous update to the Arctic Climate Impact Assessment (ACIA) Report, released in November 2004. Principles for the protocol include an accessible narrative style, scientifically credible and objective indicators, notes multiple uses for the information, acknowledges uncertainties, and balances having too many indicators-which leads to information overload-and too few-which does not capture the complexity of the system. Screening criteria include concreteness, public awareness, being understandable, availability of historical time series, and sensitivity. The site provides sufficient information for an individual to make their own assessment regarding the balance of the evidence for tracking change. The product provides an overview, recent news, links to many arctic websites, and highlights climate, global impacts, land and marine ecosystems, and human consequences. Since its inception a year ago, it has averaged about 9000 hits an day on the web, and is a major information source as determined by Google search. The future direction focuses on understanding the causes for change. In spring 2005 we also presented a near real-time ecological and climatic surveillance website for the Bering Sea: www.beringclimate.noaa.gov. The site provides up-to-date information which ties northward shifts of fish, invertebrate and marine mammal populations to physical changes in the Arctic. This site is more technical than the arctic change detection site and provides support to the North Pacific Fisheries Management Council and other interested parties. The site anticipates multiple uses by providing access and analysis tools for a set of Bering Sea indicator time series.
Interactive training improves workplace climate, knowledge, and support towards domestic violence.
Glass, Nancy; Hanson, Ginger C; Laharnar, Naima; Anger, W Kent; Perrin, Nancy
2016-07-01
As Intimate Partner Violence (IPV) affects the workplace, a supportive workplace climate is important. The study evaluated the effectiveness of an "IPV and the Workplace" training on workplace climate towards IPV. IPV training was provided to 14 intervention counties and 13 control counties (receiving training 6 months delayed). Measures included workplace climate surveys, IPV knowledge test, and workplace observations. (i) Training significantly improved supervisor knowledge on IPV and received positive evaluations, (ii) training improved workplace climate towards IPV significantly which was maintained over time, and (iii) after the training, supervisors provided more IPV information to employees and more IPV postings were available in the workplace. The study provides evidence to support on-site interactive, computer based training as a means for improved workplace safety. IPV and the Workplace training effectively increased knowledge and positively changed workplace climate. Am. J. Ind. Med. 59:538-548, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation
Morton, Lois Wright; Hobbs, Jon
2015-01-01
Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers’ trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management). PMID:25983336
Efficacy Trade-Offs in Individuals' Support for Climate Change Policies
ERIC Educational Resources Information Center
Rosentrater, Lynn D.; Saelensminde, Ingrid; Ekström, Frida; Böhm, Gisela; Bostrom, Ann; Hanss, Daniel; O'Connor, Robert E.
2013-01-01
Using survey data, the authors developed an architecture of climate change beliefs in Norway and their correlation with support for policies aimed at reducing greenhouse gas emissions. A strong majority of respondents believe that anthropogenic climate change is occurring and identify carbon dioxide emissions as a cause. Regression analysis shows…
Cook, John; Lewandowsky, Stephan; Ecker, Ullrich K. H.
2017-01-01
Misinformation can undermine a well-functioning democracy. For example, public misconceptions about climate change can lead to lowered acceptance of the reality of climate change and lowered support for mitigation policies. This study experimentally explored the impact of misinformation about climate change and tested several pre-emptive interventions designed to reduce the influence of misinformation. We found that false-balance media coverage (giving contrarian views equal voice with climate scientists) lowered perceived consensus overall, although the effect was greater among free-market supporters. Likewise, misinformation that confuses people about the level of scientific agreement regarding anthropogenic global warming (AGW) had a polarizing effect, with free-market supporters reducing their acceptance of AGW and those with low free-market support increasing their acceptance of AGW. However, we found that inoculating messages that (1) explain the flawed argumentation technique used in the misinformation or that (2) highlight the scientific consensus on climate change were effective in neutralizing those adverse effects of misinformation. We recommend that climate communication messages should take into account ways in which scientific content can be distorted, and include pre-emptive inoculation messages. PMID:28475576
A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise
Webb, Edward L.; Friess, Daniel A.; Krauss, Ken W.; Cahoon, Donald R.; Guntenspergen, Glenn R.; Phelps, Jacob
2013-01-01
Sea-level rise threatens coastal salt-marshes and mangrove forests around the world, and a key determinant of coastal wetland vulnerability is whether its surface elevation can keep pace with rising sea level. Globally, a large data gap exists because wetland surface and shallow subsurface processes remain unaccounted for by traditional vulnerability assessments using tide gauges. Moreover, those processes vary substantially across wetlands, so modelling platforms require relevant local data. The low-cost, simple, high-precision rod surface-elevation table–marker horizon (RSET-MH) method fills this critical data gap, can be paired with spatial data sets and modelling and is financially and technically accessible to every country with coastal wetlands. Yet, RSET deployment has been limited to a few regions and purposes. A coordinated expansion of monitoring efforts, including development of regional networks that could support data sharing and collaboration, is crucial to adequately inform coastal climate change adaptation policy at several scales.
Modelling plankton ecosystems in the meta-omics era. Are we ready?
Stec, Krzysztof Franciszek; Caputi, Luigi; Buttigieg, Pier Luigi; D'Alelio, Domenico; Ibarbalz, Federico Matias; Sullivan, Matthew B; Chaffron, Samuel; Bowler, Chris; Ribera d'Alcalà, Maurizio; Iudicone, Daniele
2017-04-01
Recent progress in applying meta-omics approaches to the study of marine ecosystems potentially allows scientists to study the genetic and functional diversity of plankton at an unprecedented depth and with enhanced precision. However, while a range of persistent technical issues still need to be resolved, a much greater obstacle currently preventing a complete and integrated view of the marine ecosystem is the absence of a clear conceptual framework. Herein, we discuss the knowledge that has thus far been derived from conceptual and statistical modelling of marine plankton ecosystems, and illustrate the potential power of integrated meta-omics approaches in the field. We then propose the use of a semantic framework is necessary to support integrative ecological modelling in the meta-omics era, particularly when having to face the increased interdisciplinarity needed to address global issues related to climate change. Copyright © 2017. Published by Elsevier B.V.
7 CFR 652.6 - Department delivery of technical services.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Department delivery of technical services. 652.6... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES TECHNICAL SERVICE PROVIDER ASSISTANCE General Provisions § 652.6 Department delivery of technical services. (a) The Department may enter into a...
7 CFR 652.4 - Technical service standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... technologies and practices. (c) A technical service provider must assume responsibility in writing for the... 7 Agriculture 6 2010-01-01 2010-01-01 false Technical service standards. 652.4 Section 652.4..., DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES TECHNICAL SERVICE PROVIDER ASSISTANCE General Provisions § 652.4...
Abou Hashish, Ebtsam Aly
2017-03-01
Healthcare organizations are now challenged to retain nurses' generation and understand why they are leaving their nursing career prematurely. Acquiring knowledge about the effect of ethical work climate and level of perceived organizational support can help organizational leaders to deal effectively with dysfunctional behaviors and make a difference in enhancing nurses' dedication, commitment, satisfaction, and loyalty to their organization. This study aims to determine the relationship between ethical work climate, and perceived organizational support and nurses' organizational commitment, job satisfaction, and turnover intention. A descriptive correlational research design was conducted in all inpatient care units at three major hospitals affiliated to different health sectors at Alexandria governorate. All nurses working in these previous hospitals were included in the study (N = 500). Ethical Climate Questionnaire, Survey of Perceived Organizational Support, Organizational Commitment Questionnaire, Index of Job Satisfaction, and Intention to Turnover scale were used to measure study variables. Ethical considerations: Approval was obtained from Ethics Committee at Faculty of Nursing, Alexandria University. Privacy and confidentiality of data were maintained and assured by obtaining subjects' informed consent to participate in the research before data collection. The result revealed positive significant correlations between nurses' perception of overall ethical work climate and each of perceived organizational support, commitment, as well as their job satisfaction. However, negative significant correlations were found between nurses' turnover intention and each of these variables. Also, approximately 33% of the explained variance of turnover intention is accounted by ethical work climate, organizational support, organizational commitment, and job satisfaction, and these variables independently contributed significantly in the prediction of turnover intention. Strategies to foster and enhance ethical and supportive work climates as well as job-related benefits are considered significant factors in increasing nurses' commitment and satisfaction and decreasing their turnover intention.
Technical Assistance Needs Assessments (TANAs)
The Technical Assistance Needs Assessment (TANA) is a process to identify whether a community requires additional support from EPA in order to understand technical information and have meaningful participation in the Superfund decision-making process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, D.W.; Heinrich, R.R.; Jensen, K.J.
Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has threemore » technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs.« less
Public perceptions about climate change mitigation in British Columbia's forest sector
Hagerman, Shannon; Kozak, Robert; Hoberg, George
2018-01-01
The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia’s forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors. PMID:29684041
Public perceptions about climate change mitigation in British Columbia's forest sector.
Peterson St-Laurent, Guillaume; Hagerman, Shannon; Kozak, Robert; Hoberg, George
2018-01-01
The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia's forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors.
Propaganda, News, or Education: Reporting Changing Arctic Sea Ice Conditions
NASA Astrophysics Data System (ADS)
Leitzell, K.; Meier, W.
2010-12-01
The National Snow and Ice Data Center provides information on Arctic sea ice conditions via the Arctic Sea Ice News & Analysis (ASINA) website. As a result of this effort to explain climatic data to the general public, we have attracted a huge amount of attention from our readers. Sometimes, people write to thank us for the information and the explanation. But people also write to accuse us of bias, slant, or outright lies in our posts. The topic of climate change is a minefield full of political animosity, and even the most carefully written verbiage can appear incomplete or biased to some audiences. Our strategy has been to report the data and stick to the areas in which our scientists are experts. The ASINA team carefully edits our posts to make sure that all statements are based on the science and not on opinion. Often this means using some technical language that may be difficult for a layperson to understand. However, we provide concise definitions for technical terms where appropriate. The hope is that by communicating the data clearly, without an agenda, we can let the science speak for itself. Is this an effective strategy to communicate clearly about the changing climate? Or does it downplay the seriousness of climate change? By writing at a more advanced level and avoiding oversimplification, we require our readers to work harder. But we may also maintain the attention of skeptics, convincing them to read further and become more knowledgeable about the topic.
NASA Astrophysics Data System (ADS)
Huffman, L. T.; Dahlman, L.; Frisch-Gleason, R.; Harwood, D.; Pound, K.; Rack, F.; Riesselman, C.; Trummel, E.; Tuzzi, E.; Winter, D.
2008-12-01
Antarctica's harsh environment and the compelling story of living and working there, provides the backdrop for hooking the interest of young learners on science research and the nature of science. By using the adventure stories of today's researcher-explorers, teachers accompanying the ANDRILL team have taken the technical science of drilling rock cores to understand the history of climate change and the advance and retreat of the Antarctic ice sheet, and translated it for non-technical audiences from K-12 school children, to adult community groups. In order to understand the important issues surrounding global climate change, members of the public need access to accurate and relevant information, high quality educational materials, and a variety of learning opportunities in different learning environments. By taking lessons learned from early virtual polar adventure learning expeditions like Will Steger's Trans-Antarctic Expedition, coupled with educators-in-the-field programs like TEA (Teachers Experiencing Antarctica and the Arctic), ARMADA and Polar Trec, ANDRILL's Education and Outreach Program has evolved into successful and far-reaching integrated education projects including 1) the ARISE (ANDRILL Research Immersion for Science Educators) Program, 2) Climate Change Student Summits, 3) the development of Flexhibit (flexible exhibit) teaching resources, 4) virtual online learning communities, and 5) partnering young researchers with teachers and classrooms. Formal evaluations indicate lasting interest in science studies on the part of students and an increase in teachers' scientific background knowledge.
The role of academic institutions in leveraging engagement and action on climate change
NASA Astrophysics Data System (ADS)
Hill, T. M.; Palca, J.
2016-12-01
Growing global concern over the impact of climate change places climate scientists at the forefront of communicating risks, impacts, and adaptation strategies to non-scientists. Academic institutions can play a leadership role in providing support, incentives, and structures that encourage scientific engagement on this, and other, complex societal and scientific issues. This presentation will focus on `best practices' in supporting university scientists in communicating their science and engaging in thoughtful dialogue with decision makers, managers, media, and public audiences. For example, institutions that can provide significant administrative support for science communication (press officers, training workshops) may decrease barriers between academic science and public knowledge. Additionally, financial (or similar) support in the form of teaching releases and institutional awards can be utilized to acknowledge the time and effort spent in engagement. This presentation will feature examples from universities, professional societies and other institutions where engagement on climate science is structurally encouraged and supported.
Portoghese, Igor; Galletta, Maura; Burdorf, Alex; Cocco, Pierluigi; D'Aloja, Ernesto; Campagna, Marcello
2017-10-01
The aim of the study was to examine the relationship between role stress, emotional exhaustion, and a supportive coworker climate among health care workers, by adopting a multilevel perspective. Aggregated data of 738 health care workers nested within 67 teams of three Italian hospitals were collected. Multilevel regression analysis with a random intercept model was used. Hierarchical linear modeling showed that a lack of role clarity was significantly linked to emotional exhaustion at the individual level. At the unit level, the cross-level interaction revealed that a supportive coworker climate moderated the relationship between lack of role clarity and emotional exhaustion. This study supports previous results of single-level burnout studies, extending the existing literature with evidence on the multidimensional and cross-level interaction associations of a supportive coworker climate as a key aspect of job resources on burnout.
NASA Astrophysics Data System (ADS)
Koskinas, Aristotelis; Zacharopoulou, Eleni; Pouliasis, George; Engonopoulos, Ioannis; Mavroyeoryos, Konstantinos; Deligiannis, Ilias; Karakatsanis, Georgios; Dimitriadis, Panayiotis; Iliopoulou, Theano; Koutsoyiannis, Demetris; Tyralis, Hristos
2017-04-01
We simulate the electrical energy demand in the remote island of Astypalaia. To this end we first obtain information regarding the local socioeconomic conditions and energy demand. Secondly, the available hourly demand data are analysed at various time scales (hourly, weekly, daily, seasonal). The cross-correlations between the electrical energy demand and the mean daily temperature as well as other climatic variables for the same time period are computed. Also, we investigate the cross-correlation between those climatic variables and other variables related to renewable energy resources from numerous observations around the globe in order to assess the impact of each one to a hybrid renewable energy system. An exploratory data analysis including all variables is performed with the purpose to find hidden relationships. Finally, the demand is simulated considering all the periodicities found in the analysis. The simulation time series will be used in the development of a framework for planning of a hybrid renewable energy system in Astypalaia. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.
Correlations between Climate Change and the Modern European Construction
NASA Astrophysics Data System (ADS)
Gumińska, Anna
2017-10-01
The aim of the study was to analyze the links between climate change and the way modern cities are structured and responded to climate change. How do these changes affect building materials and technologies, or does climate change affect the type of technology and materials used? The most important results are the effects of analysing selected examples of a modern European building, the use of materials and technology, the adaptation of buildings to the changing climate. Selected examples of contemporary architecture from Germany, Italy and Denmark, Norway and Sweden. There are also examples in photographic documentation. The most important criteria affecting the objects are elements that shape the changing climate, as well as existing legal and technical requirements. The main conclusion was that modern urban space is adapted to the changing climate. Unprecedented climatic phenomena in this area: intense and sudden rain, snow, floods, strong winds, abundant sunshine, high temperature changes, greenhouse effect of the city - “island heat”, atmospheric pollution. Building materials and technologies contribute to the optimal conservation of natural resources, buildings are shaped in such a way as to ensure safety, resilience and environmental protection. However, there is still a need for continuous monitoring of climate change, criteria affecting the design and construction of urban and central facilities. Key words: energy efficiency, renewable energy, climate change, contemporary architecture.
A Socio-technical Approach for Transient SME Alliances
NASA Astrophysics Data System (ADS)
Rezgui, Yacine
The paper discusses technical requirements to promote the adoption of alliance modes of operation by SMEs in the construction sector. These requirements have provided a basis for specifying a set of functionality to support the collaboration and cooperation needs of SMEs. While service-oriented architectures and semantic web services provide the middleware technology to implement the identified functionality, a number of key technical limitations have been identified, including lack of support for the dynamic and non-functional characteristics of SME alliances distributed business processes, lack of execution monitoring functionality to manage running business processes, and lack of support for semantic reasoning to enable SME business process service composition. The paper examines these issues and provides key directions for supporting SME alliances effectively.
Technical requirements for bioassay support services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickman, D.P.; Anderson, A.L.
1991-05-01
This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) bioassay program. It includes information and details that can be used as a model in providing technical contents and requirements for bioassay laboratory support, either internally or in solicitations by Geotech to obtain subcontractor laboratory support. It provides a detailed summary and description of the types of bioassay samples to be expected in support of Geotech remedial projects for the US Department of Energy and the bioassay services and analytical requirements necessary to process such samples, including required limits of sensitivity. General responsibilities of the bioassay laboratory are alsomore » addressed, including quality assurance. Peripheral information of importance to the program is included in the appendices of this document. 7 tabs.« less
Wang, Ming-Te; Dishion, Thomas J.
2012-01-01
This longitudinal study examined trajectories of change in adolescents’ perceptions of four dimensions of school climate (academic support, behavior management, teacher social support, peer social support) and the effects of such trajectories on adolescent problem behaviors. We also tested whether school climate moderated the associations between deviant peer affiliation and adolescent problem behaviors. The 1,030 participating adolescents from 8 schools were followed from 6th through 8th grades (54% female; 76% European American). Findings indicated that all the dimensions of school climate declined and behavioral problems and deviant peer affiliation increased. Declines in each of the dimensions were associated with increases in behavioral problems. The prediction of problem behavior from peer affiliation was moderated by adolescents’ perceptions of school climate. PMID:22822296
USGCRP assessments: Meeting the challenges of climate and global change
NASA Astrophysics Data System (ADS)
Dickinson, T.; Kuperberg, J. M.
2016-12-01
The United States Global Change Research Program (USGCRP) is a confederation of the research arms of 13 Federal departments and agencies. Its mission is to build a knowledge base that informs human responses to climate and global change through coordinated and integrated Federal programs of research, education, communication, and decision support. USGCRP has supported several initiatives to promote better understanding of climate change impacts on health, support responses, and build on the progress of the 2014 National Climate Assessment. Most recently, USGCRP released a new report, "The Impacts of Climate Change on Human Health: A Scientific Assessment". This presentation will provide an overview of USGCRP, highlight the importance of assessments, and introduce ways in which assessment findings and underlying data can be translated into critical tools to build resilience.
34 CFR 300.702 - Technical assistance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false Technical assistance. 300.702 Section 300.702 Education..., and Use of Funds § 300.702 Technical assistance. (a) In general. The Secretary may reserve not more... to support technical assistance activities authorized under section 616(i) of the Act. (b) Maximum...
Site Characterization and Monitoring Technical Support Center FY16 Report
SCMTSC’s primary goal is to provide technical assistance to regional programs on complex hazardous waste site characterization issues. This annual report illustrates the range and extent of projects that SCMTSC supported in FY 2016. Our principal audiences are site project manage...
Climate Adaptation and Resiliency Planning : Agency Roles and Workforce Development Needs.
DOT National Transportation Integrated Search
2017-10-01
This report is one of two NCST Research Reports produced as part of a project to evaluate the state of practice and adequacy of technical tools for resiliency and adaptation planning. A companion report, Network Requirements for Assessing Criticality...
Manpower Policy and Programmes in Canada. Reviews of Manpower and Social Policies No. 4.
ERIC Educational Resources Information Center
Organisation for Economic Cooperation and Development, Paris (France).
This report describes the Canadian labor force and economic climate, and the employment and manpower policies which comprise Canada's active manpower policy. Expanded programs for vocational and technical training are recommended, especially for unemployed youth. (BH)