Sample records for climate variability based

  1. Potential breeding distributions of U.S. birds predicted with both short-term variability and long-term average climate data.

    PubMed

    Bateman, Brooke L; Pidgeon, Anna M; Radeloff, Volker C; Flather, Curtis H; VanDerWal, Jeremy; Akçakaya, H Resit; Thogmartin, Wayne E; Albright, Thomas P; Vavrus, Stephen J; Heglund, Patricia J

    2016-12-01

    Climate conditions, such as temperature or precipitation, averaged over several decades strongly affect species distributions, as evidenced by experimental results and a plethora of models demonstrating statistical relations between species occurrences and long-term climate averages. However, long-term averages can conceal climate changes that have occurred in recent decades and may not capture actual species occurrence well because the distributions of species, especially at the edges of their range, are typically dynamic and may respond strongly to short-term climate variability. Our goal here was to test whether bird occurrence models can be predicted by either covariates based on short-term climate variability or on long-term climate averages. We parameterized species distribution models (SDMs) based on either short-term variability or long-term average climate covariates for 320 bird species in the conterminous USA and tested whether any life-history trait-based guilds were particularly sensitive to short-term conditions. Models including short-term climate variability performed well based on their cross-validated area-under-the-curve AUC score (0.85), as did models based on long-term climate averages (0.84). Similarly, both models performed well compared to independent presence/absence data from the North American Breeding Bird Survey (independent AUC of 0.89 and 0.90, respectively). However, models based on short-term variability covariates more accurately classified true absences for most species (73% of true absences classified within the lowest quarter of environmental suitability vs. 68%). In addition, they have the advantage that they can reveal the dynamic relationship between species and their environment because they capture the spatial fluctuations of species potential breeding distributions. With this information, we can identify which species and guilds are sensitive to climate variability, identify sites of high conservation value where climate variability is low, and assess how species' potential distributions may have already shifted due recent climate change. However, long-term climate averages require less data and processing time and may be more readily available for some areas of interest. Where data on short-term climate variability are not available, long-term climate information is a sufficient predictor of species distributions in many cases. However, short-term climate variability data may provide information not captured with long-term climate data for use in SDMs. © 2016 by the Ecological Society of America.

  2. Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world

    NASA Astrophysics Data System (ADS)

    Trachsel, M.; Rehfeld, K.; Telford, R.; Laepple, T.

    2017-12-01

    Reconstructions of summer, winter or annual mean temperatures based on the species composition of bio-indicators such as pollen are routinely used in climate model-proxy data comparison studies. Most reconstruction algorithms exploit the joint distribution of modern spatial climate and species distribution for the development of the reconstructions. They rely on the space-for-time substitution and the specific assumption that environmental variables other than those reconstructed are not important or that their relationship with the reconstructed variable(s) should be the same in the past as in the modern spatial calibration dataset. Here we test the implications of this "correlative uniformitarianism" assumption on climate reconstructions in an ideal model world, in which climate and vegetation are known at all times. The alternate reality is a climate simulation of the last 6000 years with dynamic vegetation. Transient changes of plant functional types are considered as surrogate pollen counts and allow us to establish, apply and evaluate transfer functions in the modeled world. We find that the transfer function cross validation r2 is of limited use to identify reconstructible climate variables, as it only relies on the modern spatial climate-vegetation relationship. However, ordination approaches that assess the amount of fossil vegetation variance explained by the reconstructions are promising. We show that correlations between climate variables in the modern climate-vegetation relationship are systematically extended into the reconstructions. Summer temperatures, the most prominent driving variable for modeled vegetation change in the Northern Hemisphere, are accurately reconstructed. However, the amplitude of the model winter and mean annual temperature cooling between the mid-Holocene and present day is overestimated and similar to the summer trend in magnitude. This effect occurs because temporal changes of a dominant climate variable are imprinted on a less important variable, leading to reconstructions biased towards the dominant variable's trends. Our results, although based on a model vegetation that is inevitably simpler than reality, indicate that reconstructions of multiple climate variables based on modern spatial bio-indicator datasets should be treated with caution.

  3. Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world

    NASA Astrophysics Data System (ADS)

    Rehfeld, Kira; Trachsel, Mathias; Telford, Richard J.; Laepple, Thomas

    2016-12-01

    Reconstructions of summer, winter or annual mean temperatures based on the species composition of bio-indicators such as pollen, foraminifera or chironomids are routinely used in climate model-proxy data comparison studies. Most reconstruction algorithms exploit the joint distribution of modern spatial climate and species distribution for the development of the reconstructions. They rely on the space-for-time substitution and the specific assumption that environmental variables other than those reconstructed are not important or that their relationship with the reconstructed variable(s) should be the same in the past as in the modern spatial calibration dataset. Here we test the implications of this "correlative uniformitarianism" assumption on climate reconstructions in an ideal model world, in which climate and vegetation are known at all times. The alternate reality is a climate simulation of the last 6000 years with dynamic vegetation. Transient changes of plant functional types are considered as surrogate pollen counts and allow us to establish, apply and evaluate transfer functions in the modeled world. We find that in our model experiments the transfer function cross validation r2 is of limited use to identify reconstructible climate variables, as it only relies on the modern spatial climate-vegetation relationship. However, ordination approaches that assess the amount of fossil vegetation variance explained by the reconstructions are promising. We furthermore show that correlations between climate variables in the modern climate-vegetation relationship are systematically extended into the reconstructions. Summer temperatures, the most prominent driving variable for modeled vegetation change in the Northern Hemisphere, are accurately reconstructed. However, the amplitude of the model winter and mean annual temperature cooling between the mid-Holocene and present day is overestimated and similar to the summer trend in magnitude. This effect occurs because temporal changes of a dominant climate variable, such as summer temperatures in the model's Arctic, are imprinted on a less important variable, leading to reconstructions biased towards the dominant variable's trends. Our results, although based on a model vegetation that is inevitably simpler than reality, indicate that reconstructions of multiple climate variables based on modern spatial bio-indicator datasets should be treated with caution. Expert knowledge on the ecophysiological drivers of the proxies, as well as statistical methods that go beyond the cross validation on modern calibration datasets, are crucial to avoid misinterpretation.

  4. Climate variability has a stabilizing effect on the coexistence of prairie grasses

    PubMed Central

    Adler, Peter B.; HilleRisLambers, Janneke; Kyriakidis, Phaedon C.; Guan, Qingfeng; Levine, Jonathan M.

    2006-01-01

    How expected increases in climate variability will affect species diversity depends on the role of such variability in regulating the coexistence of competing species. Despite theory linking temporal environmental fluctuations with the maintenance of diversity, the importance of climate variability for stabilizing coexistence remains unknown because of a lack of appropriate long-term observations. Here, we analyze three decades of demographic data from a Kansas prairie to demonstrate that interannual climate variability promotes the coexistence of three common grass species. Specifically, we show that (i) the dynamics of the three species satisfy all requirements of “storage effect” theory based on recruitment variability with overlapping generations, (ii) climate variables are correlated with interannual variation in species performance, and (iii) temporal variability increases low-density growth rates, buffering these species against competitive exclusion. Given that environmental fluctuations are ubiquitous in natural systems, our results suggest that coexistence based on the storage effect may be underappreciated and could provide an important alternative to recent neutral theories of diversity. Field evidence for positive effects of variability on coexistence also emphasizes the need to consider changes in both climate means and variances when forecasting the effects of global change on species diversity. PMID:16908862

  5. LAMPPOST: A Mnemonic Device for Teaching Climate Variables

    ERIC Educational Resources Information Center

    Fahrer, Chuck; Harris, Dan

    2004-01-01

    This article introduces the word "LAMPPOST" as a mnemonic device to aid in the instruction of climate variables. It provides instructors with a framework for discussing climate patterns that is based on eight variables: latitude, altitude, maritime influence and continentality, pressure systems, prevailing winds, ocean currents, storms, and…

  6. Remote-sensing based approach to forecast habitat quality under climate change scenarios.

    PubMed

    Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier

    2017-01-01

    As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.

  7. Remote-sensing based approach to forecast habitat quality under climate change scenarios

    PubMed Central

    Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier

    2017-01-01

    As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501

  8. Local air temperature tolerance: a sensible basis for estimating climate variability

    NASA Astrophysics Data System (ADS)

    Kärner, Olavi; Post, Piia

    2016-11-01

    The customary representation of climate using sample moments is generally biased due to the noticeably nonstationary behaviour of many climate series. In this study, we introduce a moment-free climate representation based on a statistical model fitted to a long-term daily air temperature anomaly series. This model allows us to separate the climate and weather scale variability in the series. As a result, the climate scale can be characterized using the mean annual cycle of series and local air temperature tolerance, where the latter is computed using the fitted model. The representation of weather scale variability is specified using the frequency and the range of outliers based on the tolerance. The scheme is illustrated using five long-term air temperature records observed by different European meteorological stations.

  9. Climate change and occurrence of diarrheal diseases: evolving facts from Nepal.

    PubMed

    Bhandari, G P; Gurung, S; Dhimal, M; Bhusal, C L

    2012-09-01

    Climate change is becoming huge threat to health especially for those from developing countries. Diarrhea as one of the major diseases linked with changing climate. This study has been carried out to assess the relationship between climatic variables, and malaria and to find out the range of non-climatic factors that can confound the relationship of climate change and human health. It is a Retrospective study where data of past ten years relating to climate and disease (diarrhea) variable were analyzed. The study conducted trend analysis based on correlation. The climate related data were obtained from Department of Hydrology and Meteorology. Time Series analysis was also being conducted. The trend of number of yearly cases of diarrhea has been increasing from 1998 to 2001 after which the cases remain constant till 2006.The climate types in Jhapa vary from humid to per-humid based on the moisture index and Mega-thermal based on thermal efficiency. The mean annual temperature is increasing at an average of 0.04 °C/year with maximum temperature increasing faster than the minimum temperature. The annual total rainfall of Jhapa is decreasing at an average rate of -7.1 mm/year. Statistically significant correlation between diarrheal cases occurrence and temperature and rainfall has been observed. However, climate variables were not the significant predictors of diarrheal occurrence. The association among climate variables and diarrheal disease occurrence cannot be neglected which has been showed by this study. Further prospective longitudinal study adjusting influence of non-climatic factors is recommended.

  10. Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.

    2009-01-01

    This report presents a framework for a U.S. Geological Survey (USGS) hydrologic climate-response program designed to provide early warning of changes in the seasonal water cycle of Maine. Climate-related hydrologic changes on Maine's rivers and lakes in the winter and spring during the last century are well documented, and several river and lake variables have been shown to be sensitive to air-temperature changes. Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. The framework of the hydrologic climate-response program presented here consists of four major parts: (1) identifying homogeneous climate-response regions; (2) identifying hydrologic components and key variables of those components that would be included in a hydrologic climate-response data network - as an example, streamflow has been identified as a primary component, with a key variable of streamflow being winter-spring streamflow timing; the data network would be created by maintaining existing USGS data-collection stations and establishing new ones to fill data gaps; (3) regularly updating historical trends of hydrologic data network variables; and (4) establishing basins for process-based studies. Components proposed for inclusion in the hydrologic climate-response data network have at least one key variable for which substantial historical data are available. The proposed components are streamflow, lake ice, river ice, snowpack, and groundwater. The proposed key variables of each component have extensive historical data at multiple sites and are expected to be responsive to climate change in the next few decades. These variables are also important for human water use and (or) ecosystem function. Maine would be divided into seven climate-response regions that follow major river-basin boundaries (basins subdivided to hydrologic units with 8-digit codes or larger) and have relatively homogeneous climates. Key hydrologic variables within each climate-response region would be analyzed regularly to maintain up-to-date analyses of year-to-year variability, decadal variability, and longer term trends. Finally, one basin in each climate-response region would be identified for process-based hydrologic and ecological studies.

  11. Can climate variability information constrain a hydrological model for an ungauged Costa Rican catchment?

    NASA Astrophysics Data System (ADS)

    Quesada-Montano, Beatriz; Westerberg, Ida K.; Fuentes-Andino, Diana; Hidalgo-Leon, Hugo; Halldin, Sven

    2017-04-01

    Long-term hydrological data are key to understanding catchment behaviour and for decision making within water management and planning. Given the lack of observed data in many regions worldwide, hydrological models are an alternative for reproducing historical streamflow series. Additional types of information - to locally observed discharge - can be used to constrain model parameter uncertainty for ungauged catchments. Climate variability exerts a strong influence on streamflow variability on long and short time scales, in particular in the Central-American region. We therefore explored the use of climate variability knowledge to constrain the simulated discharge uncertainty of a conceptual hydrological model applied to a Costa Rican catchment, assumed to be ungauged. To reduce model uncertainty we first rejected parameter relationships that disagreed with our understanding of the system. We then assessed how well climate-based constraints applied at long-term, inter-annual and intra-annual time scales could constrain model uncertainty. Finally, we compared the climate-based constraints to a constraint on low-flow statistics based on information obtained from global maps. We evaluated our method in terms of the ability of the model to reproduce the observed hydrograph and the active catchment processes in terms of two efficiency measures, a statistical consistency measure, a spread measure and 17 hydrological signatures. We found that climate variability knowledge was useful for reducing model uncertainty, in particular, unrealistic representation of deep groundwater processes. The constraints based on global maps of low-flow statistics provided more constraining information than those based on climate variability, but the latter rejected slow rainfall-runoff representations that the low flow statistics did not reject. The use of such knowledge, together with information on low-flow statistics and constraints on parameter relationships showed to be useful to constrain model uncertainty for an - assumed to be - ungauged basin. This shows that our method is promising for reconstructing long-term flow data for ungauged catchments on the Pacific side of Central America, and that similar methods can be developed for ungauged basins in other regions where climate variability exerts a strong control on streamflow variability.

  12. Internal Variability-Generated Uncertainty in East Asian Climate Projections Estimated with 40 CCSM3 Ensembles.

    PubMed

    Yao, Shuai-Lei; Luo, Jing-Jia; Huang, Gang

    2016-01-01

    Regional climate projections are challenging because of large uncertainty particularly stemming from unpredictable, internal variability of the climate system. Here, we examine the internal variability-induced uncertainty in precipitation and surface air temperature (SAT) trends during 2005-2055 over East Asia based on 40 member ensemble projections of the Community Climate System Model Version 3 (CCSM3). The model ensembles are generated from a suite of different atmospheric initial conditions using the same SRES A1B greenhouse gas scenario. We find that projected precipitation trends are subject to considerably larger internal uncertainty and hence have lower confidence, compared to the projected SAT trends in both the boreal winter and summer. Projected SAT trends in winter have relatively higher uncertainty than those in summer. Besides, the lower-level atmospheric circulation has larger uncertainty than that in the mid-level. Based on k-means cluster analysis, we demonstrate that a substantial portion of internally-induced precipitation and SAT trends arises from internal large-scale atmospheric circulation variability. These results highlight the importance of internal climate variability in affecting regional climate projections on multi-decadal timescales.

  13. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis

    USGS Publications Warehouse

    Bartlein, P.J.; Harrison, S.P.; Brewer, Sandra; Connor, S.; Davis, B.A.S.; Gajewski, K.; Guiot, J.; Harrison-Prentice, T. I.; Henderson, A.; Peyron, O.; Prentice, I.C.; Scholze, M.; Seppa, H.; Shuman, B.; Sugita, S.; Thompson, R.S.; Viau, A.E.; Williams, J.; Wu, H.

    2010-01-01

    Subfossil pollen and plant macrofossil data derived from 14C-dated sediment profiles can provide quantitative information on glacial and interglacial climates. The data allow climate variables related to growing-season warmth, winter cold, and plant-available moisture to be reconstructed. Continental-scale reconstructions have been made for the mid-Holocene (MH, around 6 ka) and Last Glacial Maximum (LGM, around 21 ka), allowing comparison with palaeoclimate simulations currently being carried out as part of the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. The synthesis of the available MH and LGM climate reconstructions and their uncertainties, obtained using modern-analogue, regression and model-inversion techniques, is presented for four temperature variables and two moisture variables. Reconstructions of the same variables based on surface-pollen assemblages are shown to be accurate and unbiased. Reconstructed LGM and MH climate anomaly patterns are coherent, consistent between variables, and robust with respect to the choice of technique. They support a conceptual model of the controls of Late Quaternary climate change whereby the first-order effects of orbital variations and greenhouse forcing on the seasonal cycle of temperature are predictably modified by responses of the atmospheric circulation and surface energy balance.

  14. How resilient are ecosystems in adapting to climate variability

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert H. G.

    2015-04-01

    The conclusion often drawn in the media is that ecosystems may perish as a result of climate change. Although climatic trends may indeed lead to shifts in ecosystem composition, the challenge to adjust to climatic variability - even if there is no trend - is larger, particularly in semi-arid or topical climates where climatic variability is large compared to temperate climates. How do ecosystems buffer for climatic variability? The most powerful mechanism is to invest in root zone storage capacity, so as to guarantee access to water and nutrients during period of drought. This investment comes at a cost of having less energy available to invest in growth or formation of fruits. Ecosystems are expected to create sufficient buffer to overcome critical periods of drought, but not more than is necessary to survive or reproduce. Based on this concept, a methodology has been developed to estimate ecosystem root zone storage capacity at local, regional and global scale. These estimates correspond well with estimates made by combining soil and ecosystem information, but are more accurate and more detailed. The methodology shows that ecosystems have intrinsic capacity to adjust to climatic variability and hence have a high resilience to both climatic variability and climatic trends.

  15. Recent changes in county-level corn yield variability in the United States from observations and crop models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong

    The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota,more » Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially underestimated the change trend of corn yield variability, in projecting its future changes.« less

  16. Future of endemic flora of biodiversity hotspots in India.

    PubMed

    Chitale, Vishwas Sudhir; Behera, Mukund Dev; Roy, Partha Sarthi

    2014-01-01

    India is one of the 12 mega biodiversity countries of the world, which represents 11% of world's flora in about 2.4% of global land mass. Approximately 28% of the total Indian flora and 33% of angiosperms occurring in India are endemic. Higher human population density in biodiversity hotspots in India puts undue pressure on these sensitive eco-regions. In the present study, we predict the future distribution of 637 endemic plant species from three biodiversity hotspots in India; Himalaya, Western Ghats, Indo-Burma, based on A1B scenario for year 2050 and 2080. We develop individual variable based models as well as mixed models in MaxEnt by combining ten least co-related bioclimatic variables, two disturbance variables and one physiography variable as predictor variables. The projected changes suggest that the endemic flora will be adversely impacted, even under such a moderate climate scenario. The future distribution is predicted to shift in northern and north-eastern direction in Himalaya and Indo-Burma, while in southern and south-western direction in Western Ghats, due to cooler climatic conditions in these regions. In the future distribution of endemic plants, we observe a significant shift and reduction in the distribution range compared to the present distribution. The model predicts a 23.99% range reduction and a 7.70% range expansion in future distribution by 2050, while a 41.34% range reduction and a 24.10% range expansion by 2080. Integration of disturbance and physiography variables along with bioclimatic variables in the models improved the prediction accuracy. Mixed models provide most accurate results for most of the combinations of climatic and non-climatic variables as compared to individual variable based models. We conclude that a) regions with cooler climates and higher moisture availability could serve as refugia for endemic plants in future climatic conditions; b) mixed models provide more accurate results, compared to single variable based models.

  17. Future of Endemic Flora of Biodiversity Hotspots in India

    PubMed Central

    Chitale, Vishwas Sudhir; Behera, Mukund Dev; Roy, Partha Sarthi

    2014-01-01

    India is one of the 12 mega biodiversity countries of the world, which represents 11% of world's flora in about 2.4% of global land mass. Approximately 28% of the total Indian flora and 33% of angiosperms occurring in India are endemic. Higher human population density in biodiversity hotspots in India puts undue pressure on these sensitive eco-regions. In the present study, we predict the future distribution of 637 endemic plant species from three biodiversity hotspots in India; Himalaya, Western Ghats, Indo-Burma, based on A1B scenario for year 2050 and 2080. We develop individual variable based models as well as mixed models in MaxEnt by combining ten least co-related bioclimatic variables, two disturbance variables and one physiography variable as predictor variables. The projected changes suggest that the endemic flora will be adversely impacted, even under such a moderate climate scenario. The future distribution is predicted to shift in northern and north-eastern direction in Himalaya and Indo-Burma, while in southern and south-western direction in Western Ghats, due to cooler climatic conditions in these regions. In the future distribution of endemic plants, we observe a significant shift and reduction in the distribution range compared to the present distribution. The model predicts a 23.99% range reduction and a 7.70% range expansion in future distribution by 2050, while a 41.34% range reduction and a 24.10% range expansion by 2080. Integration of disturbance and physiography variables along with bioclimatic variables in the models improved the prediction accuracy. Mixed models provide most accurate results for most of the combinations of climatic and non-climatic variables as compared to individual variable based models. We conclude that a) regions with cooler climates and higher moisture availability could serve as refugia for endemic plants in future climatic conditions; b) mixed models provide more accurate results, compared to single variable based models. PMID:25501852

  18. A CLIMATOLOGY OF WATER BUDGET VARIABLE FOR THE NORTHEASTERN UNITED STATES

    EPA Science Inventory

    A Climatology of Water Budget Variables for the Northeast United States (Leathers and Robinson 1995). Climatic division precipitation and temperature data are used to calculate water budget variables based on the Thornthwaite/Mather climatic water budget methodology. Two water b...

  19. Pollen-based reconstruction of Holocene climate variability in the Eifel region evaluated with stable isotopes

    NASA Astrophysics Data System (ADS)

    Kühl, Norbert; Moschen, Robert; Wagner, Stefanie

    2010-05-01

    Pollen as well as stable isotopes have great potential as climate proxy data. While variability in these proxy data is frequently assumed to reflect climate variability, other factors than climate, including human impact and statistical noise, can often not be excluded as primary cause for the observed variability. Multiproxy studies offer the opportunity to test different drivers by providing different lines of evidence for environmental change such as climate variability and human impact. In this multiproxy study we use pollen and peat humification to evaluate to which extent stable oxygen and carbon isotope series from the peat bog "Dürres Maar" reflect human impact rather than climate variability. For times before strong anthropogenic vegetation change, isotope series from Dürres Maar were used to validate quantitative reconstructions based on pollen. Our study site is the kettle hole peat bog "Dürres Maar" in the Eifel low mountain range, Germany (450m asl), which grew 12m during the last 10,000 years. Pollen was analysed with a sum of at least 1000 terrestrial pollen grains throughout the profile to minimize statistical effects on the reconstructions. A recently developed probabilistic indicator taxa method ("pdf-method") was used for the quantitative climate estimates (January and July temperature) based on pollen. For isotope analysis, attention was given to use monospecific Sphagnum leaves whenever possible, reducing the potential of a species effect and any potential artefact that can originate from selective degradation of different morphological parts of Sphagnum plants (Moschen et al., 2009). Pollen at "Dürres Maar" reflect the variable and partly strong human impact on vegetation during the last 4000 years. Stable isotope time series were apparently not influenced by human impact at this site. This highlights the potential of stable isotope investigations from peat for climatic interpretation, because stable isotope series from lacustrine sediments might strongly react to anthropogenic deforestation, as carbon isotope time series from the adjacent Lake Holzmaar suggest. Reconstructions based on pollen with the pdf-method are robust to the human impact during the last 4000 years, but do not reproduce the fine scale climate variability that can be derived from the stable isotope series (Kühl et al., in press). In contrast, reconstructions on the basis of pollen data show relatively pronounced climate variability (here: January temperature) during the Mid-Holocene, which is known from many other European records. The oxygen isotope time series as available now indicate that at least some of the observed variability indeed reflects climate variability. However, stable carbon isotopes show little concordance. At this stage our results point in the direction that 1) the isotopic composition might reflect a shift in influencing factors during the Holocene, 2) climate trends can robustly be reconstructed with the pdf method and 3) fine scale climate variability can potentially be reconstructed using the pdf-method, given that climate sensitive taxa at their distribution limit are present. The latter two conclusions are of particular importance for the reconstruction of climatic trends and variability of interglacials older than the Holocene, when sites are rare and pollen is often the only suitable proxy in terrestrial records. Kühl, N., Moschen, R., Wagner, S., Brewer, S., Peyron, O., in press. A multiproxy record of Late Holocene natural and anthropogenic environmental change from the Sphagnum peat bog Dürres Maar, Germany: implications for quantitative climate reconstructions based on pollen. J. Quat. Sci., DOI: 10.1002/jqs.1342. Available online. Moschen, R., Kühl, N., Rehberger, I., Lücke, A., 2009. Stable carbon and oxygen isotopes in sub-fossil Sphagnum: Assessment of their applicability for palaeoclimatology. Chemical Geology 259, 262-272.

  20. Climate-driven vital rates do not always mean climate-driven population.

    PubMed

    Tavecchia, Giacomo; Tenan, Simone; Pradel, Roger; Igual, José-Manuel; Genovart, Meritxell; Oro, Daniel

    2016-12-01

    Current climatic changes have increased the need to forecast population responses to climate variability. A common approach to address this question is through models that project current population state using the functional relationship between demographic rates and climatic variables. We argue that this approach can lead to erroneous conclusions when interpopulation dispersal is not considered. We found that immigration can release the population from climate-driven trajectories even when local vital rates are climate dependent. We illustrated this using individual-based data on a trans-equatorial migratory seabird, the Scopoli's shearwater Calonectris diomedea, in which the variation of vital rates has been associated with large-scale climatic indices. We compared the population annual growth rate λ i , estimated using local climate-driven parameters with ρ i , a population growth rate directly estimated from individual information and that accounts for immigration. While λ i varied as a function of climatic variables, reflecting the climate-dependent parameters, ρ i did not, indicating that dispersal decouples the relationship between population growth and climate variables from that between climatic variables and vital rates. Our results suggest caution when assessing demographic effects of climatic variability especially in open populations for very mobile organisms such as fish, marine mammals, bats, or birds. When a population model cannot be validated or it is not detailed enough, ignoring immigration might lead to misleading climate-driven projections. © 2016 John Wiley & Sons Ltd.

  1. Evaluation of climatic changes in South-Asia

    NASA Astrophysics Data System (ADS)

    Kjellstrom, Erik; Rana, Arun; Grigory, Nikulin; Renate, Wilcke; Hansson, Ulf; Kolax, Michael

    2016-04-01

    Literature has sufficient evidences of climate change impact all over the world and its impact on various sectors. In light of new advancements made in climate modeling, availability of several climate downscaling approaches, the more robust bias correction methods with varying complexities and strengths, in the present study we performed a systematic evaluation of climate change impact over South-Asia region. We have used different Regional Climate Models (RCMs) (from CORDEX domain), (Global Climate Models GCMs) and gridded observations for the study area to evaluate the models in historical/control period (1980-2010) and changes in future period (2010-2099). Firstly, GCMs and RCMs are evaluated against the Gridded observational datasets in the area using precipitation and temperature as indicative variables. Observational dataset are also evaluated against the reliable set of observational dataset, as pointed in literature. Bias, Correlation, and changes (among other statistical measures) are calculated for the entire region and both the variables. Eventually, the region was sub-divided into various smaller domains based on homogenous precipitation zones to evaluate the average changes over time period. Spatial and temporal changes for the region are then finally calculated to evaluate the future changes in the region. Future changes are calculated for 2 Representative Concentration Pathways (RCPs), the middle emission (RCP4.5) and high emission (RCP8.5) and for both climatic variables, precipitation and temperature. Lastly, Evaluation of Extremes is performed based on precipitation and temperature based indices for whole region in future dataset. Results have indicated that the whole study region is under extreme stress in future climate scenarios for both climatic variables i.e. precipitation and temperature. Precipitation variability is dependent on the location in the area leading to droughts and floods in various regions in future. Temperature is hinting towards a constant increase throughout the region regardless of location.

  2. Seasonal forecasts in the Sahel region: the use of rainfall-based predictive variables

    NASA Astrophysics Data System (ADS)

    Lodoun, Tiganadaba; Sanon, Moussa; Giannini, Alessandra; Traoré, Pierre Sibiry; Somé, Léopold; Rasolodimby, Jeanne Millogo

    2014-08-01

    In the Sahel region, seasonal predictions are crucial to alleviate the impacts of climate variability on populations' livelihoods. Agricultural planning (e.g., decisions about sowing date, fertilizer application date, and choice of crop or cultivar) is based on empirical predictive indices whose accuracy to date has not been scientifically proven. This paper attempts to statistically test whether the pattern of rainfall distribution over the May-July period contributes to predicting the real onset date and the nature (wet or dry) of the rainy season, as farmers believe. To that end, we considered historical records of daily rainfall from 51 stations spanning the period 1920-2008 and the different agro-climatic zones in Burkina Faso. We performed (1) principal component analysis to identify climatic zones, based on the patterns of intra-seasonal rainfall, (2) and linear discriminant analysis to find the best rainfall-based variables to distinguish between real and false onset dates of the rainy season, and between wet and dry seasons in each climatic zone. A total of nine climatic zones were identified in each of which, based on rainfall records from May to July, we derived linear discriminant functions to correctly predict the nature of a potential onset date of the rainy season (real or false) and that of the rainy season (dry or wet) in at least three cases out of five. These functions should contribute to alleviating the negative impacts of climate variability in the different climatic zones of Burkina Faso.

  3. Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources

    NASA Astrophysics Data System (ADS)

    Forsythe, N.; Blenkinsop, S.; Fowler, H. J.

    2015-05-01

    A three-step climate classification was applied to a spatial domain covering the Himalayan arc and adjacent plains regions using input data from four global meteorological reanalyses. Input variables were selected based on an understanding of the climatic drivers of regional water resource variability and crop yields. Principal component analysis (PCA) of those variables and k-means clustering on the PCA outputs revealed a reanalysis ensemble consensus for eight macro-climate zones. Spatial statistics of input variables for each zone revealed consistent, distinct climatologies. This climate classification approach has potential for enhancing assessment of climatic influences on water resources and food security as well as for characterising the skill and bias of gridded data sets, both meteorological reanalyses and climate models, for reproducing subregional climatologies. Through their spatial descriptors (area, geographic centroid, elevation mean range), climate classifications also provide metrics, beyond simple changes in individual variables, with which to assess the magnitude of projected climate change. Such sophisticated metrics are of particular interest for regions, including mountainous areas, where natural and anthropogenic systems are expected to be sensitive to incremental climate shifts.

  4. Impacts of climate change and internal climate variability on french rivers streamflows

    NASA Astrophysics Data System (ADS)

    Dayon, Gildas; Boé, Julien; Martin, Eric

    2016-04-01

    The assessment of the impacts of climate change often requires to set up long chains of modeling, from the model to estimate the future concentration of greenhouse gases to the impact model. Throughout the modeling chain, sources of uncertainty accumulate making the exploitation of results for the development of adaptation strategies difficult. It is proposed here to assess the impacts of climate change on the hydrological cycle over France and the associated uncertainties. The contribution of the uncertainties from greenhouse gases emission scenario, climate models and internal variability are addressed in this work. To have a large ensemble of climate simulations, the study is based on Global Climate Models (GCM) simulations from the Coupled Model Intercomparison Phase 5 (CMIP5), including several simulations from the same GCM to properly assess uncertainties from internal climate variability. Simulations from the four Radiative Concentration Pathway (RCP) are downscaled with a statistical method developed in a previous study (Dayon et al. 2015). The hydrological system Isba-Modcou is then driven by the downscaling results on a 8 km grid over France. Isba is a land surface model that calculates the energy and water balance and Modcou a hydrogeological model that routes the surface runoff given by Isba. Based on that framework, uncertainties uncertainties from greenhouse gases emission scenario, climate models and climate internal variability are evaluated. Their relative importance is described for the next decades and the end of this century. In a last part, uncertainties due to internal climate variability on streamflows simulated with downscaled GCM and Isba-Modcou are evaluated against observations and hydrological reconstructions on the whole 20th century. Hydrological reconstructions are based on the downscaling of recent atmospheric reanalyses of the 20th century and observations of temperature and precipitation. We show that the multi-decadal variability of streamflows observed in the 20th century is generally weaker in the hydrological simulations done with the historical simulations from climate models. References: Dayon et al. (2015), Transferability in the future climate of a statistical downscaling mehtod for precipitation in France, J. Geophys. Res. Atmos., 120, 1023-1043, doi:10.1002/2014JD022236

  5. Results from the VALUE perfect predictor experiment: process-based evaluation

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Soares, Pedro; Hertig, Elke; Brands, Swen; Huth, Radan; Cardoso, Rita; Kotlarski, Sven; Casado, Maria; Pongracz, Rita; Bartholy, Judit

    2016-04-01

    Until recently, the evaluation of downscaled climate model simulations has typically been limited to surface climatologies, including long term means, spatial variability and extremes. But these aspects are often, at least partly, tuned in regional climate models to match observed climate. The tuning issue is of course particularly relevant for bias corrected regional climate models. In general, a good performance of a model for these aspects in present climate does therefore not imply a good performance in simulating climate change. It is now widely accepted that, to increase our condidence in climate change simulations, it is necessary to evaluate how climate models simulate relevant underlying processes. In other words, it is important to assess whether downscaling does the right for the right reason. Therefore, VALUE has carried out a broad process-based evaluation study based on its perfect predictor experiment simulations: the downscaling methods are driven by ERA-Interim data over the period 1979-2008, reference observations are given by a network of 85 meteorological stations covering all European climates. More than 30 methods participated in the evaluation. In order to compare statistical and dynamical methods, only variables provided by both types of approaches could be considered. This limited the analysis to conditioning local surface variables on variables from driving processes that are simulated by ERA-Interim. We considered the following types of processes: at the continental scale, we evaluated the performance of downscaling methods for positive and negative North Atlantic Oscillation, Atlantic ridge and blocking situations. At synoptic scales, we considered Lamb weather types for selected European regions such as Scandinavia, the United Kingdom, the Iberian Pensinsula or the Alps. At regional scales we considered phenomena such as the Mistral, the Bora or the Iberian coastal jet. Such process-based evaluation helps to attribute biases in surface variables to underlying processes and ultimately to improve climate models.

  6. An 'Observational Large Ensemble' to compare observed and modeled temperature trend uncertainty due to internal variability.

    NASA Astrophysics Data System (ADS)

    Poppick, A. N.; McKinnon, K. A.; Dunn-Sigouin, E.; Deser, C.

    2017-12-01

    Initial condition climate model ensembles suggest that regional temperature trends can be highly variable on decadal timescales due to characteristics of internal climate variability. Accounting for trend uncertainty due to internal variability is therefore necessary to contextualize recent observed temperature changes. However, while the variability of trends in a climate model ensemble can be evaluated directly (as the spread across ensemble members), internal variability simulated by a climate model may be inconsistent with observations. Observation-based methods for assessing the role of internal variability on trend uncertainty are therefore required. Here, we use a statistical resampling approach to assess trend uncertainty due to internal variability in historical 50-year (1966-2015) winter near-surface air temperature trends over North America. We compare this estimate of trend uncertainty to simulated trend variability in the NCAR CESM1 Large Ensemble (LENS), finding that uncertainty in wintertime temperature trends over North America due to internal variability is largely overestimated by CESM1, on average by a factor of 32%. Our observation-based resampling approach is combined with the forced signal from LENS to produce an 'Observational Large Ensemble' (OLENS). The members of OLENS indicate a range of spatially coherent fields of temperature trends resulting from different sequences of internal variability consistent with observations. The smaller trend variability in OLENS suggests that uncertainty in the historical climate change signal in observations due to internal variability is less than suggested by LENS.

  7. Climate variability and vulnerability to climate change: a review

    PubMed Central

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  8. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin.

    PubMed

    Mishra, Ashok; Singh, R; Raghuwanshi, N S; Chatterjee, C; Froebrich, Jochen

    2013-12-01

    Indian Ganga Basin (IGB), one of the most densely populated areas in the world, is facing a significant threat to food grain production, besides increased yield gap between actual and potential production, due to climate change. We have analyzed the spatial variability of climate change impacts on rice and wheat yields at three different locations representing the upper, middle and lower IGB. The DSSAT model is used to simulate the effects of climate variability and climate change on rice and wheat yields by analyzing: (i) spatial crop yield response to current climate, and (ii) impact of a changing climate as projected by two regional climate models, REMO and HadRM3, based on SRES A1B emission scenarios for the period 2011-2040. Results for current climate demonstrate a significant gap between actual and potential yield for upper, middle and lower IGB stations. The analysis based on RCM projections shows that during 2011-2040, the largest reduction in rice and wheat yields will occur in the upper IGB (reduction of potential rice and wheat yield respectively by 43.2% and 20.9% by REMO, and 24.8% and 17.2% by HadRM3). In the lower IGB, however, contrasting results are obtained, with HadRM3 based projections showing an increase in the potential rice and wheat yields, whereas, REMO based projections show decreased potential yields. We discuss the influence of agro-climatic factors; variation in temperature, length of maturity period and leaf area index which are responsible for modeled spatial variability in crop yield response within the IGB. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Statistical structure of intrinsic climate variability under global warming

    NASA Astrophysics Data System (ADS)

    Zhu, Xiuhua; Bye, John; Fraedrich, Klaus

    2017-04-01

    Climate variability is often studied in terms of fluctuations with respect to the mean state, whereas the dependence between the mean and variability is rarely discussed. We propose a new climate metric to measure the relationship between means and standard deviations of annual surface temperature computed over non-overlapping 100-year segments. This metric is analyzed based on equilibrium simulations of the Max Planck Institute-Earth System Model (MPI-ESM): the last millennium climate (800-1799), the future climate projection following the A1B scenario (2100-2199), and the 3100-year unforced control simulation. A linear relationship is globally observed in the control simulation and thus termed intrinsic climate variability, which is most pronounced in the tropical region with negative regression slopes over the Pacific warm pool and positive slopes in the eastern tropical Pacific. It relates to asymmetric changes in temperature extremes and associates fluctuating climate means with increase or decrease in intensity and occurrence of both El Niño and La Niña events. In the future scenario period, the linear regression slopes largely retain their spatial structure with appreciable changes in intensity and geographical locations. Since intrinsic climate variability describes the internal rhythm of the climate system, it may serve as guidance for interpreting climate variability and climate change signals in the past and the future.

  10. Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis

    USGS Publications Warehouse

    Bartlein, P.J.; Harrison, S.P.; Brewer, Sandra; Connor, S.; Davis, B.A.S.; Gajewski, K.; Guiot, J.; Harrison-Prentice, T. I.; Henderson, A.; Peyron, O.; Prentice, I.C.; Scholze, M.; Seppa, H.; Shuman, B.; Sugita, S.; Thompson, R.S.; Viau, A.E.; Williams, J.; Wu, H.

    2011-01-01

    Subfossil pollen and plant macrofossil data derived from 14C-dated sediment profiles can provide quantitative information on glacial and interglacial climates. The data allow climate variables related to growing-season warmth, winter cold, and plant-available moisture to be reconstructed. Continental-scale reconstructions have been made for the mid-Holocene (MH, around 6 ka) and Last Glacial Maximum (LGM, around 21 ka), allowing comparison with palaeoclimate simulations currently being carried out as part of the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. The synthesis of the available MH and LGM climate reconstructions and their uncertainties, obtained using modern-analogue, regression and model-inversion techniques, is presented for four temperature variables and two moisture variables. Reconstructions of the same variables based on surface-pollen assemblages are shown to be accurate and unbiased. Reconstructed LGM and MH climate anomaly patterns are coherent, consistent between variables, and robust with respect to the choice of technique. They support a conceptual model of the controls of Late Quaternary climate change whereby the first-order effects of orbital variations and greenhouse forcing on the seasonal cycle of temperature are predictably modified by responses of the atmospheric circulation and surface energy balance. ?? 2010 The Author(s).

  11. Using ERA-Interim reanalysis for creating datasets of energy-relevant climate variables

    NASA Astrophysics Data System (ADS)

    Jones, Philip D.; Harpham, Colin; Troccoli, Alberto; Gschwind, Benoit; Ranchin, Thierry; Wald, Lucien; Goodess, Clare M.; Dorling, Stephen

    2017-07-01

    The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim reanalysis is presented. A number of different, variable-dependent, bias-adjustment approaches have been proposed. Here we modify the parameters of different distributions (depending on the variable), adjusting ERA-Interim based on gridded station or direct station observations. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity. These are available on either 3 or 6 h timescales over the period 1979-2016. The resulting bias-adjusted dataset is available through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S) and can be accessed at present from ftp://ecem.climate.copernicus.eu. The benefit of performing bias adjustment is demonstrated by comparing initial and bias-adjusted ERA-Interim data against gridded observational fields.

  12. Means and extremes: building variability into community-level climate change experiments.

    PubMed

    Thompson, Ross M; Beardall, John; Beringer, Jason; Grace, Mike; Sardina, Paula

    2013-06-01

    Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments. © 2013 John Wiley & Sons Ltd/CNRS.

  13. Climate-based seed zones for Mexico: guiding reforestation under observed and projected climate change

    Treesearch

    Dante Castellanos-Acuña; Kenneth W. Vance-Borland; J. Bradley St. Clair; Andreas Hamann; Javier López-Upton; Erika Gómez-Pineda; Juan Manuel Ortega-Rodríguez; Cuauhtémoc Sáenz-Romero

    2018-01-01

    Seed zones for forest tree species are a widely used tool in reforestation programs to ensure that seedlings are well adapted to their planting environments. Here, we propose a climate-based seed zone system for Mexico to address observed and projected climate change. The proposed seed zone classification is based on bands of climate variables often related to genetic...

  14. Influence of climate variability, fire and phosphorus limitation on vegetation structure and dynamics of the Amazon-Cerrado border

    NASA Astrophysics Data System (ADS)

    Ane Dionizio, Emily; Heil Costa, Marcos; de Almeida Castanho, Andrea D.; Ferreira Pires, Gabrielle; Schwantes Marimon, Beatriz; Hur Marimon-Junior, Ben; Lenza, Eddie; Martins Pimenta, Fernando; Yang, Xiaojuan; Jain, Atul K.

    2018-02-01

    Climate, fire and soil nutrient limitation are important elements that affect vegetation dynamics in areas of the forest-savanna transition. In this paper, we use the dynamic vegetation model INLAND to evaluate the influence of interannual climate variability, fire and phosphorus (P) limitation on Amazon-Cerrado transitional vegetation structure and dynamics. We assess how each environmental factor affects net primary production, leaf area index and aboveground biomass (AGB), and compare the AGB simulations to an observed AGB map. We used two climate data sets (monthly average climate for 1961-1990 and interannual climate variability for 1948-2008), two data sets of total soil P content (one based on regional field measurements and one based on global data), and the INLAND fire module. Our results show that the inclusion of interannual climate variability, P limitation and fire occurrence each contribute to simulating vegetation types that more closely match observations. These effects are spatially heterogeneous and synergistic. In terms of magnitude, the effect of fire is strongest and is the main driver of vegetation changes along the transition. Phosphorus limitation, in turn, has a stronger effect on transitional ecosystem dynamics than interannual climate variability does. Overall, INLAND typically simulates more than 80 % of the AGB variability in the transition zone. However, the AGB in many places is clearly not well simulated, indicating that important soil and physiological factors in the Amazon-Cerrado border region, such as lithology, water table depth, carbon allocation strategies and mortality rates, still need to be included in the model.

  15. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease.

    PubMed

    Rohr, Jason R; Raffel, Thomas R

    2010-05-04

    The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), was tenuous because it was based on a temporally confounded correlation. Here we provide temporally unconfounded evidence that global El Niño climatic events drive widespread amphibian losses in genus Atelopus via increased regional temperature variability, which can reduce amphibian defenses against pathogens. Of 26 climate variables tested, only factors associated with temperature variability could account for the spatiotemporal patterns of declines thought to be associated with Bd. Climatic predictors of declines became significant only after controlling for a pattern consistent with epidemic spread (by temporally detrending the data). This presumed spread accounted for 59% of the temporal variation in amphibian losses, whereas El Niño accounted for 59% of the remaining variation. Hence, we could account for 83% of the variation in declines with these two variables alone. Given that global climate change seems to increase temperature variability, extreme climatic events, and the strength of Central Pacific El Niño episodes, climate change might exacerbate worldwide enigmatic declines of amphibians, presumably by increasing susceptibility to disease. These results suggest that changes to temperature variability associated with climate change might be as significant to biodiversity losses and disease emergence as changes to mean temperature.

  16. Multi-agent modelling of climate outlooks and food security on a community garden scheme in Limpopo, South Africa.

    PubMed

    Bharwani, Sukaina; Bithell, Mike; Downing, Thomas E; New, Mark; Washington, Richard; Ziervogel, Gina

    2005-11-29

    Seasonal climate outlooks provide one tool to help decision-makers allocate resources in anticipation of poor, fair or good seasons. The aim of the 'Climate Outlooks and Agent-Based Simulation of Adaptation in South Africa' project has been to investigate whether individuals, who adapt gradually to annual climate variability, are better equipped to respond to longer-term climate variability and change in a sustainable manner. Seasonal climate outlooks provide information on expected annual rainfall and thus can be used to adjust seasonal agricultural strategies to respond to expected climate conditions. A case study of smallholder farmers in a village in Vhembe district, Limpopo Province, South Africa has been used to examine how such climate outlooks might influence agricultural strategies and how this climate information can be improved to be more useful to farmers. Empirical field data has been collected using surveys, participatory approaches and computer-based knowledge elicitation tools to investigate the drivers of decision-making with a focus on the role of climate, market and livelihood needs. This data is used in an agent-based social simulation which incorporates household agents with varying adaptation options which result in differing impacts on crop yields and thus food security, as a result of using or ignoring the seasonal outlook. Key variables are the skill of the forecast, the social communication of the forecast and the range of available household and community-based risk coping strategies. This research provides a novel approach for exploring adaptation within the context of climate change.

  17. Selecting Populations for Non-Analogous Climate Conditions Using Universal Response Functions: The Case of Douglas-Fir in Central Europe.

    PubMed

    Chakraborty, Debojyoti; Wang, Tongli; Andre, Konrad; Konnert, Monika; Lexer, Manfred J; Matulla, Christoph; Schueler, Silvio

    2015-01-01

    Identifying populations within tree species potentially adapted to future climatic conditions is an important requirement for reforestation and assisted migration programmes. Such populations can be identified either by empirical response functions based on correlations of quantitative traits with climate variables or by climate envelope models that compare the climate of seed sources and potential growing areas. In the present study, we analyzed the intraspecific variation in climate growth response of Douglas-fir planted within the non-analogous climate conditions of Central and continental Europe. With data from 50 common garden trials, we developed Universal Response Functions (URF) for tree height and mean basal area and compared the growth performance of the selected best performing populations with that of populations identified through a climate envelope approach. Climate variables of the trial location were found to be stronger predictors of growth performance than climate variables of the population origin. Although the precipitation regime of the population sources varied strongly none of the precipitation related climate variables of population origin was found to be significant within the models. Overall, the URFs explained more than 88% of variation in growth performance. Populations identified by the URF models originate from western Cascades and coastal areas of Washington and Oregon and show significantly higher growth performance than populations identified by the climate envelope approach under both current and climate change scenarios. The URFs predict decreasing growth performance at low and middle elevations of the case study area, but increasing growth performance on high elevation sites. Our analysis suggests that population recommendations based on empirical approaches should be preferred and population selections by climate envelope models without considering climatic constrains of growth performance should be carefully appraised before transferring populations to planting locations with novel or dissimilar climate.

  18. EO based Agro-ecosystem approach for climate change adaptation in enhancing the crop production efficiency in the Indo-gangetic plains of India

    NASA Astrophysics Data System (ADS)

    Pandey, Suraj

    This study develops a spatial mapping of agro-ecological zones based on earth observation model using MODIS regional dataset as a tool to guide key areas of cropping system and targeting to climate change strategies. This tool applies to the Indo-gangetic Plains of north India to target the domains of bio-physical characteristics and socio-economics with respect to changing climate in the region. It derive on secondary data for spatially-explicit variables at the state/district level, which serve as indicators of climate variability based on sustainable livelihood approach, natural, social and human. The study details the methodology used and generates the spatial climate risk maps for composite indicators of livelihood and vulnerability index in the region.

  19. Predicting lodgepole pine site index from climatic parameters in Alberta.

    Treesearch

    Robert A. Monserud; Shongming Huang; Yuqing Yang

    2006-01-01

    We sought to evaluate the impact of climatic variables on site productivity of lodgepole pine (Pinus contorta var. latifolia Engelm.) for the province of Alberta. Climatic data were obtained from the Alberta Climate Model, which is based on 30-year normals from the provincial weather station network. Mapping methods were based...

  20. Modelling spatial and temporal vegetation variability with the Climate Constrained Vegetation Index: evidence of CO2 fertilisation and of water stress in continental interiors

    NASA Astrophysics Data System (ADS)

    Los, S. O.

    2015-06-01

    A model was developed to simulate spatial, seasonal and interannual variations in vegetation in response to temperature, precipitation and atmospheric CO2 concentrations; the model addresses shortcomings in current implementations. The model uses the minimum of 12 temperature and precipitation constraint functions to simulate NDVI. Functions vary based on the Köppen-Trewartha climate classification to take adaptations of vegetation to climate into account. The simulated NDVI, referred to as the climate constrained vegetation index (CCVI), captured the spatial variability (0.82 < r <0.87), seasonal variability (median r = 0.83) and interannual variability (median global r = 0.24) in NDVI. The CCVI simulated the effects of adverse climate on vegetation during the 1984 drought in the Sahel and during dust bowls of the 1930s and 1950s in the Great Plains in North America. A global CO2 fertilisation effect was found in NDVI data, similar in magnitude to that of earlier estimates (8 % for the 20th century). This effect increased linearly with simple ratio, a transformation of the NDVI. Three CCVI scenarios, based on climate simulations using the representative concentration pathway RCP4.5, showed a greater sensitivity of vegetation towards precipitation in Northern Hemisphere mid latitudes than is currently implemented in climate models. This higher sensitivity is of importance to assess the impact of climate variability on vegetation, in particular on agricultural productivity.

  1. Assessing the Role of Climate Variability on Liver Fluke Risk in the UK Through Mechanistic Hydro-Epidemiological Modelling

    NASA Astrophysics Data System (ADS)

    Beltrame, L.; Dunne, T.; Rose, H.; Walker, J.; Morgan, E.; Vickerman, P.; Wagener, T.

    2016-12-01

    Liver fluke is a flatworm parasite infecting grazing animals worldwide. In the UK, it causes considerable production losses to cattle and sheep industries and costs farmers millions of pounds each year due to reduced growth rates and lower milk yields. Large part of the parasite life-cycle takes place outside of the host, with its survival and development strongly controlled by climatic and hydrologic conditions. Evidence of climate-driven changes in the distribution and seasonality of fluke disease already exists, as the infection is increasingly expanding to new areas and becoming a year-round problem. Therefore, it is crucial to assess current and potential future impacts of climate variability on the disease to guide interventions at the farm scale and mitigate risk. Climate-based fluke risk models have been available since the 1950s, however, they are based on empirical relationships derived between historical climate and incidence data, and thus are unlikely to be robust for simulating risk under changing conditions. Moreover, they are not dynamic, but estimate risk over large regions in the UK based on monthly average climate conditions, so they do not allow investigating the effects of climate variability for supporting farmers' decisions. In this study, we introduce a mechanistic model for fluke, which represents habitat suitability for disease development at 25m resolution with a daily time step, explicitly linking the parasite life-cycle to key hydro-climate conditions. The model is used on a case study in the UK and sensitivity analysis is performed to better understand the role of climate variability on the space-time dynamics of the disease, while explicitly accounting for uncertainties. Comparisons are presented with experts' knowledge and a widely used empirical model.

  2. Improve projections of changes in southern African summer rainfall through comprehensive multi-timescale empirical statistical downscaling

    NASA Astrophysics Data System (ADS)

    Dieppois, B.; Pohl, B.; Eden, J.; Crétat, J.; Rouault, M.; Keenlyside, N.; New, M. G.

    2017-12-01

    The water management community has hitherto neglected or underestimated many of the uncertainties in climate impact scenarios, in particular, uncertainties associated with decadal climate variability. Uncertainty in the state-of-the-art global climate models (GCMs) is time-scale-dependant, e.g. stronger at decadal than at interannual timescales, in response to the different parameterizations and to internal climate variability. In addition, non-stationarity in statistical downscaling is widely recognized as a key problem, in which time-scale dependency of predictors plays an important role. As with global climate modelling, therefore, the selection of downscaling methods must proceed with caution to avoid unintended consequences of over-correcting the noise in GCMs (e.g. interpreting internal climate variability as a model bias). GCM outputs from the Coupled Model Intercomparison Project 5 (CMIP5) have therefore first been selected based on their ability to reproduce southern African summer rainfall variability and their teleconnections with Pacific sea-surface temperature across the dominant timescales. In observations, southern African summer rainfall has recently been shown to exhibit significant periodicities at the interannual timescale (2-8 years), quasi-decadal (8-13 years) and inter-decadal (15-28 years) timescales, which can be interpret as the signature of ENSO, the IPO, and the PDO over the region. Most of CMIP5 GCMs underestimate southern African summer rainfall variability and their teleconnections with Pacific SSTs at these three timescales. In addition, according to a more in-depth analysis of historical and pi-control runs, this bias is might result from internal climate variability in some of the CMIP5 GCMs, suggesting potential for bias-corrected prediction based empirical statistical downscaling. A multi-timescale regression based downscaling procedure, which determines the predictors across the different timescales, has thus been used to simulate southern African summer rainfall. This multi-timescale procedure shows much better skills in simulating decadal timescales of variability compared to commonly used statistical downscaling approaches.

  3. Enhancing seasonal climate prediction capacity for the Pacific countries

    NASA Astrophysics Data System (ADS)

    Kuleshov, Y.; Jones, D.; Hendon, H.; Charles, A.; Cottrill, A.; Lim, E.-P.; Langford, S.; de Wit, R.; Shelton, K.

    2012-04-01

    Seasonal and inter-annual climate variability is a major factor in determining the vulnerability of many Pacific Island Countries to climate change and there is need to improve weekly to seasonal range climate prediction capabilities beyond what is currently available from statistical models. In the seasonal climate prediction project under the Australian Government's Pacific Adaptation Strategy Assistance Program (PASAP), we describe a comprehensive project to strengthen the climate prediction capacities in National Meteorological Services in 14 Pacific Island Countries and East Timor. The intent is particularly to reduce the vulnerability of current services to a changing climate, and improve the overall level of information available assist with managing climate variability. Statistical models cannot account for aspects of climate variability and change that are not represented in the historical record. In contrast, dynamical physics-based models implicitly include the effects of a changing climate whatever its character or cause and can predict outcomes not seen previously. The transition from a statistical to a dynamical prediction system provides more valuable and applicable climate information to a wide range of climate sensitive sectors throughout the countries of the Pacific region. In this project, we have developed seasonal climate outlooks which are based upon the current dynamical model POAMA (Predictive Ocean-Atmosphere Model for Australia) seasonal forecast system. At present, meteorological services of the Pacific Island Countries largely employ statistical models for seasonal outlooks. Outcomes of the PASAP project enhanced capabilities of the Pacific Island Countries in seasonal prediction providing National Meteorological Services with an additional tool to analyse meteorological variables such as sea surface temperatures, air temperature, pressure and rainfall using POAMA outputs and prepare more accurate seasonal climate outlooks.

  4. Estimating missing hourly climatic data using artificial neural network for energy balance based ET mapping applications

    USDA-ARS?s Scientific Manuscript database

    Remote sensing based evapotranspiration (ET) mapping is an important improvement for water resources management. Hourly climatic data and reference ET are crucial for implementing remote sensing based ET models such as METRIC and SEBAL. In Turkey, data on all climatic variables may not be available ...

  5. An Integrated Hydro-Economic Model for Economy-Wide Climate Change Impact Assessment for Zambia

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Thurlow, J.; Diao, X.

    2008-12-01

    Zambia is a landlocked country in Southern Africa, with a total population of about 11 million and a total area of about 752 thousand square kilometers. Agriculture in the country depends heavily on rainfall as the majority of cultivated land is rain-fed. Significant rainfall variability has been a huge challenge for the country to keep a sustainable agricultural growth, which is an important condition for the country to meet the United Nations Millennium Development Goals. The situation is expected to become even more complex as climate change would impose additional impacts on rainwater availability and crop water requirements, among other changes. To understand the impacts of climate variability and change on agricultural production and national economy, a soil hydrology model and a crop water production model are developed to simulate actual crop water uses and yield losses under water stress which provide annual shocks for a recursive dynamic computational general equilibrium (CGE) model developed for Zambia. Observed meteorological data of the past three decades are used in the integrated hydro-economic model for climate variability impact analysis, and as baseline climatology for climate change impact assessment together with several GCM-based climate change scenarios that cover a broad range of climate projections. We found that climate variability can explain a significant portion of the annual variations of agricultural production and GDP of Zambia in the past. Hidden beneath climate variability, climate change is found to have modest impacts on agriculture and national economy of Zambia around 2025 but the impacts would be pronounced in the far future if appropriate adaptations are not implemented. Policy recommendations are provided based on scenario analysis.

  6. Climate and dengue transmission: evidence and implications.

    PubMed

    Morin, Cory W; Comrie, Andrew C; Ernst, Kacey

    2013-01-01

    Climate influences dengue ecology by affecting vector dynamics, agent development, and mosquito/human interactions. Although these relationships are known, the impact climate change will have on transmission is unclear. Climate-driven statistical and process-based models are being used to refine our knowledge of these relationships and predict the effects of projected climate change on dengue fever occurrence, but results have been inconsistent. We sought to identify major climatic influences on dengue virus ecology and to evaluate the ability of climate-based dengue models to describe associations between climate and dengue, simulate outbreaks, and project the impacts of climate change. We reviewed the evidence for direct and indirect relationships between climate and dengue generated from laboratory studies, field studies, and statistical analyses of associations between vectors, dengue fever incidence, and climate conditions. We assessed the potential contribution of climate-driven, process-based dengue models and provide suggestions to improve their performance. Relationships between climate variables and factors that influence dengue transmission are complex. A climate variable may increase dengue transmission potential through one aspect of the system while simultaneously decreasing transmission potential through another. This complexity may at least partly explain inconsistencies in statistical associations between dengue and climate. Process-based models can account for the complex dynamics but often omit important aspects of dengue ecology, notably virus development and host-species interactions. Synthesizing and applying current knowledge of climatic effects on all aspects of dengue virus ecology will help direct future research and enable better projections of climate change effects on dengue incidence.

  7. High-resolution projections of 21st century climate over the Athabasca River Basin through an integrated evaluation-classification-downscaling-based climate projection framework

    NASA Astrophysics Data System (ADS)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Zhu, Jinxin; Zhou, Xiong; Yao, Y.

    2017-03-01

    An evaluation-classification-downscaling-based climate projection (ECDoCP) framework is developed to fill a methodological gap of general circulation models (GCMs)-driven statistical-downscaling-based climate projections. ECDoCP includes four interconnected modules: GCM evaluation, climate classification, statistical downscaling, and climate projection. Monthly averages of daily minimum (Tmin) and maximum (Tmax) temperature and daily cumulative precipitation (Prec) over the Athabasca River Basin (ARB) at a 10 km resolution in the 21st century under four Representative Concentration Pathways (RCPs) are projected through ECDoCP. At the octodecadal scale, temperature and precipitation would increase; after bias correction, temperature would increase with a decreased increment, while precipitation would increase only under RCP 8.5. Interannual variability of climate anomalies would increase from RCPs 4.5, 2.6, 6.0 to 8.5 for temperature and from RCPs 2.6, 4.5, 6.0 to 8.5 for precipitation. Bidecadal averaged climate anomalies would decrease from December-January-February (DJF), March-April-May (MAM), September-October-November (SON) to June-July-August (JJA) for Tmin, from DJF, SON, MAM to JJA for Tmax, and from JJA, MAM, SON to DJF for Prec. Climate projection uncertainties would decrease in May to September for temperature and in November to April for precipitation. Spatial climatic variability would not obviously change with RCPs; climatic anomalies are highly correlated with climate-variable magnitudes. Climate anomalies would decrease from upstream to downstream for temperature, and precipitation would follow an opposite pattern. The north end and the other zones would have colder and warmer days, respectively; precipitation would decrease in the upstream and increase in the remaining region. Climate changes might lead to issues, e.g., accelerated glacier/snow melting, deserving attentions of researchers and the public.

  8. A global perspective on Glacial- to Interglacial variability change

    NASA Astrophysics Data System (ADS)

    Rehfeld, Kira; Münch, Thomas; Ho, Sze Ling; Laepple, Thomas

    2017-04-01

    Changes in climate variability are more important for society than changes in the mean state alone. While we will be facing a large-scale shift of the mean climate in the future, its implications for climate variability are not well constrained. Here we quantify changes in temperature variability as climate shifted from the Last Glacial cold to the Holocene warm period. Greenland ice core oxygen isotope records provide evidence of this climatic shift, and are used as reference datasets in many palaeoclimate studies worldwide. A striking feature in these records is pronounced millennial variability in the Glacial, and a distinct reduction in variance in the Holocene. We present quantitative estimates of the change in variability on 500- to 1500-year timescales based on a global compilation of high-resolution proxy records for temperature which span both the Glacial and the Holocene. The estimates are derived based on power spectral analysis, and corrected using estimates of the proxy signal-to-noise ratios. We show that, on a global scale, variability at the Glacial maximum is five times higher than during the Holocene, with a possible range of 3-10 times. The spatial pattern of the variability change is latitude-dependent. While the tropics show no changes in variability, mid-latitude changes are higher. A slight overall reduction in variability in the centennial to millennial range is found in Antarctica. The variability decrease in the Greenland ice core oxygen isotope records is larger than in any other proxy dataset. These results therefore contradict the view of a globally quiescent Holocene following the instable Glacial, and imply that, in terms of centennial to millennial temperature variability, the two states may be more similar than previously thought.

  9. Analyzing the responses of species assemblages to climate change across the Great Basin, USA.

    NASA Astrophysics Data System (ADS)

    Henareh Khalyani, A.; Falkowski, M. J.; Crookston, N.; Yousef, F.

    2016-12-01

    The potential impacts of climate change on the future distribution of tree species in not well understood. Climate driven changes in tree species distribution could cause significant changes in realized species niches, potentially resulting in the loss of ecotonal species as well as the formation on novel assemblages of overlapping tree species. In an effort to gain a better understating of how the geographic distribution of tree species may respond to climate change, we model the potential future distribution of 50 different tree species across 70 million ha in the Great Basin, USA. This is achieved by leveraging a species realized niche model based on non-parametric analysis of species occurrences across climatic, topographic, and edaphic variables. Spatially explicit, high spatial resolution (30 m) climate variables (e.g., precipitation, and minimum, maximum, and mean temperature) and associated climate indices were generated on an annual basis between 1981-2010 by integrating climate station data with digital elevation data (Shuttle Radar Topographic Mission (SRTM) data) in a thin plate spline interpolation algorithm (ANUSPLIN). Bioclimate models of species niches in in the cotemporary period and three following 30 year periods were then generated by integrating the climate variables, soil data, and CMIP 5 general circulation model projections. Our results suggest that local scale contemporary variations in species realized niches across space are influenced by edaphic and topographic variables as well as climatic variables. The local variability in soil properties and topographic variability across space also affect the species responses to climate change through time and potential formation of species assemblages in future. The results presented here in will aid in the development of adaptive forest management techniques aimed at mitigating negative impacts of climate change on forest composition, structure, and function.

  10. Climate Drivers of Spatiotemporal Variability of Precipitation in the Source Region of Yangtze River

    NASA Astrophysics Data System (ADS)

    Du, Y.; Berndtsson, R.; An, D.; Yuan, F.

    2017-12-01

    Variability of precipitation regime has significant influence on the environment sustainability in the source region of Yangtze River, especially when the vegetation degradation and biodiversity reduction have already occurred. Understanding the linkage between variability of local precipitation and global teleconnection patterns is essential for water resources management. Based on physical reasoning, indices of the climate drivers can provide a practical way of predicting precipitation. Due to high seasonal variability of precipitation, climate drivers of the seasonal precipitation also varies. However, few reports have gone through the teleconnections between large scale patterns with seasonal precipitation in the source region of Yangtze River. The objectives of this study are therefore (1) assessment of temporal trend and spatial variability of precipitation in the source region of Yangtze River; (2) identification of climate indices with strong influence on seasonal precipitation anomalies; (3) prediction of seasonal precipitation based on revealed climate indices. Principal component analysis and Spearman rank correlation were used to detect significant relationships. A feed-forward artificial neural network(ANN) was developed to predict seasonal precipitation using significant correlated climate indices. Different influencing climate indices were revealed for precipitation in each season, with significant level and lag times. Significant influencing factors were selected to be the predictors for ANN model. With correlation coefficients between observed and simulated precipitation over 0.5, the results were eligible to predict the precipitation of spring, summer and winter using teleconnections, which can improve integrated water resources management in the source region of Yangtze River.

  11. Effects of climatic variability and change on forest ecosystems: a comprehensive science synthesis for the U.S

    Treesearch

    James M. Vose; David L. Peterson; Toral Patel-Weynand

    2012-01-01

    This report is a scientific assessment of the current condition and likely future condition of forest resources in the United States relative to climatic variability and change. It serves as the U.S. Forest Service forest sector technical report for the National Climate Assessment and includes descriptions of key regional issues and examples of a risk-based framework...

  12. Post-Fire Recovery of Eco-Hydrologic Behavior Given Historic and Projected Climate Variability in California Mediterranean Type Environments

    NASA Astrophysics Data System (ADS)

    Seaby, L. P.; Tague, C. L.; Hope, A. S.

    2006-12-01

    The Mediterranean type environments (MTEs) of California are characterized by a distinct wet and dry season and high variability in inter-annual climate. Water limitation in MTEs makes eco-hydrological processes highly sensitive to both climate variability and frequent fire disturbance. This research modeled post-fire eco- hydrologic behavior under historical and moderate and extreme scenarios of future climate in a semi-arid chaparral dominated southern California MTE. We used a physically-based, spatially-distributed, eco- hydrological model (RHESSys - Regional Hydro-Ecologic Simulation System), to capture linkages between water and vegetation response to the combined effects of fire and historic and future climate variability. We found post-fire eco-hydrologic behavior to be strongly influenced by the episodic nature of MTE climate, which intensifies under projected climate change. Higher rates of post-fire net primary productivity were found under moderate climate change, while more extreme climate change produced water stressed conditions which were less favorable for vegetation productivity. Precipitation variability in the historic record follows the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), and these inter-annual climate characteristics intensify under climate change. Inter-annual variation in streamflow follows these precipitation patterns. Post-fire streamflow and carbon cycling trajectories are strongly dependent on climate characteristics during the first 5 years following fire, and historic intra-climate variability during this period tends to overwhelm longer term trends and variation that might be attributable to climate change. Results have implications for water resource availability, vegetation type conversion from shrubs to grassland, and changes in ecosystem structure and function.

  13. Berry composition and climate: responses and empirical models.

    PubMed

    Barnuud, Nyamdorj N; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson

    2014-08-01

    Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry composition. The models presented here are useful tools for assessing likely changes in berry TA and anthocyanins in response to changing climate for the wine regions and cultivars covered in this study.

  14. Berry composition and climate: responses and empirical models

    NASA Astrophysics Data System (ADS)

    Barnuud, Nyamdorj N.; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson

    2014-08-01

    Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry composition. The models presented here are useful tools for assessing likely changes in berry TA and anthocyanins in response to changing climate for the wine regions and cultivars covered in this study.

  15. Functionally relevant climate variables for arid lands: Aclimatic water deficit approach for modelling desert shrub distributions

    Treesearch

    Thomas E. Dilts; Peter J. Weisberg; Camie M. Dencker; Jeanne C. Chambers

    2015-01-01

    We have three goals. (1) To develop a suite of functionally relevant climate variables for modelling vegetation distribution on arid and semi-arid landscapes of the Great Basin, USA. (2) To compare the predictive power of vegetation distribution models based on mechanistically proximate factors (water deficit variables) and factors that are more mechanistically removed...

  16. Little Ice Age climatic erraticism as an analogue for future enhanced hydroclimatic variability across the American Southwest

    PubMed Central

    Loisel, Julie; MacDonald, Glen M.; Thomson, Marcus J.

    2017-01-01

    The American Southwest has experienced a series of severe droughts interspersed with strong wet episodes over the past decades, prompting questions about future climate patterns and potential intensification of weather disruptions under warming conditions. Here we show that interannual hydroclimatic variability in this region has displayed a significant level of non-stationarity over the past millennium. Our tree ring-based analysis of past drought indicates that the Little Ice Age (LIA) experienced high interannual hydroclimatic variability, similar to projections for the 21st century. This is contrary to the Medieval Climate Anomaly (MCA), which had reduced variability and therefore may be misleading as an analog for 21st century warming, notwithstanding its warm (and arid) conditions. Given past non-stationarity, and particularly erratic LIA, a ‘warm LIA’ climate scenario for the coming century that combines high precipitation variability (similar to LIA conditions) with warm and dry conditions (similar to MCA conditions) represents a plausible situation that is supported by recent climate simulations. Our comparison of tree ring-based drought analysis and records from the tropical Pacific Ocean suggests that changing variability in El Niño Southern Oscillation (ENSO) explains much of the contrasting variances between the MCA and LIA conditions across the American Southwest. Greater ENSO variability for the 21st century could be induced by a decrease in meridional sea surface temperature gradient caused by increased greenhouse gas concentration, as shown by several recent climate modeling experiments. Overall, these results coupled with the paleo-record suggests that using the erratic LIA conditions as benchmarks for past hydroclimatic variability can be useful for developing future water-resource management and drought and flood hazard mitigation strategies in the Southwest. PMID:29036207

  17. Smallholder agriculture in India and adaptation to current and future climate variability and climate change

    NASA Astrophysics Data System (ADS)

    Murari, K. K.; Jayaraman, T.

    2014-12-01

    Modeling studies have indicated that global warming, in many regions, will increase the exposure of major crops to rainfall and temperature stress, leading to lower crop yields. Climate variability alone has a potential to decrease yield to an extent comparable to or greater than yield reductions expected due to rising temperature. For India, where agriculture is important, both in terms of food security as well as a source of livelihoods to a majority of its population, climate variability and climate change are subjects of serious concern. There is however a need to distinguish the impact of current climate variability and climate change on Indian agriculture, especially in relation to their socioeconomic impact. This differentiation is difficult to determine due to the secular trend of increasing production and yield of the past several decades. The current research in this aspect is in an initial stage and requires a multi-disciplinary effort. In this study, we assess the potential differential impacts of environmental stress and shock across different socioeconomic strata of the rural population, using village level survey data. The survey data from eight selected villages, based on the Project on Agrarian Relations in India conducted by the Foundation for Agrarian Studies, indicated that income from crop production of the top 20 households (based on the extent of operational land holding, employment of hired labour and asset holdings) is a multiple of the mean income of the village. In sharp contrast, the income of the bottom 20 households is a fraction of the mean and sometimes negative, indicating a net loss from crop production. The considerable differentials in output and incomes suggest that small and marginal farmers are far more susceptible to climate variability and climate change than the other sections. Climate change is effectively an immediate threat to small and marginal farmers, which is driven essentially by socioeconomic conditions. The impact of climate variability on smallholder agriculture in the present can therefore provide important insights into the nature of its vulnerability to future climate change.

  18. Spatial Models for Prediction and Early Warning of Aedes aegypti Proliferation from Data on Climate Change and Variability in Cuba.

    PubMed

    Ortiz, Paulo L; Rivero, Alina; Linares, Yzenia; Pérez, Alina; Vázquez, Juan R

    2015-04-01

    Climate variability, the primary expression of climate change, is one of the most important environmental problems affecting human health, particularly vector-borne diseases. Despite research efforts worldwide, there are few studies addressing the use of information on climate variability for prevention and early warning of vector-borne infectious diseases. Show the utility of climate information for vector surveillance by developing spatial models using an entomological indicator and information on predicted climate variability in Cuba to provide early warning of danger of increased risk of dengue transmission. An ecological study was carried out using retrospective and prospective analyses of time series combined with spatial statistics. Several entomological and climatic indicators were considered using complex Bultó indices -1 and -2. Moran's I spatial autocorrelation coefficient specified for a matrix of neighbors with a radius of 20 km, was used to identify the spatial structure. Spatial structure simulation was based on simultaneous autoregressive and conditional autoregressive models; agreement between predicted and observed values for number of Aedes aegypti foci was determined by the concordance index Di and skill factor Bi. Spatial and temporal distributions of populations of Aedes aegypti were obtained. Models for describing, simulating and predicting spatial patterns of Aedes aegypti populations associated with climate variability patterns were put forward. The ranges of climate variability affecting Aedes aegypti populations were identified. Forecast maps were generated for the municipal level. Using the Bultó indices of climate variability, it is possible to construct spatial models for predicting increased Aedes aegypti populations in Cuba. At 20 x 20 km resolution, the models are able to provide warning of potential changes in vector populations in rainy and dry seasons and by month, thus demonstrating the usefulness of climate information for epidemiological surveillance.

  19. Selecting Populations for Non-Analogous Climate Conditions Using Universal Response Functions: The Case of Douglas-Fir in Central Europe

    PubMed Central

    Chakraborty, Debojyoti; Wang, Tongli; Andre, Konrad; Konnert, Monika; Lexer, Manfred J.; Matulla, Christoph; Schueler, Silvio

    2015-01-01

    Identifying populations within tree species potentially adapted to future climatic conditions is an important requirement for reforestation and assisted migration programmes. Such populations can be identified either by empirical response functions based on correlations of quantitative traits with climate variables or by climate envelope models that compare the climate of seed sources and potential growing areas. In the present study, we analyzed the intraspecific variation in climate growth response of Douglas-fir planted within the non-analogous climate conditions of Central and continental Europe. With data from 50 common garden trials, we developed Universal Response Functions (URF) for tree height and mean basal area and compared the growth performance of the selected best performing populations with that of populations identified through a climate envelope approach. Climate variables of the trial location were found to be stronger predictors of growth performance than climate variables of the population origin. Although the precipitation regime of the population sources varied strongly none of the precipitation related climate variables of population origin was found to be significant within the models. Overall, the URFs explained more than 88% of variation in growth performance. Populations identified by the URF models originate from western Cascades and coastal areas of Washington and Oregon and show significantly higher growth performance than populations identified by the climate envelope approach under both current and climate change scenarios. The URFs predict decreasing growth performance at low and middle elevations of the case study area, but increasing growth performance on high elevation sites. Our analysis suggests that population recommendations based on empirical approaches should be preferred and population selections by climate envelope models without considering climatic constrains of growth performance should be carefully appraised before transferring populations to planting locations with novel or dissimilar climate. PMID:26288363

  20. Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies.

    PubMed

    Fatichi, S; Rimkus, S; Burlando, P; Bordoy, R

    2014-09-15

    Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Topographical effects of climate dataset and their impacts on the estimation of regional net primary productivity

    NASA Astrophysics Data System (ADS)

    Sun, L. Qing; Feng, Feng X.

    2014-11-01

    In this study, we first built and compared two different climate datasets for Wuling mountainous area in 2010, one of which considered topographical effects during the ANUSPLIN interpolation was referred as terrain-based climate dataset, while the other one did not was called ordinary climate dataset. Then, we quantified the topographical effects of climatic inputs on NPP estimation by inputting two different climate datasets to the same ecosystem model, the Boreal Ecosystem Productivity Simulator (BEPS), to evaluate the importance of considering relief when estimating NPP. Finally, we found the primary contributing variables to the topographical effects through a series of experiments given an overall accuracy of the model output for NPP. The results showed that: (1) The terrain-based climate dataset presented more reliable topographic information and had closer agreements with the station dataset than the ordinary climate dataset at successive time series of 365 days in terms of the daily mean values. (2) On average, ordinary climate dataset underestimated NPP by 12.5% compared with terrain-based climate dataset over the whole study area. (3) The primary climate variables contributing to the topographical effects of climatic inputs for Wuling mountainous area were temperatures, which suggest that it is necessary to correct temperature differences for estimating NPP accurately in such a complex terrain.

  2. A virtual water network of the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.

    2014-12-01

    The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanization and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanization and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to interannual climate variability. However, urbanization arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and eroded its resilience to climate variability in the long term. In addition to improving our understanding of Roman water resource management, our cost-distance-based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.

  3. A virtual water network of the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.

    2014-06-01

    The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanisation and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanisation and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to climate variability in the short term. However, urbanisation arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and reduced its resilience to climate variability in the long-term. In addition to improving our understanding of Roman water resource management, our cost-distance based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.

  4. Optimal Interpolation scheme to generate reference crop evapotranspiration

    NASA Astrophysics Data System (ADS)

    Tomas-Burguera, Miquel; Beguería, Santiago; Vicente-Serrano, Sergio; Maneta, Marco

    2018-05-01

    We used an Optimal Interpolation (OI) scheme to generate a reference crop evapotranspiration (ETo) grid, forcing meteorological variables, and their respective error variance in the Iberian Peninsula for the period 1989-2011. To perform the OI we used observational data from the Spanish Meteorological Agency (AEMET) and outputs from a physically-based climate model. To compute ETo we used five OI schemes to generate grids for the five observed climate variables necessary to compute ETo using the FAO-recommended form of the Penman-Monteith equation (FAO-PM). The granularity of the resulting grids are less sensitive to variations in the density and distribution of the observational network than those generated by other interpolation methods. This is because our implementation of the OI method uses a physically-based climate model as prior background information about the spatial distribution of the climatic variables, which is critical for under-observed regions. This provides temporal consistency in the spatial variability of the climatic fields. We also show that increases in the density and improvements in the distribution of the observational network reduces substantially the uncertainty of the climatic and ETo estimates. Finally, a sensitivity analysis of observational uncertainties and network densification suggests the existence of a trade-off between quantity and quality of observations.

  5. Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction

    NASA Astrophysics Data System (ADS)

    Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.

    2015-12-01

    Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of climate extremes and associated impacts. [1] http://www.climateprediction.net/weatherathome/

  6. A Pathway-based Approach to Predicting Interactions between Chemical and Non-chemical Stressors: Applications to Global Climate Change

    EPA Science Inventory

    A variety of environmental variables influenced by global climate change (GCC) can directly or indirectly affect the health of organisms. These variables may include temperature, salinity, pH, and penetration of ultraviolet radiation (UVR) in aquatic environments, and water shor...

  7. Large-Scale Circulation and Climate Variability. Chapter 5

    NASA Technical Reports Server (NTRS)

    Perlwitz, J.; Knutson, T.; Kossin, J. P.; LeGrande, A. N.

    2017-01-01

    The causes of regional climate trends cannot be understood without considering the impact of variations in large-scale atmospheric circulation and an assessment of the role of internally generated climate variability. There are contributions to regional climate trends from changes in large-scale latitudinal circulation, which is generally organized into three cells in each hemisphere-Hadley cell, Ferrell cell and Polar cell-and which determines the location of subtropical dry zones and midlatitude jet streams. These circulation cells are expected to shift poleward during warmer periods, which could result in poleward shifts in precipitation patterns, affecting natural ecosystems, agriculture, and water resources. In addition, regional climate can be strongly affected by non-local responses to recurring patterns (or modes) of variability of the atmospheric circulation or the coupled atmosphere-ocean system. These modes of variability represent preferred spatial patterns and their temporal variation. They account for gross features in variance and for teleconnections which describe climate links between geographically separated regions. Modes of variability are often described as a product of a spatial climate pattern and an associated climate index time series that are identified based on statistical methods like Principal Component Analysis (PC analysis), which is also called Empirical Orthogonal Function Analysis (EOF analysis), and cluster analysis.

  8. Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge

    NASA Astrophysics Data System (ADS)

    Bakker, Pepijn; Clark, Peter U.; Golledge, Nicholas R.; Schmittner, Andreas; Weber, Michael E.

    2017-01-01

    Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.

  9. Uncertainties in discharge projections in consequence of climate change

    NASA Astrophysics Data System (ADS)

    Liebert, J.; Düthmann, D.; Berg, P.; Feldmann, H.; Ihringer, J.; Kunstmann, H.; Merz, B.; Ott, I.; Schädler, G.; Wagner, S.

    2012-04-01

    The fourth assessment report of the IPCC summarizes possible effects of the global climate change. For Europe an increasing variability of temperature and precipitation is expected. While the increasing temperature is projected almost uniformly for Europe, for precipitation the models indicate partly heterogeneous tendencies. In order to maintain current safety-standards in the infrastructure of our various water management systems, the possible future floods discharges are very often a central question. In the planning and operation of water infrastructure systems uncertainties considerations have an important function. In times of climate change the analyses of measured historical gauge data (normally 30 - 80 years) are not sufficient enough, because even significant trends are only valid in the analyzed time period and extrapolations are exceedingly difficult. Therefore combined climate and hydrological modeling for scenario based projections become more and more popular. Regarding that adaptation measures in water infrastructure are in general very time-consuming and cost intensive qualified questions to the variability and uncertainty of model based results are important as well. The CEDIM-Project "Flood hazards in a changing climate" is focusing on both: future changes in flood discharge and assess the uncertainties that are involved in such model based future predictions. In detail the study bases on an ensemble of hydrological model (HM) simulations in 3 representative small to medium sized German river catchments (Ammer, Mulde and Ruhr). The meteorological Input bases on 2 high resolution (7 km) regional climate models (RCM) driven by 2 global climate models (GCM) for the near future (2021 - 2050) following the A1B emission scenario (SRES). Two of the catchments (Ruhr and Mulde) have sub-mountainous and one (Ammer) has alpine character. Besides analyzing the future changes in discharge in the catchments, the describing and potential quantification of the variability of the results, based on the different driving data, regionalization methods, spatial resolutions and model types, is one main goal of the study and should stay in the focus of the poster. The general result is a large variability in the discharge projection. The identified variabilities are in the annual regime mainly attributable to different causes in the used model chain (GCM-RCM-HM). In winter the global climate models (GCM) bring the main uncertainties in the future projection. In summer the main variability refers to the meteorological downscaling to the regional scale (RCM) in combination with the hydrological modeling (HM). But with an appropriate ensemble statistic are despite the large variabilities mean future tendencies detectable. The Ruhr catchment shows tendencies to future higher flood discharges and in the Ammer and Mulde catchments are no significant changes expected.

  10. Vulnerability and Tradeoffs of Dairy Farmers to the Impacts of Climate Variability and Change in India

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, A.; Gupta, J.; R, D.

    2016-12-01

    In recent years climate variability has threatened the sustainability of dairy animals and dairy farming in India. The study aims at assessing the vulnerability and tradeoffs of Dairy Based Livelihoods to Climate Variability and Change in the Western Ghat ecosystem and for this purpose; data were aggregated to an overall Livelihood Vulnerability Index (LVI) to Climate Change underlying the principles of IPCC, using 28 indicators and trade-off between vulnerability and milk production was calculated. Data were collected through Participatory Rural Appraisal and personal interviews from 360 randomly selected dairy farmers of three states of Western Ghat region, complemented by thirty years of gridded weather data and livestock data. The index score of dairy based livelihoods of many regions were negative. Lanja taluka of Maharashtra has highest level of vulnerability with overall LVI value -4.17 with 48% farmers falling in highly vulnerable category. There is also significant tradeoff between milk production and components of LVI. Thus our research will provide an important basis for policy makers to develop appropriate adaptation strategies for alarming situation and decision making for farmers to minimize the risk of dairy sector to climate variability.

  11. Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.

    PubMed

    Steen, Valerie; Skagen, Susan K; Noon, Barry R

    2014-01-01

    The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971-2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981-2000 and projected future distributions to climate scenarios for 2040-2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.

  12. Unlocking the climate riddle in forested ecosystems

    Treesearch

    Greg C. Liknes; Christopher W. Woodall; Brian F. Walters; Sara A. Goeking

    2012-01-01

    Climate information is often used as a predictor in ecological studies, where temporal averages are typically based on climate normals (30-year means) or seasonal averages. While ensemble projections of future climate forecast a higher global average annual temperature, they also predict increased climate variability. It remains to be seen whether forest ecosystems...

  13. Use of Climatic Information In Regional Water Resources Assessment

    NASA Astrophysics Data System (ADS)

    Claps, P.

    Relations between climatic parameters and hydrological variables at the basin scale are investigated, with the aim of evaluating in a parsimonious way physical parameters useful both for a climatic classification of an area and for supporting statistical models of water resources assessment. With reference to the first point, literature methods for distributed evaluation of parameters such as temperature, global and net solar radiation, precipitation, have been considered at the annual scale with the aim of considering the viewpoint of the robust evaluation of parameters based on few basic physical variables of simple determination. Elevation, latitude and average annual number of sunny days have demonstrated to be the essential parameters with respect to the evaluation of climatic indices related to the soil water deficit and to the radiative balance. The latter term was evaluated at the monthly scale and validated (in the `global' term) with measured data. in questo caso riferite al bilancio idrico a scala annuale. Budyko, Thornthwaite and Emberger climatic indices were evaluated on the 10,000 km2 territory of the Basilicata region (southern Italy) based on a 1.1. km grid. They were compared in terms of spatial variability and sensitivity to the variation of the basic variables in humid and semi-arid areas. The use of the climatic index data with respect to statistical parameters of the runoff series in some gauging stations of the region demonstrated the possibility to support regionalisation of the annual runoff using climatic information, with clear distinction of the variability of the coefficient of variation in terms of the humidity-aridity of the basin.

  14. Multi-objective optimization for evaluation of simulation fidelity for precipitation, cloudiness and insolation in regional climate models

    NASA Astrophysics Data System (ADS)

    Lee, H.

    2016-12-01

    Precipitation is one of the most important climate variables that are taken into account in studying regional climate. Nevertheless, how precipitation will respond to a changing climate and even its mean state in the current climate are not well represented in regional climate models (RCMs). Hence, comprehensive and mathematically rigorous methodologies to evaluate precipitation and related variables in multiple RCMs are required. The main objective of the current study is to evaluate the joint variability of climate variables related to model performance in simulating precipitation and condense multiple evaluation metrics into a single summary score. We use multi-objective optimization, a mathematical process that provides a set of optimal tradeoff solutions based on a range of evaluation metrics, to characterize the joint representation of precipitation, cloudiness and insolation in RCMs participating in the North American Regional Climate Change Assessment Program (NARCCAP) and Coordinated Regional Climate Downscaling Experiment-North America (CORDEX-NA). We also leverage ground observations, NASA satellite data and the Regional Climate Model Evaluation System (RCMES). Overall, the quantitative comparison of joint probability density functions between the three variables indicates that performance of each model differs markedly between sub-regions and also shows strong seasonal dependence. Because of the large variability across the models, it is important to evaluate models systematically and make future projections using only models showing relatively good performance. Our results indicate that the optimized multi-model ensemble always shows better performance than the arithmetic ensemble mean and may guide reliable future projections.

  15. Sensitivity of river fishes to climate change: The role of hydrological stressors on habitat range shifts.

    PubMed

    Segurado, Pedro; Branco, Paulo; Jauch, Eduardo; Neves, Ramiro; Ferreira, M Teresa

    2016-08-15

    Climate change will predictably change hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goal of this study is to assess how shifts in fish habitat favourability under climate change scenarios are affected by hydrological stressors. The interplay between climate and hydrological stressors has important implications in river management under climate change because management actions to control hydrological parameters are more feasible than controlling climate. This study was carried out in the Tamega catchment of the Douro basin. A set of hydrological stressor variables were generated through a process-based modelling based on current climate data (2008-2014) and also considering a high-end future climate change scenario. The resulting parameters, along with climatic and site-descriptor variables were used as explanatory variables in empirical habitat models for nine fish species using boosted regression trees. Models were calibrated for the whole Douro basin using 254 fish sampling sites and predictions under future climate change scenarios were made for the Tamega catchment. Results show that models using climatic variables but not hydrological stressors produce more stringent predictions of future favourability, predicting more distribution contractions or stronger range shifts. The use of hydrological stressors strongly influences projections of habitat favourability shifts; the integration of these stressors in the models thinned shifts in range due to climate change. Hydrological stressors were retained in the models for most species and had a high importance, demonstrating that it is important to integrate hydrology in studies of impacts of climate change on freshwater fishes. This is a relevant result because it means that management actions to control hydrological parameters in rivers will have an impact on the effects of climate change and may potentially be helpful to mitigate its negative effects on fish populations and assemblages. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Atmospheric Parameter Climatologies from AIRS: Monitoring Short-, and Longer-Term Climate Variabilities and 'Trends'

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula; Susskind, Joel

    2008-01-01

    The AIRS instrument is currently the best space-based tool to simultaneously monitor the vertical distribution of key climatically important atmospheric parameters as well as surface properties, and has provided high quality data for more than 5 years. AIRS analysis results produced at the GODDARD/DAAC, based on Versions 4 & 5 of the AIRS retrieval algorithm, are currently available for public use. Here, first we present an assessment of interrelationships of anomalies (proxies of climate variability based on 5 full years, since Sept. 2002) of various climate parameters at different spatial scales. We also present AIRS-retrievals-based global, regional and 1x1 degree grid-scale "trend"-analyses of important atmospheric parameters for this 5-year period. Note that here "trend" simply means the linear fit to the anomaly (relative the mean seasonal cycle) time series of various parameters at the above-mentioned spatial scales, and we present these to illustrate the usefulness of continuing AIRS-based climate observations. Preliminary validation efforts, in terms of intercomparisons of interannual variabilities with other available satellite data analysis results, will also be addressed. For example, we show that the outgoing longwave radiation (OLR) interannual spatial variabilities from the available state-of-the-art CERES measurements and from the AIRS computations are in remarkably good agreement. Version 6 of the AIRS retrieval scheme (currently under development) promises to further improve bias agreements for the absolute values by implementing a more accurate radiative transfer model for the OLR computations and by improving surface emissivity retrievals.

  17. Coral based-ENSO/IOD related climate variability in Indonesia: a review

    NASA Astrophysics Data System (ADS)

    Yudawati Cahyarini, Sri; Henrizan, Marfasran

    2018-02-01

    Indonesia is located in the prominent site to study climate variability as it lies between Pacific and Indian Ocean. It has consequences to the regional climate in Indonesia that its climate variability is influenced by the climate events in the Pacific oceans (e.g. ENSO) and in the Indian ocean (e.g. IOD), and monsoon as well as Indonesian Throughflow (ITF). Northwestern monsoon causes rainfall in the region of Indonesia, while reversely Southwestern monsoon causes dry season around Indonesia. The ENSO warm phase called El Nino causes several droughts in Indonesian region, reversely the La Nina causes flooding in some regions in Indonesia. However, the impact of ENSO in Indonesia is different from one place to the others. Having better understanding on the climate phenomenon and its impact to the region requires long time series climate data. Paleoclimate study which provides climate data back into hundreds to thousands even to million years overcome this requirement. Coral Sr/Ca can provide information on past sea surface temperature (SST) and paired Sr/Ca and δ18O may be used to reconstruct variations in the precipitation balance (salinity) at monthly to annual interannual resolution. Several climate studies based on coral geochemical records in Indonesia show that coral Sr/Ca and δ18O from Indonesian records SST and salinity respectively. Coral Sr/Ca from inshore Seribu islands complex shows more air temperature rather than SST. Modern coral from Timor shows the impact of ENSO and IOD to the saliniy and SST is different at Timor sea. This result should be taken into account when interpreting Paleoclimate records over Indonesia. Timor coral also shows more pronounced low frequency SST variability compared to the SST reanalysis (model). The longer data of low frequency variability will improve the understanding of warming trend in this climatically important region.

  18. Coral Records of 20th Century Central Tropical Pacific SST and Salinity: Signatures of Natural and Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Nurhati, I. S.; Cobb, K.; Di Lorenzo, E.

    2011-12-01

    Accurate forecasts of regional climate changes in many regions of the world largely depend on quantifying anthropogenic trends in tropical Pacific climate against its rich background of interannual to decadal-scale climate variability. However, the strong natural climate variability combined with limited instrumental climate datasets have obscured potential anthropogenic climate signals in the region. Here, we present coral-based sea-surface temperature (SST) and salinity proxy records over the 20th century (1898-1998) from the central tropical Pacific - a region sensitive to El Niño-Southern Oscillation (ENSO) whose variability strongly impacts the global climate. The SST and salinity proxy records are reconstructed via coral Sr/Ca and the oxygen isotopic composition of seawater (δ18Osw), respectively. On interannual (2-7yr) timescales, the SST proxy record tracks both eastern- and central-Pacific flavors of ENSO variability (R=0.65 and R=0.67, respectively). Interannual-scale salinity variability in our coral record highlights profound differences in precipitation and ocean advections during the two flavors of ENSO. On decadal (8yr-lowpassed) timescales, the central tropical Pacific SST and salinity proxy records are controlled by different sets of dynamics linked to the leading climate modes of North Pacific climate variability. Decadal-scale central tropical Pacific SST is highly correlated to the recently discovered North Pacific Gyre Oscillation (NPGO; R=-0.85), reflecting strong dynamical links between the central Pacific warming mode and extratropical decadal climate variability. Whereas decadal-scale salinity variations in the central tropical Pacific are significantly correlated with the Pacific Decadal Oscillation (PDO; R=0.54), providing a better understanding on low-frequency salinity variability in the region. Having characterized natural climate variability in this region, the coral record shows a +0.5°C warming trend throughout the last century. However, the most prominent feature of the new coral records is an unprecedented freshening trend since the mid-20th century, in line with global climate models (GCMs) projections of enhanced hydrological patterns (wet areas are getting wetter and vice versa) under greenhouse forcing. Taken together, the coral records provide key constraints on tropical Pacific climate trends that may improve regional climate projections in areas affected by tropical Pacific climate variability.
    Central Tropical Pacific SST and Salinity Proxy Records

  19. Human Responses to Climate Variability: The Case of South Africa

    NASA Astrophysics Data System (ADS)

    Oppenheimer, M.; Licker, R.; Mastrorillo, M.; Bohra-Mishra, P.; Estes, L. D.; Cai, R.

    2014-12-01

    Climate variability has been associated with a range of societal and individual outcomes including migration, violent conflict, changes in labor productivity, and health impacts. Some of these may be direct responses to changes in mean temperature or precipitation or extreme events, such as displacement of human populations by tropical cyclones. Others may be mediated by a variety of biological, social, or ecological factors such as migration in response to long-term changes in crops yields. Research is beginning to elucidate and distinguish the many channels through which climate variability may influence human behavior (ranging from the individual to the collective, societal level) in order to better understand how to improve resilience in the face of current variability as well as future climate change. Using a variety of data sets from South Africa, we show how climate variability has influenced internal (within country) migration in recent history. We focus on South Africa as it is a country with high levels of internal migration and dramatic temperature and precipitation changes projected for the 21st century. High poverty rates and significant levels of rain-fed, smallholder agriculture leave large portions of South Africa's population base vulnerable to future climate change. In this study, we utilize two complementary statistical models - one micro-level model, driven by individual and household level survey data, and one macro-level model, driven by national census statistics. In both models, we consider the effect of climate on migration both directly (with gridded climate reanalysis data) and indirectly (with agricultural production statistics). With our historical analyses of climate variability, we gain insights into how the migration decisions of South Africans may be influenced by future climate change. We also offer perspective on the utility of micro and macro level approaches in the study of climate change and human migration.

  20. Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation.

    PubMed

    Anderegg, William R L

    2015-02-01

    Plant hydraulics mediate terrestrial woody plant productivity, influencing global water, carbon, and biogeochemical cycles, as well as ecosystem vulnerability to drought and climate change. While inter-specific differences in hydraulic traits are widely documented, intra-specific hydraulic variability is less well known and is important for predicting climate change impacts. Here, I present a conceptual framework for this intra-specific hydraulic trait variability, reviewing the mechanisms that drive variability and the consequences for vegetation response to climate change. I performed a meta-analysis on published studies (n = 33) of intra-specific variation in a prominent hydraulic trait - water potential at which 50% stem conductivity is lost (P50) - and compared this variation to inter-specific variability within genera and plant functional types used by a dynamic global vegetation model. I found that intra-specific variability is of ecologically relevant magnitudes, equivalent to c. 33% of the inter-specific variability within a genus, and is larger in angiosperms than gymnosperms, although the limited number of studies highlights that more research is greatly needed. Furthermore, plant functional types were poorly situated to capture key differences in hydraulic traits across species, indicating a need to approach prediction of drought impacts from a trait-based, rather than functional type-based perspective.

  1. Contrasts Between Precipitation over Mediterranean Sea and Adjacent Continental Areas Based on Decadal Scale Satellite Estimates

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2007-01-01

    Most knowledge concerning the last century's climatology and climate dynamics of precipitation over the Mediterranean Sea basin is based on observations taken from rain gauges surrounding the sea itself. In turn, most of the observations come from Southern Europe, with many fewer measurements taken from widely scattered sites situated over North Africa, the Middle East, and the Balkans. This aspect of research on the Mediterranean Sea basin is apparent in a recent compilation of studies presented in book form concerning climate variability of the Mediterranean region [Lionello, P., P. Malanotte-Rizzoli, and R. Boscolo (eds.), 2006: Mediterranean Climate Variability. Elsevier, Amsterdam, 9 chapters.] In light of this missing link to over-water observations, this study (in conjunction with four companion studies by Z. Haddad, A. Mugnai, T. Nakazawa, and G. Stephens) will contrast the nature of precipitation variability directly over the Mediterranean Sea to precipitation variability over the surrounding land areas based on three decades of satellite-based precipitation estimates which have stood up well to validation scrutiny. The satellite observations are drawn from the Global Precipitation Climatology Project (GPCP) dataset extending back to 1979 and the TRMM Merged Algorithm 3b42 dataset extending back to 1998. Both datasets are mostly produced from microwave measurements, excepting the period from 1979 to mid-1987 when only infrared satellite measurements were available for the GPCP estimates. The purpose of this study is to emphasize how the salient properties of precipitation variability over land and sea across a hierarchy of space and time scales, and the salient differences in these properties, might be used in guiding short-term climate models to better predictions of future climate states under different regional temperature-change scenarios.

  2. Evaluating the variability in surface water reservoir planning characteristics during climate change impacts assessment

    NASA Astrophysics Data System (ADS)

    Soundharajan, Bankaru-Swamy; Adeloye, Adebayo J.; Remesan, Renji

    2016-07-01

    This study employed a Monte-Carlo simulation approach to characterise the uncertainties in climate change induced variations in storage requirements and performance (reliability (time- and volume-based), resilience, vulnerability and sustainability) of surface water reservoirs. Using a calibrated rainfall-runoff (R-R) model, the baseline runoff scenario was first simulated. The R-R inputs (rainfall and temperature) were then perturbed using plausible delta-changes to produce simulated climate change runoff scenarios. Stochastic models of the runoff were developed and used to generate ensembles of both the current and climate-change-perturbed future runoff scenarios. The resulting runoff ensembles were used to force simulation models of the behaviour of the reservoir to produce 'populations' of required reservoir storage capacity to meet demands, and the performance. Comparing these parameters between the current and the perturbed provided the population of climate change effects which was then analysed to determine the variability in the impacts. The methodology was applied to the Pong reservoir on the Beas River in northern India. The reservoir serves irrigation and hydropower needs and the hydrology of the catchment is highly influenced by Himalayan seasonal snow and glaciers, and Monsoon rainfall, both of which are predicted to change due to climate change. The results show that required reservoir capacity is highly variable with a coefficient of variation (CV) as high as 0.3 as the future climate becomes drier. Of the performance indices, the vulnerability recorded the highest variability (CV up to 0.5) while the volume-based reliability was the least variable. Such variabilities or uncertainties will, no doubt, complicate the development of climate change adaptation measures; however, knowledge of their sheer magnitudes as obtained in this study will help in the formulation of appropriate policy and technical interventions for sustaining and possibly enhancing water security for irrigation and other uses served by Pong reservoir.

  3. Water management in the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, Brian J.; van Beek, Rens L. P. H.; Meeks, Elijah; Klein Goldewijk, Kees; Bierkens, Marc F. P.; Scheidel, Walter; Wassen, Martin J.; van der Velde, Ype; Dekker, Stefan C.

    2014-05-01

    Climate variability can have extreme impacts on societies in regions that are water-limited for agriculture. A society's ability to manage its water resources in such environments is critical to its long-term viability. Water management can involve improving agricultural yields through in-situ irrigation or redistributing water resources through trade in food. Here, we explore how such water management strategies affected the resilience of the Roman Empire to climate variability in the water-limited region of the Mediterranean. Using the large-scale hydrological model PCR-GLOBWB and estimates of landcover based on the Historical Database of the Global Environment (HYDE) we generate potential agricultural yield maps under variable climate. HYDE maps of population density in conjunction with potential yield estimates are used to develop maps of agricultural surplus and deficit. The surplus and deficit regions are abstracted to nodes on a water redistribution network based on the Stanford Geospatial Network Model of the Roman World (ORBIS). This demand-driven, water redistribution network allows us to quantitatively explore how water management strategies such as irrigation and food trade improved the resilience of the Roman Empire to climate variability.

  4. Adaptation to climate variability: The role of the USDA Southern Plains Climate Hub

    USDA-ARS?s Scientific Manuscript database

    The Southern Plains USDA Climate Hub was established in 2014 in El Reno, Oklahoma to develop and deliver science-based, information and technologies to agricultural and natural resource land managers that enable climate-informed decision-making, and to provide access to assistance to implement those...

  5. Correlative and multivariate analysis of increased radon concentration in underground laboratory.

    PubMed

    Maletić, Dimitrije M; Udovičić, Vladimir I; Banjanac, Radomir M; Joković, Dejan R; Dragić, Aleksandar L; Veselinović, Nikola B; Filipović, Jelena

    2014-11-01

    The results of analysis using correlative and multivariate methods, as developed for data analysis in high-energy physics and implemented in the Toolkit for Multivariate Analysis software package, of the relations of the variation of increased radon concentration with climate variables in shallow underground laboratory is presented. Multivariate regression analysis identified a number of multivariate methods which can give a good evaluation of increased radon concentrations based on climate variables. The use of the multivariate regression methods will enable the investigation of the relations of specific climate variable with increased radon concentrations by analysis of regression methods resulting in 'mapped' underlying functional behaviour of radon concentrations depending on a wide spectrum of climate variables. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Relationship of suicide rates with climate and economic variables in Europe during 2000-2012.

    PubMed

    Fountoulakis, Konstantinos N; Chatzikosta, Isaia; Pastiadis, Konstantinos; Zanis, Prodromos; Kawohl, Wolfram; Kerkhof, Ad J F M; Navickas, Alvydas; Höschl, Cyril; Lecic-Tosevski, Dusica; Sorel, Eliot; Rancans, Elmars; Palova, Eva; Juckel, Georg; Isacsson, Goran; Jagodic, Helena Korosec; Botezat-Antonescu, Ileana; Rybakowski, Janusz; Azorin, Jean Michel; Cookson, John; Waddington, John; Pregelj, Peter; Demyttenaere, Koen; Hranov, Luchezar G; Stevovic, Lidija Injac; Pezawas, Lucas; Adida, Marc; Figuera, Maria Luisa; Jakovljević, Miro; Vichi, Monica; Perugi, Giulio; Andreassen, Ole A; Vukovic, Olivera; Mavrogiorgou, Paraskevi; Varnik, Peeter; Dome, Peter; Winkler, Petr; Salokangas, Raimo K R; From, Tiina; Danileviciute, Vita; Gonda, Xenia; Rihmer, Zoltan; Forsman, Jonas; Grady, Anne; Hyphantis, Thomas; Dieset, Ingrid; Soendergaard, Susan; Pompili, Maurizio; Bech, Per

    2016-01-01

    It is well known that suicidal rates vary considerably among European countries and the reasons for this are unknown, although several theories have been proposed. The effect of economic variables has been extensively studied but not that of climate. Data from 29 European countries covering the years 2000-2012 and concerning male and female standardized suicidal rates (according to WHO), economic variables (according World Bank) and climate variables were gathered. The statistical analysis included cluster and principal component analysis and categorical regression. The derived models explained 62.4 % of the variability of male suicidal rates. Economic variables alone explained 26.9 % and climate variables 37.6 %. For females, the respective figures were 41.7, 11.5 and 28.1 %. Male suicides correlated with high unemployment rate in the frame of high growth rate and high inflation and low GDP per capita, while female suicides correlated negatively with inflation. Both male and female suicides correlated with low temperature. The current study reports that the climatic effect (cold climate) is stronger than the economic one, but both are present. It seems that in Europe suicidality follows the climate/temperature cline which interestingly is not from south to north but from south to north-east. This raises concerns that climate change could lead to an increase in suicide rates. The current study is essentially the first successful attempt to explain the differences across countries in Europe; however, it is an observational analysis based on aggregate data and thus there is a lack of control for confounders.

  7. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species.

    PubMed

    Quintero, Ignacio; Wiens, John J

    2013-08-01

    A key question in predicting responses to anthropogenic climate change is: how quickly can species adapt to different climatic conditions? Here, we take a phylogenetic approach to this question. We use 17 time-calibrated phylogenies representing the major tetrapod clades (amphibians, birds, crocodilians, mammals, squamates, turtles) and climatic data from distributions of > 500 extant species. We estimate rates of change based on differences in climatic variables between sister species and estimated times of their splitting. We compare these rates to predicted rates of climate change from 2000 to 2100. Our results are striking: matching projected changes for 2100 would require rates of niche evolution that are > 10,000 times faster than rates typically observed among species, for most variables and clades. Despite many caveats, our results suggest that adaptation to projected changes in the next 100 years would require rates that are largely unprecedented based on observed rates among vertebrate species. © 2013 John Wiley & Sons Ltd/CNRS.

  8. Changes in climate variability with reference to land quality and agriculture in Scotland.

    PubMed

    Brown, Iain; Castellazzi, Marie

    2015-06-01

    Classification and mapping of land capability represents an established format for summarising spatial information on land quality and land-use potential. By convention, this information incorporates bioclimatic constraints through the use of a long-term average. However, climate change means that land capability classification should also have a dynamic temporal component. Using an analysis based upon Land Capability for Agriculture in Scotland, it is shown that this dynamism not only involves the long-term average but also shorter term spatiotemporal patterns, particularly through changes in interannual variability. Interannual and interdecadal variations occur both in the likelihood of land being in prime condition (top three capability class divisions) and in class volatility from year to year. These changing patterns are most apparent in relation to the west-east climatic gradient which is mainly a function of precipitation regime and soil moisture. Analysis is also extended into the future using climate results for the 2050s from a weather generator which show a complex interaction between climate interannual variability and different soil types for land quality. In some locations, variability of land capability is more likely to decrease because the variable climatic constraints are relaxed and the dominant constraint becomes intrinsic soil properties. Elsewhere, climatic constraints will continue to be influential. Changing climate variability has important implications for land-use planning and agricultural management because it modifies local risk profiles in combination with the current trend towards agricultural intensification and specialisation.

  9. Updating beliefs and combining evidence in adaptive forest management under climate change: a case study of Norway spruce (Picea abies L. Karst) in the Black Forest, Germany.

    PubMed

    Yousefpour, Rasoul; Temperli, Christian; Bugmann, Harald; Elkin, Che; Hanewinkel, Marc; Meilby, Henrik; Jacobsen, Jette Bredahl; Thorsen, Bo Jellesmark

    2013-06-15

    We study climate uncertainty and how managers' beliefs about climate change develop and influence their decisions. We develop an approach for updating knowledge and beliefs based on the observation of forest and climate variables and illustrate its application for the adaptive management of an even-aged Norway spruce (Picea abies L. Karst) forest in the Black Forest, Germany. We simulated forest development under a range of climate change scenarios and forest management alternatives. Our analysis used Bayesian updating and Dempster's rule of combination to simulate how observations of climate and forest variables may influence a decision maker's beliefs about climate development and thereby management decisions. While forest managers may be inclined to rely on observed forest variables to infer climate change and impacts, we found that observation of climate state, e.g. temperature or precipitation is superior for updating beliefs and supporting decision-making. However, with little conflict among information sources, the strongest evidence would be offered by a combination of at least two informative variables, e.g., temperature and precipitation. The success of adaptive forest management depends on when managers switch to forward-looking management schemes. Thus, robust climate adaptation policies may depend crucially on a better understanding of what factors influence managers' belief in climate change. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Actor groups, related needs, and challenges at the climate downscaling interface

    NASA Astrophysics Data System (ADS)

    Rössler, Ole; Benestad, Rasmus; Diamando, Vlachogannis; Heike, Hübener; Kanamaru, Hideki; Pagé, Christian; Margarida Cardoso, Rita; Soares, Pedro; Maraun, Douglas; Kreienkamp, Frank; Christodoulides, Paul; Fischer, Andreas; Szabo, Peter

    2016-04-01

    At the climate downscaling interface, numerous downscaling techniques and different philosophies compete on being the best method in their specific terms. Thereby, it remains unclear to what extent and for which purpose these downscaling techniques are valid or even the most appropriate choice. A common validation framework that compares all the different available methods was missing so far. The initiative VALUE closes this gap with such a common validation framework. An essential part of a validation framework for downscaling techniques is the definition of appropriate validation measures. The selection of validation measures should consider the needs of the stakeholder: some might need a temporal or spatial average of a certain variable, others might need temporal or spatial distributions of some variables, still others might need extremes for the variables of interest or even inter-variable dependencies. Hence, a close interaction of climate data providers and climate data users is necessary. Thus, the challenge in formulating a common validation framework mirrors also the challenges between the climate data providers and the impact assessment community. This poster elaborates the issues and challenges at the downscaling interface as it is seen within the VALUE community. It suggests three different actor groups: one group consisting of the climate data providers, the other two groups being climate data users (impact modellers and societal users). Hence, the downscaling interface faces classical transdisciplinary challenges. We depict a graphical illustration of actors involved and their interactions. In addition, we identified four different types of issues that need to be considered: i.e. data based, knowledge based, communication based, and structural issues. They all may, individually or jointly, hinder an optimal exchange of data and information between the actor groups at the downscaling interface. Finally, some possible ways to tackle these issues are discussed.

  11. Towards an automatic statistical model for seasonal precipitation prediction and its application to Central and South Asian headwater catchments

    NASA Astrophysics Data System (ADS)

    Gerlitz, Lars; Gafurov, Abror; Apel, Heiko; Unger-Sayesteh, Katy; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    Statistical climate forecast applications typically utilize a small set of large scale SST or climate indices, such as ENSO, PDO or AMO as predictor variables. If the predictive skill of these large scale modes is insufficient, specific predictor variables such as customized SST patterns are frequently included. Hence statistically based climate forecast models are either based on a fixed number of climate indices (and thus might not consider important predictor variables) or are highly site specific and barely transferable to other regions. With the aim of developing an operational seasonal forecast model, which is easily transferable to any region in the world, we present a generic data mining approach which automatically selects potential predictors from gridded SST observations and reanalysis derived large scale atmospheric circulation patterns and generates robust statistical relationships with posterior precipitation anomalies for user selected target regions. Potential predictor variables are derived by means of a cellwise correlation analysis of precipitation anomalies with gridded global climate variables under consideration of varying lead times. Significantly correlated grid cells are subsequently aggregated to predictor regions by means of a variability based cluster analysis. Finally for every month and lead time, an individual random forest based forecast model is automatically calibrated and evaluated by means of the preliminary generated predictor variables. The model is exemplarily applied and evaluated for selected headwater catchments in Central and South Asia. Particularly the for winter and spring precipitation (which is associated with westerly disturbances in the entire target domain) the model shows solid results with correlation coefficients up to 0.7, although the variability of precipitation rates is highly underestimated. Likewise for the monsoonal precipitation amounts in the South Asian target areas a certain skill of the model could be detected. The skill of the model for the dry summer season in Central Asia and the transition seasons over South Asia is found to be low. A sensitivity analysis by means on well known climate indices reveals the major large scale controlling mechanisms for the seasonal precipitation climate of each target area. For the Central Asian target areas, both, the El Nino Southern Oscillation and the North Atlantic Oscillation are identified as important controlling factors for precipitation totals during moist spring season. Drought conditions are found to be triggered by a warm ENSO phase in combination with a positive phase of the NAO. For the monsoonal summer precipitation amounts over Southern Asia, the model suggests a distinct negative response to El Nino events.

  12. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society.

    PubMed

    Santo, H; Taylor, P H; Gibson, R

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  13. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    NASA Astrophysics Data System (ADS)

    Santo, H.; Taylor, P. H.; Gibson, R.

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  14. Using MERRA, AMIP II, CMIP5 Outputs to Assess Actual and Potential Building Climate Zone Change and Variability From the Last 30 Years Through 2100

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W.; Westberg, D. J.; Hoell, J. M., Jr.; Chandler, W.; Zhang, T.

    2014-12-01

    In the US, residential and commercial building infrastructure combined consumes about 40% of total energy usage and emits about 39% of total CO2emission (DOE/EIA "Annual Energy Outlook 2013"). Thus, increasing the energy efficiency of buildings is paramount to reducing energy costs and emissions. Building codes, as used by local and state enforcement entities are typically tied to the dominant climate within an enforcement jurisdiction classified according to various climate zones. These climates zones are based upon a 30-year average of local surface observations and are developed by DOE and ASHRAE (formerly known as the American Society of Hearting, Refrigeration and Air-Conditioning Engineers). A significant shortcoming of the methodology used in constructing such maps is the use of surface observations (located mainly near airports) that are unequally distributed and frequently have periods of missing data that need to be filled by various approximation schemes. This paper demonstrates the usefulness of using NASA's Modern Era Retrospective-analysis for Research and Applications (MERRA) atmospheric data assimilation to derive the ASHRAE climate zone maps and then using MERRA to define the last 30 years of variability in climate zones. These results show that there is a statistically significant increase in the area covered by warmer climate zones and some tendency for a reduction of area in colder climate zones that require longer time series to confirm. Using the uncertainties of the basic surface temperature and precipitation parameters from MERRA as determined by comparison to surface measurements, we first compare patterns and variability of ASHRAE climate zones from MERRA relative to present day climate model runs from AMIP simulations to establish baseline sensitivity. Based upon these results, we assess the variability of the ASHRAE climate zones according to CMIP runs through 2100 using an ensemble analysis that classifies model output changes by percentiles. Estimates of statistical significance are then compared to original model variability during the AMIP period. This work quantifies and tests for significance the changes seen in the various US regions that represent a potential contribution by NASA to the ongoing National Climate Assessment.

  15. Combining landscape variables and species traits can improve the utility of climate change vulnerability assessments

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2016-01-01

    Conservation organizations worldwide are investing in climate change vulnerability assessments. Most vulnerability assessment methods focus on either landscape features or species traits that can affect a species vulnerability to climate change. However, landscape features and species traits likely interact to affect vulnerability. We compare a landscape-based assessment, a trait-based assessment, and an assessment that combines landscape variables and species traits for 113 species of birds, herpetofauna, and mammals in the northeastern United States. Our aim is to better understand which species traits and landscape variables have the largest influence on assessment results and which types of vulnerability assessments are most useful for different objectives. Species traits were most important for determining which species will be most vulnerable to climate change. The sensitivity of species to dispersal barriers and the species average natal dispersal distance were the most important traits. Landscape features were most important for determining where species will be most vulnerable because species were most vulnerable in areas where multiple landscape features combined to increase vulnerability, regardless of species traits. The interaction between landscape variables and species traits was important when determining how to reduce climate change vulnerability. For example, an assessment that combines information on landscape connectivity, climate change velocity, and natal dispersal distance suggests that increasing landscape connectivity may not reduce the vulnerability of many species. Assessments that include landscape features and species traits will likely be most useful in guiding conservation under climate change.

  16. Past crops yield dynamics reconstruction from tree-ring chronologies in the forest-steppe zone based on low- and high-frequency components

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Shah, Santosh K.; Zhirnova, Dina F.

    2018-05-01

    Interrelations of the yield variability of the main crops (wheat, barley, and oats) with hydrothermal regime and growth of conifer trees ( Pinus sylvestris and Larix sibirica) in forest-steppes were investigated in Khakassia, South Siberia. An attempt has been made to understand the role and mechanisms of climatic impact on plants productivity. It was found that amongst variables describing moisture supply, wetness index had maximum impact. Strength of climatic response and correlations with tree growth are different for rain-fed and irrigated crops yield. Separated high-frequency variability components of yield and tree-ring width have more pronounced relationships between each other and with climatic variables than their chronologies per se. Corresponding low-frequency variability components are strongly correlated with maxima observed after 1- to 5-year time shift of tree-ring width. Results of analysis allowed us to develop original approach of crops yield dynamics reconstruction on the base of high-frequency variability component of the growth of pine and low-frequency one of larch.

  17. Centennial-scale vegetation dynamics and climate variability in SE Europe during Marine Isotope Stage 11 based on a pollen record from Lake Ohrid

    NASA Astrophysics Data System (ADS)

    Kousis, Ilias; Koutsodendris, Andreas; Peyron, Odile; Leicher, Niklas; Francke, Alexander; Wagner, Bernd; Giaccio, Biagio; Knipping, Maria; Pross, Jörg

    2018-06-01

    To better understand climate variability during Marine Isotope Stage (MIS) 11, we here present a new, centennial-scale-resolution pollen record from Lake Ohrid (Balkan Peninsula) derived from sediment cores retrieved during an International Continental Scientific Drilling Program (ICDP) campaign. Our palynological data, augmented by quantitative pollen-based climate reconstructions, provide insight into the vegetation dynamics and thus also climate variability in SE Europe during one of the best orbital analogues for the Holocene. Comparison of our palynological results with other proxy data from Lake Ohrid as well as with regional and global climate records shows that the vegetation in SE Europe responded sensitively both to long- and short-term climate change during MIS 11. The chronology of our palynological record is based on orbital tuning, and is further supported by the detection of a new tephra from the Vico volcano, central Italy, dated to 410 ± 2 ka. Our study indicates that MIS 11c (∼424-398 ka) was the warmest interval of MIS 11. The younger part of the interglacial (i.e., MIS 11b-11a; ∼398-367 ka) exhibits a gradual cooling trend passing over into MIS 10. It is characterized by considerable millennial-scale variability as inferred by six abrupt forest-contraction events. Interestingly, the first forest contraction occurred during full interglacial conditions of MIS 11c; this event lasted for ∼1.7 kyrs (406.2-404.5 ka) and was characterized by substantial reductions in winter temperature and annual precipitation. Most notably, it occurred ∼7 ka before the end of MIS 11c and ∼15 ka before the first strong ice-rafted debris event in the North Atlantic. Our findings suggest that millennial-scale climate variability during MIS 11 was established in Southern Europe already during MIS 11c, which is earlier than in the North Atlantic where it is registered only from MIS 11b onwards.

  18. Assessment of future impacts of potential climate change scenarios on aquifer recharge in continental Spain

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, David; Collados-Lara, Antonio-Juan; Alcalá, Francisco J.

    2017-04-01

    This research proposes and applies a method to assess potential impacts of future climatic scenarios on aquifer rainfall recharge in wide and varied regions. The continental Spain territory was selected to show the application. The method requires to generate future series of climatic variables (precipitation, temperature) in the system to simulate them within a previously calibrated hydrological model for the historical data. In a previous work, Alcalá and Custodio (2014) used the atmospheric chloride mass balance (CMB) method for the spatial evaluation of average aquifer recharge by rainfall over the whole of continental Spain, by assuming long-term steady conditions of the balance variables. The distributed average CMB variables necessary to calculate recharge were estimated from available variable-length data series of variable quality and spatial coverage. The CMB variables were regionalized by ordinary kriging at the same 4976 nodes of a 10 km x 10 km grid. Two main sources of uncertainty affecting recharge estimates (given by the coefficient of variation, CV), induced by the inherent natural variability of the variables and from mapping were segregated. Based on these stationary results we define a simple empirical rainfall-recharge model. We consider that spatiotemporal variability of rainfall and temperature are the most important climatic feature and variables influencing potential aquifer recharge in natural regime. Changes in these variables can be important in the assessment of future potential impacts of climatic scenarios over spatiotemporal renewable groundwater resource. For instance, if temperature increases, actual evapotranspitration (EA) will increases reducing the available water for others groundwater balance components, including the recharge. For this reason, instead of defining an infiltration rate coefficient that relates precipitation (P) and recharge we propose to define a transformation function that allows estimating the spatial distribution of recharge (both average value and its uncertainty) from the difference in P and EA in each area. A complete analysis of potential short-term (2016-2045) future climate scenarios in continental Spain has been performed by considering different sources of uncertainty. It is based on the historical climatic data for the period 1976-2005 and the climatic models simulations (for the control [1976-2005] and future scenarios [2016-2045]) performed in the frame of the CORDEX EU project. The most pessimistic emission scenario (RCP8.5) has been considered. For the RCP8.5 scenario we have analyzed the time series generated by simulating with 5 Regional Climatic models (CCLM4-8-17, RCA4, HIRHAM5, RACMO22E, and WRF331F) nested to 4 different General Circulation Models (GCMs). Two different conceptual approaches (bias correction and delta change techniques) have been applied to generate potential future climate scenarios from these data. Different ensembles of obtained time series have been proposed to obtain more representative scenarios by considering all the simulations or only those providing better approximations to the historical statistics based on a multicriteria analysis. This was a step to analyze future potential impacts on the aquifer recharge by simulating them within a rainfall-recharge model. This research has been supported by the CGL2013-48424-C2-2-R (MINECO) and the PMAFI/06/14 (UCAM) projects.

  19. Identification of reliable gridded reference data for statistical downscaling methods in Alberta

    NASA Astrophysics Data System (ADS)

    Eum, H. I.; Gupta, A.

    2017-12-01

    Climate models provide essential information to assess impacts of climate change at regional and global scales. However, statistical downscaling methods have been applied to prepare climate model data for various applications such as hydrologic and ecologic modelling at a watershed scale. As the reliability and (spatial and temporal) resolution of statistically downscaled climate data mainly depend on a reference data, identifying the most reliable reference data is crucial for statistical downscaling. A growing number of gridded climate products are available for key climate variables which are main input data to regional modelling systems. However, inconsistencies in these climate products, for example, different combinations of climate variables, varying data domains and data lengths and data accuracy varying with physiographic characteristics of the landscape, have caused significant challenges in selecting the most suitable reference climate data for various environmental studies and modelling. Employing various observation-based daily gridded climate products available in public domain, i.e. thin plate spline regression products (ANUSPLIN and TPS), inverse distance method (Alberta Townships), and numerical climate model (North American Regional Reanalysis) and an optimum interpolation technique (Canadian Precipitation Analysis), this study evaluates the accuracy of the climate products at each grid point by comparing with the Adjusted and Homogenized Canadian Climate Data (AHCCD) observations for precipitation, minimum and maximum temperature over the province of Alberta. Based on the performance of climate products at AHCCD stations, we ranked the reliability of these publically available climate products corresponding to the elevations of stations discretized into several classes. According to the rank of climate products for each elevation class, we identified the most reliable climate products based on the elevation of target points. A web-based system was developed to allow users to easily select the most reliable reference climate data at each target point based on the elevation of grid cell. By constructing the best combination of reference data for the study domain, the accurate and reliable statistically downscaled climate projections could be significantly improved.

  20. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2018-06-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  1. Vulnerability of Breeding Waterbirds to Climate Change in the Prairie Pothole Region, U.S.A

    PubMed Central

    Steen, Valerie; Skagen, Susan K.; Noon, Barry R.

    2014-01-01

    The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981–2000 and projected future distributions to climate scenarios for 2040–2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts. PMID:24927165

  2. Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.

    USGS Publications Warehouse

    Steen, Valerie; Skagen, Susan K.; Noon, Barry R.

    2014-01-01

    The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981–2000 and projected future distributions to climate scenarios for 2040–2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.

  3. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2017-09-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  4. The influence of soil-site factors on sugar maple (Acer saccharum Marsh.) growth response to climatic change in central Ontario

    NASA Astrophysics Data System (ADS)

    Schutten, K.; Gedalof, Z.

    2010-12-01

    Over the past several decades, concerns about climatic change and its potential impacts on Canada’s various geographical regions and associated ecological processes have grown steadily, especially among land and resource managers. As these risks transition into tangible outcomes in the field, it will be important for resource managers to understand historical climatic variability and natural ecological trends in order to effectively respond to a changing climate. Sugar maple (Acer saccharum Marsh.) is considered a stable endpoint for mature forests in the northern hardwood community of central Ontario, and it tends to be the dominant species, in a beech-ironwood-yellow birch matrix. In North America, this species is used for both hardwood lumber and for maple sugar (syrup) products; where it dominates, large recreational opportunities also exist. There are many biotic and abiotic factors that play a large role in the growth and productivity of sugar maple stands, such as soil pH, moisture regime, and site slope and aspect. This research undertaking aims to add to the body of literature addressing the following question: how do site factors influence the sensitivity of sugar maple growth to climatic change? The overall objective of the research is to evaluate how biotic and abiotic factors influence the sensitivity of sugar maple annual radial growth to climatic variability. This research will focus on sugar maple growth and productivity in Algonquin Provincial Park, and the impact that climatic variability has had in the past on these stands based on site-specific characteristics. In order to complete this goal, 20 sites were identified in Algonquin Provincial Park based on variability of known soil and site properties. These sites were visited in order to collect biotic and abiotic site data, and to measure annual radial growth increment of trees. Using regional climate records and standard dendrochronological methods, the collected increment growth data will be used to build site-specific chronologies in order to determine the differences in tree growth response to climatic variability due to differences in soil and site quality. Preliminary results suggest that variability in site-specific abiotic and biotic conditions may strongly influence individual stand growth responses to climatic variability.

  5. Pacific-Australia Climate Change Science and Adaptation Planning program: supporting climate science and enhancing climate services in Pacific Island Countries

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Jones, David; Hendon, Harry; Charles, Andrew; Shelton, Kay; de Wit, Roald; Cottrill, Andrew; Nakaegawa, Toshiyuki; Atalifo, Terry; Prakash, Bipendra; Seuseu, Sunny; Kaniaha, Salesa

    2013-04-01

    Over the past few years, significant progress in developing climate science for the Pacific has been achieved through a number of research projects undertaken under the Australian government International Climate Change Adaptation Initiative (ICCAI). Climate change has major impact on Pacific Island Countries and advancement in understanding past, present and futures climate in the region is vital for island nation to develop adaptation strategies to their rapidly changing environment. This new science is now supporting new services for a wide range of stakeholders in the Pacific through the National Meteorological Agencies of the region. Seasonal climate prediction is particularly important for planning in agriculture, tourism and other weather-sensitive industries, with operational services provided by all National Meteorological Services in the region. The interaction between climate variability and climate change, for example during droughts or very warm seasons, means that much of the early impacts of climate change are being felt through seasonal variability. A means to reduce these impacts is to improve forecasts to support decision making. Historically, seasonal climate prediction has been developed based on statistical past relationship. Statistical methods relate meteorological variables (e.g. temperature and rainfall) to indices which describe large-scale environment (e.g. ENSO indices) using historical data. However, with observed climate change, statistical approaches based on historical data are getting less accurate and less reliable. Recognising the value of seasonal forecasts, we have used outputs of a dynamical model POAMA (Predictive Ocean Atmosphere Model for Australia), to develop web-based information tools (http://poama.bom.gov.au/experimental/pasap/index.shtml) which are now used by climate services in 15 partner countries in the Pacific for preparing seasonal climate outlooks. Initial comparison conducted during 2012 has shown that the predictive skill of POAMA is consistently higher than skill of statistical-based method. Presently, under the Pacific-Australia Climate Change Science and Adaptation Planning (PACCSAP) program, we are developing dynamical model-based seasonal climate prediction for climate extremes. Of particular concern are tropical cyclones which are the most destructive weather systems that impact on coastal areas of Australia and Pacific Island Countries. To analyse historical cyclone data, we developed a consolidate archive for the Southern Hemisphere and North-Western Pacific (http://www.bom.gov.au/cyclone/history/tracks/). Using dynamical climate models (POAMA and Japan Meteorological Agency's model), we work on improving accuracy of seasonal forecasts of tropical cyclone activity for the regions of Western Pacific. Improved seasonal climate prediction based on dynamical models will further enhance climate services in Australia and Pacific Island Countries.

  6. Disentangling the effects of climate variability and functional change on ecosystem carbon dynamics using semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Wu, J.; van der Linden, L.; Lasslop, G.; Carvalhais, N.; Pilegaard, K.; Beier, C.; Ibrom, A.

    2012-04-01

    The ecosystem carbon balance is affected by both external climatic forcing (e.g. solar radiation, air temperature and humidity) and internal dynamics in the ecosystem functional properties (e.g. canopy structure, leaf photosynthetic capacity and carbohydrate reserve). In order to understand to what extent and at which temporal scale, climatic variability and functional changes regulated the interannual variation (IAV) in the net ecosystem exchange of CO2 (NEE), data-driven analysis and semi-empirical modelling (Lasslop et al. 2010) were performed based on a 13 year NEE record in a temperate deciduous forest (Pilegaard et al 2011, Wu et al. 2012). We found that the sensitivity of carbon fluxes to climatic variability was significantly higher at shorter than at longer time scales and changed seasonally. This implied that the changing distribution of climate anomalies during the vegetation period could have stronger impacts on future ecosystem carbon balances than changes in average climate. At the annual time scale, approximately 80% of the interannual variability in NEE was attributed to the variation in the model parameters, indicating the observed IAV in the carbon dynamics at the investigated site was dominated by changes in ecosystem functioning. In general this study showed the need for understanding the mechanisms of ecosystem functional change. The method can be applied at other sites to explore ecosystem behavior across different plant functional types and climate gradients. Incorporating ecosystem functional change into process based models will reduce the uncertainties in long-term predictions of ecosystem carbon balances in global climate change projections. Acknowledgements. This work was supported by the EU FP7 project CARBO-Extreme, the DTU Climate Centre and the Danish national project ECOCLIM (Danish Council for Strategic Research).

  7. Improving niche projections of plant species under climate change: Silene acaulis on the British Isles as a case study

    NASA Astrophysics Data System (ADS)

    Ferrarini, Alessandro; Alsafran, Mohammed H. S. A.; Dai, Junhu; Alatalo, Juha M.

    2018-04-01

    Empirical works to assist in choosing climatically relevant variables in the attempt to predict climate change impacts on plant species are limited. Further uncertainties arise in choice of an appropriate niche model. In this study we devised and tested a sharp methodological framework, based on stringent variable ranking and filtering and flexible model selection, to minimize uncertainty in both niche modelling and successive projection of plant species distributions. We used our approach to develop an accurate, parsimonious model of Silene acaulis (L.) presence/absence on the British Isles and to project its presence/absence under climate change. The approach suggests the importance of (a) defining a reduced set of climate variables, actually relevant to species presence/absence, from an extensive list of climate predictors, and (b) considering climate extremes instead of, or together with, climate averages in projections of plant species presence/absence under future climate scenarios. Our methodological approach reduced the number of relevant climate predictors by 95.23% (from 84 to only 4), while simultaneously achieving high cross-validated accuracy (97.84%) confirming enhanced model performance. Projections produced under different climate scenarios suggest that S. acaulis will likely face climate-driven fast decline in suitable areas on the British Isles, and that upward and northward shifts to occupy new climatically suitable areas are improbable in the future. Our results also imply that conservation measures for S. acaulis based upon assisted colonization are unlikely to succeed on the British Isles due to the absence of climatically suitable habitat, so different conservation actions (seed banks and/or botanical gardens) are needed.

  8. Effects of climate change on phenology in two French LTER (Alps and Brittany) for the period 1998-2009

    NASA Astrophysics Data System (ADS)

    Perrimond, B.; Bigot, S.; Quénol, H.; Spielgelberger, T.; Baudry, J.

    2012-04-01

    Climate and vegetation are linked all over the world. In this study, we work on a seasonal weather classification based on air temperature and precipitation to deduce a link with different phenological stage (greening up, senescence, ...) over a 12 year period (1998-2009) for two different domains in France (Alps and Brittany). In temperate land, the main climatic variable with a potential effect on vegetation is the mean temperature followed by the rainfall deficit. A better understanding in season and their climatic characteristic is need to establish link between climate and phenology; so a weather classification is proposed based on empirical orthogonal functions and ascending hierarchical classification on atmospheric variables. This classification allows us to exhibit the inter-annual and intra-seasonal climatic spatiotemporal variability for both experimental site. Relationships between climate and phenology consist in a comparison between advance and delay in phenological stage and weather type issue from the classification. Experiment field are two french Long Term Ecological Research (LTER). The first one (LTER 'Alps' ) have mountain characteristics about 1000 to 4780 m ASL, ~65% of forest occupation ; the second one (LTER Armorique) is an Atlantic coastal landscape, 0-360 m ASL, ~70% of agricultural field. Climatic data are SAFRAN-France reanalysis which are developed to run SVAT model and come from the French meteorological service 'Météo-France'. All atmospheric variable needed to run a hydrological model are available (air temperature, rainfall/snowfall, wind speed, relative humidity, incoming/outcoming radiation) at a 8-8 km2 space resolution and with a daily time resolution. The phenological data are extracted from SPOT-VGT product 1-1 km2 space resolution and 10 days time resolution) by time series analysis process. Such of study is particularly important to understand relationships between environmental and ecological variables and it will allow to better predict ecological reaction under climate change constraint.

  9. Climate Informed Economic Instruments to Enhance Urban Water Supply Resilience to Hydroclimatological Variability and Change

    NASA Astrophysics Data System (ADS)

    Brown, C.; Carriquiry, M.; Souza Filho, F. A.

    2006-12-01

    Hydroclimatological variability presents acute challenges to urban water supply providers. The impact is often most severe in developing nations where hydrologic and climate variability can be very high, water demand is unmet and increasing, and the financial resources to mitigate the social effects of that variability are limited. Furthermore, existing urban water systems face a reduced solution space, constrained by competing and conflicting interests, such as irrigation demand, recreation and hydropower production, and new (relative to system design) demands to satisfy environmental flow requirements. These constraints magnify the impacts of hydroclimatic variability and increase the vulnerability of urban areas to climate change. The high economic and social costs of structural responses to hydrologic variability, such as groundwater utilization and the construction or expansion of dams, create a need for innovative alternatives. Advances in hydrologic and climate forecasting, and the increasing sophistication and acceptance of incentive-based mechanisms for achieving economically efficient water allocation offer potential for improving the resilience of existing water systems to the challenge of variable supply. This presentation will explore the performance of a system of climate informed economic instruments designed to facilitate the reduction of hydroclimatologic variability-induced impacts on water-sensitive stakeholders. The system is comprised of bulk water option contracts between urban water suppliers and agricultural users and insurance indexed on reservoir inflows designed to cover the financial needs of the water supplier in situations where the option is likely to be exercised. Contract and insurance parameters are linked to forecasts and the evolution of seasonal precipitation and streamflow and designed for financial and political viability. A simulation of system performance is presented based on ongoing work in Metro Manila, Philippines. The system is further evaluated as an alternative strategy to infrastructure expansion for climate change adaptation in the water resources sector.

  10. Estimates of runoff using water-balance and atmospheric general circulation models

    USGS Publications Warehouse

    Wolock, D.M.; McCabe, G.J.

    1999-01-01

    The effects of potential climate change on mean annual runoff in the conterminous United States (U.S.) are examined using a simple water-balance model and output from two atmospheric general circulation models (GCMs). The two GCMs are from the Canadian Centre for Climate Prediction and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HAD). In general, the CCC GCM climate results in decreases in runoff for the conterminous U.S., and the HAD GCM climate produces increases in runoff. These estimated changes in runoff primarily are the result of estimated changes in precipitation. The changes in mean annual runoff, however, mostly are smaller than the decade-to-decade variability in GCM-based mean annual runoff and errors in GCM-based runoff. The differences in simulated runoff between the two GCMs, together with decade-to-decade variability and errors in GCM-based runoff, cause the estimates of changes in runoff to be uncertain and unreliable.

  11. Climate and soil attributes determine plant species turnover in global drylands.

    PubMed

    Ulrich, Werner; Soliveres, Santiago; Maestre, Fernando T; Gotelli, Nicholas J; Quero, José L; Delgado-Baquerizo, Manuel; Bowker, Matthew A; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R; Hernández, Rosa M; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A; Raveh, Eran; Romão, Roberto L; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli

    2014-12-01

    Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake's beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R 2 )), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R 2 )) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation.

  12. Varying geospatial analyses to assess climate risk and adaptive capacity in a hotter, drier Southwestern United States

    NASA Astrophysics Data System (ADS)

    Elias, E.; Reyes, J. J.; Steele, C. M.; Rango, A.

    2017-12-01

    Assessing vulnerability of agricultural systems to climate variability and change is vital in securing food systems and sustaining rural livelihoods. Farmers, ranchers, and forest landowners rely on science-based, decision-relevant, and localized information to maintain production, ecological viability, and economic returns. This contribution synthesizes a collection of research on the future of agricultural production in the American Southwest (SW). Research was based on a variety of geospatial methodologies and datasets to assess the vulnerability of rangelands and livestock, field crops, specialty crops, and forests in the SW to climate-risk and change. This collection emerged from the development of regional vulnerability assessments for agricultural climate-risk by the U.S. Department of Agriculture (USDA) Climate Hub Network, established to deliver science-based information and technologies to enable climate-informed decision-making. Authors defined vulnerability differently based on their agricultural system of interest, although each primarily focuses on biophysical systems. We found that an inconsistent framework for vulnerability and climate risk was necessary to adequately capture the diversity, variability, and heterogeneity of SW landscapes, peoples, and agriculture. Through the diversity of research questions and methodologies, this collection of articles provides valuable information on various aspects of SW vulnerability. All articles relied on geographic information systems technology, with highly variable levels of complexity. Agricultural articles used National Agricultural Statistics Service data, either as tabular county level summaries or through the CropScape cropland raster datasets. Most relied on modeled historic and future climate information, but with differing assumptions regarding spatial resolution and temporal framework. We assert that it is essential to evaluate climate risk using a variety of complementary methodologies and perspectives. In addition, we found that spatial analysis supports informed adaptation, within and outside the SW United States. The persistence and adaptive capacity of agriculture in the water-limited Southwest serves as an instructive example and may offer solutions to reduce future climate risk.

  13. Local variability mediates vulnerability of trout populations to land use and climate change

    Treesearch

    Brooke E. Penaluna; Jason B. Dunham; Steve F. Railsback; Ivan Arismendi; Sherri L. Johnson; Robert E. Bilby; Mohammad Safeeq; Arne E. Skaugset; James P. Meador

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of...

  14. Vulnerability to Climate Change in Rural Saskatchewan: Case Study of the Rural Municipality of Rudy No. 284

    ERIC Educational Resources Information Center

    Pittman, Jeremy; Wittrock, Virginia; Kulshreshtha, Surendra; Wheaton, Elaine

    2011-01-01

    With the likelihood of future changes in climate and climate variability, it is important to understand how human systems may be vulnerable. Rural communities in Saskatchewan having agricultural-based economies are particularly dependent on climate and could be among the most vulnerable human systems in Canada. Future changes in climate are likely…

  15. Assessing the Habitat of Coccidioides posadasii, the Valley Fever Pathogen: A Study of Environmental Variables and Human Incidence Data in Arizona

    NASA Astrophysics Data System (ADS)

    Mann, Sarina N.

    Coccidioidomycosis, or Valley Fever, is an infectious disease caused by inhalation of soil-dwelling fungus Coccidioides posadasii spores in the Lower Sonoran Life Zone (LSLZ) in Arizona. In the context of climate change, the habitat of environmentally-mediated infectious diseases, such as Valley Fever, are expected to change. Connections have been drawn between climate and Valley Fever infection. The operational scale of the organism is still unknown. Here, we use climatic variables, including precipitation, soil moisture, and temperature. We use PRISM precipitation and temperature data, and Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) as a measure of soil moisture for the entire state of Arizona, divided into 126 primary care areas (PCA). These data are analyzed and regressed with Valley Fever incidence to determine the effects of climatic variability on disease distribution and timing. This study confirms that Valley Fever occurrence is clustered in the LSLZ. Seasonal Valley Fever outbreak was found to be variable year-to-year based on climatic variability. The inconclusive regression analyses indicate that the operational scale of Coccidioides is smaller than the PCA region. All variables are related to Valley Fever infection, but one variable was not found to hold more predictive power than others.

  16. An Assessment of Actual and Potential Building Climate Zone Change and Variability From the Last 30 Years Through 2100 Using NASA's MERRA and CMIP5 Simulations

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping

    2015-01-01

    Background: In the US, residential and commercial building infrastructure combined consumes about 40% of total energy usage and emits about 39% of total CO2 emission (DOE/EIA "Annual Energy Outlook 2013"). Building codes, as used by local and state enforcement entities are typically tied to the dominant climate within an enforcement jurisdiction classified according to various climate zones. These climate zones are based upon a 30-year average of local surface observations and are developed by DOE and ASHRAE. Establishing the current variability and potential changes to future building climate zones is very important for increasing the energy efficiency of buildings and reducing energy costs and emissions in the future. Objectives: This paper demonstrates the usefulness of using NASA's Modern Era Retrospective-analysis for Research and Applications (MERRA) atmospheric data assimilation to derive the DOE/ASHRAE building climate zone maps and then using MERRA to define the last 30 years of variability in climate zones for the Continental US. An atmospheric assimilation is a global atmospheric model optimized to satellite, atmospheric and surface in situ measurements. Using MERRA as a baseline, we then evaluate the latest Climate Model Inter-comparison Project (CMIP) climate model Version 5 runs to assess potential variability in future climate zones under various assumptions. Methods: We derive DOE/ASHRAE building climate zones using surface and temperature data products from MERRA. We assess these zones using the uncertainties derived by comparison to surface measurements. Using statistical tests, we evaluate variability of the climate zones in time and assess areas in the continental US for statistically significant trends by region. CMIP 5 produced a data base of over two dozen detailed climate model runs under various greenhouse gas forcing assumptions. We evaluate the variation in building climate zones for 3 different decades using an ensemble and quartile statistics to provide an assessment of potential building climate zone changes relative to the uncertainties demonstrated using MERRA. Findings and Conclusions: These results show that there is a statistically significant increase in the area covered by warmer climate zones and a tendency for a reduction of area in colder climate zones in some limited regions. The CMIP analysis shows that models vary from relatively little building climate zone change for the least sensitive and conservation assumptions to a warming of at most 3 zones for certain areas, particularly the north central US by the end of the 21st century.

  17. Using climate model simulations to assess the current climate risk to maize production

    NASA Astrophysics Data System (ADS)

    Kent, Chris; Pope, Edward; Thompson, Vikki; Lewis, Kirsty; Scaife, Adam A.; Dunstone, Nick

    2017-05-01

    The relationship between the climate and agricultural production is of considerable importance to global food security. However, there has been relatively little exploration of climate-variability related yield shocks. The short observational yield record does not adequately sample natural inter-annual variability thereby limiting the accuracy of probability assessments. Focusing on the United States and China, we present an innovative use of initialised ensemble climate simulations and a new agro-climatic indicator, to calculate the risk of severe water stress. Combined, these regions provide 60% of the world’s maize, and therefore, are crucial to global food security. To probe a greater range of inter-annual variability, the indicator is applied to 1400 simulations of the present day climate. The probability of severe water stress in the major maize producing regions is quantified, and in many regions an increased risk is found compared to calculations from observed historical data. Analysis suggests that the present day climate is also capable of producing unprecedented severe water stress conditions. Therefore, adaptation plans and policies based solely on observed events from the recent past may considerably under-estimate the true risk of climate-related maize shocks. The probability of a major impact event occurring simultaneously across both regions—a multi-breadbasket failure—is estimated to be up to 6% per decade and arises from a physically plausible climate state. This novel approach highlights the significance of climate impacts on crop production shocks and provides a platform for considerably improving food security assessments, in the present day or under a changing climate, as well as development of new risk based climate services.

  18. Final Technical Report for DOE Award SC0006616

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Andrew

    2015-08-01

    This report summarizes research carried out by the project "Collaborative Research, Type 1: Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoonal Asia. This collaborative project brought together climate dynamicists (UCLA, IRI), dendroclimatologists (LDEO Tree Ring Laboratory), computer scientists (UCI), and hydrologists (Columbia Water Center, CWC), together with applied scientists in climate risk management (IRI) to create new scientific approaches to quantify and exploit the role of climate variability and change in the growing water crisis across southern and eastern Asia. This project developed new tree-ring based streamflow reconstructions for rivers in monsoonal Asia; improved understanding of hydrologic spatio-temporal modesmore » of variability over monsoonal Asia on interannual-to-centennial time scales; assessed decadal predictability of hydrologic spatio-temporal modes; developed stochastic simulation tools for creating downscaled future climate scenarios based on historical/proxy data and GCM climate change; and developed stochastic reservoir simulation and optimization for scheduling hydropower, irrigation and navigation releases.« less

  19. Synchronous multi-decadal climate variability of the whole Pacific areas revealed in tree rings since 1567

    NASA Astrophysics Data System (ADS)

    Fang, Keyan; Cook, Edward; Guo, Zhengtang; Chen, Deliang; Ou, Tinghai; Zhao, Yan

    2018-02-01

    Oceanic and atmospheric patterns play a crucial role in modulating climate variability from interannual to multi-decadal timescales by causing large-scale co-varying climate changes. The brevity of the existing instrumental records hinders the ability to recognize climate patterns before the industrial era, which can be alleviated using proxies. Unfortunately, proxy based reconstructions of oceanic and atmospheric modes of the past millennia often have modest agreements with each other before the instrumental period, raising questions about the robustness of the reconstructions. To ensure the stability of climate signals in proxy data through time, we first identified tree-ring datasets from distant regions containing coherent variations in Asia and North America, and then interpreted their climate information. We found that the multi-decadal covarying climate patterns of the middle and high latitudinal regions around the northern Pacific Ocean agreed quite well with the climate reconstructions of the tropical and southern Pacific areas. This indicates a synchronous variability at the multi-decadal timescale of the past 430 years for the entire Pacific Ocean. This pattern is closely linked to the dominant mode of the Pacific sea surface temperature (SST) after removing the warming trend. This Pacific multi-decadal SST variability resembles the Interdecadal Pacific Oscillation.

  20. Effects of ambient air temperature, humidity and rainfall on annual survival of adult little penguins Eudyptula minor in southeastern Australia

    NASA Astrophysics Data System (ADS)

    Ganendran, L. B.; Sidhu, L. A.; Catchpole, E. A.; Chambers, L. E.; Dann, P.

    2016-08-01

    Seabirds are subject to the influences of local climate variables during periods of land-based activities such as breeding and, for some species, moult; particularly if they undergo a catastrophic moult (complete simultaneous moult) as do penguins. We investigated potential relationships between adult penguin survival and land-based climate variables (ambient air temperature, humidity and rainfall) using 46 years of mark-recapture data of little penguins Eudyptula minor gathered at a breeding colony on Phillip Island in southeastern Australia. Our results showed that adult penguin survival had a stronger association with land-based climate variables during the moult period, when birds were unable to go to sea for up to 3 weeks, than during the breeding period, when birds could sacrifice breeding success in favour of survival. Annual adult survival probability was positively associated with humidity during moult and negatively associated with rainfall during moult. Prolonged heat during breeding and moult had a negative association with annual adult survival. Local climate projections suggest increasing days of high temperatures, fewer days of rainfall which will result in more droughts (and by implication, lower humidity) and more extreme rainfall events. All of these predicted climate changes are expected to have a negative impact on adult penguin survival.

  1. Effects of ambient air temperature, humidity and rainfall on annual survival of adult little penguins Eudyptula minor in southeastern Australia.

    PubMed

    Ganendran, L B; Sidhu, L A; Catchpole, E A; Chambers, L E; Dann, P

    2016-08-01

    Seabirds are subject to the influences of local climate variables during periods of land-based activities such as breeding and, for some species, moult; particularly if they undergo a catastrophic moult (complete simultaneous moult) as do penguins. We investigated potential relationships between adult penguin survival and land-based climate variables (ambient air temperature, humidity and rainfall) using 46 years of mark-recapture data of little penguins Eudyptula minor gathered at a breeding colony on Phillip Island in southeastern Australia. Our results showed that adult penguin survival had a stronger association with land-based climate variables during the moult period, when birds were unable to go to sea for up to 3 weeks, than during the breeding period, when birds could sacrifice breeding success in favour of survival. Annual adult survival probability was positively associated with humidity during moult and negatively associated with rainfall during moult. Prolonged heat during breeding and moult had a negative association with annual adult survival. Local climate projections suggest increasing days of high temperatures, fewer days of rainfall which will result in more droughts (and by implication, lower humidity) and more extreme rainfall events. All of these predicted climate changes are expected to have a negative impact on adult penguin survival.

  2. Utilizing Satellite Precipitation Products to Understand the Link Between Climate Variability and Malaria

    NASA Astrophysics Data System (ADS)

    Maggioni, V.; Mousam, A.; Delamater, P. L.; Cash, B. A.; Quispe, A.

    2015-12-01

    Malaria is a public health threat to people globally leading to 198 million cases and 584,000 deaths annually. Outbreaks of vector borne diseases such as malaria can be significantly impacted by climate variables such as precipitation. For example, an increase in rainfall has the potential to create pools of water that can serve as breeding locations for mosquitos. Peru is a country that is currently controlling malaria, but has not been able to completely eliminate the disease. Despite the various initiatives in order to control malaria - including regional efforts to improve surveillance, early detection, prompt treatment, and vector management - malaria cases in Peru have risen between 2011 and 2014. The purpose of this study is to test the hypothesis that climate variability plays a fundamental role in malaria occurrence over a 12-year period (2003-2014) in Peru. When analyzing climate variability, it is important to obtain high-quality, high-resolution data for a time series long enough to draw conclusion about how climate variables have been and are changing. Remote sensing is a powerful tool for measuring and monitoring climate variables continuously in time and space. A widely used satellite-based precipitation product, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), available globally since 1998, was used to obtain 3-hourly data with a spatial resolution of 0.25° x 0.25°. The precipitation data was linked to weekly (2003-2014) malaria cases collected by health centers and available at a district level all over Peru to investigate the relationship between precipitation and the seasonal and annual variations in malaria incidence. Further studies will incorporate additional climate variables such as temperature, humidity, soil moisture, and surface pressure from remote sensing data products and climate models. Ultimately, this research will help us to understand if climate variability impacts malaria incidence rates and to determine which regions of the country are most affected.

  3. Comparative Analysis of Upper Ocean Heat Content Variability from Ensemble Operational Ocean Analyses

    NASA Technical Reports Server (NTRS)

    Xue, Yan; Balmaseda, Magdalena A.; Boyer, Tim; Ferry, Nicolas; Good, Simon; Ishikawa, Ichiro; Rienecker, Michele; Rosati, Tony; Yin, Yonghong; Kumar, Arun

    2012-01-01

    Upper ocean heat content (HC) is one of the key indicators of climate variability on many time-scales extending from seasonal to interannual to long-term climate trends. For example, HC in the tropical Pacific provides information on thermocline anomalies that is critical for the longlead forecast skill of ENSO. Since HC variability is also associated with SST variability, a better understanding and monitoring of HC variability can help us understand and forecast SST variability associated with ENSO and other modes such as Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO), Tropical Atlantic Variability (TAV) and Atlantic Multidecadal Oscillation (AMO). An accurate ocean initialization of HC anomalies in coupled climate models could also contribute to skill in decadal climate prediction. Errors, and/or uncertainties, in the estimation of HC variability can be affected by many factors including uncertainties in surface forcings, ocean model biases, and deficiencies in data assimilation schemes. Changes in observing systems can also leave an imprint on the estimated variability. The availability of multiple operational ocean analyses (ORA) that are routinely produced by operational and research centers around the world provides an opportunity to assess uncertainties in HC analyses, to help identify gaps in observing systems as they impact the quality of ORAs and therefore climate model forecasts. A comparison of ORAs also gives an opportunity to identify deficiencies in data assimilation schemes, and can be used as a basis for development of real-time multi-model ensemble HC monitoring products. The OceanObs09 Conference called for an intercomparison of ORAs and use of ORAs for global ocean monitoring. As a follow up, we intercompared HC variations from ten ORAs -- two objective analyses based on in-situ data only and eight model analyses based on ocean data assimilation systems. The mean, annual cycle, interannual variability and longterm trend of HC have been analyzed

  4. Exploring adaptations to climate change with stakeholders: A participatory method to design grassland-based farming systems.

    PubMed

    Sautier, Marion; Piquet, Mathilde; Duru, Michel; Martin-Clouaire, Roger

    2017-05-15

    Research is expected to produce knowledge, methods and tools to enhance stakeholders' adaptive capacity by helping them to anticipate and cope with the effects of climate change at their own level. Farmers face substantial challenges from climate change, from changes in the average temperatures and the precipitation regime to an increased variability of weather conditions and the frequency of extreme events. Such changes can have dramatic consequences for many types of agricultural production systems such as grassland-based livestock systems for which climate change influences the seasonality and productivity of fodder production. We present a participatory design method called FARMORE (FARM-Oriented REdesign) that allows farmers to design and evaluate adaptations of livestock systems to future climatic conditions. It explicitly considers three climate features in the design and evaluation processes: climate change, climate variability and the limited predictability of weather. FARMORE consists of a sequence of three workshops for which a pre-existing game-like platform was adapted. Various year-round forage production and animal feeding requirements must be assembled by participants with a computerized support system. In workshop 1, farmers aim to produce a configuration that satisfies an average future weather scenario. They refine or revise the previous configuration by considering a sample of the between-year variability of weather in workshop 2. In workshop 3, they explicitly take the limited predictability of weather into account. We present the practical aspects of the method based on four case studies involving twelve farmers from Aveyron (France), and illustrate it through an in-depth description of one of these case studies with three dairy farmers. The case studies shows and discusses how workshop sequencing (1) supports a design process that progressively accommodates complexity of real management contexts by enlarging considerations of climate change to climate variability and low weather predictability, and (2) increases the credibility and salience of the design method. Further enhancements of the method are outlined, especially the selection of pertinent weather scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts.

    PubMed

    Tanner, Evan P; Papeş, Monica; Elmore, R Dwayne; Fuhlendorf, Samuel D; Davis, Craig A

    2017-01-01

    Ecological niche models (ENMs) have increasingly been used to estimate the potential effects of climate change on species' distributions worldwide. Recently, predictions of species abundance have also been obtained with such models, though knowledge about the climatic variables affecting species abundance is often lacking. To address this, we used a well-studied guild (temperate North American quail) and the Maxent modeling algorithm to compare model performance of three variable selection approaches: correlation/variable contribution (CVC), biological (i.e., variables known to affect species abundance), and random. We then applied the best approach to forecast potential distributions, under future climatic conditions, and analyze future potential distributions in light of available abundance data and presence-only occurrence data. To estimate species' distributional shifts we generated ensemble forecasts using four global circulation models, four representative concentration pathways, and two time periods (2050 and 2070). Furthermore, we present distributional shifts where 75%, 90%, and 100% of our ensemble models agreed. The CVC variable selection approach outperformed our biological approach for four of the six species. Model projections indicated species-specific effects of climate change on future distributions of temperate North American quail. The Gambel's quail (Callipepla gambelii) was the only species predicted to gain area in climatic suitability across all three scenarios of ensemble model agreement. Conversely, the scaled quail (Callipepla squamata) was the only species predicted to lose area in climatic suitability across all three scenarios of ensemble model agreement. Our models projected future loss of areas for the northern bobwhite (Colinus virginianus) and scaled quail in portions of their distributions which are currently areas of high abundance. Climatic variables that influence local abundance may not always scale up to influence species' distributions. Special attention should be given to selecting variables for ENMs, and tests of model performance should be used to validate the choice of variables.

  6. Using non-systematic surveys to investigate effects of regional climate variability on Australasian gannets in the Hauraki Gulf, New Zealand

    NASA Astrophysics Data System (ADS)

    Srinivasan, Mridula; Dassis, Mariela; Benn, Emily; Stockin, Karen A.; Martinez, Emmanuelle; Machovsky-Capuska, Gabriel E.

    2015-05-01

    Few studies have investigated regional and natural climate variability on seabird populations using ocean reanalysis datasets (e.g. Simple Ocean Data Assimilation (SODA)) that integrate atmospheric information to supplement ocean observations and provide improved estimates of ocean conditions. Herein we use a non-systematic dataset on Australasian gannets (Morus serrator) from 2001 to 2009 to identify potential connections between Gannet Sightings Per Unit Effort (GSPUE) and climate and oceanographic variability in a region of known importance for breeding seabirds, the Hauraki Gulf (HG), New Zealand. While no statistically significant relationships between GSPUE and global climate indices were determined, there was a significant correlation between GSPUE and regional SST anomaly for HG. Also, there appears to be a strong link between global climate indices and regional climate in the HG. Further, based on cross-correlation function coefficients and lagged multiple regression models, we identified potential leading and lagging climate variables, and climate variables but with limited predictive capacity in forecasting future GSPUE. Despite significant inter-annual variability and marginally cooler SSTs since 2001, gannet sightings appear to be increasing. We hypothesize that at present underlying physical changes in the marine ecosystem may be insufficient to affect supply of preferred gannet main prey (pilchard Sardinops spp.), which tolerate a wide thermal range. Our study showcases the potential scientific value of lengthy non-systematic data streams and when designed properly (i.e., contain abundance, flock size, and spatial data), can yield useful information in climate impact studies on seabirds and other marine fauna. Such information can be invaluable for enhancing conservation measures for protected species in fiscally constrained research environments.

  7. Is temperature the main cause of dengue rise in non-endemic countries? The case of Argentina

    PubMed Central

    2012-01-01

    Background Dengue cases have increased during the last decades, particularly in non-endemic areas, and Argentina was no exception in the southern transmission fringe. Although temperature rise has been blamed for this, human population growth, increased travel and inefficient vector control may also be implicated. The relative contribution of geographic, demographic and climatic of variables on the occurrence of dengue cases was evaluated. Methods According to dengue history in the country, the study was divided in two decades, a first decade corresponding to the reemergence of the disease and the second including several epidemics. Annual dengue risk was modeled by a temperature-based mechanistic model as annual days of possible transmission. The spatial distribution of dengue occurrence was modeled as a function of the output of the mechanistic model, climatic, geographic and demographic variables for both decades. Results According to the temperature-based model dengue risk increased between the two decades, and epidemics of the last decade coincided with high annual risk. Dengue spatial occurrence was best modeled by a combination of climatic, demographic and geographic variables and province as a grouping factor. It was positively associated with days of possible transmission, human population number, population fall and distance to water bodies. When considered separately, the classification performance of demographic variables was higher than that of climatic and geographic variables. Conclusions Temperature, though useful to estimate annual transmission risk, does not fully describe the distribution of dengue occurrence at the country scale. Indeed, when taken separately, climatic variables performed worse than geographic or demographic variables. A combination of the three types was best for this task. PMID:22768874

  8. Why inputs matter: Selection of climatic variables for species distribution modelling in the Himalayan region

    NASA Astrophysics Data System (ADS)

    Bobrowski, Maria; Schickhoff, Udo

    2017-04-01

    Betula utilis is a major constituent of alpine treeline ecotones in the western and central Himalayan region. The objective of this study is to provide first time analysis of the potential distribution of Betula utilis in the subalpine and alpine belts of the Himalayan region using species distribution modelling. Using Generalized Linear Models (GLM) we aim at examining climatic factors controlling the species distribution under current climate conditions. Furthermore we evaluate the prediction ability of climate data derived from different statistical methods. GLMs were created using least correlated bioclimatic variables derived from two different climate models: 1) interpolated climate data (i.e. Worldclim, Hijmans et al., 2005) and 2) quasi-mechanistical statistical downscaling (i.e. Chelsa; Karger et al., 2016). Model accuracy was evaluated by the ability to predict the potential species distribution range. We found that models based on variables of Chelsa climate data had higher predictive power, whereas models using Worldclim climate data consistently overpredicted the potential suitable habitat for Betula utilis. Although climatic variables of Worldclim are widely used in modelling species distribution, our results suggest to treat them with caution when remote regions like the Himalayan mountains are in focus. Unmindful usage of climatic variables for species distribution models potentially cause misleading projections and may lead to wrong implications and recommendations for nature conservation. References: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N., Linder, H.P. & Kessler, M. (2016) Climatologies at high resolution for the earth land surface areas. arXiv:1607.00217 [physics].

  9. 2500 Years of European Climate Variability and Human Susceptibility

    NASA Astrophysics Data System (ADS)

    Büntgen, Ulf; Tegel, Willy; Nicolussi, Kurt; McCormick, Michael; Frank, David; Trouet, Valerie; Kaplan, Jed O.; Herzig, Franz; Heussner, Karl-Uwe; Wanner, Heinz; Luterbacher, Jürg; Esper, Jan

    2011-02-01

    Climate variations influenced the agricultural productivity, health risk, and conflict level of preindustrial societies. Discrimination between environmental and anthropogenic impacts on past civilizations, however, remains difficult because of the paucity of high-resolution paleoclimatic evidence. We present tree ring-based reconstructions of central European summer precipitation and temperature variability over the past 2500 years. Recent warming is unprecedented, but modern hydroclimatic variations may have at times been exceeded in magnitude and duration. Wet and warm summers occurred during periods of Roman and medieval prosperity. Increased climate variability from ~250 to 600 C.E. coincided with the demise of the western Roman Empire and the turmoil of the Migration Period. Such historical data may provide a basis for counteracting the recent political and fiscal reluctance to mitigate projected climate change.

  10. Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling

    NASA Astrophysics Data System (ADS)

    Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana

    2018-01-01

    This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.

  11. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    PubMed Central

    Taylor, P. H.; Gibson, R.

    2016-01-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958–2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different. PMID:27713662

  12. Forecasting conditional climate-change using a hybrid approach

    USGS Publications Warehouse

    Esfahani, Akbar Akbari; Friedel, Michael J.

    2014-01-01

    A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009–2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists.

  13. Applications of VIC for Climate Land Cover Change Imapacts

    NASA Technical Reports Server (NTRS)

    Markert, Kel

    2017-01-01

    Study focuses on the Lower Mekong Basin (LMB), the LMB is an economically and ecologically important region: (1) One of the largest exporters of rice and fish products, (2) Within top three most biodiverse river basins in the world. Natural climate variability plays an important role in water supply within the region: (1) Short-term climate variability (ENSO, MJO), (2) Long-term climate variability (climate change). Projections of climate change show there will be a decrease in water availability world wide which has implications for food security and ecology. Additional studies show there may be socioeconomic turmoil due to water wars and food security in developing regions such as the Mekong Basin. Southeast Asia has experienced major changes in land use and land cover from 1980 – 2000. Major economic reforms resulting in shift from subsistence farming to market-based agricultural production. Changes in land cover continue to occur which have an important role within the land surface aspect of hydrology.

  14. Nitrate and dissolved organic carbon mobilization in response to soil freezing variability

    Treesearch

    Colin B. Fuss; Charles T. Driscoll; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer; Jorge Durán; Jennifer L. Morse

    2016-01-01

    Reduced snowpack and associated increases in soil freezing severity resulting from winter climate change have the potential to disrupt carbon (C) and nitrogen (N) cycling in soils. We used a natural winter climate gradient based on elevation and aspect in a northern hardwood forest to examine the effects of variability in soil freezing depth, duration, and frequency on...

  15. Model simulations and proxy-based reconstructions for the European region in the past millennium (Invited)

    NASA Astrophysics Data System (ADS)

    Zorita, E.

    2009-12-01

    One of the objectives when comparing simulations of past climates to proxy-based climate reconstructions is to asses the skill of climate models to simulate climate change. This comparison may accomplished at large spatial scales, for instance the evolution of simulated and reconstructed Northern Hemisphere annual temperature, or at regional or point scales. In both approaches a 'fair' comparison has to take into account different aspects that affect the inevitable uncertainties and biases in the simulations and in the reconstructions. These efforts face a trade-off: climate models are believed to be more skillful at large hemispheric scales, but climate reconstructions are these scales are burdened by the spatial distribution of available proxies and by methodological issues surrounding the statistical method used to translate the proxy information into large-spatial averages. Furthermore, the internal climatic noise at large hemispheric scales is low, so that the sampling uncertainty tends to be also low. On the other hand, the skill of climate models at regional scales is limited by the coarse spatial resolution, which hinders a faithful representation of aspects important for the regional climate. At small spatial scales, the reconstruction of past climate probably faces less methodological problems if information from different proxies is available. The internal climatic variability at regional scales is, however, high. In this contribution some examples of the different issues faced when comparing simulation and reconstructions at small spatial scales in the past millennium are discussed. These examples comprise reconstructions from dendrochronological data and from historical documentary data in Europe and climate simulations with global and regional models. These examples indicate that the centennial climate variations can offer a reasonable target to assess the skill of global climate models and of proxy-based reconstructions, even at small spatial scales. However, as the focus shifts towards higher frequency variability, decadal or multidecadal, the need for larger simulation ensembles becomes more evident. Nevertheless,the comparison at these time scales may expose some lines of research on the origin of multidecadal regional climate variability.

  16. Indices and Dynamics of Global Hydroclimate Over the Past Millennium from Data Assimilation

    NASA Astrophysics Data System (ADS)

    Steiger, N. J.; Smerdon, J. E.

    2017-12-01

    Reconstructions based on data assimilation (DA) are at the forefront of model-data syntheses in that such reconstructions optimally fuse proxy data with climate models. DA-based paleoclimate reconstructions have the benefit of being physically-consistent across the reconstructed climate variables and are capable of providing dynamical information about past climate phenomena. Here we use a new implementation of DA, that includes updated proxy system models and climate model bias correction procedures, to reconstruct global hydroclimate on seasonal and annual timescales over the last millennium. This new global hydroclimate product includes reconstructions of the Palmer Drought Severity Index, the Standardized Precipitation Evapotranspiration Index, and global surface temperature along with dynamical variables including the Nino 3.4 index, the latitudinal location of the intertropical convergence zone, and an index of the Atlantic Multidecadal Oscillation. Here we present a validation of the reconstruction product and also elucidate the causes of severe drought in North America and in equatorial Africa. Specifically, we explore the connection between droughts in North America and modes of ocean variability in the Pacific and Atlantic oceans. We also link drought over equatorial Africa to shifts of the intertropical convergence zone and modes of ocean variability.

  17. Leveraging federal science data and tools to help communities & business build climate resilience

    NASA Astrophysics Data System (ADS)

    Herring, D.

    2016-12-01

    Decision-makers in every sector and region of the United States are seeking actionable science-based information to help them understand and manage their climate-related risks. Translating data, tools and information from the domain of climate science to the domains of municipal, social, and economic decision-making raises complex questions—e.g., how to communicate causes and impacts of climate variability and change; how to show projections of plausible future climate scenarios; how to characterize and quantify vulnerabilities, risks, and opportunities facing communities and businesses; and how to make and implement "win-win" adaptation plans. These are the types of challenges being addressed by a public-private partnership of federal agencies, academic institutions, non-governmental organizations, and private businesses that are contributing to the development of the U.S. Climate Resilience Toolkit (toolkit.climate.gov), a new website designed to help people build resilience to extreme events caused by both natural climate variability and long-term climate change. The site's Climate Explorer is designed to help people understand potential climate conditions over the course of this century. It offers easy access to downloadable maps, graphs, and data tables of observed and projected temperature, precipitation and other decision-relevant climate variables dating back to 1950 and out to 2100. Of course, climate change is only one of many variables affecting decisions about the future so the Toolkit also ties climate information to a wide range of other relevant tools and information to help users to explore their vulnerabilities and risks. In this session, we will describe recent enhancements to the Toolkit, lessons learned from user engagements, and evidence that our approach of coupling scientific information with actionable decision-making processes is helping Americans build resilience to climate-related impacts.

  18. Rivers and Floodplains as Key Components of Global Terrestrial Water Storage Variability

    NASA Astrophysics Data System (ADS)

    Getirana, Augusto; Kumar, Sujay; Girotto, Manuela; Rodell, Matthew

    2017-10-01

    This study quantifies the contribution of rivers and floodplains to terrestrial water storage (TWS) variability. We use state-of-the-art models to simulate land surface processes and river dynamics and to separate TWS into its main components. Based on a proposed impact index, we show that surface water storage (SWS) contributes 8% of TWS variability globally, but that contribution differs widely among climate zones. Changes in SWS are a principal component of TWS variability in the tropics, where major rivers flow over arid regions and at high latitudes. SWS accounts for 22-27% of TWS variability in both the Amazon and Nile Basins. Changes in SWS are negligible in the Western U.S., Northern Africa, Middle East, and central Asia. Based on comparisons with Gravity Recovery and Climate Experiment-based TWS, we conclude that accounting for SWS improves simulated TWS in most of South America, Africa, and Southern Asia, confirming that SWS is a key component of TWS variability.

  19. Evaluating the robustness of conceptual rainfall-runoff models under climate variability in northern Tunisia

    NASA Astrophysics Data System (ADS)

    Dakhlaoui, H.; Ruelland, D.; Tramblay, Y.; Bargaoui, Z.

    2017-07-01

    To evaluate the impact of climate change on water resources at the catchment scale, not only future projections of climate are necessary but also robust rainfall-runoff models that must be fairly reliable under changing climate conditions. The aim of this study was thus to assess the robustness of three conceptual rainfall-runoff models (GR4j, HBV and IHACRES) on five basins in northern Tunisia under long-term climate variability, in the light of available future climate scenarios for this region. The robustness of the models was evaluated using a differential split sample test based on a climate classification of the observation period that simultaneously accounted for precipitation and temperature conditions. The study catchments include the main hydrographical basins in northern Tunisia, which produce most of the surface water resources in the country. A 30-year period (1970-2000) was used to capture a wide range of hydro-climatic conditions. The calibration was based on the Kling-Gupta Efficiency (KGE) criterion, while model transferability was evaluated based on the Nash-Sutcliffe efficiency criterion and volume error. The three hydrological models were shown to behave similarly under climate variability. The models simulated the runoff pattern better when transferred to wetter and colder conditions than to drier and warmer ones. It was shown that their robustness became unacceptable when climate conditions involved a decrease of more than 25% in annual precipitation and an increase of more than +1.75 °C in annual mean temperatures. The reduction in model robustness may be partly due to the climate dependence of some parameters. When compared to precipitation and temperature projections in the region, the limits of transferability obtained in this study are generally respected for short and middle term. For long term projections under the most pessimistic emission gas scenarios, the limits of transferability are generally not respected, which may hamper the use of conceptual models for hydrological projections in northern Tunisia.

  20. Interannual variation of carbon fluxes from three contrasting evergreen forests: the role of forest dynamics and climate.

    PubMed

    Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S

    2009-10-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data.

  1. Exploring the control of land-atmospheric oscillations over terrestrial vegetation productivity

    NASA Astrophysics Data System (ADS)

    Depoorter, Mathieu; Green, Julia; Gentine, Pierre; Liu, Yi; van Eck, Christel; Regnier, Pierre; Dorigo, Wouter; Verhoest, Niko; Miralles, Diego

    2015-04-01

    Vegetation dynamics play an important role in the climate system due to their control on the carbon, energy and water cycles. The spatiotemporal variability of vegetation is regulated by internal climate variability as well as natural and anthropogenic forcing mechanisms, including fires, land use, volcano eruptions or greenhouse gas emissions. Ocean-atmospheric oscillations, affect the fluxes of heat and water over continents, leading to anomalies in radiation, precipitation or temperature at widely separated locations (i.e. teleconnections); an effect of ocean-atmospheric oscillations on terrestrial primary productivity can therefore be expected. While different studies have shown the general importance of internal climate variability for global vegetation dynamics, the control by particular teleconnections over the regional growth and decay of vegetation is still poorly understood. At continental to global scales, satellite remote sensing offers a feasible approach to enhance our understanding of the main drivers of vegetation variability. Traditional studies of the multi-decadal variability of global vegetation have been usually based on the normalized difference vegetation index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR), which extends back to the early '80s. There are, however, some limitations to NDVI observations; arguably the most important of these limitations is that from the plant physiology perspective the index does not have a well-defined meaning, appearing poorly correlated to vegetation productivity. On the other hand, recently developed records from other remotely-sensed properties of vegetation, like fluorescence or microwave vegetation optical depth, have proven a significantly better correspondence to above-ground biomass. To enhance our understanding of the controls of ocean-atmosphere oscillations over vegetation, we propose to explore the link between climate oscillation extremes and net primary productivity over the last two decades. The co-variability of a range of climate oscillation indices and newly-derived records of fluorescence and vegetation optical depth is analyzed using a statistical framework based on correlations, bootstrapping and Empirical Orthogonal Functions (EOFs). Results will enable us to characterize regional hotspots where particular climatic oscillations control vegetation productivity, as well as allowing us to underpin the climatic variables behind this control.

  2. Climate, Water and Renewable Energy in the Nordic Countries

    NASA Astrophysics Data System (ADS)

    Snorrason, A.; Jonsdottir, J. F.

    2004-05-01

    Climate and Energy (CE) is a new Nordic research project with funding from Nordic Energy Research (NEFP) and the Nordic energy sector. The project has the objective of a comprehensive assessment of the impact of climate variability and change on Nordic renewable energy resources including hydropower, wind power, bio-fuels and solar energy. This will include assessment of the power production of the hydropower dominated Nordic energy system and its sensitivity and vulnerability to climate change on both temporal and spatial scales; assessment of the impacts of extremes including floods, droughts, storms, seasonal patterns and variability. Within the CE project several thematic groups work on specific issues of climatic change and their impacts on renewable energy. A primary aim of the CE climate group is to supply a standard set of common scenarios of climate change in northern Europe and Greenland, based on recent global and regional climate change experiments. The snow and ice group has chosen glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. Preliminary work with dynamic modelling and climate scenarios shows a dramatic response of glacial runoff to increased temperature and precipitation. The statistical analysis group has reported on the status of time series analysis in the Nordic countries. The group has selected and quality controlled time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. Preliminary work using multivariate analysis on stream flow and climate variables shows strong linkages with the long term atmospheric circulation in the North Atlantic. The hydrological modelling group has already reported on "Climate change impacts on water resources in the Nordic countries - State of the art and discussion of principles". The group will compare different approaches of transferring the climate change signal into hydrological models and discuss uncertainties in models and climate scenarios. Furthermore, comprehensive assessment and mapping of impact of climate change will be produced for the whole Nordic region based on the scenarios from the CE-climate group.

  3. Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions

    NASA Astrophysics Data System (ADS)

    Fischer, Dominik; Thomas, Stephanie Margarete; Niemitz, Franziska; Reineking, Björn; Beierkuhnlein, Carl

    2011-07-01

    During the last decades the disease vector Aedes albopictus ( Ae. albopictus) has rapidly spread around the globe. The spread of this species raises serious public health concerns. Here, we model the present distribution and the future climatic suitability of Europe for this vector in the face of climate change. In order to achieve the most realistic current prediction and future projection, we compare the performance of four different modelling approaches, differentiated by the selection of climate variables (based on expert knowledge vs. statistical criteria) and by the geographical range of presence records (native range vs. global range). First, models of the native and global range were built with MaxEnt and were either based on (1) statistically selected climatic input variables or (2) input variables selected with expert knowledge from the literature. Native models show high model performance (AUC: 0.91-0.94) for the native range, but do not predict the European distribution well (AUC: 0.70-0.72). Models based on the global distribution of the species, however, were able to identify all regions where Ae. albopictus is currently established, including Europe (AUC: 0.89-0.91). In a second step, the modelled bioclimatic envelope of the global range was projected to future climatic conditions in Europe using two emission scenarios implemented in the regional climate model COSMO-CLM for three time periods 2011-2040, 2041-2070, and 2071-2100. For both global-driven models, the results indicate that climatically suitable areas for the establishment of Ae. albopictus will increase in western and central Europe already in 2011-2040 and with a temporal delay in eastern Europe. On the other hand, a decline in climatically suitable areas in southern Europe is pronounced in the Expert knowledge based model. Our projections appear unaffected by non-analogue climate, as this is not detected by Multivariate Environmental Similarity Surface analysis. The generated risk maps can aid in identifying suitable habitats for Ae. albopictus and hence support monitoring and control activities to avoid disease vector establishment.

  4. Effects of climate change and variability on population dynamics in a long-lived shorebird.

    PubMed

    van de Pol, Martijn; Vindenes, Yngvild; Saether, Bernt-Erik; Engen, Steinar; Ens, Bruno J; Oosterbeek, Kees; Tinbergen, Joost M

    2010-04-01

    Climate change affects both the mean and variability of climatic variables, but their relative impact on the dynamics of populations is still largely unexplored. Based on a long-term study of the demography of a declining Eurasian Oystercatcher (Haematopus ostralegus) population, we quantify the effect of changes in mean and variance of winter temperature on different vital rates across the life cycle. Subsequently, we quantify, using stochastic stage-structured models, how changes in the mean and variance of this environmental variable affect important characteristics of the future population dynamics, such as the time to extinction. Local mean winter temperature is predicted to strongly increase, and we show that this is likely to increase the population's persistence time via its positive effects on adult survival that outweigh the negative effects that higher temperatures have on fecundity. Interannual variation in winter temperature is predicted to decrease, which is also likely to increase persistence time via its positive effects on adult survival that outweigh the negative effects that lower temperature variability has on fecundity. Overall, a 0.1 degrees C change in mean temperature is predicted to alter median time to extinction by 1.5 times as many years as would a 0.1 degrees C change in the standard deviation in temperature, suggesting that the dynamics of oystercatchers are more sensitive to changes in the mean than in the interannual variability of this climatic variable. Moreover, as climate models predict larger changes in the mean than in the standard deviation of local winter temperature, the effects of future climatic variability on this population's time to extinction are expected to be overwhelmed by the effects of changes in climatic means. We discuss the mechanisms by which climatic variability can either increase or decrease population viability and how this might depend both on species' life histories and on the vital rates affected. This study illustrates that, for making reliable inferences about population consequences in species in which life history changes with age or stage, it is crucial to investigate the impact of climate change on vital rates across the entire life cycle. Disturbingly, such data are unavailable for most species of conservation concern.

  5. Validation of China-wide interpolated daily climate variables from 1960 to 2011

    NASA Astrophysics Data System (ADS)

    Yuan, Wenping; Xu, Bing; Chen, Zhuoqi; Xia, Jiangzhou; Xu, Wenfang; Chen, Yang; Wu, Xiaoxu; Fu, Yang

    2015-02-01

    Temporally and spatially continuous meteorological variables are increasingly in demand to support many different types of applications related to climate studies. Using measurements from 600 climate stations, a thin-plate spline method was applied to generate daily gridded climate datasets for mean air temperature, maximum temperature, minimum temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, and precipitation over China for the period 1961-2011. A comprehensive evaluation of interpolated climate was conducted at 150 independent validation sites. The results showed superior performance for most of the estimated variables. Except for wind speed, determination coefficients ( R 2) varied from 0.65 to 0.90, and interpolations showed high consistency with observations. Most of the estimated climate variables showed relatively consistent accuracy among all seasons according to the root mean square error, R 2, and relative predictive error. The interpolated data correctly predicted the occurrence of daily precipitation at validation sites with an accuracy of 83 %. Moreover, the interpolation data successfully explained the interannual variability trend for the eight meteorological variables at most validation sites. Consistent interannual variability trends were observed at 66-95 % of the sites for the eight meteorological variables. Accuracy in distinguishing extreme weather events differed substantially among the meteorological variables. The interpolated data identified extreme events for the three temperature variables, relative humidity, and sunshine duration with an accuracy ranging from 63 to 77 %. However, for wind speed, air pressure, and precipitation, the interpolation model correctly identified only 41, 48, and 58 % of extreme events, respectively. The validation indicates that the interpolations can be applied with high confidence for the three temperatures variables, as well as relative humidity and sunshine duration based on the performance of these variables in estimating daily variations, interannual variability, and extreme events. Although longitude, latitude, and elevation data are included in the model, additional information, such as topography and cloud cover, should be integrated into the interpolation algorithm to improve performance in estimating wind speed, atmospheric pressure, and precipitation.

  6. Creation of Synthetic Surface Temperature and Precipitation Ensembles Through A Computationally Efficient, Mixed Method Approach

    NASA Astrophysics Data System (ADS)

    Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.

    2017-12-01

    Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.

  7. Investigating the Contribution of Climate Variables to Estimates of Net Primary Productivity in a Tropical Ecosystem in India

    NASA Astrophysics Data System (ADS)

    Tripathi, P.; Behera, M. D.; Behera, S. K.; Sahu, N.

    2016-12-01

    Investigating the impact of climate variables on net primary productivity is crucial to evaluate the ecosystem health and the status of forest type response to climate change. The objective of this paper is (1) to analyze the spatio-temporal pattern of net primary productivity (NPP) in a tropical forest ecosystem situated along the Himalayan foothills in India and (2) to investigate the continuous and delayed effects of climatic variables. Weapplied simple Monteith equation based Light use efficiency model for two dominant plant functional types; sal (Shorea robusta) forest and teak (Tectona grandis) plantation to estimate the NPP for a decadal period from 2001 to 2010. The impact of climate variables on NPP for these 10 years was seen by applying two correlation analyses; generalized linear modelling (GLM) and time lag correlation approach.The impact of different climate variables was observed to vary throughout the study period.A decline in mean NPP during 2002-2003, 2005 and 2008 to 2010 could be attributed to drought, increased vapour pressure deficit, and decreased humidity and solar radiation. In time lag correlation analysis, precipitation and humidity were observed to be the major variables affecting NPP; whereas combination of temperature, humidity and VPD showed dominant effect on NPP in GLM. Shorea robusta forest showed slightly higher NPP than that of Tectona grandis plantation throughout the study period. Highest decrease in NPP was observed during 2010,pertaining to lower solar radiation, humidity and precipitation along with increased VPD.Higher gains in NPP by sal during all years indicates their better adaptability to climate compared to teak. Contribution of different climatic variables through some link process is revealed in statistical analysis clearly indicates the co-dominance of all the variables in explaining NPP. Lacking of site specific meteorological observations and microclimate put constraint on broad level analyses.

  8. High-resolution spatial databases of monthly climate variables (1961-2010) over a complex terrain region in southwestern China

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Xu, An-Ding; Liu, Hong-Bin

    2015-01-01

    Climate data in gridded format are critical for understanding climate change and its impact on eco-environment. The aim of the current study is to develop spatial databases for three climate variables (maximum, minimum temperatures, and relative humidity) over a large region with complex topography in southwestern China. Five widely used approaches including inverse distance weighting, ordinary kriging, universal kriging, co-kriging, and thin-plate smoothing spline were tested. Root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) showed that thin-plate smoothing spline with latitude, longitude, and elevation outperformed other models. Average RMSE, MAE, and MAPE of the best models were 1.16 °C, 0.74 °C, and 7.38 % for maximum temperature; 0.826 °C, 0.58 °C, and 6.41 % for minimum temperature; and 3.44, 2.28, and 3.21 % for relative humidity, respectively. Spatial datasets of annual and monthly climate variables with 1-km resolution covering the period 1961-2010 were then obtained using the best performance methods. Comparative study showed that the current outcomes were in well agreement with public datasets. Based on the gridded datasets, changes in temperature variables were investigated across the study area. Future study might be needed to capture the uncertainty induced by environmental conditions through remote sensing and knowledge-based methods.

  9. Forecasting seasonal hydrologic response in major river basins

    NASA Astrophysics Data System (ADS)

    Bhuiyan, A. M.

    2014-05-01

    Seasonal precipitation variation due to natural climate variation influences stream flow and the apparent frequency and severity of extreme hydrological conditions such as flood and drought. To study hydrologic response and understand the occurrence of extreme hydrological events, the relevant forcing variables must be identified. This study attempts to assess and quantify the historical occurrence and context of extreme hydrologic flow events and quantify the relation between relevant climate variables. Once identified, the flow data and climate variables are evaluated to identify the primary relationship indicators of hydrologic extreme event occurrence. Existing studies focus on developing basin-scale forecasting techniques based on climate anomalies in El Nino/La Nina episodes linked to global climate. Building on earlier work, the goal of this research is to quantify variations in historical river flows at seasonal temporal-scale, and regional to continental spatial-scale. The work identifies and quantifies runoff variability of major river basins and correlates flow with environmental forcing variables such as El Nino, La Nina, sunspot cycle. These variables are expected to be the primary external natural indicators of inter-annual and inter-seasonal patterns of regional precipitation and river flow. Relations between continental-scale hydrologic flows and external climate variables are evaluated through direct correlations in a seasonal context with environmental phenomenon such as sun spot numbers (SSN), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO). Methods including stochastic time series analysis and artificial neural networks are developed to represent the seasonal variability evident in the historical records of river flows. River flows are categorized into low, average and high flow levels to evaluate and simulate flow variations under associated climate variable variations. Results demonstrated not any particular method is suited to represent scenarios leading to extreme flow conditions. For selected flow scenarios, the persistence model performance may be comparable to more complex multivariate approaches, and complex methods did not always improve flow estimation. Overall model performance indicates inclusion of river flows and forcing variables on average improve model extreme event forecasting skills. As a means to further refine the flow estimation, an ensemble forecast method is implemented to provide a likelihood-based indication of expected river flow magnitude and variability. Results indicate seasonal flow variations are well-captured in the ensemble range, therefore the ensemble approach can often prove efficient in estimating extreme river flow conditions. The discriminant prediction approach, a probabilistic measure to forecast streamflow, is also adopted to derive model performance. Results show the efficiency of the method in terms of representing uncertainties in the forecasts.

  10. Climate suitability and human influences combined explain the range expansion of an invasive horticultural plant

    Treesearch

    Carolyn M. Beans; Francis F. Kilkenny; Laura F. Galloway

    2012-01-01

    Ecological niche models are commonly used to identify regions at risk of species invasions. Relying on climate alone may limit a model's success when additional variables contribute to invasion. While a climate-based model may predict the future spread of an invasive plant, we hypothesized that a model that combined climate with human influences would most...

  11. Urban Heat Wave Vulnerability Analysis Considering Climate Change

    NASA Astrophysics Data System (ADS)

    JE, M.; KIM, H.; Jung, S.

    2017-12-01

    Much attention has been paid to thermal environments in Seoul City in South Korea since 2016 when the worst heatwave in 22 years. It is necessary to provide a selective measure by singling out vulnerable regions in advance to cope with the heat wave-related damage. This study aims to analyze and categorize vulnerable regions of thermal environments in the Seoul and analyzes and discusses the factors and risk factors for each type. To do this, this study conducted the following processes: first, based on the analyzed various literature reviews, indices that can evaluate vulnerable regions of thermal environment are collated. The indices were divided into climate exposure index related to temperature, sensitivity index including demographic, social, and economic indices, and adaptation index related to urban environment and climate adaptation policy status. Second, significant variables were derived to evaluate a vulnerable region of thermal environment based on the summarized indices in the above. this study analyzed a relationship between the number of heat-related patients in Seoul and variables that affected the number using multi-variate statistical analysis to derive significant variables. Third, the importance of each variable was calculated quantitatively by integrating the statistical analysis results and analytic hierarchy process (AHP) method. Fourth, a distribution of data for each index was identified based on the selected variables and indices were normalized and overlapped. Fifth, For the climate exposure index, evaluations were conducted as same as the current vulnerability evaluation method by selecting future temperature of Seoul predicted through the representative concentration pathways (RCPs) climate change scenarios as an evaluation variable. The results of this study can be utilized as foundational data to establish a countermeasure against heatwave in Seoul. Although it is limited to control heatwave occurrences itself completely, improvements on environment for heatwave alleviation and response can be done. In particular, if vulnerable regions of heatwave can be identified and managed in advance, the study results are expected to be utilized as a basis of policy utilization in local communities accordingly.

  12. Are general and strategic measures of organizational context and leadership associated with knowledge and attitudes toward evidence-based practices in public behavioral health settings? A cross-sectional observational study.

    PubMed

    Powell, Byron J; Mandell, David S; Hadley, Trevor R; Rubin, Ronnie M; Evans, Arthur C; Hurford, Matthew O; Beidas, Rinad S

    2017-05-12

    Examining the role of modifiable barriers and facilitators is a necessary step toward developing effective implementation strategies. This study examines whether both general (organizational culture, organizational climate, and transformational leadership) and strategic (implementation climate and implementation leadership) organizational-level factors predict therapist-level determinants of implementation (knowledge of and attitudes toward evidence-based practices). Within the context of a system-wide effort to increase the use of evidence-based practices (EBPs) and recovery-oriented care, we conducted an observational, cross-sectional study of 19 child-serving agencies in the City of Philadelphia, including 23 sites, 130 therapists, 36 supervisors, and 22 executive administrators. Organizational variables included characteristics such as EBP initiative participation, program size, and proportion of independent contractor therapists; general factors such as organizational culture and climate (Organizational Social Context Measurement System) and transformational leadership (Multifactor Leadership Questionnaire); and strategic factors such as implementation climate (Implementation Climate Scale) and implementation leadership (Implementation Leadership Scale). Therapist-level variables included demographics, attitudes toward EBPs (Evidence-Based Practice Attitudes Scale), and knowledge of EBPs (Knowledge of Evidence-Based Services Questionnaire). We used linear mixed-effects regression models to estimate the associations between the predictor (organizational characteristics, general and strategic factors) and dependent (knowledge of and attitudes toward EBPs) variables. Several variables were associated with therapists' knowledge of EBPs. Clinicians in organizations with more proficient cultures or higher levels of transformational leadership (idealized influence) had greater knowledge of EBPs; conversely, clinicians in organizations with more resistant cultures, more functional organizational climates, and implementation climates characterized by higher levels of financial reward for EBPs had less knowledge of EBPs. A number of organizational factors were associated with the therapists' attitudes toward EBPs. For example, more engaged organizational cultures, implementation climates characterized by higher levels of educational support, and more proactive implementation leadership were all associated with more positive attitudes toward EBPs. This study provides evidence for the importance of both general and strategic organizational determinants as predictors of knowledge of and attitudes toward EBPs. The findings highlight the need for longitudinal and mixed-methods studies that examine the influence of organizational factors on implementation.

  13. Vulnerability to climate change and adaptation strategies of local communities in Malawi: experiences of women fish-processing groups in the Lake Chilwa Basin

    NASA Astrophysics Data System (ADS)

    Jørstad, Hanne; Webersik, Christian

    2016-12-01

    In recent years, research on climate change and human security has received much attention among policy makers and academia alike. Communities in the Global South that rely on an intact resource base and struggle with poverty, existing inequalities and historical injustices will especially be affected by predicted changes in temperature and precipitation. The objective of this article is to better understand under what conditions local communities can adapt to anticipated impacts of climate change. The empirical part of the paper answers the question as to what extent local women engaged in fish processing in the Chilwa Basin in Malawi have experienced climate change and how they are affected by it. The article assesses an adaptation project designed to make those women more resilient to a warmer and more variable climate. The research results show that marketing and improving fish processing as strategies to adapt to climate change have their limitations. The study concludes that livelihood diversification can be a more effective strategy for Malawian women to adapt to a more variable and unpredictable climate rather than exclusively relying on a resource base that is threatened by climate change.

  14. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    NASA Astrophysics Data System (ADS)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for better informed decision-making on adaptation strategies. References 1. Coumou, D. & Rahmstorf, S. A decade of extremes. Nature Clim. Change, 2, 491-496 (2012). 2. Rötter, R. P., Carter, T. R., Olesen, J. E. & Porter, J. R. Crop-climate models need an overhaul. Nature Clim. Change, 1, 175-177 (2011). 3. Asseng, S. et al., Uncertainty in simulating wheat yields under climate change. Nature Clim. Change. 10.1038/nclimate1916. (2013). 4. Porter, J.R., & Semenov, M., Crop responses to climatic variation . Trans. R. Soc. B., 360, 2021-2035 (2005). 5. Porter, J.R. & Christensen, S. Deconstructing crop processes and models via identities. Plant, Cell and Environment . doi: 10.1111/pce.12107 (2013). 6. Boogaard, H.L., van Diepen C.A., Rötter R.P., Cabrera J.M. & van Laar H.H. User's guide for the WOFOST 7.1 crop growth simulation model and Control Center 1.5, Alterra, Wageningen, The Netherlands. (1998) 7. Tao, F. & Zhang, Z. Climate change, wheat productivity and water use in the North China Plain: a new super-ensemble-based probabilistic projection. Agric. Forest Meteorol., 170, 146-165. (2013).

  15. An Integrated Multivariable Visualization Tool for Marine Sanctuary Climate Assessments

    NASA Astrophysics Data System (ADS)

    Shein, K. A.; Johnston, S.; Stachniewicz, J.; Duncan, B.; Cecil, D.; Ansari, S.; Urzen, M.

    2012-12-01

    The comprehensive development and use of ecological climate impact assessments by ecosystem managers can be limited by data access and visualization methods that require a priori knowledge about the various large and complex climate data products necessary to those impact assessments. In addition, it can be difficult to geographically and temporally integrate climate and ecological data to fully characterize climate-driven ecological impacts. To address these considerations, we have enhanced and extended the functionality of the NOAA National Climatic Data Center's Weather and Climate Toolkit (WCT). The WCT is a freely available Java-based tool designed to access and display NCDC's georeferenced climate data products (e.g., satellite, radar, and reanalysis gridded data). However, the WCT requires users already know how to obtain the data products, which products are preferred for a given variable, and which products are most relevant to their needs. Developed in cooperation with research and management customers at the Gulf of the Farallones National Marine Sanctuary, the Integrated Marine Protected Area Climate Tools (IMPACT) modification to the WCT simplifies or eliminates these requirements, while simultaneously adding core analytical functionality to the tool. Designed for use by marine ecosystem managers, WCT-IMPACT accesses a suite of data products that have been identified as relevant to marine ecosystem climate impact assessments, such as NOAA's Climate Data Records. WCT-IMPACT regularly crops these products to the geographic boundaries of each included marine protected area (MPA), and those clipped regions are processed to produce MPA-specific analytics. The tool retrieves the most appropriate data files based on the user selection of MPA, environmental variable(s), and time frame. Once the data are loaded, they may be visualized, explored, analyzed, and exported to other formats (e.g., Google KML). Multiple variables may be simultaneously visualized using a 4-panel display and compared via a variety of statistics such as difference, probability, or correlation maps.; NCDC's Weather and Climate Toolkit image of NARR-A non-convective cloud cover (%) over the Pacific Coast on June 17, 2012 at 09:00 GMT.

  16. Regional Climate Change Hotspots over Africa

    NASA Astrophysics Data System (ADS)

    Anber, U.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation ( , of present day value ), change in regional surface air temperature interannual variability ( ,of present day value), change in regional precipitation interannual variability ( , of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter annual variability, which is critical for many activity sectors, such as agriculture and water management. The RCCI is calculated for the above mentioned set of global climate change simulations and is inter compared across regions to identify climate change, Hot- Spots, that is regions with the largest values of RCCI. It is important to stress that, as will be seen, the RCCI is a comparative index, that is a small RCCI value does not imply a small absolute change, but only a small climate response compared to other regions. The models used are: CCMA-3-T47 CNRM-CM3 CSIRO-MK3 GFDL-CM2-0 GISS-ER INMCM3 IPSL-CM4 MIROC3-2M MIUB-ECHO-G MPI-ECHAM5 MRI-CGCM2 NCAR-CCSM3 NCAR-PCM1 UKMO-HADCM3 Note that the 3 IPCC emission scenarios, A1B, B1 and A2 almost encompass the entire IPCC scenario range, the A2 being close to the high end of the range, the B1 close to the low end and the A1B lying toward the middle of the range. The model data are obtained from the IPCC site and are interpolated onto a common 1 degree grid to facilitate intercomparison. The RCCI is here defined as in Giorgi (2006), except that the entire yea is devided into two six months periods, D J F M A M and J J A S O N. RCCI=[n(∆P)+n(∆σP)+n(RWAF)+n(∆σT)]D...M + [n(∆P)+n(∆σP)+n(RWAF)+n(∆σT)]J…N (1)

  17. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China

    NASA Astrophysics Data System (ADS)

    Chen, Zhongsheng; Chen, Yaning; Li, Baofu

    2013-02-01

    Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Kaidu River Basin in the arid region of northwest China were analyzed to investigate changes in annual runoff during the period of 1960-2009. The nonparametric Mann-Kendall test and the Mann-Kendall-Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. Step change point in annual runoff was identified in the basin, which occurred in the year around 1993 dividing the long-term runoff series into a natural period (1960-1993) and a human-induced period (1994-2009). Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In 1994-2009, climate variability was the main factor that increased runoff with contribution of 90.5 %, while the increasing percentage due to human activities only accounted for 9.5 %, showing that runoff in the Kaidu River Basin is more sensitive to climate variability than human activities. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.

  18. Adapting to climate variability and change: experiences from cereal-based farming in the central rift and Kobo Valleys, Ethiopia.

    PubMed

    Kassie, Belay Tseganeh; Hengsdijk, Huib; Rötter, Reimund; Kahiluoto, Helena; Asseng, Senthold; Van Ittersum, Martin

    2013-11-01

    Small-holder farmers in Ethiopia are facing several climate related hazards, in particular highly variable rainfall with severe droughts which can have devastating effects on their livelihoods. Projected changes in climate are expected to aggravate the existing challenges. This study examines farmer perceptions on current climate variability and long-term changes, current adaptive strategies, and potential barriers for successful further adaptation in two case study regions-the Central Rift Valley (CRV) and Kobo Valley. The study was based on a household questionnaire, interviews with key stakeholders, and focus group discussions. The result revealed that about 99 % of the respondents at the CRV and 96 % at the Kobo Valley perceived an increase in temperature and 94 % at CRV and 91 % at the Kobo Valley perceived a decrease in rainfall over the last 20-30 years. Inter-annual and intraseasonal rainfall variability also has increased according to the farmers. The observed climate data (1977-2009) also showed an increasing trend in temperature and high inter-annual and intra-seasonal rainfall variability. In contrast to farmers' perceptions of a decrease in rainfall totals, observed rainfall data showed no statistically significant decline. The interaction among various bio-physical and socio-economic factors, changes in rainfall intensity and reduced water available to crops due to increased hot spells, may have influenced the perception of farmers with respect to rainfall trends. In recent decades, farmers in both the CRV and Kobo have changed farming practices to adapt to perceived climate change and variability, for example, through crop and variety choice, adjustment of cropping calendar, and in situ moisture conservation. These relatively low-cost changes in farm practices were within the limited adaptation capacity of farmers, which may be insufficient to deal with the impacts of future climate change. Anticipated climate change is expected to impose new risks outside the range of current experiences. To enable farmers to adapt to these impacts critical technological, institutional, and market-access constraints need to be removed. Inconsistencies between farmers' perceptions and observed climate trends (e.g., decrease in annual rainfall) could lead to sub-optimal or counterproductive adaptations, and therefore must be removed by better communication and capacity building, for example through Climate Field Schools. Enabling strategies, which are among others targeted at agricultural inputs, credit supply, market access, and strengthening of local knowledge and information services need to become integral part of government policies to assist farmers to adapt to the impacts of current and future climate change.

  19. Adapting to Climate Variability and Change: Experiences from Cereal-Based Farming in the Central Rift and Kobo Valleys, Ethiopia

    NASA Astrophysics Data System (ADS)

    Kassie, Belay Tseganeh; Hengsdijk, Huib; Rötter, Reimund; Kahiluoto, Helena; Asseng, Senthold; Van Ittersum, Martin

    2013-11-01

    Small-holder farmers in Ethiopia are facing several climate related hazards, in particular highly variable rainfall with severe droughts which can have devastating effects on their livelihoods. Projected changes in climate are expected to aggravate the existing challenges. This study examines farmer perceptions on current climate variability and long-term changes, current adaptive strategies, and potential barriers for successful further adaptation in two case study regions—the Central Rift Valley (CRV) and Kobo Valley. The study was based on a household questionnaire, interviews with key stakeholders, and focus group discussions. The result revealed that about 99 % of the respondents at the CRV and 96 % at the Kobo Valley perceived an increase in temperature and 94 % at CRV and 91 % at the Kobo Valley perceived a decrease in rainfall over the last 20-30 years. Inter-annual and intraseasonal rainfall variability also has increased according to the farmers. The observed climate data (1977-2009) also showed an increasing trend in temperature and high inter-annual and intra-seasonal rainfall variability. In contrast to farmers’ perceptions of a decrease in rainfall totals, observed rainfall data showed no statistically significant decline. The interaction among various bio-physical and socio-economic factors, changes in rainfall intensity and reduced water available to crops due to increased hot spells, may have influenced the perception of farmers with respect to rainfall trends. In recent decades, farmers in both the CRV and Kobo have changed farming practices to adapt to perceived climate change and variability, for example, through crop and variety choice, adjustment of cropping calendar, and in situ moisture conservation. These relatively low-cost changes in farm practices were within the limited adaptation capacity of farmers, which may be insufficient to deal with the impacts of future climate change. Anticipated climate change is expected to impose new risks outside the range of current experiences. To enable farmers to adapt to these impacts critical technological, institutional, and market-access constraints need to be removed. Inconsistencies between farmers’ perceptions and observed climate trends (e.g., decrease in annual rainfall) could lead to sub-optimal or counterproductive adaptations, and therefore must be removed by better communication and capacity building, for example through Climate Field Schools. Enabling strategies, which are among others targeted at agricultural inputs, credit supply, market access, and strengthening of local knowledge and information services need to become integral part of government policies to assist farmers to adapt to the impacts of current and future climate change.

  20. Climate variation explains a third of global crop yield variability

    PubMed Central

    Ray, Deepak K.; Gerber, James S.; MacDonald, Graham K.; West, Paul C.

    2015-01-01

    Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability. PMID:25609225

  1. VEMAP Phase 2 bioclimatic database. I. Gridded historical (20th century) climate for modeling ecosystem dynamics across the conterminous USA

    USGS Publications Warehouse

    Kittel, T.G.F.; Rosenbloom, N.A.; Royle, J. Andrew; Daly, Christopher; Gibson, W.P.; Fisher, H.H.; Thornton, P.; Yates, D.N.; Aulenbach, S.; Kaufman, C.; McKeown, R.; Bachelet, D.; Schimel, D.S.; Neilson, R.; Lenihan, J.; Drapek, R.; Ojima, D.S.; Parton, W.J.; Melillo, J.M.; Kicklighter, D.W.; Tian, H.; McGuire, A.D.; Sykes, M.T.; Smith, B.; Cowling, S.; Hickler, T.; Prentice, I.C.; Running, S.; Hibbard, K.A.; Post, W.M.; King, A.W.; Smith, T.; Rizzo, B.; Woodward, F.I.

    2004-01-01

    Analysis and simulation of biospheric responses to historical forcing require surface climate data that capture those aspects of climate that control ecological processes, including key spatial gradients and modes of temporal variability. We developed a multivariate, gridded historical climate dataset for the conterminous USA as a common input database for the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), a biogeochemical and dynamic vegetation model intercomparison. The dataset covers the period 1895-1993 on a 0.5?? latitude/longitude grid. Climate is represented at both monthly and daily timesteps. Variables are: precipitation, mininimum and maximum temperature, total incident solar radiation, daylight-period irradiance, vapor pressure, and daylight-period relative humidity. The dataset was derived from US Historical Climate Network (HCN), cooperative network, and snowpack telemetry (SNOTEL) monthly precipitation and mean minimum and maximum temperature station data. We employed techniques that rely on geostatistical and physical relationships to create the temporally and spatially complete dataset. We developed a local kriging prediction model to infill discontinuous and limited-length station records based on spatial autocorrelation structure of climate anomalies. A spatial interpolation model (PRISM) that accounts for physiographic controls was used to grid the infilled monthly station data. We implemented a stochastic weather generator (modified WGEN) to disaggregate the gridded monthly series to dailies. Radiation and humidity variables were estimated from the dailies using a physically-based empirical surface climate model (MTCLIM3). Derived datasets include a 100 yr model spin-up climate and a historical Palmer Drought Severity Index (PDSI) dataset. The VEMAP dataset exhibits statistically significant trends in temperature, precipitation, solar radiation, vapor pressure, and PDSI for US National Assessment regions. The historical climate and companion datasets are available online at data archive centers. ?? Inter-Research 2004.

  2. Climate variability controls on unsaturated water and chemical movement, High Plains aquifer, USA

    USGS Publications Warehouse

    Gurdak, J.J.; Hanson, R.T.; McMahon, P.B.; Bruce, B.W.; McCray, J.E.; Thyne, G.D.; Reedy, R.C.

    2007-01-01

    Responses in the vadose zone and groundwater to interannual, interdecadal, and multidecadal climate variability have important implications for groundwater resource sustainability, yet they are poorly documented and not well understood in most aquifers of the USA. This investigation systematically examines the role of interannual to multidecadal climate variability on groundwater levels, deep infiltration (3-23 m) events, and downward displacement (>1 m) of chloride and nitrate reservoirs in thick (15-50 m) vadose zones across the regionally extensive High Plains aquifer. Such vadose zone responses are unexpected across much of the aquifer given a priori that unsaturated total-potential profiles indicate upward water movement from the water table toward the root zone, mean annual potential evapotranspiration exceeds mean annual precipitation, and millennia-scale evapoconcentration results in substantial vadose zone chloride and nitrate reservoirs. Using singular spectrum analysis (SSA) to reconstruct precipitation and groundwater level time-series components, variability was identified in all time series as partially coincident with known climate cycles, such as the Pacific Decadal Oscillation (PDO) (10-25 yr) and the El Nin??o/Southern Oscillation (ENSO) (2-6 yr). Using these lag-correlated hydrologic time series, a new method is demonstrated to estimate climate-varying unsaturated water flux. The results suggest the importance of interannual to interdecadal climate variability on water-flux estimation in thick vadose zones and provide better understanding of the climate-induced transients responsible for the observed deep infiltration and chemical-mobilization events. Based on these results, we discuss implications for climate-related sustainability of the High Plains aquifer. ?? Soil Science Society of America.

  3. Climate variability in China during the last millennium based on reconstructions and simulations

    NASA Astrophysics Data System (ADS)

    García-Bustamante, E.; Luterbacher, J.; Xoplaki, E.; Werner, J. P.; Jungclaus, J.; Zorita, E.; González-Rouco, J. F.; Fernández-Donado, L.; Hegerl, G.; Ge, Q.; Hao, Z.; Wagner, S.

    2012-04-01

    Multi-decadal to centennial climate variability in China during the last millennium is analysed. We compare the low frequency temperature and precipitation variations from proxy-based reconstructions and palaeo-simulations from climate models. Focusing on the regional responses to the global climate evolution is of high relevance due to the complexity of the interactions between physical mechanisms at different spatio-temporal scales and the potential severity of the derived multiple socio-economic impacts. China stands out as a particularly interesting region, not only due to its complex climatic features, ranging from the semiarid northwestern Tibetan Plateau to the tropical monsoon southeastern climates, but also because of its wealth of proxy data. However, comprehensive assessments of proxy- and model-based information about palaeo-climatic variations in China are, to our knowledge, still lacking. In addition, existing studies depict a general lack of agreement between reconstructions and model simulations with respect to the amplitude and/or occurrence of warmer/colder and wetter/drier periods during the last millennium and the magnitude of the 20th century warming trend. Furthermore, these works are mainly focused on eastern China regions that show a denser proxy data coverage. We investigate how last millennium palaeo-runs compare to independent evidences from an unusual large number of proxy reconstructions over the study area by employing state-of-the-art palaeo-simulations with multi-member ensembles from the CMIP5/PMIP3 project. This shapes an ideal frame for the evaluation of the uncertainties associated to internal and intermodel model variability. Preliminary results indicate that despite the strong regional and seasonal dependencies, temperature reconstructions in China evidence coherent variations among all regions at centennial scale, especially during the last 500 years. The spatial consistency of low frequency temperature changes is an interesting aspect and of relevance for the assessment of forced climatic responses in China. The comparison between reconstructions and simulations from climate models show that, apart from the 20th century warming trend, the variance of the reconstructed mean China temperature lies in the envelope (uncertainty range) spanned by the temperature simulations. The uncertainty arises from the internal (multi-member ensembles) and the inter-model variability. Centennial variations tend to be broadly synchronous in the reconstructions and the simulations. However, the simulations show a delay of the warm period 1000-1300 AD. This warm medieval period both in the simulations and the reconstructions is followed by cooling till 1800 AD. Based on the simulations, the recent warming is not unprecedented and is comparable to the medieval warming. Further steps of this study will address the individual contribution of anthropogenic and natural forcings on climate variability and change during the last millennium in China. We will make use of of models that provide runs including single forcings (fingerprints) for the attribution of climate variations from decadal to multi-centennial time scales. With this aim, we will implement statistical techniques for the detection of optimal signal-to-noise-ratio between external forcings and internal variability of reconstructed temperatures and precipitation. To apply these approaches the uncertainties associated with both reconstructions and simulations will be estimated. The latter will shed some light into the mechanisms behind current climate evolution and will help to constrain uncertainties in the sensitivity of model simulations to increasing CO2 scenarios of future climate change. This work will also contribute to the overall aims of the PAGES 2k initiative in Asia (http://www.pages.unibe.ch/workinggroups/2k-network)

  4. Climate and soil attributes determine plant species turnover in global drylands

    PubMed Central

    Maestre, Fernando T.; Gotelli, Nicholas J.; Quero, José L.; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; Eldridge, David J.; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L.; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Raveh, Eran; Romão, Roberto L.; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli

    2015-01-01

    Aim Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. Location 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Methods Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake’s beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R2)), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Results Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R2)) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Main conclusions Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation. PMID:25914437

  5. Sensitivity of ground - water recharge estimates to climate variability and change, Columbia Plateau, Washington

    USGS Publications Warehouse

    Vaccaro, John J.

    1992-01-01

    The sensitivity of groundwater recharge estimates was investigated for the semiarid Ellensburg basin, located on the Columbia Plateau, Washington, to historic and projected climatic regimes. Recharge was estimated for predevelopment and current (1980s) land use conditions using a daily energy-soil-water balance model. A synthetic daily weather generator was used to simulate lengthy sequences with parameters estimated from subsets of the historical record that were unusually wet and unusually dry. Comparison of recharge estimates corresponding to relatively wet and dry periods showed that recharge for predevelopment land use varies considerably within the range of climatic conditions observed in the 87-year historical observation period. Recharge variations for present land use conditions were less sensitive to the same range of historical climatic conditions because of irrigation. The estimated recharge based on the 87-year historical climatology was compared with adjustments to the historical precipitation and temperature records for the same record to reflect CO2-doubling climates as projected by general circulation models (GCMs). Two GCM scenarios were considered: an average of conditions for three different GCMs with CO2 doubling, and a most severe “maximum” case. For the average GCM scenario, predevelopment recharge increased, and current recharge decreased. Also considered was the sensitivity of recharge to the variability of climate within the historical and adjusted historical records. Predevelopment and current recharge were less and more sensitive, respectively, to the climate variability for the average GCM scenario as compared to the variability within the historical record. For the maximum GCM scenario, recharge for both predevelopment and current land use decreased, and the sensitivity to the CO2-related climate change was larger than sensitivity to the variability in the historical and adjusted historical climate records.

  6. Association between Climatic Variables and Malaria Incidence: A Study in Kokrajhar District of Assam, India

    PubMed Central

    Nath, Dilip C.; Mwchahary, Dimacha Dwibrang

    2013-01-01

    A favorable climatic condition for transmission of malaria prevails in Kokrajhar district throughout the year. A sizeable part of the district is covered by forest due to which dissimilar dynamics of malaria transmission emerge in forest and non-forest areas. Observed malaria incidence rates of forest area, non-forest area and the whole district over the period 2001-2010 were considered for analyzing temporal correlation between malaria incidence and climatic variables. Associations between the two were examined by Pearson correlation analysis. Cross-correlation tests were performed between pre-whitened series of climatic variable and malaria series. Linear regressions were used to obtain linear relationships between climatic factors and malaria incidence, while weighted least squares regression was used to construct models for explaining and estimating malaria incidence rates. Annual concentration of malaria incidence was analyzed by Markham technique by obtaining seasonal index. Forest area and non-forest area have distinguishable malaria seasons. Relative humidity was positively correlated with z malaria incidence, while temperature series were negatively correlated with non-forest malaria incidence. There was higher seasonality of concentration of malaria in the forest area than non-forest area. Significant correlation between annual changes in malaria cases in forest area and temperature was observed (coeff=0.689, p=0.040). Separate reliable models constructed for forecasting malaria incidence rates based on the combined influence of climatic variables on malaria incidence in different areas of the district were able to explain substantial percentage of observed variability in the incidence rates (R2adj=45.4%, 50.6%, 47.2%; p< .001 for all). There is an intricate association between climatic variables and malaria incidence of the district. Climatic variables influence malaria incidence in forest area and non-forest area in different ways. Rainfall plays a primary role in characterizing malaria incidences in the district. Malaria parasites in the district had adapted to a relative humidity condition higher than the normal range for transmission in India. Instead of individual influence of the climatic variables, their combined influence was utilizable for construction of models. PMID:23283041

  7. Association between climatic variables and malaria incidence: a study in Kokrajhar district of Assam, India.

    PubMed

    Nath, Dilip C; Mwchahary, Dimacha Dwibrang

    2012-11-11

    A favorable climatic condition for transmission of malaria prevails in Kokrajhar district throughout the year. A sizeable part of the district is covered by forest due to which dissimilar dynamics of malaria transmission emerge in forest and non-forest areas. Observed malaria incidence rates of forest area, non-forest area and the whole district over the period 2001-2010 were considered for analyzing temporal correlation between malaria incidence and climatic variables. Associations between the two were examined by Pearson correlation analysis. Cross-correlation tests were performed between pre-whitened series of climatic variable and malaria series. Linear regressions were used to obtain linear relationships between climatic factors and malaria incidence, while weighted least squares regression was used to construct models for explaining and estimating malaria incidence rates. Annual concentration of malaria incidence was analyzed by Markham technique by obtaining seasonal index. Forest area and non-forest area have distinguishable malaria seasons. Relative humidity was positively correlated with forest malaria incidence, while temperature series were negatively correlated with non-forest malaria incidence. There was higher seasonality of concentration of malaria in the forest area than non-forest area. Significant correlation between annual changes in malaria cases in forest area and temperature was observed (coeff=0.689, p=0.040). Separate reliable models constructed for forecasting malaria incidence rates based on the combined influence of climatic variables on malaria incidence in different areas of the district were able to explain substantial percentage of observed variability in the incidence rates (R2adj=45.4%, 50.6%, 47.2%; p< .001 for all). There is an intricate association between climatic variables and malaria incidence of the district. Climatic variables influence malaria incidence in forest area and non-forest area in different ways. Rainfall plays a primary role in characterizing malaria incidences in the district. Malaria parasites in the district had adapted to a relative humidity condition higher than the normal range for transmission in India. Instead of individual influence of the climatic variables, their combined influence was utilizable for construction of models.

  8. Earth System Science Education Centered on Natural Climate Variability

    NASA Astrophysics Data System (ADS)

    Ramirez, P. C.; Ladochy, S.; Patzert, W. C.; Willis, J. K.

    2009-12-01

    Several new courses and many educational activities related to climate change are available to teachers and students of all grade levels. However, not all new discoveries in climate research have reached the science education community. In particular, effective learning tools explaining natural climate change are scarce. For example, the Pacific Decadal Oscillation (PDO) is a main cause of natural climate variability spanning decades. While most educators are familiar with the shorter-temporal events impacting climate, El Niño and La Niña, very little has trickled into the climate change curriculum on the PDO. We have developed two online educational modules, using an Earth system science approach, on the PDO and its role in climate change and variability. The first concentrates on the discovery of the PDO through records of salmon catch in the Pacific Northwest and Alaska. We present the connection between salmon abundance in the North Pacific to changing sea surface temperature patterns associated with the PDO. The connection between sea surface temperatures and salmon abundance led to the discovery of the PDO. Our activity also lets students explore the role of salmon in the economy and culture of the Pacific Northwest and Alaska and the environmental requirements for salmon survival. The second module is based on the climate of southern California and how changes in the Pacific Ocean , such as the PDO and ENSO (El Niño-Southern Oscillation), influence regional climate variability. PDO and ENSO signals are evident in the long-term temperature and precipitation record of southern California. Students are guided in the module to discover the relationships between Pacific Ocean conditions and southern California climate variability. The module also provides information establishing the relationship between climate change and variability and the state's water, energy, agriculture, wildfires and forestry, air quality and health issues. Both modules will be reviewed for inclusion on the ESSEA (Earth Systems Science Education Alliance) course module list. ESSEA is a NSF-funded organization dedicated to K-12 online Earth system science education.

  9. Detection of greenhouse-gas-induced climatic change. Progress report, July 1, 1994--July 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, P.D.; Wigley, T.M.L.

    1995-07-21

    The objective of this research is to assembly and analyze instrumental climate data and to develop and apply climate models as a basis for detecting greenhouse-gas-induced climatic change, and validation of General Circulation Models. In addition to changes due to variations in anthropogenic forcing, including greenhouse gas and aerosol concentration changes, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the anthropogenic effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics.more » To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas and aerosol concentration changes and other factors. Analyses will be guided by a variety of models, from simple energy balance climate models to coupled atmosphere ocean General Circulation Models. These analyses are oriented towards obtaining early evidence of anthropogenic climatic change that would lead either to confirmation, rejection or modification of model projections, and towards the statistical validation of General Circulation Model control runs and perturbation experiments.« less

  10. Simulating the hydrologic impacts of land-cover and climate changes in a semi-arid watershed

    EPA Science Inventory

    Changes in climate and land cover are principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic impacts of climate and land cover changes in the semi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevad...

  11. Sampling bias in climate-conflict research

    NASA Astrophysics Data System (ADS)

    Adams, Courtland; Ide, Tobias; Barnett, Jon; Detges, Adrien

    2018-03-01

    Critics have argued that the evidence of an association between climate change and conflict is flawed because the research relies on a dependent variable sampling strategy1-4. Similarly, it has been hypothesized that convenience of access biases the sample of cases studied (the `streetlight effect'5). This also gives rise to claims that the climate-conflict literature stigmatizes some places as being more `naturally' violent6-8. Yet there has been no proof of such sampling patterns. Here we test whether climate-conflict research is based on such a biased sample through a systematic review of the literature. We demonstrate that research on climate change and violent conflict suffers from a streetlight effect. Further, studies which focus on a small number of cases in particular are strongly informed by cases where there has been conflict, do not sample on the independent variables (climate impact or risk), and hence tend to find some association between these two variables. These biases mean that research on climate change and conflict primarily focuses on a few accessible regions, overstates the links between both phenomena and cannot explain peaceful outcomes from climate change. This could result in maladaptive responses in those places that are stigmatized as being inherently more prone to climate-induced violence.

  12. Statistical and Biophysical Models for Predicting Total and Outdoor Water Use in Los Angeles

    NASA Astrophysics Data System (ADS)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2012-04-01

    Modeling water demand is a complex exercise in the choice of the functional form, techniques and variables to integrate in the model. The goal of the current research is to identify the determinants that control total and outdoor residential water use in semi-arid cities and to utilize that information in the development of statistical and biophysical models that can forecast spatial and temporal urban water use. The City of Los Angeles is unique in its highly diverse socio-demographic, economic and cultural characteristics across neighborhoods, which introduces significant challenges in modeling water use. Increasing climate variability also contributes to uncertainties in water use predictions in urban areas. Monthly individual water use records were acquired from the Los Angeles Department of Water and Power (LADWP) for the 2000 to 2010 period. Study predictors of residential water use include socio-demographic, economic, climate and landscaping variables at the zip code level collected from US Census database. Climate variables are estimated from ground-based observations and calculated at the centroid of each zip code by inverse-distance weighting method. Remotely-sensed products of vegetation biomass and landscape land cover are also utilized. Two linear regression models were developed based on the panel data and variables described: a pooled-OLS regression model and a linear mixed effects model. Both models show income per capita and the percentage of landscape areas in each zip code as being statistically significant predictors. The pooled-OLS model tends to over-estimate higher water use zip codes and both models provide similar RMSE values.Outdoor water use was estimated at the census tract level as the residual between total water use and indoor use. This residual is being compared with the output from a biophysical model including tree and grass cover areas, climate variables and estimates of evapotranspiration at very high spatial resolution. A genetic algorithm based model (Shuffled Complex Evolution-UA; SCE-UA) is also being developed to provide estimates of the predictions and parameters uncertainties and to compare against the linear regression models. Ultimately, models will be selected to undertake predictions for a range of climate change and landscape scenarios. Finally, project results will contribute to a better understanding of water demand to help predict future water use and implement targeted landscaping conservation programs to maintain sustainable water needs for a growing population under uncertain climate variability.

  13. Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures

    NASA Astrophysics Data System (ADS)

    Wills, Robert C.; Schneider, Tapio; Wallace, John M.; Battisti, David S.; Hartmann, Dennis L.

    2018-03-01

    A key challenge in climate science is to separate observed temperature changes into components due to internal variability and responses to external forcing. Extended integrations of forced and unforced climate models are often used for this purpose. Here we demonstrate a novel method to separate modes of internal variability from global warming based on differences in time scale and spatial pattern, without relying on climate models. We identify uncorrelated components of Pacific sea surface temperature variability due to global warming, the Pacific Decadal Oscillation (PDO), and the El Niño-Southern Oscillation (ENSO). Our results give statistical representations of PDO and ENSO that are consistent with their being separate processes, operating on different time scales, but are otherwise consistent with canonical definitions. We isolate the multidecadal variability of the PDO and find that it is confined to midlatitudes; tropical sea surface temperatures and their teleconnections mix in higher-frequency variability. This implies that midlatitude PDO anomalies are more persistent than previously thought.

  14. An effective drift correction for dynamical downscaling of decadal global climate predictions

    NASA Astrophysics Data System (ADS)

    Paeth, Heiko; Li, Jingmin; Pollinger, Felix; Müller, Wolfgang A.; Pohlmann, Holger; Feldmann, Hendrik; Panitz, Hans-Jürgen

    2018-04-01

    Initialized decadal climate predictions with coupled climate models are often marked by substantial climate drifts that emanate from a mismatch between the climatology of the coupled model system and the data set used for initialization. While such drifts may be easily removed from the prediction system when analyzing individual variables, a major problem prevails for multivariate issues and, especially, when the output of the global prediction system shall be used for dynamical downscaling. In this study, we present a statistical approach to remove climate drifts in a multivariate context and demonstrate the effect of this drift correction on regional climate model simulations over the Euro-Atlantic sector. The statistical approach is based on an empirical orthogonal function (EOF) analysis adapted to a very large data matrix. The climate drift emerges as a dramatic cooling trend in North Atlantic sea surface temperatures (SSTs) and is captured by the leading EOF of the multivariate output from the global prediction system, accounting for 7.7% of total variability. The SST cooling pattern also imposes drifts in various atmospheric variables and levels. The removal of the first EOF effectuates the drift correction while retaining other components of intra-annual, inter-annual and decadal variability. In the regional climate model, the multivariate drift correction of the input data removes the cooling trends in most western European land regions and systematically reduces the discrepancy between the output of the regional climate model and observational data. In contrast, removing the drift only in the SST field from the global model has hardly any positive effect on the regional climate model.

  15. Farmers' Perceptions of Climate Variability and Factors Influencing Adaptation: Evidence from Anhui and Jiangsu, China

    NASA Astrophysics Data System (ADS)

    Kibue, Grace Wanjiru; Liu, Xiaoyu; Zheng, Jufeng; zhang, Xuhui; Pan, Genxing; Li, Lianqing; Han, Xiaojun

    2016-05-01

    Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers' perceptions of climate variability and adaptation. Yet, without an understanding of farmers' perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers' perceptions of climate variability. We found that farmers' were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers' characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads' education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers' perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China's agricultural assets.

  16. Farmers' Perceptions of Climate Variability and Factors Influencing Adaptation: Evidence from Anhui and Jiangsu, China.

    PubMed

    Kibue, Grace Wanjiru; Liu, Xiaoyu; Zheng, Jufeng; Zhang, Xuhui; Pan, Genxing; Li, Lianqing; Han, Xiaojun

    2016-05-01

    Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers' perceptions of climate variability and adaptation. Yet, without an understanding of farmers' perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers' perceptions of climate variability. We found that farmers' were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers' characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads' education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers' perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China's agricultural assets.

  17. Climate change. Six centuries of variability and extremes in a coupled marine-terrestrial ecosystem.

    PubMed

    Black, Bryan A; Sydeman, William J; Frank, David C; Griffin, Daniel; Stahle, David W; García-Reyes, Marisol; Rykaczewski, Ryan R; Bograd, Steven J; Peterson, William T

    2014-09-19

    Reported trends in the mean and variability of coastal upwelling in eastern boundary currents have raised concerns about the future of these highly productive and biodiverse marine ecosystems. However, the instrumental records on which these estimates are based are insufficiently long to determine whether such trends exceed preindustrial limits. In the California Current, a 576-year reconstruction of climate variables associated with winter upwelling indicates that variability increased over the latter 20th century to levels equaled only twice during the past 600 years. This modern trend in variance may be unique, because it appears to be driven by an unprecedented succession of extreme, downwelling-favorable, winter climate conditions that profoundly reduce productivity for marine predators of commercial and conservation interest. Copyright © 2014, American Association for the Advancement of Science.

  18. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    PubMed

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables measured suggests that tree carbon allocation to coarse roots is independent of annual climate variability. The greater number of missing rings in branches highlights the fact that canopy development is a low priority for carbon allocation during poor growing conditions.

  19. Understanding climate impacts on vegetation using a spatiotemporal non-linear Granger causality framework

    NASA Astrophysics Data System (ADS)

    Papagiannopoulou, Christina; Decubber, Stijn; Miralles, Diego; Demuzere, Matthias; Dorigo, Wouter; Verhoest, Niko; Waegeman, Willem

    2017-04-01

    Satellite data provide an abundance of information about crucial climatic and environmental variables. These data - consisting of global records, spanning up to 35 years and having the form of multivariate time series with different spatial and temporal resolutions - enable the study of key climate-vegetation interactions. Although methods which are based on correlations and linear models are typically used for this purpose, their assumptions for linearity about the climate-vegetation relationships are too simplistic. Therefore, we adopt a recently proposed non-linear Granger causality analysis [1], in which we incorporate spatial information, concatenating data from neighboring pixels and training a joint model on the combined data. Experimental results based on global data sets show that considering non-linear relationships leads to a higher explained variance of past vegetation dynamics, compared to simple linear models. Our approach consists of several steps. First, we compile an extensive database [1], which includes multiple data sets for land surface temperature, near-surface air temperature, surface radiation, precipitation, snow water equivalents and surface soil moisture. Based on this database, high-level features are constructed and considered as predictors in our machine-learning framework. These high-level features include (de-trended) seasonal anomalies, lagged variables, past cumulative variables, and extreme indices, all calculated based on the raw climatic data. Second, we apply a spatiotemporal non-linear Granger causality framework - in which the linear predictive model is substituted for a non-linear machine learning algorithm - in order to assess which of these predictor variables Granger-cause vegetation dynamics at each 1° pixel. We use the de-trended anomalies of Normalized Difference Vegetation Index (NDVI) to characterize vegetation, being the target variable of our framework. Experimental results indicate that climate strongly (Granger-)causes vegetation dynamics in most regions globally. More specifically, water availability is the most dominant vegetation driver, being the dominant vegetation driver in 54% of the vegetated surface. Furthermore, our results show that precipitation and soil moisture have prolonged impacts on vegetation in semiarid regions, with up to 10% of additional explained variance on the vegetation dynamics occurring three months later. Finally, hydro-climatic extremes seem to have a remarkable impact on vegetation, since they also explain up to 10% of additional variance of vegetation in certain regions despite their infrequent occurrence. References [1] Papagiannopoulou, C., Miralles, D. G., Verhoest, N. E. C., Dorigo, W. A., and Waegeman, W.: A non-linear Granger causality framework to investigate climate-vegetation dynamics, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-266, in review, 2016.

  20. ARCAS (ACACIA Regional Climate-data Access System) -- a Web Access System for Climate Model Data Access, Visualization and Comparison

    NASA Astrophysics Data System (ADS)

    Hakkarinen, C.; Brown, D.; Callahan, J.; hankin, S.; de Koningh, M.; Middleton-Link, D.; Wigley, T.

    2001-05-01

    A Web-based access system to climate model output data sets for intercomparison and analysis has been produced, using the NOAA-PMEL developed Live Access Server software as host server and Ferret as the data serving and visualization engine. Called ARCAS ("ACACIA Regional Climate-data Access System"), and publicly accessible at http://dataserver.ucar.edu/arcas, the site currently serves climate model outputs from runs of the NCAR Climate System Model for the 21st century, for Business as Usual and Stabilization of Greenhouse Gas Emission scenarios. Users can select, download, and graphically display single variables or comparisons of two variables from either or both of the CSM model runs, averaged for monthly, seasonal, or annual time resolutions. The time length of the averaging period, and the geographical domain for download and display, are fully selectable by the user. A variety of arithmetic operations on the data variables can be computed "on-the-fly", as defined by the user. Expansions of the user-selectable options for defining analysis options, and for accessing other DOD-compatible ("Distributed Ocean Data System-compatible") data sets, residing at locations other than the NCAR hardware server on which ARCAS operates, are planned for this year. These expansions are designed to allow users quick and easy-to-operate web-based access to the largest possible selection of climate model output data sets available throughout the world.

  1. Multivariate geostatistical application for climate characterization of Minas Gerais State, Brazil

    NASA Astrophysics Data System (ADS)

    de Carvalho, Luiz G.; de Carvalho Alves, Marcelo; de Oliveira, Marcelo S.; Vianello, Rubens L.; Sediyama, Gilberto C.; de Carvalho, Luis M. T.

    2010-11-01

    The objective of the present study was to assess for Minas Gerais the cokriging methodology, in order to characterize the spatial variability of Thornthwaite annual moisture index, annual rainfall, and average annual air temperature, based on geographical coordinates, altitude, latitude, and longitude. The climatic element data referred to 39 INMET climatic stations located in the state of Minas Gerais and in nearby areas and the covariables altitude, latitude, and longitude to the SRTM digital elevation model. Spatial dependence of data was observed through spherical cross semivariograms and cross covariance models. Box-Cox and log transformation were applied to the positive variables. In these situations, kriged predictions were back-transformed and returned to the same scale as the original data. Trend was removed using global polynomial interpolation. Universal simple cokriging best characterized the climate variables without tendentiousness and with high accuracy and precision when compared to simple cokriging. Considering the satisfactory implementation of universal simple cokriging for the monitoring of climatic elements, this methodology presents enormous potential for the characterization of climate change impact in Minas Gerais state.

  2. Spatial distribution of sand fly species (Psychodidae: Phlebtominae), ecological niche, and climatic regionalization in zoonotic foci of cutaneous leishmaniasis, southwest of Iran.

    PubMed

    Ebrahimi, Sahar; Bordbar, Ali; Rastaghi, Ahmad R Esmaeili; Parvizi, Parviz

    2016-06-01

    Cutaneous leishmaniasis (CL) is a complex vector-borne disease caused by Leishmania parasites that are transmitted by the bite of several species of infected female phlebotomine sand flies. Monthly factor analysis of climatic variables indicated fundamental variables. Principal component-based regionalization was used for recognition of climatic zones using a clustering integrated method that identified five climatic zones based on factor analysis. To investigate spatial distribution of the sand fly species, the kriging method was used as an advanced geostatistical procedure in the ArcGIS modeling system that is beneficial to design measurement plans and to predict the transmission cycle in various regions of Khuzestan province, southwest of Iran. However, more than an 80% probability of P. papatasi was observed in rainy and temperate bio-climatic zones with a high potential of CL transmission. Finding P. sergenti revealed the probability of transmission and distribution patterns of a non-native vector of CL in related zones. These findings could be used as models indicating climatic zones and environmental variables connected to sand fly presence and vector distribution. Furthermore, this information is appropriate for future research efforts into the ecology of Phlebotomine sand flies and for the prevention of CL vector transmission as a public health priority. © 2016 The Society for Vector Ecology.

  3. Agroclimate.Org: Tools and Information for a Climate Resilient Agriculture in the Southeast USA

    NASA Astrophysics Data System (ADS)

    Fraisse, C.

    2014-12-01

    AgroClimate (http://agroclimate.org) is a web-based system developed to help the agricultural industry in the southeastern USA reduce risks associated with climate variability and change. It includes climate related information and dynamic application tools that interact with a climate and crop database system. Information available includes climate monitoring and forecasts combined with information about crop management practices that help increase the resiliency of the agricultural industry in the region. Recently we have included smartphone apps in the AgroClimate suite of tools, including irrigation management and crop disease alert systems. Decision support tools available in AgroClimate include: (a) Climate risk: expected (probabilistic) and historical climate information and freeze risk; (b) Crop yield risk: expected yield based on soil type, planting date, and basic management practices for selected commodities and historical county yield databases; (c) Crop diseases: disease risk monitoring and forecasting for strawberry and citrus; (d) Crop development: monitoring and forecasting of growing degree-days and chill accumulation; (e) Drought: monitoring and forecasting of selected drought indices, (f) Footprints: Carbon and water footprint calculators. The system also provides background information about the main drivers of climate variability and basic information about climate change in the Southeast USA. AgroClimate has been widely used as an educational tool by the Cooperative Extension Services in the region and also by producers. It is now being replicated internationally with version implemented in Mozambique and Paraguay.

  4. Modelling climate change and malaria transmission.

    PubMed

    Parham, Paul E; Michael, Edwin

    2010-01-01

    The impact of climate change on human health has received increasing attention in recent years, with potential impacts due to vector-borne diseases only now beginning to be understood. As the most severe vector-borne disease, with one million deaths globally in 2006, malaria is thought most likely to be affected by changes in climate variables due to the sensitivity of its transmission dynamics to environmental conditions. While considerable research has been carried out using statistical models to better assess the relationship between changes in environmental variables and malaria incidence, less progress has been made on developing process-based climate-driven mathematical models with greater explanatory power. Here, we develop a simple model of malaria transmission linked to climate which permits useful insights into the sensitivity of disease transmission to changes in rainfall and temperature variables. Both the impact of changes in the mean values of these key external variables and importantly temporal variation in these values are explored. We show that the development and analysis of such dynamic climate-driven transmission models will be crucial to understanding the rate at which P. falciparum and P. vivax may either infect, expand into or go extinct in populations as local environmental conditions change. Malaria becomes endemic in a population when the basic reproduction number R0 is greater than unity and we identify an optimum climate-driven transmission window for the disease, thus providing a useful indicator for determing how transmission risk may change as climate changes. Overall, our results indicate that considerable work is required to better understand ways in which global malaria incidence and distribution may alter with climate change. In particular, we show that the roles of seasonality, stochasticity and variability in environmental variables, as well as ultimately anthropogenic effects, require further study. The work presented here offers a theoretical framework upon which this future research may be developed.

  5. Region-Specific Sensitivity of Anemophilous Pollen Deposition to Temperature and Precipitation

    PubMed Central

    Donders, Timme H.; Hagemans, Kimberley; Dekker, Stefan C.; de Weger, Letty A.; de Klerk, Pim; Wagner-Cremer, Friederike

    2014-01-01

    Understanding relations between climate and pollen production is important for several societal and ecological challenges, importantly pollen forecasting for pollinosis treatment, forensic studies, global change biology, and high-resolution palaeoecological studies of past vegetation and climate fluctuations. For these purposes, we investigate the role of climate variables on annual-scale variations in pollen influx, test the regional consistency of observed patterns, and evaluate the potential to reconstruct high-frequency signals from sediment archives. A 43-year pollen-trap record from the Netherlands is used to investigate relations between annual pollen influx, climate variables (monthly and seasonal temperature and precipitation values), and the North Atlantic Oscillation climate index. Spearman rank correlation analysis shows that specifically in Alnus, Betula, Corylus, Fraxinus, Quercus and Plantago both temperature in the year prior to (T-1), as well as in the growing season (T), are highly significant factors (TApril rs between 0.30 [P<0.05[ and 0.58 [P<0.0001]; TJuli-1 rs between 0.32 [P<0.05[ and 0.56 [P<0.0001]) in the annual pollen influx of wind-pollinated plants. Total annual pollen prediction models based on multiple climate variables yield R2 between 0.38 and 0.62 (P<0.0001). The effect of precipitation is minimal. A second trapping station in the SE Netherlands, shows consistent trends and annual variability, suggesting the climate factors are regionally relevant. Summer temperature is thought to influence the formation of reproductive structures, while temperature during the flowering season influences pollen release. This study provides a first predictive model for seasonal pollen forecasting, and also aides forensic studies. Furthermore, variations in pollen accumulation rates from a sub-fossil peat deposit are comparable with the pollen trap data. This suggests that high frequency variability pollen records from natural archives reflect annual past climate variability, and can be used in palaeoecological and -climatological studies to bridge between population- and species-scale responses to climate forcing. PMID:25133631

  6. Decoding the spatial signatures of multi-scale climate variability - a climate network perspective

    NASA Astrophysics Data System (ADS)

    Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.

    2017-12-01

    During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.

  7. Framework for a hydrologic climate-response network in New England

    USGS Publications Warehouse

    Lent, Robert M.; Hodgkins, Glenn A.; Dudley, Robert W.; Schalk, Luther F.

    2015-01-01

    Many climate-related hydrologic variables in New England have changed in the past century, and many are expected to change during the next century. It is important to understand and monitor these changes because they can affect human water supply, hydroelectric power generation, transportation infrastructure, and stream and riparian ecology. This report describes a framework for hydrologic monitoring in New England by means of a climate-response network. The framework identifies specific inland hydrologic variables that are sensitive to climate variation; identifies geographic regions with similar hydrologic responses; proposes a fixed-station monitoring network composed of existing streamflow, groundwater, lake ice, snowpack, and meteorological data-collection stations for evaluation of hydrologic response to climate variation; and identifies streamflow basins for intensive, process-based studies and for estimates of future hydrologic conditions.

  8. Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts.

    PubMed

    Bonebrake, Timothy C; Mastrandrea, Michael D

    2010-07-13

    Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.

  9. Impact of Climate Change and Human Intervention on River Flow Regimes

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra; Mittal, Neha; Mishra, Ashok

    2017-04-01

    Climate change and human interventions like dam construction bring freshwater ecosystem under stress by changing flow regime. It is important to analyse their impact at a regional scale along with changes in the extremes of temperature and precipitation which further modify the flow regime components such as magnitude, timing, frequency, duration, and rate of change of flow. In this study, the Kangsabati river is chosen to analyse the hydrological alterations in its flow regime caused by dam, climate change and their combined impact using Soil and Water Assessment Tool (SWAT) and the Indicators of Hydrologic Alteration (IHA) program based on the Range of Variability Approach (RVA). Results show that flow variability is significantly reduced due to dam construction with high flows getting absorbed and pre-monsoon low flows being augmented by the reservoir. Climate change alone reduces the high peaks whereas a combination of dam and climate change significantly reduces variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. Analysis shows that in the Kangsabati basin, influence of dam is greater than that of the climate change, thereby emphasising the significance of direct human intervention. Keywords: Climate change, human impact, flow regime, Kangsabati river, SWAT, IHA, RVA.

  10. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel; Iredell, Lena F.

    2010-01-01

    Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 February 2010) CERES-observed negative trend in OLR of approx.-0.1 W/sq m/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondence can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/sq m/yr to +3.0 W/sq m/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by EI-Nino-La Nina cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assessments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial "trends" of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of climate variability] at the common 1x1 degree GCM grid-scale by creating spatial anomaly "trends" based on the first 7+ years of AIRS Version 5 Leve13 data. We suggest that modelers should compare these with their (coupled) GCM's performance covering the same period. We evaluate temporal variability and interrelations of climatic anomalies on global to regional e.g., deep Tropical Hovmoller diagrams, El-Nino-related variability scales, and show the effects of El-Nino-La Nina activity on tropical anomalies and trends of water vapor cloud cover and OLR. For GCMs to be trusted highly for long-term climate change predictions, they should be able to reproduce findings similar to these. In summary, the AIRS-based climate variability analyses provide high quality, informative and physically plausible interrelationships among OLR, temperature, humidity and cloud cover both on the spatial and temporal scales. GCM validations can use these results even directly, e. g., by creating 1x1 degree trendmaps for the same period in coupled climate simulations.

  11. Climate change and water availability for vulnerable agriculture

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2017-04-01

    Climatic projections for the Mediterranean basin indicate that the area will suffer a decrease in water resources due to climate change. The key climatic trends identified for the Mediterranean region are continuous temperature increase, further drying with precipitation decrease and the accentuation of climate extremes, such as droughts, heat waves and/or forest fires, which are expected to have a profound effect on agriculture. Indeed, the impact of climate variability on agricultural production is important at local, regional, national, as well as global scales. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage patterns. Changes in total seasonal precipitation or in its pattern of variability are both important. Similarly, with higher temperatures, the water-holding capacity of the atmosphere and evaporation into the atmosphere increase, and this favors increased climate variability, with more intense precipitation and more droughts. As a result, crop yields are affected by variations in climatic factors, such as air temperature and precipitation, and the frequency and severity of the above mentioned extreme events. The aim of this work is to briefly present the main effects of climate change and variability on water resources with respect to water availability for vulnerable agriculture, namely in the Mediterranean region. Results of undertaken studies in Greece on precipitation patterns and drought assessment using historical data records are presented. Based on precipitation frequency analysis, evidence of precipitation reductions is shown. Drought is assessed through an agricultural drought index, namely the Vegetation Health Index (VHI), in Thessaly, a drought-prone region in central Greece. The results justify the importance of water availability for vulnerable agriculture and the need for drought monitoring in the Mediterranean basin as part of an integrated climate adaptation strategy.

  12. An analytical approach to separate climate and human contributions to basin streamflow variability

    NASA Astrophysics Data System (ADS)

    Li, Changbin; Wang, Liuming; Wanrui, Wang; Qi, Jiaguo; Linshan, Yang; Zhang, Yuan; Lei, Wu; Cui, Xia; Wang, Peng

    2018-04-01

    Climate variability and anthropogenic regulations are two interwoven factors in the ecohydrologic system across large basins. Understanding the roles that these two factors play under various hydrologic conditions is of great significance for basin hydrology and sustainable water utilization. In this study, we present an analytical approach based on coupling water balance method and Budyko hypothesis to derive effectiveness coefficients (ECs) of climate change, as a way to disentangle contributions of it and human activities to the variability of river discharges under different hydro-transitional situations. The climate dominated streamflow change (ΔQc) by EC approach was compared with those deduced by the elasticity method and sensitivity index. The results suggest that the EC approach is valid and applicable for hydrologic study at large basin scale. Analyses of various scenarios revealed that contributions of climate change and human activities to river discharge variation differed among the regions of the study area. Over the past several decades, climate change dominated hydro-transitions from dry to wet, while human activities played key roles in the reduction of streamflow during wet to dry periods. Remarkable decline of discharge in upstream was mainly due to human interventions, although climate contributed more to runoff increasing during dry periods in the semi-arid downstream. Induced effectiveness on streamflow changes indicated a contribution ratio of 49% for climate and 51% for human activities at the basin scale from 1956 to 2015. The mathematic derivation based simple approach, together with the case example of temporal segmentation and spatial zoning, could help people understand variation of river discharge with more details at a large basin scale under the background of climate change and human regulations.

  13. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    PubMed Central

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  14. Impact of climate variability on N and C flux within the life cycle of biofuels produced from crop residues

    NASA Astrophysics Data System (ADS)

    Pourhashem, G.; Block, P. J.; Adler, P. R.; Spatari, S.

    2013-12-01

    Biofuels from agricultural feedstocks (lignocellulose) are under development to meet national policy objectives for producing domestic renewable fuels. Using crop residues such as corn stover as feedstock for biofuel production can minimize the risks associated with food market disruption; however, it demands managing residue removal to minimize soil carbon loss, erosion, and to ensure nutrient replacement. Emissions of nitrous oxide and changes to soil organic carbon (SOC) are subject to variability in time due to local climate conditions and cultivation practices. Our objective is to investigate the effect of climate inputs (precipitation and temperature) on biogeochemical greenhouse gas (GHG) emissions (N2O and SOC expressed as CO2) within the life cycle of biofuels produced from agricultural residues. Specifically, we investigate the impact of local climate variability on soil carbon and nitrogen fluxes over a 20-year biorefinery lifetime where biomass residue is used for lignocellulosic ethanol production. We investigate two cases studied previously (Pourhashem et al, 2013) where the fermentable sugars in the agricultural residue are converted to ethanol (biofuel) and the lignin byproduct is used in one of two ways: 1) power co-generation; or 2) application to land as a carbon/nutrient-rich amendment to soil. In the second case SOC losses are mitigated through returning the lignin component to land while the need for fertilizer addition is also eliminated, however in both cases N2O and SOC are subject to variability due to variable climate conditions. We used the biogeochemical model DayCent to predict soil carbon and nitrogen fluxes considering soil characteristics, tillage practices and local climate (e.g. temperature and rainfall). We address the impact of climate variability on the soil carbon and nitrogen fluxes by implementing a statistical bootstrap resampling method based on a historic data set (1980 to 2000). The ensuing probabilistic outputs from the DayCent model provide an increased understanding of expected ranges in fluxes attributable to climate variability. DayCent results for soil carbon change from the developed input datasets indicate that SOC is more strongly influenced by management practices than by variability in local climate even though the magnitude of this impact could depend on the local soil characteristics. Unlike carbon fluxes, soil N2O emissions are more sensitive to local climate variability than management practices suggesting that the difference in N2O emissions from the two management cases is not statistically significant. Therefore application of the high lignin byproduct material to land is a more efficient strategy in reducing soil carbon loss. However, although soil nitrogen fluxes might not be very sensitive to local climate when comparing synthetic to bio-based fertilizer applications, implementing the latter will eliminate the fertilizer production emissions on a biofuel production life cycle basis. Reference Pourhashem, G.; Adler, P., R.; McAloon, A. J.; Spatari, S., Cost and greenhouse gas emission tradeoffs of alternative uses of lignin for second generation ethanol. Env. Res. Let. 2013, 8, 025021

  15. Multi-Site and Multi-Variables Statistical Downscaling Technique in the Monsoon Dominated Region of Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Firdos; Pilz, Jürgen

    2016-04-01

    South Asia is under the severe impacts of changing climate and global warming. The last two decades showed that climate change or global warming is happening and the first decade of 21st century is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C in 2010. Consequently, the spatio-temporal distribution and intensity of precipitation is badly effected and causes floods, cyclones and hurricanes in the region which further have impacts on agriculture, water, health etc. To cope with the situation, it is important to conduct impact assessment studies and take adaptation and mitigation remedies. For impact assessment studies, we need climate variables at higher resolution. Downscaling techniques are used to produce climate variables at higher resolution; these techniques are broadly divided into two types, statistical downscaling and dynamical downscaling. The target location of this study is the monsoon dominated region of Pakistan. One reason for choosing this area is because the contribution of monsoon rains in this area is more than 80 % of the total rainfall. This study evaluates a statistical downscaling technique which can be then used for downscaling climatic variables. Two statistical techniques i.e. quantile regression and copula modeling are combined in order to produce realistic results for climate variables in the area under-study. To reduce the dimension of input data and deal with multicollinearity problems, empirical orthogonal functions will be used. Advantages of this new method are: (1) it is more robust to outliers as compared to ordinary least squares estimates and other estimation methods based on central tendency and dispersion measures; (2) it preserves the dependence among variables and among sites and (3) it can be used to combine different types of distributions. This is important in our case because we are dealing with climatic variables having different distributions over different meteorological stations. The proposed model will be validated by using the (National Centers for Environmental Prediction / National Center for Atmospheric Research) NCEP/NCAR predictors for the period of 1960-1990 and validated for 1990-2000. To investigate the efficiency of the proposed model, it will be compared with the multivariate multiple regression model and with dynamical downscaling climate models by using different climate indices that describe the frequency, intensity and duration of the variables of interest. KEY WORDS: Climate change, Copula, Monsoon, Quantile regression, Spatio-temporal distribution.

  16. Advantages and applicability of commonly used homogenisation methods for climate data

    NASA Astrophysics Data System (ADS)

    Ribeiro, Sara; Caineta, Júlio; Henriques, Roberto; Soares, Amílcar; Costa, Ana Cristina

    2014-05-01

    Homogenisation of climate data is a very relevant subject since these data are required as an input in a wide range of studies, such as atmospheric modelling, weather forecasting, climate change monitoring, or hydrological and environmental projects. Often, climate data series include non-natural irregularities which have to be detected and removed prior to their use, otherwise it would generate biased and erroneous results. Relocation of weather stations or changes in the measuring instruments are amongst the most relevant causes for these inhomogeneities. Depending on the climate variable, its temporal resolution and spatial continuity, homogenisation methods can be more or less effective. For example, due to its natural variability, precipitation is identified as a very challenging variable to be homogenised. During the last two decades, numerous methods have been proposed to homogenise climate data. In order to compare, evaluate and develop those methods, the European project COST Action ES0601, Advances in homogenisation methods of climate series: an integrated approach (HOME), was released in 2008. Existing homogenisation methods were improved based on the benchmark exercise issued by this project. A recent approach based on Direct Sequential Simulation (DSS), not yet evaluated by the benchmark exercise, is also presented as an innovative methodology for homogenising climate data series. DSS already proved to be a successful geostatistical method in environmental and hydrological studies, and it provides promising results for the homogenisation of climate data. Since DSS is a geostatistical stochastic approach, it accounts for the joint spatial and temporal dependence between observations, as well as the relative importance of stations both in terms of distance and correlation. This work presents a chronological review of the most commonly used homogenisation methods for climate data and available software packages. A short description and classification is provided for each method. Their advantages and applicability are discussed based on literature review and on the results of the HOME project. Acknowledgements: The authors gratefully acknowledge the financial support of "Fundação para a Ciência e Tecnologia" (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 ("GSIMCLI - Geostatistical simulation with local distributions for the homogenization and interpolation of climate data").

  17. Nonlinear Dynamical Modes as a Basis for Short-Term Forecast of Climate Variability

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Mukhin, D.; Gavrilov, A.; Seleznev, A.; Loskutov, E.

    2017-12-01

    We study abilities of data-driven stochastic models constructed by nonlinear dynamical decomposition of spatially distributed data to quantitative (short-term) forecast of climate characteristics. We compare two data processing techniques: (i) widely used empirical orthogonal function approach, and (ii) nonlinear dynamical modes (NDMs) framework [1,2]. We also make comparison of two kinds of the prognostic models: (i) traditional autoregression (linear) model and (ii) model in the form of random ("stochastic") nonlinear dynamical system [3]. We apply all combinations of the above-mentioned data mining techniques and kinds of models to short-term forecasts of climate indices based on sea surface temperature (SST) data. We use NOAA_ERSST_V4 dataset (monthly SST with space resolution 20 × 20) covering the tropical belt and starting from the year 1960. We demonstrate that NDM-based nonlinear model shows better prediction skill versus EOF-based linear and nonlinear models. Finally we discuss capability of NDM-based nonlinear model for long-term (decadal) prediction of climate variability. [1] D. Mukhin, A. Gavrilov, E. Loskutov , A.Feigin, J.Kurths, 2015: Principal nonlinear dynamical modes of climate variability, Scientific Reports, rep. 5, 15510; doi: 10.1038/srep15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J., 2016: Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101. [3] Ya. Molkov, D. Mukhin, E. Loskutov, A. Feigin, 2012: Random dynamical models from time series. Phys. Rev. E, Vol. 85, n.3.

  18. The impact of using different modern climate data sets in pollen-based paleoclimate reconstructions of North America

    NASA Astrophysics Data System (ADS)

    Ladd, M.; Way, R. G.; Viau, A. E.

    2015-03-01

    The use of different modern climate data sets is shown to impact a continental-scale pollen-based reconstruction of mean July temperature (TJUL) over the last 2000 years for North America. Data from climate stations, physically modeled from climate stations and reanalysis products are used to calibrate the reconstructions. Results show that the use of reanalysis products produces warmer and/or smoother reconstructions as compared to the use of station based data sets. The reconstructions during the period of 1050-1550 CE are shown to be more variable because of a high latitude cold-bias in the modern TJUL data. The ultra-high resolution WorldClim gridded data may only useful if the modern pollen sites have at least the same spatial precision as the gridded dataset. Hence we justify the use of the lapse-rate corrected University of East Anglia Climate Research Unit (CRU) based Whitmore modern climate data set for North American pollen-based climate reconstructions.

  19. A climate-based multivariate extreme emulator of met-ocean-hydrological events for coastal flooding

    NASA Astrophysics Data System (ADS)

    Camus, Paula; Rueda, Ana; Mendez, Fernando J.; Tomas, Antonio; Del Jesus, Manuel; Losada, Iñigo J.

    2015-04-01

    Atmosphere-ocean general circulation models (AOGCMs) are useful to analyze large-scale climate variability (long-term historical periods, future climate projections). However, applications such as coastal flood modeling require climate information at finer scale. Besides, flooding events depend on multiple climate conditions: waves, surge levels from the open-ocean and river discharge caused by precipitation. Therefore, a multivariate statistical downscaling approach is adopted to reproduce relationships between variables and due to its low computational cost. The proposed method can be considered as a hybrid approach which combines a probabilistic weather type downscaling model with a stochastic weather generator component. Predictand distributions are reproduced modeling the relationship with AOGCM predictors based on a physical division in weather types (Camus et al., 2012). The multivariate dependence structure of the predictand (extreme events) is introduced linking the independent marginal distributions of the variables by a probabilistic copula regression (Ben Ayala et al., 2014). This hybrid approach is applied for the downscaling of AOGCM data to daily precipitation and maximum significant wave height and storm-surge in different locations along the Spanish coast. Reanalysis data is used to assess the proposed method. A commonly predictor for the three variables involved is classified using a regression-guided clustering algorithm. The most appropriate statistical model (general extreme value distribution, pareto distribution) for daily conditions is fitted. Stochastic simulation of the present climate is performed obtaining the set of hydraulic boundary conditions needed for high resolution coastal flood modeling. References: Camus, P., Menéndez, M., Méndez, F.J., Izaguirre, C., Espejo, A., Cánovas, V., Pérez, J., Rueda, A., Losada, I.J., Medina, R. (2014b). A weather-type statistical downscaling framework for ocean wave climate. Journal of Geophysical Research, doi: 10.1002/2014JC010141. Ben Ayala, M.A., Chebana, F., Ouarda, T.B.M.J. (2014). Probabilistic Gaussian Copula Regression Model for Multisite and Multivariable Downscaling, Journal of Climate, 27, 3331-3347.

  20. Climate change adaptation and mitigation options a guide for natural resource managers in southern forest ecosystems

    Treesearch

    James M. Vose; Kier D. Klepzig

    2014-01-01

    The rapid pace of climate change and its direct and indirect effects on forest ecosystems present a pressing need for better scientific understanding and the development of new science-management partnerships. Understanding the effects of stressors and disturbances (including climatic variability), and developing and testing science-based management options to deal...

  1. Forest tree growth response to hydroclimate variability in the southern Appalachians

    Treesearch

    Katherine J. Elliott; Chelcy Ford Miniat; Neil Pederson; Stephanie H. Laseter

    2015-01-01

    Climate change will affect tree species growth and distribution; however, under the same climatic conditions species may differ in their response according to site conditions. We evaluated the climate-driven patterns of growth for six dominant deciduous tree species in the southern Appalachians. We categorized species into two functional groups based on their stomatal...

  2. Holistic uncertainty analysis in river basin modeling for climate vulnerability assessment

    NASA Astrophysics Data System (ADS)

    Taner, M. U.; Wi, S.; Brown, C.

    2017-12-01

    The challenges posed by uncertain future climate are a prominent concern for water resources managers. A number of frameworks exist for assessing the impacts of climate-related uncertainty, including internal climate variability and anthropogenic climate change, such as scenario-based approaches and vulnerability-based approaches. While in many cases climate uncertainty may be dominant, other factors such as future evolution of the river basin, hydrologic response and reservoir operations are potentially significant sources of uncertainty. While uncertainty associated with modeling hydrologic response has received attention, very little attention has focused on the range of uncertainty and possible effects of the water resources infrastructure and management. This work presents a holistic framework that allows analysis of climate, hydrologic and water management uncertainty in water resources systems analysis with the aid of a water system model designed to integrate component models for hydrology processes and water management activities. The uncertainties explored include those associated with climate variability and change, hydrologic model parameters, and water system operation rules. A Bayesian framework is used to quantify and model the uncertainties at each modeling steps in integrated fashion, including prior and the likelihood information about model parameters. The framework is demonstrated in a case study for the St. Croix Basin located at border of United States and Canada.

  3. Impact of climate variability and anthropogenic activity on streamflow in the Three Rivers Headwater Region, Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Jiang, Chong; Li, Daiqing; Gao, Yanni; Liu, Wenfeng; Zhang, Linbo

    2017-07-01

    Under the impacts of climate variability and human activities, there is violent fluctuation for streamflow in the large basins in China. Therefore, it is crucial to separate the impacts of climate variability and human activities on streamflow fluctuation for better water resources planning and management. In this study, the Three Rivers Headwater Region (TRHR) was chosen as the study area. Long-term hydrological data for the TRHR were collected in order to investigate the changes in annual runoff during the period of 1956-2012. The nonparametric Mann-Kendall test, moving t test, Pettitt test, Mann-Kendall-Sneyers test, and the cumulative anomaly curve were used to identify trends and change points in the hydro-meteorological variables. Change point in runoff was identified in the three basins, which respectively occurred around the years 1989 and 1993, dividing the long-term runoff series into a natural period and a human-induced period. Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In the human-induced period, climate variability was the main factor that increased (reduced) runoff in LRB and YARB (YRB) with contribution of more than 90 %, while the increasing (decreasing) percentage due to human activities only accounted for less than 10 %, showing that runoff in the TRHR is more sensitive to climate variability than human activities. The intra-annual distribution of runoff shifted gradually from a double peak pattern to a single peak pattern, which was mainly influenced by atmospheric circulation in the summer and autumn. The inter-annual variation in runoff was jointly controlled by the East Asian monsoon, the westerly, and Tibetan Plateau monsoons.

  4. Urban green land cover changes and their relation to climatic variables in an anthropogenically impacted area

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Dida, Adrian I.

    2017-10-01

    Urban green areas are experiencing rapid land cover change caused by human-induced land degradation and extreme climatic events. Vegetation index time series provide a useful way to monitor urban vegetation phenological variations. This study quantitatively describes Normalized Difference Vegetation Index NDVI) /Enhanced Vegetation Index (EVI) and Leaf Area Index (LAI) temporal changes for Bucharest metropolitan region land cover in Romania from the perspective of vegetation phenology and its relation with climate changes and extreme climate events. The time series from 2000 to 2016 of the NOAA AVHRR and MODIS Terra/Aqua satellite data were analyzed to extract anomalies. Time series of climatic variables were also analyzed through anomaly detection techniques and the Fourier Transform. Correlations between NDVI/EVI time series and climatic variables were computed. Temperature, rainfall and radiation were significantly correlated with almost all land-cover classes for the harmonic analysis amplitude term. However, vegetation phenology was not correlated with climatic variables for the harmonic analysis phase term suggesting a delay between climatic variations and vegetation response. Training and validation were based on a reference dataset collected from IKONOS high resolution remote sensing data. The mean detection accuracy for period 2000- 2016 was assessed to be of 87%, with a reasonable balance between change commission errors (19.3%), change omission errors (24.7%), and Kappa coefficient of 0.73. This paper demonstrates the potential of moderate - and high resolution, multispectral imagery to map and monitor the evolution of the physical urban green land cover under climate and anthropogenic pressure.

  5. Why and How the Dairy Farmers of India are Vulnerable to the Impacts of Climate Variability and Change?

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, A.; Gupta, J.

    2017-12-01

    Climate change and variability has added many atrociousness to India's food security challenges and the relationship between the asset components of farmers and climate change is always complex. In India, dairy farming substantially contributes towards the food security and always plays a supportive role to agriculture from the adversities. This study provides an overview of the socio economic and livelihood vulnerability of small holder dairy farmers of India to climate change and variability in three dimensions — sensitivity, exposure and adaptive capacity by combining 70 indicators and 12 major components. The livelihood and socio economic vulnerability of dairy farmers to climate change and variability is assessed at taluka level in India through detailed house hold level data of livelihoods of Western Ghats region of India collected by several levels of survey and through Participatory Rural Appraisal (PRA) techniques from selected farmers complemented by thirty years of gridded weather data and other secondary data sources. The index score of dairy based livelihoods of Maharashtra was highly negative compared to other states with about 50 percent of farmers having high level of vulnerability with significant tradeoff between milk productivity and health, food, natural disasters-climate variability components. It finds that ensuring food security in the scenario of climate change will be a dreadful challenge and recommends identification of different potential options depending on local contexts at grass root level, the adoption of sustainable agricultural practices, focusing on improving the adaptive capacity component, provision of livelihood security, preparing the extensionists of Krishi Vigyan Kendras (KVKs)- universities to deal with the risks through extensive training programmes, long-term relief measures in the event of natural disasters, workshops on climate science and communication and promoting farmer centric extension system.

  6. Interannual variation of carbon fluxes from three contrasting evergreen forests: The role of forest dynamics and climate

    USGS Publications Warehouse

    Sierra, C.A.; Loescher, H.W.; Harmon, M.E.; Richardson, A.D.; Hollinger, D.Y.; Perakis, S.S.

    2009-01-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed ?? 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data. ?? 2009 by the Ecological Society of America.

  7. Identification of weather variables sensitive to dysentery in disease-affected county of China.

    PubMed

    Liu, Jianing; Wu, Xiaoxu; Li, Chenlu; Xu, Bing; Hu, Luojia; Chen, Jin; Dai, Shuang

    2017-01-01

    Climate change mainly refers to long-term change in weather variables, and it has significant impact on sustainability and spread of infectious diseases. Among three leading infectious diseases in China, dysentery is exclusively sensitive to climate change. Previous researches on weather variables and dysentery mainly focus on determining correlation between dysentery incidence and weather variables. However, the contribution of each variable to dysentery incidence has been rarely clarified. Therefore, we chose a typical county in epidemic of dysentery as the study area. Based on data of dysentery incidence, weather variables (monthly mean temperature, precipitation, wind speed, relative humidity, absolute humidity, maximum temperature, and minimum temperature) and lagged analysis, we used principal component analysis (PCA) and classification and regression trees (CART) to examine the relationships between the incidence of dysentery and weather variables. Principal component analysis showed that temperature, precipitation, and humidity played a key role in determining transmission of dysentery. We further selected weather variables including minimum temperature, precipitation, and relative humidity based on results of PCA, and used CART to clarify contributions of these three weather variables to dysentery incidence. We found when minimum temperature was at a high level, the high incidence of dysentery occurred if relative humidity or precipitation was at a high level. We compared our results with other studies on dysentery incidence and meteorological factors in areas both in China and abroad, and good agreement has been achieved. Yet, some differences remain for three reasons: not identifying all key weather variables, climate condition difference caused by local factors, and human factors that also affect dysentery incidence. This study hopes to shed light on potential early warnings for dysentery transmission as climate change occurs, and provide a theoretical basis for the control and prevention of dysentery. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Eighth-Grade Students' Perceptions of School Climate Based on School Diversity, Ethnicity, Educational Category, Socioeconomic Status, and Achievement

    ERIC Educational Resources Information Center

    Edwards, Patricia Thomas

    2010-01-01

    The purpose of this research study was to investigate if there were differences in students' school climate perceptions based on the independent variables, which were measured on a nominal scale and included school diversity (highly, moderately, minimally), ethnicity (Black, Hispanic, White, Other), educational category (general education, special…

  9. Geomorphic determinants of species composition of alpine tundra, Glacier National Park, U.S.A.

    USGS Publications Warehouse

    George P. Malanson,; Bengtson, Lindsey E.; Fagre, Daniel B.

    2012-01-01

    Because the distribution of alpine tundra is associated with spatially limited cold climates, global warming may threaten its local extent or existence. This notion has been challenged, however, based on observations of the diversity of alpine tundra in small areas primarily due to topographic variation. The importance of diversity in temperature or moisture conditions caused by topographic variation is an open question, and we extend this to geomorphology more generally. The extent to which geomorphic variation per se, based on relatively easily assessed indicators, can account for the variation in alpine tundra community composition is analyzed versus the inclusion of broad indicators of regional climate variation. Visual assessments of topography are quantified and reduced using principal components analysis (PCA). Observations of species cover are reduced using detrended correspondence analysis (DCA). A “best subsets” regression approach using the Akaike Information Criterion for selection of variables is compared to a simple stepwise regression with DCA scores as the dependent variable and scores on significant PCA axes plus more direct measures of topography as independent variables. Models with geographic coordinates (representing regional climate gradients) excluded explain almost as much variation in community composition as models with them included, although they are important contributors to the latter. The geomorphic variables in the model are those associated with local moisture differences such as snowbeds. The potential local variability of alpine tundra can be a buffer against climate change, but change in precipitation may be as important as change in temperature.

  10. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalaacchi, Antonio J.

    1998-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL- FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few shiptracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  11. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalacchi, Antonio J.

    1999-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL-FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few ship-tracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  12. Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology

    NASA Astrophysics Data System (ADS)

    Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix

    2018-03-01

    During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.

  13. Impacts of future climate change on river discharge based on hydrological inference: A case study of the Grand River Watershed in Ontario, Canada.

    PubMed

    Li, Zhong; Huang, Guohe; Wang, Xiuquan; Han, Jingcheng; Fan, Yurui

    2016-04-01

    Over the recent years, climate change impacts have been increasingly studied at the watershed scale. However, the impact assessment is strongly dependent upon the performance of the climatic and hydrological models. This study developed a two-step method to assess climate change impacts on water resources based on the Providing Regional Climates for Impacts Studies (PRECIS) modeling system and a Hydrological Inference Model (HIM). PRECIS runs provided future temperature and precipitation projections for the watershed under the Intergovernmental Panel on Climate Change SRES A2 and B2 emission scenarios. The HIM based on stepwise cluster analysis is developed to imitate the complex nonlinear relationships between climate input variables and targeted hydrological variables. Its robust mathematical structure and flexibility in predictor selection makes it a desirable tool for fully utilizing various climate modeling outputs. Although PRECIS and HIM cannot fully cover the uncertainties in hydro-climate modeling, they could provide efficient decision support for investigating the impacts of climate change on water resources. The proposed method is applied to the Grand River Watershed in Ontario, Canada. The model performance is demonstrated with comparison to observation data from the watershed during the period 1972-2006. Future river discharge intervals that accommodate uncertainties in hydro-climatic modeling are presented and future river discharge variations are analyzed. The results indicate that even though the total annual precipitation would not change significantly in the future, the inter-annual distribution is very likely to be altered. The water availability is expected to increase in Winter while it is very likely to decrease in Summer over the Grand River Watershed, and adaptation strategies would be necessary. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. VALUE - Validating and Integrating Downscaling Methods for Climate Change Research

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Widmann, Martin; Benestad, Rasmus; Kotlarski, Sven; Huth, Radan; Hertig, Elke; Wibig, Joanna; Gutierrez, Jose

    2013-04-01

    Our understanding of global climate change is mainly based on General Circulation Models (GCMs) with a relatively coarse resolution. Since climate change impacts are mainly experienced on regional scales, high-resolution climate change scenarios need to be derived from GCM simulations by downscaling. Several projects have been carried out over the last years to validate the performance of statistical and dynamical downscaling, yet several aspects have not been systematically addressed: variability on sub-daily, decadal and longer time-scales, extreme events, spatial variability and inter-variable relationships. Different downscaling approaches such as dynamical downscaling, statistical downscaling and bias correction approaches have not been systematically compared. Furthermore, collaboration between different communities, in particular regional climate modellers, statistical downscalers and statisticians has been limited. To address these gaps, the EU Cooperation in Science and Technology (COST) action VALUE (www.value-cost.eu) has been brought into life. VALUE is a research network with participants from currently 23 European countries running from 2012 to 2015. Its main aim is to systematically validate and develop downscaling methods for climate change research in order to improve regional climate change scenarios for use in climate impact studies. Inspired by the co-design idea of the international research initiative "future earth", stakeholders of climate change information have been involved in the definition of research questions to be addressed and are actively participating in the network. The key idea of VALUE is to identify the relevant weather and climate characteristics required as input for a wide range of impact models and to define an open framework to systematically validate these characteristics. Based on a range of benchmark data sets, in principle every downscaling method can be validated and compared with competing methods. The results of this exercise will directly provide end users with important information about the uncertainty of regional climate scenarios, and will furthermore provide the basis for further developing downscaling methods. This presentation will provide background information on VALUE and discuss the identified characteristics and the validation framework.

  15. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach.

    PubMed

    Schwalm, Donelle; Epps, Clinton W; Rodhouse, Thomas J; Monahan, William B; Castillo, Jessica A; Ray, Chris; Jeffress, Mackenzie R

    2016-04-01

    Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species' niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species' niches, resulting in predictions that are generally limited to climate-occupancy interactions. Here, we explore the potential impact of climate change on the American pika using a replicated place-based approach that incorporates climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence-absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmental niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units representing the habitat and climatic breadth of the species across the western United States. We then predicted occurrence probability under current (1981-2010) and three future time periods (out to 2100). Occurrence probabilities and the relative importance of predictor variables varied widely among study areas, revealing important local-scale differences in the realized niche of the American pika. This variation resulted in diverse and - in some cases - highly divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM projections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables. Our findings illustrate the importance of a place-based approach to species distribution modeling that includes fine-scale factors when assessing current and future climate impacts on species' distributions, especially when predictions are intended to manage and conserve species of concern within individual protected areas. © 2015 John Wiley & Sons Ltd.

  16. A method to encapsulate model structural uncertainty in ensemble projections of future climate: EPIC v1.0

    NASA Astrophysics Data System (ADS)

    Lewis, Jared; Bodeker, Greg E.; Kremser, Stefanie; Tait, Andrew

    2017-12-01

    A method, based on climate pattern scaling, has been developed to expand a small number of projections of fields of a selected climate variable (X) into an ensemble that encapsulates a wide range of indicative model structural uncertainties. The method described in this paper is referred to as the Ensemble Projections Incorporating Climate model uncertainty (EPIC) method. Each ensemble member is constructed by adding contributions from (1) a climatology derived from observations that represents the time-invariant part of the signal; (2) a contribution from forced changes in X, where those changes can be statistically related to changes in global mean surface temperature (Tglobal); and (3) a contribution from unforced variability that is generated by a stochastic weather generator. The patterns of unforced variability are also allowed to respond to changes in Tglobal. The statistical relationships between changes in X (and its patterns of variability) and Tglobal are obtained in a training phase. Then, in an implementation phase, 190 simulations of Tglobal are generated using a simple climate model tuned to emulate 19 different global climate models (GCMs) and 10 different carbon cycle models. Using the generated Tglobal time series and the correlation between the forced changes in X and Tglobal, obtained in the training phase, the forced change in the X field can be generated many times using Monte Carlo analysis. A stochastic weather generator is used to generate realistic representations of weather which include spatial coherence. Because GCMs and regional climate models (RCMs) are less likely to correctly represent unforced variability compared to observations, the stochastic weather generator takes as input measures of variability derived from observations, but also responds to forced changes in climate in a way that is consistent with the RCM projections. This approach to generating a large ensemble of projections is many orders of magnitude more computationally efficient than running multiple GCM or RCM simulations. Such a large ensemble of projections permits a description of a probability density function (PDF) of future climate states rather than a small number of individual story lines within that PDF, which may not be representative of the PDF as a whole; the EPIC method largely corrects for such potential sampling biases. The method is useful for providing projections of changes in climate to users wishing to investigate the impacts and implications of climate change in a probabilistic way. A web-based tool, using the EPIC method to provide probabilistic projections of changes in daily maximum and minimum temperatures for New Zealand, has been developed and is described in this paper.

  17. Short-term nonmigrating tide variability in the mesosphere, thermosphere, and ionosphere

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.; Oberheide, J.; Sutton, E. K.; Liu, H.-L.; Anderson, J. L.; Raeder, K.

    2016-04-01

    The intraseasonal variability of the eastward propagating nonmigrating diurnal tide with zonal wave number 3 (DE3) during 2007 in the mesosphere, ionosphere, and thermosphere is investigated using a whole atmosphere model reanalysis and satellite observations. The atmospheric reanalysis is based on implementation of data assimilation in the Whole Atmosphere Community Climate Model (WACCM) using the Data Assimilation Research Testbed (DART) ensemble Kalman filter. The tidal variability in the WACCM+DART reanalysis is compared to the observed variability in the mesosphere and lower thermosphere (MLT) based on the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) observations, in the ionosphere based on Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations, and in the upper thermosphere (˜475 km) based on Gravity Recovery and Climate Experiment (GRACE) neutral density observations. To obtain the short-term DE3 variability in the MLT and upper thermosphere, we apply the method of tidal deconvolution to the TIMED/SABER observations and consider the difference in the ascending and descending longitudinal wave number 4 structure in the GRACE observations. The results reveal that tidal amplitude changes of 5-10 K regularly occur on short timescales (˜10-20 days) in the MLT. Similar variability occurs in the WACCM+DART reanalysis and TIMED/SABER observations, demonstrating that the short-term variability can be captured in whole atmosphere models that employ data assimilation and in observations by the technique of tidal deconvolution. The impact of the short-term DE3 variability in the MLT on the ionosphere and thermosphere is also clearly evident in the COSMIC and GRACE observations. Analysis of the troposphere forcing in WACCM+DART and simulations of the Global Scale Wave Model (GSWM) show that the short-term DE3 variability in the MLT is not related to a single source; rather, it is due to a combination of changes in troposphere forcing, zonal mean atmosphere, and wave-wave interactions.

  18. Quantifying Livestock Heat Stress Impacts in the Sahel

    NASA Astrophysics Data System (ADS)

    Broman, D.; Rajagopalan, B.; Hopson, T. M.

    2014-12-01

    Livestock heat stress, especially in regions of the developing world with limited adaptive capacity, has a largely unquantified impact on food supply. Though dominated by ambient air temperature, relative humidity, wind speed, and solar radiation all affect heat stress, which can decrease livestock growth, milk production, reproduction rates, and mortality. Indices like the thermal-humidity index (THI) are used to quantify the heat stress experienced from climate variables. Livestock experience differing impacts at different index critical thresholds that are empirically determined and specific to species and breed. This lack of understanding has been highlighted in several studies with a limited knowledge of the critical thresholds of heat stress in native livestock breeds, as well as the current and future impact of heat stress,. As adaptation and mitigation strategies to climate change depend on a solid quantitative foundation, this knowledge gap has limited such efforts. To address the lack of study, we have investigated heat stress impacts in the pastoral system of Sub-Saharan West Africa. We used a stochastic weather generator to quantify both the historic and future variability of heat stress. This approach models temperature, relative humidity, and precipitation, the climate variables controlling heat stress. Incorporating large-scale climate as covariates into this framework provides a better historical fit and allows us to include future CMIP5 GCM projections to examine the climate change impacts on heat stress. Health and production data allow us to examine the influence of this variability on livestock directly, and are considered in conjunction with the confounding impacts of fodder and water access. This understanding provides useful information to decision makers looking to mitigate the impacts of climate change and can provide useful seasonal forecasts of heat stress risk. A comparison of the current and future heat stress conditions based on climate variables for West Africa will be presented, An assessment of current and future risk was obtained by linking climatic heat stress to cattle health and production. Seasonal forecasts of heat stress are also provided by modeling the heat stress climate variables using persistent large-scale climate features.

  19. Atmospheric, Climatic, and Environmental Research

    NASA Technical Reports Server (NTRS)

    Broecker, Wallace S.; Gornitz, Vivien M.

    1994-01-01

    The climate and atmospheric modeling project involves analysis of basic climate processes, with special emphasis on studies of the atmospheric CO2 and H2O source/sink budgets and studies of the climatic role Of CO2, trace gases and aerosols. These studies are carried out, based in part on use of simplified climate models and climate process models developed at GISS. The principal models currently employed are a variable resolution 3-D general circulation model (GCM), and an associated "tracer" model which simulates the advection of trace constituents using the winds generated by the GCM.

  20. Statistical Analysis of Large Simulated Yield Datasets for Studying Climate Effects

    NASA Technical Reports Server (NTRS)

    Makowski, David; Asseng, Senthold; Ewert, Frank; Bassu, Simona; Durand, Jean-Louis; Martre, Pierre; Adam, Myriam; Aggarwal, Pramod K.; Angulo, Carlos; Baron, Chritian; hide

    2015-01-01

    Many studies have been carried out during the last decade to study the effect of climate change on crop yields and other key crop characteristics. In these studies, one or several crop models were used to simulate crop growth and development for different climate scenarios that correspond to different projections of atmospheric CO2 concentration, temperature, and rainfall changes (Semenov et al., 1996; Tubiello and Ewert, 2002; White et al., 2011). The Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013) builds on these studies with the goal of using an ensemble of multiple crop models in order to assess effects of climate change scenarios for several crops in contrasting environments. These studies generate large datasets, including thousands of simulated crop yield data. They include series of yield values obtained by combining several crop models with different climate scenarios that are defined by several climatic variables (temperature, CO2, rainfall, etc.). Such datasets potentially provide useful information on the possible effects of different climate change scenarios on crop yields. However, it is sometimes difficult to analyze these datasets and to summarize them in a useful way due to their structural complexity; simulated yield data can differ among contrasting climate scenarios, sites, and crop models. Another issue is that it is not straightforward to extrapolate the results obtained for the scenarios to alternative climate change scenarios not initially included in the simulation protocols. Additional dynamic crop model simulations for new climate change scenarios are an option but this approach is costly, especially when a large number of crop models are used to generate the simulated data, as in AgMIP. Statistical models have been used to analyze responses of measured yield data to climate variables in past studies (Lobell et al., 2011), but the use of a statistical model to analyze yields simulated by complex process-based crop models is a rather new idea. We demonstrate herewith that statistical methods can play an important role in analyzing simulated yield data sets obtained from the ensembles of process-based crop models. Formal statistical analysis is helpful to estimate the effects of different climatic variables on yield, and to describe the between-model variability of these effects.

  1. Advances in variable selection methods II: Effect of variable selection method on classification of hydrologically similar watersheds in three Mid-Atlantic ecoregions

    EPA Science Inventory

    Hydrological flow predictions in ungauged and sparsely gauged watersheds use regionalization or classification of hydrologically similar watersheds to develop empirical relationships between hydrologic, climatic, and watershed variables. The watershed classifications may be based...

  2. Climate Variability and Ponderosa Pine Colonizations in Central Wyoming: Integrating Dendroecology and Dendroclimatology

    NASA Astrophysics Data System (ADS)

    Lesser, M.; Wentzel, C.; Gray, S.; Jackson, S.

    2007-12-01

    Many tree species are predicted to expand into new territory over the coming decades in response to changing climate. By studying tree expansions over the last several centuries we can begin to understand the mechanisms underlying these changes and anticipate their consequences for forest management. Woody-plant demographics and decadal to multidecadal climate variability are often closely linked in semi-arid regions. Integrated tree-ring analysis, combining dendroecology and dendroclimatology to document, respectively, the demographic history of the population and the climatic history of the region, can reveal ecological dynamics in response to climate variability. We studied four small, disjunct populations of Pinus ponderosa in the Bighorn Basin of north-central Wyoming. These populations are located 30 to 100 kilometers from the nearest core populations of ponderosa pine in the western Bighorn Mountains. Packrat midden studies have shown that ponderosa pine colonized the western slopes of the Bighorn Range 1500 years ago, so the disjunct populations in the basin must be younger. All trees (living and dead) at each of the four disjunct populations were mapped, cored, and then aged using tree-ring based techniques. We obtained records of hydroclimatic variability from the Bighorn Basin using four tree-ring series from Pinus flexilis (3 sites) and Pseudotsuga menziesii (1 site). The four disjunct populations were all established within the past 500 years. Initially, the populations grew slowly with low recruitment rates until the early 19th century, when they experienced one or more large recruitment pulses. These pulses coincided with extended wet periods in the climate reconstruction. However, similar wet periods before the 19th Century were not accompanied by recruitment pulses, indicating that other factors (e.g., population density, genetic variability) are also important in colonization and expansion. We are currently obtaining genetic data and carrying out population modeling to differentiate the effects of population dynamics, genetic variability, and climate variability on recruitment and expansion of these populations.

  3. Climate variability during the Medieval Climate Anomaly and Little Ice Age based on ostracod faunas and shell geochemistry from Biscayne Bay, Florida: Chapter 14

    USGS Publications Warehouse

    Cronin, Thomas M.; Wingard, G. Lynn; Dwyer, Gary S.; Swart, Peter K.; Willard, Debra A.; Albietz, Jessica

    2012-01-01

    An 800-year-long environmental history of Biscayne Bay, Florida, is reconstructed from ostracod faunal and shell geochemical (oxygen, carbon isotopes, Mg/Ca ratios) studies of sediment cores from three mudbanks in the central and southern parts of the bay. Using calibrations derived from analyses of modern Biscayne and Florida Bay ostracods, palaeosalinity oscillations associated with changes in precipitation were identified. These oscillations reflect multidecadal- and centennial-scale climate variability associated with the Atlantic Multidecadal Oscillation during the late Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Evidence suggests wetter regional climate during the MCA and drier conditions during the LIA. In addition, twentieth century anthropogenic modifications to Everglades hydrology influenced bay circulation and/or processes controlling carbon isotopic composition.

  4. The complexity of millennial-scale variability in southwestern Europe during MIS 11

    NASA Astrophysics Data System (ADS)

    Oliveira, Dulce; Desprat, Stéphanie; Rodrigues, Teresa; Naughton, Filipa; Hodell, David; Trigo, Ricardo; Rufino, Marta; Lopes, Cristina; Abrantes, Fátima; Sánchez Goñi, Maria Fernanda

    2016-11-01

    Climatic variability of Marine Isotope Stage (MIS) 11 is examined using a new high-resolution direct land-sea comparison from the SW Iberian margin Site U1385. This study, based on pollen and biomarker analyses, documents regional vegetation, terrestrial climate and sea surface temperature (SST) variability. Suborbital climate variability is revealed by a series of forest decline events suggesting repeated cooling and drying episodes in SW Iberia throughout MIS 11. Only the most severe events on land are coeval with SST decreases, under larger ice volume conditions. Our study shows that the diverse expression (magnitude, character and duration) of the millennial-scale cooling events in SW Europe relies on atmospheric and oceanic processes whose predominant role likely depends on baseline climate states. Repeated atmospheric shifts recalling the positive North Atlantic Oscillation mode, inducing dryness in SW Iberia without systematical SST changes, would prevail during low ice volume conditions. In contrast, disruption of the Atlantic meridional overturning circulation (AMOC), related to iceberg discharges, colder SST and increased hydrological regime, would be responsible for the coldest and driest episodes of prolonged duration in SW Europe.

  5. Development and application of downscaled hydroclimatic predictor variables for use in climate vulnerability and assessment studies

    USGS Publications Warehouse

    Thorne, James; Boynton, Ryan; Flint, Lorraine; Flint, Alan; N'goc Le, Thuy

    2012-01-01

    This paper outlines the production of 270-meter grid-scale maps for 14 climate and derivative hydrologic variables for a region that encompasses the State of California and all the streams that flow into it. The paper describes the Basin Characterization Model (BCM), a map-based, mechanistic model used to process the hydrological variables. Three historic and three future time periods of 30 years (1911–1940, 1941–1970, 1971–2000, 2010–2039, 2040–2069, and 2070–2099) were developed that summarize 180 years of monthly historic and future climate values. These comprise a standardized set of fine-scale climate data that were shared with 14 research groups, including the U.S. National Park Service and several University of California groups as part of this project. We present three analyses done with the outputs from the Basin Characterization Model: trends in hydrologic variables over baseline, the most recent 30-year period; a calibration and validation effort that uses measured discharge values from 139 streamgages and compares those to Basin Characterization Model-derived projections of discharge for the same basins; and an assessment of the trends of specific hydrological variables that links historical trend to projected future change under four future climate projections. Overall, increases in potential evapotranspiration dominate other influences in future hydrologic cycles. Increased potential evapotranspiration drives decreasing runoff even under forecasts with increased precipitation, and drives increased climatic water deficit, which may lead to conversion of dominant vegetation types across large parts of the study region as well as have implications for rain-fed agriculture. The potential evapotranspiration is driven by air temperatures, and the Basin Characterization Model permits it to be integrated with a water balance model that can be derived for landscapes and summarized by watershed. These results show the utility of using a process-based model with modules representing different hydrological pathways that can be inter-linked.

  6. Assessing the Effects of Climate on Global Fluvial Discharge Variability

    NASA Astrophysics Data System (ADS)

    Hansford, M. R.; Plink-Bjorklund, P.

    2017-12-01

    Plink-Bjorklund (2015) established the link between precipitation seasonality and river discharge variability in the monsoon domain and subtropical rivers (see also Leier et al, 2005; Fielding et al., 2009), resulting in distinct morphodynamic processes and a sedimentary record distinct from perennial precipitation zone in tropical rainforest zone and mid latitudes. This study further develops our understanding of discharge variability using a modern global river database created with data from the Global Runoff Data Centre (GRDC). The database consists of daily discharge for 595 river stations and examines them using a series of discharge variability indexes (DVI) on different temporal scales to examine how discharge variability occurs in river systems around the globe. These indexes examine discharge of individual days and monthly averages that allows for comparison of river systems against each other, regardless of size of the river. Comparing river discharge patterns in seven climate zones (arid, cold, humid subtropics, monsoonal, polar, rainforest, and temperate) based off the Koppen-Geiger climate classifications reveals a first order climatic control on discharge patterns and correspondingly sediment transport. Four groupings of discharge patterns emerge when coming climate zones and DVI: persistent, moderate, seasonal, and erratic. This dataset has incredible predictive power about the nature of discharge in fluvial systems around the world. These seasonal effects on surface water supply affects river morphodynamics and sedimentation on a wide timeframe, ranging from large single events to an inter-annual or even decadal timeframe. The resulting sedimentary deposits lead to differences in fluvial architecture on a range of depositional scales from sedimentary structures and bedforms to channel complex systems. These differences are important to accurately model for several reasons, ranging from stratigraphic and paleoenviromental reconstructions to more economic reasons, such as predicting reservoir presence, distribution, and connectivity in continental basins. The ultimate objective of this research is to develop differentiated fluvial facies and architecture based on the observed discharge patterns in the different climate zones.

  7. Combining climatic and soil properties better predicts covers of Brazilian biomes.

    PubMed

    Arruda, Daniel M; Fernandes-Filho, Elpídio I; Solar, Ricardo R C; Schaefer, Carlos E G R

    2017-04-01

    Several techniques have been used to model the area covered by biomes or species. However, most models allow little freedom of choice of response variables and are conditioned to the use of climate predictors. This major restriction of the models has generated distributions of low accuracy or inconsistent with the actual cover. Our objective was to characterize the environmental space of the most representative biomes of Brazil and predict their cover, using climate and soil-related predictors. As sample units, we used 500 cells of 100 km 2 for ten biomes, derived from the official vegetation map of Brazil (IBGE 2004). With a total of 38 (climatic and soil-related) predictors, an a priori model was run with the random forest classifier. Each biome was calibrated with 75% of the samples. The final model was based on four climate and six soil-related predictors, the most important variables for the a priori model, without collinearity. The model reached a kappa value of 0.82, generating a highly consistent prediction with the actual cover of the country. We showed here that the richness of biomes should not be underestimated, and that in spite of the complex relationship, highly accurate modeling based on climatic and soil-related predictors is possible. These predictors are complementary, for covering different parts of the multidimensional niche. Thus, a single biome can cover a wide range of climatic space, versus a narrow range of soil types, so that its prediction is best adjusted by soil-related variables, or vice versa.

  8. Combining climatic and soil properties better predicts covers of Brazilian biomes

    NASA Astrophysics Data System (ADS)

    Arruda, Daniel M.; Fernandes-Filho, Elpídio I.; Solar, Ricardo R. C.; Schaefer, Carlos E. G. R.

    2017-04-01

    Several techniques have been used to model the area covered by biomes or species. However, most models allow little freedom of choice of response variables and are conditioned to the use of climate predictors. This major restriction of the models has generated distributions of low accuracy or inconsistent with the actual cover. Our objective was to characterize the environmental space of the most representative biomes of Brazil and predict their cover, using climate and soil-related predictors. As sample units, we used 500 cells of 100 km2 for ten biomes, derived from the official vegetation map of Brazil (IBGE 2004). With a total of 38 (climatic and soil-related) predictors, an a priori model was run with the random forest classifier. Each biome was calibrated with 75% of the samples. The final model was based on four climate and six soil-related predictors, the most important variables for the a priori model, without collinearity. The model reached a kappa value of 0.82, generating a highly consistent prediction with the actual cover of the country. We showed here that the richness of biomes should not be underestimated, and that in spite of the complex relationship, highly accurate modeling based on climatic and soil-related predictors is possible. These predictors are complementary, for covering different parts of the multidimensional niche. Thus, a single biome can cover a wide range of climatic space, versus a narrow range of soil types, so that its prediction is best adjusted by soil-related variables, or vice versa.

  9. Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis

    NASA Astrophysics Data System (ADS)

    Ahmadalipour, Ali; Rana, Arun; Moradkhani, Hamid; Sharma, Ashish

    2017-04-01

    Climate change is expected to have severe impacts on global hydrological cycle along with food-water-energy nexus. Currently, there are many climate models used in predicting important climatic variables. Though there have been advances in the field, there are still many problems to be resolved related to reliability, uncertainty, and computing needs, among many others. In the present work, we have analyzed performance of 20 different global climate models (GCMs) from Climate Model Intercomparison Project Phase 5 (CMIP5) dataset over the Columbia River Basin (CRB) in the Pacific Northwest USA. We demonstrate a statistical multicriteria approach, using univariate and multivariate techniques, for selecting suitable GCMs to be used for climate change impact analysis in the region. Univariate methods includes mean, standard deviation, coefficient of variation, relative change (variability), Mann-Kendall test, and Kolmogorov-Smirnov test (KS-test); whereas multivariate methods used were principal component analysis (PCA), singular value decomposition (SVD), canonical correlation analysis (CCA), and cluster analysis. The analysis is performed on raw GCM data, i.e., before bias correction, for precipitation and temperature climatic variables for all the 20 models to capture the reliability and nature of the particular model at regional scale. The analysis is based on spatially averaged datasets of GCMs and observation for the period of 1970 to 2000. Ranking is provided to each of the GCMs based on the performance evaluated against gridded observational data on various temporal scales (daily, monthly, and seasonal). Results have provided insight into each of the methods and various statistical properties addressed by them employed in ranking GCMs. Further; evaluation was also performed for raw GCM simulations against different sets of gridded observational dataset in the area.

  10. Continental-scale temperature covariance in proxy reconstructions and climate models

    NASA Astrophysics Data System (ADS)

    Hartl-Meier, Claudia; Büntgen, Ulf; Smerdon, Jason; Zorita, Eduardo; Krusic, Paul; Ljungqvist, Fredrik; Schneider, Lea; Esper, Jan

    2017-04-01

    Inter-continental temperature variability over the past millennium has been reported to be more coherent in climate model simulations than in multi-proxy-based reconstructions, a finding that undermines the representation of spatial variability in either of these approaches. We assess the covariance of summer temperatures among Northern Hemisphere continents by comparing tree-ring based temperature reconstructions with state-of-the-art climate model simulations over the past millennium. We find inter-continental temperature covariance to be larger in tree-ring-only reconstructions compared to those derived from multi-proxy networks, thus enhancing the agreement between proxy- and model-based spatial representations. A detailed comparison of simulated temperatures, however, reveals substantial spread among the models. Over the past millennium, inter-continental temperature correlations are driven by the cooling after major volcanic eruptions in 1257, 1452, 1601, and 1815. The coherence of these synchronizing events appears to be elevated in several climate simulations relative to their own covariance baselines and the proxy reconstructions, suggesting these models overestimate the amplitude of cooling in response to volcanic forcing at large spatial scales.

  11. eVolv2k: A new ice core-based volcanic forcing reconstruction for the past 2000 years

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Sigl, Michael

    2016-04-01

    Radiative forcing resulting from stratospheric aerosols produced by major volcanic eruptions is a dominant driver of climate variability in the Earth's past. The ability of climate model simulations to accurately recreate past climate is tied directly to the accuracy of the volcanic forcing timeseries used in the simulations. We present here a new volcanic forcing reconstruction, based on newly updated ice core composites from Antarctica and Greenland. Ice core records are translated into stratospheric aerosol properties for use in climate models through the Easy Volcanic Aerosol (EVA) module, which provides an analytic representation of volcanic stratospheric aerosol forcing based on available observations and aerosol model results, prescribing the aerosol's radiative properties and primary modes of spatial and temporal variability. The evolv2k volcanic forcing dataset covers the past 2000 years, and has been provided for use in the Paleo-Modeling Intercomparison Project (PMIP), and VolMIP experiments within CMIP6. Here, we describe the construction of the eVolv2k data set, compare with prior forcing sets, and show initial simulation results.

  12. ENSO related variability in the Southern Hemisphere, 1948-2000

    NASA Astrophysics Data System (ADS)

    Ribera, Pedro; Mann, Michael E.

    2003-01-01

    The spatiotemporal evolution of Southern Hemisphere climate variability is diagnosed based on the use of the NCEP reanalysis (1948-2000) dataset. Using the MTM-SVD analysis method, significant narrowband variability is isolated from the multi-variate dataset. It is found that the ENSO signal exhibits statistically significant behavior at quasiquadrennial (3-6 yr) timescales for the full time-period. A significant quasibiennial (2-3 yr) timescales emerges only for the latter half of period. Analyses of the spatial evolution of the two reconstructed signals shed additional light on linkages between low and high-latitude Southern Hemisphere climate anomalies.

  13. a System Dynamics Approach for Looking at the Human and Environmental Interactions of Community-Based Irrigation Systems in New Mexico

    NASA Astrophysics Data System (ADS)

    Ochoa, C. G.; Tidwell, V. C.

    2012-12-01

    In the arid southwestern United States community water management systems have adapted to cope with climate variability and with socio-cultural and economic changes that have occurred since the establishment of these systems more than 300 years ago. In New Mexico, the community-based irrigation systems were established by Spanish settlers and have endured climate variability in the form of low levels of precipitation and have prevailed over important socio-political changes including the transfer of territory between Spain and Mexico, and between Mexico and the United States. Because of their inherent nature of integrating land and water use with society involvement these community-based systems have multiple and complex economic, ecological, and cultural interactions. Current urban population growth and more variable climate conditions are adding pressure to the survival of these systems. We are conducting a multi-disciplinary research project that focuses on characterizing these intrinsically complex human and natural interactions in three community-based irrigation systems in northern New Mexico. We are using a system dynamics approach to integrate different hydrological, ecological, socio-cultural and economic aspects of these three irrigation systems. Coupled with intensive field data collection, we are building a system dynamics model that will enable us to simulate important linkages and interactions between environmental and human elements occurring in each of these water management systems. We will test different climate variability and population growth scenarios and the expectation is that we will be able to identify critical tipping points of these systems. Results from this model can be used to inform policy recommendations relevant to the environment and to urban and agricultural land use planning in the arid southwestern United States.

  14. How important is interannual variability in the climatic interpretation of moraine sequences?

    NASA Astrophysics Data System (ADS)

    Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.

    2017-12-01

    Mountain glaciers respond to both long-term climate and interannual forcing. Anderson et al. (2014) pointed out that kilometer-scale fluctuations in glacier length may result from interannual variability in temperature and precipitation given a "steady" climate with no long-term trends in mean or variability of temperature and precipitation. They cautioned that use of outermost moraines from the Last Glacial Maximum (LGM) as indicators of LGM climate will, because of the role of interannual forcing, result in overestimation of the magnitude of long-term temperature depression and/or precipitation enhancement. Here we assess the implications of these ideas, by examining the effect of interannual variability on glacier length and inferred magnitude of LGM climate change from present under both an assumed steady LGM climate and an LGM climate with low-magnitude, long-period variation in summer temperature and annual precipitation. We employ both the original 1-stage linear glacier model (Roe and O'Neal, 2009) used by Anderson et al. (2014) and a newer 3-stage linear model (Roe and Baker, 2014). We apply the models to two reconstructed LGM glaciers in the Colorado Sangre de Cristo Mountains. Three-stage-model results indicate that, absent long-term variations through a 7500-year-long LGM, interannual variability would result in overestimation of mean LGM temperature depression from the outermost moraine of 0.2-0.6°C. If small long-term cyclic variations of temperature (±0.5°C) and precipitation (±5%) are introduced, the overestimation of LGM temperature depression reduces to less than 0.4°C, and if slightly greater long-term variation (±1.0°C and ±10% precipitation) is introduced, the magnitude of overestimation is 0.3°C or less. Interannual variability may produce a moraine sequence that differs from the sequence that would be expected were glacier length forced only by long-term climate. With small amplitude (±0.5°C and ±5% precipitation) long-term variation, the moraine sequence expected if forced by a combination of interannual variability and long-term climate differs from that expected based on long-term climate forcing alone in 38% of model runs. With the larger amplitude long-term forcing (±1.0°C and ±10% precipitation) this difference occurs in 20% of model runs.

  15. An integrated, indicator framework for assessing large-scale variations and change in seasonal timing and phenology (Invited)

    NASA Astrophysics Data System (ADS)

    Betancourt, J. L.; Weltzin, J. F.

    2013-12-01

    As part of an effort to develop an Indicator System for the National Climate Assessment (NCA), the Seasonality and Phenology Indicators Technical Team (SPITT) proposed an integrated, continental-scale framework for understanding and tracking seasonal timing in physical and biological systems. The framework shares several metrics with the EPA's National Climate Change Indicators. The SPITT framework includes a comprehensive suite of national indicators to track conditions, anticipate vulnerabilities, and facilitate intervention or adaptation to the extent possible. Observed, modeled, and forecasted seasonal timing metrics can inform a wide spectrum of decisions on federal, state, and private lands in the U.S., and will be pivotal for international efforts to mitigation and adaptation. Humans use calendars both to understand the natural world and to plan their lives. Although the seasons are familiar concepts, we lack a comprehensive understanding of how variability arises in the timing of seasonal transitions in the atmosphere, and how variability and change translate and propagate through hydrological, ecological and human systems. For example, the contributions of greenhouse warming and natural variability to secular trends in seasonal timing are difficult to disentangle, including earlier spring transitions from winter (strong westerlies) to summer (weak easterlies) patterns of atmospheric circulation; shifts in annual phasing of daily temperature means and extremes; advanced timing of snow and ice melt and soil thaw at higher latitudes and elevations; and earlier start and longer duration of the growing and fire seasons. The SPITT framework aims to relate spatiotemporal variability in surface climate to (1) large-scale modes of natural climate variability and greenhouse gas-driven climatic change, and (2) spatiotemporal variability in hydrological, ecological and human responses and impacts. The hierarchical framework relies on ground and satellite observations, and includes metrics of surface climate seasonality, seasonality of snow and ice, land surface phenology, ecosystem disturbance seasonality, and organismal phenology. Recommended metrics met the following requirements: (a) easily measured by day-of-year, number of days, or in the case of species migrations, by the latitude of the observation on a given date; (b) are observed or can be calculated across a high density of locations in many different regions of the U.S.; and (c) unambiguously describe both spatial and temporal variability and trends in seasonal timing that are climatically driven. The SPITT framework is meant to provide climatic and strategic guidance for the growth and application of seasonal timing and phenological monitoring efforts. The hope is that additional national indicators based on observed phenology, or evidence-based algorithms calibrated with observational data, will evolve with sustained and broad-scale monitoring of climatically sensitive species and ecological processes.

  16. Population viability of Pediocactus bradyi (Cactaceae) in a changing climate.

    PubMed

    Shryock, Daniel F; Esque, Todd C; Hughes, Lee

    2014-11-01

    A key question concerns the vulnerability of desert species adapted to harsh, variable climates to future climate change. Evaluating this requires coupling long-term demographic models with information on past and projected future climates. We investigated climatic drivers of population growth using a 22-yr demographic model for Pediocactus bradyi, an endangered cactus in northern Arizona. We used a matrix model to calculate stochastic population growth rates (λs) and the relative influences of life-cycle transitions on population growth. Regression models linked population growth with climatic variability, while stochastic simulations were used to (1) understand how predicted increases in drought frequency and extreme precipitation would affect λs, and (2) quantify variability in λs based on temporal replication of data. Overall λs was below unity (0.961). Population growth was equally influenced by fecundity and survival and significantly correlated with increased annual precipitation and higher winter temperatures. Stochastic simulations increasing the probability of drought and extreme precipitation reduced λs, but less than simulations increasing the probability of drought alone. Simulations varying the temporal replication of data suggested 14 yr were required for accurate λs estimates. Pediocactus bradyi may be vulnerable to increases in the frequency and intensity of extreme climatic events, particularly drought. Biotic interactions resulting in low survival during drought years outweighed increased seedling establishment following heavy precipitation. Climatic extremes beyond historical ranges of variability may threaten rare desert species with low population growth rates and therefore high susceptibility to stochastic events. © 2014 Botanical Society of America, Inc.

  17. Differential Impacts of Climate Change on Crops and Agricultural Regions in India

    NASA Astrophysics Data System (ADS)

    Sharma, A. N.

    2015-12-01

    As India's farmers and policymakers consider potential adaptation strategies to climate change, some questions loom large: - Which climate variables best explain the variability of crop yields? - How does the vulnerability of crop yields to climate vary regionally? - How are these risks likely to change in the future? While process-based crop modelling has started to answer many of these questions, we believe statistical approaches can complement these in improving our understanding of climate vulnerabilities and appropriate responses. We use yield data collected over three decades for more than ten food crops grown in India along with a variety of statistical approaches to answer the above questions. The ability of climate variables to explain yield variation varies greatly by crop and season, which is expected. Equally important, the ability of models to predict crop yields as well as their coefficients varies greatly by district even for districts which are relatively close to each other and similar in their agricultural practices. We believe these results encourage caution and nuance when making projections about climate impacts on crop yields in the future. Most studies about climate impacts on crop yields focus on a handful of major food crops. By extending our analysis to all the crops with long-term district level data in India as well as two growing seasons we gain a more comprehensive picture. Our results indicate that there is a great deal of variability even at relatively small scales, and that this must be taken into account if projections are to be made useful to policymakers.

  18. Making the best of climatic variability: options for upgrading rainfed farming in water scarce regions.

    PubMed

    Rockström, J

    2004-01-01

    Coping with climatic variability for livelihood security is part of everyday life for rural communities in semi-arid and dry sub-humid savannas. Water scarcity caused by rainfall fluctuations is common, causing meteorological droughts and dry spells. However, this paper indicates, based on experiences in sub-Saharan Africa and India, that the social impact on rural societies of climatically induced droughts is exaggerated. Instead, water scarcity causing food deficits is more often caused by management induced droughts and dry spells. A conceptual framework to distinguish between manageable and unmanageable droughts is presented. It is suggested that climatic droughts require focus on social resilience building instead of land and water resource management. Focus is then set on the manageable part of climatic variability, namely the almost annual occurrence of dry spells, short 2-4 week periods of no rainfall, affecting farmer yields. On-farm experiences in savannas of sub-Saharan Africa of water harvesting systems for dry spell mitigation are presented. It is shown that bridging dry spells combined with soil fertility management can double and even triple on-farm yield levels. Combined with innovative systems to ensure maximum plant water availability and water uptake capacity, through adoption of soil fertility improvement and conservation tillage systems, there is a clear opportunity to upgrade rainfed farming systems in vulnerable savanna environments, through appropriate local management of climatic variability.

  19. Climate change projections of heat stress in Europe: From meteorological variables to impacts on productivity

    NASA Astrophysics Data System (ADS)

    Casanueva, Ana; Kotlarski, Sven; Liniger, Mark A.

    2017-04-01

    Future climate change is likely to have important impacts in many socio-economic sectors. In particular, higher summer temperatures or more prolonged heat waves may be responsible for health problems and productivity losses related to heat stress, especially affecting people exposed to such situations (e.g. working under outside settings or in non-acclimatized workplaces). Heat stress on the body under work load and consequently their productivity loss can be described through heat stress indices that are based on multiple meteorological parameters such as temperature, humidity, wind and radiation. Exploring the changes of these variables under a warmer climate is of prime importance for the Impacts, Adaptation and Vulnerability communities. In particular, the H2020 project HEAT-SHIELD aims at analyzing the impact of climate change on heat stress in strategic industries in Europe (manufacturing, construction, transportation, tourism and agriculture) within an inter-sectoral framework (climate scientists, biometeorologists, physiologists and stakeholders). In the present work we explore present and future heat stress over Europe using an ensemble of the state-of-the-art RCMs from the EURO-CORDEX initiative. Since RCMs cannot be directly used in impact studies due to their partly substantial biases, a standard bias correction method (empirical quantile mapping) is applied to correct the individual variables that are then used to derive heat stress indices. The objectives of this study are twofold, 1) to test the ability of the separately bias corrected variables to reproduce the main characteristics of heat stress indices in present climate conditions and 2) to explore climate change projections of heat stress indices. We use the wet bulb globe temperature (WBGT) as primary heat stress index, considering two different versions for indoor (or in the shade, based on temperature and humidity conditions) and outdoor settings (including also wind and radiation). The WBGT is the most widely used heat stress index for working people and can be easily interpreted by means of ISO standards. Within the HEAT-SHIELD project, climate change projections of the WBGT will be used to assess the impact of climate change on workers' health and productivity.

  20. Global warming: it's not only size that matters

    NASA Astrophysics Data System (ADS)

    Hegerl, Gabriele C.

    2011-09-01

    Observed and model simulated warming is particularly large in high latitudes, and hence the Arctic is often seen as the posterchild of vulnerability to global warming. However, Mahlstein et al (2011) point out that the signal of climate change is emerging locally from that of climate variability earliest in regions of low climate variability, based on climate model data, and in agreement with observations. This is because high latitude regions are not only regions of strong feedbacks that enhance the global warming signal, but also regions of substantial climate variability, driven by strong dynamics and enhanced by feedbacks (Hall 2004). Hence the spatial pattern of both observed warming and simulated warming for the 20th century shows strong warming in high latitudes, but this warming occurs against a backdrop of strong variability. Thus, the ratio of the warming to internal variability is not necessarily highest in the regions that warm fastest—and Mahlstein et al illustrate that it is actually the low-variability regions where the signal of local warming emerges first from that of climate variability. Thus, regions with strongest warming are neither the most important to diagnose that forcing changes climate, nor are they the regions which will necessarily experience the strongest impact. The importance of the signal-to-noise ratio has been known to the detection and attribution community, but has been buried in technical 'optimal fingerprinting' literature (e.g., Hasselmann 1979, Allen and Tett 1999), where it was used for an earlier detection of climate change by emphasizing aspects of the fingerprint of global warming associated with low variability in estimates of the observed warming. What, however, was not discussed was that the local signal-to-noise ratio is of interest also for local climate change: where temperatures emerge from the range visited by internal climate variability, it is reasonable to assume that changes in climate will also cause more impacts than temperatures that have occurred frequently due to internal climate variability. Determining when exactly temperatures enter unusual ranges may be done in many different ways (and the paper shows several, and more could be imagined), but the main result of first local emergence in low latitudes remains robust. A worrying factor is that the regions where the signal is expected to emerge first, or is already emerging are largely regions in Africa, parts of South and Central America, and the Maritime Continent; regions that are vulnerable to climate change for a variety of regions (see IPCC 2007), and regions which contribute generally little to global greenhouse gas emissions. In contrast, strong emissions of greenhouse gases occur in regions of low warming-to-variability ratio. To get even closer to the relevance of this finding for impacts, it would be interesting to place the emergence of highly unusual summer temperatures in the context not of internal variability, but in the context of variability experienced by the climate system prior to the 20th century, as, e.g. documented in palaeoclimatic reconstructions and simulated in simulations of the last millennium (see Jansen et al 2007). External forcing has moved the temperature range around more strongly for some regions and in some seasons than others. For example, while reconstructions of summer temperatures in Europe appear to show small long-term variations, winter shows deep drops in temperature in the little Ice Age and a long-term increase since then (Luterbacher et al 2004), which was at least partly caused by external forcing (Hegerl et al 2011a) and therefore 'natural variability' may be different from internal variability. A further interesting question in attempts to provide a climate-based proxy for impacts of climate change is: to what extent does the rapidity of change matter, and how does it compare to trends due to natural variability? It is reasonable to assume that fast changes impact ecosystems and society more than slow, gradual ones. Also, is it really the mean seasonal temperature that counts, or should the focus change to extremes (see Hegerl et al 2011b)? Is seasonal mean exceedance of the prior temperature envelope a good and robust measure that also reflects these other, more complex diagnostics? Lots of food for thought and research! References Allen M R and Tett S F B 1999 Checking for model consistency in optimal finger printing Clim. Dyn. 15 419-34 Hall A 2004 The role of surface albedo feedback in climate J. Clim. 17 1550-68 Hasselmann K 1979 On the signal-to-noise problem in atmospheric response studies Meteorology of Tropical Oceans ed D B Shaw (Bracknell: Royal Meteorological Society) pp 251-9 Hegerl G C, Luterbacher J, Gonzalez-Ruoco F, Tett S F B and Xoplaki E 2011a Influence of human and natural forcing on European seasonal temperatures Nature Geoscience 4 99-103 Hegerl G, Hanlon H and Beierkuhnlein C 2011b Climate science: elusive extremes Nature Geoscience 4 142-3 IPCC 2007 Climate Change 2007: Impacts, Adaption and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed M L Parry, O F Canziani, J P Palutikof, P J van der Linden and C E Hanson (Cambridge: Cambridge University Press) Jansen E et al 2007 Palaeoclimate Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed S Solomon et al (Cambridge: Cambridge University Press) Luterbacher J et al 2004 European seasonal and annual temperature variability, trends, and extremes since 1500 Science 303 1499-503 Mahlstein I, Knutti R, Solomon S and Portmann R W 2011 Early onset of significant local warming in low latitude countries Environ. Res. Lett. 6 034009

  1. Updating Known Distribution Models for Forecasting Climate Change Impact on Endangered Species

    PubMed Central

    Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo

    2013-01-01

    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli's Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species' distribution, instead of building new models that are based on climate change variables only. PMID:23840330

  2. Updating known distribution models for forecasting climate change impact on endangered species.

    PubMed

    Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo

    2013-01-01

    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli's Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species' distribution, instead of building new models that are based on climate change variables only.

  3. Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1991--30 June 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigley, T.M.L.; Jones, P.D.

    1994-07-01

    In addition to changes due to variations in greenhouse gas concentrations, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the enhanced greenhouse effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics. To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas concentration changes and other factors. Analyses will be guided bymore » a variety of models, from simple energy balance climate models to ocean General Circulation Models. Appendices A--G contain the following seven papers: (A) Recent global warmth moderated by the effects of the Mount Pinatubo eruption; (B) Recent warming in global temperature series; (C) Correlation methods in fingerprint detection studies; (D) Balancing the carbon budget. Implications for projections of future carbon dioxide concentration changes; (E) A simple model for estimating methane concentration and lifetime variations; (F) Implications for climate and sea level of revised IPCC emissions scenarios; and (G) Sulfate aerosol and climatic change.« less

  4. Impact of transient climate change upon Grouse population dynamics in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Pirovano, Andrea; Bocchiola, Daniele

    2010-05-01

    Understanding the effect of short to medium term weather condition, and of transient global warming upon wildlife species life history is essential to predict the demographic consequences therein, and possibly develop adaptation strategies, especially in game species, where hunting mortality may play an important role in population dynamics. We carried out a preliminary investigation of observed impact of weather variables upon population dynamics indexes of three alpine Grouse species (i.e. Rock Ptarmigan, Lagopus Mutus, Black Grouse, Tetrao Tetrix, Rock Partridge, Alectoris Graeca), nested within central Italian Alps, based upon 15 years (1995-2009) of available censuses data, provided by the Sondrio Province authority. We used a set of climate variables already highlighted within recent literature for carrying considerable bearing on Grouse population dynamics, including e.g. temperature at hatching time and during winter, snow cover at nesting, and precipitation during nursing period. We then developed models of Grouses' population dynamics by explicitly driving population change according to their dependence upon the significant weather variables and population density and we evaluated objective indexes to assess the so obtained predictive power. Eventually, we develop projection of future local climate, based upon locally derived trends, and upon projections from GCMs (A2 IPCC storyline) already validated for the area, to project forward in time (until 2100 or so) the significant climatic variables, which we then use to force population dynamics models of the target species. The projected patterns obtained through this exercise are discussed and compared against those expected under stationary climate conditions at present, and preliminary conclusions are drawn.

  5. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.

    PubMed

    Litzow, Michael A; Mueter, Franz J; Hobday, Alistair J

    2014-01-01

    In areas of the North Pacific that are largely free of overfishing, climate regime shifts - abrupt changes in modes of low-frequency climate variability - are seen as the dominant drivers of decadal-scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific-North American Pattern (PNA), North Pacific Index (NPI), El Niño-Southern Oscillation (ENSO)] to explain decadal-scale (1965-2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1-2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1-2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1-2 satisfied assumptions of independent residuals and out-performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology PC1-2 suggest plausible mechanistic explanations for these modeling results. Our findings suggest that, even in the absence of overfishing and in areas strongly influenced by internal climate variability, climate regime shift effects can only be understood in the context of other ecosystem perturbations. © 2013 John Wiley & Sons Ltd.

  6. Inter-model Diversity of ENSO simulation and its relation to basic states

    NASA Astrophysics Data System (ADS)

    Kug, J. S.; Ham, Y. G.

    2016-12-01

    In this study, a new methodology is developed to improve the climate simulation of state-of-the-art coupledglobal climate models (GCMs), by a postprocessing based on the intermodel diversity. Based on the closeconnection between the interannual variability and climatological states, the distinctive relation between theintermodel diversity of the interannual variability and that of the basic state is found. Based on this relation,the simulated interannual variabilities can be improved, by correcting their climatological bias. To test thismethodology, the dominant intermodel difference in precipitation responses during El Niño-SouthernOscillation (ENSO) is investigated, and its relationship with climatological state. It is found that the dominantintermodel diversity of the ENSO precipitation in phase 5 of the Coupled Model Intercomparison Project(CMIP5) is associated with the zonal shift of the positive precipitation center during El Niño. This dominantintermodel difference is significantly correlated with the basic states. The models with wetter (dryer) climatologythan the climatology of the multimodel ensemble (MME) over the central Pacific tend to shift positiveENSO precipitation anomalies to the east (west). Based on the model's systematic errors in atmosphericENSO response and bias, the models with better climatological state tend to simulate more realistic atmosphericENSO responses.Therefore, the statistical method to correct the ENSO response mostly improves the ENSO response. Afterthe statistical correction, simulating quality of theMMEENSO precipitation is distinctively improved. Theseresults provide a possibility that the present methodology can be also applied to improving climate projectionand seasonal climate prediction.

  7. Climate variability in the subarctic area for the last 2 millennia

    NASA Astrophysics Data System (ADS)

    Nicolle, Marie; Debret, Maxime; Massei, Nicolas; Colin, Christophe; deVernal, Anne; Divine, Dmitry; Werner, Johannes P.; Hormes, Anne; Korhola, Atte; Linderholm, Hans W.

    2018-01-01

    To put recent climate change in perspective, it is necessary to extend the instrumental climate records with proxy data from paleoclimate archives. Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from three regionally averaged records from the North Atlantic, Siberia and Alaska based on many types of proxy data archived in the Arctic 2k database v1.1.1. In the North Atlantic and Alaska, the major climatic trend is characterized by long-term cooling interrupted by recent warming that started at the beginning of the 19th century. This cooling is visible in the Siberian region at two sites, warming at the others. The cooling of the Little Ice Age (LIA) was identified from the individual series, but it is characterized by wide-range spatial and temporal expression of climate variability, in contrary to the Medieval Climate Anomaly. The LIA started at the earliest by around AD 1200 and ended at the latest in the middle of the 20th century. The widespread temporal coverage of the LIA did not show regional consistency or particular spatial distribution and did not show a relationship with archive or proxy type either. A focus on the last 2 centuries shows a recent warming characterized by a well-marked warming trend parallel with increasing greenhouse gas emissions. It also shows a multidecadal variability likely due to natural processes acting on the internal climate system on a regional scale. A ˜ 16-30-year cycle is found in Alaska and seems to be linked to the Pacific Decadal Oscillation, whereas ˜ 20-30- and ˜ 50-90-year periodicities characterize the North Atlantic climate variability, likely in relation with the Atlantic Multidecadal Oscillation. These regional features are probably linked to the sea ice cover fluctuations through ice-temperature positive feedback.

  8. Spatiotemporal variability and predictability of Normalized Difference Vegetation Index (NDVI) in Alberta, Canada.

    PubMed

    Jiang, Rengui; Xie, Jiancang; He, Hailong; Kuo, Chun-Chao; Zhu, Jiwei; Yang, Mingxiang

    2016-09-01

    As one of the most popular vegetation indices to monitor terrestrial vegetation productivity, Normalized Difference Vegetation Index (NDVI) has been widely used to study the plant growth and vegetation productivity around the world, especially the dynamic response of vegetation to climate change in terms of precipitation and temperature. Alberta is the most important agricultural and forestry province and with the best climatic observation systems in Canada. However, few studies pertaining to climate change and vegetation productivity are found. The objectives of this paper therefore were to better understand impacts of climate change on vegetation productivity in Alberta using the NDVI and provide reference for policy makers and stakeholders. We investigated the following: (1) the variations of Alberta's smoothed NDVI (sNDVI, eliminated noise compared to NDVI) and two climatic variables (precipitation and temperature) using non-parametric Mann-Kendall monotonic test and Thiel-Sen's slope; (2) the relationships between sNDVI and climatic variables, and the potential predictability of sNDVI using climatic variables as predictors based on two predicted models; and (3) the use of a linear regression model and an artificial neural network calibrated by the genetic algorithm (ANN-GA) to estimate Alberta's sNDVI using precipitation and temperature as predictors. The results showed that (1) the monthly sNDVI has increased during the past 30 years and a lengthened growing season was detected; (2) vegetation productivity in northern Alberta was mainly temperature driven and the vegetation in southern Alberta was predominantly precipitation driven for the period of 1982-2011; and (3) better performances of the sNDVI-climate relationships were obtained by nonlinear model (ANN-GA) than using linear (regression) model. Similar results detected in both monthly and summer sNDVI prediction using climatic variables as predictors revealed the applicability of two models for different period of year ecologists might focus on.

  9. An integrated hydrological modeling approach for detection and attribution of climatic and human impacts on coastal water resources

    NASA Astrophysics Data System (ADS)

    Feng, Dapeng; Zheng, Yi; Mao, Yixin; Zhang, Aijing; Wu, Bin; Li, Jinguo; Tian, Yong; Wu, Xin

    2018-02-01

    Water resources in coastal areas can be profoundly influenced by both climate change and human activities. These climatic and human impacts are usually intertwined and difficult to isolate. This study developed an integrated model-based approach for detection and attribution of climatic and human impacts and applied this approach to the Luanhe Plain, a typical coastal area in northern China. An integrated surface water-groundwater model was developed for the study area using GSFLOW (coupled groundwater and surface-water flow). Model calibration and validation were performed for background years between 1975 and 2000. The variation in water resources between the 1980s and 1990s was then quantitatively attributed to climate variability, groundwater pumping and changes in upstream inflow. Climate scenarios for future years (2075-2100) were also developed by downscaling the projections in CMIP5. Potential water resource responses to climate change, as well as their uncertainty, were then investigated through integrated modeling. The study results demonstrated the feasibility and value of the integrated modeling-based analysis for water resource management in areas with complex surface water-groundwater interaction. Specific findings for the Luanhe Plain included the following: (1) During the historical period, upstream inflow had the most significant impact on river outflow to the sea, followed by climate variability, whereas groundwater pumping was the least influential. (2) The increase in groundwater pumping had a dominant influence on the decline in groundwater change, followed by climate variability. (3) Synergetic and counteractive effects among different impacting factors, while identified, were not significant, which implied that the interaction among different factors was not very strong in this case. (4) It is highly probable that future climate change will accelerate groundwater depletion in the study area, implying that strict regulations for groundwater pumping are imperative for adaptation.

  10. Actual evapotranspiration for a reference crop within measured and future changing climate periods in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Katerji, Nader; Rana, Gianfranco; Ferrara, Rossana Monica

    2017-08-01

    The study compares two formulas for calculating the daily evapotranspiration ET0 for a reference crop. The first formula was proposed by Allen et al. (AL), while the second one was proposed by Katerji and Perrier with the addition of the carbon dioxide (CO2) effect on evapotranspiration (KP). The study analyses the impact of the calculation by the two formulas on the irrigation requirement (IR). Both formulas are based on the Penman-Monteith equation but adopt different approaches for parameterising the canopy resistance r c . In the AL formula, r c is assumed constant and not sensitive to climate change, whereas in the KP formula, r c is first parameterised as a function of climatic variables, then ET0 is corrected for the air CO2 concentration. The two formulas were compared in two periods. The first period involves data from two sites in the Mediterranean region within a measured climate change period (1981-2006) when all the input climatic variables were measured. The second period (2070-2100) involves data from a future climate change period at one site when the input climatic variables were forecasted for two future climate scenarios (A2 and B2). The annual cumulated values of ET0 calculated by the AL formula are systematically lower than those determined by the KP formula. The differences between the ET0 estimation with the AL and KP formulas have a strong impact on the determination of the IR for the reference crop. In fact, for the two periods, the annual values of IR when ET0 is calculated by the AL formula are systematically lower than those calculated by the KP formula. For the actual measured climate change period, this reduction varied from 26 to 28 %, while for the future climate change period, it varied based on the scenario from 16 % (A2) to 20 % (B2).

  11. Spatial variability in growth-increment chronologies of long-lived freshwater mussels: Implications for climate impacts and reconstructions

    USGS Publications Warehouse

    Black, Bryan A.; Dunham, Jason B.; Blundon, Brett W.; Raggon, Mark F.; Zima, Daniela

    2010-01-01

    Estimates of historical variability in river ecosystems are often lacking, but long-lived freshwater mussels could provide unique opportunities to understand past conditions in these environments. We applied dendrochronology techniques to quantify historical variability in growth-increment widths in valves (shells) of western pearlshell freshwater mussels (Margaritifera falcata). A total of 3 growth-increment chronologies, spanning 19 to 26 y in length, were developed. Growth was highly synchronous among individuals within each site, and to a lesser extent, chronologies were synchronous among sites. All 3 chronologies negatively related to instrumental records of stream discharge, while correlations with measures of water temperature were consistently positive but weaker. A reconstruction of stream discharge was performed using linear regressions based on a mussel growth chronology and the regional Palmer Drought Severity Index (PDSI). Models based on mussel growth and PDSI yielded similar coefficients of prediction (R2Pred) of 0.73 and 0.77, respectively, for predicting out-ofsample observations. From an ecological perspective, we found that mussel chronologies provided a rich source of information for understanding climate impacts. Responses of mussels to changes in climate and stream ecosystems can be very site- and process-specific, underscoring the complex nature of biotic responses to climate change and the need to understand both regional and local processes in projecting climate impacts on freshwater species.

  12. How Do Land-Use and Climate Change Affect Watershed Health? A Scenario-Based Analysis

    EPA Science Inventory

    With the growing emphasis on biofuel crops and potential impacts of climate variability and change, there is a need to quantify their effects on hydrological processes for developing watershed management plans. Environmental consequences are currently estimated by utilizing comp...

  13. Addressing Air, Land & Water Nitrogen Issues under Changing Climate Trends & Variability

    EPA Science Inventory

    The climate of western U.S. dairy producing states is anticipated to change significantly over the next 50 to 75 years. A multimedia modeling system based upon the “nitrogen cascade” concept has been configured to address three aspects of sustainability (environmenta...

  14. Does climate directly influence NPP globally?

    PubMed

    Chu, Chengjin; Bartlett, Megan; Wang, Youshi; He, Fangliang; Weiner, Jacob; Chave, Jérôme; Sack, Lawren

    2016-01-01

    The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247 woody plant communities across global climate gradients, that temperature and precipitation have negligible direct effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot ) and stand age (a). The authors of that study concluded that the length of the growing season (lgs ) might have a minor influence on NPP, an effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study's conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP. We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches: maximum-likelihood model selection, independent-effects analysis, and structural equation modeling. These new analyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables and supported strong and direct influences of climate independently of Mtot , both for NPP and for net biomass change averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and Pann ), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong, direct role of climate in determining vegetation productivity at the global scale. © 2015 John Wiley & Sons Ltd.

  15. Centennial-scale winter climate variability over the last two millennia in the northern Gulf of Mexico based on paired δ18O and Mg/Ca in Globorotalia truncatulinoides

    NASA Astrophysics Data System (ADS)

    Fortiz, V.; Thirumalai, K.; Richey, J. N.; Quinn, T. M.

    2014-12-01

    We present a replicated record of paired foraminiferal δ18O and Mg/Ca variations in multi-cores collected from the Garrison Basin (26º43'N, 93º55'W) in the northern Gulf of Mexico (GOM). Using δ18O (sea surface temperature, SST; sea surface salinity, SSS proxy) and Mg/Ca (SST proxy) variations in non-encrusted planktic foraminifer Globorotalia truncatulinoides we produce time series spanning the last two millennia that is characterized by centennial-scale climate variability. We interpret geochemical variations in G. truncatulinoides to reflect winter climate variability because data from a sediment trap, located ~350 km east of the core site, reveal that annual flux of G. truncatulinoides is heavily weighted towards winter (peak production in January-February; Spear et al., 2011). Similar centennial-scale variability is also observed in the foraminiferal geochemistry of Globigerinoides ruber in the same multi-cores, which likely reflect mean annual climate variations. Our replicated results and comparisons to other SST reconstructions from the region lend confidence that the northern GOM surface ocean underwent large, centennial-scale variability, most likely dominated by changes in winter climate. This variability occurred in a time period where climate forcing is small and background conditions are similar to pre-industrial times. References: Spear, J.W.; Poore, R.Z., and Quinn, T.M., 2011, Globorotalia truncatulinoides (dextral) Mg/Ca as a proxy for Gulf of Mexico winter mixed-layer temperature: Evidence from a sediment trap in the northern Gulf of Mexico. Marine Micropaleontology, 80, 53-61.

  16. Cloudy Windows: What GCM Ensembles, Reanalyses and Observations Tell Us About Uncertainty in Greenland's Future Climate and Surface Melting

    NASA Astrophysics Data System (ADS)

    Reusch, D. B.

    2016-12-01

    Any analysis that wants to use a GCM-based scenario of future climate benefits from knowing how much uncertainty the GCM's inherent variability adds to the development of climate change predictions. This is extra relevant in the polar regions due to the potential of global impacts (e.g., sea level rise) from local (ice sheet) climate changes such as more frequent/intense surface melting. High-resolution, regional-scale models using GCMs for boundary/initial conditions in future scenarios inherit a measure of GCM-derived externally-driven uncertainty. We investigate these uncertainties for the Greenland ice sheet using the 30-member CESM1.0-CAM5-BGC Large Ensemble (CESMLE) for recent (1981-2000) and future (2081-2100, RCP 8.5) decades. Recent simulations are skill-tested against the ERA-Interim reanalysis and AWS observations with results informing future scenarios. We focus on key variables influencing surface melting through decadal climatologies, nonlinear analysis of variability with self-organizing maps (SOMs), regional-scale modeling (Polar WRF), and simple melt models. Relative to the ensemble average, spatially averaged climatological July temperature anomalies over a Greenland ice-sheet/ocean domain are mostly between +/- 0.2 °C. The spatial average hides larger local anomalies of up to +/- 2 °C. The ensemble average itself is 2 °C cooler than ERA-Interim. SOMs extend our diagnostics by providing a concise, objective summary of model variability as a set of generalized patterns. For CESMLE, the SOM patterns summarize the variability of multiple realizations of climate. Changes in pattern frequency by ensemble member show the influence of initial conditions. For example, basic statistical analysis of pattern frequency yields interquartile ranges of 2-4% for individual patterns across the ensemble. In climate terms, this tells us about climate state variability through the range of the ensemble, a potentially significant source of melt-prediction uncertainty. SOMs can also capture the different trajectories of climate due to intramodel variability over time. Polar WRF provides higher resolution regional modeling with improved, polar-centric model physics. Simple melt models allow us to characterize impacts of the upstream uncertainties on estimates of surface melting.

  17. How does complex terrain influence responses of carbon and water cycle processes to climate variability and climate change? (Invited)

    NASA Astrophysics Data System (ADS)

    Bond, B. J.; Peterson, K.; McKane, R.; Lajtha, K.; Quandt, D. J.; Allen, S. T.; Sell, S.; Daly, C.; Harmon, M. E.; Johnson, S. L.; Spies, T.; Sollins, P.; Abdelnour, A. G.; Stieglitz, M.

    2010-12-01

    We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site situated in Oregon’s central-western Cascade Range. Decades of long-term measurements and intensive research have revealed influences of topography on vegetation patterns, disturbance history, and hydrology. More recent research has shown surprising interactions between microclimates and synoptic weather patterns due to cold air drainage and pooling in mountain valleys. Using these data and insights, in addition to a recent LiDAR (Light Detection and Ranging) reconnaissance and a small sensor network, we are employing process-based models, including “SPA” (Soil-Plant-Atmosphere, developed by Mathew Williams of the University of Edinburgh), and “VELMA” (Visualizing Ecosystems for Land Management Alternatives, developed by Marc Stieglitz and colleagues of the Georgia Institute of Technology) to focus on two important features of mountainous landscapes: heterogeneity (both spatial and temporal) and connectivity (atmosphere-canopy-hillslope-stream). Our research questions include: 1) Do fine-scale spatial and temporal heterogeneity result in emergent properties at the basin scale, and if so, what are they? 2) How does connectivity across ecosystem components affect system responses to climate variability and change? Initial results show that for environmental drivers that elicit non-linear ecosystem responses on the plot scale, such as solar radiation, soil depth and soil water content, fine-scale spatial heterogeneity may produce unexpected emergent properties at larger scales. The results from such modeling experiments are necessarily a function of the supporting algorithms. However, comparisons based on models such as SPA and VELMA that operate at much different spatial scales (plots vs. hillslopes) and levels of biophysical organization (individual plants vs. aggregate plant biomass) can help us to understand how and why mountainous ecosystems may have distinctive responses to climate variability and climate change.

  18. A framework to assess the impacts of climate change on stream health indicators in Michigan watersheds

    NASA Astrophysics Data System (ADS)

    Woznicki, S. A.; Nejadhashemi, A. P.; Tang, Y.; Wang, L.

    2016-12-01

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a baseline of 1980-2000 to 2020-2040. Flow regime variables representing variability, duration of extreme events, and timing of low and high flow events were sensitive to changes in climate. The stream health indicators were relatively insensitive to changing climate at the watershed scale. However, there were many instances of individual reaches that were projected to experience declines in stream health. Using the probability of stream health decline coupled with the magnitude of the decline, maps of vulnerable stream ecosystems were developed, which can be used in the watershed management decision-making process.

  19. Comparison of climate envelope models developed using expert-selected variables versus statistical selection

    USGS Publications Warehouse

    Brandt, Laura A.; Benscoter, Allison; Harvey, Rebecca G.; Speroterra, Carolina; Bucklin, David N.; Romañach, Stephanie; Watling, James I.; Mazzotti, Frank J.

    2017-01-01

    Climate envelope models are widely used to describe potential future distribution of species under different climate change scenarios. It is broadly recognized that there are both strengths and limitations to using climate envelope models and that outcomes are sensitive to initial assumptions, inputs, and modeling methods Selection of predictor variables, a central step in modeling, is one of the areas where different techniques can yield varying results. Selection of climate variables to use as predictors is often done using statistical approaches that develop correlations between occurrences and climate data. These approaches have received criticism in that they rely on the statistical properties of the data rather than directly incorporating biological information about species responses to temperature and precipitation. We evaluated and compared models and prediction maps for 15 threatened or endangered species in Florida based on two variable selection techniques: expert opinion and a statistical method. We compared model performance between these two approaches for contemporary predictions, and the spatial correlation, spatial overlap and area predicted for contemporary and future climate predictions. In general, experts identified more variables as being important than the statistical method and there was low overlap in the variable sets (<40%) between the two methods Despite these differences in variable sets (expert versus statistical), models had high performance metrics (>0.9 for area under the curve (AUC) and >0.7 for true skill statistic (TSS). Spatial overlap, which compares the spatial configuration between maps constructed using the different variable selection techniques, was only moderate overall (about 60%), with a great deal of variability across species. Difference in spatial overlap was even greater under future climate projections, indicating additional divergence of model outputs from different variable selection techniques. Our work is in agreement with other studies which have found that for broad-scale species distribution modeling, using statistical methods of variable selection is a useful first step, especially when there is a need to model a large number of species or expert knowledge of the species is limited. Expert input can then be used to refine models that seem unrealistic or for species that experts believe are particularly sensitive to change. It also emphasizes the importance of using multiple models to reduce uncertainty and improve map outputs for conservation planning. Where outputs overlap or show the same direction of change there is greater certainty in the predictions. Areas of disagreement can be used for learning by asking why the models do not agree, and may highlight areas where additional on-the-ground data collection could improve the models.

  20. Risk-based water resources planning: Incorporating probabilistic nonstationary climate uncertainties

    NASA Astrophysics Data System (ADS)

    Borgomeo, Edoardo; Hall, Jim W.; Fung, Fai; Watts, Glenn; Colquhoun, Keith; Lambert, Chris

    2014-08-01

    We present a risk-based approach for incorporating nonstationary probabilistic climate projections into long-term water resources planning. The proposed methodology uses nonstationary synthetic time series of future climates obtained via a stochastic weather generator based on the UK Climate Projections (UKCP09) to construct a probability distribution of the frequency of water shortages in the future. The UKCP09 projections extend well beyond the range of current hydrological variability, providing the basis for testing the robustness of water resources management plans to future climate-related uncertainties. The nonstationary nature of the projections combined with the stochastic simulation approach allows for extensive sampling of climatic variability conditioned on climate model outputs. The probability of exceeding planned frequencies of water shortages of varying severity (defined as Levels of Service for the water supply utility company) is used as a risk metric for water resources planning. Different sources of uncertainty, including demand-side uncertainties, are considered simultaneously and their impact on the risk metric is evaluated. Supply-side and demand-side management strategies can be compared based on how cost-effective they are at reducing risks to acceptable levels. A case study based on a water supply system in London (UK) is presented to illustrate the methodology. Results indicate an increase in the probability of exceeding the planned Levels of Service across the planning horizon. Under a 1% per annum population growth scenario, the probability of exceeding the planned Levels of Service is as high as 0.5 by 2040. The case study also illustrates how a combination of supply and demand management options may be required to reduce the risk of water shortages.

  1. Effects of Topography-driven Micro-climatology on Evaporation

    NASA Astrophysics Data System (ADS)

    Adams, D. D.; Boll, J.; Wagenbrenner, N. S.

    2017-12-01

    The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.

  2. Modeling climate effects on hip fracture rate by the multivariate GARCH model in Montreal region, Canada.

    PubMed

    Modarres, Reza; Ouarda, Taha B M J; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre

    2014-07-01

    Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMAX-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56% of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.

  3. Modeling climate effects on hip fracture rate by the multivariate GARCH model in Montreal region, Canada

    NASA Astrophysics Data System (ADS)

    Modarres, Reza; Ouarda, Taha B. M. J.; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre

    2014-07-01

    Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMA X-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56 % of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.

  4. Assessment of Human Health Vulnerability to Climate Variability and Change in Cuba

    PubMed Central

    Bultó, Paulo Lázaro Ortíz; Rodríguez, Antonio Pérez; Valencia, Alina Rivero; Vega, Nicolás León; Gonzalez, Manuel Díaz; Carrera, Alina Pérez

    2006-01-01

    In this study we assessed the potential effects of climate variability and change on population health in Cuba. We describe the climate of Cuba as well as the patterns of climate-sensitive diseases of primary concern, particularly dengue fever. Analyses of the associations between climatic anomalies and disease patterns highlight current vulnerability to climate variability. We describe current adaptations, including the application of climate predictions to prevent disease outbreaks. Finally, we present the potential economic costs associated with future impacts due to climate change. The tools used in this study can be useful in the development of appropriate and effective adaptation options to address the increased climate variability associated with climate change. PMID:17185289

  5. Revealing Relationships among Relevant Climate Variables with Information Theory

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Golera, Anthony; Curry, Charles T.; Huyser, Karen A.; Kevin R. Wheeler; Rossow, William B.

    2005-01-01

    The primary objective of the NASA Earth-Sun Exploration Technology Office is to understand the observed Earth climate variability, thus enabling the determination and prediction of the climate's response to both natural and human-induced forcing. We are currently developing a suite of computational tools that will allow researchers to calculate, from data, a variety of information-theoretic quantities such as mutual information, which can be used to identify relationships among climate variables, and transfer entropy, which indicates the possibility of causal interactions. Our tools estimate these quantities along with their associated error bars, the latter of which is critical for describing the degree of uncertainty in the estimates. This work is based upon optimal binning techniques that we have developed for piecewise-constant, histogram-style models of the underlying density functions. Two useful side benefits have already been discovered. The first allows a researcher to determine whether there exist sufficient data to estimate the underlying probability density. The second permits one to determine an acceptable degree of round-off when compressing data for efficient transfer and storage. We also demonstrate how mutual information and transfer entropy can be applied so as to allow researchers not only to identify relations among climate variables, but also to characterize and quantify their possible causal interactions.

  6. Life history and spatial traits predict extinction risk due to climate change

    NASA Astrophysics Data System (ADS)

    Pearson, Richard G.; Stanton, Jessica C.; Shoemaker, Kevin T.; Aiello-Lammens, Matthew E.; Ersts, Peter J.; Horning, Ned; Fordham, Damien A.; Raxworthy, Christopher J.; Ryu, Hae Yeong; McNees, Jason; Akçakaya, H. Reşit

    2014-03-01

    There is an urgent need to develop effective vulnerability assessments for evaluating the conservation status of species in a changing climate. Several new assessment approaches have been proposed for evaluating the vulnerability of species to climate change based on the expectation that established assessments such as the IUCN Red List need revising or superseding in light of the threat that climate change brings. However, although previous studies have identified ecological and life history attributes that characterize declining species or those listed as threatened, no study so far has undertaken a quantitative analysis of the attributes that cause species to be at high risk of extinction specifically due to climate change. We developed a simulation approach based on generic life history types to show here that extinction risk due to climate change can be predicted using a mixture of spatial and demographic variables that can be measured in the present day without the need for complex forecasting models. Most of the variables we found to be important for predicting extinction risk, including occupied area and population size, are already used in species conservation assessments, indicating that present systems may be better able to identify species vulnerable to climate change than previously thought. Therefore, although climate change brings many new conservation challenges, we find that it may not be fundamentally different from other threats in terms of assessing extinction risks.

  7. Assessing Portuguese Guadiana Basin water management impacts under climate change and paleoclimate variability

    NASA Astrophysics Data System (ADS)

    Maia, Rodrigo; Oliveira, Bruno; Ramos, Vanessa; Brekke, Levi

    2014-05-01

    The water balance in each reservoir and the subsequent, related, water resource management decisions are, presently, highly information dependent and are therefore often limited to a reactive response (even if aimed towards preventing future issues regarding the water system). Taking advantage of the availability of scenarios for climate projections, it is now possible to estimate the likely future evolution of climate which represents an important stepping stone towards proactive, adaptative, water resource management. The purpose of the present study was to assess the potential effects of climate change in terms of temperature, precipitation, runoff and water availability/scarcity for application in water resource management decisions. The analysis here presented was applied to the Portuguese portion of the Guadiana River Basin, using a combination of observed climate and runoff data and the results of the Global Climate Models. The Guadiana River Basin was represented by its reservoirs on the Portuguese portion of the basin and, for the future period, an estimated value of the inflows originating in the Spanish part of the Basin. The change in climate was determined in terms of relative and absolute variations of climate (precipitation and temperature) and hydrology (runoff and water balance related information). Apart from the previously referred data, an hydrological model and a water management model were applied so as to obtain an extended range of data regarding runoff generation (calibrated to observed data) and water balance in the reservoirs (considering the climate change impacts in the inflows, outflows and water consumption). The water management model was defined in order to represent the reservoirs interaction including upstream to downstream discharges and water transfers. Under the present climate change context, decision-makers and stakeholders are ever more vulnerable to the uncertainties of climate. Projected climate in the Guadiana basin indicates an increase in temperatures and a reduction of the precipitation values which go well beyond the observed values and, therefore, must be forcefully included in any realistic proactive water resource management decision. Using the results of this study it is possible to estimate future water availability and consumption satisfaction allowing for the elaboration of informed management decisions. In this study, the CMIP 3 Global Climate Models were considered for the definition of the effects of climate change, using the median and extreme tendencies based on the range of variation of the multiple climate projection scenarios. The observed climate variability, along with these model-derived tendencies, were used to inform the hydrology and water management models for the historical and future periods, respectively. Additionally, for a more comprehensive analysis on climate variability, a stochastic model was implemented based on the paleoclimate variability obtained from tree-ring records.

  8. Towards a novel look on low-frequency climate reconstructions

    NASA Astrophysics Data System (ADS)

    Kamenik, Christian; Goslar, Tomasz; Hicks, Sheila; Barnekow, Lena; Huusko, Antti

    2010-05-01

    Information on low-frequency (millennial to sub-centennial) climate change is often derived from sedimentary archives, such as peat profiles or lake sediments. Usually, these archives have non-annual and varying time resolution. Their dating is mainly based on radionuclides, which provide probabilistic age-depth relationships with complex error structures. Dating uncertainties impede the interpretation of sediment-based climate reconstructions. They complicate the calculation of time-dependent rates. In most cases, they make any calibration in time impossible. Sediment-based climate proxies are therefore often presented as a single, best-guess time series without proper calibration and error estimation. Errors along time and dating errors that propagate into the calculation of time-dependent rates are neglected. Our objective is to overcome the aforementioned limitations by using a 'swarm' or 'ensemble' of reconstructions instead of a single best-guess. The novelty of our approach is to take into account age-depth uncertainties by permuting through a large number of potential age-depth relationships of the archive of interest. For each individual permutation we can then calculate rates, calibrate proxies in time, and reconstruct the climate-state variable of interest. From the resulting swarm of reconstructions, we can derive realistic estimates of even complex error structures. The likelihood of reconstructions is visualized by a grid of two-dimensional kernels that take into account probabilities along time and the climate-state variable of interest simultaneously. For comparison and regional synthesis, likelihoods can be scored against other independent climate time series.

  9. The environmental context for the origins of modern human diversity: a synthesis of regional variability in African climate 150,000-30,000 years ago.

    PubMed

    Blome, Margaret Whiting; Cohen, Andrew S; Tryon, Christian A; Brooks, Alison S; Russell, Joellen

    2012-05-01

    We synthesize African paleoclimate from 150 to 30 ka (thousand years ago) using 85 diverse datasets at a regional scale, testing for coherence with North Atlantic glacial/interglacial phases and northern and southern hemisphere insolation cycles. Two major determinants of circum-African climate variability over this time period are supported by principal components analysis: North Atlantic sea surface temperature (SST) variations and local insolation maxima. North Atlantic SSTs correlated with the variability found in most circum-African SST records, whereas the variability of the majority of terrestrial temperature and precipitation records is explained by local insolation maxima, particularly at times when solar radiation was intense and highly variable (e.g., 150-75 ka). We demonstrate that climates varied with latitude, such that periods of relatively increased aridity or humidity were asynchronous across the northern, eastern, tropical and southern portions of Africa. Comparisons of the archaeological, fossil, or genetic records with generalized patterns of environmental change based solely on northern hemisphere glacial/interglacial cycles are therefore imprecise. We compare our refined climatic framework to a database of 64 radiometrically-dated paleoanthropological sites to test hypotheses of demographic response to climatic change among African hominin populations during the 150-30 ka interval. We argue that at a continental scale, population and climate changes were asynchronous and likely occurred under different regimes of climate forcing, creating alternating opportunities for migration into adjacent regions. Our results suggest little relation between large scale demographic and climate change in southern Africa during this time span, but strongly support the hypothesis of hominin occupation of the Sahara during discrete humid intervals ~135-115 ka and 105-75 ka. Hominin populations in equatorial and eastern Africa may have been buffered from the extremes of climate change by locally steep altitudinal and rainfall gradients and the complex and variable effects of increased aridity on human habitat suitability in the tropics. Our data are consistent with hominin migrations out of Africa through varying exit points from ~140-80 ka. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Sensitivity of Water Scarcity Events to ENSO-Driven Climate Variability at the Global Scale

    NASA Technical Reports Server (NTRS)

    Veldkamp, T. I. E.; Eisner, S.; Wada, Y.; Aerts, J. C. J. H.; Ward, P. J.

    2015-01-01

    Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and, in some regions, climate change. Although it is well-known that El Niño- Southern Oscillation (ENSO) affects patterns of precipitation and drought at global and regional scales, little attention has yet been paid to the impacts of climate variability on water scarcity conditions, despite its importance for adaptation planning. Therefore, we present the first global-scale sensitivity assessment of water scarcity to ENSO, the most dominant signal of climate variability. We show that over the time period 1961-2010, both water availability and water scarcity conditions are significantly correlated with ENSO-driven climate variability over a large proportion of the global land area (> 28.1 %); an area inhabited by more than 31.4% of the global population. We also found, however, that climate variability alone is often not enough to trigger the actual incidence of water scarcity events. The sensitivity of a region to water scarcity events, expressed in terms of land area or population exposed, is determined by both hydro-climatic and socioeconomic conditions. Currently, the population actually impacted by water scarcity events consists of 39.6% (CTA: consumption-to-availability ratio) and 41.1% (WCI: water crowding index) of the global population, whilst only 11.4% (CTA) and 15.9% (WCI) of the global population is at the same time living in areas sensitive to ENSO-driven climate variability. These results are contrasted, however, by differences in growth rates found under changing socioeconomic conditions, which are relatively high in regions exposed to water scarcity events. Given the correlations found between ENSO and water availability and scarcity conditions, and the relative developments of water scarcity impacts under changing socioeconomic conditions, we suggest that there is potential for ENSO-based adaptation and risk reduction that could be facilitated by more research on this emerging topic.

  11. El Niño Helps Spread Bartonellosis Epidemics in Peru

    NASA Astrophysics Data System (ADS)

    Zhou, Jiayu; Lau, William K.-M.; Masuoka, Fenny M.; Andre, Richard G.; Chamberlin, Judith; Lawyer, Phillip; Laughlin, Larry W.

    The consequences of climate variability on human health, especially for poor and medically underserved populations, have received much attention in recent years. Some of the most severe health hazards induced by climate variability are epidemics of vector-borne infectious diseases. Entomologic studies have shown that insect vectors that transmit diseases, such as malaria, yellow fever, dengue, etc., are sensitive to temperature, humidity wind, and rainfall patterns, and therefore, their abundance is potentially influenced by climate variability. Because of its geographical location, the climate of tropical South America is strongly influenced by El Niño. The episodic outbreaks of various diseases in this region have been linked to the El Niño cycles. Yet, according to a report of the World Health Organization [1999], early results from South American epidemiological studies, which were based on the aggregated national disease data irrespective of the regional meteorological impacts, found no consistent correlation between the El Niño effect with the epidemics of malaria and yellow fever.

  12. Reconstructing the leading mode of multi-decadal North Atlantic variability over the last two millenia using functional paleoclimate networks

    NASA Astrophysics Data System (ADS)

    Franke, Jasper G.; Werner, Johannes; Donner, Reik V.

    2017-04-01

    The increasing availability of high-resolution North Atlantic paleoclimate proxies allows to not only study local climate variations in time, but also temporal changes in spatial variability patterns across the entire region possibly controlled by large-scale coherent variability modes such as the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation. In this study, we use functional paleoclimate network analysis [1,2] to investigate changes in the statistical similarity patterns among an ensemble of high-resolution terrestrial paleoclimate records from Northern Europe included in the Arctic 2k data base. Specifically, we construct complex networks capturing the mutual statistical similarity of inter-annual temperature variability recorded in tree ring records, ice cores and lake sediments for multidecadal time windows covering the last two millenia. The observed patterns of co-variability are ultimately connected to the North Atlantic atmospheric circulation and most prominently to multidecadal variations of the NAO. Based on the inferred networks, we study the dynamical similarity between regional clusters of archives defined according to present-day inter-annual temperature variations across the study region. This analysis identifies those time-dependent inter-regional linkages that are most informative about the leading-order North Atlantic climate variability according to a recent NAO reconstruction for the last millenium [3]. Based on these linkages, we extend the existing reconstruction to obtain qualitative information on multidecadal to centennial scale North Atlantic climate variability over the last two millenia. In general, we find a tendency towards a dominating positive NAO phase interrupted by pronounced and extended intervals of negative NAO. Relatively rapid transitions between both types of behaviour are present during distinct periods including the Little Ice Age, the Medieval Climate Anomaly and for the Dark Ages Little Ice Age. [1] K. Rehfeld, N. Marwan, S.F.M. Breitenbach, J. Kurths: Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data. Climate Dynamics 41, 3-19, 2013 [2] J.L. Oster, N.P. Kelley: Tracking regional and global teleconnections recorded by western North American speleothem records. Quaternary Science Reviews 149, 18-33, 2016 [3] P. Ortega, F. Lehner, D. Swingedouw, V. Masson-Delmotte, C.C. Raible, M. Casado, P. Yiou: A model-tested North Atlantic Oscillation reconstruction for the past millenium. Nature 523, 71-74, 2015

  13. Climate variability drives population cycling and synchrony

    Treesearch

    Lars Y. Pomara; Benjamin Zuckerberg

    2017-01-01

    Aim There is mounting concern that climate change will lead to the collapse of cyclic population dynamics, yet the influence of climate variability on population cycling remains poorly understood. We hypothesized that variability in survival and fecundity, driven by climate variability at different points in the life cycle, scales up from...

  14. Seasonal and interannual variability of climate and vegetation indices across the Amazon.

    PubMed

    Brando, Paulo M; Goetz, Scott J; Baccini, Alessandro; Nepstad, Daniel C; Beck, Pieter S A; Christman, Mary C

    2010-08-17

    Drought exerts a strong influence on tropical forest metabolism, carbon stocks, and ultimately the flux of carbon to the atmosphere. Satellite-based studies have suggested that Amazon forests green up during droughts because of increased sunlight, whereas field studies have reported increased tree mortality during severe droughts. In an effort to reconcile these apparently conflicting findings, we conducted an analysis of climate data, field measurements, and improved satellite-based measures of forest photosynthetic activity. Wet-season precipitation and plant-available water (PAW) decreased over the Amazon Basin from 1996-2005, and photosynthetically active radiation (PAR) and air dryness (expressed as vapor pressure deficit, VPD) increased from 2002-2005. Using improved enhanced vegetation index (EVI) measurements (2000-2008), we show that gross primary productivity (expressed as EVI) declined with VPD and PAW in regions of sparse canopy cover across a wide range of environments for each year of the study. In densely forested areas, no climatic variable adequately explained the Basin-wide interannual variability of EVI. Based on a site-specific study, we show that monthly EVI was relatively insensitive to leaf area index (LAI) but correlated positively with leaf flushing and PAR measured in the field. These findings suggest that production of new leaves, even when unaccompanied by associated changes in LAI, could play an important role in Basin-wide interannual EVI variability. Because EVI variability was greatest in regions of lower PAW, we hypothesize that drought could increase EVI by synchronizing leaf flushing via its effects on leaf bud development.

  15. Climatic change controls productivity variation in global grasslands

    PubMed Central

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W.; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A.; Li, Yue

    2016-01-01

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2–71.2% during 1982–2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms. PMID:27243565

  16. The paradox of cooling streams in a warming world: Regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States

    USGS Publications Warehouse

    Arismendi, Ivan; Johnson, Sherri; Dunham, Jason B.; Haggerty, Roy; Hockman-Wert, David

    2012-01-01

    Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream temperature. Here, we examined the evidence for this using long-term stream temperature data from minimally and highly human-impacted sites located across the Pacific continental United States. Based on hypothesized climate impacts, we predicted that we should find warming trends in the maximum, mean and minimum temperatures, as well as increasing variability over time. These predictions were not fully realized. Warming trends were most prevalent in a small subset of locations with longer time series beginning in the 1950s. More recent series of observations (1987-2009) exhibited fewer warming trends and more cooling trends in both minimally and highly human-influenced systems. Trends in variability were much less evident, regardless of the length of time series. Based on these findings, we conclude that our perspective of climate impacts on stream temperatures is clouded considerably by a lack of long-termdata on minimally impacted streams, and biased spatio-temporal representation of existing time series. Overall our results highlight the need to develop more mechanistic, process-based understanding of linkages between climate change, other human impacts and stream temperature, and to deploy sensor networks that will provide better information on trends in stream temperatures in the future.

  17. New and Improved GLDAS and NLDAS Data Sets and Data Services at HDISC/NASA

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Beaudoing, Hiroko Kato; Mocko, David M.; Rodell, Matthew; Teng, William L.; Vollmer. Bruce

    2010-01-01

    Terrestrial hydrological variables are important in global hydrology, climate, and carbon cycle studies. Generating global fields of these variables, however, is still a challenge. The goal of a land data assimilation system (LDAS)is to ingest satellite-and ground-based observational data products, using advanced land surface modeling and data assimilation techniques, in order to generate optimal fields of land surface states and fluxes data and, thereby, facilitate hydrology and climate modeling, research, and forecast.

  18. Evaluating meteorological data from weather stations, and from satellites and global models for a multi-site epidemiological study.

    PubMed

    Colston, Josh M; Ahmed, Tahmeed; Mahopo, Cloupas; Kang, Gagandeep; Kosek, Margaret; de Sousa Junior, Francisco; Shrestha, Prakash Sunder; Svensen, Erling; Turab, Ali; Zaitchik, Benjamin

    2018-04-21

    Longitudinal and time series analyses are needed to characterize the associations between hydrometeorological parameters and health outcomes. Earth Observation (EO) climate data products derived from satellites and global model-based reanalysis have the potential to be used as surrogates in situations and locations where weather-station based observations are inadequate or incomplete. However, these products often lack direct evaluation at specific sites of epidemiological interest. Standard evaluation metrics of correlation, agreement, bias and error were applied to a set of ten hydrometeorological variables extracted from two quasi-global, commonly used climate data products - the Global Land Data Assimilation System (GLDAS) and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) - to evaluate their performance relative to weather-station derived estimates at the specific geographic locations of the eight sites in a multi-site cohort study. These metrics were calculated for both daily estimates and 7-day averages and for a rotavirus-peak-season subset. Then the variables from the two sources were each used as predictors in longitudinal regression models to test their association with rotavirus infection in the cohort after adjusting for covariates. The availability and completeness of station-based validation data varied depending on the variable and study site. The performance of the two gridded climate models varied considerably within the same location and for the same variable across locations, according to different evaluation criteria and for the peak-season compared to the full dataset in ways that showed no obvious pattern. They also differed in the statistical significance of their association with the rotavirus outcome. For some variables, the station-based records showed a strong association while the EO-derived estimates showed none, while for others, the opposite was true. Researchers wishing to utilize publicly available climate data - whether EO-derived or station based - are advised to recognize their specific limitations both in the analysis and the interpretation of the results. Epidemiologists engaged in prospective research into environmentally driven diseases should install their own weather monitoring stations at their study sites whenever possible, in order to circumvent the constraints of choosing between distant or incomplete station data or unverified EO estimates. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems.

    PubMed

    Guiot, Joel; Cramer, Wolfgang

    2016-10-28

    The United Nations Framework Convention on Climate Change Paris Agreement of December 2015 aims to maintain the global average warming well below 2°C above the preindustrial level. In the Mediterranean basin, recent pollen-based reconstructions of climate and ecosystem variability over the past 10,000 years provide insights regarding the implications of warming thresholds for biodiversity and land-use potential. We compare scenarios of climate-driven future change in land ecosystems with reconstructed ecosystem dynamics during the past 10,000 years. Only a 1.5°C warming scenario permits ecosystems to remain within the Holocene variability. At or above 2°C of warming, climatic change will generate Mediterranean land ecosystem changes that are unmatched in the Holocene, a period characterized by recurring precipitation deficits rather than temperature anomalies. Copyright © 2016, American Association for the Advancement of Science.

  20. The impact of justice climate and justice orientation on work outcomes: a cross-level multifoci framework.

    PubMed

    Liao, Hui; Rupp, Deborah E

    2005-03-01

    In this article, which takes a person-situation approach, the authors propose and test a cross-level multifoci model of workplace justice. They crossed 3 types of justice (procedural, informational, and interpersonal) with 2 foci (organization and supervisor) and aggregated to the group level to create 6 distinct justice climate variables. They then tested for the effects of these variables on either organization-directed or supervisor-directed commitment, satisfaction, and citizenship behavior. The authors also tested justice orientation as a moderator of these relationships. The results, based on 231 employees constituting 44 work groups representing multiple organizations and occupations, revealed that 4 forms of justice climate (organization-focused procedural and informational justice climate and supervisor-focused procedural and interpersonal justice climate) were significantly related to various work outcomes after controlling for corresponding individual-level justice perceptions. In addition, some moderation effects were found. Implications for organizations and future research are discussed.

  1. Climate Change Impacts at Department of Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotamarthi, Rao; Wang, Jiali; Zoebel, Zach

    This project is aimed at providing the U.S. Department of Defense (DoD) with a comprehensive analysis of the uncertainty associated with generating climate projections at the regional scale that can be used by stakeholders and decision makers to quantify and plan for the impacts of future climate change at specific locations. The merits and limitations of commonly used downscaling models, ranging from simple to complex, are compared, and their appropriateness for application at installation scales is evaluated. Downscaled climate projections are generated at selected DoD installations using dynamic and statistical methods with an emphasis on generating probability distributions of climatemore » variables and their associated uncertainties. The sites selection and selection of variables and parameters for downscaling was based on a comprehensive understanding of the current and projected roles that weather and climate play in operating, maintaining, and planning DoD facilities and installations.« less

  2. Skillful prediction of northern climate provided by the ocean

    NASA Astrophysics Data System (ADS)

    Årthun, Marius; Eldevik, Tor; Viste, Ellen; Drange, Helge; Furevik, Tore; Johnson, Helen L.; Keenlyside, Noel S.

    2017-06-01

    It is commonly understood that a potential for skillful climate prediction resides in the ocean. It nevertheless remains unresolved to what extent variable ocean heat is imprinted on the atmosphere to realize its predictive potential over land. Here we assess from observations whether anomalous heat in the Gulf Stream's northern extension provides predictability of northwestern European and Arctic climate. We show that variations in ocean temperature in the high latitude North Atlantic and Nordic Seas are reflected in the climate of northwestern Europe and in winter Arctic sea ice extent. Statistical regression models show that a significant part of northern climate variability thus can be skillfully predicted up to a decade in advance based on the state of the ocean. Particularly, we predict that Norwegian air temperature will decrease over the coming years, although staying above the long-term (1981-2010) average. Winter Arctic sea ice extent will remain low but with a general increase towards 2020.

  3. Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Stephen N. Matthews; Matthew P. Peters

    2011-01-01

    We present an approach to modeling potential climate-driven changes in habitat for tree and bird species in the eastern United States. First, we took an empirical-statistical modeling approach, using randomForest, with species abundance data from national inventories combined with soil, climate, and landscape variables, to build abundance-based habitat models for 134...

  4. Fire-climate interactions in the American west since 1400 CE

    Treesearch

    Valerie Trouet; Alan H. Taylor; Eugene R. Wahl; Carl N. Skinner

    2010-01-01

    Despite a strong anthropogenic fingerprint on 20th Century wildland fire activity in the American West, climate remains a main driver. A better understanding of the spatiotemporal variability in fire‐climate interactions is therefore crucial for fire management. Here, we present annually resolved, tree‐ring based fire records for four regions in the American West that...

  5. Estimating daily climatologies for climate indices derived from climate model data and observations

    PubMed Central

    Mahlstein, Irina; Spirig, Christoph; Liniger, Mark A; Appenzeller, Christof

    2015-01-01

    Climate indices help to describe the past, present, and the future climate. They are usually closer related to possible impacts and are therefore more illustrative to users than simple climate means. Indices are often based on daily data series and thresholds. It is shown that the percentile-based thresholds are sensitive to the method of computation, and so are the climatological daily mean and the daily standard deviation, which are used for bias corrections of daily climate model data. Sample size issues of either the observed reference period or the model data lead to uncertainties in these estimations. A large number of past ensemble seasonal forecasts, called hindcasts, is used to explore these sampling uncertainties and to compare two different approaches. Based on a perfect model approach it is shown that a fitting approach can improve substantially the estimates of daily climatologies of percentile-based thresholds over land areas, as well as the mean and the variability. These improvements are relevant for bias removal in long-range forecasts or predictions of climate indices based on percentile thresholds. But also for climate change studies, the method shows potential for use. Key Points More robust estimates of daily climate characteristics Statistical fitting approach Based on a perfect model approach PMID:26042192

  6. Assessment of impact of climate change and adaptation strategies on maize production in Uganda

    NASA Astrophysics Data System (ADS)

    Kikoyo, Duncan A.; Nobert, Joel

    2016-06-01

    Globally, various climatic studies have estimated a reduction of crop yields due to changes in surface temperature and precipitation especially for the developing countries which is heavily dependent on agriculture and lacks resources to counter the negative effects of climate change. Uganda's economy and the wellbeing of its populace depend on rain-fed agriculture which is susceptible to climate change. This study quantified the impacts of climate change and variability in Uganda and how coping strategies can enhance crop production against climate change and/or variability. The study used statistical methods to establish various climate change and variability indicators across the country, and uses the FAO AquaCrop model to simulate yields under possible future climate scenarios with and without adaptation strategies. Maize, the most widely grown crop was used for the study. Meteorological, soil and crop data were collected for various districts representing the maize growing ecological zones in the country. Based on this study, it was found that temperatures have increased by up to 1 °C across much of Uganda since the 1970s, with rates of warming around 0.3 °C per decade across the country. High altitude, low rainfall regions experience the highest level of warming, with over 0.5 °C/decade recorded in Kasese. Rainfall is variable and does not follow a specific significant increasing or decreasing trend. For both future climate scenarios, Maize yields will reduce in excess of 4.7% for the fast warming-low rainfall climates but increase on average by 3.5% for slow warming-high rainfall regions, by 2050. Improved soil fertility can improve yields by over 50% while mulching and use of surface water management practices improve yields by single digit percentages. The use of fertilizer application needs to go hand in hand with other water management strategies since more yields as a result of the improved soil fertility leads to increased water stress, especially for the dry climates.

  7. Revealing The Impact Of Climate Variability On The Wind Resource Using Data Mining Techniques

    NASA Astrophysics Data System (ADS)

    Clifton, A.; Lundquist, J. K.

    2011-12-01

    Wind turbines harvest energy from the wind. Winds at heights where industrial-scale turbines operate, up to 200 m above ground, experience a complex interaction between the atmosphere and the Earth's surface. Previous studies for a variety of locations have shown that the wind resource varies over time. In some locations, this variability can be related to large-scale climate oscillations as revealed in climate indices such as the El-Nino-Southern Oscillation (ENSO). These indices can be used to quantify climate change in the past, and can also be extracted from models of future climate. Understanding the correlation between climate indices and wind resources therefore allows us to understand how climate change may influence wind energy production. We present a new methodology for assessing relevant climate modes of oscillation at a given site in order to quantify future wind resource variability. We demonstrate the method on a 14-year record of 10-minute averaged wind speed and wind direction data from several levels of an 80m tower at the National Renewable Energy Laboratory (NREL) National Wind Technology Center near Boulder, Colorado. Data mining techniques (based on k-means clustering) identify 4 major groups of wind speed and direction. After removing annual means, each cluster was compared to a series of climate indices, including the Arctic Oscillation (AO) and Multivariate ENSO Index (MEI). Statistically significant relationships emerge between individual clusters and climate indices. At this location, this result is consistent with the MEI's relationship with other meteorological parameters, such as precipitation, in the Rocky Mountain Region. The presentation will illustrate these relationships between wind resource at this location and other relevant climate indices, and suggest how these relationships can provide a foundation for quantifying the potential future variability of wind energy production at this site and others.

  8. Sources and Impacts of Modeled and Observed Low-Frequency Climate Variability

    NASA Astrophysics Data System (ADS)

    Parsons, Luke Alexander

    Here we analyze climate variability using instrumental, paleoclimate (proxy), and the latest climate model data to understand more about the sources and impacts of low-frequency climate variability. Understanding the drivers of climate variability at interannual to century timescales is important for studies of climate change, including analyses of detection and attribution of climate change impacts. Additionally, correctly modeling the sources and impacts of variability is key to the simulation of abrupt change (Alley et al., 2003) and extended drought (Seager et al., 2005; Pelletier and Turcotte, 1997; Ault et al., 2014). In Appendix A, we employ an Earth system model (GFDL-ESM2M) simulation to study the impacts of a weakening of the Atlantic meridional overturning circulation (AMOC) on the climate of the American Tropics. The AMOC drives some degree of local and global internal low-frequency climate variability (Manabe and Stouffer, 1995; Thornalley et al., 2009) and helps control the position of the tropical rainfall belt (Zhang and Delworth, 2005). We find that a major weakening of the AMOC can cause large-scale temperature, precipitation, and carbon storage changes in Central and South America. Our results suggest that possible future changes in AMOC strength alone will not be sufficient to drive a large-scale dieback of the Amazonian forest, but this key natural ecosystem is sensitive to dry-season length and timing of rainfall (Parsons et al., 2014). In Appendix B, we compare a paleoclimate record of precipitation variability in the Peruvian Amazon to climate model precipitation variability. The paleoclimate (Lake Limon) record indicates that precipitation variability in western Amazonia is 'red' (i.e., increasing variability with timescale). By contrast, most state-of-the-art climate models indicate precipitation variability in this region is nearly 'white' (i.e., equally variability across timescales). This paleo-model disagreement in the overall structure of the variance spectrum has important consequences for the probability of multi-year drought. Our lake record suggests there is a significant background threat of multi-year, and even decade-length, drought in western Amazonia, whereas climate model simulations indicate most droughts likely last no longer than one to three years. These findings suggest climate models may underestimate the future risk of extended drought in this important region. In Appendix C, we expand our analysis of climate variability beyond South America. We use observations, well-constrained tropical paleoclimate, and Earth system model data to examine the overall shape of the climate spectrum across interannual to century frequencies. We find a general agreement among observations and models that temperature variability increases with timescale across most of the globe outside the tropics. However, as compared to paleoclimate records, climate models generate too little low-frequency variability in the tropics (e.g., Laepple and Huybers, 2014). When we compare the shape of the simulated climate spectrum to the spectrum of a simple autoregressive process, we find much of the modeled surface temperature variability in the tropics could be explained by ocean smoothing of weather noise. Importantly, modeled precipitation tends to be similar to white noise across much of the globe. By contrast, paleoclimate records of various types from around the globe indicate that both temperature and precipitation variability should experience much more low-frequency variability than a simple autoregressive or white-noise process. In summary, state-of-the-art climate models generate some degree of dynamically driven low-frequency climate variability, especially at high latitudes. However, the latest climate models, observations, and paleoclimate data provide us with drastically different pictures of the background climate system and its associated risks. This research has important consequences for improving how we simulate climate extremes as we enter a warmer (and often drier) world in the coming centuries; if climate models underestimate low-frequency variability, we will underestimate the risk of future abrupt change and extreme events, such as megadroughts.

  9. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  10. Integrating Climate Information and Decision Processes for Regional Climate Resilience

    NASA Astrophysics Data System (ADS)

    Buizer, James; Goddard, Lisa; Guido, Zackry

    2015-04-01

    An integrated multi-disciplinary team of researchers from the University of Arizona and the International Research Institute for Climate and Society at Columbia University have joined forces with communities and institutions in the Caribbean, South Asia and West Africa to develop relevant, usable climate information and connect it to real decisions and development challenges. The overall objective of the "Integrating Climate Information and Decision Processes for Regional Climate Resilience" program is to build community resilience to negative impacts of climate variability and change. We produce and provide science-based climate tools and information to vulnerable peoples and the public, private, and civil society organizations that serve them. We face significant institutional challenges because of the geographical and cultural distance between the locale of climate tool-makers and the locale of climate tool-users and because of the complicated, often-inefficient networks that link them. To use an accepted metaphor, there is great institutional difficulty in coordinating the supply of and the demand for useful climate products that can be put to the task of building local resilience and reducing climate vulnerability. Our program is designed to reduce the information constraint and to initiate a linkage that is more demand driven, and which provides a set of priorities for further climate tool generation. A demand-driven approach to the co-production of appropriate and relevant climate tools seeks to meet the direct needs of vulnerable peoples as these needs have been canvassed empirically and as the benefits of application have been adequately evaluated. We first investigate how climate variability and climate change affect the livelihoods of vulnerable peoples. In so doing we assess the complex institutional web within which these peoples live -- the public agencies that serve them, their forms of access to necessary information, the structural constraints under which they make their decisions, and the non-public institutions of support that are available to them. We then interpret this complex reality in terms of the demand for science-based climate products and analyze the channels through which such climate support must pass, thus linking demand assessment with the scientific capacity to create appropriate decision support tools. In summary, the approach we employ is: 1) Demand-driven, beginning with a knowledge of the impacts of climate variability and change upon targeted populations, 2) Focused on vulnerability and resilience, which requires an understanding of broader networks of institutional actors who contribute to the adaptive capacity of vulnerable peoples, 3) Needs-based in that the climate needs matrix set priorities for the assessment of relevant climate products, 4) Dynamic in that the producers of climate products are involved at the point of demand assessment and can respond directly to stated needs, 5) Reflective in that the impacts of climate product interventions are subject to monitoring and evaluation throughout the process. Methods, approaches and preliminary results of our work in the Caribbean will be presented.

  11. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures.

    PubMed

    Xie, Gisselle Yang; Olson, Deanna H; Blaustein, Andrew R

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.

  12. Climate Variability and Wildfires: Insights from Global Earth System Models

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; Lamarque, J. F.; Wittenberg, A. T.

    2016-12-01

    Better understanding of the relationship between variability in global climate and emissions from wildfires is needed for predictions of fire activity on interannual to multi-decadal timescales. Here we investigate this relationship using the long, preindustrial control simulations and historical ensembles of two Earth System models; CESM1 and the NOAA/GFDL ESM2Mb. There is smaller interannual variability of global fires in both models than in present day inventories, especially in boreal regions where observed fires vary substantially from year to year. Patterns of fire response to climate oscillation indices, including the El Niño / Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Meridional Oscillation (AMO) are explored with the model results and compared to the response derived from satellite measurements and proxy observations. Increases in fire emissions in southeast Asia and boreal North America are associated with positive ENSO and PDO, while United States fires and Sahel fires decrease for the same climate conditions. Boreal fire emissions decrease in CESM1 for the warm phase of the AMO, while ESM2Mb did not produce a reliable AMO. CESM1 produces a weak negative trend in global fire emissions for the period 1920 to 2005, while ESM2Mb produces a positive trend over the same period. Both trends are statistically significant at a confidence level of 95% or greater given the variability derived from the respective preindustrial controls. In addition to climate variability impacts on fires, we also explore the impacts of fire emissions on climate variability and atmospheric chemistry. We analyze three long, free-evolving ESM2Mb simulations; one without fire emissions, one with constant year-over-year fire emissions based on a present day inventory, and one with interannually varying fire emissions coupled between the terrestrial and atmospheric components of the model, to gain a better understanding of the role of fire emissions in climate over long timescales.

  13. Future warming patterns linked to today’s climate variability

    DOE PAGES

    Dai, Aiguo

    2016-01-11

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less

  14. Future warming patterns linked to today’s climate variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Aiguo

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less

  15. Future Warming Patterns Linked to Today's Climate Variability.

    PubMed

    Dai, Aiguo

    2016-01-11

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models' ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21(st) century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today's climate, with areas of larger variations during 1950-1979 having more GHG-induced warming in the 21(st) century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950-2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21(st) century in models and in the real world. They support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.

  16. Communicating the Results and Activities of the U.S. Climate Change Science Program

    NASA Astrophysics Data System (ADS)

    Chatterjee, K.; Parker, K.

    2004-12-01

    The Climate Change Science Program (CCSP) has a responsibility for credible and effective communications on issues related to climate variability and climate change science. As an essential part of its mission and responsibilities, the CCSP aims to enhance the quality of public discussion by stressing openness and transparency in its scientific research processes and results, and ensuring the widespread availability of credible, science-based information. The CCSP and individual federal agencies generate substantial amounts of authoritative scientific information on climate variability and change. Research findings are generally well reported in the scientific literature, but relevant aspects of these findings need to be reported in formats suitable for use by diverse audiences whose understanding and familiarity with climate change science issues vary. To further its commitment to the effective communication of climate change science information, the CCSP has established the Communications Interagency Working Group, which has produced an implementation plan for Climate Change communication, aimed at achieving the following goals: * Disseminate the results of CCSP activities credibly and effectively * Make CCSP science findings and products easily available to a diverse set of audiences. In addition to CCSP efforts, the individual federal agencies that comprise CCSP disseminate science-based climate information through their agency networks. The agencies of the CCSP are the Departments of Agriculture, Commerce, Defense, Energy, Health and Human Services, Interior, State, and Transportation and the U.S. EPA, NASA, NSF, Smithsonian Institute, and USAID.

  17. The amplitude of decadal to multidecadal variability in precipitation simulated by state-of-the-art climate models

    NASA Astrophysics Data System (ADS)

    Ault, T. R.; Cole, J. E.; St. George, S.

    2012-11-01

    We assess the magnitude of decadal to multidecadal (D2M) variability in Climate Model Intercomparison Project 5 (CMIP5) simulations that will be used to understand, and plan for, climate change as part of the Intergovernmental Panel on Climate Change's 5th Assessment Report. Model performance on D2M timescales is evaluated using metrics designed to characterize the relative and absolute magnitude of variability at these frequencies. In observational data, we find that between 10% and 35% of the total variance occurs on D2M timescales. Regions characterized by the high end of this range include Africa, Australia, western North America, and the Amazon region of South America. In these areas D2M fluctuations are especially prominent and linked to prolonged drought. D2M fluctuations account for considerably less of the total variance (between 5% and 15%) in the CMIP5 archive of historical (1850-2005) simulations. The discrepancy between observation and model based estimates of D2M prominence reflects two features of the CMIP5 archive. First, interannual components of variability are generally too energetic. Second, decadal components are too weak in several key regions. Our findings imply that projections of the future lack sufficient decadal variability, presenting a limited view of prolonged drought and pluvial risk.

  18. A Skilful Marine Sclerochronological Network Based Reconstruction of North Atlantic Subpolar Gyre Dynamics

    NASA Astrophysics Data System (ADS)

    Reynolds, D.; Hall, I. R.; Slater, S. M.; Scourse, J. D.; Wanamaker, A. D.; Halloran, P. R.; Garry, F. K.

    2017-12-01

    Spatial network analyses of precisely dated, and annually resolved, tree-ring proxy records have facilitated robust reconstructions of past atmospheric climate variability and the associated mechanisms and forcings that drive it. In contrast, a lack of similarly dated marine archives has constrained the use of such techniques in the marine realm, despite the potential for developing a more robust understanding of the role basin scale ocean dynamics play in the global climate system. Here we show that a spatial network of marine molluscan sclerochronological oxygen isotope (δ18Oshell) series spanning the North Atlantic region provides a skilful reconstruction of basin scale North Atlantic sea surface temperatures (SSTs). Our analyses demonstrate that the composite marine series (referred to as δ18Oproxy_PC1) is significantly sensitive to inter-annual variability in North Atlantic SSTs (R=-0.61 P<0.01) and surface air temperatures (SATs; R=-0.67, P<0.01) over the 20th century. Subpolar gyre (SPG) SSTs dominates variability in the δ18Oproxy_PC1 series at sub-centennial frequencies (R=-0.51, P<0.01). Comparison of the δ18Oproxy_PC1 series against variability in the strength of the European Slope Current and maximum North Atlantic meridional overturning circulation derived from numeric climate models (CMIP5), indicates that variability in the SPG region, associated with the strength of the surface currents of the North Atlantic, are playing a significant role in shaping the multi-decadal scale SST variability over the industrial era. These analyses demonstrate that spatial networks developed from sclerochronological archives can provide powerful baseline archives of past ocean variability that can facilitate the development of a quantitative understanding for the role the oceans play in the global climate systems and constraining uncertainties in numeric climate models.

  19. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation

    PubMed Central

    Sultan, Benjamin; Gaetani, Marco

    2016-01-01

    West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such changes and in the potential for adaptation. PMID:27625660

  20. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation.

    PubMed

    Sultan, Benjamin; Gaetani, Marco

    2016-01-01

    West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such changes and in the potential for adaptation.

  1. Climate Impact of Solar Variability

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H. (Editor); Arking, Albert (Editor)

    1990-01-01

    The conference on The Climate Impact of Solar Variability, was held at Goddard Space Flight Center from April 24 to 27, 1990. In recent years they developed a renewed interest in the potential effects of increasing greenhouse gases on climate. Carbon dioxide, methane, nitrous oxide, and the chlorofluorocarbons have been increasing at rates that could significantly change climate. There is considerable uncertainty over the magnitude of this anthropogenic change. The climate system is very complex, with feedback processes that are not fully understood. Moreover, there are two sources of natural climate variability (volcanic aerosols and solar variability) added to the anthropogenic changes which may confuse our interpretation of the observed temperature record. Thus, if we could understand the climatic impact of the natural variability, it would aid our interpretation and understanding of man-made climate changes.

  2. The variability of runoff and soil erosion in the Brazilian Cerrado biome due to the potential land use and climate changes

    NASA Astrophysics Data System (ADS)

    Alexandre Ayach Anache, Jamil; Wendland, Edson; Malacarne Pinheiro Rosalem, Lívia; Srivastava, Anurag; Flanagan, Dennis

    2017-04-01

    Changes in land use and climate can influence runoff and soil loss, threatening soil and water conservation in the Cerrado biome in Brazil. Due to the lack of long term observed data for runoff and soil erosion in Brazil, the adoption of a process-based model was necessary, representing the variability of both variables in a continuous simulation approach. Thus, we aimed to calibrate WEPP (Water Erosion Prediction Project) model for different land uses (undisturbed Cerrado, fallow, pasture, and sugarcane) under subtropical conditions inside the Cerrado biome; predict runoff and soil erosion for these different land uses; and simulate runoff and soil erosion considering climate change scenarios. We performed the model calibration using a 4-year dataset of observed runoff and soil loss in four different land uses (undisturbed Cerrado, fallow, pasture, and sugarcane). The WEPP model components (climate, topography, soil, and management) were calibrated according to field data. However, soil and management were optimized according to each land use using a parameter estimation tool. The observations were conducted between 2012 and 2015 in experimental plots (5 m width, 20 m length, 9% slope gradient, 3 replicates per treatment). The simulations were done using the calibrated WEPP model components, but changing the 4-year observed climate file by a 100-year dataset created with CLIGEN (weather generator) based on regional climate statistics. Afterwards, using MarkSim DSSAT Weather File Generator, runoff and soil loss were simulated using future climate scenarios for 2030, 2060, and 2090. To analyze the data, we used non-parametric statistics as data do not follow normal distribution. The results show that WEPP model had an acceptable performance for the considered conditions. In addition, both land use and climate can influence on runoff and soil loss rates. Potential climate changes which consider the increase of rainfall intensities and depths in the studied region may increase the variability and rates for runoff and soil erosion. However, the climate did not change the differences and similarities between the rates of the four analyzed land uses. The runoff behavior is distinct for all land uses, but for soil loss we found similarities between pasture and undisturbed Cerrado, suggesting that soil sustainability could be reached when the management follows conservation principles.

  3. The local and global climate forcings induced inhomogeneity of Indian rainfall.

    PubMed

    Nair, P J; Chakraborty, A; Varikoden, H; Francis, P A; Kuttippurath, J

    2018-04-16

    India is home for more than a billion people and its economy is largely based on agrarian society. Therefore, rainfall received not only decides its livelihood, but also influences its water security and economy. This situation warrants continuous surveillance and analysis of Indian rainfall. These kinds of studies would also help forecasters to better tune their models for accurate weather prediction. Here, we introduce a new method for estimating variability and trends in rainfall over different climate regions of India. The method based on multiple linear regression helps to assess contributions of different remote and local climate forcings to seasonal and regional inhomogeneity in rainfall. We show that the Indian Summer Monsoon Rainfall (ISMR) variability is governed by Eastern and Central Pacific El Niño Southern Oscillation, equatorial zonal winds, Atlantic zonal mode and surface temperatures of the Arabian Sea and Bay of Bengal, and the North East Monsoon Rainfall variability is controlled by the sea surface temperature of the North Atlantic and extratropial oceans. Also, our analyses reveal significant positive trends (0.43 mm/day/dec) in the North West for ISMR in the 1979-2017 period. This study cautions against the significant changes in Indian rainfall in a perspective of global climate change.

  4. How Does School Climate Impact Academic Achievement? An Examination of Social Identity Processes

    ERIC Educational Resources Information Center

    Reynolds, Katherine J.; Lee, Eunro; Turner, Isobel; Bromhead, David; Subasic, Emina

    2017-01-01

    In explaining academic achievement, school climate and social belonging (connectedness, identification) emerge as important variables. However, both constructs are rarely explored in one model. In the current study, a social psychological framework based on the social identity perspective (Turner, Hogg, Oakes, Reicher, & Wetherell, 1987) is…

  5. The Relative Importance of Spatial and Local Environmental Factors in Determining Beetle Assemblages in the Inner Mongolia Grassland.

    PubMed

    Yu, Xiao-Dong; Lü, Liang; Wang, Feng-Yan; Luo, Tian-Hong; Zou, Si-Si; Wang, Cheng-Bin; Song, Ting-Ting; Zhou, Hong-Zhang

    2016-01-01

    The aim of this paper is to increase understanding of the relative importance of the input of geographic and local environmental factors on richness and composition of epigaeic steppe beetles (Coleoptera: Carabidae and Tenebrionidae) along a geographic (longitudinal/precipitation) gradient in the Inner Mongolia grassland. Specifically, we evaluate the associations of environmental variables representing climate and environmental heterogeneity with beetle assemblages. Beetles were sampled using pitfall traps at 25 sites scattered across the full geographic extent of the study biome in 2011-2012. We used variance partitioning techniques and multi-model selection based on the Akaike information criterion to assess the relative importance of the spatial and environmental variables on beetle assemblages. Species richness and abundance showed unimodal patterns along the geographic gradient. Together with space, climate variables associated with precipitation, water-energy balance and harshness of climate had strong explanatory power in richness pattern. Abundance pattern showed strongest association with variation in temperature and environmental heterogeneity. Climatic factors associated with temperature and precipitation variables and the interaction between climate with space were able to explain a substantial amount of variation in community structure. In addition, the turnover of species increased significantly as geographic distances increased. We confirmed that spatial and local environmental factors worked together to shape epigaeic beetle communities along the geographic gradient in the Inner Mongolia grassland. Moreover, the climate features, especially precipitation, water-energy balance and temperature, and the interaction between climate with space and environmental heterogeneity appeared to play important roles on controlling richness and abundance, and species compositions of epigaeic beetles.

  6. Towards an integrated set of surface meterological observations for climate science and applications

    NASA Astrophysics Data System (ADS)

    Dunn, Robert; Thorne, Peter

    2017-04-01

    We cannot predict what is not observed, and we cannot analyse what is not archived. To meet current scientific and societal demands, as well as future requirements for climate services, it is vital that the management and curation of land-based meteorological data holdings is improved. A comprehensive global set of data holdings, of known provenance, integrated across both climate variable and timescale are required to meet the wide range of user needs. Presently, the land-based holdings are highly fractured into global, region and national holdings for different variables and timescales, from a variety of sources, and in a mixture of formats. We present a high level overview, based on broad community input, of the steps that are required to bring about this integration and progress towards such a database. Any long-term, international, program creating such an integrated database will transform the our collective ability to provide societally relevant research, analysis and predictions across the globe.

  7. Promoting Climate Literacy and Conceptual Understanding among In-service Secondary Science Teachers requires an Epistemological Perspective

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D.; Forbes, C.; Roehrig, G.; Chandler, M. A.

    2017-12-01

    Promoting climate literacy among in-service science teachers necessitates an understanding of fundamental concepts about the Earth's climate System (USGCRP, 2009). Very few teachers report having any formal instruction in climate science (Plutzer et al., 2016), therefore, rather simple conceptions of climate systems and their variability exist, which has implications for students' science learning (Francies et al., 1993; Libarkin, 2005; Rebich, 2005). This study uses the inferences from a NASA Innovations in Climate Education (NICE) teacher professional development program (CYCLES) to establish the necessity for developing an epistemological perspective among teachers. In CYCLES, 19 middle and high school (male=8, female=11) teachers were assessed for their understanding of global climate change (GCC). A qualitative analysis of their concept maps and an alignment of their conceptions with the Essential Principles of Climate Literacy (NOAA, 2009) demonstrated that participants emphasized on EPCL 1, 3, 6, 7 focusing on the Earth system, atmospheric, social and ecological impacts of GCC. However, EPCL 4 (variability in climate) and 5 (data-based observations and modeling) were least represented and emphasized upon. Thus, participants' descriptions about global climatic patterns were often factual rather than incorporating causation (why the temperatures are increasing) and/or correlation (describing what other factors might influence global temperatures). Therefore, engaging with epistemic dimensions of climate science to understand the processes, tools, and norms through which climate scientists study the Earth's climate system (Huxter et al., 2013) is critical for developing an in-depth conceptual understanding of climate. CLiMES (Climate Modeling and Epistemology of Science), a NSF initiative proposes to use EzGCM (EzGlobal Climate Model) to engage students and teachers in designing and running simulations, performing data processing activities, and analyzing computational models to develop their own evidence-based claims about the Earth's climate system. We describe how epistemological investigations can be conducted using EzGCM to bring the scientific process and authentic climate science practice to middle and high school classrooms.

  8. Malaria incidence trends and their association with climatic variables in rural Gwanda, Zimbabwe, 2005-2015.

    PubMed

    Gunda, Resign; Chimbari, Moses John; Shamu, Shepherd; Sartorius, Benn; Mukaratirwa, Samson

    2017-09-30

    Malaria is a public health problem in Zimbabwe. Although many studies have indicated that climate change may influence the distribution of malaria, there is paucity of information on its trends and association with climatic variables in Zimbabwe. To address this shortfall, the trends of malaria incidence and its interaction with climatic variables in rural Gwanda, Zimbabwe for the period January 2005 to April 2015 was assessed. Retrospective data analysis of reported cases of malaria in three selected Gwanda district rural wards (Buvuma, Ntalale and Selonga) was carried out. Data on malaria cases was collected from the district health information system and ward clinics while data on precipitation and temperature were obtained from the climate hazards group infrared precipitation with station data (CHIRPS) database and the moderate resolution imaging spectro-radiometer (MODIS) satellite data, respectively. Distributed lag non-linear models (DLNLM) were used to determine the temporal lagged association between monthly malaria incidence and monthly climatic variables. There were 246 confirmed malaria cases in the three wards with a mean incidence of 0.16/1000 population/month. The majority of malaria cases (95%) occurred in the > 5 years age category. The results showed no correlation between trends of clinical malaria (unconfirmed) and confirmed malaria cases in all the three study wards. There was a significant association between malaria incidence and the climatic variables in Buvuma and Selonga wards at specific lag periods. In Ntalale ward, only precipitation (1- and 3-month lag) and mean temperature (1- and 2-month lag) were significantly associated with incidence at specific lag periods (p < 0.05). DLNM results suggest a key risk period in current month, based on key climatic conditions in the 1-4 month period prior. As the period of high malaria risk is associated with precipitation and temperature at 1-4 month prior in a seasonal cycle, intensifying malaria control activities over this period will likely contribute to lowering the seasonal malaria incidence.

  9. Modeling Source Water TOC Using Hydroclimate Variables and Local Polynomial Regression.

    PubMed

    Samson, Carleigh C; Rajagopalan, Balaji; Summers, R Scott

    2016-04-19

    To control disinfection byproduct (DBP) formation in drinking water, an understanding of the source water total organic carbon (TOC) concentration variability can be critical. Previously, TOC concentrations in water treatment plant source waters have been modeled using streamflow data. However, the lack of streamflow data or unimpaired flow scenarios makes it difficult to model TOC. In addition, TOC variability under climate change further exacerbates the problem. Here we proposed a modeling approach based on local polynomial regression that uses climate, e.g. temperature, and land surface, e.g., soil moisture, variables as predictors of TOC concentration, obviating the need for streamflow. The local polynomial approach has the ability to capture non-Gaussian and nonlinear features that might be present in the relationships. The utility of the methodology is demonstrated using source water quality and climate data in three case study locations with surface source waters including river and reservoir sources. The models show good predictive skill in general at these locations, with lower skills at locations with the most anthropogenic influences in their streams. Source water TOC predictive models can provide water treatment utilities important information for making treatment decisions for DBP regulation compliance under future climate scenarios.

  10. Coral oxygen isotope records of interdecadal climate variations in the South Pacific Convergence Zone region

    NASA Astrophysics Data System (ADS)

    Bagnato, Stefan; Linsley, Braddock K.; Howe, Stephen S.; Wellington, Gerard M.; Salinger, Jim

    2005-06-01

    The South Pacific Convergence Zone (SPCZ), a region of high rainfall, is a major feature of subtropical Southern Hemisphere climate and contributes to and interacts with circulation features across the Pacific, yet its past temporal variability and forcing remain only partially understood. Here we compare coral oxygen isotopic (δ18O) series (spanning A.D. 1997-1780 and A.D. 2001-1776) from two genera of hermatypic corals in Fiji, located within the SPCZ, to examine the fidelity of these corals in recording climate change and SPCZ interdecadal dynamics. One of these coral records is a new 225-year subannually resolved δ18O series from the massive coral Diploastreaheliopora. Diploastrea's use in climate reconstructions is still relatively new, but this coral has shown encouragingly similar interannual variability to Porites, the coral genus most commonly used in Pacific paleoclimate studies. In Fiji we observe that interdecadal δ18O variance is also similar in these two coral genera, and Diploastrea contains a larger-amplitude interdecadal signal that more closely tracks instrumental-based indices of Pacific interdecadal climate change and the SPCZ than Porites. Both coral δ18O series record greater interdecadal variability from ˜1880 to 1950, which is consistent with the observations of Folland et al. (2002), who reported higher variability in SPCZ position before 1945. These observations indicate that Diploastrea will likely provide a significant new source of long-term climate information from the SPCZ region.

  11. Satellite-based trends of solar radiation and cloud parameters in Europe

    NASA Astrophysics Data System (ADS)

    Pfeifroth, Uwe; Bojanowski, Jedrzej S.; Clerbaux, Nicolas; Manara, Veronica; Sanchez-Lorenzo, Arturo; Trentmann, Jörg; Walawender, Jakub P.; Hollmann, Rainer

    2018-04-01

    Solar radiation is the main driver of the Earth's climate. Measuring solar radiation and analysing its interaction with clouds are essential for the understanding of the climate system. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based, high-quality climate data records, with a focus on the energy balance and water cycle. Here, multiple of these data records are analyzed in a common framework to assess the consistency in trends and spatio-temporal variability of surface solar radiation, top-of-atmosphere reflected solar radiation and cloud fraction. This multi-parameter analysis focuses on Europe and covers the time period from 1992 to 2015. A high correlation between these three variables has been found over Europe. An overall consistency of the climate data records reveals an increase of surface solar radiation and a decrease in top-of-atmosphere reflected radiation. In addition, those trends are confirmed by negative trends in cloud cover. This consistency documents the high quality and stability of the CM SAF climate data records, which are mostly derived independently from each other. The results of this study indicate that one of the main reasons for the positive trend in surface solar radiation since the 1990's is a decrease in cloud coverage even if an aerosol contribution cannot be completely ruled out.

  12. Evidence of genomic adaptation to climate in Eucalyptus microcarpa: Implications for adaptive potential to projected climate change.

    PubMed

    Jordan, Rebecca; Hoffmann, Ary A; Dillon, Shannon K; Prober, Suzanne M

    2017-11-01

    Understanding whether populations can adapt in situ or whether interventions are required is of key importance for biodiversity management under climate change. Landscape genomics is becoming an increasingly important and powerful tool for rapid assessments of climate adaptation, especially in long-lived species such as trees. We investigated climate adaptation in Eucalyptus microcarpa using the DArTseq genomic approach. A combination of F ST outlier and environmental association analyses were performed using >4200 genomewide single nucleotide polymorphisms (SNPs) from 26 populations spanning climate gradients in southeastern Australia. Eighty-one SNPs were identified as putatively adaptive, based on significance in F ST outlier tests and significant associations with one or more climate variables related to temperature (70/81), aridity (37/81) or precipitation (35/81). Adaptive SNPs were located on all 11 chromosomes, with no particular region associated with individual climate variables. Climate adaptation appeared to be characterized by subtle shifts in allele frequencies, with no consistent fixed differences identified. Based on these associations, we predict adaptation under projected changes in climate will include a suite of shifts in allele frequencies. Whether this can occur sufficiently rapidly through natural selection within populations, or would benefit from assisted gene migration, requires further evaluation. In some populations, the absence or predicted increases to near fixation of particular adaptive alleles hint at potential limits to adaptive capacity. Together, these results reinforce the importance of standing genetic variation at the geographic level for maintaining species' evolutionary potential. © 2017 John Wiley & Sons Ltd.

  13. Socio-climatic Exposure of an Afghan Poppy Farmer

    NASA Astrophysics Data System (ADS)

    Mankin, J. S.; Diffenbaugh, N. S.

    2011-12-01

    Many posit that climate impacts from anthropogenic greenhouse gas emissions will have consequences for the natural and agricultural systems on which humans rely for food, energy, and livelihoods, and therefore, on stability and human security. However, many of the potential mechanisms of action in climate impacts and human systems response, as well as the differential vulnerabilities of such systems, remain underexplored and unquantified. Here I present two initial steps necessary to characterize and quantify the consequences of climate change for farmer livelihood in Afghanistan, given both climate impacts and farmer vulnerabilities. The first is a conceptual model mapping the potential relationships between Afghanistan's climate, the winter agricultural season, and the country's political economy of violence and instability. The second is a utility-based decision model for assessing farmer response sensitivity to various climate impacts based on crop sensitivities. A farmer's winter planting decision can be modeled roughly as a tradeoff between cultivating the two crops that dominate the winter growing season-opium poppy (a climate tolerant cash crop) and wheat (a climatically vulnerable crop grown for household consumption). Early sensitivity analysis results suggest that wheat yield dominates farmer decision making variability; however, such initial results may dependent on the relative parameter ranges of wheat and poppy yields. Importantly though, the variance in Afghanistan's winter harvest yields of poppy and wheat is tightly linked to household livelihood and thus, is indirectly connected to the wider instability and insecurity within the country. This initial analysis motivates my focused research on the sensitivity of these crops to climate variability in order to project farmer well-being and decision sensitivity in a warmer world.

  14. Reducing the Uncertainty in Atlantic Meridional Overturning Circulation Projections Using Bayesian Model Averaging

    NASA Astrophysics Data System (ADS)

    Olson, R.; An, S. I.

    2016-12-01

    Atlantic Meridional Overturning Circulation (AMOC) in the ocean might slow down in the future, which can lead to a host of climatic effects in North Atlantic and throughout the world. Despite improvements in climate models and availability of new observations, AMOC projections remain uncertain. Here we constrain CMIP5 multi-model ensemble output with observations of a recently developed AMOC index to provide improved Bayesian predictions of future AMOC. Specifically, we first calculate yearly AMOC index loosely based on Rahmstorf et al. (2015) for years 1880—2004 for both observations, and the CMIP5 models for which relevant output is available. We then assign a weight to each model based on a Bayesian Model Averaging method that accounts for differential model skill in terms of both mean state and variability. We include the temporal autocorrelation in climate model errors, and account for the uncertainty in the parameters of our statistical model. We use the weights to provide future weighted projections of AMOC, and compare them to un-weighted ones. Our projections use bootstrapping to account for uncertainty in internal AMOC variability. We also perform spectral and other statistical analyses to show that AMOC index variability, both in models and in observations, is consistent with red noise. Our results improve on and complement previous work by using a new ensemble of climate models, a different observational metric, and an improved Bayesian weighting method that accounts for differential model skill at reproducing internal variability. Reference: Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in atlantic ocean overturning circulation. Nature Climate Change, 5(5), 475-480. doi:10.1038/nclimate2554

  15. The continuum of hydroclimate variability in western North America during the last millennium

    USGS Publications Warehouse

    Ault, Toby R.; Cole, Julia E.; Overpeck, Jonathan T.; Pederson, Gregory T.; St. George, Scott; Otto-Bliesner, Bette; Woodhouse, Connie A.; Deser, Clara

    2013-01-01

    The distribution of climatic variance across the frequency spectrum has substantial importance for anticipating how climate will evolve in the future. Here we estimate power spectra and power laws (ß) from instrumental, proxy, and climate model data to characterize the hydroclimate continuum in western North America (WNA). We test the significance of our estimates of spectral densities and ß against the null hypothesis that they reflect solely the effects of local (non-climate) sources of autocorrelation at the monthly timescale. Although tree-ring based hydroclimate reconstructions are generally consistent with this null hypothesis, values of ß calculated from long-moisture sensitive chronologies (as opposed to reconstructions), and other types of hydroclimate proxies, exceed null expectations. We therefore argue that there is more low-frequency variability in hydroclimate than monthly autocorrelation alone can generate. Coupled model results archived as part of the Climate Model Intercomparison Project 5 (CMIP5) are consistent with the null hypothesis and appear unable to generate variance in hydroclimate commensurate with paleoclimate records. Consequently, at decadal to multidecadal timescales there is more variability in instrumental and proxy data than in the models, suggesting that the risk of prolonged droughts under climate change may be underestimated by CMIP5 simulations of the future.

  16. Projecting future precipitation and temperature at sites with diverse climate through multiple statistical downscaling schemes

    NASA Astrophysics Data System (ADS)

    Vallam, P.; Qin, X. S.

    2017-10-01

    Anthropogenic-driven climate change would affect the global ecosystem and is becoming a world-wide concern. Numerous studies have been undertaken to determine the future trends of meteorological variables at different scales. Despite these studies, there remains significant uncertainty in the prediction of future climates. To examine the uncertainty arising from using different schemes to downscale the meteorological variables for the future horizons, projections from different statistical downscaling schemes were examined. These schemes included statistical downscaling method (SDSM), change factor incorporated with LARS-WG, and bias corrected disaggregation (BCD) method. Global circulation models (GCMs) based on CMIP3 (HadCM3) and CMIP5 (CanESM2) were utilized to perturb the changes in the future climate. Five study sites (i.e., Alice Springs, Edmonton, Frankfurt, Miami, and Singapore) with diverse climatic conditions were chosen for examining the spatial variability of applying various statistical downscaling schemes. The study results indicated that the regions experiencing heavy precipitation intensities were most likely to demonstrate the divergence between the predictions from various statistical downscaling methods. Also, the variance computed in projecting the weather extremes indicated the uncertainty derived from selection of downscaling tools and climate models. This study could help gain an improved understanding about the features of different downscaling approaches and the overall downscaling uncertainty.

  17. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise.

    PubMed

    Brown, Patrick T; Li, Wenhong; Cordero, Eugene C; Mauget, Steven A

    2015-04-21

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.

  18. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise

    PubMed Central

    Brown, Patrick T.; Li, Wenhong; Cordero, Eugene C.; Mauget, Steven A.

    2015-01-01

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20th century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal. PMID:25898351

  19. Identifying climate analogues for precipitation extremes for Denmark based on RCM simulations from the ENSEMBLES database.

    PubMed

    Arnbjerg-Nielsen, K; Funder, S G; Madsen, H

    2015-01-01

    Climate analogues, also denoted Space-For-Time, may be used to identify regions where the present climatic conditions resemble conditions of a past or future state of another location or region based on robust climate variable statistics in combination with projections of how these statistics change over time. The study focuses on assessing climate analogues for Denmark based on current climate data set (E-OBS) observations as well as the ENSEMBLES database of future climates with the aim of projecting future precipitation extremes. The local present precipitation extremes are assessed by means of intensity-duration-frequency curves for urban drainage design for the relevant locations being France, the Netherlands, Belgium, Germany, the United Kingdom, and Denmark. Based on this approach projected increases of extreme precipitation by 2100 of 9 and 21% are expected for 2 and 10 year return periods, respectively. The results should be interpreted with caution as the best region to represent future conditions for Denmark is the coastal areas of Northern France, for which only little information is available with respect to present precipitation extremes.

  20. Relative roles of weather variables and change in human population in malaria: comparison over different states of India.

    PubMed

    Goswami, Prashant; Murty, Upadhayula Suryanarayana; Mutheneni, Srinivasa Rao; Krishnan, Swathi Trithala

    2014-01-01

    Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance) and change in host (human) population, in the change in disease load. We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases. For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence. The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India). Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria.

  1. Relative Roles of Weather Variables and Change in Human Population in Malaria: Comparison over Different States of India

    PubMed Central

    Goswami, Prashant; Murty, Upadhayula Suryanarayana; Mutheneni, Srinivasa Rao; Krishnan, Swathi Trithala

    2014-01-01

    Background Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance) and change in host (human) population, in the change in disease load. Method We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases. Results For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence. Conclusion The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India). Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria. PMID:24971510

  2. Temperate Mountain Forest Biodiversity under Climate Change: Compensating Negative Effects by Increasing Structural Complexity

    PubMed Central

    Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt

    2014-01-01

    Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change. PMID:24823495

  3. Temperate mountain forest biodiversity under climate change: compensating negative effects by increasing structural complexity.

    PubMed

    Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt

    2014-01-01

    Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species' occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species' occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.

  4. THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE

    PubMed Central

    Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan

    2015-01-01

    Background: The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran’s universities. Methods: This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran’s public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For predicting the organizational climate pattern of the libraries is used from the multivariate linear regression and track diagram. Results: of the 9 variables affecting organizational climate, 5 variables of innovation, teamwork, customer service, psychological safety and deep diversity play a major role in prediction of the organizational climate of Iran’s libraries. The results also indicate that each of these variables with different coefficient have the power to predict organizational climate but the climate score of psychological safety (0.94) plays a very crucial role in predicting the organizational climate. Track diagram showed that five variables of teamwork, customer service, psychological safety, deep diversity and innovation directly effects on the organizational climate variable that contribution of the team work from this influence is more than any other variables. Conclusions: Of the indicator of the organizational climate of climateQual, the contribution of the team work from this influence is more than any other variables that reinforcement of teamwork in academic libraries can be more effective in improving the organizational climate of this type libraries. PMID:26622203

  5. THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE.

    PubMed

    Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan

    2015-10-01

    The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran's universities. This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran's public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For predicting the organizational climate pattern of the libraries is used from the multivariate linear regression and track diagram. of the 9 variables affecting organizational climate, 5 variables of innovation, teamwork, customer service, psychological safety and deep diversity play a major role in prediction of the organizational climate of Iran's libraries. The results also indicate that each of these variables with different coefficient have the power to predict organizational climate but the climate score of psychological safety (0.94) plays a very crucial role in predicting the organizational climate. Track diagram showed that five variables of teamwork, customer service, psychological safety, deep diversity and innovation directly effects on the organizational climate variable that contribution of the team work from this influence is more than any other variables. Of the indicator of the organizational climate of climateQual, the contribution of the team work from this influence is more than any other variables that reinforcement of teamwork in academic libraries can be more effective in improving the organizational climate of this type libraries.

  6. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2013-12-01

    The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA is planned to be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. The requirements of the educational tool are defined with the interaction with the school organizers, and CMDA is customized to meet the requirements accordingly. The tool needs to be production quality for 30+ simultaneous users. The summer school will thus serve as a valuable testbed for the tool development, preparing CMDA to serve the Earth-science modeling and model-analysis community at the end of the project. This work was funded by the NASA Earth Science Program called Computational Modeling Algorithms and Cyberinfrastructure (CMAC).

  7. Carbon fluxes in tropical forest ecosystems: the value of Eddy-covariance data for individual-based dynamic forest gap models

    NASA Astrophysics Data System (ADS)

    Roedig, Edna; Cuntz, Matthias; Huth, Andreas

    2015-04-01

    The effects of climatic inter-annual fluctuations and human activities on the global carbon cycle are uncertain and currently a major issue in global vegetation models. Individual-based forest gap models, on the other hand, model vegetation structure and dynamics on a small spatial (<100 ha) and large temporal scale (>1000 years). They are well-established tools to reproduce successions of highly-diverse forest ecosystems and investigate disturbances as logging or fire events. However, the parameterizations of the relationships between short-term climate variability and forest model processes are often uncertain in these models (e.g. daily variable temperature and gross primary production (GPP)) and cannot be constrained from forest inventories. We addressed this uncertainty and linked high-resolution Eddy-covariance (EC) data with an individual-based forest gap model. The forest model FORMIND was applied to three diverse tropical forest sites in the Amazonian rainforest. Species diversity was categorized into three plant functional types. The parametrizations for the steady-state of biomass and forest structure were calibrated and validated with different forest inventories. The parameterizations of relationships between short-term climate variability and forest model processes were evaluated with EC-data on a daily time step. The validations of the steady-state showed that the forest model could reproduce biomass and forest structures from forest inventories. The daily estimations of carbon fluxes showed that the forest model reproduces GPP as observed by the EC-method. Daily fluctuations of GPP were clearly reflected as a response to daily climate variability. Ecosystem respiration remains a challenge on a daily time step due to a simplified soil respiration approach. In the long-term, however, the dynamic forest model is expected to estimate carbon budgets for highly-diverse tropical forests where EC-measurements are rare.

  8. Climate Change Impact on Rainfall: How will Threaten Wheat Yield?

    NASA Astrophysics Data System (ADS)

    Tafoughalti, K.; El Faleh, E. M.; Moujahid, Y.; Ouargaga, F.

    2018-05-01

    Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.

  9. Assessing the Effects of Climate Variability on Orange Yield in Florida to Reduce Production Forecast Errors

    NASA Astrophysics Data System (ADS)

    Concha Larrauri, P.

    2015-12-01

    Orange production in Florida has experienced a decline over the past decade. Hurricanes in 2004 and 2005 greatly affected production, almost to the same degree as strong freezes that occurred in the 1980's. The spread of the citrus greening disease after the hurricanes has also contributed to a reduction in orange production in Florida. The occurrence of hurricanes and diseases cannot easily be predicted but the additional effects of climate on orange yield can be studied and incorporated into existing production forecasts that are based on physical surveys, such as the October Citrus forecast issued every year by the USDA. Specific climate variables ocurring before and after the October forecast is issued can have impacts on flowering, orange drop rates, growth, and maturation, and can contribute to the forecast error. Here we present a methodology to incorporate local climate variables to predict the USDA's orange production forecast error, and we study the local effects of climate on yield in different counties in Florida. This information can aid farmers to gain an insight on what is to be expected during the orange production cycle, and can help supply chain managers to better plan their strategy.

  10. Interactive influence of the Atlantic and Pacific climates and their contribution to the multidecadal variations of global temperature and precipitation.

    NASA Astrophysics Data System (ADS)

    Barcikowska, M. J.; Knutson, T. R.; Zhang, R.

    2016-12-01

    This study investigates mechanisms and global-scale climate impacts of multidecadal climate variability. Here we show, using observations and CSIRO-Mk3.6.0 model control run, that multidecadal variability of the Atlantic Meridional Overturning Circulation (AMOC) may have a profound impact on the thermal- and hydro-climatic changes over the Pacific region. In our model-based analysis we propose a mechanism, which comprises a coupled ocean-atmosphere teleconnection, established through the atmospheric overturning circulation cell between the tropical North Atlantic and tropical Pacific. For example, warming SSTs over the tropical North Atlantic intensify local convection and reinforce subsidence, low-level divergence in the eastern tropical Pacific. This is also accompanied with an intensification of trade winds, cooling and drying anomalies in the tropical central-east Pacific. The derived multidecadal changes, associated with the AMOC, contribute remarkably to the global temperature and precipitation variations. This highlights its potential predictive value. Shown here results suggest a possibility that: 1) recently observed slowdown in global warming may partly originate from internal variability, 2) climate system may be undergoing a transition to a cold AMO phase which could prolong the global slowdown.

  11. An inverse approach to perturb historical rainfall data for scenario-neutral climate impact studies

    NASA Astrophysics Data System (ADS)

    Guo, Danlu; Westra, Seth; Maier, Holger R.

    2018-01-01

    Scenario-neutral approaches are being used increasingly for climate impact assessments, as they allow water resource system performance to be evaluated independently of climate change projections. An important element of these approaches is the generation of perturbed series of hydrometeorological variables that form the inputs to hydrologic and water resource assessment models, with most scenario-neutral studies to-date considering only shifts in the average and a limited number of other statistics of each climate variable. In this study, a stochastic generation approach is used to perturb not only the average of the relevant hydrometeorological variables, but also attributes such as the intermittency and extremes. An optimization-based inverse approach is developed to obtain hydrometeorological time series with uniform coverage across the possible ranges of rainfall attributes (referred to as the 'exposure space'). The approach is demonstrated on a widely used rainfall generator, WGEN, for a case study at Adelaide, Australia, and is shown to be capable of producing evenly-distributed samples over the exposure space. The inverse approach expands the applicability of the scenario-neutral approach in evaluating a water resource system's sensitivity to a wider range of plausible climate change scenarios.

  12. New Perspectives on the Role of Internal Variability in Regional Climate Change and Climate Model Evaluation

    NASA Astrophysics Data System (ADS)

    Deser, C.

    2017-12-01

    Natural climate variability occurs over a wide range of time and space scales as a result of processes intrinsic to the atmosphere, the ocean, and their coupled interactions. Such internally generated climate fluctuations pose significant challenges for the identification of externally forced climate signals such as those driven by volcanic eruptions or anthropogenic increases in greenhouse gases. This challenge is exacerbated for regional climate responses evaluated from short (< 50 years) data records. The limited duration of the observations also places strong constraints on how well the spatial and temporal characteristics of natural climate variability are known, especially on multi-decadal time scales. The observational constraints, in turn, pose challenges for evaluation of climate models, including their representation of internal variability and assessing the accuracy of their responses to natural and anthropogenic radiative forcings. A promising new approach to climate model assessment is the advent of large (10-100 member) "initial-condition" ensembles of climate change simulations with individual models. Such ensembles allow for accurate determination, and straightforward separation, of externally forced climate signals and internal climate variability on regional scales. The range of climate trajectories in a given model ensemble results from the fact that each simulation represents a particular sequence of internal variability superimposed upon a common forced response. This makes clear that nature's single realization is only one of many that could have unfolded. This perspective leads to a rethinking of approaches to climate model evaluation that incorporate observational uncertainty due to limited sampling of internal variability. Illustrative examples across a range of well-known climate phenomena including ENSO, volcanic eruptions, and anthropogenic climate change will be discussed.

  13. New paleoclimatic database for the Iberian Peninsula since AD 1700 inferred from tree-ring records and documentary evidence: advances in temperature and drought variability reconstructions

    NASA Astrophysics Data System (ADS)

    Tejedor, Ernesto; Ángel Saz, Miguel; de Luis, Martín; Esper, Jan; Barriendos, Mariano; Serrano-Notivoli, Roberto; Novak, Klemen; Longares, Luis Alberto; Martínez-del Castillo, Edurne; María Cuadrat, José

    2017-04-01

    A substantial increase of surface air temperatures in the upcoming decades, particularly significant in the Mediterranean basin, has been reported by the IPCC (IPCC, 2013). It is therefore particularly important to study past climate extremes and variability in this region, which will in turn support the accuracy of future climate scenarios. Yet, our knowledge of past climate variability and trends is limited by the shortage of instrumental data prior to the twentieth century, which prompts to the need of discovering new sources with which to reconstruct past climate. We here present a new paleoclimatic database for the northeast of the Iberian Peninsula based on tree-ring records, documentary evidence and instrumental data. The network includes 774 tree-ring, earlywood and latewood width series from Pinus uncinata, Pinus sylvestris and Pinus nigra trees in the Pyrenees and Iberian Range reaching back to AD 1510. Three reconstructions are developed using these samples; an annual drought reconstruction since AD 1694, a summer drought reconstruction since AD 1734, and a maximum temperature reconstruction since AD 1604. Additionally, the documentary records from 16 locations in the Ebro Valley are examined focusing on climate-related 'rogations'. We differentiated three types of rogations, considering the importance of religious acts, to identify the severity of drought and pluvial events. Finally, an attempt to explore the links between documentary and tree-ring based reconstructions is presented.

  14. The CSAICLAWPS project: a multi-scalar, multi-data source approach to providing climate services for both modelling of climate change impacts on crop yields and development of community-level adaptive capacity for sustainable food security

    NASA Astrophysics Data System (ADS)

    Forsythe, N. D.; Fowler, H. J.

    2017-12-01

    The "Climate-smart agriculture implementation through community-focused pursuit of land and water productivity in South Asia" (CSAICLAWPS) project is a research initiative funded by the (UK) Royal Society through its Challenge Grants programme which is part of the broader UK Global Challenges Research Fund (GCRF). CSAICLAWPS has three objectives: a) development of "added-value" - bias assessed, statistically down-scaled - climate projections for selected case study sites across South Asia; b) investigation of crop failure modes under both present (observed) and future (projected) conditions; and c) facilitation of developing local adaptive capacity and resilience through stakeholder engagement. At AGU we will be presenting both next steps and progress to date toward these three objectives: [A] We have carried out bias assessments of a substantial multi-model RCM ensemble (MME) from the CORDEX South Asia (CORDEXdomain for case studies in three countries - Pakistan, India and Sri Lanka - and (stochastically) produced synthetic time-series for these sites from local observations using a Python-based implementation of the principles underlying the Climate Research Unit Weather Generator (CRU-WG) in order to enable probabilistic simulation of current crop yields. [B] We have characterised present response of local crop yields to climate variability in key case study sites using AquaCrop simulations parameterised based on input (agronomic practices, soil conditions, etc) from smallholder farmers. [C] We have implemented community-based hydro-climatological monitoring in several case study "revenue villages" (panchayats) in the Nainital District of Uttarakhand. The purpose of this is not only to increase availability of meteorological data, but also has the aspiration of, over time, leading to enhanced quantitative awareness of present climate variability and potential future conditions (as projected by RCMs). Next steps in our work will include: 1) future crop yield simulations driven by "perturbation" of synthetic time-series using "change factors from the CORDEX-SA MME; 2) stakeholder dialogues critically evaluating potential strategies at the grassroots (implementation) level to mitigate impacts of climate variability and change on crop yields.

  15. Modeling the effects of anthropogenic habitat change on savanna snake invasions into African rainforest.

    PubMed

    Freedman, Adam H; Buermann, Wolfgang; Lebreton, Matthew; Chirio, Laurent; Smith, Thomas B

    2009-02-01

    We used a species-distribution modeling approach, ground-based climate data sets, and newly available remote-sensing data on vegetation from the MODIS and Quick Scatterometer sensors to investigate the combined effects of human-caused habitat alterations and climate on potential invasions of rainforest by 3 savanna snake species in Cameroon, Central Africa: the night adder (Causus maculatus), olympic lined snake (Dromophis lineatus), and African house snake (Lamprophis fuliginosus). Models with contemporary climate variables and localities from native savanna habitats showed that the current climate in undisturbed rainforest was unsuitable for any of the snake species due to high precipitation. Limited availability of thermally suitable nest sites and mismatches between important life-history events and prey availability are a likely explanation for the predicted exclusion from undisturbed rainforest. Models with only MODIS-derived vegetation variables and savanna localities predicted invasion in disturbed areas within the rainforest zone, which suggests that human removal of forest cover creates suitable microhabitats that facilitate invasions into rainforest. Models with a combination of contemporary climate, MODIS- and Quick Scatterometer-derived vegetation variables, and forest and savanna localities predicted extensive invasion into rainforest caused by rainforest loss. In contrast, a projection of the present-day species-climate envelope on future climate suggested a reduction in invasion potential within the rainforest zone as a consequence of predicted increases in precipitation. These results emphasize that the combined responses of deforestation and climate change will likely be complex in tropical rainforest systems.

  16. Climate Change and Human Health Impacts in the United States: An Update on the Results of the U.S. National Assessment

    PubMed Central

    Ebi, Kristie L.; Mills, David M.; Smith, Joel B.; Grambsch, Anne

    2006-01-01

    The health sector component of the first U.S. National Assessment, published in 2000, synthesized the anticipated health impacts of climate variability and change for five categories of health outcomes: impacts attributable to temperature, extreme weather events (e.g., storms and floods), air pollution, water- and food-borne diseases, and vector- and rodent-borne diseases. The Health Sector Assessment (HSA) concluded that climate variability and change are likely to increase morbidity and mortality risks for several climate-sensitive health outcomes, with the net impact uncertain. The objective of this study was to update the first HSA based on recent publications that address the potential impacts of climate variability and change in the United States for the five health outcome categories. The literature published since the first HSA supports the initial conclusions, with new data refining quantitative exposure–response relationships for several health end points, particularly for extreme heat events and air pollution. The United States continues to have a very high capacity to plan for and respond to climate change, although relatively little progress has been noted in the literature on implementing adaptive strategies and measures. Large knowledge gaps remain, resulting in a substantial need for additional research to improve our understanding of how weather and climate, both directly and indirectly, can influence human health. Filling these knowledge gaps will help better define the potential health impacts of climate change and identify specific public health adaptations to increase resilience. PMID:16966082

  17. Climate change and adverse health events: community perceptions from the Tanahu district of Nepal

    NASA Astrophysics Data System (ADS)

    Mishra, Shiva Raj; Mani Bhandari, Parash; Issa, Rita; Neupane, Dinesh; Gurung, Swadesh; Khanal, Vishnu

    2015-03-01

    Nepal is a country economically dependent on climate-sensitive industries. It is highly vulnerable to the environmental, social, economic and health impacts of climate change. The objective of this study is to explore community perceptions of climate variability and human health risks. In this letter, we present a cross sectional study conducted between August 2013 and July 2014 in the Tanahu district of Nepal. Our analysis is based on 258 face-to-face interviews with household heads utilizing structured questionnaires. Over half of the respondents (54.7%) had perceived a change in climate, 53.9% had perceived an increase in temperature in the summer and 49.2% had perceived an increase in rainfall during the rainy season. Half of the respondents perceived an increase in the number of diseases during the summer, 46.5% perceived an increase during the rainy season and 48.8% during winter. Only 8.9% of the respondents felt that the government was doing enough to prevent climate change and its impact on their community. Belonging to the Janajati (indigenous) ethnic group, living in a pakki, super-pakki house and belonging to poor or mid-level income were related to higher odds of perceiving climate variability. Illiterates were less likely to perceive climate variability. Respondents living in a pakki house, super-pakki, or those who were poor were more likely to perceive health risks. Illiterates were less likely to perceive health risks.

  18. Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid- to late-21st century

    NASA Astrophysics Data System (ADS)

    Waha, K.; Müller, C.; Rolinski, S.

    2013-07-01

    Maize (Zea mays L.) is one of the most important food crops and very common in all parts of sub-Saharan Africa. In 2010 53 million tons of maize were produced in sub-Saharan Africa on about one third of the total harvested cropland area (~ 33 million ha). Our aim is to identify the limiting agroclimatic variable for maize growth and development in sub-Saharan Africa by analyzing the separated and combined effects of temperature and precipitation. Under changing climate, both climate variables are projected to change severely, and their impacts on crop yields are frequently assessed using process-based crop models. However it is often unclear which agroclimatic variable will have the strongest influence on crop growth and development under climate change and previous studies disagree over this question.

  19. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production.

    PubMed

    Kukal, Meetpal S; Irmak, Suat

    2018-02-22

    Climate variability and trends affect global crop yields and are characterized as highly dependent on location, crop type, and irrigation. U.S. Great Plains, due to its significance in national food production, evident climate variability, and extensive irrigation is an ideal region of investigation for climate impacts on food production. This paper evaluates climate impacts on maize, sorghum, and soybean yields and effect of irrigation for individual counties in this region by employing extensive crop yield and climate datasets from 1968-2013. Variability in crop yields was a quarter of the regional average yields, with a quarter of this variability explained by climate variability, and temperature and precipitation explained these in singularity or combination at different locations. Observed temperature trend was beneficial for maize yields, but detrimental for sorghum and soybean yields, whereas observed precipitation trend was beneficial for all three crops. Irrigated yields demonstrated increased robustness and an effective mitigation strategy against climate impacts than their non-irrigated counterparts by a considerable fraction. The information, data, and maps provided can serve as an assessment guide for planners, managers, and policy- and decision makers to prioritize agricultural resilience efforts and resource allocation or re-allocation in the regions that exhibit risk from climate variability.

  20. Quantification of spatial temporal variability of snow cover and hydro-climatic variables based on multi-source remote sensing data in the Swat watershed, Hindukush Mountains, Pakistan

    NASA Astrophysics Data System (ADS)

    Anjum, Muhammad Naveed; Ding, Yongjian; Shangguan, Donghui; Liu, Junguo; Ahmad, Ijaz; Ijaz, Muhammad Wajid; Khan, Muhammad Imran

    2018-02-01

    The northern part of Hindukush Mountains has a perplexing environment due to the influence of adjacent mountains of Himalaya, Karakoram, and Tibetan Plateau. Although reliable evidences of climate change are available; however, a clear knowledge of snow cover dynamics in the context of climate change is missing for this region. In this study, we used various remotely sensed (TRMM precipitation product, while MODIS temperature and snow cover products) and gauge-based datasets to quantify the spatiotemporal variability of climatic variables and their turn effects over the snow cover area (SCA) and river discharge in the Swat watershed, northern Hindukush Mountains, Pakistan. The Mann-Kendall method and Sen's slope estimator were used to estimate the trends in SCA and hydro-climatic variables, at 5% significant level (P = 0.05). Results show that the winter and springs temperatures have increased (at the rate of 0.079 and 0.059 °C year-1, respectively), while decreasing in the summer and autumn (at the rate of 0.049 and 0.070 °C year-1, respectively). Basin-wide increasing tendency of precipitation was identified with a highest increasing rate of 3.563 mm year-1 in the spring season. A decreasing trend in the winter SCA (at the rate of -0.275% year-1) and increasing trends in other seasons were identified. An increasing tendency of river discharge on annual and seasonal scales was also witnessed. The seasonal variations in discharge showed significant positive and negative relationships with temperature and SCA, respectively. We conclude that the future variations in the temperature and SCA in the higher altitudes of the Swat watershed could substantially affect the seasonality of the river discharge. Moreover, it implies that the effect of ongoing global warming on the SCA in the snowmelt-dominated river basins needs to be considered for sustainable regional planning and management of water resources, hydropower production, and downstream irrigation scheduling.

  1. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America

    PubMed Central

    Falk, Donald A.; Westerling, Anthony L.; Swetnam, Thomas W.

    2017-01-01

    Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread. PMID:29244839

  2. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America.

    PubMed

    Kitzberger, Thomas; Falk, Donald A; Westerling, Anthony L; Swetnam, Thomas W

    2017-01-01

    Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread.

  3. Regionalizing Africa: Patterns of Precipitation Variability in Observations and Global Climate Models

    NASA Technical Reports Server (NTRS)

    Badr, Hamada S.; Dezfuli, Amin K.; Zaitchik, Benjamin F.; Peters-Lidard, Christa D.

    2016-01-01

    Many studies have documented dramatic climatic and environmental changes that have affected Africa over different time scales. These studies often raise questions regarding the spatial extent and regional connectivity of changes inferred from observations and proxies and/or derived from climate models. Objective regionalization offers a tool for addressing these questions. To demonstrate this potential, applications of hierarchical climate regionalizations of Africa using observations and GCM historical simulations and future projections are presented. First, Africa is regionalized based on interannual precipitation variability using Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data for the period 19812014. A number of data processing techniques and clustering algorithms are tested to ensure a robust definition of climate regions. These regionalization results highlight the seasonal and even month-to-month specificity of regional climate associations across the continent, emphasizing the need to consider time of year as well as research question when defining a coherent region for climate analysis. CHIRPS regions are then compared to those of five GCMs for the historic period, with a focus on boreal summer. Results show that some GCMs capture the climatic coherence of the Sahel and associated teleconnections in a manner that is similar to observations, while other models break the Sahel into uncorrelated subregions or produce a Sahel-like region of variability that is spatially displaced from observations. Finally, shifts in climate regions under projected twenty-first-century climate change for different GCMs and emissions pathways are examined. A projected change is found in the coherence of the Sahel, in which the western and eastern Sahel become distinct regions with different teleconnections. This pattern is most pronounced in high-emissions scenarios.

  4. Local-scale spatial modelling for interpolating climatic temperature variables to predict agricultural plant suitability

    NASA Astrophysics Data System (ADS)

    Webb, Mathew A.; Hall, Andrew; Kidd, Darren; Minansy, Budiman

    2016-05-01

    Assessment of local spatial climatic variability is important in the planning of planting locations for horticultural crops. This study investigated three regression-based calibration methods (i.e. traditional versus two optimized methods) to relate short-term 12-month data series from 170 temperature loggers and 4 weather station sites with data series from nearby long-term Australian Bureau of Meteorology climate stations. The techniques trialled to interpolate climatic temperature variables, such as frost risk, growing degree days (GDDs) and chill hours, were regression kriging (RK), regression trees (RTs) and random forests (RFs). All three calibration methods produced accurate results, with the RK-based calibration method delivering the most accurate validation measures: coefficients of determination ( R 2) of 0.92, 0.97 and 0.95 and root-mean-square errors of 1.30, 0.80 and 1.31 °C, for daily minimum, daily maximum and hourly temperatures, respectively. Compared with the traditional method of calibration using direct linear regression between short-term and long-term stations, the RK-based calibration method improved R 2 and reduced root-mean-square error (RMSE) by at least 5 % and 0.47 °C for daily minimum temperature, 1 % and 0.23 °C for daily maximum temperature and 3 % and 0.33 °C for hourly temperature. Spatial modelling indicated insignificant differences between the interpolation methods, with the RK technique tending to be the slightly better method due to the high degree of spatial autocorrelation between logger sites.

  5. Does climate variability influence the demography of wild primates? Evidence from long-term life-history data in seven species.

    PubMed

    Campos, Fernando A; Morris, William F; Alberts, Susan C; Altmann, Jeanne; Brockman, Diane K; Cords, Marina; Pusey, Anne; Stoinski, Tara S; Strier, Karen B; Fedigan, Linda M

    2017-11-01

    Earth's rapidly changing climate creates a growing need to understand how demographic processes in natural populations are affected by climate variability, particularly among organisms threatened by extinction. Long-term, large-scale, and cross-taxon studies of vital rate variation in relation to climate variability can be particularly valuable because they can reveal environmental drivers that affect multiple species over extensive regions. Few such data exist for animals with slow life histories, particularly in the tropics, where climate variation over large-scale space is asynchronous. As our closest relatives, nonhuman primates are especially valuable as a resource to understand the roles of climate variability and climate change in human evolutionary history. Here, we provide the first comprehensive investigation of vital rate variation in relation to climate variability among wild primates. We ask whether primates are sensitive to global changes that are universal (e.g., higher temperature, large-scale climate oscillations) or whether they are more sensitive to global change effects that are local (e.g., more rain in some places), which would complicate predictions of how primates in general will respond to climate change. To address these questions, we use a database of long-term life-history data for natural populations of seven primate species that have been studied for 29-52 years to investigate associations between vital rate variation, local climate variability, and global climate oscillations. Associations between vital rates and climate variability varied among species and depended on the time windows considered, highlighting the importance of temporal scale in detection of such effects. We found strong climate signals in the fertility rates of three species. However, survival, which has a greater impact on population growth, was little affected by climate variability. Thus, we found evidence for demographic buffering of life histories, but also evidence of mechanisms by which climate change could affect the fates of wild primates. © 2017 John Wiley & Sons Ltd.

  6. Climate variability and vadose zone controls on damping of transient recharge

    USGS Publications Warehouse

    Corona, Claudia R.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Maurer, Edwin P.

    2018-01-01

    Increasing demand on groundwater resources motivates understanding of the controls on recharge dynamics so model predictions under current and future climate may improve. Here we address questions about the nonlinear behavior of flux variability in the vadose zone that may explain previously reported teleconnections between global-scale climate variability and fluctuations in groundwater levels. We use hundreds of HYDRUS-1D simulations in a sensitivity analysis approach to evaluate the damping depth of transient recharge over a range of periodic boundary conditions and vadose zone geometries and hydraulic parameters that are representative of aquifer systems of the conterminous United States (U.S). Although the models were parameterized based on U.S. aquifers, findings from this study are applicable elsewhere that have mean recharge rates between 3.65 and 730 mm yr–1. We find that mean infiltration flux, period of time varying infiltration, and hydraulic conductivity are statistically significant predictors of damping depth. The resulting framework explains why some periodic infiltration fluxes associated with climate variability dampen with depth in the vadose zone, resulting in steady-state recharge, while other periodic surface fluxes do not dampen with depth, resulting in transient recharge. We find that transient recharge in response to the climate variability patterns could be detected at the depths of water levels in most U.S. aquifers. Our findings indicate that the damping behavior of transient infiltration fluxes is linear across soil layers for a range of texture combinations. The implications are that relatively simple, homogeneous models of the vadose zone may provide reasonable estimates of the damping depth of climate-varying transient recharge in some complex, layered vadose zone profiles.

  7. Detection and Attribution of Temperature Trends in the Presence of Natural Variability

    NASA Astrophysics Data System (ADS)

    Wallace, J. M.

    2014-12-01

    The fingerprint of human-induced global warming stands out clearly above the noise In the time series of global-mean temperature, but not local temperature. At extratropical latitudes over land the standard error of 50-year linear temperature trends at a fixed point is as large as the cumulative rise in global-mean temperature over the past century. Much of the samping variability in local temperature trends is "dynamically-induced", i.e., attributable to the fact that the seasonally-varying mean circulation varies substantially from one year to the next and anomalous circulation patterns are generally accompanied by anomalous temperature patterns. In the presence of such large sampling variability it is virtually impossible to identify the spatial signature of greenhouse warming based on observational data or to partition observed local temperature trends into natural and human-induced components. It follows that previous IPCC assessments, which have focused on the deterministic signature of human-induced climate change, are inherently limited as to what they can tell us about the attribution of the past record of local temperature change or about how much the temperature at a particular place is likely to rise in the next few decades in response to global warming. To obtain more informative assessments of regional and local climate variability and change it will be necessary to take a probabilistic approach. Just as the use of the ensembles has contributed to more informative extended range weather predictions, large ensembles of climate model simulations can provide a statistical context for interpreting observed climate change and for framing projections of future climate. For some purposes, statistics relating to the interannual variability in the historical record can serve as a surrogate for statistics relating to the diversity of climate change scenarios in large ensembles.

  8. Climate Change Impact Assessment of Food- and Waterborne Diseases.

    PubMed

    Semenza, Jan C; Herbst, Susanne; Rechenburg, Andrea; Suk, Jonathan E; Höser, Christoph; Schreiber, Christiane; Kistemann, Thomas

    2012-04-01

    The PubMed and ScienceDirect bibliographic databases were searched for the period of 1998-2009 to evaluate the impact of climatic and environmental determinants on food- and waterborne diseases. The authors assessed 1,642 short and concise sentences (key facts), which were extracted from 722 relevant articles and stored in a climate change knowledge base. Key facts pertaining to temperature, precipitation, water, and food for 6 selected pathogens were scrutinized, evaluated, and compiled according to exposure pathways. These key facts (corresponding to approximately 50,000 words) were mapped to 275 terminology terms identified in the literature, which generated 6,341 connections. These relationships were plotted on semantic network maps to examine the interconnections between variables. The risk of campylobacteriosis is associated with mean weekly temperatures, although this link is shown more strongly in the literature relating to salmonellosis. Irregular and severe rain events are associated with Cryptosporidium sp. outbreaks, while noncholera Vibrio sp. displays increased growth rates in coastal waters during hot summers. In contrast, for Norovirus and Listeria sp. the association with climatic variables was relatively weak, but much stronger for food determinants. Electronic data mining to assess the impact of climate change on food- and waterborne diseases assured a methodical appraisal of the field. This climate change knowledge base can support national climate change vulnerability, impact, and adaptation assessments and facilitate the management of future threats from infectious diseases. In the light of diminishing resources for public health this approach can help balance different climate change adaptation options.

  9. Climate Change Impact Assessment of Food- and Waterborne Diseases

    PubMed Central

    Semenza, Jan C.; Herbst, Susanne; Rechenburg, Andrea; Suk, Jonathan E.; Höser, Christoph; Schreiber, Christiane; Kistemann, Thomas

    2011-01-01

    The PubMed and ScienceDirect bibliographic databases were searched for the period of 1998–2009 to evaluate the impact of climatic and environmental determinants on food- and waterborne diseases. The authors assessed 1,642 short and concise sentences (key facts), which were extracted from 722 relevant articles and stored in a climate change knowledge base. Key facts pertaining to temperature, precipitation, water, and food for 6 selected pathogens were scrutinized, evaluated, and compiled according to exposure pathways. These key facts (corresponding to approximately 50,000 words) were mapped to 275 terminology terms identified in the literature, which generated 6,341 connections. These relationships were plotted on semantic network maps to examine the interconnections between variables. The risk of campylobacteriosis is associated with mean weekly temperatures, although this link is shown more strongly in the literature relating to salmonellosis. Irregular and severe rain events are associated with Cryptosporidium sp. outbreaks, while noncholera Vibrio sp. displays increased growth rates in coastal waters during hot summers. In contrast, for Norovirus and Listeria sp. the association with climatic variables was relatively weak, but much stronger for food determinants. Electronic data mining to assess the impact of climate change on food- and waterborne diseases assured a methodical appraisal of the field. This climate change knowledge base can support national climate change vulnerability, impact, and adaptation assessments and facilitate the management of future threats from infectious diseases. In the light of diminishing resources for public health this approach can help balance different climate change adaptation options. PMID:24808720

  10. Evaluating the response of Lake Prespa (SW Balkan) to future climate change projections from a high-resolution model

    NASA Astrophysics Data System (ADS)

    van der Schriek, Tim; Varotsos, Konstantinos V.; Giannakopoulos, Christos

    2017-04-01

    The Mediterranean stands out globally due to its sensitivity to (future) climate change. Projections suggest that the Balkans will experience precipitation and runoff decreases of up to 30% by 2100. However, these projections show large regional spatial variability. Mediterranean lake-wetland systems are particularly threatened by projected climate changes that compound increasingly intensive human impacts (e.g. water extraction, drainage, pollution and dam-building). Protecting the remaining systems is extremely important for supporting global biodiversity. This protection should be based on a clear understanding of individual lake-wetland hydrological responses to future climate changes, which requires fine-resolution projections and a good understanding of the impact of hydro-climate variability on individual lakes. Climate change may directly affect lake level (variability), volume and water temperatures. In turn, these variables influence lake-ecology, habitats and water quality. Land-use intensification and water abstraction multiply these climate-driven changes. To date, there are no projections of future water level and -temperature of individual Mediterranean lakes under future climate scenarios. These are, however, of crucial importance to steer preservation strategies on the relevant catchment-scale. Here we present the first projections of water level and -temperature of the Prespa Lakes covering the period 2071-2100. These lakes are of global significance for biodiversity, and of great regional socio-economic importance as a water resource and tourist attraction. Impact projections are assessed by the Regional Climate Model RCA4 of the Swedish Meteorological and Hydrological Institute (SMHI) driven by the Max Planck Institute for Meteorology global climate model MPI-ESM-LR under two RCP future emissions scenarios, the RCP4.5 and the RCP8.5, with the simulations carried out in the framework of EURO-CORDEX. Temperature, evapo(transpi)ration and precipitation over the Prespa catchment were simulated with this high horizontal resolution (12 × 12 km) regional climate model. Lake temperatures were derived from surface temperatures based on physical models, while water levels were calculated with the lake water balance model. Climate simulations indicate that annual- and wet season catchment precipitation does not significantly change by the end of the century. The median precipitation decreases, while precipitation variability increases. The percentage of annual precipitation falling in the wet season increases by 5-10%, indicating a stronger seasonality in the precipitation regime. Summer (lake) temperatures and lake surface evaporation will rise significantly under both explored climate change scenarios. Lake impact projections indicate that evaporation changes will cause the water level of Lake Megali Prespa to fall by 5m to 840-839m. The increased precipitation variability will cause large inter-annual water level fluctuations. Average water level may fall even further if: (1) drier summers lead to more water abstraction for irrigation, and (2) there is a reduction in winter snowfall/accumulation and thus less discharge. These findings are of key importance for developing sustainable lake water resource management in a region that is highly vulnerable to future climate change and already experiences significant water stress. Research paves the way for innovative management adaptation strategies focussed on decreasing water abstraction, for example through introducing smart irrigation and selecting more water efficient crops.

  11. On climate prediction: how much can we expect from climate memory?

    NASA Astrophysics Data System (ADS)

    Yuan, Naiming; Huang, Yan; Duan, Jianping; Zhu, Congwen; Xoplaki, Elena; Luterbacher, Jürg

    2018-03-01

    Slowing variability in climate system is an important source of climate predictability. However, it is still challenging for current dynamical models to fully capture the variability as well as its impacts on future climate. In this study, instead of simulating the internal multi-scale oscillations in dynamical models, we discussed the effects of internal variability in terms of climate memory. By decomposing climate state x(t) at a certain time point t into memory part M(t) and non-memory part ɛ (t) , climate memory effects from the past 30 years on climate prediction are quantified. For variables with strong climate memory, high variance (over 20% ) in x(t) is explained by the memory part M(t), and the effects of climate memory are non-negligible for most climate variables, but the precipitation. Regarding of multi-steps climate prediction, a power law decay of the explained variance was found, indicating long-lasting climate memory effects. The explained variances by climate memory can remain to be higher than 10% for more than 10 time steps. Accordingly, past climate conditions can affect both short (monthly) and long-term (interannual, decadal, or even multidecadal) climate predictions. With the memory part M(t) precisely calculated from Fractional Integral Statistical Model, one only needs to focus on the non-memory part ɛ (t) , which is an important quantity that determines climate predictive skills.

  12. Contemporary group estimates adjusted for climatic effects provide a finer definition of the unknown environmental challenges experienced by growing pigs.

    PubMed

    Guy, S Z Y; Li, L; Thomson, P C; Hermesch, S

    2017-12-01

    Environmental descriptors derived from mean performances of contemporary groups (CGs) are assumed to capture any known and unknown environmental challenges. The objective of this paper was to obtain a finer definition of the unknown challenges, by adjusting CG estimates for the known climatic effects of monthly maximum air temperature (MaxT), minimum air temperature (MinT) and monthly rainfall (Rain). As the unknown component could include infection challenges, these refined descriptors may help to better model varying responses of sire progeny to environmental infection challenges for the definition of disease resilience. Data were recorded from 1999 to 2013 at a piggery in south-east Queensland, Australia (n = 31,230). Firstly, CG estimates of average daily gain (ADG) and backfat (BF) were adjusted for MaxT, MinT and Rain, which were fitted as splines. In the models used to derive CG estimates for ADG, MaxT and MinT were significant variables. The models that contained these significant climatic variables had CG estimates with a lower variance compared to models without significant climatic variables. Variance component estimates were similar across all models, suggesting that these significant climatic variables accounted for some known environmental variation captured in CG estimates. No climatic variables were significant in the models used to derive the CG estimates for BF. These CG estimates were used to categorize environments. There was no observable sire by environment interaction (Sire×E) for ADG when using the environmental descriptors based on CG estimates on BF. For the environmental descriptors based on CG estimates of ADG, there was significant Sire×E only when MinT was included in the model (p = .01). Therefore, this new definition of the environment, preadjusted by MinT, increased the ability to detect Sire×E. While the unknown challenges captured in refined CG estimates need verification for infection challenges, this may provide a practical approach for the genetic improvement of disease resilience. © 2017 Blackwell Verlag GmbH.

  13. Assessing climate impacts

    PubMed Central

    Wohl, Ellen E.; Pulwarty, Roger S.; Zhang, Jian Yun

    2000-01-01

    Assessing climate impacts involves identifying sources and characteristics of climate variability, and mitigating potential negative impacts of that variability. Associated research focuses on climate driving mechanisms, biosphere–hydrosphere responses and mediation, and human responses. Examples of climate impacts come from 1998 flooding in the Yangtze River Basin and hurricanes in the Caribbean and Central America. Although we have limited understanding of the fundamental driving-response interactions associated with climate variability, increasingly powerful measurement and modeling techniques make assessing climate impacts a rapidly developing frontier of science. PMID:11027321

  14. The Practitioner's Dilemma: How to Assess the Credibility of Downscaled Climate Projections

    NASA Technical Reports Server (NTRS)

    Barsugli, Joseph J.; Guentchev, Galina; Horton, Radley M.; Wood, Andrew; Mearns, Lindo O.; Liang, Xin-Zhong; Winkler, Julia A.; Dixon, Keith; Hayhoe, Katharine; Rood, Richard B.; hide

    2013-01-01

    Suppose you are a city planner, regional water manager, or wildlife conservation specialist who is asked to include the potential impacts of climate variability and change in your risk management and planning efforts. What climate information would you use? The choice is often regional or local climate projections downscaled from global climate models (GCMs; also known as general circulation models) to include detail at spatial and temporal scales that align with those of the decision problem. A few years ago this information was hard to come by. Now there is Web-based access to a proliferation of high-resolution climate projections derived with differing downscaling methods.

  15. Seasonal and interannual variability of climate and vegetation indices across the Amazon

    PubMed Central

    Brando, Paulo M.; Goetz, Scott J.; Baccini, Alessandro; Nepstad, Daniel C.; Beck, Pieter S. A.; Christman, Mary C.

    2010-01-01

    Drought exerts a strong influence on tropical forest metabolism, carbon stocks, and ultimately the flux of carbon to the atmosphere. Satellite-based studies have suggested that Amazon forests green up during droughts because of increased sunlight, whereas field studies have reported increased tree mortality during severe droughts. In an effort to reconcile these apparently conflicting findings, we conducted an analysis of climate data, field measurements, and improved satellite-based measures of forest photosynthetic activity. Wet-season precipitation and plant-available water (PAW) decreased over the Amazon Basin from 1996−2005, and photosynthetically active radiation (PAR) and air dryness (expressed as vapor pressure deficit, VPD) increased from 2002–2005. Using improved enhanced vegetation index (EVI) measurements (2000–2008), we show that gross primary productivity (expressed as EVI) declined with VPD and PAW in regions of sparse canopy cover across a wide range of environments for each year of the study. In densely forested areas, no climatic variable adequately explained the Basin-wide interannual variability of EVI. Based on a site-specific study, we show that monthly EVI was relatively insensitive to leaf area index (LAI) but correlated positively with leaf flushing and PAR measured in the field. These findings suggest that production of new leaves, even when unaccompanied by associated changes in LAI, could play an important role in Basin-wide interannual EVI variability. Because EVI variability was greatest in regions of lower PAW, we hypothesize that drought could increase EVI by synchronizing leaf flushing via its effects on leaf bud development. PMID:20679201

  16. Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol Anne

    2013-01-01

    Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered.

  17. Parametric vs. non-parametric daily weather generator: validation and comparison

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin

    2016-04-01

    As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30 years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series from several European stations available from the ECA&D database.

  18. Climate-based archetypes for the environmental fate assessment of chemicals.

    PubMed

    Ciuffo, Biagio; Sala, Serenella

    2013-11-15

    Emissions of chemicals have been on the rise for years, and their impacts are greatly influenced by spatial differentiation. Chemicals are usually emitted locally but their impact can be felt both locally and globally, due to their chemical properties and persistence. The variability of environmental parameters in the emission compartment may affect the chemicals' fate and the exposure at different orders of magnitude. The assessment of the environmental fate of chemicals and the inherent spatial differentiation requires the use of multimedia models at various levels of complexity (from a simple box model to complex computational and high-spatial-resolution models). The objective of these models is to support ecological and human health risk assessment, by reducing the uncertainty of chemical impact assessments. The parameterisation of spatially resolved multimedia models is usually based on scenarios of evaluative environments, or on geographical resolutions related to administrative boundaries (e.g. countries/continents) or landscape areas (e.g. watersheds, eco-regions). The choice of the most appropriate scale and scenario is important from a management perspective, as a balance should be reached between a simplified approach and computationally intensive multimedia models. In this paper, which aims to go beyond the more traditional approach based on scale/resolution (cell, country, and basin), we propose and assess climate-based archetypes for the impact assessment of chemicals released in air. We define the archetypes based on the main drivers of spatial variability, which we systematically identify by adopting global sensitivity analysis techniques. A case study that uses the high resolution multimedia model MAPPE (Multimedia Assessment of Pollutant Pathways in the Environment) is presented. Results of the analysis showed that suitable archetypes should be both climate- and chemical-specific, as different chemicals (or groups of them) have different traits that influence their spatial variability. This hypothesis was tested by comparing the variability of the output of MAPPE for four different climatic zones on four different continents for four different chemicals (which represent different combinations of physical and chemical properties). Results showed the high suitability of climate-based archetypes in assessing the impacts of chemicals released in air. However, further research work is still necessary to test these findings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Assessing the multi-scale predictive ability of ecosystem functional attributes for species distribution modelling.

    PubMed

    Arenas-Castro, Salvador; Gonçalves, João; Alves, Paulo; Alcaraz-Segura, Domingo; Honrado, João P

    2018-01-01

    Global environmental changes are rapidly affecting species' distributions and habitat suitability worldwide, requiring a continuous update of biodiversity status to support effective decisions on conservation policy and management. In this regard, satellite-derived Ecosystem Functional Attributes (EFAs) offer a more integrative and quicker evaluation of ecosystem responses to environmental drivers and changes than climate and structural or compositional landscape attributes. Thus, EFAs may hold advantages as predictors in Species Distribution Models (SDMs) and for implementing multi-scale species monitoring programs. Here we describe a modelling framework to assess the predictive ability of EFAs as Essential Biodiversity Variables (EBVs) against traditional datasets (climate, land-cover) at several scales. We test the framework with a multi-scale assessment of habitat suitability for two plant species of conservation concern, both protected under the EU Habitats Directive, differing in terms of life history, range and distribution pattern (Iris boissieri and Taxus baccata). We fitted four sets of SDMs for the two test species, calibrated with: interpolated climate variables; landscape variables; EFAs; and a combination of climate and landscape variables. EFA-based models performed very well at the several scales (AUCmedian from 0.881±0.072 to 0.983±0.125), and similarly to traditional climate-based models, individually or in combination with land-cover predictors (AUCmedian from 0.882±0.059 to 0.995±0.083). Moreover, EFA-based models identified additional suitable areas and provided valuable information on functional features of habitat suitability for both test species (narrowly vs. widely distributed), for both coarse and fine scales. Our results suggest a relatively small scale-dependence of the predictive ability of satellite-derived EFAs, supporting their use as meaningful EBVs in SDMs from regional and broader scales to more local and finer scales. Since the evaluation of species' conservation status and habitat quality should as far as possible be performed based on scalable indicators linking to meaningful processes, our framework may guide conservation managers in decision-making related to biodiversity monitoring and reporting schemes.

  20. Bias and robustness of uncertainty components estimates in transient climate projections

    NASA Astrophysics Data System (ADS)

    Hingray, Benoit; Blanchet, Juliette; Jean-Philippe, Vidal

    2016-04-01

    A critical issue in climate change studies is the estimation of uncertainties in projections along with the contribution of the different uncertainty sources, including scenario uncertainty, the different components of model uncertainty and internal variability. Quantifying the different uncertainty sources faces actually different problems. For instance and for the sake of simplicity, an estimate of model uncertainty is classically obtained from the empirical variance of the climate responses obtained for the different modeling chains. These estimates are however biased. Another difficulty arises from the limited number of members that are classically available for most modeling chains. In this case, the climate response of one given chain and the effect of its internal variability may be actually difficult if not impossible to separate. The estimate of scenario uncertainty, model uncertainty and internal variability components are thus likely to be not really robust. We explore the importance of the bias and the robustness of the estimates for two classical Analysis of Variance (ANOVA) approaches: a Single Time approach (STANOVA), based on the only data available for the considered projection lead time and a time series based approach (QEANOVA), which assumes quasi-ergodicity of climate outputs over the whole available climate simulation period (Hingray and Saïd, 2014). We explore both issues for a simple but classical configuration where uncertainties in projections are composed of two single sources: model uncertainty and internal climate variability. The bias in model uncertainty estimates is explored from theoretical expressions of unbiased estimators developed for both ANOVA approaches. The robustness of uncertainty estimates is explored for multiple synthetic ensembles of time series projections generated with MonteCarlo simulations. For both ANOVA approaches, when the empirical variance of climate responses is used to estimate model uncertainty, the bias is always positive. It can be especially high with STANOVA. In the most critical configurations, when the number of members available for each modeling chain is small (< 3) and when internal variability explains most of total uncertainty variance (75% or more), the overestimation is higher than 100% of the true model uncertainty variance. The bias can be considerably reduced with a time series ANOVA approach, owing to the multiple time steps accounted for. The longer the transient time period used for the analysis, the larger the reduction. When a quasi-ergodic ANOVA approach is applied to decadal data for the whole 1980-2100 period, the bias is reduced by a factor 2.5 to 20 depending on the projection lead time. In all cases, the bias is likely to be not negligible for a large number of climate impact studies resulting in a likely large overestimation of the contribution of model uncertainty to total variance. For both approaches, the robustness of all uncertainty estimates is higher when more members are available, when internal variability is smaller and/or the response-to-uncertainty ratio is higher. QEANOVA estimates are much more robust than STANOVA ones: QEANOVA simulated confidence intervals are roughly 3 to 5 times smaller than STANOVA ones. Excepted for STANOVA when less than 3 members is available, the robustness is rather high for total uncertainty and moderate for internal variability estimates. For model uncertainty or response-to-uncertainty ratio estimates, the robustness is conversely low for QEANOVA to very low for STANOVA. In the most critical configurations (small number of member, large internal variability), large over- or underestimation of uncertainty components is very thus likely. To propose relevant uncertainty analyses and avoid misleading interpretations, estimates of uncertainty components should be therefore bias corrected and ideally come with estimates of their robustness. This work is part of the COMPLEX Project (European Collaborative Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/). Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty components in a multimodel multireplicate ensemble of climate projections. J.Climate. doi:10.1175/JCLI-D-13-00629.1 Hingray, B., Blanchet, J. (revision) Unbiased estimators for uncertainty components in transient climate projections. J. Climate Hingray, B., Blanchet, J., Vidal, J.P. (revision) Robustness of uncertainty components estimates in climate projections. J.Climate

  1. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models

    USGS Publications Warehouse

    McGuire, A.D.; Sitch, S.; Clein, Joy S.; Dargaville, R.; Esser, G.; Foley, J.; Heimann, Martin; Joos, F.; Kaplan, J.; Kicklighter, D.W.; Meier, R.A.; Melillo, J.M.; Moore, B.; Prentice, I.C.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Tian, H.; Williams, L.J.; Wittenberg, U.

    2001-01-01

    The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The next steps for improving the process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO2 and climate, (2) improvements in the data sets used to drive the models so that they incorporate the timing, extent, and types of major disturbances, (3) the enhancement of the models so that they consider major crop types and management schemes, (4) development of data sets that identify the spatial extent of major crop types and management schemes through time, and (5) the consideration of the effects of anthropogenic nitrogen deposition. The evaluation of the performance of the models in the context of a more complete consideration of the factors influencing historical terrestrial carbon dynamics is important for reducing uncertainties in representing the role of terrestrial ecosystems in future projections of the Earth system.

  2. Pollen-Based Inverse Modelling versus Data Assimilation, two Different Ways to Consider Priors in Paleoclimate Reconstruction: Application to the Mediterranean Holocene

    NASA Astrophysics Data System (ADS)

    Guiot, J.

    2017-12-01

    In the last decades, climate reconstruction has much evolved. A important step has been passed with inverse modelling approach proposed by Guiot et al (2000). It is based on appropriate algorithms in the frame of the Bayesian statistical theory to estimate the inputs of a vegetation model when the outputs are known. The inputs are the climate variables that we want to reconstruct and the outputs are vegetation characteristics, which can be compared to pollen data. The Bayesian framework consists in defining prior distribution of the wanted climate variables and in using data and a model to estimate posterior probability distribution. The main interest of the method is the possibility to set different values of exogenous variables as the atmospheric CO2 concentration. The fact that the CO2 concentration has an influence on the photosynthesis and that its level is different between the calibration period (the 20th century) and the past, there is an important risk of biases on the reconstructions. After that initial paper, numerous papers have been published showing the interested of the method. In that approach, the prior distribution is fixed by educated guess of by using complementary information on the expected climate (other proxies or other records). In the data assimilation approach, the prior distribution is provided by a climate model. The use of a vegetation model together with proxy data, enable to calculate posterior distributions. Data assimilation consists in constraining climate model to reproduce estimates relatively close to the data, taking into account the respective errors of the data and of the climate model (Dubinkina et al, 2011). We compare both approaches using pollen data for the Holocene from the Mediterranean. Pollen data have been extracted from the European Pollen Database. The earth system model, LOVECLIM, is run to simulate Holocene climate with appropriate boundary conditions and realistic forcing. Simulated climate variables (temperature, precipitation and sunshine) are used as the forcing parameters to a vegetation model, BIOME4, that calculates the equilibrium distribution of vegetation types and associated phenological, hydrological and biogeochemical properties. BIOME4 output, constrained with the pollen observations, are off-line coupled using a particle filter technique.

  3. Solar Variability in the Context of Other Climate Forcing Mechanisms

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    1999-01-01

    I compare and contrast climate forcings due to solar variability with climate forcings due to other mechanisms of climate change, interpretation of the role of the sun in climate change depends upon climate sensitivity and upon the net forcing by other climate change mechanisms. Among the potential indirect climate forcings due to solar variability, only that due to solar cycle induced ozone changes has been well quantified. There is evidence that the sun has been a significant player in past climate change on decadal to century time scales, and that it has the potential to contribute to climate change in the 21st century.

  4. Does an understanding of ecosystems responses to rainfall pulses improve predictions of responses of drylands to climate change?

    USDA-ARS?s Scientific Manuscript database

    Drylands will experience more intense and frequent droughts and floods. Ten-year field experiments manipulating the amount and variability of precipitation suggest that we cannot predict responses of drylands to climate change based on pulse experimentation. Long-term drought experiments showed no e...

  5. Simulating forage crop production in a northern climate with the Integrated Farm System Model

    USDA-ARS?s Scientific Manuscript database

    Whole-farm simulation models are useful tools for evaluating the effect of management practices and climate variability on the agro-environmental and economic performance of farms. A few process-based farm-scale models have been developed, but none have been evaluated in a northern region with a sho...

  6. Development of a drought forecasting model for the Asia-Pacific region using remote sensing and climate data: Focusing on Indonesia

    NASA Astrophysics Data System (ADS)

    Rhee, Jinyoung; Kim, Gayoung; Im, Jungho

    2017-04-01

    Three regions of Indonesia with different rainfall characteristics were chosen to develop drought forecast models based on machine learning. The 6-month Standardized Precipitation Index (SPI6) was selected as the target variable. The models' forecast skill was compared to the skill of long-range climate forecast models in terms of drought accuracy and regression mean absolute error (MAE). Indonesian droughts are known to be related to El Nino Southern Oscillation (ENSO) variability despite of regional differences as well as monsoon, local sea surface temperature (SST), other large-scale atmosphere-ocean interactions such as Indian Ocean Dipole (IOD) and Southern Pacific Convergence Zone (SPCZ), and local factors including topography and elevation. Machine learning models are thus to enhance drought forecast skill by combining local and remote SST and remote sensing information reflecting initial drought conditions to the long-range climate forecast model results. A total of 126 machine learning models were developed for the three regions of West Java (JB), West Sumatra (SB), and Gorontalo (GO) and six long-range climate forecast models of MSC_CanCM3, MSC_CanCM4, NCEP, NASA, PNU, POAMA as well as one climatology model based on remote sensing precipitation data, and 1 to 6-month lead times. When compared the results between the machine learning models and the long-range climate forecast models, West Java and Gorontalo regions showed similar characteristics in terms of drought accuracy. Drought accuracy of the long-range climate forecast models were generally higher than the machine learning models with short lead times but the opposite appeared for longer lead times. For West Sumatra, however, the machine learning models and the long-range climate forecast models showed similar drought accuracy. The machine learning models showed smaller regression errors for all three regions especially with longer lead times. Among the three regions, the machine learning models developed for Gorontalo showed the highest drought accuracy and the lowest regression error. West Java showed higher drought accuracy compared to West Sumatra, while West Sumatra showed lower regression error compared to West Java. The lower error in West Sumatra may be because of the smaller sample size used for training and evaluation for the region. Regional differences of forecast skill are determined by the effect of ENSO and the following forecast skill of the long-range climate forecast models. While shown somewhat high in West Sumatra, relative importance of remote sensing variables was mostly low in most cases. High importance of the variables based on long-range climate forecast models indicates that the forecast skill of the machine learning models are mostly determined by the forecast skill of the climate models.

  7. The impact of anthropogenic climate change on wildfire across western US forests

    NASA Astrophysics Data System (ADS)

    Williams, P.; Abatzoglou, J. T.

    2016-12-01

    Increased forest fire activity across the western United States (US) in recent decades has contributed to widespread forest mortality, carbon emissions, periods of degraded air quality, and substantial fire suppression expenditures. The increase in forest fire activity has likely been enabled by a number of factors including the legacy of fire suppression and human settlement, changes in suppression policies, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western US. Anthropogenic increases in temperature and vapor pressure deficit have significantly enhanced fuel aridity across western US forests over the past several decades. Comparing observational climate records to records recalculated after removal of modeled anthropogenic trends, we find that anthropogenic climate change accounted for approximately 55% of observed increases in the eight-metric mean fuel aridity during 1979-2015 across western US forests. This implicates anthropogenic climate change as an important driver of observed increases in fuel aridity, and also highlights the importance of natural multi-decadal climate variability in influencing trends in forest fire potential on the timescales of human lives. Based on a very strong (R2 = 0.76) and mechanistically reasonable relationship between interannual variability in the eight-metric mean fuel aridity and forest-fire area in the western US, we estimate that anthropogenic increases in fuel aridity contributed to an additional 4.2 million ha (95% confidence range: 2.7-6.5 million ha) of forest fire area during 1984-2015, nearly doubling the total forest fire area expected in the absence of anthropogenic climate change. The relationship between annual forest fire area and fuel aridity is exponential and the proportion of total forest area burned in a given year has grown rapidly over the past 32 years. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a chronic driver of increased forest fire activity and should continue to do so where fuels are not limiting.

  8. Global distribution of carbon turnover times in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Carvalhais, Nuno; Forkel, Matthias; Khomik, Myroslava; Bellarby, Jessica; Jung, Martin; Migliavacca, Mirco; Mu, Mingquan; Saatchi, Sassan; Santoro, Maurizio; Thurner, Martin; Weber, Ulrich; Ahrens, Bernhard; Beer, Christian; Cescatti, Alessandro; Randerson, James T.; Reichstein, Markus

    2015-04-01

    The response of the carbon cycle in terrestrial ecosystems to climate variability remains one of the largest uncertainties affecting future projections of climate change. This feedback between the terrestrial carbon cycle and climate is partly determined by the response of carbon uptake and by changes in the residence time of carbon in land ecosystems, which depend on climate, soil, and vegetation type. Thus, it is of foremost importance to quantify the turnover times of carbon in terrestrial ecosystems and its spatial co-variability with climate. Here, we develop a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times (τ) to investigate its co-variation with climate at global scale. Assuming a balance between uptake (gross primary production, GPP) and emission fluxes, τ can be defined as the ratio between the total stock (C_total) and the output or input fluxes (GPP). The estimation of vegetation (C_veg) stocks relies on new remote sensing-based estimates from Saatchi et al (2011) and Thurner et al (2014), while soil carbon stocks (C_soil) are estimated based on state of the art global (Harmonized World Soil Database) and regional (Northern Circumpolar Soil Carbon Database) datasets. The uptake flux estimates are based on global observation-based fields of GPP (Jung et al., 2011). Globally, we find an overall mean global carbon turnover time of 23-4+7 years (95% confidence interval). A strong spatial variability globally is also observed, from shorter residence times in equatorial regions to longer periods at latitudes north of 75°N (mean τ of 15 and 255 years, respectively). The observed latitudinal pattern reflect the clear dependencies on temperature, showing increases from the equator to the poles, which is consistent with our current understanding of temperature controls on ecosystem dynamics. However, long turnover times are also observed in semi-arid and forest-herbaceous transition regions. Furthermore, based on a local correlation analysis, our results reveal a similarly strong association between τ and precipitation. A further analysis of carbon turnover times as simulated by state-of-the-art coupled climate carbon-cycle models from the CMIP5 experiments reveals wide variations between models and a tendency to underestimate the global τ by 36%. The latitudinal patterns correlate significantly with the observation-based patterns. However, the models show stronger associations between τ and temperature than the observation-based estimates. In general, the stronger relationship between τ and precipitation is not reproduced and the modeled turnover times are significantly faster in many semi-arid regions. Ultimately, these results suggest a strong role of the hydrological cycle in the carbon cycle-climate interactions, which is not currently reproduced by Earth system models.

  9. Impacts of Climate Change/Variability and Human Activities on Contemporary Vegetation Productivity across Africa

    NASA Astrophysics Data System (ADS)

    Ugbaje, S. U.; Odeh, I. A.; Bishop, T.

    2015-12-01

    Vegetation productivity is increasingly being impacted upon by climate change/variability and anthropogenic activities, especially in developing countries, where many livelihoods depend on the natural resource base. Despite these impacts, the individual and combined roles of climate and anthropogenic factors on vegetation dynamics have rarely been quantified in many ecosystems and regions of the world. This paper analyzes recent trend in vegetation productivity across Africa and quantified the relative roles of climate change/variability and human activities in driving this trend over 2000-2014 using net primary productivity (NPP) as an indicator. The relative roles of these factors to vegetation productivity change were quantified by comparing the trend slope (p<0.1) and total change in interannual actual NPP (NPPA), potential NPP (NPPP), and human appropriated NPP (NPPH). NPP significantly increased across Africa relative to NPP decline, though the extent of NPP decline is also quite appreciable. Whereas estimated NPP declined by 207 Tg C over 140 X 104 km of land area, vegetation productivity was estimated to improve by 1415 Tg C over 786 X 104 km of land area. NPP improvement is largely concentrated in equatorial and northern hemispheric Africa, while subequatorial Africa exhibited the most NPP decline. Generally, anthropogenic activities dominated climate change/variability in improving or degrading vegetation productivity. Of the estimated total NPP gained over the study period, 32.6, 8.8, and 58.6 % were due to individual human, climate and combined impacts respectively. The contributions of the factors to NPP decline in the same order are: 50.7, 16.0 and 33.3 %. The Central Africa region is where human activities had the greatest impact on NPP improvement; whereas the Sahel and the coastlines of west northern Africa are areas associated with the greatest influence of climate-driven NPP gain. Areas with humans dominating NPP degradation include eastern Angola, western Zambia, and Liberia; whereas climate-driven NPP loss is pronounced in Zambia and Mozambique. Results from this study indicate that, compared to climate change/variability, contemporary anthropogenic activities are contributing more to the decline of Africa's vegetation productivity than to vegetation improvement.

  10. Flexible stocking as a strategy for enhancing ranch profitability in the face of a changing and variable climate

    USDA-ARS?s Scientific Manuscript database

    Predicted climate change impacts include increased weather variability and increased occurrences of extreme events such as drought. Such climate changes potentially affect cattle performance as well as pasture and range productivity. These climate induced risks are often coupled with variable market...

  11. Climate-based models for pulsed resources improve predictability of consumer population dynamics: outbreaks of house mice in forest ecosystems.

    PubMed

    Holland, E Penelope; James, Alex; Ruscoe, Wendy A; Pech, Roger P; Byrom, Andrea E

    2015-01-01

    Accurate predictions of the timing and magnitude of consumer responses to episodic seeding events (masts) are important for understanding ecosystem dynamics and for managing outbreaks of invasive species generated by masts. While models relating consumer populations to resource fluctuations have been developed successfully for a range of natural and modified ecosystems, a critical gap that needs addressing is better prediction of resource pulses. A recent model used change in summer temperature from one year to the next (ΔT) for predicting masts for forest and grassland plants in New Zealand. We extend this climate-based method in the framework of a model for consumer-resource dynamics to predict invasive house mouse (Mus musculus) outbreaks in forest ecosystems. Compared with previous mast models based on absolute temperature, the ΔT method for predicting masts resulted in an improved model for mouse population dynamics. There was also a threshold effect of ΔT on the likelihood of an outbreak occurring. The improved climate-based method for predicting resource pulses and consumer responses provides a straightforward rule of thumb for determining, with one year's advance warning, whether management intervention might be required in invaded ecosystems. The approach could be applied to consumer-resource systems worldwide where climatic variables are used to model the size and duration of resource pulses, and may have particular relevance for ecosystems where global change scenarios predict increased variability in climatic events.

  12. Potential of satellite-derived ecosystem functional attributes to anticipate species range shifts

    NASA Astrophysics Data System (ADS)

    Alcaraz-Segura, Domingo; Lomba, Angela; Sousa-Silva, Rita; Nieto-Lugilde, Diego; Alves, Paulo; Georges, Damien; Vicente, Joana R.; Honrado, João P.

    2017-05-01

    In a world facing rapid environmental changes, anticipating their impacts on biodiversity is of utmost relevance. Remotely-sensed Ecosystem Functional Attributes (EFAs) are promising predictors for Species Distribution Models (SDMs) by offering an early and integrative response of vegetation performance to environmental drivers. Species of high conservation concern would benefit the most from a better ability to anticipate changes in habitat suitability. Here we illustrate how yearly projections from SDMs based on EFAs could reveal short-term changes in potential habitat suitability, anticipating mid-term shifts predicted by climate-change-scenario models. We fitted two sets of SDMs for 41 plant species of conservation concern in the Iberian Peninsula: one calibrated with climate variables for baseline conditions and projected under two climate-change-scenarios (future conditions); and the other calibrated with EFAs for 2001 and projected annually from 2001 to 2013. Range shifts predicted by climate-based models for future conditions were compared to the 2001-2013 trends from EFAs-based models. Projections of EFAs-based models estimated changes (mostly contractions) in habitat suitability that anticipated, for the majority (up to 64%) of species, the mid-term shifts projected by traditional climate-change-scenario forecasting, and showed greater agreement with the business-as-usual scenario than with the sustainable-development one. This study shows how satellite-derived EFAs can be used as meaningful essential biodiversity variables in SDMs to provide early-warnings of range shifts and predictions of short-term fluctuations in suitable conditions for multiple species.

  13. Climate suitability for European ticks: assessing species distribution models against null models and projection under AR5 climate.

    PubMed

    Williams, Hefin Wyn; Cross, Dónall Eoin; Crump, Heather Louise; Drost, Cornelis Jan; Thomas, Christopher James

    2015-08-28

    There is increasing evidence that the geographic distribution of tick species is changing. Whilst correlative Species Distribution Models (SDMs) have been used to predict areas that are potentially suitable for ticks, models have often been assessed without due consideration for spatial patterns in the data that may inflate the influence of predictor variables on species distributions. This study used null models to rigorously evaluate the role of climate and the potential for climate change to affect future climate suitability for eight European tick species, including several important disease vectors. We undertook a comparative assessment of the performance of Maxent and Mahalanobis Distance SDMs based on observed data against those of null models based on null species distributions or null climate data. This enabled the identification of species whose distributions demonstrate a significant association with climate variables. Latest generation (AR5) climate projections were subsequently used to project future climate suitability under four Representative Concentration Pathways (RCPs). Seven out of eight tick species exhibited strong climatic signals within their observed distributions. Future projections intimate varying degrees of northward shift in climate suitability for these tick species, with the greatest shifts forecasted under the most extreme RCPs. Despite the high performance measure obtained for the observed model of Hyalomma lusitanicum, it did not perform significantly better than null models; this may result from the effects of non-climatic factors on its distribution. By comparing observed SDMs with null models, our results allow confidence that we have identified climate signals in tick distributions that are not simply a consequence of spatial patterns in the data. Observed climate-driven SDMs for seven out of eight species performed significantly better than null models, demonstrating the vulnerability of these tick species to the effects of climate change in the future.

  14. The subtle role of climate change on population genetic structure in Canada lynx.

    PubMed

    Row, Jeffrey R; Wilson, Paul J; Gomez, Celine; Koen, Erin L; Bowman, Jeff; Thornton, Daniel; Murray, Dennis L

    2014-07-01

    Anthropogenically driven climatic change is expected to reshape global patterns of species distribution and abundance. Given recent links between genetic variation and environmental patterns, climate change may similarly impact genetic population structure, but we lack information on the spatial and mechanistic underpinnings of genetic-climate associations. Here, we show that current genetic variability of Canada lynx (Lynx canadensis) is strongly correlated with a winter climate gradient (i.e. increasing snow depth and winter precipitation from west-to-east) across the Pacific-North American (PNO) to North Atlantic Oscillation (NAO) climatic systems. This relationship was stronger than isolation by distance and not explained by landscape variables or changes in abundance. Thus, these patterns suggest that individuals restricted dispersal across the climate boundary, likely in the absence of changes in habitat quality. We propose habitat imprinting on snow conditions as one possible explanation for this unusual phenomenon. Coupling historical climate data with future projections, we also found increasingly diverging snow conditions between the two climate systems. Based on genetic simulations using projected climate data (2041-2070), we predicted that this divergence could lead to a threefold increase in genetic differentiation, potentially leading to isolated east-west populations of lynx in North America. Our results imply that subtle genetic structure can be governed by current climate and that substantive genetic differentiation and related ecological divergence may arise from changing climate patterns. © 2014 John Wiley & Sons Ltd.

  15. A Fiji multi-coral δ18O composite approach to obtaining a more accurate reconstruction of the last two-centuries of the ocean-climate variability in the South Pacific Convergence Zone region

    NASA Astrophysics Data System (ADS)

    Dassié, Emilie P.; Linsley, Braddock K.; Corrège, Thierry; Wu, Henry C.; Lemley, Gavin M.; Howe, Steve; Cabioch, Guy

    2014-12-01

    The limited availability of oceanographic data in the tropical Pacific Ocean prior to the satellite era makes coral-based climate reconstructions a key tool for extending the instrumental record back in time, thereby providing a much needed test for climate models and projections. We have generated a unique regional network consisting of five Porites coral δ18O time series from different locations in the Fijian archipelago. Our results indicate that using a minimum of three Porites coral δ18O records from Fiji is statistically sufficient to obtain a reliable signal for climate reconstruction, and that application of an approach used in tree ring studies is a suitable tool to determine this number. The coral δ18O composite indicates that while sea surface temperature (SST) variability is the primary driver of seasonal δ18O variability in these Fiji corals, annual average coral δ18O is more closely correlated to sea surface salinity (SSS) as previously reported. Our results highlight the importance of water mass advection in controlling Fiji coral δ18O and salinity variability at interannual and decadal time scales despite being located in the heavy rainfall region of the South Pacific Convergence Zone (SPCZ). The Fiji δ18O composite presents a secular freshening and warming trend since the 1850s coupled with changes in both interannual (IA) and decadal/interdecadal (D/I) variance. The changes in IA and D/I variance suggest a re-organization of climatic variability in the SPCZ region beginning in the late 1800s to period of a more dominant interannual variability, which could correspond to a southeast expansion of the SPCZ.

  16. Old World megadroughts and pluvials during the Common Era.

    PubMed

    Cook, Edward R; Seager, Richard; Kushnir, Yochanan; Briffa, Keith R; Büntgen, Ulf; Frank, David; Krusic, Paul J; Tegel, Willy; van der Schrier, Gerard; Andreu-Hayles, Laia; Baillie, Mike; Baittinger, Claudia; Bleicher, Niels; Bonde, Niels; Brown, David; Carrer, Marco; Cooper, Richard; Čufar, Katarina; Dittmar, Christoph; Esper, Jan; Griggs, Carol; Gunnarson, Björn; Günther, Björn; Gutierrez, Emilia; Haneca, Kristof; Helama, Samuli; Herzig, Franz; Heussner, Karl-Uwe; Hofmann, Jutta; Janda, Pavel; Kontic, Raymond; Köse, Nesibe; Kyncl, Tomáš; Levanič, Tom; Linderholm, Hans; Manning, Sturt; Melvin, Thomas M; Miles, Daniel; Neuwirth, Burkhard; Nicolussi, Kurt; Nola, Paola; Panayotov, Momchil; Popa, Ionel; Rothe, Andreas; Seftigen, Kristina; Seim, Andrea; Svarva, Helene; Svoboda, Miroslav; Thun, Terje; Timonen, Mauri; Touchan, Ramzi; Trotsiuk, Volodymyr; Trouet, Valerie; Walder, Felix; Ważny, Tomasz; Wilson, Rob; Zang, Christian

    2015-11-01

    Climate model projections suggest widespread drying in the Mediterranean Basin and wetting in Fennoscandia in the coming decades largely as a consequence of greenhouse gas forcing of climate. To place these and other "Old World" climate projections into historical perspective based on more complete estimates of natural hydroclimatic variability, we have developed the "Old World Drought Atlas" (OWDA), a set of year-to-year maps of tree-ring reconstructed summer wetness and dryness over Europe and the Mediterranean Basin during the Common Era. The OWDA matches historical accounts of severe drought and wetness with a spatial completeness not previously available. In addition, megadroughts reconstructed over north-central Europe in the 11th and mid-15th centuries reinforce other evidence from North America and Asia that droughts were more severe, extensive, and prolonged over Northern Hemisphere land areas before the 20th century, with an inadequate understanding of their causes. The OWDA provides new data to determine the causes of Old World drought and wetness and attribute past climate variability to forced and/or internal variability.

  17. Old World megadroughts and pluvials during the Common Era

    PubMed Central

    Cook, Edward R.; Seager, Richard; Kushnir, Yochanan; Briffa, Keith R.; Büntgen, Ulf; Frank, David; Krusic, Paul J.; Tegel, Willy; van der Schrier, Gerard; Andreu-Hayles, Laia; Baillie, Mike; Baittinger, Claudia; Bleicher, Niels; Bonde, Niels; Brown, David; Carrer, Marco; Cooper, Richard; Čufar, Katarina; Dittmar, Christoph; Esper, Jan; Griggs, Carol; Gunnarson, Björn; Günther, Björn; Gutierrez, Emilia; Haneca, Kristof; Helama, Samuli; Herzig, Franz; Heussner, Karl-Uwe; Hofmann, Jutta; Janda, Pavel; Kontic, Raymond; Köse, Nesibe; Kyncl, Tomáš; Levanič, Tom; Linderholm, Hans; Manning, Sturt; Melvin, Thomas M.; Miles, Daniel; Neuwirth, Burkhard; Nicolussi, Kurt; Nola, Paola; Panayotov, Momchil; Popa, Ionel; Rothe, Andreas; Seftigen, Kristina; Seim, Andrea; Svarva, Helene; Svoboda, Miroslav; Thun, Terje; Timonen, Mauri; Touchan, Ramzi; Trotsiuk, Volodymyr; Trouet, Valerie; Walder, Felix; Ważny, Tomasz; Wilson, Rob; Zang, Christian

    2015-01-01

    Climate model projections suggest widespread drying in the Mediterranean Basin and wetting in Fennoscandia in the coming decades largely as a consequence of greenhouse gas forcing of climate. To place these and other “Old World” climate projections into historical perspective based on more complete estimates of natural hydroclimatic variability, we have developed the “Old World Drought Atlas” (OWDA), a set of year-to-year maps of tree-ring reconstructed summer wetness and dryness over Europe and the Mediterranean Basin during the Common Era. The OWDA matches historical accounts of severe drought and wetness with a spatial completeness not previously available. In addition, megadroughts reconstructed over north-central Europe in the 11th and mid-15th centuries reinforce other evidence from North America and Asia that droughts were more severe, extensive, and prolonged over Northern Hemisphere land areas before the 20th century, with an inadequate understanding of their causes. The OWDA provides new data to determine the causes of Old World drought and wetness and attribute past climate variability to forced and/or internal variability. PMID:26601136

  18. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions

    NASA Astrophysics Data System (ADS)

    Beer, Christian; Porada, Philipp; Ekici, Altug; Brakebusch, Matthias

    2018-03-01

    Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i) when taking into account future changes in short-term variability of meteorological variables and (ii) when representing dynamic snow and lichen and bryophyte functions in land surface models.

  19. Predicting climate effects on Pacific sardine

    PubMed Central

    Deyle, Ethan R.; Fogarty, Michael; Hsieh, Chih-hao; Kaufman, Les; MacCall, Alec D.; Munch, Stephan B.; Perretti, Charles T.; Ye, Hao; Sugihara, George

    2013-01-01

    For many marine species and habitats, climate change and overfishing present a double threat. To manage marine resources effectively, it is necessary to adapt management to changes in the physical environment. Simple relationships between environmental conditions and fish abundance have long been used in both fisheries and fishery management. In many cases, however, physical, biological, and human variables feed back on each other. For these systems, associations between variables can change as the system evolves in time. This can obscure relationships between population dynamics and environmental variability, undermining our ability to forecast changes in populations tied to physical processes. Here we present a methodology for identifying physical forcing variables based on nonlinear forecasting and show how the method provides a predictive understanding of the influence of physical forcing on Pacific sardine. PMID:23536299

  20. Variability in Temperature-Related Mortality Projections under Climate Change

    PubMed Central

    Benmarhnia, Tarik; Sottile, Marie-France; Plante, Céline; Brand, Allan; Casati, Barbara; Fournier, Michel

    2014-01-01

    Background: Most studies that have assessed impacts on mortality of future temperature increases have relied on a small number of simulations and have not addressed the variability and sources of uncertainty in their mortality projections. Objectives: We assessed the variability of temperature projections and dependent future mortality distributions, using a large panel of temperature simulations based on different climate models and emission scenarios. Methods: We used historical data from 1990 through 2007 for Montreal, Quebec, Canada, and Poisson regression models to estimate relative risks (RR) for daily nonaccidental mortality in association with three different daily temperature metrics (mean, minimum, and maximum temperature) during June through August. To estimate future numbers of deaths attributable to ambient temperatures and the uncertainty of the estimates, we used 32 different simulations of daily temperatures for June–August 2020–2037 derived from three global climate models (GCMs) and a Canadian regional climate model with three sets of RRs (one based on the observed historical data, and two on bootstrap samples that generated the 95% CI of the attributable number (AN) of deaths). We then used analysis of covariance to evaluate the influence of the simulation, the projected year, and the sets of RRs used to derive the attributable numbers of deaths. Results: We found that < 1% of the variability in the distributions of simulated temperature for June–August of 2020–2037 was explained by differences among the simulations. Estimated ANs for 2020–2037 ranged from 34 to 174 per summer (i.e., June–August). Most of the variability in mortality projections (38%) was related to the temperature–mortality RR used to estimate the ANs. Conclusions: The choice of the RR estimate for the association between temperature and mortality may be important to reduce uncertainty in mortality projections. Citation: Benmarhnia T, Sottile MF, Plante C, Brand A, Casati B, Fournier M, Smargiassi A. 2014. Variability in temperature-related mortality projections under climate change. Environ Health Perspect 122:1293–1298; http://dx.doi.org/10.1289/ehp.1306954 PMID:25036003

  1. Estimation of Wild Fire Risk Area based on Climate and Maximum Entropy in Korean Peninsular

    NASA Astrophysics Data System (ADS)

    Kim, T.; Lim, C. H.; Song, C.; Lee, W. K.

    2015-12-01

    The number of forest fires and accompanying human injuries and physical damages has been increased by frequent drought. In this study, forest fire danger zone of Korea is estimated to predict and prepare for future forest fire hazard regions. The MaxEnt (Maximum Entropy) model is used to estimate the forest fire hazard region which estimates the probability distribution of the status. The MaxEnt model is primarily for the analysis of species distribution, but its applicability for various natural disasters is getting recognition. The detailed forest fire occurrence data collected by the MODIS for past 5 years (2010-2014) is used as occurrence data for the model. Also meteorology, topography, vegetation data are used as environmental variable. In particular, various meteorological variables are used to check impact of climate such as annual average temperature, annual precipitation, precipitation of dry season, annual effective humidity, effective humidity of dry season, aridity index. Consequently, the result was valid based on the AUC(Area Under the Curve) value (= 0.805) which is used to predict accuracy in the MaxEnt model. Also predicted forest fire locations were practically corresponded with the actual forest fire distribution map. Meteorological variables such as effective humidity showed the greatest contribution, and topography variables such as TWI (Topographic Wetness Index) and slope also contributed on the forest fire. As a result, the east coast and the south part of Korea peninsula were predicted to have high risk on the forest fire. In contrast, high-altitude mountain area and the west coast appeared to be safe with the forest fire. The result of this study is similar with former studies, which indicates high risks of forest fire in accessible area and reflects climatic characteristics of east and south part in dry season. To sum up, we estimated the forest fire hazard zone with existing forest fire locations and environment variables and had meaningful result with artificial and natural effect. It is expected to predict future forest fire risk with future climate variables as the climate changes.

  2. Timing of climate variability and grassland productivity

    PubMed Central

    Craine, Joseph M.; Nippert, Jesse B.; Elmore, Andrew J.; Skibbe, Adam M.; Hutchinson, Stacy L.; Brunsell, Nathaniel A.

    2012-01-01

    Future climates are forecast to include greater precipitation variability and more frequent heat waves, but the degree to which the timing of climate variability impacts ecosystems is uncertain. In a temperate, humid grassland, we examined the seasonal impacts of climate variability on 27 y of grass productivity. Drought and high-intensity precipitation reduced grass productivity only during a 110-d period, whereas high temperatures reduced productivity only during 25 d in July. The effects of drought and heat waves declined over the season and had no detectable impact on grass productivity in August. If these patterns are general across ecosystems, predictions of ecosystem response to climate change will have to account not only for the magnitude of climate variability but also for its timing. PMID:22331914

  3. The predicted CLARREO sampling error of the inter-annual SW variability

    NASA Astrophysics Data System (ADS)

    Doelling, D. R.; Keyes, D. F.; Nguyen, C.; Macdonnell, D.; Young, D. F.

    2009-12-01

    The NRC Decadal Survey has called for SI traceability of long-term hyper-spectral flux measurements in order to monitor climate variability. This mission is called the Climate Absolute Radiance and Refractivity Observatory (CLARREO) and is currently defining its mission requirements. The requirements are focused on the ability to measure decadal change of key climate variables at very high accuracy. The accuracy goals are set using anticipated climate change magnitudes, but the accuracy achieved for any given climate variable must take into account the temporal and spatial sampling errors based on satellite orbits and calibration accuracy. The time period to detect a significant trend in the CLARREO record depends on the magnitude of the sampling calibration errors relative to the current inter-annual variability. The largest uncertainty in climate feedbacks remains the effect of changing clouds on planetary energy balance. Some regions on earth have strong diurnal cycles, such as maritime stratus and afternoon land convection; other regions have strong seasonal cycles, such as the monsoon. However, when monitoring inter-annual variability these cycles are only important if the strength of these cycles vary on decadal time scales. This study will attempt to determine the best satellite constellations to reduce sampling error and to compare the error with the current inter-annual variability signal to ensure the viability of the mission. The study will incorporate Clouds and the Earth's Radiant Energy System (CERES) (Monthly TOA/Surface Averages) SRBAVG product TOA LW and SW climate quality fluxes. The fluxes are derived by combining Terra (10:30 local equator crossing time) CERES fluxes with 3-hourly 5-geostationary satellite estimated broadband fluxes, which are normalized using the CERES fluxes, to complete the diurnal cycle. These fluxes were saved hourly during processing and considered the truth dataset. 90°, 83° and 74° inclination precessionary orbits as well as sun-synchronous orbits will be evaluated. This study will focus on the SW radiance, since these low earth orbits are only in daylight for half the orbit. The precessionary orbits were designed to cycle through all solar zenith angles over the course of a year. The inter-annual variability sampling error will be stratified globally/zonally and annually/seasonally and compared with the corresponding truth anomalies.

  4. Selection of climate change scenario data for impact modelling.

    PubMed

    Sloth Madsen, M; Maule, C Fox; MacKellar, N; Olesen, J E; Christensen, J Hesselbjerg

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented in this paper, applied to relative humidity, but it could be adopted to other variables if needed.

  5. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity.

    PubMed

    Matías, Luis; Linares, Juan C; Sánchez-Miranda, Ángela; Jump, Alistair S

    2017-10-01

    Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of a species' geographical distribution, where differences in growth or population dynamics may result in range expansions or contractions. Understanding population responses to different climatic drivers along wide latitudinal and altitudinal gradients is necessary in order to gain a better understanding of plant responses to ongoing increases in global temperature and drought severity. We selected Scots pine (Pinus sylvestris L.) as a model species to explore growth responses to climatic variability (seasonal temperature and precipitation) over the last century through dendrochronological methods. We developed linear models based on age, climate and previous growth to forecast growth trends up to year 2100 using climatic predictions. Populations were located at the treeline across a latitudinal gradient covering the northern, central and southernmost populations and across an altitudinal gradient at the southern edge of the distribution (treeline, medium and lower elevations). Radial growth was maximal at medium altitude and treeline of the southernmost populations. Temperature was the main factor controlling growth variability along the gradients, although the timing and strength of climatic variables affecting growth shifted with latitude and altitude. Predictive models forecast a general increase in Scots pine growth at treeline across the latitudinal distribution, with southern populations increasing growth up to year 2050, when it stabilizes. The highest responsiveness appeared at central latitude, and moderate growth increase is projected at the northern limit. Contrastingly, the model forecasted growth declines at lowland-southern populations, suggesting an upslope range displacement over the coming decades. Our results give insight into the geographical responses of tree species to climate change and demonstrate the importance of incorporating biogeographical variability into predictive models for an accurate prediction of species dynamics as climate changes. © 2017 John Wiley & Sons Ltd.

  6. Spatial heterogeneity in ecologically important climate variables at coarse and fine scales in a high-snow mountain landscape.

    PubMed

    Ford, Kevin R; Ettinger, Ailene K; Lundquist, Jessica D; Raleigh, Mark S; Hille Ris Lambers, Janneke

    2013-01-01

    Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change.

  7. Spatial Heterogeneity in Ecologically Important Climate Variables at Coarse and Fine Scales in a High-Snow Mountain Landscape

    PubMed Central

    Ford, Kevin R.; Ettinger, Ailene K.; Lundquist, Jessica D.; Raleigh, Mark S.; Hille Ris Lambers, Janneke

    2013-01-01

    Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change. PMID:23762277

  8. Low-resolution Australasian palaeoclimate records of the last 2000 years

    NASA Astrophysics Data System (ADS)

    Dixon, Bronwyn C.; Tyler, Jonathan J.; Lorrey, Andrew M.; Goodwin, Ian D.; Gergis, Joëlle; Drysdale, Russell N.

    2017-10-01

    Non-annually resolved palaeoclimate records in the Australasian region were compiled to facilitate investigations of decadal to centennial climate variability over the past 2000 years. A total of 675 lake and wetland, geomorphic, marine, and speleothem records were identified. The majority of records are located near population centres in southeast Australia, in New Zealand, and across the maritime continent, and there are few records from the arid regions of central and western Australia. Each record was assessed against a set of a priori criteria based on temporal resolution, record length, dating methods, and confidence in the proxy-climate relationship over the Common Era. A subset of 22 records met the criteria and were endorsed for subsequent analyses. Chronological uncertainty was the primary reason why records did not meet the selection criteria. New chronologies based on Bayesian techniques were constructed for the high-quality subset to ensure a consistent approach to age modelling and quantification of age uncertainties. The primary reasons for differences between published and reconstructed age-depth models were the consideration of the non-singular distribution of ages in calibrated 14C dates and the use of estimated autocorrelation between sampled depths as a constraint for changes in accumulation rate. Existing proxies and reconstruction techniques that successfully capture climate variability in the region show potential to address spatial gaps and expand the range of climate variables covering the last 2000 years in the Australasian region. Future palaeoclimate research and records in Australasia could be greatly improved through three main actions: (i) greater data availability through the public archiving of published records; (ii) thorough characterisation of proxy-climate relationships through site monitoring and climate sensitivity tests; and (iii) improvement of chronologies through core-top dating, inclusion of tephra layers where possible, and increased date density during the Common Era.

  9. Bioclimatic Classification of Northeast Asia for climate change response

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Jeon, S. W.; Lim, C. H.

    2016-12-01

    As climate change has been getting worse, we should monitor the change of biodiversity, and distribution of species to handle the crisis and take advantage of climate change. The development of bioclimatic map which classifies land into homogenous zones by similar environment properties is the first step to establish a strategy. Statistically derived classifications of land provide useful spatial frameworks to support ecosystem research, monitoring and policy decisions. Many countries are trying to make this kind of map and actively utilize it to ecosystem conservation and management. However, the Northeast Asia including North Korea doesn't have detailed environmental information, and has not built environmental classification map. Therefore, this study presents a bioclimatic map of Northeast Asia based on statistical clustering of bioclimate data. Bioclim data ver1.4 which provided by WorldClim were considered for inclusion in a model. Eight of the most relevant climate variables were selected by correlation analysis, based on previous studies. Principal Components Analysis (PCA) was used to explain 86% of the variation into three independent dimensions, which were subsequently clustered using an ISODATA clustering. The bioclimatic zone of Northeast Asia could consist of 29, 35, and 50 zones. This bioclimatic map has a 30' resolution. To assess the accuracy, the correlation coefficient was calculated between the first principal component values of the classification variables and the vegetation index, Gross Primary Production (GPP). It shows about 0.5 Pearson correlation coefficient. This study constructed Northeast Asia bioclimatic map by statistical method with high resolution, but in order to better reflect the realities, the variety of climate variables should be considered. Also, further studies should do more quantitative and qualitative validation in various ways. Then, this could be used more effectively to support decision making on climate change adaptation.

  10. Spectral Kernel Approach to Study Radiative Response of Climate Variables and Interannual Variability of Reflected Solar Spectrum

    NASA Technical Reports Server (NTRS)

    Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan

    2011-01-01

    The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.

  11. Assessment of Cropland Water and Nitrogen Balance from Climate Change in Korea Peninsular

    NASA Astrophysics Data System (ADS)

    Lim, C. H.; Song, C.; Kim, T.; Lee, W. K.; Jeon, S. W.

    2015-12-01

    If crop growth is based on cropland productivity, the changes are due to changes in water and nitrogen balance from climate. In this study, order to estimation the change in cropland water and nitrogen balance in Korea peninsular using meteorological data observed last 30 years(1984-2013y). And we used soil, topography and management data about cropland. So as to estimating water and nitrogen variables, we used to the GIS based EPIC model that is major crop model in agro-ecosystem modelling field. Among the much of water and nitrogen variables, we selected to evapotranspiration, runoff, precipitation, nitrification, N lost, N contents and denitrification for this analysis. This selected variables associate with cropland water and nitrogen balance.First result, we can found the water balance changes in Korea peninsular, especially South Korea better condition than North Korea. In North Korea, evapotranspiration and precipitation result were lower than South Korea, but runoff result was bigger than South Korea. And we got a result about nitrogen balance changes in Korea peninsular from climate. In spatially, South and North Korea showed to similar condition on nitrogen balance in whole period. But in temporally, showed negative trends as time goes on, it caused by climate change. Overall condition of water and nitrogen balance on last 30 years in Korea peninsular, South Korea showed better condition than North Korea. Water and nitrogen balance change means have to be changed on agriculture management action, such as irrigation and fertilizer. In future period, climate change will cause a large effect to cropland water and nitrogen balance in mid-latitude area, so we have to prepare the change of this field for wise adaptation by climate change.

  12. Impacts of climate change on the formation and stability of late Quaternary sand sheets and falling dunes, Black Mesa region, southern Colorado Plateau, USA

    USGS Publications Warehouse

    Ellwein, Amy L.; Mahan, Shannon; McFadden, Leslie D.

    2015-01-01

    Widely used predictive models of eolian system dynamics are typically based entirely on climatic variables and do not account for landscape complexity and geomorphic history. Climate-only assumptions fail to give accurate predictions of the dynamics of this and many other dune fields. A growing body of work suggests that eolian deposits in wind-driven semiarid climates may be more strongly related to increases in sediment supply than to increases in aridity.

  13. Climate Change Impact Assessment in Pacific North West Using Copula based Coupling of Temperature and Precipitation variables

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Rana, A.; Moradkhani, H.

    2014-12-01

    The multi downscaled-scenario products allow us to better assess the uncertainty of the changes/variations of precipitation and temperature in the current and future periods. Joint Probability distribution functions (PDFs), of both the climatic variables, might help better understand the interdependence of the two, and thus in-turn help in accessing the future with confidence. Using the joint distribution of temperature and precipitation is also of significant importance in hydrological applications and climate change studies. In the present study, we have used multi-modelled statistically downscaled-scenario ensemble of precipitation and temperature variables using 2 different statistically downscaled climate dataset. The datasets used are, 10 Global Climate Models (GCMs) downscaled products from CMIP5 daily dataset, namely, those from the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and from the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, leading to 2 ensemble time series from 20 GCM products. Thereafter the ensemble PDFs of both precipitation and temperature is evaluated for summer, winter, and yearly periods for all the 10 sub-basins across Columbia River Basin (CRB). Eventually, Copula is applied to establish the joint distribution of two variables enabling users to model the joint behavior of the variables with any level of correlation and dependency. Moreover, the probabilistic distribution helps remove the limitations on marginal distributions of variables in question. The joint distribution is then used to estimate the change trends of the joint precipitation and temperature in the current and future, along with estimation of the probabilities of the given change. Results have indicated towards varied change trends of the joint distribution of, summer, winter, and yearly time scale, respectively in all 10 sub-basins. Probabilities of changes, as estimated by the joint precipitation and temperature, will provide useful information/insights for hydrological and climate change predictions.

  14. Skillful prediction of northern climate provided by the ocean

    PubMed Central

    Årthun, Marius; Eldevik, Tor; Viste, Ellen; Drange, Helge; Furevik, Tore; Johnson, Helen L.; Keenlyside, Noel S.

    2017-01-01

    It is commonly understood that a potential for skillful climate prediction resides in the ocean. It nevertheless remains unresolved to what extent variable ocean heat is imprinted on the atmosphere to realize its predictive potential over land. Here we assess from observations whether anomalous heat in the Gulf Stream's northern extension provides predictability of northwestern European and Arctic climate. We show that variations in ocean temperature in the high latitude North Atlantic and Nordic Seas are reflected in the climate of northwestern Europe and in winter Arctic sea ice extent. Statistical regression models show that a significant part of northern climate variability thus can be skillfully predicted up to a decade in advance based on the state of the ocean. Particularly, we predict that Norwegian air temperature will decrease over the coming years, although staying above the long-term (1981–2010) average. Winter Arctic sea ice extent will remain low but with a general increase towards 2020. PMID:28631732

  15. Effects of climate change on soil moisture over China from 1960-2006

    USGS Publications Warehouse

    Zhu, Q.; Jiang, H.; Liu, J.

    2009-01-01

    Soil moisture is an important variable in the climate system and it has sensitive impact on the global climate. Obviously it is one of essential components in the climate change study. The Integrated Biosphere Simulator (IBIS) is used to evaluate the spatial and temporal patterns of soil moisture across China under the climate change conditions for the period 1960-2006. Results show that the model performed better in warm season than in cold season. Mean errors (ME) are within 10% for all the months and root mean squared errors (RMSE) are within 10% except winter season. The model captured the spatial variability higher than 50% in warm seasons. Trend analysis based on the Mann-Kendall method indicated that soil moisture in most area of China is decreased especially in the northern China. The areas with significant increasing trends in soil moisture mainly locate at northwestern China and small areas in southeastern China and eastern Tibet plateau. ?? 2009 IEEE.

  16. Glacial-Interglacial, Orbital and Millennial-Scale Climate Variability for the Last Glacial Cycle at Shackleton Site U1385 based on Dinoflagellate Cysts

    NASA Astrophysics Data System (ADS)

    Datema, M.

    2015-12-01

    The Shackleton Site (IODP Expedition 339 Site U1385), located off the West-Portuguese Margin, preserves a continuous high-fidelity record of millennial-scale climate variability for the last several glacial cycles (~1.4 Myr) that can be correlated precisely to patterns observed in polar ice cores. In addition, rapid delivery of terrestrial material to the deep-sea environment allows the correlation of these marine records to European terrestrial climate records. This unique marine-ice-terrestrial linkage makes the Shackleton Site the ideal reference section for studying Quaternary abrupt climate change. The main objective of studying Site U1385 is to establish a marine reference section of Pleistocene climate change. We generated (sub)millennial-scale (~600 year interval) dinoflagellate cyst (dinocyst) assemblage records from Shackleton Site U1385 (IODP Expedition 339) to reconstruct sea surface temperature (SST) and productivity/upwelling over the last 152 kyrs. In addition, our approach allows for detailed land-sea correlations, because we also counted assemblages of pollen and spores from higher plants. Dinocyst SST and upwelling proxies, as well as warm/cold pollen proxies from Site U1385 show glacial-interglacial, orbital and stadial-interstadial climate variability and correlate very well to Uk'37, planktic foraminifer δ18O and Ca/Ti proxies of previously drilled Shackleton Sites and Greenland Ice Core δ18O. The palynological proxies capture (almost) all Dansgaard-Oeschger events of the last glacial cycle, also before ~70 ka, where millennial-scale variability is overprinted by precession. We compare the performance and results of the palynology of Site U1385 to proxies of previously drilled Shackleton Sites and conclude that palynology strengthens the potential of this site to form a multi-proxy reference section for millennial scale climate variability across the Pleistocene-Holocene. Finally, we will present a long-term paleoceanographic perspective down to ~150 ka.

  17. Among-tree variability and feedback effects result in different growth responses to climate change at the upper treeline in the Swiss Alps.

    PubMed

    Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof

    2017-10-01

    Upper treeline ecotones are important life form boundaries and particularly sensitive to a warming climate. Changes in growth conditions at these ecotones have wide-ranging implications for the provision of ecosystem services in densely populated mountain regions like the European Alps. We quantify climate effects on short- and long-term tree growth responses, focusing on among-tree variability and potential feedback effects. Although among-tree variability is thought to be substantial, it has not been considered systematically yet in studies on growth-climate relationships. We compiled tree-ring data including almost 600 trees of major treeline species ( Larix decidua , Picea abies , Pinus cembra , and Pinus mugo ) from three climate regions of the Swiss Alps. We further acquired tree size distribution data using unmanned aerial vehicles. To account for among-tree variability, we employed information-theoretic model selections based on linear mixed-effects models (LMMs) with flexible choice of monthly temperature effects on growth. We isolated long-term trends in ring-width indices (RWI) in interaction with elevation. The LMMs revealed substantial amounts of previously unquantified among-tree variability, indicating different strategies of single trees regarding when and to what extent to invest assimilates into growth. Furthermore, the LMMs indicated strongly positive temperature effects on growth during short summer periods across all species, and significant contributions of fall ( L. decidua ) and current year's spring ( L. decidua , P. abies ). In the longer term, all species showed consistently positive RWI trends at highest elevations, but different patterns with decreasing elevation. L. decidua exhibited even negative RWI trends compared to the highest treeline sites, whereas P. abies , P. cembra , and P. mugo showed steeper or flatter trends with decreasing elevation. This does not only reflect effects of ameliorated climate conditions on tree growth over time, but also reveals first signs of long-suspected negative and positive feedback of climate change on stand dynamics at treeline.

  18. Climate Factors as Important Determinants of Dengue Incidence in Curaçao.

    PubMed

    Limper, M; Thai, K T D; Gerstenbluth, I; Osterhaus, A D M E; Duits, A J; van Gorp, E C M

    2016-03-01

    Macro- and microclimates may have variable impact on dengue incidence in different settings. We estimated the short-term impact and delayed effects of climate variables on dengue morbidity in Curaçao. Monthly dengue incidence data from 1999 to 2009 were included to estimate the short-term influences of climate variables by employing wavelet analysis, generalized additive models (GAM) and distributed lag nonlinear models (DLNM) on rainfall, temperature and relative humidity in relation to dengue incidence. Dengue incidence showed a significant irregular 4-year multi-annual cycle associated with climate variables. Based on GAM, temperature showed a U-shape, while humidity and rainfall exhibited a dome-shaped association, suggesting that deviation from mean temperature increases and deviation from mean humidity and rainfall decreases dengue incidence, respectively. Rainfall was associated with an immediate increase in dengue incidence of 4.1% (95% CI: 2.2-8.1%) after a 10-mm increase, with a maximum increase of 6.5% (95% CI: 3.2-10.0%) after 1.5 month lag. A 1 °C decrease of mean temperature was associated with a RR of 17.4% (95% CI: 11.2-27.0%); the effect was inversed for a 1°C increase of mean temperature (RR= 0.457, 95% CI: 0.278-0.752). Climate variables are important determinants of dengue incidence and provide insight into its short-term effects. An increase in mean temperature was associated with lower dengue incidence, whereas lower temperatures were associated with higher dengue incidence. © 2015 Blackwell Verlag GmbH.

  19. Climate change but not unemployment explains the changing suicidality in Thessaloniki Greece (2000-2012).

    PubMed

    Fountoulakis, Konstantinos N; Savopoulos, Christos; Zannis, Prodromos; Apostolopoulou, Martha; Fountoukidis, Ilias; Kakaletsis, Nikolaos; Kanellos, Ilias; Dimellis, Dimos; Hyphantis, Thomas; Tsikerdekis, Athanasios; Pompili, Maurizio; Hatzitolios, Apostolos I

    2016-03-15

    Recently there was a debate concerning the etiology behind attempts and completed suicides. The aim of the current study was to search for possible correlations between the rates of attempted and completed suicide and climate variables and regional unemployment per year in the county of Thessaloniki, Macedonia, northern Greece, for the years 2000-12. The regional rates of suicide and attempted suicide as well as regional unemployment were available from previous publications of the authors. The climate variables were calculated from the daily E-OBS gridded dataset which is based on observational data Only the male suicide rates correlate significantly with high mean annual temperature but not with unemployment. The multiple linear regression analysis results suggest that temperature is the only variable that determines male suicides and explains 51% of their variance. Unemployment fails to contribute significantly to the model. There seems to be a seasonal distribution for attempts with mean rates being higher for the period from May to October and the rates clearly correlate with temperature. The highest mean rates were observed during May and August and the lowest during December and February. Multiple linear regression analysis suggests that temperature also determines the female attempts rate although the explained variable is significant but very low (3-5%) Climate variables and specifically high temperature correlate both with suicide and attempted suicide rates but with a different way between males and females. The climate effect was stronger than the effect of unemployment. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Reconstructing pre-instrumental streamflow in Eastern Australia using a water balance approach

    NASA Astrophysics Data System (ADS)

    Tozer, C. R.; Kiem, A. S.; Vance, T. R.; Roberts, J. L.; Curran, M. A. J.; Moy, A. D.

    2018-03-01

    Streamflow reconstructions based on paleoclimate proxies provide much longer records than the short instrumental period records on which water resource management plans are currently based. In Australia there is a lack of in-situ high resolution paleoclimate proxy records, but remote proxies with teleconnections to Australian climate have utility in producing streamflow reconstructions. Here we investigate, via a case study for a catchment in eastern Australia, the novel use of an Antarctic ice-core based rainfall reconstruction within a Budyko-framework to reconstruct ∼1000 years of annual streamflow. The resulting streamflow reconstruction captures interannual to decadal variability in the instrumental streamflow, validating both the use of the ice core rainfall proxy record and the Budyko-framework method. In the preinstrumental era the streamflow reconstruction shows longer wet and dry epochs and periods of streamflow variability that are higher than observed in the instrumental era. Importantly, for both the instrumental record and preinstrumental reconstructions, the wet (dry) epochs in the rainfall record are shorter (longer) in the streamflow record and this non-linearity must be considered when inferring hydroclimatic risk or historical water availability directly from rainfall proxy records alone. These insights provide a better understanding of present infrastructure vulnerability in the context of past climate variability for eastern Australia. The streamflow reconstruction presented here also provides a better understanding of the range of hydroclimatic variability possible, and therefore represents a more realistic baseline on which to quantify the potential impacts of anthropogenic climate change on water security.

  1. Atmospheric Teleconnection and Climate Variability: Affecting Rice Productivity of Bihar, India

    NASA Astrophysics Data System (ADS)

    Saini, A.

    2017-12-01

    Climate variability brought various negative results to the environment around us and area under rice crop in Bihar has also faced a lot of negative impacts due to variability in temperature and rainfall. Location of Bihar in Northern Plain of India automatically makes it prime location for agriculture and therefore variability in climatic variables brings highly sensitive results to the agricultural production (especially rice). In this study, rainfall and temperature variables are taken into consideration to investigate the impact on rice cultivated area. Change in climate variable with the passage of time is prevailing since the start of geological time scale, how the variability in climate variables has affected the major crops. Climate index of Pacific Ocean and Indian Ocean influences the seasonal weather in Bihar and therefore role of ENSO and IOD is an interesting point of inquiry. Does there exists direct relation between climate variability and area under agricultural crops? How many important variables directly signals towards the change in area under agriculture production? These entire questions are answered with respect to change in area under rice cultivation of Bihar State of India. Temperature, rainfall and ENSO are a good indicator with respect to rice cultivation in Indian subcontinent. Impact on the area under rice has been signaled through ONI, Niño3 and DMI. Increasing range of temperature in the rice productivity declining years is observed since 1990.

  2. Streamflow variability over the 1881–2011 period in northern Quebec: comparison of hydrological reconstructions based on tree rings and geopotential height field reanalysis

    DOE PAGES

    Brigode, Pierre; Brissette, Francois; Nicault, Antoine; ...

    2016-09-06

    Over the last decades, different methods have been used by hydrologists to extend observed hydro-climatic time series, based on other data sources, such as tree rings or sedimentological datasets. For example, tree ring multi-proxies have been studied for the Caniapiscau Reservoir in northern Québec (Canada), leading to the reconstruction of flow time series for the last 150 years. In this paper, we applied a new hydro-climatic reconstruction method on the Caniapiscau Reservoir and compare the obtained streamflow time series against time series derived from dendrohydrology by other authors on the same catchment and study the natural streamflow variability over themore » 1881–2011 period in that region. This new reconstruction is based not on natural proxies but on a historical reanalysis of global geopotential height fields, and aims firstly to produce daily climatic time series, which are then used as inputs to a rainfall–runoff model in order to obtain daily streamflow time series. The performances of the hydro-climatic reconstruction were quantified over the observed period, and showed good performances, in terms of both monthly regimes and interannual variability. The streamflow reconstructions were then compared to two different reconstructions performed on the same catchment by using tree ring data series, one being focused on mean annual flows and the other on spring floods. In terms of mean annual flows, the interannual variability in the reconstructed flows was similar (except for the 1930–1940 decade), with noteworthy changes seen in wetter and drier years. For spring floods, the reconstructed interannual variabilities were quite similar for the 1955–2011 period, but strongly different between 1880 and 1940. Here, the results emphasize the need to apply different reconstruction methods on the same catchments. Indeed, comparisons such as those above highlight potential differences between available reconstructions and, finally, allow a retrospective analysis of the proposed reconstructions of past hydro-climatological variabilities.« less

  3. Streamflow variability over the 1881–2011 period in northern Quebec: comparison of hydrological reconstructions based on tree rings and geopotential height field reanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brigode, Pierre; Brissette, Francois; Nicault, Antoine

    Over the last decades, different methods have been used by hydrologists to extend observed hydro-climatic time series, based on other data sources, such as tree rings or sedimentological datasets. For example, tree ring multi-proxies have been studied for the Caniapiscau Reservoir in northern Québec (Canada), leading to the reconstruction of flow time series for the last 150 years. In this paper, we applied a new hydro-climatic reconstruction method on the Caniapiscau Reservoir and compare the obtained streamflow time series against time series derived from dendrohydrology by other authors on the same catchment and study the natural streamflow variability over themore » 1881–2011 period in that region. This new reconstruction is based not on natural proxies but on a historical reanalysis of global geopotential height fields, and aims firstly to produce daily climatic time series, which are then used as inputs to a rainfall–runoff model in order to obtain daily streamflow time series. The performances of the hydro-climatic reconstruction were quantified over the observed period, and showed good performances, in terms of both monthly regimes and interannual variability. The streamflow reconstructions were then compared to two different reconstructions performed on the same catchment by using tree ring data series, one being focused on mean annual flows and the other on spring floods. In terms of mean annual flows, the interannual variability in the reconstructed flows was similar (except for the 1930–1940 decade), with noteworthy changes seen in wetter and drier years. For spring floods, the reconstructed interannual variabilities were quite similar for the 1955–2011 period, but strongly different between 1880 and 1940. Here, the results emphasize the need to apply different reconstruction methods on the same catchments. Indeed, comparisons such as those above highlight potential differences between available reconstructions and, finally, allow a retrospective analysis of the proposed reconstructions of past hydro-climatological variabilities.« less

  4. Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: Herb-chronology based analysis

    NASA Astrophysics Data System (ADS)

    Shi, Songlin; Li, Zongshan; Wang, Hao; von Arx, Georg; Lü, Yihe; Wu, Xing; Wang, Xiaochun; Liu, Guohua; Fu, Bojie

    2016-06-01

    Growth of herbaceous plants responds sensitively and rapidly to climate variability. Yet, little is known regarding how climate warming influences the growth of herbaceous plants, particularly in semi-arid sites. This contrasts with widely reported tree growth decline and even mortality in response to severe water deficits due to climate warming around the world. Here, we use the relatively novel approach of herb-chronology to analyze the correlation between climatic factors and annual ring width in the root xylem of two perennial forb species (Medicago sativa, Potentilla chinensis) in the Loess Plateau of China. We show that warming-induced water deficit has a significant negative effect on the growth of herbaceous plants in the Loess Plateau. Our results indicate that the growth of forbs responds rapidly and sensitively to drought variability, implying that water availability plays a dominant role in regulating the growth of herbaceous plants in semi-arid areas. If warming and drying in the Loess Plateau continue in the future, further affects the growth of herbaceous plants, potentially driving regional changes in the relationship between herbaceous vegetation and climate.

  5. Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: Herb-chronology based analysis

    NASA Astrophysics Data System (ADS)

    Shi, S.

    2016-12-01

    Growth of herbaceous plants responds sensitively and rapidly to climate variability. Yet, little is known regarding how climate warming influences the growth of herbaceous plants, particularly in semi-arid sites. This contrasts with widely reported tree growth decline and even mortality in response to severe water deficits due to climate warming around the world. Here, we use the relatively novel approach of herb-chronology to analyze the correlation between climatic factors and annual ring width in the root xylem of two perennial forb species (Medicago sativa, Potentilla chinensis) in the Loess Plateau of China. We show that warming-induced water deficit has a significant negative effect on the growth of herbaceous plants in the Loess Plateau. Our results indicate that the growth of forbs responds rapidly and sensitively to drought variability, implying that water availability plays a dominant role in regulating the growth of herbaceous plants in semi-arid areas. If warming and drying in the Loess Plateau continue in the future, further affects the growth of herbaceous plants, potentially driving regional changes in the relationship between herbaceous vegetation and climate.

  6. Climate change

    USGS Publications Warehouse

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  7. Generation of Multivariate Surface Weather Series with Use of the Stochastic Weather Generator Linked to Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Farda, A.; Huth, R.

    2012-12-01

    The regional-scale simulations of weather-sensitive processes (e.g. hydrology, agriculture and forestry) for the present and/or future climate often require high resolution meteorological inputs in terms of the time series of selected surface weather characteristics (typically temperature, precipitation, solar radiation, humidity, wind) for a set of stations or on a regular grid. As even the latest Global and Regional Climate Models (GCMs and RCMs) do not provide realistic representation of statistical structure of the surface weather, the model outputs must be postprocessed (downscaled) to achieve the desired statistical structure of the weather data before being used as an input to the follow-up simulation models. One of the downscaling approaches, which is employed also here, is based on a weather generator (WG), which is calibrated using the observed weather series and then modified (in case of simulations for the future climate) according to the GCM- or RCM-based climate change scenarios. The present contribution uses the parametric daily weather generator M&Rfi to follow two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate/CZ (v.2) Regional Climate Model at 25 km resolution. The WG parameters will be derived from the RCM-simulated surface weather series and compared to those derived from observational data in the Czech meteorological stations. The set of WG parameters will include selected statistics of the surface temperature and precipitation (characteristics of the mean, variability, interdiurnal variability and extremes). (2) Testing a potential of RCM output for calibration of the WG for the ungauged locations. The methodology being examined will consist in using the WG, whose parameters are interpolated from the surrounding stations and then corrected based on a RCM-simulated spatial variability. The quality of the weather series produced by the WG calibrated in this way will be assessed in terms of selected climatic characteristics focusing on extreme precipitation and temperature characteristics (including characteristics of dry/wet/hot/cold spells). Acknowledgements: The present experiment is made within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports) and VALUE (COST ES 1102 action).

  8. Spatial and Temporal Means and Variability of Arctic Sea Ice Climate Indicators from Satellite Data

    NASA Astrophysics Data System (ADS)

    Peng, G.; Meier, W.; Bliss, A. C.; Steele, M.; Dickinson, S.

    2017-12-01

    Arctic sea ice has been undergoing rapid and accelerated loss since satellite-based measurements became available in late 1970s, especially the summer ice coverage. For the Arctic as a whole, the long-term trend for the annual sea ice extent (SIE) minimum is about -13.5±2.93 % per decade change relative to the 1979-2015 climate average, while the trends of the annual SIE minimum for the local regions can range from 0 to up to -42 % per decade. This presentation aims to examine and baseline spatial and temporal means and variability of Arctic sea ice climate indicators, such as the annual SIE minimum and maximum, snow/ice melt onset, etc., from a consistent, inter-calibrated, long-term time series of remote sensing sea ice data for understanding regional vulnerability and monitoring ice state for climate adaptation and risk mitigation.

  9. Assessment of Satellite Radiometry in the Visible Domain

    NASA Technical Reports Server (NTRS)

    Melin, Frederick; Franz, Bryan A.

    2014-01-01

    Marine reflectance and chlorophyll-a concentration are listed among the Essential Climate Variables by the Global Climate Observing System. To contribute to climate research, the satellite ocean color data records resulting from successive missions need to be consistent and well characterized in terms of uncertainties. This chapter reviews various approaches that can be used for the assessment of satellite ocean color data. Good practices for validating satellite products with in situ data and the current status of validation results are illustrated. Model-based approaches and inter-comparison techniques can also contribute to characterize some components of the uncertainty budget, while time series analysis can detect issues with the instrument radiometric characterization and calibration. Satellite data from different missions should also provide a consistent picture in scales of variability, including seasonal and interannual signals. Eventually, the various assessment approaches should be combined to create a fully characterized climate data record from satellite ocean color.

  10. The combination of work organizational climate and individual work commitment predicts return to work in women but not in men.

    PubMed

    Holmgren, Kristina; Ekbladh, Elin; Hensing, Gunnel; Dellve, Lotta

    2013-02-01

    To analyze if the combination of organizational climate and work commitment can predict return to work (RTW). This prospective Swedish study was based on 2285 participants, 19 to 64 years old, consecutively selected from the employed population, newly sick-listed for more than 14 days. Data were collected in 2008 through postal questionnaire and from register data. Among women, the combination of good organizational climate and fair work commitment predicted an early RTW with an adjusted relative risk of 2.05 (1.32 to 3.18). Among men, none of the adjusted variables or combinations of variables was found significantly to predict RTW. This study demonstrated the importance of integrative effects of organizational climate and individual work commitment on RTW among women. These factors did not predict RTW in men. More research is needed to understand the RTW process among men.

  11. Global Warming and Northern Hemisphere Sea Ice Extent.

    PubMed

    Vinnikov; Robock; Stouffer; Walsh; Parkinson; Cavalieri; Mitchell; Garrett; Zakharov

    1999-12-03

    Surface and satellite-based observations show a decrease in Northern Hemisphere sea ice extent during the past 46 years. A comparison of these trends to control and transient integrations (forced by observed greenhouse gases and tropospheric sulfate aerosols) from the Geophysical Fluid Dynamics Laboratory and Hadley Centre climate models reveals that the observed decrease in Northern Hemisphere sea ice extent agrees with the transient simulations, and both trends are much larger than would be expected from natural climate variations. From long-term control runs of climate models, it was found that the probability of the observed trends resulting from natural climate variability, assuming that the models' natural variability is similar to that found in nature, is less than 2 percent for the 1978-98 sea ice trends and less than 0.1 percent for the 1953-98 sea ice trends. Both models used here project continued decreases in sea ice thickness and extent throughout the next century.

  12. Estimation of the fractional coverage of rainfall in climate models

    NASA Technical Reports Server (NTRS)

    Eltahir, E. A. B.; Bras, R. L.

    1993-01-01

    The fraction of the grid cell area covered by rainfall, mu, is an essential parameter in descriptions of land surface hydrology in climate models. A simple procedure is presented for estimating this fraction, based on extensive observations of storm areas and rainfall volumes. Storm area and rainfall volume are often linearly related; this relation can be used to compute the storm area from the volume of rainfall simulated by a climate model. A formula is developed for computing mu, which describes the dependence of the fractional coverage of rainfall on the season of the year, the geographical region, rainfall volume, and the spatial and temporal resolution of the model. The new formula is applied in computing mu over the Amazon region. Significant temporal variability in the fractional coverage of rainfall is demonstrated. The implications of this variability for the modeling of land surface hydrology in climate models are discussed.

  13. A Variable Resolution Atmospheric General Circulation Model for a Megasite at the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Dennis, L.; Roesler, E. L.; Guba, O.; Hillman, B. R.; McChesney, M.

    2016-12-01

    The Atmospheric Radiation Measurement (ARM) climate research facility has three siteslocated on the North Slope of Alaska (NSA): Barrrow, Oliktok, and Atqasuk. These sites, incombination with one other at Toolik Lake, have the potential to become a "megasite" whichwould combine observational data and high resolution modeling to produce high resolutiondata products for the climate community. Such a data product requires high resolutionmodeling over the area of the megasite. We present three variable resolution atmosphericgeneral circulation model (AGCM) configurations as potential alternatives to stand-alonehigh-resolution regional models. Each configuration is based on a global cubed-sphere gridwith effective resolution of 1 degree, with a refinement in resolution down to 1/8 degree overan area surrounding the ARM megasite. The three grids vary in the size of the refined areawith 13k, 9k, and 7k elements. SquadGen, NCL, and GIMP are used to create the grids.Grids vary based upon the selection of areas of refinement which capture climate andweather processes that may affect a proposed NSA megasite. A smaller area of highresolution may not fully resolve climate and weather processes before they reach the NSA,however grids with smaller areas of refinement have a significantly reduced computationalcost compared with grids with larger areas of refinement. Optimal size and shape of thearea of refinement for a variable resolution model at the NSA is investigated.

  14. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006

    USGS Publications Warehouse

    Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping

    2014-01-01

    Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  15. Greenhouse gas scenario sensitivity and uncertainties in precipitation projections for central Belgium

    NASA Astrophysics Data System (ADS)

    Van Uytven, E.; Willems, P.

    2018-03-01

    Climate change impact assessment on meteorological variables involves large uncertainties as a result of incomplete knowledge on the future greenhouse gas concentrations and climate model physics, next to the inherent internal variability of the climate system. Given that the alteration in greenhouse gas concentrations is the driver for the change, one expects the impacts to be highly dependent on the considered greenhouse gas scenario (GHS). In this study, we denote this behavior as GHS sensitivity. Due to the climate model related uncertainties, this sensitivity is, at local scale, not always that strong as expected. This paper aims to study the GHS sensitivity and its contributing role to climate scenarios for a case study in Belgium. An ensemble of 160 CMIP5 climate model runs is considered and climate change signals are studied for precipitation accumulation, daily precipitation intensities and wet day frequencies. This was done for the different seasons of the year and the scenario periods 2011-2040, 2031-2060, 2051-2081 and 2071-2100. By means of variance decomposition, the total variance in the climate change signals was separated in the contribution of the differences in GHSs and the other model-related uncertainty sources. These contributions were found dependent on the variable and season. Following the time of emergence concept, the GHS uncertainty contribution is found dependent on the time horizon and increases over time. For the most distinct time horizon (2071-2100), the climate model uncertainty accounts for the largest uncertainty contribution. The GHS differences explain up to 18% of the total variance in the climate change signals. The results point further at the importance of the climate model ensemble design, specifically the ensemble size and the combination of climate models, whereupon climate scenarios are based. The numerical noise, introduced at scales smaller than the skillful scale, e.g. at local scale, was not considered in this study.

  16. Biomass and the Climatic Space from historical to future scenarios of a Seasonally Dry Tropical Forest - Caatinga

    NASA Astrophysics Data System (ADS)

    Castanho, A. D. D. A.; Coe, M. T.; Maia Andrade, E.; Walker, W.; Baccini, A.; Brando, P. M.; Farina, M.

    2017-12-01

    The Caatinga found in the semiarid region in northeastern Brazil is the largest continuous seasonally dry tropical forest in South America. The region has for centuries been subject to anthropogenic activities of land conversion, abandonment, and regrowth. The region also has a large spatial variability of edaphic-climatic properties. These effects together contribute to a wide variability of plant physiognomies and biomass concentration. In addition to land use change due to anthropogenic activities the region is exposed in the near and long term to dryer conditions. The main goal of this work was to validate a high spatial resolution (30 m) map of above ground biomass, understand the climatic role in the biomass spatial variability in the present, and the potential threat to vegetation for future climatic shifts. Satellite-derived biomass products are advanced tools that can address spatial changes in forest structure for an extended region. Here we combine a compilation of published field phytosociological observations across the region with a new 30-meter spatial resolution satellite biomass product. Climate data used for this analyses were based on the CRU (Climate Research Unit, UEA) for the historical time period and for the future a mean and 25-75% quantiles of the CMIP Global Climate model estimates for the RCP scenarios of 4.5 and 8.5 W/m2. The high heterogeneity in the biomass and physiognomy distribution across the Caatinga region is mostly explained by the climatic space defined by the precipitation and dryness index. The Caatinga region has historically already been exposed to shift in its climatic properties, driving all the physiognomies, to a dryer climatic space within the last decade. Future climate intensify the observed trends. This study provides a clearer understanding of the spatial distribution of Caatinga vegetation, its biomass, and relationships to climate, which are essential for strategic development planning, preservation of the biome functions, human services, and biodiversity, face future climate scenarios.

  17. Forward modeling of tree-ring data: a case study with a global network

    NASA Astrophysics Data System (ADS)

    Breitenmoser, P. D.; Frank, D.; Brönnimann, S.

    2012-04-01

    Information derived from tree-rings is one of the most powerful tools presently available for studying past climatic variability as well as identifying fundamental relationships between tree-growth and climate. Climate reconstructions are typically performed by extending linear relationships, established during the overlapping period of instrumental and climate proxy archives into the past. Such analyses, however, are limited by methodological assumptions, including stationarity and linearity of the climate-proxy relationship. We investigate climate and tree-ring data using the Vaganov-Shashkin-Lite (VS-Lite) forward model of tree-ring width formation to examine the relations among actual tree growth and climate (as inferred from the simulated chronologies) to reconstruct past climate variability. The VS-lite model has been shown to produce skill comparable to that achieved using classical dendrochronological statistical modeling techniques when applied on simulations of a network of North American tree-ring chronologies. Although the detailed mechanistic processes such as photosynthesis, storage, or cell processes are not modeled directly, the net effect of the dominating nonlinear climatic controls on tree-growth are implemented into the model by the principle of limiting factors and threshold growth response functions. The VS-lite model requires as inputs only latitude, monthly mean temperature and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree-rings to monthly climate conditions obtained from the 20th century reanalysis project back to 1871. These simulated tree-ring chronologies are compared to the climate-driven variability in worldwide observed tree-ring chronologies from the International Tree Ring Database. Results point toward the suitability of the relationship among actual tree growth and climate (as inferred from the simulated chronologies) for use in global palaeoclimate reconstructions.

  18. Analysis of the Relationship Between Climate and NDVI Variability at Global Scales

    NASA Technical Reports Server (NTRS)

    Zeng, Fan-Wei; Collatz, G. James; Pinzon, Jorge; Ivanoff, Alvaro

    2011-01-01

    interannual variability in modeled (CASA) C flux is in part caused by interannual variability in Normalized Difference Vegetation Index (NDVI) Fraction of Photosynthetically Active Radiation (FPAR). This study confirms a mechanism producing variability in modeled NPP: -- NDVI (FPAR) interannual variability is strongly driven by climate; -- The climate driven variability in NDVI (FPAR) can lead to much larger fluctuation in NPP vs. the NPP computed from FPAR climatology

  19. Assessing How Water Type, Climate, and Landscape Position Correlate with Variability of Methane in Shallow Groundwater in the Marcellus Region

    NASA Astrophysics Data System (ADS)

    Campbell, A.; Lautz, L.; Hoke, G. D.

    2017-12-01

    Prior work shows that spatial differences in naturally-occurring methane concentrations in shallow groundwater in the Marcellus Shale region are correlated with water type (e.g. Ca-HCO3 vs Na-HCO3) and landscape position (e.g. valley vs upland). However, little is known about how naturally-occurring methane in groundwater varies through time, particularly on a seasonal or monthly time scale, and how temporal variability is related to seasonal changes in climate. Extensive development of the Marcellus shale gas play in northeastern Pennsylvania limits opportunities for measuring baseline water quality through time. In contrast, a ban on hydraulic fracturing in NY affords an opportunity for characterizing baseline temporal variability in methane concentrations. The objective of this study is to characterize temporal variability of naturally-occurring methane in shallow groundwater in the Marcellus region, and how such temporal variability is correlated to other well characteristics, such as water type, landscape position, and climatic conditions. We worked with homeowners to sample 11 domestic wells monthly in the Marcellus Shale region of NY for methane concentrations and major ions for a full year. Wells were grouped according to the primary source of methane (e.g. thermogenic vs microbial) based upon δ13C-DIC, δ13C-CH4, and δD-CH4 isotopes. The full dataset and the grouped data were analyzed to assess how well climatic conditions, water type, and landscape position correlate with variability of methane concentrations through time. These data provide information on within year and between year variability of methane, as well as spatial variability between wells, which fills a data gap and can be used to inform policy regulations.

  20. Societal Impacts of Natural Decadal Climate Variability - The Pacemakers of Civilizations

    NASA Astrophysics Data System (ADS)

    Mehta, V. M.

    2017-12-01

    Natural decadal climate variability (DCV) is one of the oldest areas of climate research. Building on centuries-long literature, a substantial body of research has emerged in the last two to three decades, focused on understanding causes, mechanisms, and impacts of DCV. Several DCV phenomena - the Pacific Decadal Oscillation (PDO) or the Interdecadal Pacific Oscillation (IPO), tropical Atlantic sea-surface temperature gradient variability (TAG for brevity), West Pacific Warm Pool variability, and decadal variability of El Niño-La Niña events - have been identified in observational records; and are associated with variability of worldwide atmospheric circulations, water vapor transport, precipitation, and temperatures; and oceanic circulations, salinity, and temperatures. Tree-ring based drought index data going back more than 700 years show presence of decadal hydrologic cycles (DHCs) in North America, Europe, and South Asia. Some of these cycles were associated with the rise and fall of civilizations, large-scale famines which killed millions of people, and acted as catalysts for socio-political revolutions. Instrument-measured data confirm presence of such worldwide DHCs associated with DCV phenomena; and show these DCV phenomena's worldwide impacts on river flows, crop productions, inland water-borne transportation, hydro-electricity generation, and agricultural irrigation. Fish catch data also show multiyear to decadal catch variability associated with these DCV phenomena in all oceans. This talk, drawn from my recently-published book (Mehta, V.M., 2017: Natural Decadal Climate Variability: Societal Impacts. CRC Press, Boca Raton, Florida, 326 pp.), will give an overview of worldwide impacts of DCV phenomena, with specific examples of socio-economic-political impacts. This talk will also describe national and international security implications of such societal impacts, and worldwide food security implications. The talk will end with an outline of needed actions to adapt to these impacts.

  1. Analysis of meteorological variables in the Australasian region using ground- and space-based GPS techniques

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Choy, Suelynn; Fu, Erjiang Frank; Chane-Ming, Fabrice; Liou, Yuei-An; Pavelyev, Alexander G.

    2016-07-01

    Results of analysis of meteorological variables (temperature and moisture) in the Australasian region using the global positioning system (GPS) radio occultation (RO) and GPS ground-based observations verified with in situ radiosonde (RS) data are presented. The potential of using ground-based GPS observations for retrieving column integrated precipitable water vapour (PWV) over the Australian continent has been demonstrated using the Australian ground-based GPS reference stations network. Using data from the 15 ground-based GPS stations, the state of the atmosphere over Victoria during a significant weather event, the March 2010 Melbourne storm, has been investigated, and it has been shown that the GPS observations has potential for monitoring the movement of a weather front that has sharp moisture contrast. Temperature and moisture variability in the atmosphere over various climatic regions (the Indian and the Pacific Oceans, the Antarctic and Australia) has been examined using satellite-based GPS RO and in situ RS observations. Investigating recent atmospheric temperature trends over Antarctica, the time series of the collocated GPS RO and RS data were examined, and strong cooling in the lower stratosphere and warming through the troposphere over Antarctica has been identified, in agreement with outputs of climate models. With further expansion of the Global Navigation Satellite Systems (GNSS) system, it is expected that GNSS satellite- and ground-based measurements would be able to provide an order of magnitude larger amount of data which in turn could significantly advance weather forecasting services, climate monitoring and analysis in the Australasian region.

  2. Historical floods reconstruction using NOAA 20CR global climate reanalysis over the last 150 years

    NASA Astrophysics Data System (ADS)

    Mathevet, T.; Brigode, P.; Jégonday, S.; Hingray, B.; Gailhard, J.; Wilhelm, B.

    2017-12-01

    Since several years, climatologists are producing long reanalysis for studying the variability of global climate over the last 150 years. For hydrologists, these datasets offer interesting opportunities for reconstructing historical flood events, and thus increasing the sample size used for flood frequency analysis. In this study, a streamflow reconstruction method based on the analogy of atmospheric situations (using NOAA 20CR reanalysis) for the reconstruction of climatic series and on a rainfall-runoff model for the streamflow reconstruction has been applied over different French catchments at the daily timestep. The studied catchments have been selected because of the availability of long observed streamflow series (used for quantifying the performances of the flood reconstructions) and for their different hydro-climatological regimes. Different methodologies have been tested for the reconstruction of daily climatic series over the 1851-2014 period, using geopotential heights and additional variables available within the 20CR reanalysis (relative humidity, precipitable water, etc.). Long observed climatic series have also been used when available as a reference for the climatic reconstructions. The different reconstruction methods have been finally ranked in terms of their historical flood reconstruction performances, quantified by flood types (autumn or winter floods) and atmospheric genesis (using a weather pattern classification). The obtained results indicate that using additional 20CR variables to the geopotential heights only slightly improve the flood reconstructions, while using observed climatic series improves significantly the flood reconstruction over the different catchments.

  3. Decadal-Scale Forecasting of Climate Drivers for Marine Applications.

    PubMed

    Salinger, J; Hobday, A J; Matear, R J; O'Kane, T J; Risbey, J S; Dunstan, P; Eveson, J P; Fulton, E A; Feng, M; Plagányi, É E; Poloczanska, E S; Marshall, A G; Thompson, P A

    Climate influences marine ecosystems on a range of time scales, from weather-scale (days) through to climate-scale (hundreds of years). Understanding of interannual to decadal climate variability and impacts on marine industries has received less attention. Predictability up to 10 years ahead may come from large-scale climate modes in the ocean that can persist over these time scales. In Australia the key drivers of climate variability affecting the marine environment are the Southern Annular Mode, the Indian Ocean Dipole, the El Niño/Southern Oscillation, and the Interdecadal Pacific Oscillation, each has phases that are associated with different ocean circulation patterns and regional environmental variables. The roles of these drivers are illustrated with three case studies of extreme events-a marine heatwave in Western Australia, a coral bleaching of the Great Barrier Reef, and flooding in Queensland. Statistical and dynamical approaches are described to generate forecasts of climate drivers that can subsequently be translated to useful information for marine end users making decisions at these time scales. Considerable investment is still needed to support decadal forecasting including improvement of ocean-atmosphere models, enhancement of observing systems on all scales to support initiation of forecasting models, collection of important biological data, and integration of forecasts into decision support tools. Collaboration between forecast developers and marine resource sectors-fisheries, aquaculture, tourism, biodiversity management, infrastructure-is needed to support forecast-based tactical and strategic decisions that reduce environmental risk over annual to decadal time scales. © 2016 Elsevier Ltd. All rights reserved.

  4. Aeolian Dunes: New High-Resolution Archives of Past Wind-Intensity and -Direction

    NASA Astrophysics Data System (ADS)

    Lindhorst, S.; Betzler, C.

    2017-12-01

    The understanding of the long-term variability of local wind-fields is most relevant for calibrating climate models and for the prediction of the socio-economic consequences of climate change. Continuous instrumental-based weather observations go back less than two centuries; aeolian dunes, however, contain an archive of past wind-field fluctuations which is basically unread. We present new ways to reconstruct annual to seasonal changes of wind intensity and predominant wind direction from dune-sediment composition and -geometries based on ground-penetrating radar (GPR) data, grain-size analyses and different age-dating approaches. Resulting proxy-based data series on wind are validated against instrumental based weather observations. Our approach can be applied to both recent as well as fossil dunes. Potential applications include the validation of climate models, the reconstruction of past supra-regional wind systems and the monitoring of future shifts in the climate system.

  5. Planning for climate change: the need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases

    PubMed Central

    Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-01-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies. PMID:26799810

  6. The cumulative effects of forest disturbance and climate variability on streamflow components in a large forest-dominated watershed

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Wei, Xiaohua; Zhang, Mingfang; Liu, Wenfei; Giles-Hansen, Krysta; Wang, Yi

    2018-02-01

    Assessing how forest disturbance and climate variability affect streamflow components is critical for watershed management, ecosystem protection, and engineering design. Previous studies have mainly evaluated the effects of forest disturbance on total streamflow, rarely with attention given to its components (e.g., base flow and surface runoff), particularly in large watersheds (>1000 km2). In this study, the Upper Similkameen River watershed (1810 km2), an international watershed situated between Canada and the USA, was selected to examine how forest disturbance and climate variability interactively affect total streamflow, baseflow, and surface runoff. Baseflow was separated using a combination of the recursive digital filter method and conductivity mass balance method. Time series analysis and modified double mass curves were then employed to quantitatively separate the relative contributions of forest disturbance and climate variability to each streamflow component. Our results showed that average annual baseflow and baseflow index (baseflow/streamflow) were 113.3 ± 35.6 mm year-1 and 0.27 for 1954-2013, respectively. Forest disturbance increased annual streamflow, baseflow, and surface runoff of 27.7 ± 13.7 mm, 7.4 ± 3.6 mm, and 18.4 ± 12.9 mm, respectively, with its relative contributions to the changes in respective streamflow components being 27.0 ± 23.0%, 29.2 ± 23.1%, and 25.7 ± 23.4%, respectively. In contrast, climate variability decreased them by 74.9 ± 13.7 mm, 17.9 ± 3.6 mm, and 53.3 ± 12.9 mm, respectively, with its relative contributions to the changes in respective streamflow components being 73.0 ± 23.0%, 70.8 ± 23.1% and 73.1 ± 23.4%, respectively. Despite working in opposite ways, the impacts of climate variability on annual streamflow, baseflow, and surface runoff were of a much greater magnitude than forest disturbance impacts. This study has important implications for the protection of aquatic habitat, engineering design, and watershed planning in the context of future forest disturbance and climate change.

  7. Evidence for Holocene centennial variability in sea ice cover based on IP25 biomarker reconstruction in the southern Kara Sea (Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Hörner, Tanja; Stein, Rüdiger; Fahl, Kirsten

    2017-10-01

    The Holocene is characterized by the late Holocene cooling trend as well as by internal short-term centennial fluctuations. Because Arctic sea ice acts as a significant component (amplifier) within the climate system, investigating its past long- and short-term variability and controlling processes is beneficial for future climate predictions. This study presents the first biomarker-based (IP25 and PIP25) sea ice reconstruction from the Kara Sea (core BP00-07/7), covering the last 8 ka. These biomarker proxies reflect conspicuous short-term sea ice variability during the last 6.5 ka that is identified unprecedentedly in the source region of Arctic sea ice by means of a direct sea ice indicator. Prominent peaks of extensive sea ice cover occurred at 3, 2, 1.3 and 0.3 ka. Spectral analysis of the IP25 record revealed 400- and 950-year cycles. These periodicities may be related to the Arctic/North Atlantic Oscillation, but probably also to internal climate system fluctuations. This demonstrates that sea ice belongs to a complex system that more likely depends on multiple internal forcing.

  8. Resilience, rapid transitions and regime shifts: fingerprinting the responses of Lake Żabińskie (NE Poland) to climate variability and human disturbance since 1000 AD

    NASA Astrophysics Data System (ADS)

    Tylmann, Wojciech; Hernández-Almeida, Iván; Grosjean, Martin; José Gómez Navarro, Juan; Larocque-Tobler, Isabelle; Bonk, Alicja; Enters, Dirk; Ustrzycka, Alicja; Piotrowska, Natalia; Przybylak, Rajmund; Wacnik, Agnieszka; Witak, Małgorzata

    2016-04-01

    Rapid ecosystem transitions and adverse effects on ecosystem services as responses to combined climate and human impacts are of major concern. Yet few quantitative observational data exist, particularly for ecosystems that have a long history of human intervention. Here, we combine quantitative summer and winter climate reconstructions, climate model simulations and proxies for three major environmental pressures (land use, nutrients and erosion) to explore the system dynamics, resilience, and the role of disturbance regimes in varved eutrophic Lake Żabińskie since AD 1000. Comparison between regional and global climate simulations and quantitative climate reconstructions indicate that proxy data capture noticeably natural forced climate variability, while internal variability appears as the dominant source of climate variability in the climate model simulations during most parts of the last millennium. Using different multivariate analyses and change point detection techniques, we identify ecosystem changes through time and shifts between rather stable states and highly variable ones, as expressed by the proxies for land-use, erosion and productivity in the lake. Prior to AD 1600, the lake ecosystem was characterized by a high stability and resilience against considerable observed natural climate variability. In contrast, lake-ecosystem conditions started to fluctuate at high frequency across a broad range of states after AD 1600. The period AD 1748-1868 represents the phase with the strongest human disturbance of the ecosystem. Analyses of the frequency of change points in the multi-proxy dataset suggests that the last 400 years were highly variable and flickering with increasing vulnerability of the ecosystem to the combined effects of climate variability and anthropogenic disturbances. This led to significant rapid ecosystem transformations.

  9. Molecules in the mud: Combining ancient DNA and lipid biomarkers to reconstruct vegetation response to climate variability during the Last Interglacial and the Holocene on Baffin Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Crump, S. E.; Sepúlveda, J.; Bunce, M.; Miller, G. H.

    2017-12-01

    Modern ecological studies are revealing that the "greening" of the Arctic, resulting from a poleward shift in woody vegetation ranges, is already underway. The increasing abundance of shrubs in tundra ecosystems plays an important role in the global climate system through multiple positive feedbacks, yet uncertainty in future predictions of terrestrial vegetation means that climate models are likely not capturing these feedbacks accurately. Recently developed molecular techniques for reconstructing past vegetation and climate allow for a closer look at the paleo-record in order to improve our understanding of tundra community responses to climate variability; our current research focus is to apply these tools to both Last Interglacial and Holocene warm times. Here we present initial results from a small lake on southern Baffin Island spanning the last 7.2 ka. We reconstruct climate with both bulk geochemical and biomarker proxies, primarily using biogenic silica and branched glycerol dialkyl glycerol tetraethers (brGDGTs) as temperature indicators. We assess shifts in plant community using multivariate analysis of sedimentary ancient DNA (sedaDNA) metabarcoding data. This combination of approaches reveals that the vegetation community has responded sensitively to early Holocene warmth, Neoglacial cooling, and possibly modern anthropogenic warming. To our knowledge, this represents the first combination of a quantitative, biomarker-based climate reconstruction with a sedaDNA-based paleoecological reconstruction, and offers a glimpse at the potential of these molecular techniques used in tandem.

  10. A variable-instar climate-driven individual beetle-based phenology model for the invasive Asian longhorned beetle (Coleoptera: Cerambycidae)

    Treesearch

    R. Talbot Trotter, III; Melody A. Keena

    2016-01-01

    Efforts to manage and eradicate invasive species can benefit from an improved understanding of the physiology, biology, and behavior of the target species, and ongoing efforts to eradicate the Asian longhorned beetle (Anoplophora glabripennis Motschulsky) highlight the roles this information may play. Here, we present a climate-driven phenology...

  11. Environmental impacts of high penetration renewable energy scenarios for Europe

    NASA Astrophysics Data System (ADS)

    Berrill, Peter; Arvesen, Anders; Scholz, Yvonne; Gils, Hans Christian; Hertwich, Edgar G.

    2016-01-01

    The prospect of irreversible environmental alterations and an increasingly volatile climate pressurises societies to reduce greenhouse gas emissions, thereby mitigating climate change impacts. As global electricity demand continues to grow, particularly if considering a future with increased electrification of heat and transport sectors, the imperative to decarbonise our electricity supply becomes more urgent. This letter implements outputs of a detailed power system optimisation model into a prospective life cycle analysis framework in order to present a life cycle analysis of 44 electricity scenarios for Europe in 2050, including analyses of systems based largely on low-carbon fossil energy options (natural gas, and coal with carbon capture and storage (CCS)) as well as systems with high shares of variable renewable energy (VRE) (wind and solar). VRE curtailments and impacts caused by extra energy storage and transmission capabilities necessary in systems based on VRE are taken into account. The results show that systems based largely on VRE perform much better regarding climate change and other impact categories than the investigated systems based on fossil fuels. The climate change impacts from Europe for the year 2050 in a scenario using primarily natural gas are 1400 Tg CO2-eq while in a scenario using mostly coal with CCS the impacts are 480 Tg CO2-eq. Systems based on renewables with an even mix of wind and solar capacity generate impacts of 120-140 Tg CO2-eq. Impacts arising as a result of wind and solar variability do not significantly compromise the climate benefits of utilising these energy resources. VRE systems require more infrastructure leading to much larger mineral resource depletion impacts than fossil fuel systems, and greater land occupation impacts than systems based on natural gas. Emissions and resource requirements from wind power are smaller than from solar power.

  12. A Method of Relating General Circulation Model Simulated Climate to the Observed Local Climate. Part I: Seasonal Statistics.

    NASA Astrophysics Data System (ADS)

    Karl, Thomas R.; Wang, Wei-Chyung; Schlesinger, Michael E.; Knight, Richard W.; Portman, David

    1990-10-01

    Important surface observations such as the daily maximum and minimum temperature, daily precipitation, and cloud ceilings often have localized characteristics that are difficult to reproduce with the current resolution and the physical parameterizations in state-of-the-art General Circulation climate Models (GCMs). Many of the difficulties can be partially attributed to mismatches in scale, local topography. regional geography and boundary conditions between models and surface-based observations. Here, we present a method, called climatological projection by model statistics (CPMS), to relate GCM grid-point flee-atmosphere statistics, the predictors, to these important local surface observations. The method can be viewed as a generalization of the model output statistics (MOS) and perfect prog (PP) procedures used in numerical weather prediction (NWP) models. It consists of the application of three statistical methods: 1) principle component analysis (FICA), 2) canonical correlation, and 3) inflated regression analysis. The PCA reduces the redundancy of the predictors The canonical correlation is used to develop simultaneous relationships between linear combinations of the predictors, the canonical variables, and the surface-based observations. Finally, inflated regression is used to relate the important canonical variables to each of the surface-based observed variables.We demonstrate that even an early version of the Oregon State University two-level atmospheric GCM (with prescribed sea surface temperature) produces free-atmosphere statistics than can, when standardized using the model's internal means and variances (the MOS-like version of CPMS), closely approximate the observed local climate. When the model data are standardized by the observed free-atmosphere means and variances (the PP version of CPMS), however, the model does not reproduce the observed surface climate as well. Our results indicate that in the MOS-like version of CPMS the differences between the output of a ten-year GCM control run and the surface-based observations are often smaller than the differences between the observations of two ten-year periods. Such positive results suggest that GCMs may already contain important climatological information that can be used to infer the local climate.

  13. Socioeconomic Drought in a Changing Climate: Modeling and Management

    NASA Astrophysics Data System (ADS)

    AghaKouchak, Amir; Mehran, Ali; Mazdiyasni, Omid

    2016-04-01

    Drought is typically defined based on meteorological, hydrological and land surface conditions. However, in many parts of the world, anthropogenic changes and water management practices have significantly altered local water availability. Socioeconomic drought refers to conditions whereby the available water supply cannot satisfy the human and environmental water needs. Surface water reservoirs provide resilience against local climate variability (e.g., droughts), and play a major role in regional water management. This presentation focuses on a framework for describing socioeconomic drought based on both water supply and demand information. We present a multivariate approach as a measure of socioeconomic drought, termed Multivariate Standardized Reliability and Resilience Index (MSRRI; Mehran et al., 2015). This model links the information on inflow and surface reservoir storage to water demand. MSRRI integrates a "top-down" and a "bottom-up" approach for describing socioeconomic drought. The "top-down" component describes processes that cannot be simply controlled or altered by local decision-makers and managers (e.g., precipitation, climate variability, climate change), whereas the "bottom-up" component focuses on the local resilience, and societal capacity to respond to droughts. The two components (termed, Inflow-Demand Reliability (IDR) indicator and Water Storage Resilience (WSR) indicator) are integrated using a nonparametric multivariate approach. We use this framework to assess the socioeconomic drought during the Australian Millennium Drought (1998-2010) and the 2011-2014 California Droughts. MSRRI provides additional information on socioeconomic drought onset, development and termination based on local resilience and human demand that cannot be obtained from the commonly used drought indicators. We show that MSRRI can be used for water management scenario analysis (e.g., local water availability based on different human water demands scenarios). Finally, we provide examples of using the proposed modeling framework for analyzing water availability in a changing climate considering local conditions. Reference: Mehran A., Mazdiyasni O., AghaKouchak A., 2015, A Hybrid Framework for Assessing Socioeconomic Drought: Linking Climate Variability, Local Resilience, and Demand, Journal of Geophysical Research, 120 (15), 7520-7533, doi: 10.1002/2015JD023147

  14. Paleoclimate of the Neoglacial and Roman Warm Period Reconstructed from Oxygen Isotope Ratios of Limpet Shells (Patella vulgata), Northwest Scotland

    NASA Astrophysics Data System (ADS)

    Wang, T.; Surge, D. M.; Mithen, S.

    2010-12-01

    Paleoclimate reconstructions from different regions have reported abrupt climate change around 2800-2700 cal yr B.P. The timing of this abrupt climate change is close to the boundary between the Neoglacial (3300-2500 cal yr B.P.) and Roman Warm Period (2500-1600 cal yr B.P.). However, temporal and spatial variability observed in this climate change event raises controversies about the forcing factors driving it and why it has regional variability. Scotland lies in the North Atlantic Ocean, which responds sensitively to climate change. Therefore, even in the case of subtle climate change, the climate variability of Scotland should be able to capture such change. In this study, we expect that paleoclimate reconstructions of the Neoglacial and Roman Warm Period in Scotland will help improve our knowledge of abrupt climate change at 2800-2700 cal yr B.P. Archaeological shell deposits provide a rich source of climate proxy data preserved as oxygen isotope ratios in shell carbonate. Croig Cave on the Isle of Mull, Scotland, contains a nearly continuous accumulation of shells ranging from 800 BC-500 AD and possibly older. This range represents a broad chronology of human use from the late Bronze to Iron Ages and spans the Neoglacial through Roman Warm Period climate episodes. Here, we present seasonal temperature variability of the two climate episodes based on oxygen isotope ratios of ten limpet shells (Patella vulgata) from Croig Cave. Based on AMS dating (2 sigma calibration), the oldest shell was from 3480-3330 cal yr B.P. and the youngest shell was from 2060-1870 cal yr B.P. Our results indicated that estimated temperatures from the Neoglacial limpets average 6.44±0.56°C for coldest winters and 15.06±0.67°C for warmest summers. For the Roman Warm Period limpets, the average is 5.68±0.36°C for coldest winters and 14.14±0.81°C for warmest summers. We compared our estimated temperatures to the present sea surface temperature (SST) from 1961 to 1990 near our study area, which averages 7.40±0.35°C for coldest month and 14.12±0.54°C for warmest month. Our reconstructed temperatures from the Neoglacial limpets showed slightly (0-1°C) colder winters, similar or warmer (1-1.8°C) summers compared to present SST record. One shell captured a year without a summer likely resulting from an eruption of the Katla volcanic system in Iceland. The reconstructed temperatures from the Roman Warm Period limpets showed colder winters (up to 2°C) and similar summers compared with present SST record. Our findings represent the first insights of SST variability at seasonal time scales for these two climate episodes in northwest Scotland.

  15. Climate change hampers endangered species through intensified moisture-related plant stresses (Invited)

    NASA Astrophysics Data System (ADS)

    Bartholomeus, R.; Witte, J.; van Bodegom, P.; Dam, J. V.; Aerts, R.

    2010-12-01

    With recent climate change, extremes in meteorological conditions are forecast and observed to increase globally, and to affect vegetation composition. More prolonged dry periods will alternate with more intensive rainfall events, both within and between years, which will change soil moisture dynamics. In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. The consequences of climate change for our natural environment are among the most pressing issues of our time. The international research community is beginning to realise that climate extremes may be more powerful drivers of vegetation change and species extinctions than slow-and-steady climatic changes, but the causal mechanisms of such changes are presently unknown. The roles of amplitudes in water availability as drivers of vegetation change have been particularly elusive owing to the lack of integration of the key variables involved. Here we show that the combined effect of increased rainfall variability, temperature and atmospheric CO2-concentration will lead to an increased variability in both wet and dry extremes in stresses faced by plants (oxygen and water stress, respectively). We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. In order to quantify oxygen and water stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. As both the supply and demand of oxygen and water depend strongly on the prevailing meteorological conditions, both oxygen and water stress were calculated dynamically in time to capture climate change effects. We demonstrate that increased rainfall variability in interaction with predicted changes in temperature and CO2, affects soil moisture conditions and plant oxygen and water demands such, that both oxygen stress and water stress will intensify due to climate change. Moreover, these stresses will increasingly coincide, causing variable stress conditions. These variable stress conditions were found to decrease future habitat suitability, especially for plant species that are presently endangered. The future existence of such species is thus at risk by climate change, which has direct implications for policies to maintain endangered species, as applied by international nature management organisations (e.g. IUCN). Our integrated mechanistic analysis of two stresses combined, which has never been done so far, reveals large impacts of climate change on species extinctions and thereby on biodiversity.

  16. Daily variability of rainfall and emergency department visits of acute gastrointestinal illness in North Carolina, 2006-2008

    EPA Science Inventory

    Background & Aims: Projections based on climate models suggest that the frequency of extreme rainfall events will continue to rise over the next several decades. We aim to investigate the temporal relationship between daily variability of rainfall and acute gastrointestinal illne...

  17. [Modelling the effect of local climatic variability on dengue transmission in Medellin (Colombia) by means of time series analysis].

    PubMed

    Rúa-Uribe, Guillermo L; Suárez-Acosta, Carolina; Chauca, José; Ventosilla, Palmira; Almanza, Rita

    2013-09-01

    Dengue fever is a major impact on public health vector-borne disease, and its transmission is influenced by entomological, sociocultural and economic factors. Additionally, climate variability plays an important role in the transmission dynamics. A large scientific consensus has indicated that the strong association between climatic variables and disease could be used to develop models to explain the incidence of the disease. To develop a model that provides a better understanding of dengue transmission dynamics in Medellin and predicts increases in the incidence of the disease. The incidence of dengue fever was used as dependent variable, and weekly climatic factors (maximum, mean and minimum temperature, relative humidity and precipitation) as independent variables. Expert Modeler was used to develop a model to better explain the behavior of the disease. Climatic variables with significant association to the dependent variable were selected through ARIMA models. The model explains 34% of observed variability. Precipitation was the climatic variable showing statistically significant association with the incidence of dengue fever, but with a 20 weeks delay. In Medellin, the transmission of dengue fever was influenced by climate variability, especially precipitation. The strong association dengue fever/precipitation allowed the construction of a model to help understand dengue transmission dynamics. This information will be useful to develop appropriate and timely strategies for dengue control.

  18. Evapotranspiration variability and its association with vegetation dynamics in the Nile Basin, 2002–2011

    USGS Publications Warehouse

    Alemu, Henok; Senay, Gabriel B.; Kaptue, Armel T.; Kovalskyy, Valeriy

    2014-01-01

    Evapotranspiration (ET) is a vital component in land-atmosphere interactions. In drylands, over 90% of annual rainfall evaporates. The Nile Basin in Africa is about 42% dryland in a region experiencing rapid population growth and development. The relationship of ET with climate, vegetation and land cover in the basin during 2002–2011 is analyzed using thermal-based Simplified Surface Energy Balance Operational (SSEBop) ET, Normalized Difference Vegetation Index (NDVI)-based MODIS Terrestrial (MOD16) ET, MODIS-derived NDVI as a proxy for vegetation productivity and rainfall from Tropical Rainfall Measuring Mission (TRMM). Interannual variability and trends are analyzed using established statistical methods. Analysis based on thermal-based ET revealed that >50% of the study area exhibited negative ET anomalies for 7 years (2009, driest), while >60% exhibited positive ET anomalies for 3 years (2007, wettest). NDVI-based monthly ET correlated strongly (r > 0.77) with vegetation than thermal-based ET (0.52 < r < 0.73) at p < 0.001. Climate-zone averaged thermal-based ET anomalies positively correlated (r = 0.6, p < 0.05) with rainfall in 4 of the 9 investigated climate zones. Thermal-based and NDVI-based ET estimates revealed minor discrepancies over rainfed croplands (60 mm/yr higher for thermal-based ET), but a significant divergence over wetlands (440 mm/yr higher for thermal-based ET). Only 5% of the study area exhibited statistically significant trends in ET.

  19. Global Trends and Variability in Integrated Water Vapor from Ground-Based GPS Data and Climate Models

    NASA Astrophysics Data System (ADS)

    Bock, O.; Parracho, A. C.; Bastin, S.; Hourdin, F.

    2016-12-01

    A high-quality, consistent, global, long-term dataset of integrated water vapor (IWV) was produced from Global Positioning System (GPS) measurements at more than 400 sites over the globe among which 120 sites have more than 15 years of data. The GPS delay data were converted to IWV using surface pressure and weighted mean temperature estimates from ERA-Interim reanalysis. A two-step screening method was developed to detect and remove outliers in the IWV data. It is based on: 1) GPS data processing information and delay formal errors, and 2) inter-comparison with ERA-Interim reanalysis data. The GPS IWV data are also homogenized to correct for offsets due to instrumental changes and other unknown factors. The differential homogenization method uses ERA-Interim IWV as a reference. The resulting GPS data are used to document the mean distribution, the global trends and the variability of IWV over the period 1995-2010, and to assess global climate model simulations extracted from the IPCC AR5 archive. Large coherent spatial patterns of moistening and drying are evidenced but significant discrepancies are also seen between GPS measurements, reanalysis and climate models in various regions. In terms of variability, the monthly mean anomalies are inter-compared. The temporal correlation between GPS and the climate model simulations is overall quite small but the spatial variation of the magnitude of the anomalies is globally well simulated. GPS IWV data prove to be useful to validate global climate model simulations and highlight deficiencies in their representation of the water cycle.

  20. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures

    PubMed Central

    Olson, Deanna H.; Blaustein, Andrew R.

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats. PMID:27513565

  1. Inter-model variability in hydrological extremes projections for Amazonian sub-basins

    NASA Astrophysics Data System (ADS)

    Andres Rodriguez, Daniel; Garofolo, Lucas; Lázaro de Siqueira Júnior, José; Samprogna Mohor, Guilherme; Tomasella, Javier

    2014-05-01

    Irreducible uncertainties due to knowledge's limitations, chaotic nature of climate system and human decision-making process drive uncertainties in Climate Change projections. Such uncertainties affect the impact studies, mainly when associated to extreme events, and difficult the decision-making process aimed at mitigation and adaptation. However, these uncertainties allow the possibility to develop exploratory analyses on system's vulnerability to different sceneries. The use of different climate model's projections allows to aboard uncertainties issues allowing the use of multiple runs to explore a wide range of potential impacts and its implications for potential vulnerabilities. Statistical approaches for analyses of extreme values are usually based on stationarity assumptions. However, nonstationarity is relevant at the time scales considered for extreme value analyses and could have great implications in dynamic complex systems, mainly under climate change transformations. Because this, it is required to consider the nonstationarity in the statistical distribution parameters. We carried out a study of the dispersion in hydrological extremes projections using climate change projections from several climate models to feed the Distributed Hydrological Model of the National Institute for Spatial Research, MHD-INPE, applied in Amazonian sub-basins. This model is a large-scale hydrological model that uses a TopModel approach to solve runoff generation processes at the grid-cell scale. MHD-INPE model was calibrated for 1970-1990 using observed meteorological data and comparing observed and simulated discharges by using several performance coeficients. Hydrological Model integrations were performed for present historical time (1970-1990) and for future period (2010-2100). Because climate models simulate the variability of the climate system in statistical terms rather than reproduce the historical behavior of climate variables, the performances of the model's runs during the historical period, when feed with climate model data, were tested using descriptors of the Flow Duration Curves. The analyses of projected extreme values were carried out considering the nonstationarity of the GEV distribution parameters and compared with extremes events in present time. Results show inter-model variability in a broad dispersion on projected extreme's values. Such dispersion implies different degrees of socio-economic impacts associated to extreme hydrological events. Despite the no existence of one optimum result, this variability allows the analyses of adaptation strategies and its potential vulnerabilities.

  2. Environmental drivers of mesozooplankton biomass variability in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Valencia, Bellineth; Landry, Michael R.; Décima, Moira; Hannides, Cecelia C. S.

    2016-12-01

    The environmental drivers of zooplankton variability are poorly explored for the central subtropical Pacific, where a direct bottom-up food-web connection is suggested by increasing trends in primary production and mesozooplankton biomass at station ALOHA (A Long-term Oligotrophic Habitat Assessment) over the past 20 years (1994-2013). Here we use generalized additive models (GAMs) to investigate how these trends relate to the major modes of North Pacific climate variability. A GAM based on monthly mean data explains 43% of the temporal variability in mesozooplankton biomass with significant influences from primary productivity (PP), sea surface temperature (SST), North Pacific Gyre Oscillation (NPGO), and El Niño. This result mainly reflects the seasonal plankton cycle at station ALOHA, in which increasing light and SST lead to enhanced nitrogen fixation, productivity, and zooplankton biomass during summertime. Based on annual mean data, GAMs for two variables suggest that PP and 3-4 year lagged NPGO individually account for 40% of zooplankton variability. The full annual mean GAM explains 70% of variability of zooplankton biomass with significant influences from PP, 4 year lagged NPGO, and 4 year lagged Pacific Decadal Oscillation (PDO). The NPGO affects wind stress, sea surface height, and subtropical gyre circulation and has been linked to mideuphotic zone anomalies in salinity and PP at station ALOHA. Our study broadens the known impact of this climate mode on plankton dynamics in the North Pacific. While lagged transport effects are also evident for subtropical waters, our study highlights a strong coupling between zooplankton fluctuations and PP, which differs from the transport-dominated climate influences that have been found for North Pacific boundary currents.

  3. Natural variability of marine ecosystems inferred from a coupled climate to ecosystem simulation

    NASA Astrophysics Data System (ADS)

    Le Mézo, Priscilla; Lefort, Stelly; Séférian, Roland; Aumont, Olivier; Maury, Olivier; Murtugudde, Raghu; Bopp, Laurent

    2016-01-01

    This modeling study analyzes the simulated natural variability of pelagic ecosystems in the North Atlantic and North Pacific. Our model system includes a global Earth System Model (IPSL-CM5A-LR), the biogeochemical model PISCES and the ecosystem model APECOSM that simulates upper trophic level organisms using a size-based approach and three interactive pelagic communities (epipelagic, migratory and mesopelagic). Analyzing an idealized (e.g., no anthropogenic forcing) 300-yr long pre-industrial simulation, we find that low and high frequency variability is dominant for the large and small organisms, respectively. Our model shows that the size-range exhibiting the largest variability at a given frequency, defined as the resonant range, also depends on the community. At a given frequency, the resonant range of the epipelagic community includes larger organisms than that of the migratory community and similarly, the latter includes larger organisms than the resonant range of the mesopelagic community. This study shows that the simulated temporal variability of marine pelagic organisms' abundance is not only influenced by natural climate fluctuations but also by the structure of the pelagic community. As a consequence, the size- and community-dependent response of marine ecosystems to climate variability could impact the sustainability of fisheries in a warming world.

  4. The Medieval Climate Anomaly and Byzantium: A review of the evidence on climatic fluctuations, economic performance and societal change

    NASA Astrophysics Data System (ADS)

    Xoplaki, Elena; Fleitmann, Dominik; Luterbacher, Juerg; Wagner, Sebastian; Haldon, John F.; Zorita, Eduardo; Telelis, Ioannis; Toreti, Andrea; Izdebski, Adam

    2016-03-01

    At the beginning of the Medieval Climate Anomaly, in the ninth and tenth century, the medieval eastern Roman empire, more usually known as Byzantium, was recovering from its early medieval crisis and experiencing favourable climatic conditions for the agricultural and demographic growth. Although in the Balkans and Anatolia such favourable climate conditions were prevalent during the eleventh century, parts of the imperial territories were facing significant challenges as a result of external political/military pressure. The apogee of medieval Byzantine socio-economic development, around AD 1150, coincides with a period of adverse climatic conditions for its economy, so it becomes obvious that the winter dryness and high climate variability at this time did not hinder Byzantine society and economy from achieving that level of expansion. Soon after this peak, towards the end of the twelfth century, the populations of the Byzantine world were experiencing unusual climatic conditions with marked dryness and cooler phases. The weakened Byzantine socio-political system must have contributed to the events leading to the fall of Constantinople in AD 1204 and the sack of the city. The final collapse of the Byzantine political control over western Anatolia took place half century later, thus contemporaneous with the strong cooling effect after a tropical volcanic eruption in AD 1257. We suggest that, regardless of a range of other influential factors, climate change was also an important contributing factor to the socio-economic changes that took place in Byzantium during the Medieval Climate Anomaly. Crucially, therefore, while the relatively sophisticated and complex Byzantine society was certainly influenced by climatic conditions, and while it nevertheless displayed a significant degree of resilience, external pressures as well as tensions within the Byzantine society more broadly contributed to an increasing vulnerability in respect of climate impacts. Our interdisciplinary analysis is based on all available sources of information on the climate and society of Byzantium, that is textual (documentary), archaeological, environmental, climate and climate model-based evidence about the nature and extent of climate variability in the eastern Mediterranean. The key challenge was, therefore, to assess the relative influence to be ascribed to climate variability and change on the one hand, and on the other to the anthropogenic factors in the evolution of Byzantine state and society (such as invasions, changes in international or regional market demand and patterns of production and consumption, etc.). The focus of this interdisciplinary study was to address the possible causal relationships between climatic and socio-economic change and to assess the resilience of the Byzantine socio-economic system in the context of climate change impacts.

  5. The Medieval Climate Anomaly and Byzantium: A review of the evidence on climatic fluctuations, economic performance and societal change

    NASA Astrophysics Data System (ADS)

    Xoplaki, Elena; Fleitmann, Dominik; Luterbacher, Juerg; Wagner, Sebastian; Haldon, John F.; Zorita, Eduardo; Telelis, Ioannis; Toreti, Andrea; Izdebski, Adam

    2016-04-01

    At the beginning of the Medieval Climate Anomaly, in the ninth and tenth century, the medieval eastern Roman empire, more usually known as Byzantium, was recovering from its early medieval crisis and experiencing favourable climatic conditions for the agricultural and demographic growth. Although in the Balkans and Anatolia such favourable climate conditions were prevalent during the eleventh century, parts of the imperial territories were facing significant challenges as a result of external political/military pressure. The apogee of medieval Byzantine socio-economic development, around AD 1150, coincides with a period of adverse climatic conditions for its economy, so it becomes obvious that the winter dryness and high climate variability at this time did not hinder Byzantine society and economy from achieving that level of expansion. Soon after this peak, towards the end of the twelfth century, the populations of the Byzantine world were experiencing unusual climatic conditions with marked dryness and cooler phases. The weakened Byzantine socio-political system must have contributed to the events leading to the fall of Constantinople in AD 1204 and the sack of the city. The final collapse of the Byzantine political control over western Anatolia took place half century later, thus contemporaneous with the strong cooling effect after a tropical volcanic eruption in AD 1257. We suggest that, regardless of a range of other influential factors, climate change was also an important contributing factor to the socio-economic changes that took place in Byzantium during the Medieval Climate Anomaly. Crucially, therefore, while the relatively sophisticated and complex Byzantine society was certainly influenced by climatic conditions, and while it nevertheless displayed a significant degree of resilience, external pressures as well as tensions within the Byzantine society more broadly contributed to an increasing vulnerability in respect of climate impacts. Our interdisciplinary analysis is based on all available sources of information on the climate and society of Byzantium, that is textual (documentary), archaeological, environmental, climate and climate model-based evidence about the nature and extent of climate variability in the eastern Mediterranean. The key challenge was, therefore, to assess the relative influence to be ascribed to climate variability and change on the one hand, and on the other to the anthropogenic factors in the evolution of Byzantine state and society (such as invasions, changes in international or regional market demand and patterns of production and consumption, etc.). The focus of this interdisciplinary study was to address the possible causal relationships between climatic and socio-economic change and to assess the resilience of the Byzantine socio-economic system in the context of climate change impacts.

  6. Towards a Local-Scale Climate Service for Colombian Agriculture: Findings and Future Perspectives

    NASA Astrophysics Data System (ADS)

    Ramirez-Villegas, J.; Prager, S.; Llanos, L.; Agudelo, D.; Esquivel, A.; Sotelo, S.; Guevara, E.; Howland, F. C.; Munoz, A.; Rodriguez, J.; Ordonez, L.; Fernandes, K.

    2017-12-01

    Globally, interannual climate variability explains roughly a third of the yield variation for major crops. In Colombia, interannual climate variations and specially those driven by ENSO can disrupt production, lower farmers' incomes and increase market prices for both urban and rural consumers alike. Farmers in Colombia, however, often plan for the cropping season based on the immediately prior year's experience, which is unlikely to result in successful crops under high climate variability events. Critical decisions for avoiding total investment loss or to ensure successful harvests, including issues related to planting date, what variety to plant, or whether to plant, are made, at best, intuitively. Here, we demonstrate that the combination of better data, skillful seasonal climate forecasts, calibrated crop models, and a web-based climate services platform tailored to users' needs can prove successful in establishing a sustained climate service for agriculture. Rainfall predictability analyses indicate that statistical seasonal climate forecasts are skillful enough for issuing forecasts reliably in virtually all areas, with dry periods generally showing greater predictability than wet periods. Importantly, we find that a better specification of predictor regions significantly enhances seasonal forecast skill. Rice and maize crop models capture well the growth and development of rice and maize crops in experimental settings, and ably simulate historical (1980-2014) variations in productivity. With skillful climate and crop models, we developed a climate services platform that produces seasonal climate forecasts, and connects these with crop models. A usability study of the forecast platform revealed that, from a population of ca. 200 farmers and professionals, roughly two thirds correctly interpreted information and felt both confident and encouraged to use the platform. Nevertheless, capacity strengthening on key agro-climatology concepts was highlighted by farmers as a crucial need. Challenges also arose in certain zones due to limited access to electricity, computers or Internet. Based on our results, we conclude that for a climate service to be truly sustainable, well-calibrated and skillful models are as critical as the co-creation of the service itself with the stakeholder community.

  7. Reconstruction of Past Mediterranean Climate

    NASA Astrophysics Data System (ADS)

    García-Herrera, Ricardo; Luterbacher, Jürg; Lionello, Piero; Gonzáles-Rouco, Fidel; Ribera, Pedro; Rodó, Xavier; Kull, Christoph; Zerefos, Christos

    2007-02-01

    First MEDCLIVAR Workshop on Reconstruction of Past Mediterranean Climate; Pablo de Olavide University, Carmona, Spain, 8-11 November 2006; Mediterranean Climate Variability and Predictability (MEDCLIVAR; http://www.medclivar.eu) is a program that coordinates and promotes research on different aspects of Mediterranean climate. The main MEDCLIVAR goals include the reconstruction of past climate, describing patterns and mechanisms characterizing climate space-time variability, extremes at different time and space scales, coupled climate model/empirical reconstruction comparisons, seasonal forecasting, and the identification of the forcings responsible for the observed changes. The program has been endorsed by CLIVAR (Climate Variability and Predictability project) and is funded by the European Science Foundation.

  8. HIST-EU - a dataset of European relevance, a database to enable long-term climate variability studies on regional scale

    NASA Astrophysics Data System (ADS)

    Auer, I.; Böhm, R.; Ganekind, M.; Schöner, W.; Nemec, J.; Chimani, B.

    2010-09-01

    Instrumental time series of different climate elements are an important requisite for climate and climate impact studies. Long-term time series can improve our understanding of climate change during the instrumental period. During recent decades a number of national and international initiatives in European countries have significantly increased the number of existing long-term instrumental series; however a publically available data base covering Europe has not been created so far. For the "Greater Alpine Region" (4-19 deg E, 43-49 deg N, 0-3500m asl) the HISTALP data base has been established consisting of monthly homogenised temperature, pressure, precipitation, sunshine and cloudiness records. The data set may be described as follows: Long-term (fully exploiting the potential of systematically measured data). dense (network density adequate in respect to the spatial coherence of the given climate element) quality improved (outliers removed, gaps filled) homogenised (earlier sections adjusted to the recent state of the measuring site) multiple (covering more than one climate element) user friendly (well described and kept in different modes for different applications) HIST-EU is inteded to be a data set of European relevance allowing studying climate variability on regional scale. It focuses on data collection, data recovery and rescue, and homogenizing. HIST-EU will use the infrastructure of HISTALP (www.zamg.ac.at/histalp) and will allow free or restricted data access due to the regulations of data providers. HIST-EU will be carried out under the umbrella of ECSN/EUMETNET.

  9. Selecting global climate models for regional climate change studies

    PubMed Central

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures. PMID:19439652

  10. Climate variability and demand growth as drivers of water scarcity in the Turkwel river basin: a bottom-up risk assessment of a data-sparse basin in Kenya

    NASA Astrophysics Data System (ADS)

    Hirpa, F. A.; Dyer, E.; Hope, R.; Dadson, S. J.

    2017-12-01

    Sustainable water management and allocation are essential for maintaining human well-being, sustaining healthy ecosystems, and supporting steady economic growth. The Turkwel river basin, located in north-western Kenya, experiences a high level of water scarcity due to its arid climate, high rainfall variability, and rapidly growing water demand. However, due to sparse hydro-climatic data and limited literature, the water resources system of the basin has been poorly understood. Here we apply a bottom-up climate risk assessment method to estimate the resilience of the basin's water resources system to growing demand and climate stressors. First, using a water resource system model and historical climate data, we construct a climate risk map that depicts the way in which the system responds to climate change and variability. Then we develop a set of water demand scenarios to identify the conditions that potentially lead to the risk of unmet water demand and groundwater depletion. Finally, we investigate the impact of climate change and variability by stress testing these development scenarios against historically strong El Niño/Southern Oscillation (ENSO) years and future climate projections from multiple Global Circulation Models (GCMs). The results reveal that climate variability and increased water demand are the main drivers of water scarcity in the basin. Our findings show that increases in water demand due to expanded irrigation and population growth exert the strongest influence on the ability of the system to meet water resource supply requirements, and in all cases considered increase the impacts of droughts caused by future climate variability. Our analysis illustrates the importance of combining analysis of future climate risks with other development decisions that affect water resources planning. Policy and investment decisions which maximise water use efficiency in the present day are likely to impart resilience to climate change and variability under a wide range of future scenarios and therefore constitute low regret measures for climate adaptation.

  11. A Framework to Assess the Impacts of Climate Change on ...

    EPA Pesticide Factsheets

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a ba

  12. Upgrades to the REA method for producing probabilistic climate change projections

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Gao, Xuejie; Giorgi, Filippo

    2010-05-01

    We present an augmented version of the Reliability Ensemble Averaging (REA) method designed to generate probabilistic climate change information from ensembles of climate model simulations. Compared to the original version, the augmented one includes consideration of multiple variables and statistics in the calculation of the performance-based weights. In addition, the model convergence criterion previously employed is removed. The method is applied to the calculation of changes in mean and variability for temperature and precipitation over different sub-regions of East Asia based on the recently completed CMIP3 multi-model ensemble. Comparison of the new and old REA methods, along with the simple averaging procedure, and the use of different combinations of performance metrics shows that at fine sub-regional scales the choice of weighting is relevant. This is mostly because the models show a substantial spread in performance for the simulation of precipitation statistics, a result that supports the use of model weighting as a useful option to account for wide ranges of quality of models. The REA method, and in particular the upgraded one, provides a simple and flexible framework for assessing the uncertainty related to the aggregation of results from ensembles of models in order to produce climate change information at the regional scale. KEY WORDS: REA method, Climate change, CMIP3

  13. How Do Land-Use and Climate Change Affect Watershed ...

    EPA Pesticide Factsheets

    With the growing emphasis on biofuel crops and potential impacts of climate variability and change, there is a need to quantify their effects on hydrological processes for developing watershed management plans. Environmental consequences are currently estimated by utilizing computer models such as Soil and Water Assessment Tool (SWAT) to simulate watershed hydrology under projected climate and land-use scenarios to assess the effect on water quantity and/or quality. Such studies have largely been deterministic in nature, with the focus being on whether hydrologic variables such as runoff, sediment and/or nutrient loads increase or decrease from the baseline case under projected scenarios. However, studying how these changes would affect watershed health in a risk-based framework has not been attempted. In this study, impacts of several projected land-use and climate change scenarios on the health of the Wildcat Creek watershed in Indiana have been assessed through three risk indicators, namely reliability-resilience-vulnerability (R-R-V). Results indicate that cultivation of biofuel crops such as Miscanthus and switchgrass has the potential to improve risk indicator values with respect to sediment, total N and total P. Climate change scenarios that involved rising precipitation levels were found to negatively impact watershed health indicators. Trends of water quality constituents under risk-based watershed health assessment revealed nuances not readily a

  14. Systematic review of current efforts to quantify the impacts of climate change on undernutrition.

    PubMed

    Phalkey, Revati K; Aranda-Jan, Clara; Marx, Sabrina; Höfle, Bernhard; Sauerborn, Rainer

    2015-08-18

    Malnutrition is a challenge to the health and productivity of populations and is viewed as one of the five largest adverse health impacts of climate change. Nonetheless, systematic evidence quantifying these impacts is currently limited. Our aim was to assess the scientific evidence base for the impact of climate change on childhood undernutrition (particularly stunting) in subsistence farmers in low- and middle-income countries. A systematic review was conducted to identify peer-reviewed and gray full-text documents in English with no limits for year of publication or study design. Fifteen manuscripts were reviewed. Few studies use primary data to investigate the proportion of stunting that can be attributed to climate/weather variability. Although scattered and limited, current evidence suggests a significant but variable link between weather variables, e.g., rainfall, extreme weather events (floods/droughts), seasonality, and temperature, and childhood stunting at the household level (12 of 15 studies, 80%). In addition, we note that agricultural, socioeconomic, and demographic factors at the household and individual levels also play substantial roles in mediating the nutritional impacts. Comparable interdisciplinary studies based on primary data at a household level are urgently required to guide effective adaptation, particularly for rural subsistence farmers. Systemization of data collection at the global level is indispensable and urgent. We need to assimilate data from long-term, high-quality agricultural, environmental, socioeconomic, health, and demographic surveillance systems and develop robust statistical methods to establish and validate causal links, quantify impacts, and make reliable predictions that can guide evidence-based health interventions in the future.

  15. Systematic review of current efforts to quantify the impacts of climate change on undernutrition

    PubMed Central

    Phalkey, Revati K.; Aranda-Jan, Clara; Marx, Sabrina; Höfle, Bernhard; Sauerborn, Rainer

    2015-01-01

    Malnutrition is a challenge to the health and productivity of populations and is viewed as one of the five largest adverse health impacts of climate change. Nonetheless, systematic evidence quantifying these impacts is currently limited. Our aim was to assess the scientific evidence base for the impact of climate change on childhood undernutrition (particularly stunting) in subsistence farmers in low- and middle-income countries. A systematic review was conducted to identify peer-reviewed and gray full-text documents in English with no limits for year of publication or study design. Fifteen manuscripts were reviewed. Few studies use primary data to investigate the proportion of stunting that can be attributed to climate/weather variability. Although scattered and limited, current evidence suggests a significant but variable link between weather variables, e.g., rainfall, extreme weather events (floods/droughts), seasonality, and temperature, and childhood stunting at the household level (12 of 15 studies, 80%). In addition, we note that agricultural, socioeconomic, and demographic factors at the household and individual levels also play substantial roles in mediating the nutritional impacts. Comparable interdisciplinary studies based on primary data at a household level are urgently required to guide effective adaptation, particularly for rural subsistence farmers. Systemization of data collection at the global level is indispensable and urgent. We need to assimilate data from long-term, high-quality agricultural, environmental, socioeconomic, health, and demographic surveillance systems and develop robust statistical methods to establish and validate causal links, quantify impacts, and make reliable predictions that can guide evidence-based health interventions in the future. PMID:26216952

  16. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands.

    PubMed

    Lee, Se-Yeun; Ryan, Maureen E; Hamlet, Alan F; Palen, Wendy J; Lawler, Joshua J; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916-2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce wetland habitat availability for many species.

  17. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands

    PubMed Central

    Hamlet, Alan F.; Palen, Wendy J.; Lawler, Joshua J.; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916–2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce wetland habitat availability for many species. PMID:26331850

  18. Generalized Dissimilarity Modeling of Late-Quaternary Variations in Pollen-Based Compositional Dissimilarity

    NASA Astrophysics Data System (ADS)

    Williams, J. W.; Blois, J.; Ferrier, S.; Manion, G.; Fitzpatrick, M.; Veloz, S.; He, F.; Liu, Z.; Otto-Bliesner, B. L.

    2011-12-01

    In Quaternary paleoecology and paleoclimatology, compositionally dissimilar fossil assemblages usually indicate dissimilar environments; this relationship underpins assemblage-level techniques for paleoenvironmental reconstruction such as mutual climatic ranges or the modern analog technique. However, there has been relatively little investigation into the form of the relationship between compositional dissimilarity and climatic dissimilarity. Here we apply generalized dissimilarity modeling (GDM; Ferrier et al. 2007) as a tool for modeling the expected non-linear relationships between compositional and climatic dissimilarity. We use the CCSM3.0 transient paleoclimatic simulations from the SynTrace working group (Liu et al. 2009) and a new generation of fossil pollen maps from eastern North America (Blois et al. 2011) to 1) assess the spatial relationships between compositional dissimilarity and climatic dissimilarity and 2) whether these spatial relationships change over time. We used a taxonomic list of 106 genus-level pollen types, six climatic variables (winter precipitation and mean temperature, summer precipitation and temperature, seasonality of precipitation, and seasonality of temperature) that were chosen to minimize collinearity, and a cross-referenced pollen and climate dataset mapped for time slices spaced 1000 years apart. When GDM was trained for one time slice, the correlation between predicted and observed spatial patterns of community dissimilarity for other times ranged between 0.3 and 0.73. The selection of climatic predictor variables changed over time, as did the form of the relationship between compositional turnover and climatic predictors. Summer temperature was the only variable selected for all time periods. These results thus suggest that the relationship between compositional dissimilarity in pollen assemblages (and, by implication, beta diversity in plant communities) and climatic dissimilarity can change over time, for reasons to be further studied.

  19. Aroma types of flue-cured tobacco in China: spatial distribution and association with climatic factors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wu, Wei; Wu, Shu-Cheng; Liu, Hong-Bin; Peng, Qing

    2014-02-01

    Aroma types of flue-cured tobacco (FCT) are classified into light, medium, and heavy in China. However, the spatial distribution of FCT aroma types and the relationships among aroma types, chemical parameters, and climatic variables were still unknown at national scale. In the current study, multi-year averaged chemical parameters (total sugars, reducing sugars, nicotine, total nitrogen, chloride, and K2O) of FCT samples with grade of C3F and climatic variables (mean, minimum and maximum temperatures, rainfall, relative humidity, and sunshine hours) during the growth periods were collected from main planting areas across China. Significant relationships were found between chemical parameters and climatic variables ( p < 0.05). A spatial distribution map of FCT aroma types were produced using support vector machine algorithms and chemical parameters. Significant differences in chemical parameters and climatic variables were observed among the three aroma types based on one-way analysis of variance ( p < 0.05). Areas with light aroma type had significantly lower values of mean, maximum, and minimum temperatures than regions with medium and heavy aroma types ( p < 0.05). Areas with heavy aroma type had significantly lower values of rainfall and relative humidity and higher values of sunshine hours than regions with light and medium aroma types ( p < 0.05). The output produced by classification and regression trees showed that sunshine hours, rainfall, and maximum temperature were the most important factors affecting FCT aroma types at national scale.

  20. IN11B-1621: Quantifying How Climate Affects Vegetation in the Amazon Rainforest

    NASA Technical Reports Server (NTRS)

    Das, Kamalika; Kodali, Anuradha; Szubert, Marcin; Ganguly, Sangram; Bongard, Joshua

    2016-01-01

    Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this study, we are able to learn, for the very first time how exactly different climate factors influence vegetation at any location in the Amazon rainforests, independent of the specific sources from which the data has been obtained.

  1. Quantifying How Climate Affects Vegetation in the Amazon Rainforest

    NASA Astrophysics Data System (ADS)

    Das, K.; Kodali, A.; Szubert, M.; Ganguly, S.; Bongard, J.

    2016-12-01

    Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this study, we are able to learn, for the very first time how exactly different climate factors influence vegetation at any location in the Amazon rainforests, independent of the specific sources from which the data has been obtained.

  2. Response of waves and coastline evolution to climate variability off the Niger Delta coast during the past 110 years

    NASA Astrophysics Data System (ADS)

    Dada, Olusegun A.; Li, Guangxue; Qiao, Lulu; Ma, Yanyan; Ding, Dong; Xu, Jishang; Li, Pin; Yang, Jichao

    2016-08-01

    River deltas, low-lying landforms that host critical economic infrastructures and diverse ecosystems as well as high concentrations of human population, are highly vulnerable to the effects of global climate change. In order to understand the wave climate, their potential changes and implication on coastline evolution for environment monitoring and sustainable management of the Niger Delta in the Gulf of Guinea, an investigation was carried out based on offshore wave statistics of an 110-year time series (1900-2010) dataset obtained from the ECMWF ERA-20C atmospheric reanalysis. Results of multivariate regression analyses indicate that interannual mean values of Hs and Tm trends tended to increase over time, especially in the western part of the delta coast, so that they are presently (1980 and 2010) up to 264 mm (300%) and 0.32 s (22%), respectively, higher than 80 years (1900-1930) ago. The maximum directions of the wave have become more westerly (southward) than southerly (westward) by up to 2° (33%) and the mean longshore sediment transport rate has increased by more than 8% over the last 80 years. The linear regression analysis for shoreline changes from 1987 to 2013 shows an erosional trend at the western part of the delta and accretional trends towards eastern part. The relationship between wave climate of the study area and atmospheric circulation using Pearson's correlation shows that the Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO), East Atlantic pattern (EA) and El-Nino/Southern Oscillation (ENSO) Index explain significant proportion of the seasonal and annual wave variabilities compared to other indices. But it is most likely that the combination of these climatic indices acting together or separately constitutes a powerful and effective mechanism responsible for much of the variability of the offshore Niger Delta wave climate. The study concludes that changing wave climate off the Niger Delta has strong implications on the delta coastline changes. However, other processes (such as fluvial discharge variability due climatic variability and anthropogenic effect) may be acting concomitantly with changes in wave regime and associated littoral transport to influence shoreline evolution along the Niger Delta coast.

  3. Collaboration pathway(s) using new tools for optimizing `operational' climate monitoring from space

    NASA Astrophysics Data System (ADS)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2015-09-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a long term solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the collective needs of policy makers, scientific communities and global academic users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent rule-based expert system (RBES) optimization modeling of the intended NPOESS architecture becomes a surrogate for global operational climate monitoring architecture(s). These rulebased systems tools provide valuable insight for global climate architectures, by comparison/evaluation of alternatives and the sheer range of trade space explored. Optimization of climate monitoring architecture(s) for a partial list of ECV (essential climate variables) is explored and described in detail with dialogue on appropriate rule-based valuations. These optimization tool(s) suggest global collaboration advantages and elicit responses from the audience and climate science community. This paper will focus on recent research exploring joint requirement implications of the high profile NPOESS architecture and extends the research and tools to optimization for a climate centric case study. This reflects work from SPIE RS Conferences 2013 and 2014, abridged for simplification30, 32. First, the heavily securitized NPOESS architecture; inspired the recent research question - was Complexity (as a cost/risk factor) overlooked when considering the benefits of aggregating different missions into a single platform. Now years later a complete reversal; should agencies considering Disaggregation as the answer. We'll discuss what some academic research suggests. Second, using the GCOS requirements of earth climate observations via ECV (essential climate variables) many collected from space-based sensors; and accepting their definitions of global coverages intended to ensure the needs of major global and international organizations (UNFCCC and IPCC) are met as a core objective. Consider how new optimization tools like rule-based engines (RBES) offer alternative methods of evaluating collaborative architectures and constellations? What would the trade space of optimized operational climate monitoring architectures of ECV look like? Third, using the RBES tool kit (2014) demonstrate with application to a climate centric rule-based decision engine - optimizing architectural trades of earth observation satellite systems, allowing comparison(s) to existing architectures and gaining insights for global collaborative architectures. How difficult is it to pull together an optimized climate case study - utilizing for example 12 climate based instruments on multiple existing platforms and nominal handful of orbits; for best cost and performance benefits against the collection requirements of representative set of ECV. How much effort and resources would an organization expect to invest to realize these analysis and utility benefits?

  4. Integrated ocean management as a strategy to meet rapid climate change: the Norwegian case.

    PubMed

    Hoel, Alf Håkon; Olsen, Erik

    2012-02-01

    The prospects of rapid climate change and the potential existence of tipping points in marine ecosystems where nonlinear change may result from them being overstepped, raises the question of strategies for coping with ecosystem change. There is broad agreement that the combined forces of climate change, pollution and increasing economic activities necessitates more comprehensive approaches to oceans management, centering on the concept of ecosystem-based oceans management. This article addresses the Norwegian experience in introducing integrated, ecosystem-based oceans management, emphasizing how climate change, seen as a major long-term driver of change in ecosystems, is addressed in management plans. Understanding the direct effects of climate variability and change on ecosystems and indirect effects on human activities is essential for adaptive planning to be useful in the long-term management of the marine environment.

  5. Crop Yield Simulations Using Multiple Regional Climate Models in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stack, D.; Kafatos, M.; Kim, S.; Kim, J.; Walko, R. L.

    2013-12-01

    Agricultural productivity (described by crop yield) is strongly dependent on climate conditions determined by meteorological parameters (e.g., temperature, rainfall, and solar radiation). California is the largest producer of agricultural products in the United States, but crops in associated arid and semi-arid regions live near their physiological limits (e.g., in hot summer conditions with little precipitation). Thus, accurate climate data are essential in assessing the impact of climate variability on agricultural productivity in the Southwestern United States and other arid regions. To address this issue, we produced simulated climate datasets and used them as input for the crop production model. For climate data, we employed two different regional climate models (WRF and OLAM) using a fine-resolution (8km) grid. Performances of the two different models are evaluated in a fine-resolution regional climate hindcast experiment for 10 years from 2001 to 2010 by comparing them to the North American Regional Reanalysis (NARR) dataset. Based on this comparison, multi-model ensembles with variable weighting are used to alleviate model bias and improve the accuracy of crop model productivity over large geographic regions (county and state). Finally, by using a specific crop-yield simulation model (APSIM) in conjunction with meteorological forcings from the multi-regional climate model ensemble, we demonstrate the degree to which maize yields are sensitive to the regional climate in the Southwestern United States.

  6. Mosquito populations dynamics associated with climate variations.

    PubMed

    Wilke, André Barretto Bruno; Medeiros-Sousa, Antônio Ralph; Ceretti-Junior, Walter; Marrelli, Mauro Toledo

    2017-02-01

    Mosquitoes are responsible for the transmission of numerous serious pathogens. Members of the Aedes and Culex genera, which include many important vectors of mosquito-borne diseases, are highly invasive and adapted to man-made environments. They are spread around the world involuntarily by humans and are highly adapted to urbanized environments, where they are exposed to climate-related abundance drivers. We investigated Culicidae fauna in two urban parks in the city of São Paulo to analyze the correlations between climatic variables and the population dynamics of mosquitoes in these urban areas. Mosquitoes were collected monthly over one year, and sampling sufficiency was evaluated after morphological identification of the specimens. The average monthly temperature and accumulated rainfall for the collection month and previous month were used to explain climate-related abundance drivers for the six most abundant species (Aedes aegypti, Aedes albopictus, Aedes fluviatilis, Aedes scapularis, Culex nigripalpus and Culex quinquefasciatus) and then analyzed using generalized linear statistical models and the Akaike Information Criteria corrected for small samples (AICc). The strength of evidence in favor of each model was evaluated using Akaike weights, and the explanatory model power was measured by McFadden's Pseudo-R 2 . Associations between climate and mosquito abundance were found in both parks, indicating that predictive models based on climate variables can provide important information on mosquito population dynamics. We also found that this association is species-dependent. Urbanization processes increase the abundance of a few mosquito species that are well adapted to man-made environments and some of which are important vectors of pathogens. Predictive models for abundance based on climate variables may help elucidate the population dynamics of urban mosquitoes and their impact on the risk of disease transmission, allowing better predictive scenarios to be developed and supporting the implementation of vector mosquito control strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. [Drivers of human-caused fire occurrence and its variation trend under climate change in the Great Xing'an Mountains, Northeast China].

    PubMed

    Li, Shun; Wu, Zhi Wei; Liang, Yu; He, Hong Shi

    2017-01-01

    The Great Xing'an Mountains are an important boreal forest region in China with high frequency of fire occurrences. With climate change, this region may have a substantial change in fire frequency. Building the relationship between spatial pattern of human-caused fire occurrence and its influencing factors, and predicting the spatial patterns of human-caused fires under climate change scenarios are important for fire management and carbon balance in boreal forests. We employed a spatial point pattern model to explore the relationship between the spatial pattern of human-caused fire occurrence and its influencing factors based on a database of historical fire records (1967-2006) in the Great Xing'an Mountains. The fire occurrence time was used as dependent variable. Nine abiotic (annual temperature and precipitation, elevation, aspect, and slope), biotic (vegetation type), and human factors (distance to the nearest road, road density, and distance to the nearest settlement) were selected as explanatory variables. We substituted the climate scenario data (RCP 2.6 and RCP 8.5) for the current climate data to predict the future spatial patterns of human-caused fire occurrence in 2050. Our results showed that the point pattern progress (PPP) model was an effective tool to predict the future relationship between fire occurrence and its spatial covariates. The climatic variables might significantly affect human-caused fire occurrence, while vegetation type, elevation and human variables were important predictors of human-caused fire occurrence. The human-caused fire occurrence probability was expected to increase in the south of the area, and the north and the area along the main roads would also become areas with high human-caused fire occurrence. The human-caused fire occurrence would increase by 72.2% under the RCP 2.6 scenario and by 166.7% under the RCP 8.5 scenario in 2050. Under climate change scenarios, the spatial patterns of human-caused fires were mainly influenced by the climate and human factors.

  8. [Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model].

    PubMed

    Yuan, Yu-zhi; Zhang, Zheng-dong; Meng, Jin-hua

    2015-04-01

    SWAT model, an extensively used distributed hydrological model, was used to quantitatively analyze the influences of changes in land use and climate on the runoff at watershed scale. Liuxihe Watershed' s SWAT model was established and three scenarios were set. The calibration and validation at three hydrological stations of Wenquan, Taipingchang and Nangang showed that the three factors of Wenquan station just only reached the standard in validated period, and the other two stations had relative error (RE) < 15%, correlation coefficient (R2) > 0.8 and Nash-Sutcliffe efficiency valve (Ens) > 0.75, suggesting that SWAT model was appropriate for simulating runoff response to land use change and climate variability in Liuxihe watershed. According to the integrated scenario simulation, the annual runoff increased by 11.23 m3 x s(-1) from 2001 to 2010 compared with the baseline period from 1991 to 2000, among which, the land use change caused an annual runoff reduction of 0.62 m3 x s(-1), whereas climate variability caused an annual runoff increase of 11.85 m3 x s(-1). Apparently, the impact of climate variability was stronger than that of land use change. On the other hand, the scenario simulation of extreme land use showed that compared with the land use in 2000, the annual runoff of the farmland scenario and the grassland scenario increased by 2.7% and 0.5% respectively, while that of the forest land scenario were reduced by 0.7%, which suggested that forest land had an ability of diversion closure. Furthermore, the scenario simulation of climatic variability indicated that the change of river runoff correlated positively with precipitation change (increase of 11.6% in annual runoff with increase of 10% in annual precipitation) , but negatively with air temperature change (reduction of 0.8% in annual runoff with increase of 1 degrees C in annual mean air temperature), which showed that the impact of precipitation variability was stronger than that of air temperature change. Therefore, in face of climate variability, we need to pay attention to strong rainfall forecasts, optimization of land use structure and spatial distribution, which could reduce the negative hydrological effects (such as floods) induced by climate change.

  9. Simulating the hydrologic impacts of land cover and climate changes in a semi-arid watershed

    EPA Pesticide Factsheets

    Changes in climate and land cover are among the principal variables affecting watershed hydrology.This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in thesemi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-basedmodel is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCSCN)method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation,the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologicsimulation results reveal climate change as the dominant factor and land-cover change as a secondary factor inregulating future river discharge. The combined effects of climate and land-cover changes will slightly increaseriver discharge in summer but substantially decrease discharge in winter. This impact on water resources deservesattention in climate change adaptation planning.This dataset is associated with the following publication:Chen, H., S. Tong, H. Yang, and J. Yang. Simulating the hydrologic impacts of land cover and climate changes in a semi-arid watershed. Hydrological Sciences Journal. IAHS LIMITED, Oxford, UK, 60(10): 1739-1758, (2015).

  10. Data Mining in Institutional Economics Tasks

    NASA Astrophysics Data System (ADS)

    Kirilyuk, Igor; Kuznetsova, Anna; Senko, Oleg

    2018-02-01

    The paper discusses problems associated with the use of data mining tools to study discrepancies between countries with different types of institutional matrices by variety of potential explanatory variables: climate, economic or infrastructure indicators. An approach is presented which is based on the search of statistically valid regularities describing the dependence of the institutional type on a single variable or a pair of variables. Examples of regularities are given.

  11. High skill in low-frequency climate response through fluctuation dissipation theorems despite structural instability.

    PubMed

    Majda, Andrew J; Abramov, Rafail; Gershgorin, Boris

    2010-01-12

    Climate change science focuses on predicting the coarse-grained, planetary-scale, longtime changes in the climate system due to either changes in external forcing or internal variability, such as the impact of increased carbon dioxide. The predictions of climate change science are carried out through comprehensive, computational atmospheric, and oceanic simulation models, which necessarily parameterize physical features such as clouds, sea ice cover, etc. Recently, it has been suggested that there is irreducible imprecision in such climate models that manifests itself as structural instability in climate statistics and which can significantly hamper the skill of computer models for climate change. A systematic approach to deal with this irreducible imprecision is advocated through algorithms based on the Fluctuation Dissipation Theorem (FDT). There are important practical and computational advantages for climate change science when a skillful FDT algorithm is established. The FDT response operator can be utilized directly for multiple climate change scenarios, multiple changes in forcing, and other parameters, such as damping and inverse modelling directly without the need of running the complex climate model in each individual case. The high skill of FDT in predicting climate change, despite structural instability, is developed in an unambiguous fashion using mathematical theory as guidelines in three different test models: a generic class of analytical models mimicking the dynamical core of the computer climate models, reduced stochastic models for low-frequency variability, and models with a significant new type of irreducible imprecision involving many fast, unstable modes.

  12. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  13. NPOESS, Essential Climates Variables and Climate Change

    NASA Astrophysics Data System (ADS)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  14. Spatial variability in forest growth—climate relationships in the Olympic Mountains, Washington.

    Treesearch

    Jill M. Nakawatase; David L. Peterson

    2006-01-01

    For many Pacific Northwest forests, little is known about the spatial and temporal variability in tree growth - climate relationships, yet it is this information that is needed to predict how forests will respond to future climatic change. We studied the effects of climatic variability on forest growth at 74 plots in the western and northeastern Olympic Mountains....

  15. Frontiers in Decadal Climate Variability: Proceedings of a Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purcell, Amanda

    A number of studies indicate an apparent slowdown in the overall rise in global average surface temperature between roughly 1998 and 2014. Most models did not predict such a slowdown--a fact that stimulated a lot of new research on variability of Earth's climate system. At a September 2015 workshop, leading scientists gathered to discuss current understanding of climate variability on decadal timescales (10 to 30 years) and whether and how prediction of it might be improved. Many researchers have focused their attention on the climate system itself, which is known to vary across seasons, decades, and other timescales. Several naturalmore » variables produce "ups and downs" in the climate system, which are superimposed on the long-term warming trend due to human influence. Understanding decadal climate variability is important not only for assessing global climate change but also for improving decision making related to infrastructure, water resources, agriculture, energy, and other realms. Like the well-studied El Nino and La Nina interannual variations, decadal climate variability is associated with specific regional patterns of temperature and precipitation, such as heat waves, cold spells, and droughts. Several participants shared research that assesses decadal predictive capability of current models.« less

  16. Joint effects of climate variability and socioecological factors on dengue transmission: epidemiological evidence.

    PubMed

    Akter, Rokeya; Hu, Wenbiao; Naish, Suchithra; Banu, Shahera; Tong, Shilu

    2017-06-01

    To assess the epidemiological evidence on the joint effects of climate variability and socioecological factors on dengue transmission. Following PRISMA guidelines, a detailed literature search was conducted in PubMed, Web of Science and Scopus. Peer-reviewed, freely available and full-text articles, considering both climate and socioecological factors in relation to dengue, published in English from January 1993 to October 2015 were included in this review. Twenty studies have met the inclusion criteria and assessed the impact of both climatic and socioecological factors on dengue dynamics. Among those, four studies have further investigated the relative importance of climate variability and socioecological factors on dengue transmission. A few studies also developed predictive models including both climatic and socioecological factors. Due to insufficient data, methodological issues and contextual variability of the studies, it is hard to draw conclusion on the joint effects of climate variability and socioecological factors on dengue transmission. Future research should take into account socioecological factors in combination with climate variables for a better understanding of the complex nature of dengue transmission as well as for improving the predictive capability of dengue forecasting models, to develop effective and reliable early warning systems. © 2017 John Wiley & Sons Ltd.

  17. Long-term hydrometeorological trends in the Midwest region based on a century long gridded hydrometeorological dataset and simulations from a macro-scale hydrology model

    NASA Astrophysics Data System (ADS)

    Chiu, C. M.; Hamlet, A. F.

    2014-12-01

    Climate change is likely to impact the Great Lakes region and Midwest region via changes in Great Lakes water levels, agricultural impacts, river flooding, urban stormwater impacts, drought, water temperature, and impacts to terrestrial and aquatic ecosystems. Self-consistent and temporally homogeneous long-term data sets of precipitation and temperature over the entire Great Lakes region and Midwest regions are needed to provide inputs to hydrologic models, assess historical trends in hydroclimatic variables, and downscale global and regional-scale climate models. To support these needs a new hybrid gridded meteorological forcing dataset at 1/16 degree resolution based on data from co-op station records, the U. S Historical Climatology Network (HCN) , the Historical Canadian Climate Database (HCCD), and Precipitation Regression on Independent Slopes Method (PRISM) has been assembled over the Great Lakes and Midwest region from 1915-2012 at daily time step. These data were then used as inputs to the macro-scale Variable Infiltration Capacity (VIC) hydrology model, implemented over the Midwest and Great Lakes region at 1/16 degree resolution, to produce simulated hydrologic variables that are amenable to long-term trend analysis. Trends in precipitation and temperature from the new meteorological driving data sets, as well as simulated hydrometeorological variables such as snowpack, soil moisture, runoff, and evaporation over the 20th century are presented and discussed.

  18. Two types of physical inconsistency to avoid with quantile mapping: a case study with relative humidity over North America.

    NASA Astrophysics Data System (ADS)

    Grenier, P.

    2017-12-01

    Statistical post-processing techniques aim at generating plausible climate scenarios from climate simulations and observation-based reference products. These techniques are generally not physically-based, and consequently they remedy the problem of simulation biases at the risk of generating physical inconsistency (PI). Although this concern is often emphasized, it is rarely addressed quantitatively. Here, PI generated by quantile mapping (QM), a technique widely used in climatological and hydrological applications, is investigated using relative humidity (RH) and its parent variables, namely specific humidity (SH), temperature and pressure. PI is classified into two types: 1) inadequate value for an individual variable (e.g. RH > 100 %), and 2) breaking of an inter-variable relationship. Scenarios built for this study correspond to twelve sites representing a variety of climate types over North America. Data used are an ensemble of ten 3-hourly global (CMIP5) and regional (CORDEX-NAM) simulations, as well as the CFSR reanalysis. PI of type 1 is discussed in terms of frequency of occurrence and amplitude of unphysical cases for RH and SH variables. PI of type 2 is investigated with heuristic proxies designed to directly compare the physical inconsistency problem with the initial bias problem. Finally, recommendations are provided for an appropriate use of QM given the potential to generate physical inconsistency of types 1 and 2.

  19. Spring onset variations and long-term trends from new hemispheric-scale products and remote sensing

    NASA Astrophysics Data System (ADS)

    Dye, D. G.; Li, X.; Ault, T.; Zurita-Milla, R.; Schwartz, M. D.

    2015-12-01

    Spring onset is commonly characterized by plant phenophase changes among a variety of biophysical transitions and has important implications for natural and man-managed ecosystems. Here, we present a new integrated analysis of variability in gridded Northern Hemisphere spring onset metrics. We developed a set of hemispheric temperature-based spring indices spanning 1920-2013. As these were derived solely from meteorological data, they are used as a benchmark for isolating the climate system's role in modulating spring "green up" estimated from the annual cycle of normalized difference vegetation index (NDVI). Spatial patterns of interannual variations, teleconnections, and long-term trends were also analyzed in all metrics. At mid-to-high latitudes, all indices exhibit larger variability at interannual to decadal time scales than at spatial scales of a few kilometers. Trends of spring onset vary across space and time. However, compared to long-term trend, interannual to decadal variability generally accounts for a larger portion of the total variance in spring onset timing. Therefore, spring onset trends identified from short existing records may be aliased by decadal climate variations due to their limited temporal depth, even when these records span the entire satellite era. Based on our findings, we also demonstrated that our indices have skill in representing ecosystem-level spring phenology and may have important implications in understanding relationships between phenology, atmosphere dynamics and climate variability.

  20. Collaboration pathway(s) using new tools for optimizing operational climate monitoring from space

    NASA Astrophysics Data System (ADS)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2014-10-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the needs of decision makers, scientific investigators and global users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent (2014) rulebased decision engine modeling runs that targeted optimizing the intended NPOESS architecture, becomes a surrogate for global operational climate monitoring architecture(s). This rule-based systems tools provide valuable insight for Global climate architectures, through the comparison and evaluation of alternatives considered and the exhaustive range of trade space explored. A representative optimization of Global ECV's (essential climate variables) climate monitoring architecture(s) is explored and described in some detail with thoughts on appropriate rule-based valuations. The optimization tools(s) suggest and support global collaboration pathways and hopefully elicit responses from the audience and climate science shareholders.

  1. Adapting the US Food System to Climate Change Goes Beyond the Farm Gate

    NASA Astrophysics Data System (ADS)

    Easterling, W. E.

    2014-12-01

    The literature on climate change effects on food and agriculture has concentrated primarily on how crops and livestock likely will be directly affected by climate variability and change and by elevated carbon dioxide. Integrated assessments have simulated large-scale economic response to shifting agricultural productivity caused by climate change, including possible changes in food costs and prices. A small but growing literature has shown how different facets of agricultural production inside the farm gate could be adapted to climate variability and change. Very little research has examined how the full food system (production, processing and storage, transportation and trade, and consumption) is likely to be affected by climate change and how different adaptation approaches will be required by different parts of the food system. This paper will share partial results of a major assessment sponsored by USDA to determine how climate change-induced changes in global food security could affect the US food system. Emphasis is given to understanding how adaptation strategies differ widely across the food system. A common thread, however, is risk management-based decision making. Technologies and management strategies may co-evolve with climate change but a risk management framework for implementing those technologies and strategies may provide a stable foundation.

  2. Regional Climate and Streamflow Projections in North America Under IPCC CMIP5 Scenarios

    NASA Astrophysics Data System (ADS)

    Chang, H. I.; Castro, C. L.; Troch, P. A. A.; Mukherjee, R.

    2014-12-01

    The Colorado River system is the predominant source of water supply for the Southwest U.S. and is already fully allocated, making the region's environmental and economic health particularly sensitive to annual and multi-year streamflow variability. Observed streamflow declines in the Colorado Basin in recent years are likely due to synergistic combination of anthropogenic global warming and natural climate variability, which are creating an overall warmer and more extreme climate. IPCC assessment reports have projected warmer and drier conditions in arid to semi-arid regions (e.g. Solomon et al. 2007). The NAM-related precipitation contributes to substantial Colorado streamflows. Recent climate change studies for the Southwest U.S. region project a dire future, with chronic drought, and substantially reduced Colorado River flows. These regional effects reflect the general observation that climate is being more extreme globally, with areas climatologically favored to be wet getting wetter and areas favored to be dry getting drier (Wang et al. 2012). Multi-scale downscaling modeling experiments are designed using recent IPCC AR5 global climate projections, which incorporate regional climate and hydrologic modeling components. The Weather Research and Forecasting model (WRF) has been selected as the main regional modeling tool; the Variable Infiltration Capacity model (VIC) will be used to generate streamflow projections for the Colorado River Basin. The WRF domain is set up to follow the CORDEX-North America guideline with 25km grid spacing, and VIC model is individually calibrated for upper and lower Colorado River basins in 1/8° resolution. The multi-scale climate and hydrology study aims to characterize how the combination of climate change and natural climate variability is changing cool and warm season precipitation. Further, to preserve the downscaled RCM sensitivity and maintain a reasonable climatology mean based on observed record, a new bias correction technique is applied when using the RCM climatology to the streamflow model. Of specific interest is how major droughts associated with La Niña-like conditions may worsen in the future, as these are the times when the Colorado River system is most critically stressed and would define the "worst case" scenario for water resource planning.

  3. Paleo-environmental Perspectives on Climate-change Monitoring in the National Parks of the Northern U.S. Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Gray, S. T.; Graumlich, L. J.; Pederson, G. T.; Fagre, D. B.; Betancourt, J. L.; Norris, J. R.; Jackson, S. T.

    2004-12-01

    In the face of growing visitation, encroaching development and a changing climate, the United States National Park Service has initiated a nationwide program to inventory and monitor the resources it protects. The foundation for this initiative lies in the development of baseline or reference datasets for physical and biological systems within each park unit. In a series of paleo-proxy studies from the Greater Yellowstone and Glacier National Park regions, we demonstrate that most instrumental and observational records are too short to capture a significant portion of the climatic and ecological variability that might be expected in the parks of the northern U.S. Rockies. Networks of tree-ring based temperature and precipitation reconstructions spanning the last ~1,000 yr demonstrate that the climates of these regions are not stationary. These climates are instead characterized by strong regime-like behavior over decadal to multidecadal timescales. Complimentary studies of past plant-community and landscape dynamics show how such lower-frequency variability can have a profound impact on vital park resources and amenities. In the eastern Yellowstone region, for example, persistent (20-30 yr) wet/cool periods in the 19th and early 20th centuries led to widespread recruitment of woody plants, and the legacy of these recruitment events still persists in the structure of many woodlands and forests. Studies of fossil packrat middens also suggest that at least some recent woody-plant encroachment and densification- a major management concern in the region- is related to plant late-Holocene plant migration dynamics and population processes rather than changing climate and land-use. Though the timing and effects of such events may differ, similar ecological responses to decadal/multidecadal climate variability are seen in the Glacier National Park region. In combination these studies serve to emphasize the need for careful selection of reference periods and baseline conditions used in climate-change monitoring, and this work shows the invaluable role that paleo-environmental archives can play in natural resource management. Overall, a more complete knowledge of long-duration ecological processes and lower-frequency climate variability should influence how we monitor and manage climate-change impacts throughout the northern Rockies.

  4. Impacts of Considering Climate Variability on Investment Decisions in Ethiopia

    NASA Astrophysics Data System (ADS)

    Strzepek, K.; Block, P.; Rosegrant, M.; Diao, X.

    2005-12-01

    In Ethiopia, climate extremes, inducing droughts or floods, are not unusual. Monitoring the effects of these extremes, and climate variability in general, is critical for economic prediction and assessment of the country's future welfare. The focus of this study involves adding climate variability to a deterministic, mean climate-driven agro-economic model, in an attempt to understand its effects and degree of influence on general economic prediction indicators for Ethiopia. Four simulations are examined, including a baseline simulation and three investment strategies: simulations of irrigation investment, roads investment, and a combination investment of both irrigation and roads. The deterministic model is transformed into a stochastic model by dynamically adding year-to-year climate variability through climate-yield factors. Nine sets of actual, historic, variable climate data are individually assembled and implemented into the 12-year stochastic model simulation, producing an ensemble of economic prediction indicators. This ensemble allows for a probabilistic approach to planning and policy making, allowing decision makers to consider risk. The economic indicators from the deterministic and stochastic approaches, including rates of return to investments, are significantly different. The predictions of the deterministic model appreciably overestimate the future welfare of Ethiopia; the predictions of the stochastic model, utilizing actual climate data, tend to give a better semblance of what may be expected. Inclusion of climate variability is vital for proper analysis of the predictor values from this agro-economic model.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond-Lamberty, Benjamin; Bunn, Andrew G.; Thomson, Allison M.

    High-latitude northern ecosystems are experiencing rapid climate changes, and represent a large potential climate feedback because of their high soil carbon densities and shifting disturbance regimes. A significant carbon flow from these ecosystems is soil respiration (RS, the flow of carbon dioxide, generated by plant roots and soil fauna, from the soil surface to atmosphere), and any change in the high-latitude carbon cycle might thus be reflected in RS observed in the field. This study used two variants of a machine-learning algorithm and least squares regression to examine how remotely-sensed canopy greenness (NDVI), climate, and other variables are coupled tomore » annual RS based on 105 observations from 64 circumpolar sites in a global database. The addition of NDVI roughly doubled model performance, with the best-performing models explaining ~62% of observed RS variability« less

  6. Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change.

    PubMed

    Boulton, Chris A; Lenton, Timothy M

    2015-09-15

    Marine ecosystems are sensitive to stochastic environmental variability, with higher-amplitude, lower-frequency--i.e., "redder"--variability posing a greater threat of triggering large ecosystem changes. Here we show that fluctuations in the Pacific Decadal Oscillation (PDO) index have slowed down markedly over the observational record (1900-present), as indicated by a robust increase in autocorrelation. This "reddening" of the spectrum of climate variability is also found in regionally averaged North Pacific sea surface temperatures (SSTs), and can be at least partly explained by observed deepening of the ocean mixed layer. The progressive reddening of North Pacific climate variability has important implications for marine ecosystems. Ecosystem variables that respond linearly to climate forcing will have become prone to much larger variations over the observational record, whereas ecosystem variables that respond nonlinearly to climate forcing will have become prone to more frequent "regime shifts." Thus, slowing down of North Pacific climate variability can help explain the large magnitude and potentially the quick succession of well-known abrupt changes in North Pacific ecosystems in 1977 and 1989. When looking ahead, despite model limitations in simulating mixed layer depth (MLD) in the North Pacific, global warming is robustly expected to decrease MLD. This could potentially reverse the observed trend of slowing down of North Pacific climate variability and its effects on marine ecosystems.

  7. Using historical and projected future climate model simulations as drivers of agricultural and biological models (Invited)

    NASA Astrophysics Data System (ADS)

    Stefanova, L. B.

    2013-12-01

    Climate model evaluation is frequently performed as a first step in analyzing climate change simulations. Atmospheric scientists are accustomed to evaluating climate models through the assessment of model climatology and biases, the models' representation of large-scale modes of variability (such as ENSO, PDO, AMO, etc) and the relationship between these modes and local variability (e.g. the connection between ENSO and the wintertime precipitation in the Southeast US). While these provide valuable information about the fidelity of historical and projected climate model simulations from an atmospheric scientist's point of view, the application of climate model data to fields such as agriculture, ecology and biology may require additional analyses focused on the particular application's requirements and sensitivities. Typically, historical climate simulations are used to determine a mapping between the model and observed climate, either through a simple (additive for temperature or multiplicative for precipitation) or a more sophisticated (such as quantile matching) bias correction on a monthly or seasonal time scale. Plants, animals and humans however are not directly affected by monthly or seasonal means. To assess the impact of projected climate change on living organisms and related industries (e.g. agriculture, forestry, conservation, utilities, etc.), derivative measures such as the heating degree-days (HDD), cooling degree-days (CDD), growing degree-days (GDD), accumulated chill hours (ACH), wet season onset (WSO) and duration (WSD), among others, are frequently useful. We will present a comparison of the projected changes in such derivative measures calculated by applying: (a) the traditional temperature/precipitation bias correction described above versus (b) a bias correction based on the mapping between the historical model and observed derivative measures themselves. In addition, we will present and discuss examples of various application-based climate model evaluations, such as: (a) agricultural crop yield estimates and (b) species population viability estimates modeled using observed climate data vs. historical climate simulations.

  8. Influence of climate variability on acute myocardial infarction mortality in Havana, 2001-2012.

    PubMed

    Rivero, Alina; Bolufé, Javier; Ortiz, Paulo L; Rodríguez, Yunisleydi; Reyes, María C

    2015-04-01

    Death from acute myocardial infarction is due to many factors; influences on risk to the individual include habits, lifestyle and behavior, as well as weather, climate and other environmental components. Changing climate patterns make it especially important to understand how climatic variability may influence acute myocardial infarction mortality. Describe the relationship between climate variability and acute myocardial infarction mortality during the period 2001-2012 in Havana. An ecological time-series study was conducted. The universe comprised 23,744 deaths from acute myocardial infarction (ICD-10: I21-I22) in Havana residents from 2001 to 2012. Climate variability and seasonal anomalies were described using the Bultó-1 bioclimatic index (comprising variables of temperature, humidity, precipitation, and atmospheric pressure), along with series analysis to determine different seasonal-to-interannual climate variation signals. The role played by climate variables in acute myocardial infarction mortality was determined using factor analysis. The Mann-Kendall and Pettitt statistical tests were used for trend analysis with a significance level of 5%. The strong association between climate variability conditions described using the Bultó-1 bioclimatic index and acute myocardial infarctions accounts for the marked seasonal pattern in AMI mortality. The highest mortality rate occurred during the dry season, i.e., the winter months in Cuba (November-April), with peak numbers in January, December and March. The lowest mortality coincided with the rainy season, i.e., the summer months (May-October). A downward trend in total number of deaths can be seen starting with the change point in April 2009. Climate variability is inversely associated with an increase in acute myocardial infarction mortality as is shown by the Bultó-1 index. This inverse relationship accounts for acute myocardial infarction mortality's seasonal pattern.

  9. Central Tropical Pacific Variability And ENSO Response To Changing Climate Boundary Conditions: Evidence From Individual Line Island Foraminifera

    NASA Astrophysics Data System (ADS)

    Rustic, G. T.; Polissar, P. J.; Ravelo, A. C.; White, S. M.

    2017-12-01

    The El Niño Southern Oscillation (ENSO) plays a dominant role in Earth's climate variability. Paleoceanographic evidence suggests that ENSO has changed in the past, and these changes have been linked to large-scale climatic shifts. While a close relationship between ENSO evolution and climate boundary conditions has been predicted, testing these predictions remains challenging. These climate boundary conditions, including insolation, the mean surface temperature gradient of the tropical Pacific, global ice volume, and tropical thermocline depth, often co-vary and may work together to suppress or enhance the ocean-atmosphere feedbacks that drive ENSO variability. Furthermore, suitable paleo-archives spanning multiple climate states are sparse. We have aimed to test ENSO response to changing climate boundary conditions by generating new reconstructions of mixed-layer variability from sedimentary archives spanning the last three glacial-interglacial cycles from the Central Tropical Pacific Line Islands, where El Niño is strongly expressed. We analyzed Mg/Ca ratios from individual foraminifera to reconstruct mixed-layer variability at discrete time intervals representing combinations of climatic boundary conditions from the middle Holocene to Marine Isotope Stage (MIS) 8. We observe changes in the mixed-layer temperature variability during MIS 5 and during the previous interglacial (MIS 7) showing significant reductions in ENSO amplitude. Differences in variability during glacial and interglacial intervals are also observed. Additionally, we reconstructed mixed-layer and thermocline conditions using multi-species Mg/Ca and stable isotope measurements to more fully characterize the state of the Central Tropical Pacific during these intervals. These reconstructions provide us with a unique view of Central Tropical Pacific variability and water-column structure at discrete intervals under varying boundary climate conditions with which to assess factors that shape ENSO variability.

  10. Climate signals in a multispecies tree-ring network from central and southern Italy and reconstruction of the late summer temperatures since the early 1700s

    NASA Astrophysics Data System (ADS)

    Leonelli, Giovanni; Coppola, Anna; Salvatore, Maria Cristina; Baroni, Carlo; Battipaglia, Giovanna; Gentilesca, Tiziana; Ripullone, Francesco; Borghetti, Marco; Conte, Emanuele; Tognetti, Roberto; Marchetti, Marco; Lombardi, Fabio; Brunetti, Michele; Maugeri, Maurizio; Pelfini, Manuela; Cherubini, Paolo; Provenzale, Antonello; Maggi, Valter

    2017-11-01

    A first assessment of the main climatic drivers that modulate the tree-ring width (RW) and maximum latewood density (MXD) along the Italian Peninsula and northeastern Sicily was performed using 27 forest sites, which include conifers (RW and MXD) and broadleaves (only RW). Tree-ring data were compared using the correlation analysis of the monthly and seasonal variables of temperature, precipitation and standardized precipitation index (SPI, used to characterize meteorological droughts) against each species-specific site chronology and against the highly sensitive to climate (HSTC) chronologies (based on selected indexed individual series). We find that climate signals in conifer MXD are stronger and more stable over time than those in conifer and broadleaf RW. In particular, conifer MXD variability is directly influenced by the late summer (August, September) temperature and is inversely influenced by the summer precipitation and droughts (SPI at a timescale of 3 months). The MXD sensitivity to August-September (AS) temperature and to summer drought is mainly driven by the latitudinal gradient of summer precipitation amounts, with sites in the northern Apennines showing stronger climate signals than sites in the south. Conifer RW is influenced by the temperature and drought of the previous summer, whereas broadleaf RW is more influenced by summer precipitation and drought of the current growing season. The reconstruction of the late summer temperatures for the Italian Peninsula for the past 300 years, based on the HSTC chronology of conifer MXD, shows a stable model performance that underlines periods of climatic cooling (and likely also wetter conditions) in 1699, 1740, 1814, 1914 and 1938, and follows well the variability of the instrumental record and of other tree-ring-based reconstructions in the region. Considering a 20-year low-pass-filtered series, the reconstructed temperature record consistently deviates < 1 °C from the instrumental record. This divergence may also be due to the precipitation patterns and drought stresses that influence the tree-ring MXD at our study sites. The reconstructed late summer temperature variability is also linked to summer drought conditions and it is valid for the west-east oriented region including Sardinia, Sicily, the Italian Peninsula and the western Balkan area along the Adriatic coast.

  11. Predicting Low Flow Conditions from Climatic Indices - Indicator-Based Modeling for Climate Change Impact Assessment

    NASA Astrophysics Data System (ADS)

    Fangmann, Anne; Haberlandt, Uwe

    2014-05-01

    In the face of climate change, the assessment of future hydrological regimes has become indispensable in the field of water resources management. Investigation of potential change is vital for proper planning, especially with regard to hydrological extremes. Commonly, projection of future streamflow is done applying process-based hydrological models, using climate model data as input, whose complex model structures generally require excessive amounts of time and effort for set-up and computation. This study aims at identifying practical alternatives to the employment of sophisticated models by considering simpler, yet sufficiently accurate methods for modeling rainfall-runoff relations with regard to hydrological extremes. The focus is thereby put on the prediction of low flow periods, which are, in contrast to flood events, characterized by extended durations and spatial dimensions. The models to be established in this study base on indicators, which characterize both meteorological and hydrological conditions within dry periods. This approach makes direct use of the coupling between atmospheric driving forces and streamflow response with the underlying presumption that low-precipitation and high-evaporation periods result in diminished flow, implying that relationships exist between the properties of both meteorological and hydrological events (duration, volume, severity etc.). Eventually, optimal combinations of meteorological indicators are sought that are suitable to predict various low flow characteristics with satisfactory accuracy. Two approaches for model specification are tested: a) multiple linear regression, and b) Fuzzy logic. The data used for this study are daily time series of mean discharge obtained from 294 gauges with variable record length situated in the federal state of Lower Saxony, Germany, as well as interpolated climate variables available for a period from 1951 to 2011. After extraction of a variety of indicators from the available discharge and climate time series on a bi-annual basis, regression and Fuzzy models are fit. Fitting is done in two variations: locally at each of the watersheds in the study area, and regionally, yielding one specific model expression for the entire study area. Models for the individual stations perform well using only the meteorological indicators as predictor variables, while the regional models require the additional input of catchment descriptors to account for the variability of the rainfall-runoff translation processes between the catchments.

  12. Comparison of a spatio-temporal speleothem-based reconstruction of late Holocene climate variability to the timing of cultural developments

    NASA Astrophysics Data System (ADS)

    Deininger, Michael; Lippold, Jörg; Abele, Florian; McDermott, Frank

    2016-04-01

    Speleothems are considered as a valuable continental climate archive. Their δ18O records provide information onto past changes of the atmospheric circulation accompanied by changes in surface air temperature and precipitation. During the last decades European speleothem studies have assembled a European speleothem network (including numerous speleothem δ18O records) that allow now not only to picture past climate variability in time but also in space. In particular the climate variability of the last 4.5 ka was investigated by these studies. This allows the comparison of the speleothem-based reconstructed palaeoclimate with the timings of the rise and fall of ancient civilisations in this period - including the Dark Ages. Here we evaluate a compilation of 10 speleothem δ18O records covering the last 4.5 ka using a Monte Carlo based Principal Component Analysis (MC-PCA) that accounts for uncertainties in individual speleothem age models and for the different and varying temporal resolutions of each speleothem δ18O record. Our MC-PCA approach allows not only the identification of temporally coherent changes in δ18O records, i.e. the common signal in all investigated speleothem δ18O records, but it also facilitates their depiction and evaluation spatially. The speleothem δ18O records are spanning almost the entire European continent ranging from the western Margin of the European continent to Northern Turkey and from Northern Italy to Norway. For the MC-PCA analysis the 4.5 ka are divided into eight 1ka long time windows that overlap the subsequent time window by 500 years to allow a comparison of the spatio-temporal evolution of the common signal. For every single time window we derive a common mode of climate variability of all speleothem δ18O records as well as its spatial extent. This allows us to compare the rise and fall of ancient civilisations, like the Hittite and the Roman Empire, with our reconstructed spatio-temporal record.

  13. Ocean-atmosphere forcing of centennial hydroclimatic variability in the Pacific Northwest

    USGS Publications Warehouse

    Steinman, Byron A.; Abbott, Mark B.; Mann, Michael E.; Ortiz, Joseph D.; Feng, Song; Pompeani, David P.; Stansell, Nathan D.; Anderson, Lesleigh; Finney, Bruce P.; Bird, Broxton W.

    2014-01-01

    Reconstructing centennial timescale hydroclimate variability during the late Holocene is critically important for understanding large-scale patterns of drought and their relationship with climate dynamics. We present sediment oxygen isotope records spanning the last two millennia from 10 lakes, as well as climate model simulations, indicating that the Little Ice Age was dry relative to the Medieval Climate Anomaly in much of the Pacific Northwest of North America. This pattern is consistent with observed associations between the El Niño Southern Oscillation (ENSO), the Northern Annular Mode and drought as well as with proxy-based reconstructions of Pacific ocean-atmosphere variations over the past 1000 years. The large amplitude of centennial variability indicated by the lake data suggests that regional hydroclimate is characterized by longer-term shifts in ENSO-like dynamics, and that an improved understanding of the centennial timescale relationship between external forcing and drought conditions is necessary for projecting future hydroclimatic conditions in western North America.

  14. Effects of Changing Climate During the Snow Ablation Season on Seasonal Streamflow Forecasts

    NASA Astrophysics Data System (ADS)

    Gutzler, D. S.; Chavarria, S. B.

    2017-12-01

    Seasonal forecasts of total surface runoff (Q) in snowmelt-dominated watersheds derive most of their prediction skill from the historical relationship between late winter snowpack (SWE) and subsequent snowmelt runoff. Across the western US, however, the relationship between SWE and Q is weakening as temperatures rise. We describe the effects of climate variability and change during the springtime snow ablation season on water supply outlooks (forecasts of Q) for southwestern rivers. As snow melts earlier, the importance of post-snow rainfall increases: interannual variability of spring season precipitation accounts for an increasing fraction of the variability of Q in recent decades. The results indicate that improvements to the skill of S2S forecasts of spring season temperature and precipitation would contribute very significantly to water supply outlooks that are now based largely on observed SWE. We assess this hypothesis using historical data from several snowpack-dominated basins in the American Southwest (Rio Grande, Pecos, and Gila Rivers) which are undergoing rapid climate change.

  15. Hydroclimate variability in Scandinavia over the last millennium - insights from a climate model-proxy data comparison

    NASA Astrophysics Data System (ADS)

    Seftigen, Kristina; Goosse, Hugues; Klein, Francois; Chen, Deliang

    2017-12-01

    The integration of climate proxy information with general circulation model (GCM) results offers considerable potential for deriving greater understanding of the mechanisms underlying climate variability, as well as unique opportunities for out-of-sample evaluations of model performance. In this study, we combine insights from a new tree-ring hydroclimate reconstruction from Scandinavia with projections from a suite of forced transient simulations of the last millennium and historical intervals from the CMIP5 and PMIP3 archives. Model simulations and proxy reconstruction data are found to broadly agree on the modes of atmospheric variability that produce droughts-pluvials in the region. Despite these dynamical similarities, large differences between simulated and reconstructed hydroclimate time series remain. We find that the GCM-simulated multi-decadal and/or longer hydroclimate variability is systematically smaller than the proxy-based estimates, whereas the dominance of GCM-simulated high-frequency components of variability is not reflected in the proxy record. Furthermore, the paleoclimate evidence indicates in-phase coherencies between regional hydroclimate and temperature on decadal timescales, i.e., sustained wet periods have often been concurrent with warm periods and vice versa. The CMIP5-PMIP3 archive suggests, however, out-of-phase coherencies between the two variables in the last millennium. The lack of adequate understanding of mechanisms linking temperature and moisture supply on longer timescales has serious implications for attribution and prediction of regional hydroclimate changes. Our findings stress the need for further paleoclimate data-model intercomparison efforts to expand our understanding of the dynamics of hydroclimate variability and change, to enhance our ability to evaluate climate models, and to provide a more comprehensive view of future drought and pluvial risks.

  16. Climatic extremes improve predictions of spatial patterns of tree species

    USGS Publications Warehouse

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  17. Do bioclimate variables improve performance of climate envelope models?

    USGS Publications Warehouse

    Watling, James I.; Romañach, Stephanie S.; Bucklin, David N.; Speroterra, Carolina; Brandt, Laura A.; Pearlstine, Leonard G.; Mazzotti, Frank J.

    2012-01-01

    Climate envelope models are widely used to forecast potential effects of climate change on species distributions. A key issue in climate envelope modeling is the selection of predictor variables that most directly influence species. To determine whether model performance and spatial predictions were related to the selection of predictor variables, we compared models using bioclimate variables with models constructed from monthly climate data for twelve terrestrial vertebrate species in the southeastern USA using two different algorithms (random forests or generalized linear models), and two model selection techniques (using uncorrelated predictors or a subset of user-defined biologically relevant predictor variables). There were no differences in performance between models created with bioclimate or monthly variables, but one metric of model performance was significantly greater using the random forest algorithm compared with generalized linear models. Spatial predictions between maps using bioclimate and monthly variables were very consistent using the random forest algorithm with uncorrelated predictors, whereas we observed greater variability in predictions using generalized linear models.

  18. Emerging trends in global freshwater availability.

    PubMed

    Rodell, M; Famiglietti, J S; Wiese, D N; Reager, J T; Beaudoing, H K; Landerer, F W; Lo, M-H

    2018-05-01

    Freshwater availability is changing worldwide. Here we quantify 34 trends in terrestrial water storage observed by the Gravity Recovery and Climate Experiment (GRACE) satellites during 2002-2016 and categorize their drivers as natural interannual variability, unsustainable groundwater consumption, climate change or combinations thereof. Several of these trends had been lacking thorough investigation and attribution, including massive changes in northwestern China and the Okavango Delta. Others are consistent with climate model predictions. This observation-based assessment of how the world's water landscape is responding to human impacts and climate variations provides a blueprint for evaluating and predicting emerging threats to water and food security.

  19. Climate challenges, vulnerabilities, and food security

    PubMed Central

    Nelson, Margaret C.; Ingram, Scott E.; Dugmore, Andrew J.; Streeter, Richard; Peeples, Matthew A.; McGovern, Thomas H.; Hegmon, Michelle; Arneborg, Jette; Brewington, Seth; Spielmann, Katherine A.; Simpson, Ian A.; Strawhacker, Colleen; Comeau, Laura E. L.; Torvinen, Andrea; Madsen, Christian K.; Hambrecht, George; Smiarowski, Konrad

    2016-01-01

    This paper identifies rare climate challenges in the long-term history of seven areas, three in the subpolar North Atlantic Islands and four in the arid-to-semiarid deserts of the US Southwest. For each case, the vulnerability to food shortage before the climate challenge is quantified based on eight variables encompassing both environmental and social domains. These data are used to evaluate the relationship between the “weight” of vulnerability before a climate challenge and the nature of social change and food security following a challenge. The outcome of this work is directly applicable to debates about disaster management policy. PMID:26712017

  20. Climate challenges, vulnerabilities, and food security.

    PubMed

    Nelson, Margaret C; Ingram, Scott E; Dugmore, Andrew J; Streeter, Richard; Peeples, Matthew A; McGovern, Thomas H; Hegmon, Michelle; Arneborg, Jette; Kintigh, Keith W; Brewington, Seth; Spielmann, Katherine A; Simpson, Ian A; Strawhacker, Colleen; Comeau, Laura E L; Torvinen, Andrea; Madsen, Christian K; Hambrecht, George; Smiarowski, Konrad

    2016-01-12

    This paper identifies rare climate challenges in the long-term history of seven areas, three in the subpolar North Atlantic Islands and four in the arid-to-semiarid deserts of the US Southwest. For each case, the vulnerability to food shortage before the climate challenge is quantified based on eight variables encompassing both environmental and social domains. These data are used to evaluate the relationship between the "weight" of vulnerability before a climate challenge and the nature of social change and food security following a challenge. The outcome of this work is directly applicable to debates about disaster management policy.

Top