Sample records for climate variables response

  1. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    PubMed Central

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  2. Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.

    2009-01-01

    This report presents a framework for a U.S. Geological Survey (USGS) hydrologic climate-response program designed to provide early warning of changes in the seasonal water cycle of Maine. Climate-related hydrologic changes on Maine's rivers and lakes in the winter and spring during the last century are well documented, and several river and lake variables have been shown to be sensitive to air-temperature changes. Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. The framework of the hydrologic climate-response program presented here consists of four major parts: (1) identifying homogeneous climate-response regions; (2) identifying hydrologic components and key variables of those components that would be included in a hydrologic climate-response data network - as an example, streamflow has been identified as a primary component, with a key variable of streamflow being winter-spring streamflow timing; the data network would be created by maintaining existing USGS data-collection stations and establishing new ones to fill data gaps; (3) regularly updating historical trends of hydrologic data network variables; and (4) establishing basins for process-based studies. Components proposed for inclusion in the hydrologic climate-response data network have at least one key variable for which substantial historical data are available. The proposed components are streamflow, lake ice, river ice, snowpack, and groundwater. The proposed key variables of each component have extensive historical data at multiple sites and are expected to be responsive to climate change in the next few decades. These variables are also important for human water use and (or) ecosystem function. Maine would be divided into seven climate-response regions that follow major river-basin boundaries (basins subdivided to hydrologic units with 8-digit codes or larger) and have relatively homogeneous climates. Key hydrologic variables within each climate-response region would be analyzed regularly to maintain up-to-date analyses of year-to-year variability, decadal variability, and longer term trends. Finally, one basin in each climate-response region would be identified for process-based hydrologic and ecological studies.

  3. Assessing climate impacts

    PubMed Central

    Wohl, Ellen E.; Pulwarty, Roger S.; Zhang, Jian Yun

    2000-01-01

    Assessing climate impacts involves identifying sources and characteristics of climate variability, and mitigating potential negative impacts of that variability. Associated research focuses on climate driving mechanisms, biosphere–hydrosphere responses and mediation, and human responses. Examples of climate impacts come from 1998 flooding in the Yangtze River Basin and hurricanes in the Caribbean and Central America. Although we have limited understanding of the fundamental driving-response interactions associated with climate variability, increasingly powerful measurement and modeling techniques make assessing climate impacts a rapidly developing frontier of science. PMID:11027321

  4. Response-Guided Community Detection: Application to Climate Index Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, Gonzalo; Angus, Michael; Pedemane, Navya

    Discovering climate indices-time series that summarize spatiotemporal climate patterns-is a key task in the climate science domain. In this work, we approach this task as a problem of response-guided community detection; that is, identifying communities in a graph associated with a response variable of interest. To this end, we propose a general strategy for response-guided community detection that explicitly incorporates information of the response variable during the community detection process, and introduce a graph representation of spatiotemporal data that leverages information from multiple variables. We apply our proposed methodology to the discovery of climate indices associated with seasonal rainfall variability.more » Our results suggest that our methodology is able to capture the underlying patterns known to be associated with the response variable of interest and to improve its predictability compared to existing methodologies for data-driven climate index discovery and official forecasts.« less

  5. Effects of climatic factors and ecosystem responses on the inter-annual variability of evapotranspiration in a coniferous plantation in subtropical China.

    PubMed

    Xu, Mingjie; Wen, Xuefa; Wang, Huimin; Zhang, Wenjiang; Dai, Xiaoqin; Song, Jie; Wang, Yidong; Fu, Xiaoli; Liu, Yunfen; Sun, Xiaomin; Yu, Guirui

    2014-01-01

    Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003-2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003-2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May-June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation.

  6. Effects of Climatic Factors and Ecosystem Responses on the Inter-Annual Variability of Evapotranspiration in a Coniferous Plantation in Subtropical China

    PubMed Central

    Xu, Mingjie; Wen, Xuefa; Wang, Huimin; Zhang, Wenjiang; Dai, Xiaoqin; Song, Jie; Wang, Yidong; Fu, Xiaoli; Liu, Yunfen; Sun, Xiaomin; Yu, Guirui

    2014-01-01

    Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003–2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003–2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May–June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation. PMID:24465610

  7. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  8. Climate Variability and Ecosystem Response

    Treesearch

    David Greenland; Lloyd W. Swift; [Editors

    1990-01-01

    Nine papers describe studies of climate variability and ecosystem response. The studies were conducted at LTER (Long-Term Ecological Research) sites representing forest, agricultural, and aquatic ecosystems and systems in which extreme climates limit vegetational cover. An overview paper prepared by the LTER Climate Committee stresses the importance of (1) clear...

  9. How does complex terrain influence responses of carbon and water cycle processes to climate variability and climate change?

    EPA Science Inventory

    We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site...

  10. Regionally heterogeneous paleoenvironmental responses in the West African and South American monsoon systems on glacial to millennial timescales

    NASA Astrophysics Data System (ADS)

    Shanahan, T. M.; Hughen, K. A.; van Mooy, B.; Overpeck, J. T.; Baker, P. A.; Fritz, S.; Peck, J. A.; Scholz, C. A.; King, J. W.

    2008-12-01

    Although millennial-scale paleoenvironmental changes have been well characterized for high latitude sites, short-term climate variability in the tropics is less well understood. While the Intertropical Convergence Zone may act as an integrator of tropical climate changes, regional factors also play an important role in controlling the tropical response to climate forcing. Understanding these influences, and how they modulate the response to global climate forcing under different mean climate states is thus important for assessing how the tropics may respond to future climate change. Here, we examine new centennial-resolution records of paleoenvironmental change from isotopic and relative abundance data from molecular biomarkers in sediment cores from Lake Bosumtwi and Lake Titicaca. We assess the relative response of the West African and South American monsoon systems to millennial and suborbital-scale climate variability over the last ca. 30,000 years. While there is evidence for synchronous climate variability in the two systems, the dominant paleoenvironmental changes appear largely decoupled, highlighting the importance of regional climatology in controlling the response to climate forcing in tropical regions.

  11. New Perspectives on the Role of Internal Variability in Regional Climate Change and Climate Model Evaluation

    NASA Astrophysics Data System (ADS)

    Deser, C.

    2017-12-01

    Natural climate variability occurs over a wide range of time and space scales as a result of processes intrinsic to the atmosphere, the ocean, and their coupled interactions. Such internally generated climate fluctuations pose significant challenges for the identification of externally forced climate signals such as those driven by volcanic eruptions or anthropogenic increases in greenhouse gases. This challenge is exacerbated for regional climate responses evaluated from short (< 50 years) data records. The limited duration of the observations also places strong constraints on how well the spatial and temporal characteristics of natural climate variability are known, especially on multi-decadal time scales. The observational constraints, in turn, pose challenges for evaluation of climate models, including their representation of internal variability and assessing the accuracy of their responses to natural and anthropogenic radiative forcings. A promising new approach to climate model assessment is the advent of large (10-100 member) "initial-condition" ensembles of climate change simulations with individual models. Such ensembles allow for accurate determination, and straightforward separation, of externally forced climate signals and internal climate variability on regional scales. The range of climate trajectories in a given model ensemble results from the fact that each simulation represents a particular sequence of internal variability superimposed upon a common forced response. This makes clear that nature's single realization is only one of many that could have unfolded. This perspective leads to a rethinking of approaches to climate model evaluation that incorporate observational uncertainty due to limited sampling of internal variability. Illustrative examples across a range of well-known climate phenomena including ENSO, volcanic eruptions, and anthropogenic climate change will be discussed.

  12. Evaluating the Contribution of Natural Variability and Climate Model Response to Uncertainty in Projections of Climate Change Impacts on U.S. Air Quality

    EPA Science Inventory

    We examine the effects of internal variability and model response in projections of climate impacts on U.S. ground-level ozone across the 21st century using integrated global system modeling and global atmospheric chemistry simulations. The impact of climate change on air polluti...

  13. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    PubMed

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.

  14. Quantifying climate-growth relationships at the stand level in a mature mixed-species conifer forest.

    PubMed

    Teets, Aaron; Fraver, Shawn; Weiskittel, Aaron R; Hollinger, David Y

    2018-03-11

    A range of environmental factors regulate tree growth; however, climate is generally thought to most strongly influence year-to-year variability in growth. Numerous dendrochronological (tree-ring) studies have identified climate factors that influence year-to-year variability in growth for given tree species and location. However, traditional dendrochronology methods have limitations that prevent them from adequately assessing stand-level (as opposed to species-level) growth. We argue that stand-level growth analyses provide a more meaningful assessment of forest response to climate fluctuations, as well as the management options that may be employed to sustain forest productivity. Working in a mature, mixed-species stand at the Howland Research Forest of central Maine, USA, we used two alternatives to traditional dendrochronological analyses by (1) selecting trees for coring using a stratified (by size and species), random sampling method that ensures a representative sample of the stand, and (2) converting ring widths to biomass increments, which once summed, produced a representation of stand-level growth, while maintaining species identities or canopy position if needed. We then tested the relative influence of seasonal climate variables on year-to-year variability in the biomass increment using generalized least squares regression, while accounting for temporal autocorrelation. Our results indicate that stand-level growth responded most strongly to previous summer and current spring climate variables, resulting from a combination of individualistic climate responses occurring at the species- and canopy-position level. Our climate models were better fit to stand-level biomass increment than to species-level or canopy-position summaries. The relative growth responses (i.e., percent change) predicted from the most influential climate variables indicate stand-level growth varies less from to year-to-year than species-level or canopy-position growth responses. By assessing stand-level growth response to climate, we provide an alternative perspective on climate-growth relationships of forests, improving our understanding of forest growth dynamics under a fluctuating climate. © 2018 John Wiley & Sons Ltd.

  15. Semi-arid vegetation response to antecedent climate and water balance windows

    USGS Publications Warehouse

    Thoma, David P.; Munson, Seth M.; Irvine, Kathryn M.; Witwicki, Dana L.; Bunting, Erin

    2016-01-01

    Questions Can we improve understanding of vegetation response to water availability on monthly time scales in semi-arid environments using remote sensing methods? What climatic or water balance variables and antecedent windows of time associated with these variables best relate to the condition of vegetation? Can we develop credible near-term forecasts from climate data that can be used to prepare for future climate change effects on vegetation? Location Semi-arid grasslands in Capitol Reef National Park, Utah, USA. Methods We built vegetation response models by relating the normalized difference vegetation index (NDVI) from MODIS imagery in Mar–Nov 2000–2013 to antecedent climate and water balance variables preceding the monthly NDVI observations. We compared how climate and water balance variables explained vegetation greenness and then used a multi-model ensemble of climate and water balance models to forecast monthly NDVI for three holdout years. Results Water balance variables explained vegetation greenness to a greater degree than climate variables for most growing season months. Seasonally important variables included measures of antecedent water input and storage in spring, switching to indicators of drought, input or use in summer, followed by antecedent moisture availability in autumn. In spite of similar climates, there was evidence the grazed grassland showed a response to drying conditions 1 mo sooner than the ungrazed grassland. Lead times were generally short early in the growing season and antecedent window durations increased from 3 mo early in the growing season to 1 yr or more as the growing season progressed. Forecast accuracy for three holdout years using a multi-model ensemble of climate and water balance variables outperformed forecasts made with a naïve NDVI climatology. Conclusions We determined the influence of climate and water balance on vegetation at a fine temporal scale, which presents an opportunity to forecast vegetation response with short lead times. This understanding was obtained through high-frequency vegetation monitoring using remote sensing, which reduces the costs and time necessary for field measurements and can lead to more rapid detection of vegetation changes that could help managers take appropriate actions.

  16. Changing precipitation in western Europe, climate change or natural variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart

    2017-04-01

    Multi-model RCM-GCM ensembles provide high resolution climate projections, valuable for among others climate impact assessment studies. While the application of multiple models (both GCMs and RCMs) provides a certain robustness with respect to model uncertainty, the interpretation of differences between ensemble members - the combined result of model uncertainty and natural variability of the climate system - is not straightforward. Natural variability is intrinsic to the climate system, and a potentially large source of uncertainty in climate change projections, especially for projections on the local to regional scale. To quantify the natural variability and get a robust estimate of the forced climate change response (given a certain model and forcing scenario), large ensembles of climate model simulations of the same model provide essential information. While for global climate models (GCMs) a number of such large single model ensembles exists and have been analyzed, for regional climate models (RCMs) the number and size of single model ensembles is limited, and the predictability of the forced climate response at the local to regional scale is still rather uncertain. We present a regional downscaling of a 16-member single model ensemble over western Europe and the Alps at a resolution of 0.11 degrees (˜12km), similar to the highest resolution EURO-CORDEX simulations. This 16-member ensemble was generated by the GCM EC-EARTH, which was downscaled with the RCM RACMO for the period 1951-2100. This single model ensemble has been investigated in terms of the ensemble mean response (our estimate of the forced climate response), as well as the difference between the ensemble members, which measures natural variability. We focus on the response in seasonal mean and extreme precipitation (seasonal maxima and extremes with a return period up to 20 years) for the near to far future. For most precipitation indices we can reliably determine the climate change signal, given the applied model chain and forcing scenario. However, the analysis also shows how limited the information in single ensemble members is on the local scale forced climate response, even for high levels of global warming when the forced response has emerged from natural variability. Analysis and application of multi-model ensembles like EURO-CORDEX should go hand-in-hand with single model ensembles, like the one presented here, to be able to correctly interpret the fine-scale information in terms of a forced signal and random noise due to natural variability.

  17. Ecosystem response to climatic variables - air temperature and precipitation: How can these variables alter plant productions in C4-grass dominant ecosystem?

    NASA Astrophysics Data System (ADS)

    Jung, C. G.; Jiang, L.; Luo, Y.

    2017-12-01

    Understanding net primary production (NPP) response to the key climatic variables, temperature and precipitation, is essential since the response could be represented by one of future consequences from ecosystem responses. Under future climatic warming, fluctuating precipitation is expected. In addition, NPP solely could not explain whole ecosystem response; therefore, not only NPP, but also above- and below-ground NPP (ANPP and BNPP, respectively) need to be examined. This examination needs to include how the plant productions response along temperature and precipitation gradients. Several studies have examined the response of NPP against each of single climatic variable, but understanding the response of ANPP and BNPP to the multiple variables is notably poor. In this study, we used the plant productions data (NPP, ANPP, and BNPP) with climatic variables, i.e., air temperature and precipitation, from 1999 to 2015 under warming and clipping treatments (mimicking hay-harvesting) in C4-grass dominant ecosystem located in central Oklahoma, United States. Firstly, we examined the nonlinear relationships with the climatic variables for NPP, ANPP and BNPP; and then predicted possible responses in the temperature - precipitation space by using a linear mixed effect model. Nonlinearities of NPP, ANPP and BNPP to the climatic variables have been found to show unimodal curves, and nonlinear models have better goodness of fit as shown lower Akaike information criterion (AIC) than linear models. Optimum condition for NPP is represented at high temperature and precipitation level whereas BNPP is maximized at moderate precipitation levels while ANPP has same range of NPP's optimum condition. Clipping significantly reduced ANPP while there was no clipping effect on NPP and BNPP. Furthermore, inclining NPP and ANPP have shown in a range from moderate to high precipitation level with increasing temperature while inclining pattern for BNPP was observed in moderate precipitation level. Overall, the C4-grass dominant ecosystem has a potential for considerable increases in NPP in hotter and wetter conditions as shown a range from moderate to high temperature and precipitation levels; ANPP has peaked at the high temperature and precipitation level, but maximum BNPP needs moderate precipitation level and high temperature.

  18. Exploiting temporal variability to understand tree recruitment response to climate change

    Treesearch

    Ines Ibanez; James S. Clark; Shannon LaDeau; Janneke Hill Ris Lambers

    2007-01-01

    Predicting vegetation shifts under climate change is a challenging endeavor, given the complex interactions between biotic and abiotic variables that influence demographic rates. To determine how current trends and variation in climate change affect seedling establishment, we analyzed demographic responses to spatiotemporal variation to temperature and soil moisture in...

  19. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2018-06-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  20. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2017-09-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  1. Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: dendrochronological, demographic, and experimental perspectives

    Treesearch

    A.D. McGuire; R.W. Ruess; A. Lloyd; J. Yarie; J.S. Clein; G.P. Juday

    2010-01-01

    This paper integrates dendrochronological, demographic, and experimental perspectives to improve understanding of the response of white spruce (Picea glauca (Moench) Voss) tree growth to climatic variability in interior Alaska. The dendrochronological analyses indicate that climate warming has led to widespread declines in white spruce growth...

  2. Qualitatively Assessing Randomness in SVD Results

    NASA Astrophysics Data System (ADS)

    Lamb, K. W.; Miller, W. P.; Kalra, A.; Anderson, S.; Rodriguez, A.

    2012-12-01

    Singular Value Decomposition (SVD) is a powerful tool for identifying regions of significant co-variability between two spatially distributed datasets. SVD has been widely used in atmospheric research to define relationships between sea surface temperatures, geopotential height, wind, precipitation and streamflow data for myriad regions across the globe. A typical application for SVD is to identify leading climate drivers (as observed in the wind or pressure data) for a particular hydrologic response variable such as precipitation, streamflow, or soil moisture. One can also investigate the lagged relationship between a climate variable and the hydrologic response variable using SVD. When performing these studies it is important to limit the spatial bounds of the climate variable to reduce the chance of random co-variance relationships being identified. On the other hand, a climate region that is too small may ignore climate signals which have more than a statistical relationship to a hydrologic response variable. The proposed research seeks to identify a qualitative method of identifying random co-variability relationships between two data sets. The research identifies the heterogeneous correlation maps from several past results and compares these results with correlation maps produced using purely random and quasi-random climate data. The comparison identifies a methodology to determine if a particular region on a correlation map may be explained by a physical mechanism or is simply statistical chance.

  3. Gender-specific responses to climate variability in a semi-arid ecosystem in northern Benin.

    PubMed

    Dah-Gbeto, Afiavi P; Villamor, Grace B

    2016-12-01

    Highly erratic rainfall patterns in northern Benin complicate the ability of rural farmers to engage in subsistence agriculture. This research explores gender-specific responses to climate variability in the context of agrarian Benin through a household survey (n = 260) and an experimental gaming exercise among a subset of the survey respondents. Although men and women from the sample population are equally aware of climate variability and share similar coping strategies, their specific land-use strategies, preferences, and motivations are distinct. Over the long term, these differences would likely lead to dissimilar coping strategies and vulnerability to the effects of climate change. Examination of gender-specific land-use responses to climate change and anticipatory learning can enhance efforts to improve adaptability and resilience among rural subsistence farmers.

  4. Reproductive success of a keystone herbivore is more variable and responsive to climate in habitats with lower resource diversity.

    PubMed

    Iles, David T; Rockwell, Robert F; Koons, David N

    2018-07-01

    The effects of climate on wild populations are often channelled through species interactions. Population responses to climate variation can therefore differ across habitats, owing to variation in the biotic community. Theory predicts that consumer demography should be less variable and less responsive to climate in habitats with greater resource diversity. We tested these predictions using a long-term study of breeding lesser snow geese along the western coast of Hudson Bay, Manitoba, Canada. Reproductive success was measured in 22 years from 114 locations, in either coastal or inland habitat types. We used Bayesian analysis to estimate the response of reproductive success to climate in each habitat type, along with residual variation not explained by climate. We then quantified gosling diet composition in each habitat type to test the prediction that reproductive success would be less variable and more responsive to climate in habitats with lower resource diversity. Reproductive success responded positively to seasonal warmness, but this response was much stronger in inland habitats than in coastal habitats. Site- and year-level random effects were also three to five times more variable in inland habitats. Simultaneously, land cover diversity and gosling diet diversity were lower in inland habitats. Our study illustrates that spatial variation in resource diversity (and thus, species interactions) can have important effects on consumer responses to climate. In this system, climate change is expected to disproportionately increase the reproductive success of snow geese in vast inland habitats, potentially counteracting management efforts to reduce the abundance of this keystone herbivore. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  5. Selecting Populations for Non-Analogous Climate Conditions Using Universal Response Functions: The Case of Douglas-Fir in Central Europe.

    PubMed

    Chakraborty, Debojyoti; Wang, Tongli; Andre, Konrad; Konnert, Monika; Lexer, Manfred J; Matulla, Christoph; Schueler, Silvio

    2015-01-01

    Identifying populations within tree species potentially adapted to future climatic conditions is an important requirement for reforestation and assisted migration programmes. Such populations can be identified either by empirical response functions based on correlations of quantitative traits with climate variables or by climate envelope models that compare the climate of seed sources and potential growing areas. In the present study, we analyzed the intraspecific variation in climate growth response of Douglas-fir planted within the non-analogous climate conditions of Central and continental Europe. With data from 50 common garden trials, we developed Universal Response Functions (URF) for tree height and mean basal area and compared the growth performance of the selected best performing populations with that of populations identified through a climate envelope approach. Climate variables of the trial location were found to be stronger predictors of growth performance than climate variables of the population origin. Although the precipitation regime of the population sources varied strongly none of the precipitation related climate variables of population origin was found to be significant within the models. Overall, the URFs explained more than 88% of variation in growth performance. Populations identified by the URF models originate from western Cascades and coastal areas of Washington and Oregon and show significantly higher growth performance than populations identified by the climate envelope approach under both current and climate change scenarios. The URFs predict decreasing growth performance at low and middle elevations of the case study area, but increasing growth performance on high elevation sites. Our analysis suggests that population recommendations based on empirical approaches should be preferred and population selections by climate envelope models without considering climatic constrains of growth performance should be carefully appraised before transferring populations to planting locations with novel or dissimilar climate.

  6. Disease and thermal acclimation in a more variable and unpredictable climate

    NASA Astrophysics Data System (ADS)

    Raffel, Thomas R.; Romansic, John M.; Halstead, Neal T.; McMahon, Taegan A.; Venesky, Matthew D.; Rohr, Jason R.

    2013-02-01

    Global climate change is shifting the distribution of infectious diseases of humans and wildlife with potential adverse consequences for disease control. As well as increasing mean temperatures, climate change is expected to increase climate variability, making climate less predictable. However, few empirical or theoretical studies have considered the effects of climate variability or predictability on disease, despite it being likely that hosts and parasites will have differential responses to climatic shifts. Here we present a theoretical framework for how temperature variation and its predictability influence disease risk by affecting host and parasite acclimation responses. Laboratory experiments conducted in 80 independent incubators, and field data on disease-associated frog declines in Latin America, support the framework and provide evidence that unpredictable temperature fluctuations, on both monthly and diurnal timescales, decrease frog resistance to the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Furthermore, the pattern of temperature-dependent growth of the fungus on frogs was opposite to the pattern of growth in culture, emphasizing the importance of accounting for the host-parasite interaction when predicting climate-dependent disease dynamics. If similar acclimation responses influence other host-parasite systems, as seems likely, then present models, which generally ignore small-scale temporal variability in climate, might provide poor predictions for climate effects on disease.

  7. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  8. Forecasting Glacier Evolution and Hindcasting Paleoclimates In Light of Mass Balance Nonlinearities

    NASA Astrophysics Data System (ADS)

    Malone, A.; Doughty, A. M.; MacAyeal, D. R.

    2016-12-01

    Glaciers are commonly used barometers of present and past climate change, with their variations often being linked to shifts in the mean climate. Climate variability within a unchanging mean state, however, can produce short term mass balance and glacier length anomalies, complicating this linkage. Also, the mass balance response to this variability can be nonlinear, possibly impacting the longer term state of the glacier. We propose a conceptual model to understand these nonlinearities and quantify their impacts on the longer term mass balance and glacier length. The relationship between mass balance and elevation, i.e. the vertical balance profile (VBP), illuminates these nonlinearities (Figure A). The VBP, given here for a wet tropical glacier, is piecewise, which can lead to different mass balance responses to climate anomalies of similar magnitude but opposite sign. We simulate the mass balance response to climate variability by vertically (temperature anomalies) and horizontally (precipitation anomalies) transposing the VBP for the mean climate (Figure A). The resulting anomalous VBP is the superposition of the two translations. We drive a 1-D flowline model with 10,000 years of anomalous VBPs. The aggregate VBP for the mean climate including variability differs from the VBP for the mean climate excluding variability, having a higher equilibrium line altitude (ELA) and a negative mass balance (Figure B). Accordingly, the glacier retreats, and the equilibrium glacier length for the aggregate VBP is the same as the mean length from the 10,000 year flowline simulation (Figure C). The magnitude of the VBP shift and glacier retreat increases with greater temperature variability and larger discontinuities in the VBP slope. These results highlight the importance of both the climate mean and variability in determining the longer term state of the glacier. Thus, forecasting glacier evolution or hindcasting past climates should also include representation of climate variability.

  9. Human Responses to Climate Variability: The Case of South Africa

    NASA Astrophysics Data System (ADS)

    Oppenheimer, M.; Licker, R.; Mastrorillo, M.; Bohra-Mishra, P.; Estes, L. D.; Cai, R.

    2014-12-01

    Climate variability has been associated with a range of societal and individual outcomes including migration, violent conflict, changes in labor productivity, and health impacts. Some of these may be direct responses to changes in mean temperature or precipitation or extreme events, such as displacement of human populations by tropical cyclones. Others may be mediated by a variety of biological, social, or ecological factors such as migration in response to long-term changes in crops yields. Research is beginning to elucidate and distinguish the many channels through which climate variability may influence human behavior (ranging from the individual to the collective, societal level) in order to better understand how to improve resilience in the face of current variability as well as future climate change. Using a variety of data sets from South Africa, we show how climate variability has influenced internal (within country) migration in recent history. We focus on South Africa as it is a country with high levels of internal migration and dramatic temperature and precipitation changes projected for the 21st century. High poverty rates and significant levels of rain-fed, smallholder agriculture leave large portions of South Africa's population base vulnerable to future climate change. In this study, we utilize two complementary statistical models - one micro-level model, driven by individual and household level survey data, and one macro-level model, driven by national census statistics. In both models, we consider the effect of climate on migration both directly (with gridded climate reanalysis data) and indirectly (with agricultural production statistics). With our historical analyses of climate variability, we gain insights into how the migration decisions of South Africans may be influenced by future climate change. We also offer perspective on the utility of micro and macro level approaches in the study of climate change and human migration.

  10. Landscape structure and climate influences on hydrologic response

    NASA Astrophysics Data System (ADS)

    Nippgen, Fabian; McGlynn, Brian L.; Marshall, Lucy A.; Emanuel, Ryan E.

    2011-12-01

    Climate variability and catchment structure (topography, geology, vegetation) have a significant influence on the timing and quantity of water discharged from mountainous catchments. How these factors combine to influence runoff dynamics is poorly understood. In this study we linked differences in hydrologic response across catchments and across years to metrics of landscape structure and climate using a simple transfer function rainfall-runoff modeling approach. A transfer function represents the internal catchment properties that convert a measured input (rainfall/snowmelt) into an output (streamflow). We examined modeled mean response time, defined as the average time that it takes for a water input to leave the catchment outlet from the moment it reaches the ground surface. We combined 12 years of precipitation and streamflow data from seven catchments in the Tenderfoot Creek Experimental Forest (Little Belt Mountains, southwestern Montana) with landscape analyses to quantify the first-order controls on mean response times. Differences between responses across the seven catchments were related to the spatial variability in catchment structure (e.g., slope, flowpath lengths, tree height). Annual variability was largely a function of maximum snow water equivalent. Catchment averaged runoff ratios exhibited strong correlations with mean response time while annually averaged runoff ratios were not related to climatic metrics. These results suggest that runoff ratios in snowmelt dominated systems are mainly controlled by topography and not by climatic variability. This approach provides a simple tool for assessing differences in hydrologic response across diverse watersheds and climate conditions.

  11. A conceptual model of plant responses to climate with implications for monitoring ecosystem change

    Treesearch

    C. David Bertelsen

    2013-01-01

    Climate change is affecting natural systems on a global scale and is particularly rapid in the Southwest. It is important to identify impacts of a changing climate before ecosystems become unstable. Recognizing plant responses to climate change requires knowledge of both species present and plant responses to variable climatic conditions. A conceptual model derived...

  12. Nonlinearities, scale-dependence, and individualism of boreal forest trees to climate forcing

    NASA Astrophysics Data System (ADS)

    Wolken, J. M.; Mann, D. H.; Grant, T. A., III; Lloyd, A. H.; Hollingsworth, T. N.

    2013-12-01

    Our understanding of the climate-growth relationships of trees are complicated by the nonlinearity and variability of these responses through space and time. Furthermore, trees growing at the same site may exhibit opposing growth responses to climate, a phenomenon termed growth divergence. To date the majority of dendrochronological studies in Interior Alaska have involved white spruce growing at treeline, even though black spruce is the most abundant tree species. Although changing climate-growth relationships have been observed in black spruce, there is little known about the multivariate responses of individual trees to temperature and precipitation and whether or not black spruce exhibits growth divergences similar to those documented for white spruce. To evaluate the occurrence of growth divergences in black spruce, we collected cores from trees growing on a steep, north-facing toposequence having a gradient in environmental parameters. Our overall goal was to assess how the climate-growth relationships of black spruce change over space and time. Specifically, we evaluated how topography influences the climate-growth relationships of black spruce and if the growth responses to climate are homogeneous. At the site-level most trees responded negatively to temperature and positively to precipitation, while at the tree-level black spruce exhibited heterogenous growth responses to climate that varied in both space (i.e., between sites) and time (i.e., seasonally and annually). There was a dominant response-type at each site, but there was also considerable variability in the proportion of trees exhibiting each response-type combination. Even in a climatically extreme setting like Alaska's boreal forest, tree responses to climate variability are spatially and temporally complex, as well as highly nonlinear.

  13. The future demographic niche of a declining grassland bird fails to shift poleward in response to climate change

    Treesearch

    Lisa A. McCauley; Christine A. Ribic; Lars Y. Pomara; Benjamin Zuckerberg

    2017-01-01

    Context Temperate grasslands and their dependent species are exposed to high variability in weather and climate due to the lack of natural buffers such as forests. Grassland birds are particularly vulnerable to this variability, yet have failed to shift poleward in response to recent climate change like other bird species in North America. However, there have been few...

  14. Framework for a hydrologic climate-response network in New England

    USGS Publications Warehouse

    Lent, Robert M.; Hodgkins, Glenn A.; Dudley, Robert W.; Schalk, Luther F.

    2015-01-01

    Many climate-related hydrologic variables in New England have changed in the past century, and many are expected to change during the next century. It is important to understand and monitor these changes because they can affect human water supply, hydroelectric power generation, transportation infrastructure, and stream and riparian ecology. This report describes a framework for hydrologic monitoring in New England by means of a climate-response network. The framework identifies specific inland hydrologic variables that are sensitive to climate variation; identifies geographic regions with similar hydrologic responses; proposes a fixed-station monitoring network composed of existing streamflow, groundwater, lake ice, snowpack, and meteorological data-collection stations for evaluation of hydrologic response to climate variation; and identifies streamflow basins for intensive, process-based studies and for estimates of future hydrologic conditions.

  15. Selecting Populations for Non-Analogous Climate Conditions Using Universal Response Functions: The Case of Douglas-Fir in Central Europe

    PubMed Central

    Chakraborty, Debojyoti; Wang, Tongli; Andre, Konrad; Konnert, Monika; Lexer, Manfred J.; Matulla, Christoph; Schueler, Silvio

    2015-01-01

    Identifying populations within tree species potentially adapted to future climatic conditions is an important requirement for reforestation and assisted migration programmes. Such populations can be identified either by empirical response functions based on correlations of quantitative traits with climate variables or by climate envelope models that compare the climate of seed sources and potential growing areas. In the present study, we analyzed the intraspecific variation in climate growth response of Douglas-fir planted within the non-analogous climate conditions of Central and continental Europe. With data from 50 common garden trials, we developed Universal Response Functions (URF) for tree height and mean basal area and compared the growth performance of the selected best performing populations with that of populations identified through a climate envelope approach. Climate variables of the trial location were found to be stronger predictors of growth performance than climate variables of the population origin. Although the precipitation regime of the population sources varied strongly none of the precipitation related climate variables of population origin was found to be significant within the models. Overall, the URFs explained more than 88% of variation in growth performance. Populations identified by the URF models originate from western Cascades and coastal areas of Washington and Oregon and show significantly higher growth performance than populations identified by the climate envelope approach under both current and climate change scenarios. The URFs predict decreasing growth performance at low and middle elevations of the case study area, but increasing growth performance on high elevation sites. Our analysis suggests that population recommendations based on empirical approaches should be preferred and population selections by climate envelope models without considering climatic constrains of growth performance should be carefully appraised before transferring populations to planting locations with novel or dissimilar climate. PMID:26288363

  16. Convergence of Dynamic Vegetation Net Productivity Responses to Precipitation Variability from 10 Years of MODIS EVI

    USDA-ARS?s Scientific Manuscript database

    According to Global Climate Models (GCMs) the occurrence of extreme events of precipitation will be more frequent in the future. Therefore, important challenges arise regarding climate variability, which are mainly related to the understanding of ecosystem responses to changes in precipitation patte...

  17. A hierarchical perspective on the diversity of butterfly species' responses to weather in the Sierra Nevada Mountains.

    PubMed

    Nice, Chris C; Forister, Matthew L; Gompert, Zachariah; Fordyce, James A; Shapiro, Arthur M

    2014-08-01

    An important and largely unaddressed issue in studies of biotic-abiotic relationships is the extent to which closely related species, or species living in similar habitats, have similar responses to weather. We addressed this by applying a hierarchical, Bayesian analytical framework to a long-term data set for butterflies which allowed us to simultaneously investigate responses of the entire fauna and individual species. A small number of variables had community-level effects. In particular, higher total annual snow depth had a positive effect on butterfly occurrences, while spring minimum temperature and El Niño-Southern Oscillation (ENSO) sea-surface variables for April-May had negative standardized coefficients. Our most important finding was that variables with large impacts at the community-level did not necessarily have a consistent response across all species. Species-level responses were much more similar to each other for snow depth compared to the other variables with strong community effects. This variation in species-level responses to weather variables raises important complications for the prediction of biotic responses to shifting climatic conditions. In addition, we found that clear associations with weather can be detected when considering ecologically delimited subsets of the community. For example, resident species and non-ruderal species had a much more unified response to weather variables compared to non-resident species and ruderal species, which suggests local adaptation to climate. These results highlight the complexity of biotic-abiotic interactions and confront that complexity with methodological advances that allow ecologists to understand communities and shifting climates while simultaneously revealing species-specific variation in response to climate.

  18. Association of genetic and phenotypic variability with geography and climate in three southern California oaks.

    PubMed

    Riordan, Erin C; Gugger, Paul F; Ortego, Joaquín; Smith, Carrie; Gaddis, Keith; Thompson, Pam; Sork, Victoria L

    2016-01-01

    Geography and climate shape the distribution of organisms, their genotypes, and their phenotypes. To understand historical and future evolutionary and ecological responses to climate, we compared the association of geography and climate of three oak species (Quercus engelmannii, Quercus berberidifolia, and Quercus cornelius-mulleri) in an environmentally heterogeneous region of southern California at three organizational levels: regional species distributions, genetic variation, and phenotypic variation. We identified climatic variables influencing regional distribution patterns using species distribution models (SDMs), and then tested whether those individual variables are important in shaping genetic (microsatellite) and phenotypic (leaf morphology) variation. We estimated the relative contributions of geography and climate using multivariate redundancy analyses (RDA) with variance partitioning. The modeled distribution of each species was influenced by climate differently. Our analysis of genetic variation using RDA identified small but significant associations between genetic variation with climate and geography in Q. engelmannii and Q. cornelius-mulleri, but not in Q. berberidifolia, and climate explained more of the variation. Our analysis of phenotypic variation in Q. engelmannii indicated that climate had more impact than geography, but not in Q. berberidifolia. Throughout our analyses, we did not find a consistent pattern in effects of individual climatic variables. Our comparative analysis illustrates that climate influences tree response at all organizational levels, but the important climate factors vary depending on the level and on the species. Because of these species-specific and level-specific responses, today's sympatric species are unlikely to have similar distributions in the future. © 2016 Botanical Society of America.

  19. Resilience, rapid transitions and regime shifts: fingerprinting the responses of Lake Żabińskie (NE Poland) to climate variability and human disturbance since 1000 AD

    NASA Astrophysics Data System (ADS)

    Tylmann, Wojciech; Hernández-Almeida, Iván; Grosjean, Martin; José Gómez Navarro, Juan; Larocque-Tobler, Isabelle; Bonk, Alicja; Enters, Dirk; Ustrzycka, Alicja; Piotrowska, Natalia; Przybylak, Rajmund; Wacnik, Agnieszka; Witak, Małgorzata

    2016-04-01

    Rapid ecosystem transitions and adverse effects on ecosystem services as responses to combined climate and human impacts are of major concern. Yet few quantitative observational data exist, particularly for ecosystems that have a long history of human intervention. Here, we combine quantitative summer and winter climate reconstructions, climate model simulations and proxies for three major environmental pressures (land use, nutrients and erosion) to explore the system dynamics, resilience, and the role of disturbance regimes in varved eutrophic Lake Żabińskie since AD 1000. Comparison between regional and global climate simulations and quantitative climate reconstructions indicate that proxy data capture noticeably natural forced climate variability, while internal variability appears as the dominant source of climate variability in the climate model simulations during most parts of the last millennium. Using different multivariate analyses and change point detection techniques, we identify ecosystem changes through time and shifts between rather stable states and highly variable ones, as expressed by the proxies for land-use, erosion and productivity in the lake. Prior to AD 1600, the lake ecosystem was characterized by a high stability and resilience against considerable observed natural climate variability. In contrast, lake-ecosystem conditions started to fluctuate at high frequency across a broad range of states after AD 1600. The period AD 1748-1868 represents the phase with the strongest human disturbance of the ecosystem. Analyses of the frequency of change points in the multi-proxy dataset suggests that the last 400 years were highly variable and flickering with increasing vulnerability of the ecosystem to the combined effects of climate variability and anthropogenic disturbances. This led to significant rapid ecosystem transformations.

  20. Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records

    NASA Astrophysics Data System (ADS)

    Flantua, S. G. A.; Hooghiemstra, H.; Vuille, M.; Behling, H.; Carson, J. F.; Gosling, W. D.; Hoyos, I.; Ledru, M. P.; Montoya, E.; Mayle, F.; Maldonado, A.; Rull, V.; Tonello, M. S.; Whitney, B. S.; González-Arango, C.

    2016-02-01

    An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation-climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America - 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.

  1. Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts

    NASA Astrophysics Data System (ADS)

    Tommasi, Desiree; Stock, Charles A.; Hobday, Alistair J.; Methot, Rick; Kaplan, Isaac C.; Eveson, J. Paige; Holsman, Kirstin; Miller, Timothy J.; Gaichas, Sarah; Gehlen, Marion; Pershing, Andrew; Vecchi, Gabriel A.; Msadek, Rym; Delworth, Tom; Eakin, C. Mark; Haltuch, Melissa A.; Séférian, Roland; Spillman, Claire M.; Hartog, Jason R.; Siedlecki, Samantha; Samhouri, Jameal F.; Muhling, Barbara; Asch, Rebecca G.; Pinsky, Malin L.; Saba, Vincent S.; Kapnick, Sarah B.; Gaitan, Carlos F.; Rykaczewski, Ryan R.; Alexander, Michael A.; Xue, Yan; Pegion, Kathleen V.; Lynch, Patrick; Payne, Mark R.; Kristiansen, Trond; Lehodey, Patrick; Werner, Francisco E.

    2017-03-01

    Recent developments in global dynamical climate prediction systems have allowed for skillful predictions of climate variables relevant to living marine resources (LMRs) at a scale useful to understanding and managing LMRs. Such predictions present opportunities for improved LMR management and industry operations, as well as new research avenues in fisheries science. LMRs respond to climate variability via changes in physiology and behavior. For species and systems where climate-fisheries links are well established, forecasted LMR responses can lead to anticipatory and more effective decisions, benefitting both managers and stakeholders. Here, we provide an overview of climate prediction systems and advances in seasonal to decadal prediction of marine-resource relevant environmental variables. We then describe a range of climate-sensitive LMR decisions that can be taken at lead-times of months to decades, before highlighting a range of pioneering case studies using climate predictions to inform LMR decisions. The success of these case studies suggests that many additional applications are possible. Progress, however, is limited by observational and modeling challenges. Priority developments include strengthening of the mechanistic linkages between climate and marine resource responses, development of LMR models able to explicitly represent such responses, integration of climate driven LMR dynamics in the multi-driver context within which marine resources exist, and improved prediction of ecosystem-relevant variables at the fine regional scales at which most marine resource decisions are made. While there are fundamental limits to predictability, continued advances in these areas have considerable potential to make LMR managers and industry decision more resilient to climate variability and help sustain valuable resources. Concerted dialog between scientists, LMR managers and industry is essential to realizing this potential.

  2. Novel Modeling Tools for Propagating Climate Change Variability and Uncertainty into Hydrodynamic Forecasts

    EPA Science Inventory

    Understanding impacts of climate change on hydrodynamic processes and ecosystem response within the Great Lakes is an important and challenging task. Variability in future climate conditions, uncertainty in rainfall-runoff model forecasts, the potential for land use change, and t...

  3. Analyzing the responses of species assemblages to climate change across the Great Basin, USA.

    NASA Astrophysics Data System (ADS)

    Henareh Khalyani, A.; Falkowski, M. J.; Crookston, N.; Yousef, F.

    2016-12-01

    The potential impacts of climate change on the future distribution of tree species in not well understood. Climate driven changes in tree species distribution could cause significant changes in realized species niches, potentially resulting in the loss of ecotonal species as well as the formation on novel assemblages of overlapping tree species. In an effort to gain a better understating of how the geographic distribution of tree species may respond to climate change, we model the potential future distribution of 50 different tree species across 70 million ha in the Great Basin, USA. This is achieved by leveraging a species realized niche model based on non-parametric analysis of species occurrences across climatic, topographic, and edaphic variables. Spatially explicit, high spatial resolution (30 m) climate variables (e.g., precipitation, and minimum, maximum, and mean temperature) and associated climate indices were generated on an annual basis between 1981-2010 by integrating climate station data with digital elevation data (Shuttle Radar Topographic Mission (SRTM) data) in a thin plate spline interpolation algorithm (ANUSPLIN). Bioclimate models of species niches in in the cotemporary period and three following 30 year periods were then generated by integrating the climate variables, soil data, and CMIP 5 general circulation model projections. Our results suggest that local scale contemporary variations in species realized niches across space are influenced by edaphic and topographic variables as well as climatic variables. The local variability in soil properties and topographic variability across space also affect the species responses to climate change through time and potential formation of species assemblages in future. The results presented here in will aid in the development of adaptive forest management techniques aimed at mitigating negative impacts of climate change on forest composition, structure, and function.

  4. Farmers' Perceptions of Climate Variability and Factors Influencing Adaptation: Evidence from Anhui and Jiangsu, China

    NASA Astrophysics Data System (ADS)

    Kibue, Grace Wanjiru; Liu, Xiaoyu; Zheng, Jufeng; zhang, Xuhui; Pan, Genxing; Li, Lianqing; Han, Xiaojun

    2016-05-01

    Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers' perceptions of climate variability and adaptation. Yet, without an understanding of farmers' perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers' perceptions of climate variability. We found that farmers' were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers' characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads' education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers' perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China's agricultural assets.

  5. Farmers' Perceptions of Climate Variability and Factors Influencing Adaptation: Evidence from Anhui and Jiangsu, China.

    PubMed

    Kibue, Grace Wanjiru; Liu, Xiaoyu; Zheng, Jufeng; Zhang, Xuhui; Pan, Genxing; Li, Lianqing; Han, Xiaojun

    2016-05-01

    Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers' perceptions of climate variability and adaptation. Yet, without an understanding of farmers' perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers' perceptions of climate variability. We found that farmers' were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers' characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads' education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers' perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China's agricultural assets.

  6. Reconstruction of Past Mediterranean Climate

    NASA Astrophysics Data System (ADS)

    García-Herrera, Ricardo; Luterbacher, Jürg; Lionello, Piero; Gonzáles-Rouco, Fidel; Ribera, Pedro; Rodó, Xavier; Kull, Christoph; Zerefos, Christos

    2007-02-01

    First MEDCLIVAR Workshop on Reconstruction of Past Mediterranean Climate; Pablo de Olavide University, Carmona, Spain, 8-11 November 2006; Mediterranean Climate Variability and Predictability (MEDCLIVAR; http://www.medclivar.eu) is a program that coordinates and promotes research on different aspects of Mediterranean climate. The main MEDCLIVAR goals include the reconstruction of past climate, describing patterns and mechanisms characterizing climate space-time variability, extremes at different time and space scales, coupled climate model/empirical reconstruction comparisons, seasonal forecasting, and the identification of the forcings responsible for the observed changes. The program has been endorsed by CLIVAR (Climate Variability and Predictability project) and is funded by the European Science Foundation.

  7. Timing of climate variability and grassland productivity

    PubMed Central

    Craine, Joseph M.; Nippert, Jesse B.; Elmore, Andrew J.; Skibbe, Adam M.; Hutchinson, Stacy L.; Brunsell, Nathaniel A.

    2012-01-01

    Future climates are forecast to include greater precipitation variability and more frequent heat waves, but the degree to which the timing of climate variability impacts ecosystems is uncertain. In a temperate, humid grassland, we examined the seasonal impacts of climate variability on 27 y of grass productivity. Drought and high-intensity precipitation reduced grass productivity only during a 110-d period, whereas high temperatures reduced productivity only during 25 d in July. The effects of drought and heat waves declined over the season and had no detectable impact on grass productivity in August. If these patterns are general across ecosystems, predictions of ecosystem response to climate change will have to account not only for the magnitude of climate variability but also for its timing. PMID:22331914

  8. Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern US

    USGS Publications Warehouse

    Gremer, Jennifer; Bradford, John B.; Munson, Seth M.; Duniway, Michael C.

    2015-01-01

    Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20 to 56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40 to 60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands.

  9. Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern United States.

    PubMed

    Gremer, Jennifer R; Bradford, John B; Munson, Seth M; Duniway, Michael C

    2015-11-01

    Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20-56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40-60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  10. Central Tropical Pacific Variability And ENSO Response To Changing Climate Boundary Conditions: Evidence From Individual Line Island Foraminifera

    NASA Astrophysics Data System (ADS)

    Rustic, G. T.; Polissar, P. J.; Ravelo, A. C.; White, S. M.

    2017-12-01

    The El Niño Southern Oscillation (ENSO) plays a dominant role in Earth's climate variability. Paleoceanographic evidence suggests that ENSO has changed in the past, and these changes have been linked to large-scale climatic shifts. While a close relationship between ENSO evolution and climate boundary conditions has been predicted, testing these predictions remains challenging. These climate boundary conditions, including insolation, the mean surface temperature gradient of the tropical Pacific, global ice volume, and tropical thermocline depth, often co-vary and may work together to suppress or enhance the ocean-atmosphere feedbacks that drive ENSO variability. Furthermore, suitable paleo-archives spanning multiple climate states are sparse. We have aimed to test ENSO response to changing climate boundary conditions by generating new reconstructions of mixed-layer variability from sedimentary archives spanning the last three glacial-interglacial cycles from the Central Tropical Pacific Line Islands, where El Niño is strongly expressed. We analyzed Mg/Ca ratios from individual foraminifera to reconstruct mixed-layer variability at discrete time intervals representing combinations of climatic boundary conditions from the middle Holocene to Marine Isotope Stage (MIS) 8. We observe changes in the mixed-layer temperature variability during MIS 5 and during the previous interglacial (MIS 7) showing significant reductions in ENSO amplitude. Differences in variability during glacial and interglacial intervals are also observed. Additionally, we reconstructed mixed-layer and thermocline conditions using multi-species Mg/Ca and stable isotope measurements to more fully characterize the state of the Central Tropical Pacific during these intervals. These reconstructions provide us with a unique view of Central Tropical Pacific variability and water-column structure at discrete intervals under varying boundary climate conditions with which to assess factors that shape ENSO variability.

  11. Climate variability and human impact on the environment in South America during the last 2000 years: synthesis and perspectives

    NASA Astrophysics Data System (ADS)

    Flantua, S. G. A.; Hooghiemstra, H.; Vuille, M.; Behling, H.; Carson, J. F.; Gosling, W. D.; Hoyos, I.; Ledru, M. P.; Montoya, E.; Mayle, F.; Maldonado, A.; Rull, V.; Tonello, M. S.; Whitney, B. S.; González-Arango, C.

    2015-07-01

    An improved understanding of present-day climate variability and change relies on high-quality data sets from the past two millennia. Global efforts to reconstruct regional climate modes are in the process of validating and integrating paleo-proxies. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to its unknown spatial and temporal coverage. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last two millennia. We identify the pollen records with the required temporal characteristics for PAGES-2 ka climate modelling and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local scale responses to climate modes, thus it is necessary to understand how vegetation-climate interactions might diverge under variable settings. Additionally, pollen is an excellent indicator of human impact through time. Evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. The LOTRED-SA-2 k initiative provides the ideal framework for the integration of the various paleoclimatic sub-disciplines and paleo-science, thereby jumpstarting and fostering multi-disciplinary research into environmental change on centennial and millennial time scales.

  12. Disease in a more variable and unpredictable climate

    NASA Astrophysics Data System (ADS)

    McMahon, T. A.; Raffel, T.; Rohr, J. R.; Halstead, N.; Venesky, M.; Romansic, J.

    2014-12-01

    Global climate change is shifting the dynamics of infectious diseases of humans and wildlife with potential adverse consequences for disease control. Despite this, the role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial. Climate change is expected to increase climate variability in addition to increasing mean temperatures, making climate less predictable. However, few empirical or theoretical studies have considered the effects of climate variability or predictability on disease, despite it being likely that hosts and parasites will have differential responses to climatic shifts. Here we present a theoretical framework for how temperature variation and its predictability influence disease risk by affecting host and parasite acclimation responses. Laboratory experiments and field data on disease-associated frog declines in Latin America support this framework and provide evidence that unpredictable temperature fluctuations, on both monthly and diurnal timescales, decrease frog resistance to the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Furthermore, the pattern of temperature-dependent growth of the fungus on frogs was inconsistent with the pattern of Bd growth in culture, emphasizing the importance of accounting for the host-parasite interaction when predicting climate-dependent disease dynamics. Consistent with our laboratory experiments, increased regional temperature variability associated with global El Niño climatic events was the best predictor of widespread amphibian losses in the genus Atelopus. Thus, incorporating the effects of small-scale temporal variability in climate can greatly improve our ability to predict the effects of climate change on disease.

  13. Spatial variability of the response to climate change in regional groundwater systems -- examples from simulations in the Deschutes Basin, Oregon

    USGS Publications Warehouse

    Waibel, Michael S.; Gannett, Marshall W.; Chang, Heejun; Hulbe, Christina L.

    2013-01-01

    We examine the spatial variability of the response of aquifer systems to climate change in and adjacent to the Cascade Range volcanic arc in the Deschutes Basin, Oregon using downscaled global climate model projections to drive surface hydrologic process and groundwater flow models. Projected warming over the 21st century is anticipated to shift the phase of precipitation toward more rain and less snow in mountainous areas in the Pacific Northwest, resulting in smaller winter snowpack and in a shift in the timing of runoff to earlier in the year. This will be accompanied by spatially variable changes in the timing of groundwater recharge. Analysis of historic climate and hydrologic data and modeling studies show that groundwater plays a key role in determining the response of stream systems to climate change. The spatial variability in the response of groundwater systems to climate change, particularly with regard to flow-system scale, however, has generally not been addressed in the literature. Here we simulate the hydrologic response to projected future climate to show that the response of groundwater systems can vary depending on the location and spatial scale of the flow systems and their aquifer characteristics. Mean annual recharge averaged over the basin does not change significantly between the 1980s and 2080s climate periods given the ensemble of global climate models and emission scenarios evaluated. There are, however, changes in the seasonality of groundwater recharge within the basin. Simulation results show that short-flow-path groundwater systems, such as those providing baseflow to many headwater streams, will likely have substantial changes in the timing of discharge in response changes in seasonality of recharge. Regional-scale aquifer systems with flow paths on the order of many tens of kilometers, in contrast, are much less affected by changes in seasonality of recharge. Flow systems at all spatial scales, however, are likely to reflect interannual changes in total recharge. These results provide insights into the possible impacts of climate change to other regional aquifer systems, and the streams they support, where discharge points represent a range of flow system scales.

  14. Sensitivity of global terrestrial ecosystems to climate variability.

    PubMed

    Seddon, Alistair W R; Macias-Fauria, Marc; Long, Peter R; Benz, David; Willis, Kathy J

    2016-03-10

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  15. Sensitivity of global terrestrial ecosystems to climate variability

    NASA Astrophysics Data System (ADS)

    Seddon, Alistair W. R.; Macias-Fauria, Marc; Long, Peter R.; Benz, David; Willis, Kathy J.

    2016-03-01

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  16. The future demographic niche of a declining grassland bird fails to shift poleward in response to climate change

    USGS Publications Warehouse

    McCauley, Lisa A.; Ribic, Christine; Pomara, Lars Y.; Zuckerberg, Benjamin

    2017-01-01

    ContextTemperate grasslands and their dependent species are exposed to high variability in weather and climate due to the lack of natural buffers such as forests. Grassland birds are particularly vulnerable to this variability, yet have failed to shift poleward in response to recent climate change like other bird species in North America. However, there have been few studies examining the effect of weather on grassland bird demography and consequent influence of climate change on population persistence and distributional shifts.ObjectivesThe goal of this study was to estimate the vulnerability of Henslow’s Sparrow (Ammodramus henslowii), an obligate grassland bird that has been declining throughout much of its range, to past and future climatic variability.MethodsWe conducted a demographic meta-analysis from published studies and quantified the relationship between nest success rates and variability in breeding season climate. We projected the climate-demography relationships spatially, throughout the breeding range, and temporally, from 1981 to 2050. These projections were used to evaluate population dynamics by implementing a spatially explicit population model.ResultsWe uncovered a climate-demography linkage for Henslow’s Sparrow with summer precipitation, and to a lesser degree, temperature positively affecting nest success. We found that future climatic conditions—primarily changes in precipitation—will likely contribute to reduced population persistence and a southwestward range contraction.ConclusionsFuture distributional shifts in response to climate change may not always be poleward and assessing projected changes in precipitation is critical for grassland bird conservation and climate change adaptation.

  17. Predicting phenology by integrating ecology, evolution and climate science

    USGS Publications Warehouse

    Pau, Stephanie; Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan; Kraft, Nathan J.B.; Bolmgren, Kjell; Betancourt, Julio L.; Cleland, Elsa E.

    2011-01-01

    Forecasting how species and ecosystems will respond to climate change has been a major aim of ecology in recent years. Much of this research has focused on phenology — the timing of life-history events. Phenology has well-demonstrated links to climate, from genetic to landscape scales; yet our ability to explain and predict variation in phenology across species, habitats and time remains poor. Here, we outline how merging approaches from ecology, climate science and evolutionary biology can advance research on phenological responses to climate variability. Using insight into seasonal and interannual climate variability combined with niche theory and community phylogenetics, we develop a predictive approach for species' reponses to changing climate. Our approach predicts that species occupying higher latitudes or the early growing season should be most sensitive to climate and have the most phylogenetically conserved phenologies. We further predict that temperate species will respond to climate change by shifting in time, while tropical species will respond by shifting space, or by evolving. Although we focus here on plant phenology, our approach is broadly applicable to ecological research of plant responses to climate variability.

  18. Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge

    NASA Astrophysics Data System (ADS)

    Bakker, Pepijn; Clark, Peter U.; Golledge, Nicholas R.; Schmittner, Andreas; Weber, Michael E.

    2017-01-01

    Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.

  19. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    DOE PAGES

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; ...

    2017-06-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. We show that the dominant driver varies with ENSO phase. And whereas tropical temperature explains sink dynamics following El Niño conditions (r TG,P = 0.59, p

  20. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (r TG,P=0.59, p<0.01), the post Lamore » Niña sink is driven largely by tropical precipitation (r PG,T=-0.46, p=0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. We further find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.« less

  1. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. We show that the dominant driver varies with ENSO phase. And whereas tropical temperature explains sink dynamics following El Niño conditions (r TG,P = 0.59, p

  2. Climate variability and plant response at the Santa Rita Experimental Range, Arizona

    Treesearch

    Michael A. Crimmins; Theresa M. Mau-Crimmins

    2003-01-01

    Climatic variability is reflected in differential establishment, persistence, and spread of plant species. Although studies have investigated these relationships for some species and functional groups, few have attempted to characterize the specific sequences of climatic conditions at various temporal scales (subseasonal, seasonal, and interannual) associated with...

  3. Effects of model spatial resolution on ecohydrologic predictions and their sensitivity to inter-annual climate variability

    Treesearch

    Kyongho Son; Christina Tague; Carolyn Hunsaker

    2016-01-01

    The effect of fine-scale topographic variability on model estimates of ecohydrologic responses to climate variability in California’s Sierra Nevada watersheds has not been adequately quantified and may be important for supporting reliable climate-impact assessments. This study tested the effect of digital elevation model (DEM) resolution on model accuracy and estimates...

  4. The effects of precipitation variability on C4 photosynthesis, net primary production and soil respiration in a Chihuahuan desert grassland

    Treesearch

    Michell L. Thomey

    2012-01-01

    Although the Earth's climate system has always been inherently variable, the magnitude and rate of anthropogenic climate change is subjecting ecosystems and the populations that they contain to novel environmental conditions. Because water is the most limiting resource, arid-semiarid ecosystems are likely to be highly responsive to future climate variability. The...

  5. Climate Change: Potential Effects on Demands for US Military Humanitarian Assistance and Disaster Response

    DTIC Science & Technology

    2010-11-01

    As we do not fully understand how decision-makers will approach future climate- induced requirements, gaming provides a tool for better understanding...result in the need for humanitarian response missions. Those cases involve not only the stress induced by the natural environment, but also the...natural cyclic variability and a warming- induced variability. The pri- mary variability related to SST involves the strength of the storms, rather

  6. Climate variability controls on unsaturated water and chemical movement, High Plains aquifer, USA

    USGS Publications Warehouse

    Gurdak, J.J.; Hanson, R.T.; McMahon, P.B.; Bruce, B.W.; McCray, J.E.; Thyne, G.D.; Reedy, R.C.

    2007-01-01

    Responses in the vadose zone and groundwater to interannual, interdecadal, and multidecadal climate variability have important implications for groundwater resource sustainability, yet they are poorly documented and not well understood in most aquifers of the USA. This investigation systematically examines the role of interannual to multidecadal climate variability on groundwater levels, deep infiltration (3-23 m) events, and downward displacement (>1 m) of chloride and nitrate reservoirs in thick (15-50 m) vadose zones across the regionally extensive High Plains aquifer. Such vadose zone responses are unexpected across much of the aquifer given a priori that unsaturated total-potential profiles indicate upward water movement from the water table toward the root zone, mean annual potential evapotranspiration exceeds mean annual precipitation, and millennia-scale evapoconcentration results in substantial vadose zone chloride and nitrate reservoirs. Using singular spectrum analysis (SSA) to reconstruct precipitation and groundwater level time-series components, variability was identified in all time series as partially coincident with known climate cycles, such as the Pacific Decadal Oscillation (PDO) (10-25 yr) and the El Nin??o/Southern Oscillation (ENSO) (2-6 yr). Using these lag-correlated hydrologic time series, a new method is demonstrated to estimate climate-varying unsaturated water flux. The results suggest the importance of interannual to interdecadal climate variability on water-flux estimation in thick vadose zones and provide better understanding of the climate-induced transients responsible for the observed deep infiltration and chemical-mobilization events. Based on these results, we discuss implications for climate-related sustainability of the High Plains aquifer. ?? Soil Science Society of America.

  7. The influence of El Niño-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario

    NASA Astrophysics Data System (ADS)

    Fer, Istem; Tietjen, Britta; Jeltsch, Florian; Wolff, Christian

    2017-09-01

    The El Niño-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.

  8. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions

    USGS Publications Warehouse

    Jackson, Stephen T.; Betancourt, Julio L.; Booth, Robert K.; Gray, Stephen T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.

  9. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions

    USGS Publications Warehouse

    Jackson, S.T.; Betancourt, J.L.; Booth, R.K.; Gray, S.T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and morefundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.

  10. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions

    PubMed Central

    Jackson, Stephen T.; Betancourt, Julio L.; Booth, Robert K.; Gray, Stephen T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics. PMID:19805104

  11. Climate variability slows evolutionary responses of Colias butterflies to recent climate change.

    PubMed

    Kingsolver, Joel G; Buckley, Lauren B

    2015-03-07

    How does recent climate warming and climate variability alter fitness, phenotypic selection and evolution in natural populations? We combine biophysical, demographic and evolutionary models with recent climate data to address this question for the subalpine and alpine butterfly, Colias meadii, in the southern Rocky Mountains. We focus on predicting patterns of selection and evolution for a key thermoregulatory trait, melanin (solar absorptivity) on the posterior ventral hindwings, which affects patterns of body temperature, flight activity, adult and egg survival, and reproductive success in Colias. Both mean annual summer temperatures and thermal variability within summers have increased during the past 60 years at subalpine and alpine sites. At the subalpine site, predicted directional selection on wing absorptivity has shifted from generally positive (favouring increased wing melanin) to generally negative during the past 60 years, but there is substantial variation among years in the predicted magnitude and direction of selection and the optimal absorptivity. The predicted magnitude of directional selection at the alpine site declined during the past 60 years and varies substantially among years, but selection has generally been positive at this site. Predicted evolutionary responses to mean climate warming at the subalpine site since 1980 is small, because of the variability in selection and asymmetry of the fitness function. At both sites, the predicted effects of adaptive evolution on mean population fitness are much smaller than the fluctuations in mean fitness due to climate variability among years. Our analyses suggest that variation in climate within and among years may strongly limit evolutionary responses of ectotherms to mean climate warming in these habitats. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. The response of the southwest Western Australian wave climate to Indian Ocean climate variability

    NASA Astrophysics Data System (ADS)

    Wandres, Moritz; Pattiaratchi, Charitha; Hetzel, Yasha; Wijeratne, E. M. S.

    2018-03-01

    Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994-2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.

  13. Climate change: believing and seeing implies adapting.

    PubMed

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  14. Uncertainty in Arctic climate projections traced to variability of downwelling longwave radiation

    NASA Astrophysics Data System (ADS)

    Krikken, Folmer; Bintanja, Richard; Hazeleger, WIlco; van Heerwaarden, Chiel

    2017-04-01

    The Arctic region has warmed rapidly over the last decades, and this warming is projected to increase. The uncertainty in these projections, i.e. intermodel spread, is however very large and a clear understanding of the sources behind the spread is so far still lacking. Here we use 31 state-of-the-art global climate models to show that variability of May downwelling radiation (DLR) in the models' control climate, primarily located at the land surrounding the Arctic ocean, explains 2/3 of the intermodel spread in projected Arctic warming under the RPC85 scenario. This variability is related to the combined radiative effect of the cloud radiative forcing (CRF) and the albedo response due to snowfall, which varies strongly between the models in these regions. This mechanism dampens or enhances yearly variability of DLR in the control climate but also dampens or enhances the climate response of DLR, sea ice cover and near surface temperature.

  15. Adaptation and mitigation

    Treesearch

    Constance I. Millar; Kenneth E. Skog; Duncan C. McKinley; Richard A. Birdsey; Christopher W. Swanston; Sarah J. Hines; Christopher W. Woodall; Elizabeth D. Reinhardt; David L. Peterson; James M. Vose

    2012-01-01

    Forest ecosystems respond to natural climatic variability and human-caused climate change in ways that are adverse as well as beneficial to the biophysical environment and to society. Adaptation refers to responses or adjustments made—whether passive, reactive, or anticipatory—to climatic variability and change (Carter et al. 1994). Many adjustments occur whether...

  16. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity.

    PubMed

    Matías, Luis; Linares, Juan C; Sánchez-Miranda, Ángela; Jump, Alistair S

    2017-10-01

    Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of a species' geographical distribution, where differences in growth or population dynamics may result in range expansions or contractions. Understanding population responses to different climatic drivers along wide latitudinal and altitudinal gradients is necessary in order to gain a better understanding of plant responses to ongoing increases in global temperature and drought severity. We selected Scots pine (Pinus sylvestris L.) as a model species to explore growth responses to climatic variability (seasonal temperature and precipitation) over the last century through dendrochronological methods. We developed linear models based on age, climate and previous growth to forecast growth trends up to year 2100 using climatic predictions. Populations were located at the treeline across a latitudinal gradient covering the northern, central and southernmost populations and across an altitudinal gradient at the southern edge of the distribution (treeline, medium and lower elevations). Radial growth was maximal at medium altitude and treeline of the southernmost populations. Temperature was the main factor controlling growth variability along the gradients, although the timing and strength of climatic variables affecting growth shifted with latitude and altitude. Predictive models forecast a general increase in Scots pine growth at treeline across the latitudinal distribution, with southern populations increasing growth up to year 2050, when it stabilizes. The highest responsiveness appeared at central latitude, and moderate growth increase is projected at the northern limit. Contrastingly, the model forecasted growth declines at lowland-southern populations, suggesting an upslope range displacement over the coming decades. Our results give insight into the geographical responses of tree species to climate change and demonstrate the importance of incorporating biogeographical variability into predictive models for an accurate prediction of species dynamics as climate changes. © 2017 John Wiley & Sons Ltd.

  17. Chapter 2: Effects of climatic variability and change. In Effects of Climate Variability and Change on Forest Ecosystems: A Comprehensive Science Synthesis for the U.S. Forest Sector; General Technical Report PNW-GTR-870, Washington DC

    EPA Science Inventory

    Climate profoundly shapes forests. Forest species composition, productivity, availability of goods and services, disturbance regimes, and location on the landscape are all regulated by climate. Much research attention has focused on the problem of predicting the response of fores...

  18. Intensified Indian Ocean climate variability during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Thirumalai, K.; DiNezro, P.; Tierney, J. E.; Puy, M.; Mohtadi, M.

    2017-12-01

    Climate models project increased year-to-year climate variability in the equatorial Indian Ocean in response to greenhouse gas warming. This response has been attributed to changes in the mean climate of the Indian Ocean associated with the zonal sea-surface temperature (SST) gradient. According to these studies, air-sea coupling is enhanced due to a stronger SST gradient driving anomalous easterlies that shoal the thermocline in the eastern Indian Ocean. We propose that this relationship between the variability and the zonal SST gradient is consistent across different mean climate states. We test this hypothesis using simulations of past and future climate performed with the Community Earth System Model Version 1 (CESM1). We constrain the realism of the model for the Last Glacial Maximum (LGM) where CESM1 simulates a mean climate consistent with a stronger SST gradient, agreeing with proxy reconstructions. CESM1 also simulates a pronounced increase in seasonal and interannual variability. We develop new estimates of climate variability on these timescales during the LGM using δ18O analysis of individual foraminifera (IFA). IFA data generated from four different cores located in the eastern Indian Ocean indicate a marked increase in δ18O-variance during the LGM as compared to the late Holocene. Such a significant increase in the IFA-δ18O variance strongly supports the modeling simulations. This agreement further supports the dynamics linking year-to-year variability and an altered SST gradient, increasing our confidence in model projections.

  19. Changes in the relationship between annual tree growth and climatic variables for four hardwood species

    Treesearch

    E.R. Smith; J.C. Rennie

    1991-01-01

    A study was conducted to characterize temporal and spatial variability in the growth response of four major hardwood species (white oak, chestnut oak, northern red oak, and yellow-poplar) to climatic fluctuations, and to evaluate the role of environmental factors associated with difference in response among individuals. The study incorporated tree-ring data collected...

  20. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions

    NASA Astrophysics Data System (ADS)

    Beer, Christian; Porada, Philipp; Ekici, Altug; Brakebusch, Matthias

    2018-03-01

    Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i) when taking into account future changes in short-term variability of meteorological variables and (ii) when representing dynamic snow and lichen and bryophyte functions in land surface models.

  1. Response of western mountain ecosystems to climatic variability and change: The Western Mountain Initiative

    USGS Publications Warehouse

    Stephenson, Nathan L.; Peterson, Dave; Fagre, Daniel B.; Allen, Craig D.; McKenzie, Donald; Baron, Jill S.; O'Brian, Kelly

    2007-01-01

    Mountain ecosystems within our national parks and other protected areas provide valuable goods and services such as clean water, biodiversity conservation, and recreational opportunities, but their potential responses to expected climatic changes are inadequately understood. The Western Mountain Initiative (WMI) is a collaboration of scientists whose research focuses on understanding and predicting responses of western mountain ecosystems to climatic variability and change. It is a legacy of the Global Change Research Program initiated by the National Park Service (NPS) in 1991 and continued by the U.S. Geological Survey (USGS) to this day as part of the U.S. Climate Change Science Program (http://www.climatescience.gov/). All WMI scientists are active participants in CIRMOUNT, and seek to further its goals.

  2. Individual-scale inference to anticipate climate-change vulnerability of biodiversity.

    PubMed

    Clark, James S; Bell, David M; Kwit, Matthew; Stine, Anne; Vierra, Ben; Zhu, Kai

    2012-01-19

    Anticipating how biodiversity will respond to climate change is challenged by the fact that climate variables affect individuals in competition with others, but interest lies at the scale of species and landscapes. By omitting the individual scale, models cannot accommodate the processes that determine future biodiversity. We demonstrate how individual-scale inference can be applied to the problem of anticipating vulnerability of species to climate. The approach places climate vulnerability in the context of competition for light and soil moisture. Sensitivities to climate and competition interactions aggregated from the individual tree scale provide estimates of which species are vulnerable to which variables in different habitats. Vulnerability is explored in terms of specific demographic responses (growth, fecundity and survival) and in terms of the synthetic response (the combination of demographic rates), termed climate tracking. These indices quantify risks for individuals in the context of their competitive environments. However, by aggregating in specific ways (over individuals, years, and other input variables), we provide ways to summarize and rank species in terms of their risks from climate change.

  3. Overview of global climate change and carbon sequestration

    Treesearch

    Kurt Johnsen

    2004-01-01

    The potential influence of global climate change on southern forests is uncertain. Outputs of climate change models differ considerably in their projections for precipitation and other variables that affect forests. Forest responses, particularly effects on competition among species, are difficult to assess. Even the responses of relatively simple ecosystems, such as...

  4. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia

    NASA Astrophysics Data System (ADS)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David

    2018-03-01

    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  5. Integrating plant ecological responses to climate extremes from individual to ecosystem levels.

    PubMed

    Felton, Andrew J; Smith, Melinda D

    2017-06-19

    Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  6. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin.

    PubMed

    Mishra, Ashok; Singh, R; Raghuwanshi, N S; Chatterjee, C; Froebrich, Jochen

    2013-12-01

    Indian Ganga Basin (IGB), one of the most densely populated areas in the world, is facing a significant threat to food grain production, besides increased yield gap between actual and potential production, due to climate change. We have analyzed the spatial variability of climate change impacts on rice and wheat yields at three different locations representing the upper, middle and lower IGB. The DSSAT model is used to simulate the effects of climate variability and climate change on rice and wheat yields by analyzing: (i) spatial crop yield response to current climate, and (ii) impact of a changing climate as projected by two regional climate models, REMO and HadRM3, based on SRES A1B emission scenarios for the period 2011-2040. Results for current climate demonstrate a significant gap between actual and potential yield for upper, middle and lower IGB stations. The analysis based on RCM projections shows that during 2011-2040, the largest reduction in rice and wheat yields will occur in the upper IGB (reduction of potential rice and wheat yield respectively by 43.2% and 20.9% by REMO, and 24.8% and 17.2% by HadRM3). In the lower IGB, however, contrasting results are obtained, with HadRM3 based projections showing an increase in the potential rice and wheat yields, whereas, REMO based projections show decreased potential yields. We discuss the influence of agro-climatic factors; variation in temperature, length of maturity period and leaf area index which are responsible for modeled spatial variability in crop yield response within the IGB. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Plasticity in Dendroclimatic Response across the Distribution Range of Aleppo Pine (Pinus halepensis)

    PubMed Central

    de Luis, Martin; Čufar, Katarina; Di Filippo, Alfredo; Novak, Klemen; Papadopoulos, Andreas; Piovesan, Gianluca; Rathgeber, Cyrille B. K.; Raventós, José; Saz, Miguel Angel; Smith, Kevin T.

    2013-01-01

    We investigated the variability of the climate-growth relationship of Aleppo pine across its distribution range in the Mediterranean Basin. We constructed a network of tree-ring index chronologies from 63 sites across the region. Correlation function analysis identified the relationships of tree-ring index to climate factors for each site. We also estimated the dominant climatic gradients of the region using principal component analysis of monthly, seasonal, and annual mean temperature and total precipitation from 1,068 climatic gridpoints. Variation in ring width index was primarily related to precipitation and secondarily to temperature. However, we found that the dendroclimatic relationship depended on the position of the site along the climatic gradient. In the southern part of the distribution range, where temperature was generally higher and precipitation lower than the regional average, reduced growth was also associated with warm and dry conditions. In the northern part, where the average temperature was lower and the precipitation more abundant than the regional average, reduced growth was associated with cool conditions. Thus, our study highlights the substantial plasticity of Aleppo pine in response to different climatic conditions. These results do not resolve the source of response variability as being due to either genetic variation in provenance, to phenotypic plasticity, or a combination of factors. However, as current growth responses to inter-annual climate variability vary spatially across existing climate gradients, future climate-growth relationships will also likely be determined by differential adaptation and/or acclimation responses to spatial climatic variation. The contribution of local adaptation and/or phenotypic plasticity across populations to the persistence of species under global warming could be decisive for prediction of climate change impacts across populations. In this sense, a more complex forest dynamics modeling approach that includes the contribution of genetic variation and phenotypic plasticity can improve the reliability of the ecological inferences derived from the climate-growth relationships. PMID:24391786

  8. Climate change response of great basin bristlecone pine in the Nevada NSF-EPSCoR Project (www.nvclimatechange.org)

    Treesearch

    Franco Biondi; Scotty Strachan

    2011-01-01

    Predicting the future of high-elevation pine populations is closely linked to correctly interpreting their past responses to climatic variability. As a proxy index of climate, dendrochronological records have the advantage of seasonal to annual resolution over multiple centuries to millennia (Bradley 1999). All climate reconstructions rely on the 'uniformity...

  9. Climate change/variability science and adaptive strategies for state and regional transportation decision making.

    DOT National Transportation Integrated Search

    2010-04-01

    The objective of this study was to generate a baseline understanding of current policy responses to climate : change/variability at the state and regional transportation-planning and -decision levels. Specifically, : researchers were interested in th...

  10. Topography alters tree growth–climate relationships in a semi-arid forested catchment

    DOE PAGES

    Adams, Hallie R.; Barnard, Holly R.; Loomis, Alexander K.

    2014-11-26

    Topography and climate play an integral role in the spatial variability and annual dynamics of aboveground carbon sequestration. Despite knowledge of vegetation–climate–topography relationships on the landscape and hillslope scales, little is known about the influence of complex terrain coupled with hydrologic and topoclimatic variation on tree growth and physiology at the catchment scale. Climate change predictions for the semi-arid, western United States include increased temperatures, more frequent and extreme drought events, and decreases in snowpack, all of which put forests at risk of drought induced mortality and enhanced susceptibility to disturbance events. In this study, we determine how species-specific treemore » growth patterns and water use efficiency respond to interannual climate variability and how this response varies with topographic position. We found that Pinus contorta and Pinus ponderosa both show significant decreases in growth with water-limiting climate conditions, but complex terrain mediates this response by controlling moisture conditions in variable topoclimates. Foliar carbon isotope analyses show increased water use efficiency during drought for Pinus contorta, but indicate no significant difference in water use efficiency of Pinus ponderosa between a drought year and a non-drought year. The responses of the two pine species to climate indicate that semi-arid forests are especially susceptible to changes and risks posed by climate change and that topographic variability will likely play a significant role in determining the future vegetation patterns of semi-arid systems.« less

  11. Modeling non-linear growth responses to temperature and hydrology in wetland trees

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2016-12-01

    Growth responses of wetland trees to flooding and climate variations are difficult to model because they depend on multiple, apparently interacting factors, but are a critical link in hydrological control of wetland carbon budgets. To more generally understand tree growth to hydrological forcing, we modeled non-linear responses of tree ring growth to flooding and climate at sub-annual time steps, using Vaganov-Shashkin response functions. We calibrated the model to six baldcypress tree-ring chronologies from two hydrologically distinct sites in southern Louisiana, and tested several hypotheses of plasticity in wetlands tree responses to interacting environmental variables. The model outperformed traditional multiple linear regression. More importantly, optimized response parameters were generally similar among sites with varying hydrological conditions, suggesting generality to the functions. Model forms that included interacting responses to multiple forcing factors were more effective than were single response functions, indicating the principle of a single limiting factor is not correct in wetlands and both climatic and hydrological variables must be considered in predicting responses to hydrological or climate change.

  12. AMOC decadal variability in Earth system models: Mechanisms and climate impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Alexey

    This is the final report for the project titled "AMOC decadal variability in Earth system models: Mechanisms and climate impacts". The central goal of this one-year research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) within a hierarchy of climate models ranging from realistic ocean GCMs to Earth system models. The AMOC is a key element of ocean circulation responsible for oceanic transport of heat from low to high latitudes and controlling, to a large extent, climate variations in the North Atlantic. The questions of the AMOC stability, variability andmore » predictability, directly relevant to the questions of climate predictability, were at the center of the research work.« less

  13. Climate-driven vital rates do not always mean climate-driven population.

    PubMed

    Tavecchia, Giacomo; Tenan, Simone; Pradel, Roger; Igual, José-Manuel; Genovart, Meritxell; Oro, Daniel

    2016-12-01

    Current climatic changes have increased the need to forecast population responses to climate variability. A common approach to address this question is through models that project current population state using the functional relationship between demographic rates and climatic variables. We argue that this approach can lead to erroneous conclusions when interpopulation dispersal is not considered. We found that immigration can release the population from climate-driven trajectories even when local vital rates are climate dependent. We illustrated this using individual-based data on a trans-equatorial migratory seabird, the Scopoli's shearwater Calonectris diomedea, in which the variation of vital rates has been associated with large-scale climatic indices. We compared the population annual growth rate λ i , estimated using local climate-driven parameters with ρ i , a population growth rate directly estimated from individual information and that accounts for immigration. While λ i varied as a function of climatic variables, reflecting the climate-dependent parameters, ρ i did not, indicating that dispersal decouples the relationship between population growth and climate variables from that between climatic variables and vital rates. Our results suggest caution when assessing demographic effects of climatic variability especially in open populations for very mobile organisms such as fish, marine mammals, bats, or birds. When a population model cannot be validated or it is not detailed enough, ignoring immigration might lead to misleading climate-driven projections. © 2016 John Wiley & Sons Ltd.

  14. Lakes as sentinels of climate change

    PubMed Central

    Adrian, Rita; O’Reilly, Catherine M.; Zagarese, Horacio; Baines, Stephen B.; Hessen, Dag O.; Keller, Wendel; Livingstone, David M.; Sommaruga, Ruben; Straile, Dietmar; Van Donk, Ellen; Weyhenmeyer, Gesa A.; Winder, Monika

    2010-01-01

    While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment. PMID:20396409

  15. Groundwater level responses to precipitation variability in Mediterranean insular aquifers

    NASA Astrophysics Data System (ADS)

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique

    2017-09-01

    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (<6 months); (ii) at medium time scales (6-24 months); and at long time scales (>24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in a very small area, highlighting the importance of having high spatial resolution hydro-climatic databases available to enable full understanding of the effects of climate variability on scarce water resources.

  16. Climate-driven changes in forest succession and the influence of management on forest carbon dynamics in the Puget Lowlands of Washington State, USA

    Treesearch

    Danelle M. Laflower; Matthew D. Hurteau; George W. Koch; Malcolm P. North; Bruce A. Hungate

    2016-01-01

    Projecting the response of forests to changing climate requires understanding how biotic and abiotic controls on tree growth will change over time. As temperature and interannual precipitation variability increase, the overall forest response is likely to be influenced by species-specific responses to changing climate. Management actions that alter composition...

  17. Water yield responses to climate change and variability across the North–South Transect of Eastern China (NSTEC)

    Treesearch

    Nan Lu; Ge Sun; Xiaoming Feng; Bojie Fu

    2013-01-01

    China is facing a growing water crisis due to climate and land use change, and rise in human water demand across this rapidly developing country. Understanding the spatial and temporal ecohydrologic responses to climate change is critical to sustainable water resource management. We investigated water yield (WY) responses to historical (1981–2000) and projected...

  18. Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest

    Treesearch

    Charles Luce; Brian Staab; Marc Kramer; Seth Wenger; Dan Isaak; Callie McConnell

    2014-01-01

    Estimating the thermal response of streams to a warming climate is important for prioritizing native fish conservation efforts. While there are plentiful estimates of air temperature responses to climate change, the sensitivity of streams, particularly small headwater streams, to warming temperatures is less well understood. A substantial body of literature correlates...

  19. Long-term streamflow response to climatic variability in the Loess Plateau, China

    Treesearch

    Shenping Wang; Zhiqiang Zhang; Ge Sun; Steven G. McNulty; Huayong Zhang; Jianlao Li; Manliang Zhang

    2008-01-01

    The Loess Plateau region in northwestern China has experienced severe water resource shortages due to the combined impacts of climate and land use changes and water resource exploitation during the past decades. This study was designed to examine the impacts of climatic variability on streamflow characteristics of a 12-km2 watershed near Tianshui City, Gansu Province...

  20. Taking the pulse of mountains: Ecosystem responses to climatic variability

    USGS Publications Warehouse

    Fagre, Daniel B.; Peterson, David L.; Hessl, Amy E.

    2003-01-01

    An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change across a broad range of climates and mountain ecosystems in the northwestern U.S.A.

  1. Climate Variability and Phytoplankton in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile

    2012-01-01

    The effect of climate variability on phytoplankton communities was assessed for the tropical and sub-tropical Pacific Ocean between 1998 and 2005 using an established biogeochemical assimilation model. The phytoplankton communities exhibited wide range of responses to climate variability, from radical shifts in the Equatorial Pacific, to changes of only a couple of phytoplankton groups in the North Central Pacific, to no significant changes in the South Pacific. In the Equatorial Pacific, climate variability dominated the variability of phytoplankton. Here, nitrate, chlorophyll and all but one of the 4 phytoplankton types (diatoms, cyanobacteria and coccolithophores) were strongly correlated (p<0.01) with the Multivariate El Nino Southern Oscillation Index (MEI). In the North Central Pacific, MEI and chlorophyll were significantly (p<0.01) correlated along with two of the phytoplankton groups (chlorophytes and coccolithophores). Ocean biology in the South Pacific was not significantly correlated with MEI. During La Nina events, diatoms increased and expanded westward along the cold tongue (correlation with MEI, r=-0.81), while cyanobacteria concentrations decreased significantly (r=0.78). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. The diverse response of phytoplankton in the different major basins of the Pacific suggests the different roles climate variability can play in ocean biology.

  2. Application of scenario-neutral methods to quantify impacts of climate change on water resources in East Africa

    NASA Astrophysics Data System (ADS)

    Ascott, M.; Macdonald, D.; Lapworth, D.; Tindimugaya, C.

    2017-12-01

    Quantification of the impact of climate change on water resources is essential for future resource planning. Unfortunately, climate change impact studies in African regions are often hindered by the extent in variability in future rainfall predictions, which also diverge from current drying trends. To overcome this limitation, "scenario-neutral" methods have been developed which stress a hydrological system using a wide range of climate futures to build a "climate response surface". We developed a hydrological model and scenario-neutral framework to quantify climate change impacts on river flows in the Katonga catchment, Uganda. Using the lumped catchment model GR4J, an acceptable calibration to historic daily flows (1966 - 2010, NSE = 0.69) was achieved. Using a delta change approach, we then systematically changed rainfall and PET inputs to develop response surfaces for key metrics, developed with Ugandan water resources planners (e.g. Q5, Q95). Scenarios from the CMIP5 models for 2030s and 2050s were then overlain on the response surface. The CMIP5 scenarios show consistent increases in temperature but large variability in rainfall increases, which results in substantial variability in increases in river flows. The developed response surface covers a wide range of climate futures beyond the CMIP5 projections, and can help water resources planners understand the sensitivity of water resource systems to future changes. When future climate scenarios are available, these can be directly overlain on the response surface without the need to re-run the hydrological model. Further work will consider using scenario-neutral approaches in more complex, semi-distributed models (e.g. SWAT), and will consider land use and socioeconomic change.

  3. Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability.

    PubMed

    Zang, Christian; Hartl-Meier, Claudia; Dittmar, Christoph; Rothe, Andreas; Menzel, Annette

    2014-12-01

    The future performance of native tree species under climate change conditions is frequently discussed, since increasingly severe and more frequent drought events are expected to become a major risk for forest ecosystems. To improve our understanding of the drought tolerance of the three common European temperate forest tree species Norway spruce, silver fir and common beech, we tested the influence of climate and tree-specific traits on the inter and intrasite variability in drought responses of these species. Basal area increment data from a large tree-ring network in Southern Germany and Alpine Austria along a climatic cline from warm-dry to cool-wet conditions were used to calculate indices of tolerance to drought events and their variability at the level of individual trees and populations. General patterns of tolerance indicated a high vulnerability of Norway spruce in comparison to fir and beech and a strong influence of bioclimatic conditions on drought response for all species. On the level of individual trees, low-growth rates prior to drought events, high competitive status and low age favored resilience in growth response to drought. Consequently, drought events led to heterogeneous and variable response patterns in forests stands. These findings may support the idea of deliberately using spontaneous selection and adaption effects as a passive strategy of forest management under climate change conditions, especially a strong directional selection for more tolerant individuals when frequency and intensity of summer droughts will increase in the course of global climate change. © 2014 John Wiley & Sons Ltd.

  4. What Climate Sensitivity Index Is Most Useful for Projections?

    NASA Astrophysics Data System (ADS)

    Grose, Michael R.; Gregory, Jonathan; Colman, Robert; Andrews, Timothy

    2018-02-01

    Transient climate response (TCR), transient response at 140 years (T140), and equilibrium climate sensitivity (ECS) indices are intended as benchmarks for comparing the magnitude of climate response projected by climate models. It is generally assumed that TCR or T140 would explain more variability between models than ECS for temperature change over the 21st century, since this timescale is the realm of transient climate change. Here we find that TCR explains more variability across Coupled Model Intercomparison Project phase 5 than ECS for global temperature change since preindustrial, for 50 or 100 year global trends up to the present, and for projected change under representative concentration pathways in regions of delayed warming such as the Southern Ocean. However, unexpectedly, we find that ECS correlates higher than TCR for projected change from the present in the global mean and in most regions. This higher correlation does not relate to aerosol forcing, and the physical cause requires further investigation.

  5. Creation of Synthetic Surface Temperature and Precipitation Ensembles Through A Computationally Efficient, Mixed Method Approach

    NASA Astrophysics Data System (ADS)

    Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.

    2017-12-01

    Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.

  6. Dynamics of the Coupled Human-climate System Resulting from Closed-loop Control of Solar Geoengineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacMartin, Douglas; Kravitz, Benjamin S.; Keith, David

    2014-07-08

    If solar radiation management (SRM) were ever implemented, feedback of the observed climate state might be used to adjust the radiative forcing of SRM, in order to compensate for uncertainty in either the forcing or the climate response; this would also compensate for unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. This feedback creates an emergent coupled human-climate system, with entirely new dynamics. In addition to the intended response to greenhouse-gas induced changes, the use of feedback would also result in a geoengineering response to natural climate variability. We use a simple box-diffusion dynamic model tomore » understand how changing feedback-control parameters and time delay affect the behavior of this coupled natural-human system, and verify these predictions using the HadCM3L general circulation model. In particular, some amplification of natural variability is unavoidable; any time delay (e.g., to average out natural variability, or due to decision-making) exacerbates this amplification, with oscillatory behavior possible if there is a desire for rapid correction (high feedback gain), but a delayed response needed for decision making. Conversely, the need for feedback to compensate for uncertainty, combined with a desire to avoid excessive amplification, results in a limit on how rapidly SRM could respond to uncertain changes.« less

  7. Estimating the impact of internal climate variability on ice sheet model simulations

    NASA Astrophysics Data System (ADS)

    Tsai, C. Y.; Forest, C. E.; Pollard, D.

    2016-12-01

    Rising sea level threatens human societies and coastal habitats and melting ice sheets are a major contributor to sea level rise (SLR). Thus, understanding uncertainty of both forcing and variability within the climate system is essential for assessing long-term risk of SLR given their impact on ice sheet evolution. The predictability of polar climate is limited by uncertainties from the given forcing, the climate model response to this forcing, and the internal variability from feedbacks within the fully coupled climate system. Among those sources of uncertainty, the impact of internal climate variability on ice sheet changes has not yet been robustly assessed. Here we investigate how internal variability affects ice sheet projections using climate fields from two Community Earth System Model (CESM) large-ensemble (LE) experiments to force a three-dimensional ice sheet model. Each ensemble member in an LE experiment undergoes the same external forcings but with unique initial conditions. We find that for both LEs, 2m air temperature variability over Greenland ice sheet (GrIS) can lead to significantly different ice sheet responses. Our results show that the internal variability from two fully coupled CESM LEs can cause about 25 35 mm differences of GrIS's contribution to SLR in 2100 compared to present day (about 20% of the total change), and 100m differences of SLR in 2300. Moreover, only using ensemble-mean climate fields as the forcing in ice sheet model can significantly underestimate the melt of GrIS. As the Arctic region becomes warmer, the role of internal variability is critical given the complex nonlinear interactions between surface temperature and ice sheet. Our results demonstrate that internal variability from coupled atmosphere-ocean general circulation model can affect ice sheet simulations and the resulting sea-level projections. This study highlights an urgent need to reassess associated uncertainties of projecting ice sheet loss over the next few centuries to obtain robust estimates of the contribution of ice sheet melt to SLR.

  8. Using physiology to understand climate-driven changes in disease and their implications for conservation.

    PubMed

    Rohr, Jason R; Raffel, Thomas R; Blaustein, Andrew R; Johnson, Pieter T J; Paull, Sara H; Young, Suzanne

    2013-01-01

    Controversy persists regarding the contributions of climate change to biodiversity losses, through its effects on the spread and emergence of infectious diseases. One of the reasons for this controversy is that there are few mechanistic studies that explore the links among climate change, infectious disease, and declines of host populations. Given that host-parasite interactions are generally mediated by physiological responses, we submit that physiological models could facilitate the prediction of how host-parasite interactions will respond to climate change, and might offer theoretical and terminological cohesion that has been lacking in the climate change-disease literature. We stress that much of the work on how climate influences host-parasite interactions has emphasized changes in climatic means, despite a hallmark of climate change being changes in climatic variability and extremes. Owing to this gap, we highlight how temporal variability in weather, coupled with non-linearities in responses to mean climate, can be used to predict the effects of climate on host-parasite interactions. We also discuss the climate variability hypothesis for disease-related declines, which posits that increased unpredictable temperature variability might provide a temporary advantage to pathogens because they are smaller and have faster metabolisms than their hosts, allowing more rapid acclimatization following a temperature shift. In support of these hypotheses, we provide case studies on the role of climatic variability in host population declines associated with the emergence of the infectious diseases chytridiomycosis, withering syndrome, and malaria. Finally, we present a mathematical model that provides the scaffolding to integrate metabolic theory, physiological mechanisms, and large-scale spatiotemporal processes to predict how simultaneous changes in climatic means, variances, and extremes will affect host-parasite interactions. However, several outstanding questions remain to be answered before investigators can accurately predict how changes in climatic means and variances will affect infectious diseases and the conservation status of host populations.

  9. Using physiology to understand climate-driven changes in disease and their implications for conservation

    PubMed Central

    Rohr, Jason R.; Raffel, Thomas R.; Blaustein, Andrew R.; Johnson, Pieter T. J.; Paull, Sara H.; Young, Suzanne

    2013-01-01

    Controversy persists regarding the contributions of climate change to biodiversity losses, through its effects on the spread and emergence of infectious diseases. One of the reasons for this controversy is that there are few mechanistic studies that explore the links among climate change, infectious disease, and declines of host populations. Given that host–parasite interactions are generally mediated by physiological responses, we submit that physiological models could facilitate the prediction of how host–parasite interactions will respond to climate change, and might offer theoretical and terminological cohesion that has been lacking in the climate change–disease literature. We stress that much of the work on how climate influences host–parasite interactions has emphasized changes in climatic means, despite a hallmark of climate change being changes in climatic variability and extremes. Owing to this gap, we highlight how temporal variability in weather, coupled with non-linearities in responses to mean climate, can be used to predict the effects of climate on host–parasite interactions. We also discuss the climate variability hypothesis for disease-related declines, which posits that increased unpredictable temperature variability might provide a temporary advantage to pathogens because they are smaller and have faster metabolisms than their hosts, allowing more rapid acclimatization following a temperature shift. In support of these hypotheses, we provide case studies on the role of climatic variability in host population declines associated with the emergence of the infectious diseases chytridiomycosis, withering syndrome, and malaria. Finally, we present a mathematical model that provides the scaffolding to integrate metabolic theory, physiological mechanisms, and large-scale spatiotemporal processes to predict how simultaneous changes in climatic means, variances, and extremes will affect host–parasite interactions. However, several outstanding questions remain to be answered before investigators can accurately predict how changes in climatic means and variances will affect infectious diseases and the conservation status of host populations. PMID:27293606

  10. Intercomparison of model response and internal variability across climate model ensembles

    NASA Astrophysics Data System (ADS)

    Kumar, Devashish; Ganguly, Auroop R.

    2017-10-01

    Characterization of climate uncertainty at regional scales over near-term planning horizons (0-30 years) is crucial for climate adaptation. Climate internal variability (CIV) dominates climate uncertainty over decadal prediction horizons at stakeholders' scales (regional to local). In the literature, CIV has been characterized indirectly using projections of climate change from multi-model ensembles (MME) instead of directly using projections from multiple initial condition ensembles (MICE), primarily because adequate number of initial condition (IC) runs were not available for any climate model. Nevertheless, the recent availability of significant number of IC runs from one climate model allows for the first time to characterize CIV directly from climate model projections and perform a sensitivity analysis to study the dominance of CIV compared to model response variability (MRV). Here, we measure relative agreement (a dimensionless number with values ranging between 0 and 1, inclusive; a high value indicates less variability and vice versa) among MME and MICE and find that CIV is lower than MRV for all projection time horizons and spatial resolutions for precipitation and temperature. However, CIV exhibits greater dominance over MRV for seasonal and annual mean precipitation at higher latitudes where signals of climate change are expected to emerge sooner. Furthermore, precipitation exhibits large uncertainties and a rapid decline in relative agreement from global to continental, regional, or local scales for MICE compared to MME. The fractional contribution of uncertainty due to CIV is invariant for precipitation and decreases for temperature as lead time progresses towards the end of the century.

  11. Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, Petrolisthes cinctipes.

    PubMed

    Stillman, Jonathon H; Tagmount, Abderrahmane

    2009-10-01

    Central predictions of climate warming models include increased climate variability and increased severity of heat waves. Physiological acclimatization in populations across large-scale ecological gradients in habitat temperature fluctuation is an important factor to consider in detecting responses to climate change related increases in thermal fluctuation. We measured in vivo cardiac thermal maxima and used microarrays to profile transcriptome heat and cold stress responses in cardiac tissue of intertidal zone porcelain crabs across biogeographic and seasonal gradients in habitat temperature fluctuation. We observed acclimatization dependent induction of heat shock proteins, as well as unknown genes with heat shock protein-like expression profiles. Thermal acclimatization had the largest effect on heat stress responses of extensin-like, beta tubulin, and unknown genes. For these genes, crabs acclimatized to thermally variable sites had higher constitutive expression than specimens from low variability sites, but heat stress dramatically induced expression in specimens from low variability sites and repressed expression in specimens from highly variable sites. Our application of ecological transcriptomics has yielded new biomarkers that may represent sensitive indicators of acclimatization to habitat temperature fluctuation. Our study also has identified novel genes whose further description may yield novel understanding of cellular responses to thermal acclimatization or thermal stress.

  12. The influence of soil-site factors on sugar maple (Acer saccharum Marsh.) growth response to climatic change in central Ontario

    NASA Astrophysics Data System (ADS)

    Schutten, K.; Gedalof, Z.

    2010-12-01

    Over the past several decades, concerns about climatic change and its potential impacts on Canada’s various geographical regions and associated ecological processes have grown steadily, especially among land and resource managers. As these risks transition into tangible outcomes in the field, it will be important for resource managers to understand historical climatic variability and natural ecological trends in order to effectively respond to a changing climate. Sugar maple (Acer saccharum Marsh.) is considered a stable endpoint for mature forests in the northern hardwood community of central Ontario, and it tends to be the dominant species, in a beech-ironwood-yellow birch matrix. In North America, this species is used for both hardwood lumber and for maple sugar (syrup) products; where it dominates, large recreational opportunities also exist. There are many biotic and abiotic factors that play a large role in the growth and productivity of sugar maple stands, such as soil pH, moisture regime, and site slope and aspect. This research undertaking aims to add to the body of literature addressing the following question: how do site factors influence the sensitivity of sugar maple growth to climatic change? The overall objective of the research is to evaluate how biotic and abiotic factors influence the sensitivity of sugar maple annual radial growth to climatic variability. This research will focus on sugar maple growth and productivity in Algonquin Provincial Park, and the impact that climatic variability has had in the past on these stands based on site-specific characteristics. In order to complete this goal, 20 sites were identified in Algonquin Provincial Park based on variability of known soil and site properties. These sites were visited in order to collect biotic and abiotic site data, and to measure annual radial growth increment of trees. Using regional climate records and standard dendrochronological methods, the collected increment growth data will be used to build site-specific chronologies in order to determine the differences in tree growth response to climatic variability due to differences in soil and site quality. Preliminary results suggest that variability in site-specific abiotic and biotic conditions may strongly influence individual stand growth responses to climatic variability.

  13. Climatic extremes improve predictions of spatial patterns of tree species

    USGS Publications Warehouse

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  14. Evaluating within-population variability in behavior and demography for the adaptive potential of a dispersal-limited species to climate change

    USGS Publications Warehouse

    Muñoz, David J.; Miller Hesed, Kyle; Grant, Evan H. Campbell; Miller, David A.W.

    2016-01-01

    Multiple pathways exist for species to respond to changing climates. However, responses of dispersal-limited species will be more strongly tied to ability to adapt within existing populations as rates of environmental change will likely exceed movement rates. Here, we assess adaptive capacity in Plethodon cinereus, a dispersal-limited woodland salamander. We quantify plasticity in behavior and variation in demography to observed variation in environmental variables over a 5-year period. We found strong evidence that temperature and rainfall influence P. cinereus surface presence, indicating changes in climate are likely to affect seasonal activity patterns. We also found that warmer summer temperatures reduced individual growth rates into the autumn, which is likely to have negative demographic consequences. Reduced growth rates may delay reproductive maturity and lead to reductions in size-specific fecundity, potentially reducing population-level persistence. To better understand within-population variability in responses, we examined differences between two common color morphs. Previous evidence suggests that the color polymorphism may be linked to physiological differences in heat and moisture tolerance. We found only moderate support for morph-specific differences for the relationship between individual growth and temperature. Measuring environmental sensitivity to climatic variability is the first step in predicting species' responses to climate change. Our results suggest phenological shifts and changes in growth rates are likely responses under scenarios where further warming occurs, and we discuss possible adaptive strategies for resulting selective pressures.

  15. Collaborative Research: Process-resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Ming; Deng, Yi

    2015-02-06

    El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The future projection of the ENSO and AM variability, however, remains highly uncertain with the state-of-the-art coupled general circulation models. A comprehensive understanding of the factors responsible for the inter-model discrepancies in projecting future changes in the ENSO and AM variability, in terms of multiple feedback processes involved, has yet to be achieved. The proposed research aims to identify sources of such uncertainty and establish a set of process-resolving quantitative evaluations of the existing predictions ofmore » the future ENSO and AM variability. The proposed process-resolving evaluations are based on a feedback analysis method formulated in Lu and Cai (2009), which is capable of partitioning 3D temperature anomalies/perturbations into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. Taking advantage of the high-resolution, multi-model ensemble products from the Coupled Model Intercomparison Project Phase 5 (CMIP5) soon to be available at the Lawrence Livermore National Lab, we will conduct a process-resolving decomposition of the global three-dimensional (3D) temperature (including SST) response to the ENSO and AM variability in the preindustrial, historical and future climate simulated by these models. Specific research tasks include 1) identifying the model-observation discrepancies in the global temperature response to ENSO and AM variability and attributing such discrepancies to specific feedback processes, 2) delineating the influence of anthropogenic radiative forcing on the key feedback processes operating on ENSO and AM variability and quantifying their relative contributions to the changes in the temperature anomalies associated with different phases of ENSO and AMs, and 3) investigating the linkages between model feedback processes that lead to inter-model differences in time-mean temperature projection and model feedback processes that cause inter-model differences in the simulated ENSO and AM temperature response. Through a thorough model-observation and inter-model comparison of the multiple energetic processes associated with ENSO and AM variability, the proposed research serves to identify key uncertainties in model representation of ENSO and AM variability, and investigate how the model uncertainty in predicting time-mean response is related to the uncertainty in predicting response of the low-frequency modes. The proposal is thus a direct response to the first topical area of the solicitation: Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability. It ultimately supports the accomplishment of the BER climate science activity Long Term Measure (LTM): "Deliver improved scientific data and models about the potential response of the Earth's climate and terrestrial biosphere to increased greenhouse gas levels for policy makers to determine safe levels of greenhouse gases in the atmosphere."« less

  16. How does complex terrain influence responses of carbon and water cycle processes to climate variability and climate change? (Invited)

    NASA Astrophysics Data System (ADS)

    Bond, B. J.; Peterson, K.; McKane, R.; Lajtha, K.; Quandt, D. J.; Allen, S. T.; Sell, S.; Daly, C.; Harmon, M. E.; Johnson, S. L.; Spies, T.; Sollins, P.; Abdelnour, A. G.; Stieglitz, M.

    2010-12-01

    We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site situated in Oregon’s central-western Cascade Range. Decades of long-term measurements and intensive research have revealed influences of topography on vegetation patterns, disturbance history, and hydrology. More recent research has shown surprising interactions between microclimates and synoptic weather patterns due to cold air drainage and pooling in mountain valleys. Using these data and insights, in addition to a recent LiDAR (Light Detection and Ranging) reconnaissance and a small sensor network, we are employing process-based models, including “SPA” (Soil-Plant-Atmosphere, developed by Mathew Williams of the University of Edinburgh), and “VELMA” (Visualizing Ecosystems for Land Management Alternatives, developed by Marc Stieglitz and colleagues of the Georgia Institute of Technology) to focus on two important features of mountainous landscapes: heterogeneity (both spatial and temporal) and connectivity (atmosphere-canopy-hillslope-stream). Our research questions include: 1) Do fine-scale spatial and temporal heterogeneity result in emergent properties at the basin scale, and if so, what are they? 2) How does connectivity across ecosystem components affect system responses to climate variability and change? Initial results show that for environmental drivers that elicit non-linear ecosystem responses on the plot scale, such as solar radiation, soil depth and soil water content, fine-scale spatial heterogeneity may produce unexpected emergent properties at larger scales. The results from such modeling experiments are necessarily a function of the supporting algorithms. However, comparisons based on models such as SPA and VELMA that operate at much different spatial scales (plots vs. hillslopes) and levels of biophysical organization (individual plants vs. aggregate plant biomass) can help us to understand how and why mountainous ecosystems may have distinctive responses to climate variability and climate change.

  17. Forest tree growth response to hydroclimate variability in the southern Appalachians

    Treesearch

    Katherine J. Elliott; Chelcy Ford Miniat; Neil Pederson; Stephanie H. Laseter

    2015-01-01

    Climate change will affect tree species growth and distribution; however, under the same climatic conditions species may differ in their response according to site conditions. We evaluated the climate-driven patterns of growth for six dominant deciduous tree species in the southern Appalachians. We categorized species into two functional groups based on their stomatal...

  18. Studying Climate Response to Forcing by the Nonlinear Dynamical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Mukhin, Dmitry; Gavrilov, Andrey; Loskutov, Evgeny; Feigin, Alexander

    2017-04-01

    An analysis of global climate response to external forcing, both anthropogenic (mainly, CO2 and aerosol) and natural (solar and volcanic), is needed for adequate predictions of global climate change. Being complex dynamical system, the climate reacts to external perturbations exciting feedbacks (both positive and negative) making the response non-trivial and poorly predictable. Thus an extraction of internal modes of climate system, investigation of their interaction with external forcings and further modeling and forecast of their dynamics, are all the problems providing the success of climate modeling. In the report the new method for principal mode extraction from climate data is presented. The method is based on the Nonlinear Dynamical Mode (NDM) expansion [1,2], but takes into account a number of external forcings applied to the system. Each NDM is represented by hidden time series governing the observed variability, which, together with external forcing time series, are mapped onto data space. While forcing time series are considered to be known, the hidden unknown signals underlying the internal climate dynamics are extracted from observed data by the suggested method. In particular, it gives us an opportunity to study the evolution of principal system's mode structure in changing external conditions and separate the internal climate variability from trends forced by external perturbations. Furthermore, the modes so obtained can be extrapolated beyond the observational time series, and long-term prognosis of modes' structure including characteristics of interconnections and responses to external perturbations, can be carried out. In this work the method is used for reconstructing and studying the principal modes of climate variability on inter-annual and decadal time scales accounting the external forcings such as anthropogenic emissions, variations of the solar activity and volcanic activity. The structure of the obtained modes as well as their response to external factors, e.g. forecast their change in 21 century under different CO2 emission scenarios, are discussed. [1] Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep15510 [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J. (2016). Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101. http://doi.org/10.1063/1.4968852

  19. Berry composition and climate: responses and empirical models.

    PubMed

    Barnuud, Nyamdorj N; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson

    2014-08-01

    Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry composition. The models presented here are useful tools for assessing likely changes in berry TA and anthocyanins in response to changing climate for the wine regions and cultivars covered in this study.

  20. Berry composition and climate: responses and empirical models

    NASA Astrophysics Data System (ADS)

    Barnuud, Nyamdorj N.; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson

    2014-08-01

    Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry composition. The models presented here are useful tools for assessing likely changes in berry TA and anthocyanins in response to changing climate for the wine regions and cultivars covered in this study.

  1. Crop responses to climatic variation

    PubMed Central

    Porter, John R; Semenov, Mikhail A

    2005-01-01

    The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO2) level and/or global mean temperature and/or rainfall and nutrition on crop production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important for yield, its stability and quality. In this context, threshold temperatures for crop processes are found not to differ greatly for different crops and are important to define for the major food crops, to assist climate modellers predict the occurrence of crop critical temperatures and their temporal resolution. This paper demonstrates the impacts of climate variability for crop production in a number of crops. Increasing temperature and precipitation variability increases the risks to yield, as shown via computer simulation and experimental studies. The issue of food quality has not been given sufficient importance when assessing the impact of climate change for food and this is addressed. Using simulation models of wheat, the concentration of grain protein is shown to respond to changes in the mean and variability of temperature and precipitation events. The paper concludes with discussion of adaptation possibilities for crops in response to drought and argues that characters that enable better exploration of the soil and slower leaf canopy expansion could lead to crop higher transpiration efficiency. PMID:16433091

  2. Plant developmental responses to climate change.

    PubMed

    Gray, Sharon B; Brady, Siobhan M

    2016-11-01

    Climate change is multi-faceted, and includes changing concentrations of greenhouse gases in the atmosphere, rising temperatures, changes in precipitation patterns, and increasing frequency of extreme weather events. Here, we focus on the effects of rising atmospheric CO 2 concentrations, rising temperature, and drought stress and their interaction on plant developmental processes in leaves, roots, and in reproductive structures. While in some cases these responses are conserved across species, such as decreased root elongation, perturbation of root growth angle and reduced seed yield in response to drought, or an increase in root biomass in shallow soil in response to elevated CO 2 , most responses are variable within and between species and are dependent on developmental stage. These variable responses include species-specific thresholds that arrest development of reproductive structures, reduce root growth rate and the rate of leaf initiation and expansion in response to elevated temperature. Leaf developmental responses to elevated CO 2 vary by cell type and by species. Variability also exists between C 3 and C 4 species in response to elevated CO 2 , especially in terms of growth and seed yield stimulation. At the molecular level, significantly less is understood regarding conservation and variability in molecular mechanisms underlying these traits. Abscisic acid-mediated changes in cell wall expansion likely underlie reductions in growth rate in response to drought, and changes in known regulators of flowering time likely underlie altered reproductive transitions in response to elevated temperature and CO 2 . Genes that underlie most other organ or tissue-level responses have largely only been identified in a single species in response to a single stress and their level of conservation is unknown. We conclude that there is a need for further research regarding the molecular mechanisms of plant developmental responses to climate change factors in general, and that this lack of data is particularly prevalent in the case of interactive effects of multiple climate change factors. As future growing conditions will likely expose plants to multiple climate change factors simultaneously, with a sum negative influence on global agriculture, further research in this area is critical. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  4. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    The El Nino-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with Coupled General Circulation Models (CGCMs) to investigate how regional precipitation in the 21st century may be affected by changes in both ENSO-driven precipitation variability and slowly-evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of 20th century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in 21st century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with 20th century observations and more stationary during the 21st century. Finally, the model-predicted 21st century rainfall response to cENSO is decomposed into the sum of three terms: 1) the 21st century change in the mean state of precipitation; 2) the historical precipitation response to the cENSO pattern; and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  5. What Can Plasticity Contribute to Insect Responses to Climate Change?

    PubMed

    Sgrò, Carla M; Terblanche, John S; Hoffmann, Ary A

    2016-01-01

    Plastic responses figure prominently in discussions on insect adaptation to climate change. Here we review the different types of plastic responses and whether they contribute much to adaptation. Under climate change, plastic responses involving diapause are often critical for population persistence, but key diapause responses under dry and hot conditions remain poorly understood. Climate variability can impose large fitness costs on insects showing diapause and other life cycle responses, threatening population persistence. In response to stressful climatic conditions, insects also undergo ontogenetic changes including hardening and acclimation. Environmental conditions experienced across developmental stages or by prior generations can influence hardening and acclimation, although evidence for the latter remains weak. Costs and constraints influence patterns of plasticity across insect clades, but they are poorly understood within field contexts. Plastic responses and their evolution should be considered when predicting vulnerability to climate change-but meaningful empirical data lag behind theory.

  6. Signal to noise quantification of regional climate projections

    NASA Astrophysics Data System (ADS)

    Li, S.; Rupp, D. E.; Mote, P.

    2016-12-01

    One of the biggest challenges in interpreting climate model outputs for impacts studies and adaptation planning is understanding the sources of disagreement among models (which is often used imperfectly as a stand-in for system uncertainty). Internal variability is a primary source of uncertainty in climate projections, especially for precipitation, for which models disagree about even the sign of changes in large areas like the continental US. Taking advantage of a large initial-condition ensemble of regional climate simulations, this study quantifies the magnitude of changes forced by increasing greenhouse gas concentrations relative to internal variability. Results come from a large initial-condition ensemble of regional climate model simulations generated by weather@home, a citizen science computing platform, where the western United States climate was simulated for the recent past (1985-2014) and future (2030-2059) using a 25-km horizontal resolution regional climate model (HadRM3P) nested in global atmospheric model (HadAM3P). We quantify grid point level signal-to-noise not just in temperature and precipitation responses, but also the energy and moisture flux terms that are related to temperature and precipitation responses, to provide important insights regarding uncertainty in climate change projections at local and regional scales. These results will aid modelers in determining appropriate ensemble sizes for different climate variables and help users of climate model output with interpreting climate model projections.

  7. Climate Variability, Climate Change and Social Vulnerability in the Semi-arid Tropics

    NASA Astrophysics Data System (ADS)

    Ribot, Jesse C.; Rocha Magalhaes, Antonio; Panagides, Stahis

    1996-06-01

    Climate changes can trigger events that lead to mass migration, hunger, and even famine. Rather than focus on the impacts that result from climatic fluctuations, the authors look at the underlying conditions that cause social vulnerability. Once we understand why individuals, households, nations, and regions are vulnerable, and how they have buffered themselves against climatic and environmental shifts, then present and future vulnerability can be redressed. By using case studies from across the globe, the authors explore past experiences with climate variability, and the likely effects of--and the possible policy responses to--the types of climatic events that global warming might bring.

  8. Screening variability and change of soil moisture under wide-ranging climate conditions: Snow dynamics effects.

    PubMed

    Verrot, Lucile; Destouni, Georgia

    2015-01-01

    Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.

  9. Shifts in tree functional composition amplify the response of forest biomass to climate

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W.

    2018-04-01

    Forests have a key role in global ecosystems, hosting much of the world’s terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.

  10. Shifts in tree functional composition amplify the response of forest biomass to climate.

    PubMed

    Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W

    2018-04-05

    Forests have a key role in global ecosystems, hosting much of the world's terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.

  11. Climatic variability leads to later seasonal flowering of Floridian plants.

    PubMed

    Von Holle, Betsy; Wei, Yun; Nickerson, David

    2010-07-21

    Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses.

  12. Response of the tropical Pacific to abrupt climate change 8,200 years ago

    NASA Astrophysics Data System (ADS)

    Atwood, A. R.; Battisti, D.; Bitz, C. M.; Sachs, J. P.

    2017-12-01

    The relatively stable climate of the Holocene epoch was punctuated by a period of large and abrupt climate change ca. 8,200 yr BP, when an outburst of glacial meltwater into the Labrador Sea drove large and abrupt climate changes across the globe. However, little is known about the response of the tropical Pacific to this event. We present the first evidence for large perturbations to the eastern tropical Pacific climate, based on sedimentary biomarker and hydrogen isotopic records from a freshwater lake in the Galápagos Islands. We inform these reconstructions with freshwater forcing simulations performed with the Community Climate System Model version 4. Together, the biomarker records and model simulations provide evidence for a mechanistic link between (1) a southward shift of the Intertropical Convergence Zone in the eastern equatorial Pacific and (2) decreased frequency and/or intensity of Eastern Pacific El Niño events during the 8,200 BP event. While climate theory and modeling studies support a southward shift of the ITCZ in response to a weakened AMOC, the dynamical drivers for the observed change in ENSO variability are less well developed. To explore these linkages, we perform simulations with an intermediate complexity model of the tropical Pacific. These results provide valuable insight into the controls of tropical Pacific climate variability and the mechanisms behind the global response to abrupt climate change.

  13. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.

    PubMed

    Litzow, Michael A; Mueter, Franz J; Hobday, Alistair J

    2014-01-01

    In areas of the North Pacific that are largely free of overfishing, climate regime shifts - abrupt changes in modes of low-frequency climate variability - are seen as the dominant drivers of decadal-scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific-North American Pattern (PNA), North Pacific Index (NPI), El Niño-Southern Oscillation (ENSO)] to explain decadal-scale (1965-2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1-2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1-2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1-2 satisfied assumptions of independent residuals and out-performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology PC1-2 suggest plausible mechanistic explanations for these modeling results. Our findings suggest that, even in the absence of overfishing and in areas strongly influenced by internal climate variability, climate regime shift effects can only be understood in the context of other ecosystem perturbations. © 2013 John Wiley & Sons Ltd.

  14. The seasonal response of the Held-Suarez climate model to prescribed ocean temperature anomalies. I - Results of decadal integrations

    NASA Technical Reports Server (NTRS)

    Phillips, T. J.; Semtner, A. J., Jr.

    1984-01-01

    Anomalies in ocean surface temperature have been identified as possible causes of variations in the climate of particular seasons or as a source of interannual climatic variability, and attempts have been made to forecast seasonal climate by using ocean temperatures as predictor variables. However, the seasonal atmospheric response to ocean temperature anomalies has not yet been systematically investigated with nonlinear models. The present investigation is concerned with ten-year integrations involving a model of intermediate complexity, the Held-Suarez climate model. The calculations have been performed to investigate the changes in seasonal climate which result from a fixed anomaly imposed on a seasonally varying, global ocean temperature field. Part I of the paper provides a report on the results of these decadal integrations. Attention is given to model properties, the experimental design, and the anomaly experiments.

  15. Does an understanding of ecosystems responses to rainfall pulses improve predictions of responses of drylands to climate change?

    USDA-ARS?s Scientific Manuscript database

    Drylands will experience more intense and frequent droughts and floods. Ten-year field experiments manipulating the amount and variability of precipitation suggest that we cannot predict responses of drylands to climate change based on pulse experimentation. Long-term drought experiments showed no e...

  16. Response Variability across Diverse Rice Accessions under Rising Temperature and Increasing Atmospheric Carbon Dioxide

    USDA-ARS?s Scientific Manuscript database

    Evaluating variability of rice response to concurrent increases in CO2 and temperature forecasted for future climates is a prerequisite step towards characterizing the genetic architecture underlying this response. Expanding on previous single cultivar studies, we evaluated eleven biogeographically ...

  17. Linking the climatic and geochemical controls on global soil carbon cycling

    NASA Astrophysics Data System (ADS)

    Doetterl, Sebastian; Stevens, Antoine; Six, Johan; Merckx, Roel; Van Oost, Kristof; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Boudin, Mathieu; Zagal Venegas, Erick; Boeckx, Pascal

    2015-04-01

    Climatic and geochemical parameters are regarded as the primary controls for soil organic carbon (SOC) storage and turnover. However, due to the difference in scale between climate and geochemical-related soil research, the interaction of these key factors for SOC dynamics have rarely been assessed. Across a large geochemical and climatic transect in similar biomes in Chile and the Antarctic Peninsula we show how abiotic geochemical soil features describing soil mineralogy and weathering pose a direct control on SOC stocks, concentration and turnover and are central to explaining soil C dynamics at larger scales. Precipitation and temperature had an only indirect control by regulating geochemistry. Soils with high SOC content have low specific potential CO2 respiration rates, but a large fraction of SOC that is stabilized via organo-mineral interactions. The opposite was observed for soils with low SOC content. The observed differences for topsoil SOC stocks along this transect of similar biomes but differing geo-climatic site conditions are of the same magnitude as differences observed for topsoil SOC stocks across all major global biomes. Using precipitation and a set of abiotic geochemical parameters describing soil mineralogy and weathering status led to predictions of high accuracy (R2 0.53-0.94) for different C response variables. Partial correlation analyses revealed that the strength of the correlation between climatic predictors and SOC response variables decreased by 51 - 83% when controlling for geochemical predictors. In contrast, controlling for climatic variables did not result in a strong decrease in the strength of the correlations of between most geochemical variables and SOC response variables. In summary, geochemical parameters describing soil mineralogy and weathering were found to be essential for accurate predictions of SOC stocks and potential CO2 respiration, while climatic factors were of minor importance as a direct control, but are important through governing soil weathering and geochemistry. In conclusion, we pledge for a stronger implementation of geochemical soil properties to predict SOC stocks on a global scale. Understanding the effects of climate (temperature and precipitation) change on SOC dynamics also requires good understanding of the relationship between climate and soil geochemistry.

  18. Spectral Kernel Approach to Study Radiative Response of Climate Variables and Interannual Variability of Reflected Solar Spectrum

    NASA Technical Reports Server (NTRS)

    Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan

    2011-01-01

    The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.

  19. Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition or climate response most important?

    USGS Publications Warehouse

    Foster, Jane R.; Finley, Andrew O.; D'Amato, Anthony W.; Bradford, John B.; Banerjee, Sudipto

    2016-01-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species likeAcer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone.

  20. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?

    PubMed

    Foster, Jane R; Finley, Andrew O; D'Amato, Anthony W; Bradford, John B; Banerjee, Sudipto

    2016-06-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone. © 2015 John Wiley & Sons Ltd.

  1. A Scaling Model for the Anthropocene Climate Variability with Projections to 2100

    NASA Astrophysics Data System (ADS)

    Hébert, Raphael; Lovejoy, Shaun

    2017-04-01

    The determination of the climate sensitivity to radiative forcing is a fundamental climate science problem with important policy implications. We use a scaling model, with a limited set of parameters, which can directly calculate the forced globally-average surface air temperature response to anthropogenic and natural forcings. At timescales larger than an inner scale τ, which we determine as the ocean-atmosphere coupling scale at around 2 years, the global system responds, approximately, linearly, so that the variability may be decomposed into additive forced and internal components. The Ruelle response theory extends the classical linear response theory for small perturbations to systems far from equilibrium. Our model thus relates radiative forcings to a forced temperature response by convolution with a suitable Green's function, or climate response function. Motivated by scaling symmetries which allow for long range dependence, we assume a general scaling form, a scaling climate response function (SCRF) which is able to produce a wide range of responses: a power-law truncated at τ. This allows us to analytically calculate the climate sensitivity at different time scales, yielding a one-to-one relation from the transient climate response to the equilibrium climate sensitivity which are estimated, respectively, as 1.6+0.3-0.2K and 2.4+1.3-0.6K at the 90 % confidence level. The model parameters are estimated within a Bayesian framework, with a fractional Gaussian noise error model as the internal variability, from forcing series, instrumental surface temperature datasets and CMIP5 GCMs Representative Concentration Pathways (RCP) scenario runs. This observation based model is robust and projections for the coming century are made following the RCP scenario 2.6, 4.5 and 8.5, yielding in the year 2100, respectively : 1.5 +0.3)_{-0.2K, 2.3 ± 0.4 K and 4.0 ± 0.6 K at the 90 % confidence level. For comparison, the associated projections from a CMIP5 multi-model ensemble(MME) (32 models) are: 1.7 ± 0.8 K, 2.6 ± 0.8 K and 4.8 ± 1.3 K. Therefore, our projection uncertainty is less than half the structural uncertainty of this CMIP5 MME.

  2. The frequency response of a coupled ice sheet-ice shelf-ocean system to climate forcing variability

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Snow, K.; Jordan, J. R.; Holland, P.; Arthern, R. J.

    2017-12-01

    Changes at the West Antarctic ice-ocean boundary in recent decades has triggered significant increases in the regions contribution to global sea-level rise, coincident with large scale, and in some cases potentially unstable, grounding line retreat. Much of the induced change is thought to be driven by fluctuations in the oceanic heat available at the ice-ocean boundary, transported on-shelf via warm Circumpolar Deep Water (CDW). However, the processes in which ocean heat drives ice-sheet loss remains poorly understood, with observational studies routinely hindered by the extreme environment notorious to the Antarctic region. In this study we apply a novel synchronous coupled ice-ocean model, developed within the MITgcm, and are thus able to provide detailed insight into the impacts of short time scale (interannual to decadal) climate variability and feedbacks within the ice-ocean system. Feedbacks and response are assessed in an idealised ice-sheet/ocean-cavity configuration in which the far field ocean condition is adjusted to emulate periodic climate variability patterns. We reveal a non-linear response of the ice-sheet to periodic variations in thermocline depth. These non-linearities illustrate the heightened sensitivity of fast flowing ice-shelves to periodic perturbations in heat fluxes occurring at interannual and decadal time scales. The results thus highlight how small perturbations in variable climate forcing, like that of ENSO, may trigger large changes in ice-sheet response.

  3. Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change

    PubMed Central

    Penaluna, Brooke E.; Dunham, Jason B.; Railsback, Steve F.; Arismendi, Ivan; Johnson, Sherri L.; Bilby, Robert E.; Safeeq, Mohammad; Skaugset, Arne E.

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007–2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change. PMID:26295478

  4. Local variability mediates vulnerability of trout populations to land use and climate change

    USGS Publications Warehouse

    Penaluna, Brooke E.; Dunham, Jason B.; Railsback, Steve F.; Arismendi, Ivan; Johnson, Sherri L.; Bilby, Robert E; Safeeq, Mohammad; Skaugset, Arne E.

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007–2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.

  5. Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change.

    PubMed

    Penaluna, Brooke E; Dunham, Jason B; Railsback, Steve F; Arismendi, Ivan; Johnson, Sherri L; Bilby, Robert E; Safeeq, Mohammad; Skaugset, Arne E

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007-2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.

  6. Effects of climatic variability and change

    Treesearch

    Michael G. Ryan; James M. Vose

    2012-01-01

    Climate profoundly shapes forests. Forest species composition, productivity, availability of goods and services, disturbance regimes, and location on the landscape are all regulated by climate. Much research attention has focused on the problem of projecting the response of forests to changing climate, elevated atmospheric carbon dioxide (CO2)...

  7. Individualistic and Time-Varying Tree-Ring Growth to Climate Sensitivity

    PubMed Central

    Carrer, Marco

    2011-01-01

    The development of dendrochronological time series in order to analyze climate-growth relationships usually involves first a rigorous selection of trees and then the computation of the mean tree-growth measurement series. This study suggests a change in the perspective, passing from an analysis of climate-growth relationships that typically focuses on the mean response of a species to investigating the whole range of individual responses among sample trees. Results highlight that this new approach, tested on a larch and stone pine tree-ring dataset, outperforms, in terms of information obtained, the classical one, with significant improvements regarding the strength, distribution and time-variability of the individual tree-ring growth response to climate. Moreover, a significant change over time of the tree sensitivity to climatic variability has been detected. Accordingly, the best-responder trees at any one time may not always have been the best-responders and may not continue to be so. With minor adjustments to current dendroecological protocol and adopting an individualistic approach, we can improve the quality and reliability of the ecological inferences derived from the climate-growth relationships. PMID:21829523

  8. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics.

    PubMed

    Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B

    2017-06-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands. © 2017 by the Ecological Society of America.

  9. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics

    USGS Publications Warehouse

    Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.

    2017-01-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands.

  10. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.

    PubMed

    Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J

    2018-01-01

    Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.

  11. High intra-specific variation in avian body condition responses to climate limits generalisation across species

    PubMed Central

    van der Jeugd, Henk P.; van de Pol, Martijn

    2018-01-01

    It is generally assumed that populations of a species will have similar responses to climate change, and thereby that a single value of sensitivity will reflect species-specific responses. However, this assumption is rarely systematically tested. High intraspecific variation will have consequences for identifying species- or population-level traits that can predict differences in sensitivity, which in turn can affect the reliability of projections of future climate change impacts. We investigate avian body condition responses to changes in six climatic variables and how consistent and generalisable these responses are both across and within species, using 21 years of data from 46 common passerines across 80 Dutch sites. We show that body condition decreases with warmer spring/early summer temperatures and increases with higher humidity, but other climate variables do not show consistent trends across species. In the future, body condition is projected to decrease by 2050, mainly driven by temperature effects. Strikingly, populations of the same species generally responded just as differently as populations of different species implying that a single species signal is not meaningful. Consequently, species-level traits did not explain interspecific differences in sensitivities, rather population-level traits were more important. The absence of a clear species signal in body condition responses implies that generalisation and identifying species for conservation prioritisation is problematic, which sharply contrasts conclusions of previous studies on the climate sensitivity of phenology. PMID:29466460

  12. Future hotspots of increasing temperature variability in tropical countries

    NASA Astrophysics Data System (ADS)

    Bathiany, S.; Dakos, V.; Scheffer, M.; Lenton, T. M.

    2017-12-01

    Resolving how climate variability will change in future is crucial to determining how challenging it will be for societies and ecosystems to adapt to climate change. We show that the largest increases in temperature variability - that are robust between state-of-the art climate models - are concentrated in tropical countries. On average, temperature variability increases by 15% per degree of global warming in Amazonia and Southern Africa during austral summer, and by up to 10% °C-1 in the Sahel, India and South East Asia. Southern hemisphere changes can be explained by drying soils, whereas shifts in atmospheric structure play a more important role in the Northern hemisphere. These robust regional changes in variability are associated with monthly timescale events, whereas uncertain changes in inter-annual modes of variability make the response of global temperature variability uncertain. Our results suggest that regional changes in temperature variability will create new inequalities in climate change impacts between rich and poor nations.

  13. Analyzing climate variations at multiple timescales can guide Zika virus response measures.

    PubMed

    Muñoz, Ángel G; Thomson, Madeleine C; Goddard, Lisa; Aldighieri, Sylvain

    2016-10-06

    The emergence of Zika virus (ZIKV) in Latin America and the Caribbean in 2014-2016 occurred during a period of severe drought and unusually high temperatures, conditions that have been associated with the 2015-2016 El Niño event, and/or climate change; however, no quantitative assessment has been made to date. Analysis of related flaviviruses transmitted by the same vectors suggests that ZIKV dynamics are sensitive to climate seasonality and longer-term variability and trends. A better understanding of the climate conditions conducive to the 2014-2016 epidemic may permit the development of climate-informed short and long-term strategies for ZIKV prevention and control. Using a novel timescale-decomposition methodology, we demonstrate that the extreme climate anomalies observed in most parts of South America during the current epidemic are not caused exclusively by El Niño or climate change, but by a combination of climate signals acting at multiple timescales. In Brazil, the dry conditions present in 2013-2015 are primarily explained by year-to-year variability superimposed on decadal variability, but with little contribution of long-term trends. In contrast, the warm temperatures of 2014-2015 resulted from the compound effect of climate change, decadal and year-to-year climate variability. ZIKV response strategies made in Brazil during the drought concurrent with the 2015-2016 El Niño event, may require revision in light of the likely return of rainfall associated with the borderline La Niña event expected in 2016-2017. Temperatures are likely to remain warm given the importance of long term and decadal scale climate signals. The Author(s)

  14. Sensitivity of the reference evapotranspiration to key climatic variables during the growing season in the Ejina oasis northwest China.

    PubMed

    Hou, Lan-Gong; Zou, Song-Bing; Xiao, Hong-Lang; Yang, Yong-Gang

    2013-01-01

    The standardized FAO56 Penman-Monteith model, which has been the most reasonable method in both humid and arid climatic conditions, provides reference evapotranspiration (ETo) estimates for planning and efficient use of agricultural water resources. And sensitivity analysis is important in understanding the relative importance of climatic variables to the variation of reference evapotranspiration. In this study, a non-dimensional relative sensitivity coefficient was employed to predict responses of ETo to perturbations of four climatic variables in the Ejina oasis northwest China. A 20-year historical dataset of daily air temperature, wind speed, relative humidity and daily sunshine duration in the Ejina oasis was used in the analysis. Results have shown that daily sensitivity coefficients exhibited large fluctuations during the growing season, and shortwave radiation was the most sensitive variable in general for the Ejina oasis, followed by air temperature, wind speed and relative humidity. According to this study, the response of ETo can be preferably predicted under perturbation of air temperature, wind speed, relative humidity and shortwave radiation by their sensitivity coefficients.

  15. Modeling biogeochemical responses of vegetation to ENSO: comparison and analysis on subgrid PFT patches

    NASA Astrophysics Data System (ADS)

    Xu, M.; Hoffman, F. M.

    2016-12-01

    The El Niño Southern Oscillation (ENSO) is an important interannual climate variability and has significant consequences and impacts on the global biosphere. The responses of vegetation to ENSO are highly heterogeneous and generally depend on the biophysical and biochemical characteristics associated with model plant functional types (PFTs). The modeled biogeochemical variables from Earth System Models (ESMs) are generally grid averages consisting of several PFTs within a gridcell, which will lead to difficulties in directly comparing them with site observations and large uncertainties in studying their responses to large scale climate variability. In this study, we conducted a transient ENSO simulation for the previoustwo decades from 1995 to 2020 using the DOE ACME v0.3 model. It has a comprehensive terrestrial biogeochemistry model that is fully coupled with a sophisticated atmospheric model with an advanced spectral element dynamical core. The model was driven by the NOAA optimum interpolation sea surface temperature (SST) for contemporary years and CFS v2 nine-month seasonal predicted and reconstructed SST for future years till to 2020. We saved the key biogeochemical variables in the subgrid PFT patches and compared them with site observations directly. Furthermore, we studied the biogeochemical responses of terrestrial vegetation to two largest ENSO events (1997-1998 and 2015-2016) for different PFTs. Our results show that it is useful and meaningful to compare and analyze model simulations in subgrid patches. The comparison and analysis not only gave us the details of responses of terrestrial ecosystem to global climate variability under changing climate, but also the insightful view on the model performance on the PFT level.

  16. Elevated temperature is more effective than elevated [CO2 ] in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change.

    PubMed

    Huang, Guomin; Rymer, Paul D; Duan, Honglang; Smith, Renee A; Tissue, David T

    2015-10-01

    Intraspecific variation in phenotypic plasticity is a critical determinant of plant species capacity to cope with climate change. A long-standing hypothesis states that greater levels of environmental variability will select for genotypes with greater phenotypic plasticity. However, few studies have examined how genotypes of woody species originating from contrasting environments respond to multiple climate change factors. Here, we investigated the main and interactive effects of elevated [CO2 ] (CE ) and elevated temperature (TE ) on growth and physiology of Coastal (warmer, less variable temperature environment) and Upland (cooler, more variable temperature environment) genotypes of an Australian woody species Telopea speciosissima. Both genotypes were positively responsive to CE (35% and 29% increase in whole-plant dry mass and leaf area, respectively), but only the Coastal genotype exhibited positive growth responses to TE . We found that the Coastal genotype exhibited greater growth response to TE (47% and 85% increase in whole-plant dry mass and leaf area, respectively) when compared with the Upland genotype (no change in dry mass or leaf area). No intraspecific variation in physiological plasticity was detected under CE or TE , and the interactive effects of CE and TE on intraspecific variation in phenotypic plasticity were also largely absent. Overall, TE was a more effective climate factor than CE in exposing genotypic variation in our woody species. Our results contradict the paradigm that genotypes from more variable climates will exhibit greater phenotypic plasticity in future climate regimes. © 2015 John Wiley & Sons Ltd.

  17. Growth responses of Scots pine to climatic factors on reclaimed oil shale mined land.

    PubMed

    Metslaid, Sandra; Stanturf, John A; Hordo, Maris; Korjus, Henn; Laarmann, Diana; Kiviste, Andres

    2016-07-01

    Afforestation on reclaimed mining areas has high ecological and economic importance. However, ecosystems established on post-mining substrate can become vulnerable due to climate variability. We used tree-ring data and dendrochronological techniques to study the relationship between climate variables and annual growth of Scots pine (Pinus sylvestris L.) growing on reclaimed open cast oil shale mining areas in Northeast Estonia. Chronologies for trees of different age classes (50, 40, 30) were developed. Pearson's correlation analysis between radial growth indices and monthly climate variables revealed that precipitation in June-July and higher mean temperatures in spring season enhanced radial growth of pine plantations, while higher than average temperatures in summer months inhibited wood production. Sensitivity of radial increment to climatic factors on post-mining soils was not homogenous among the studied populations. Older trees growing on more developed soils were more sensitive to precipitation deficit in summer, while growth indices of two other stand groups (young and middle-aged) were highly correlated to temperature. High mean temperatures in August were negatively related to annual wood production in all trees, while trees in the youngest stands benefited from warmer temperatures in January. As a response to thinning, mean annual basal area increment increased up to 50 %. By managing tree competition in the closed-canopy stands, through the thinning activities, tree sensitivity and response to climate could be manipulated.

  18. Relative contributions of mean-state shifts and ENSO-driven variability to precipitation changes in a warming climate

    DOE PAGES

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; ...

    2015-12-18

    The El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change.more » Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. Lastly, by examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.« less

  19. Demographic Responses To Climate Manipulations Across a Species Range

    NASA Astrophysics Data System (ADS)

    Oldfather, M. F.

    2016-12-01

    Species biogeographic responses to climate change will occur through the local extinction and establishment of populations. The overall performance of populations across a species range is shaped by the idiosyncratic sensitivities of demographic rates to the changing climate conditions. Heterogeneous topography partially decouples temperature and soil moisture presenting an opportunity to disentangle demographic sensitivity to multiple local climate variables and refine range shift predictions in response to complex climate change. Since 2013, I have monitored 16 populations of a long-lived alpine plant, Ivesia lycopodioides var. scandularis (Rosaceae) across the entirety of its altitudinal range in the arid White Mountains, CA (3350 - 4420m). I quantified microclimatic soil moisture and temperature, and the demographic rates of over 4,000 individuals. Demographic rates exhibited sensitivity to accumulated degree-days (ex. reproduction), soil volumetric water content (ex. germination), or the interaction between these climate variables (ex. survival). These observations motivated an experimental test of the relationship between demography and local climate with manipulations of increased summertime temperature and precipitation in nine populations. All demographic rates were sensitive to the climate manipulations and the magnitude of the demographic response depended on the population's location within the range. However, the modeled population growth rate was only minimally affected by the manipulations in most populations. The inverse responses of many of the demographic rates may allow populations to demographically buffer against the climate manipulations. However, in one low elevation edge population the negative effect of heating on survival overwhelmed the positive effect on germination, indicating that the capacity of populations to demographically buffer may have a limit.

  20. Micro-topographic hydrologic variability due to vegetation acclimation under climate change

    NASA Astrophysics Data System (ADS)

    Le, P. V.; Kumar, P.

    2012-12-01

    Land surface micro-topography and vegetation cover have fundamental effects on the land-atmosphere interactions. The altered temperature and precipitation variability associated with climate change will affect the water and energy processes both directly and that mediated through vegetation. Since climate change induces vegetation acclimation that leads to shifts in evapotranspiration and heat fluxes, it further modifies microclimate and near-surface hydrological processes. In this study, we investigate the impacts of vegetation acclimation to climate change on micro-topographic hydrologic variability. The ability to accurately predict these impacts requires the simultaneous considerations of biochemical, ecophysiological and hydrological processes. A multilayer canopy-root-soil system model coupled with a conjunctive surface-subsurface flow model is used to capture the acclimatory responses and analyze the changes in dynamics of structure and connectivity of micro-topographic storage and in magnitudes of runoff. The study is performed using Light Detection and Ranging (LiDAR) topographic data in the Birds Point-New Madrid floodway in Missouri, U.S.A. The result indicates that both climate change and its associated vegetation acclimation play critical roles in altering the micro-topographic hydrological responses.

  1. A virtual water network of the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.

    2014-12-01

    The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanization and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanization and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to interannual climate variability. However, urbanization arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and eroded its resilience to climate variability in the long term. In addition to improving our understanding of Roman water resource management, our cost-distance-based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.

  2. A virtual water network of the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.

    2014-06-01

    The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanisation and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanisation and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to climate variability in the short term. However, urbanisation arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and reduced its resilience to climate variability in the long-term. In addition to improving our understanding of Roman water resource management, our cost-distance based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.

  3. Local oceanographic variability influences the performance of juvenile abalone under climate change.

    PubMed

    Boch, C A; Micheli, F; AlNajjar, M; Monismith, S G; Beers, J M; Bonilla, J C; Espinoza, A M; Vazquez-Vera, L; Woodson, C B

    2018-04-03

    Climate change is causing warming, deoxygenation, and acidification of the global ocean. However, manifestation of climate change may vary at local scales due to oceanographic conditions. Variation in stressors, such as high temperature and low oxygen, at local scales may lead to variable biological responses and spatial refuges from climate impacts. We conducted outplant experiments at two locations separated by ~2.5 km and two sites at each location separated by ~200 m in the nearshore of Isla Natividad, Mexico to assess how local ocean conditions (warming and hypoxia) may affect juvenile abalone performance. Here, we show that abalone growth and mortality mapped to variability in stress exposure across sites and locations. These insights indicate that management decisions aimed at maintaining and recovering valuable marine species in the face of climate change need to be informed by local variability in environmental conditions.

  4. Climatic Variability Leads to Later Seasonal Flowering of Floridian Plants

    PubMed Central

    Von Holle, Betsy; Wei, Yun; Nickerson, David

    2010-01-01

    Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses. PMID:20657765

  5. Processes Understanding of Decadal Climate Variability

    NASA Astrophysics Data System (ADS)

    Prömmel, Kerstin; Cubasch, Ulrich

    2016-04-01

    The realistic representation of decadal climate variability in the models is essential for the quality of decadal climate predictions. Therefore, the understanding of those processes leading to decadal climate variability needs to be improved. Several of these processes are already included in climate models but their importance has not yet completely been clarified. The simulation of other processes requires sometimes a higher resolution of the model or an extension by additional subsystems. This is addressed within one module of the German research program "MiKlip II - Decadal Climate Predictions" (http://www.fona-miklip.de/en/) with a focus on the following processes. Stratospheric processes and their impact on the troposphere are analysed regarding the climate response to aerosol perturbations caused by volcanic eruptions and the stratospheric decadal variability due to solar forcing, climate change and ozone recovery. To account for the interaction between changing ozone concentrations and climate a computationally efficient ozone chemistry module is developed and implemented in the MiKlip prediction system. The ocean variability and air-sea interaction are analysed with a special focus on the reduction of the North Atlantic cold bias. In addition, the predictability of the oceanic carbon uptake with a special emphasis on the underlying mechanism is investigated. This addresses a combination of physical, biological and chemical processes.

  6. A method for screening climate change-sensitive infectious diseases.

    PubMed

    Wang, Yunjing; Rao, Yuhan; Wu, Xiaoxu; Zhao, Hainan; Chen, Jin

    2015-01-14

    Climate change is a significant and emerging threat to human health, especially where infectious diseases are involved. Because of the complex interactions between climate variables and infectious disease components (i.e., pathogen, host and transmission environment), systematically and quantitatively screening for infectious diseases that are sensitive to climate change is still a challenge. To address this challenge, we propose a new statistical indicator, Relative Sensitivity, to identify the difference between the sensitivity of the infectious disease to climate variables for two different climate statuses (i.e., historical climate and present climate) in non-exposure and exposure groups. The case study in Anhui Province, China has demonstrated the effectiveness of this Relative Sensitivity indicator. The application results indicate significant sensitivity of many epidemic infectious diseases to climate change in the form of changing climatic variables, such as temperature, precipitation and absolute humidity. As novel evidence, this research shows that absolute humidity has a critical influence on many observed infectious diseases in Anhui Province, including dysentery, hand, foot and mouth disease, hepatitis A, hemorrhagic fever, typhoid fever, malaria, meningitis, influenza and schistosomiasis. Moreover, some infectious diseases are more sensitive to climate change in rural areas than in urban areas. This insight provides guidance for future health inputs that consider spatial variability in response to climate change.

  7. A Method for Screening Climate Change-Sensitive Infectious Diseases

    PubMed Central

    Wang, Yunjing; Rao, Yuhan; Wu, Xiaoxu; Zhao, Hainan; Chen, Jin

    2015-01-01

    Climate change is a significant and emerging threat to human health, especially where infectious diseases are involved. Because of the complex interactions between climate variables and infectious disease components (i.e., pathogen, host and transmission environment), systematically and quantitatively screening for infectious diseases that are sensitive to climate change is still a challenge. To address this challenge, we propose a new statistical indicator, Relative Sensitivity, to identify the difference between the sensitivity of the infectious disease to climate variables for two different climate statuses (i.e., historical climate and present climate) in non-exposure and exposure groups. The case study in Anhui Province, China has demonstrated the effectiveness of this Relative Sensitivity indicator. The application results indicate significant sensitivity of many epidemic infectious diseases to climate change in the form of changing climatic variables, such as temperature, precipitation and absolute humidity. As novel evidence, this research shows that absolute humidity has a critical influence on many observed infectious diseases in Anhui Province, including dysentery, hand, foot and mouth disease, hepatitis A, hemorrhagic fever, typhoid fever, malaria, meningitis, influenza and schistosomiasis. Moreover, some infectious diseases are more sensitive to climate change in rural areas than in urban areas. This insight provides guidance for future health inputs that consider spatial variability in response to climate change. PMID:25594780

  8. Impact of Holocene climate variability on Arctic vegetation

    NASA Astrophysics Data System (ADS)

    Gajewski, K.

    2015-10-01

    This paper summarizes current knowledge about the postglacial history of the vegetation of the Canadian Arctic Archipelago (CAA) and Greenland. Available pollen data were used to understand the initial migration of taxa across the Arctic, how the plant biodiversity responded to Holocene climate variability, and how past climate variability affected primary production of the vegetation. Current evidence suggests that most of the flora arrived in the area during the Holocene from Europe or refugia south or west of the region immediately after local deglaciation, indicating rapid dispersal of propagules to the region from distant sources. There is some evidence of shrub species arriving later in Greenland, but it is not clear if this is dispersal limited or a response to past climates. Subsequent climate variability had little effect on biodiversity across the CAA, with some evidence of local extinctions in areas of Greenland in the late Holocene. The most significant impact of climate changes is on vegetation density and/or plant production.

  9. The U.S. Climate Change Science Program. Vision for the Program and Highlights of the Scientific Strategic Plan

    DTIC Science & Technology

    2003-07-01

    CH4, N2O, O3, etc. Aerosols Clouds ATMOSPHERIC COMPOSITION WATER CYCLE LAND-USE/ LAND-COVER CHANGE HUMAN CONTRIBUTIONS AND RESPONSES CARBON...Oceanographic Institution. Climate Variability and Change ATMOSPHERIC COMPOSITION CLIMATE VARIABILITY AND CHANGE GLOBAL WATER CYCLE LAND-USE/LAND-COVER CHANGE...their access to and use of water. CCSP-supported research on the global water cycle focuses on how natural processes and human activities influence the

  10. Germination responses to current and future temperatures of four seeder shrubs across a latitudinal gradient in western Iberia.

    PubMed

    Chamorro, Daniel; Luna, Belén; Moreno, José M

    2017-01-01

    Species differ in their temperature germination niche. Populations of a species may similarly differ across the distribution range of the species. Anticipating the impacts of climate variability and change requires understanding the differential sensitivity to germination temperature among and within species. Here we studied the germination responses of four hard-seeded Cistaceae seeders to a range of current and future temperatures. Seeds were collected at sites across the Iberian Peninsula and exposed or not exposed to a heat shock to break dormancy, then set to germinate under four temperature regimes. Temperatures were varied daily and seasonally, simulating the temperature range across the gradient, plus an increased temperature simulating future climate. Time to germination onset and cumulative germination at the end of each season were analyzed for the effects of temperature treatments, seasons, and local climate (temperature of the germination period, T gp ) at each site. T gp was a significant covariate of germination in all species but Cistus populifolius. Temperature treatments significantly affected Cistus ladanifer, C. salviifolius, and Halimium ocymoides. Germination occurred in simulated autumn conditions, with little germination occurring at later seasons, except in unheated seeds of H. ocymoides. Exposure to a heat shock changed the sensitivity to temperature treatments and the relationships with T gp . Germination responses to temperature differ not only among species but also within species across their latitudinal range. The responses were idiosyncratic and related to the local climate of the population. This germination variability complicates generalizing the impacts of climate variability and climate change. © 2017 Botanical Society of America.

  11. Local variability mediates vulnerability of trout populations to land use and climate change

    Treesearch

    Brooke E. Penaluna; Jason B. Dunham; Steve F. Railsback; Ivan Arismendi; Sherri L. Johnson; Robert E. Bilby; Mohammad Safeeq; Arne E. Skaugset; James P. Meador

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of...

  12. Marine assemblages respond rapidly to winter climate variability.

    PubMed

    Morley, James W; Batt, Ryan D; Pinsky, Malin L

    2017-07-01

    Even species within the same assemblage have varied responses to climate change, and there is a poor understanding for why some taxa are more sensitive to climate than others. In addition, multiple mechanisms can drive species' responses, and responses may be specific to certain life stages or times of year. To test how marine species respond to climate variability, we analyzed 73 diverse taxa off the southeast US coast in 26 years of scientific trawl survey data and determined how changes in distribution and biomass relate to temperature. We found that winter temperatures were particularly useful for explaining interannual variation in species' distribution and biomass, although the direction and magnitude of the response varied among species from strongly negative, to little response, to strongly positive. Across species, the response to winter temperature varied greatly, with much of this variation being explained by thermal preference. A separate analysis of annual commercial fishery landings revealed that winter temperatures may also impact several important fisheries in the southeast United States. Based on the life stages of the species surveyed, winter temperature appears to act through overwinter mortality of juveniles or as a cue for migration timing. We predict that this assemblage will be responsive to projected increases in temperature and that winter temperature may be broadly important for species relationships with climate on a global scale. © The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  13. Transient regional climate change: analysis of the summer climate response in a high-resolution, century-scale, ensemble experiment over the continental United States

    PubMed Central

    Diffenbaugh, Noah S.; Ashfaq, Moetasim; Scherer, Martin

    2013-01-01

    Integrating the potential for climate change impacts into policy and planning decisions requires quantification of the emergence of sub-regional climate changes that could occur in response to transient changes in global radiative forcing. Here we report results from a high-resolution, century-scale, ensemble simulation of climate in the United States, forced by atmospheric constituent concentrations from the Special Report on Emissions Scenarios (SRES) A1B scenario. We find that 21st century summer warming permanently emerges beyond the baseline decadal-scale variability prior to 2020 over most areas of the continental U.S. Permanent emergence beyond the baseline annual-scale variability shows much greater spatial heterogeneity, with emergence occurring prior to 2030 over areas of the southwestern U.S., but not prior to the end of the 21st century over much of the southcentral and southeastern U.S. The pattern of emergence of robust summer warming contrasts with the pattern of summer warming magnitude, which is greatest over the central U.S. and smallest over the western U.S. In addition to stronger warming, the central U.S. also exhibits stronger coupling of changes in surface air temperature, precipitation, and moisture and energy fluxes, along with changes in atmospheric circulation towards increased anticylonic anomalies in the mid-troposphere and a poleward shift in the mid-latitude jet aloft. However, as a fraction of the baseline variability, the transient warming over the central U.S. is smaller than the warming over the southwestern or northeastern U.S., delaying the emergence of the warming signal over the central U.S. Our comparisons with observations and the Coupled Model Intercomparison Project Phase 3 (CMIP3) ensemble of global climate model experiments suggest that near-term global warming is likely to cause robust sub-regional-scale warming over areas that exhibit relatively little baseline variability. In contrast, where there is greater variability in the baseline climate dynamics, there can be greater variability in the response to elevated greenhouse forcing, decreasing the robustness of the transient warming signal. PMID:24307747

  14. Trends and Controls of inter-annual Variability in the Carbon Budget of Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Cescatti, A.; Marcolla, B.

    2014-12-01

    The climate sensitivity of the terrestrial carbon budget will substantially affect the sign and strength of the land-climate feedbacks and the future climate trajectories. Current trends in the inter-annual variability of terrestrial carbon fluxes (IAV) may contribute to clarify the relative role of physical and biological controls of ecosystem responses to climate change. For this purpose we investigated how recent climate variability has impacted the carbon fluxes at long-term FLUXNET sites. Using a novel method, the IAV has been factored out in climate induced variability (physical control), variability due to changes in ecosystem functioning (biological control) and the interaction of the two terms. The relative control of the main climatic drivers (temperature, water availability) on the physical and biological sources of IAV has been investigated using both site level fluxes and global gridded products generated from the up-scaling of flux data. Results of this analysis highlight the fundamental role of precipitation trends on the pattern of IAV in the last 30 years. Our findings on the spatial/temporal trends of IAV have been finally confirmed using the signal derived from the global network of atmospheric CO2 concentrations measurements.

  15. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis

    USGS Publications Warehouse

    Bartlein, P.J.; Harrison, S.P.; Brewer, Sandra; Connor, S.; Davis, B.A.S.; Gajewski, K.; Guiot, J.; Harrison-Prentice, T. I.; Henderson, A.; Peyron, O.; Prentice, I.C.; Scholze, M.; Seppa, H.; Shuman, B.; Sugita, S.; Thompson, R.S.; Viau, A.E.; Williams, J.; Wu, H.

    2010-01-01

    Subfossil pollen and plant macrofossil data derived from 14C-dated sediment profiles can provide quantitative information on glacial and interglacial climates. The data allow climate variables related to growing-season warmth, winter cold, and plant-available moisture to be reconstructed. Continental-scale reconstructions have been made for the mid-Holocene (MH, around 6 ka) and Last Glacial Maximum (LGM, around 21 ka), allowing comparison with palaeoclimate simulations currently being carried out as part of the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. The synthesis of the available MH and LGM climate reconstructions and their uncertainties, obtained using modern-analogue, regression and model-inversion techniques, is presented for four temperature variables and two moisture variables. Reconstructions of the same variables based on surface-pollen assemblages are shown to be accurate and unbiased. Reconstructed LGM and MH climate anomaly patterns are coherent, consistent between variables, and robust with respect to the choice of technique. They support a conceptual model of the controls of Late Quaternary climate change whereby the first-order effects of orbital variations and greenhouse forcing on the seasonal cycle of temperature are predictably modified by responses of the atmospheric circulation and surface energy balance.

  16. The CESM Large Ensemble Project: Inspiring New Ideas and Understanding

    NASA Astrophysics Data System (ADS)

    Kay, J. E.; Deser, C.

    2016-12-01

    While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920-2100) 40+ times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 2000+-yr-long preindustrial control simulations (fully coupled, prognostic atmosphere and land only) allow assessment of internal climate variability in the absence of climate change. Comprehensive outputs, including many daily fields, are available as single-variable time series on the Earth System Grid for anyone to use. Examples of scientists and stakeholders that are using the CESM-LE outputs to help interpret the observational record, to understand projection spread and to plan for a range of possible futures influenced by both internal climate variability and forced climate change will be highlighted the presentation.

  17. Treeline dynamics in response to climate change in the Min Mountains, southwestern China.

    PubMed

    Zhao, Zhi-Jiang; Shen, Guo-Zhen; Tan, Liu-Yi; Kang, Dong-Wei; Wang, Meng-Jun; Kang, Wen; Guo, Wen-Xia; Zeppel, Melanie Jb; Yu, Qiang; Li, Jun-Qing

    2013-12-01

    Abies faxoniana is the dominant plant species of the forest ecosystem on the eastern edge of Qinghai-Tibet Plateau, where the treeline is strongly defined by climate. The tree-ring chronologies and age structure of Abies faxoniana were developed in the treeline ecotones on the northwestern and southeastern aspects of the Min Mountains in the Wanglang Nature Reserve to examine the treeline dynamics of recent decades in response to climate change. On the northwestern aspect, correlation analysis showed that the radial growth was significantly and positively correlated with precipitation in current January and monthly mean temperature in current April, but significantly and negatively correlated with monthly mean temperature in previous August. On the southeastern aspect, the radial growth was significantly negatively correlated with monthly mean temperature in previous July and August. The different responses of radial growth to climatic variability on both the aspects might be mainly due to the micro-environmental conditions. The recruitment benefited from the warm temperature in current April, July and September on the northwestern aspect. The responses of radial growth and recruitment to climatic variability were similar on the northwestern slope. Recruitment was greatly restricted by competition with dense bamboos on the southeastern aspect.

  18. Regional Climate Change Hotspots over Africa

    NASA Astrophysics Data System (ADS)

    Anber, U.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation ( , of present day value ), change in regional surface air temperature interannual variability ( ,of present day value), change in regional precipitation interannual variability ( , of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter annual variability, which is critical for many activity sectors, such as agriculture and water management. The RCCI is calculated for the above mentioned set of global climate change simulations and is inter compared across regions to identify climate change, Hot- Spots, that is regions with the largest values of RCCI. It is important to stress that, as will be seen, the RCCI is a comparative index, that is a small RCCI value does not imply a small absolute change, but only a small climate response compared to other regions. The models used are: CCMA-3-T47 CNRM-CM3 CSIRO-MK3 GFDL-CM2-0 GISS-ER INMCM3 IPSL-CM4 MIROC3-2M MIUB-ECHO-G MPI-ECHAM5 MRI-CGCM2 NCAR-CCSM3 NCAR-PCM1 UKMO-HADCM3 Note that the 3 IPCC emission scenarios, A1B, B1 and A2 almost encompass the entire IPCC scenario range, the A2 being close to the high end of the range, the B1 close to the low end and the A1B lying toward the middle of the range. The model data are obtained from the IPCC site and are interpolated onto a common 1 degree grid to facilitate intercomparison. The RCCI is here defined as in Giorgi (2006), except that the entire yea is devided into two six months periods, D J F M A M and J J A S O N. RCCI=[n(∆P)+n(∆σP)+n(RWAF)+n(∆σT)]D...M + [n(∆P)+n(∆σP)+n(RWAF)+n(∆σT)]J…N (1)

  19. Climate Variability and Ponderosa Pine Colonizations in Central Wyoming: Integrating Dendroecology and Dendroclimatology

    NASA Astrophysics Data System (ADS)

    Lesser, M.; Wentzel, C.; Gray, S.; Jackson, S.

    2007-12-01

    Many tree species are predicted to expand into new territory over the coming decades in response to changing climate. By studying tree expansions over the last several centuries we can begin to understand the mechanisms underlying these changes and anticipate their consequences for forest management. Woody-plant demographics and decadal to multidecadal climate variability are often closely linked in semi-arid regions. Integrated tree-ring analysis, combining dendroecology and dendroclimatology to document, respectively, the demographic history of the population and the climatic history of the region, can reveal ecological dynamics in response to climate variability. We studied four small, disjunct populations of Pinus ponderosa in the Bighorn Basin of north-central Wyoming. These populations are located 30 to 100 kilometers from the nearest core populations of ponderosa pine in the western Bighorn Mountains. Packrat midden studies have shown that ponderosa pine colonized the western slopes of the Bighorn Range 1500 years ago, so the disjunct populations in the basin must be younger. All trees (living and dead) at each of the four disjunct populations were mapped, cored, and then aged using tree-ring based techniques. We obtained records of hydroclimatic variability from the Bighorn Basin using four tree-ring series from Pinus flexilis (3 sites) and Pseudotsuga menziesii (1 site). The four disjunct populations were all established within the past 500 years. Initially, the populations grew slowly with low recruitment rates until the early 19th century, when they experienced one or more large recruitment pulses. These pulses coincided with extended wet periods in the climate reconstruction. However, similar wet periods before the 19th Century were not accompanied by recruitment pulses, indicating that other factors (e.g., population density, genetic variability) are also important in colonization and expansion. We are currently obtaining genetic data and carrying out population modeling to differentiate the effects of population dynamics, genetic variability, and climate variability on recruitment and expansion of these populations.

  20. Post-Fire Recovery of Eco-Hydrologic Behavior Given Historic and Projected Climate Variability in California Mediterranean Type Environments

    NASA Astrophysics Data System (ADS)

    Seaby, L. P.; Tague, C. L.; Hope, A. S.

    2006-12-01

    The Mediterranean type environments (MTEs) of California are characterized by a distinct wet and dry season and high variability in inter-annual climate. Water limitation in MTEs makes eco-hydrological processes highly sensitive to both climate variability and frequent fire disturbance. This research modeled post-fire eco- hydrologic behavior under historical and moderate and extreme scenarios of future climate in a semi-arid chaparral dominated southern California MTE. We used a physically-based, spatially-distributed, eco- hydrological model (RHESSys - Regional Hydro-Ecologic Simulation System), to capture linkages between water and vegetation response to the combined effects of fire and historic and future climate variability. We found post-fire eco-hydrologic behavior to be strongly influenced by the episodic nature of MTE climate, which intensifies under projected climate change. Higher rates of post-fire net primary productivity were found under moderate climate change, while more extreme climate change produced water stressed conditions which were less favorable for vegetation productivity. Precipitation variability in the historic record follows the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), and these inter-annual climate characteristics intensify under climate change. Inter-annual variation in streamflow follows these precipitation patterns. Post-fire streamflow and carbon cycling trajectories are strongly dependent on climate characteristics during the first 5 years following fire, and historic intra-climate variability during this period tends to overwhelm longer term trends and variation that might be attributable to climate change. Results have implications for water resource availability, vegetation type conversion from shrubs to grassland, and changes in ecosystem structure and function.

  1. Climate responses to anthropogenic emissions of short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Collins, W. J.; Olivié, D. J. L.; Cherian, R.; Hodnebrog, Ø.; Myhre, G.; Quaas, J.

    2015-07-01

    Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealized, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all models showing an increase in surface temperature focussed in the Northern Hemisphere mid and (especially) high latitudes, and showing a corresponding increase in global mean precipitation. Changes in precipitation patterns are driven mostly by a northward shift in the ITCZ (Intertropical Convergence Zone), consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker response, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the BC and OC mitigation measures do not necessarily lead to a discernible climate response.

  2. A two-fold increase of carbon cycle sensitivity to tropical temperature variations.

    PubMed

    Wang, Xuhui; Piao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Myneni, Ranga B; Cox, Peter; Heimann, Martin; Miller, John; Peng, Shushi; Wang, Tao; Yang, Hui; Chen, Anping

    2014-02-13

    Earth system models project that the tropical land carbon sink will decrease in size in response to an increase in warming and drought during this century, probably causing a positive climate feedback. But available data are too limited at present to test the predicted changes in the tropical carbon balance in response to climate change. Long-term atmospheric carbon dioxide data provide a global record that integrates the interannual variability of the global carbon balance. Multiple lines of evidence demonstrate that most of this variability originates in the terrestrial biosphere. In particular, the year-to-year variations in the atmospheric carbon dioxide growth rate (CGR) are thought to be the result of fluctuations in the carbon fluxes of tropical land areas. Recently, the response of CGR to tropical climate interannual variability was used to put a constraint on the sensitivity of tropical land carbon to climate change. Here we use the long-term CGR record from Mauna Loa and the South Pole to show that the sensitivity of CGR to tropical temperature interannual variability has increased by a factor of 1.9 ± 0.3 in the past five decades. We find that this sensitivity was greater when tropical land regions experienced drier conditions. This suggests that the sensitivity of CGR to interannual temperature variations is regulated by moisture conditions, even though the direct correlation between CGR and tropical precipitation is weak. We also find that present terrestrial carbon cycle models do not capture the observed enhancement in CGR sensitivity in the past five decades. More realistic model predictions of future carbon cycle and climate feedbacks require a better understanding of the processes driving the response of tropical ecosystems to drought and warming.

  3. Climate Variability and Human Migration in the Netherlands, 1865–1937

    PubMed Central

    Jennings, Julia A.; Gray, Clark L.

    2014-01-01

    Human migration is frequently cited as a potential social outcome of climate change and variability, and these effects are often assumed to be stronger in the past when economies were less developed and markets more localized. Yet, few studies have used historical data to test the relationship between climate and migration directly. In addition, the results of recent studies that link demographic and climate data are not consistent with conventional narratives of displacement responses. Using longitudinal individual-level demographic data from the Historical Sample of the Netherlands (HSN) and climate data that cover the same period, we examine the effects of climate variability on migration using event history models. Only internal moves in the later period and for certain social groups are associated with negative climate conditions, and the strength and direction of the observed effects change over time. International moves decrease with extreme rainfall, suggesting that the complex relationships between climate and migration that have been observed for contemporary populations extend into the nineteenth century. PMID:25937689

  4. Notable shifting in the responses of vegetation activity to climate change in China

    NASA Astrophysics Data System (ADS)

    Chen, Aifang; He, Bin; Wang, Honglin; Huang, Ling; Zhu, Yunhua; Lv, Aifeng

    The weakening relationship between inter-annual temperature variability and vegetation activity in the Northern Hemisphere over the last three decades has been reported by a recent study. However, how and to what extent vegetation activity responds to climate change in China is still unclear. We applied the Pearson correlation and partial correlation methods with a moving 15-y window to the GIMMS NDVI dataset from NOAA/AVHRR and observed climate data to examine the variation in the relationships between vegetation activity and climate variables. Results showed that there was an expanding negative response of vegetation growth to climate warming and a positive role of precipitation. The change patterns between NDVI and climate variables over vegetation types during the past three decades pointed an expending negative correlation between NDVI and temperature and a positive role of precipitation over most of the vegetation types (meadow, grassland, shrub, desert, cropland, and forest). Specifically, correlation between NDVI and temperature (PNDVI-T) have shifted from positive to negative in most of the station of temperature-limited areas with evergreen broadleaf forests, whereas precipitation-limited temperate grassland and desert were characterized by a positive PNDVI-P. This study contributes to ongoing investigations of the effects of climate change on vegetation activity. It is also of great importance for designing forest management strategies to cope with climate change.

  5. Quantitative approaches in climate change ecology

    PubMed Central

    Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.

  6. Virtual water trade in the Roman Mediterranean

    NASA Astrophysics Data System (ADS)

    Dermody, Brian; van Beek, Rens; Meeks, Elijah; Klein Goldewijk, Kees; Scheidel, Walter; van der Velde, Ype; Bierkens, Marc; Wassen, Martin; Dekker, Stefan

    2015-04-01

    The Romans were perhaps the most impressive exponents of water resource management in pre-industrial times with irrigation and virtual water trade facilitating unprecedented urbanisation and socio-economic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanisation and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we found that irrigation and virtual water trade increased Roman resilience to inter-annual climate variability. However, urbanisation and population growth arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and eroded its resilience to climate variability in the long term. Our newest findings also assess the impact that persistent climate change associated with Holocene climate anomalies had on Roman water resource management. Specifically we assess the impact of the change in climate from the Roman Warm Period to the Dark Ages Cold Period on the Roman food supply and whether it could have contributed to the fall of the Western Roman Empire.

  7. Transient Earth system responses to cumulative carbon dioxide emissions: linearities, uncertainties, and probabilities in an observation-constrained model ensemble

    NASA Astrophysics Data System (ADS)

    Steinacher, M.; Joos, F.

    2016-02-01

    Information on the relationship between cumulative fossil CO2 emissions and multiple climate targets is essential to design emission mitigation and climate adaptation strategies. In this study, the transient response of a climate or environmental variable per trillion tonnes of CO2 emissions, termed TRE, is quantified for a set of impact-relevant climate variables and from a large set of multi-forcing scenarios extended to year 2300 towards stabilization. An ˜ 1000-member ensemble of the Bern3D-LPJ carbon-climate model is applied and model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte Carlo-type framework. Uncertainties in TRE estimates include both scenario uncertainty and model response uncertainty. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.9 °C (68 % confidence interval (c.i.): 1.3 to 2.7 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and a steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic meridional overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The constrained model ensemble is also applied to determine the response to a pulse-like emission and in idealized CO2-only simulations. The transient climate response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the equilibrium climate sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

  8. Bias and robustness of uncertainty components estimates in transient climate projections

    NASA Astrophysics Data System (ADS)

    Hingray, Benoit; Blanchet, Juliette; Jean-Philippe, Vidal

    2016-04-01

    A critical issue in climate change studies is the estimation of uncertainties in projections along with the contribution of the different uncertainty sources, including scenario uncertainty, the different components of model uncertainty and internal variability. Quantifying the different uncertainty sources faces actually different problems. For instance and for the sake of simplicity, an estimate of model uncertainty is classically obtained from the empirical variance of the climate responses obtained for the different modeling chains. These estimates are however biased. Another difficulty arises from the limited number of members that are classically available for most modeling chains. In this case, the climate response of one given chain and the effect of its internal variability may be actually difficult if not impossible to separate. The estimate of scenario uncertainty, model uncertainty and internal variability components are thus likely to be not really robust. We explore the importance of the bias and the robustness of the estimates for two classical Analysis of Variance (ANOVA) approaches: a Single Time approach (STANOVA), based on the only data available for the considered projection lead time and a time series based approach (QEANOVA), which assumes quasi-ergodicity of climate outputs over the whole available climate simulation period (Hingray and Saïd, 2014). We explore both issues for a simple but classical configuration where uncertainties in projections are composed of two single sources: model uncertainty and internal climate variability. The bias in model uncertainty estimates is explored from theoretical expressions of unbiased estimators developed for both ANOVA approaches. The robustness of uncertainty estimates is explored for multiple synthetic ensembles of time series projections generated with MonteCarlo simulations. For both ANOVA approaches, when the empirical variance of climate responses is used to estimate model uncertainty, the bias is always positive. It can be especially high with STANOVA. In the most critical configurations, when the number of members available for each modeling chain is small (< 3) and when internal variability explains most of total uncertainty variance (75% or more), the overestimation is higher than 100% of the true model uncertainty variance. The bias can be considerably reduced with a time series ANOVA approach, owing to the multiple time steps accounted for. The longer the transient time period used for the analysis, the larger the reduction. When a quasi-ergodic ANOVA approach is applied to decadal data for the whole 1980-2100 period, the bias is reduced by a factor 2.5 to 20 depending on the projection lead time. In all cases, the bias is likely to be not negligible for a large number of climate impact studies resulting in a likely large overestimation of the contribution of model uncertainty to total variance. For both approaches, the robustness of all uncertainty estimates is higher when more members are available, when internal variability is smaller and/or the response-to-uncertainty ratio is higher. QEANOVA estimates are much more robust than STANOVA ones: QEANOVA simulated confidence intervals are roughly 3 to 5 times smaller than STANOVA ones. Excepted for STANOVA when less than 3 members is available, the robustness is rather high for total uncertainty and moderate for internal variability estimates. For model uncertainty or response-to-uncertainty ratio estimates, the robustness is conversely low for QEANOVA to very low for STANOVA. In the most critical configurations (small number of member, large internal variability), large over- or underestimation of uncertainty components is very thus likely. To propose relevant uncertainty analyses and avoid misleading interpretations, estimates of uncertainty components should be therefore bias corrected and ideally come with estimates of their robustness. This work is part of the COMPLEX Project (European Collaborative Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/). Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty components in a multimodel multireplicate ensemble of climate projections. J.Climate. doi:10.1175/JCLI-D-13-00629.1 Hingray, B., Blanchet, J. (revision) Unbiased estimators for uncertainty components in transient climate projections. J. Climate Hingray, B., Blanchet, J., Vidal, J.P. (revision) Robustness of uncertainty components estimates in climate projections. J.Climate

  9. Development, malaria and adaptation to climate change: a case study from India.

    PubMed

    Garg, Amit; Dhiman, R C; Bhattacharya, Sumana; Shukla, P R

    2009-05-01

    India has reasons to be concerned about climate change. Over 650 million people depend on climate-sensitive sectors, such as rain-fed agriculture and forestry, for livelihood and over 973 million people are exposed to vector borne malarial parasites. Projection of climatic factors indicates a wider exposure to malaria for the Indian population in the future. If precautionary measures are not taken and development processes are not managed properly some developmental activities, such as hydro-electric dams and irrigation canal systems, may also exacerbate breeding grounds for malaria. This article integrates climate change and developmental variables in articulating a framework for integrated impact assessment and adaptation responses, with malaria incidence in India as a case study. The climate change variables include temperature, rainfall, humidity, extreme events, and other secondary variables. Development variables are income levels, institutional mechanisms to implement preventive measures, infrastructure development that could promote malarial breeding grounds, and other policies. The case study indicates that sustainable development variables may sometimes reduce the adverse impacts on the system due to climate change alone, while it may sometimes also exacerbate these impacts if the development variables are not managed well and therefore they produce a negative impact on the system. The study concludes that well crafted and well managed developmental policies could result in enhanced resilience of communities and systems, and lower health impacts due to climate change.

  10. Development, Malaria and Adaptation to Climate Change: A Case Study from India

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Dhiman, R. C.; Bhattacharya, Sumana; Shukla, P. R.

    2009-05-01

    India has reasons to be concerned about climate change. Over 650 million people depend on climate-sensitive sectors, such as rain-fed agriculture and forestry, for livelihood and over 973 million people are exposed to vector borne malarial parasites. Projection of climatic factors indicates a wider exposure to malaria for the Indian population in the future. If precautionary measures are not taken and development processes are not managed properly some developmental activities, such as hydro-electric dams and irrigation canal systems, may also exacerbate breeding grounds for malaria. This article integrates climate change and developmental variables in articulating a framework for integrated impact assessment and adaptation responses, with malaria incidence in India as a case study. The climate change variables include temperature, rainfall, humidity, extreme events, and other secondary variables. Development variables are income levels, institutional mechanisms to implement preventive measures, infrastructure development that could promote malarial breeding grounds, and other policies. The case study indicates that sustainable development variables may sometimes reduce the adverse impacts on the system due to climate change alone, while it may sometimes also exacerbate these impacts if the development variables are not managed well and therefore they produce a negative impact on the system. The study concludes that well crafted and well managed developmental policies could result in enhanced resilience of communities and systems, and lower health impacts due to climate change.

  11. Large-Scale Circulation and Climate Variability. Chapter 5

    NASA Technical Reports Server (NTRS)

    Perlwitz, J.; Knutson, T.; Kossin, J. P.; LeGrande, A. N.

    2017-01-01

    The causes of regional climate trends cannot be understood without considering the impact of variations in large-scale atmospheric circulation and an assessment of the role of internally generated climate variability. There are contributions to regional climate trends from changes in large-scale latitudinal circulation, which is generally organized into three cells in each hemisphere-Hadley cell, Ferrell cell and Polar cell-and which determines the location of subtropical dry zones and midlatitude jet streams. These circulation cells are expected to shift poleward during warmer periods, which could result in poleward shifts in precipitation patterns, affecting natural ecosystems, agriculture, and water resources. In addition, regional climate can be strongly affected by non-local responses to recurring patterns (or modes) of variability of the atmospheric circulation or the coupled atmosphere-ocean system. These modes of variability represent preferred spatial patterns and their temporal variation. They account for gross features in variance and for teleconnections which describe climate links between geographically separated regions. Modes of variability are often described as a product of a spatial climate pattern and an associated climate index time series that are identified based on statistical methods like Principal Component Analysis (PC analysis), which is also called Empirical Orthogonal Function Analysis (EOF analysis), and cluster analysis.

  12. 'Tales of Symphonia': extinction dynamics in response to past climate change in Madagascan rainforests.

    PubMed

    Virah-Sawmy, Malika; Bonsall, Michael B; Willis, Katherine J

    2009-12-23

    Madagascar's rainforests are among the most biodiverse in the world. Understanding the population dynamics of important species within these forests in response to past climatic variability provides valuable insight into current and future species composition. Here, we use a population-level approach to analyse palaeoecological records over the last 5300 years to understand how populations of Symphonia cf. verrucosa became locally extinct in some rainforest fragments along the southeast coast of Madagascar in response to rapid climate change, yet persisted in others. Our results indicate that regional (climate) variability contributed to synchronous decline of S. cf. verrucosa populations in these forests. Superimposed on regional fluctuations were local processes that could have contributed or mitigated extinction. Specifically, in the forest with low soil nutrients, population model predictions indicated that there was coexistence between S. cf. verrucosa and Erica spp., but in the nutrient-rich forest, interspecific effects between Symphonia and Erica spp. may have pushed Symphonia to extinction at the peak of climatic change. We also demonstrate that Symphonia is a good indicator of a threshold event, exhibiting erratic fluctuations prior to and long after the critical climatic point has passed.

  13. Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling.

    PubMed

    Bode, Antonio; Estévez, M Graciela; Varela, Manuel; Vilar, José A

    2015-09-01

    Phytoplankton is a sentinel of marine ecosystem change. Composed by many species with different life-history strategies, it rapidly responds to environment changes. An analysis of the abundance of 54 phytoplankton species in Galicia (NW Spain) between 1989 and 2008 to determine the main components of temporal variability in relation to climate and upwelling showed that most of this variability was stochastic, as seasonality and long term trends contributed to relatively small fractions of the series. In general, trends appeared as non linear, and species clustered in 4 groups according to the trend pattern but there was no defined pattern for diatoms, dinoflagellates or other groups. While, in general, total abundance increased, no clear trend was found for 23 species, 14 species decreased, 4 species increased during the early 1990s, and only 13 species showed a general increase through the series. In contrast, series of local environmental conditions (temperature, stratification, nutrients) and climate-related variables (atmospheric pressure indices, upwelling winds) showed a high fraction of their variability in deterministic seasonality and trends. As a result, each species responded independently to environmental and climate variability, measured by generalized additive models. Most species showed a positive relationship with nutrient concentrations but only a few showed a direct relationship with stratification and upwelling. Climate variables had only measurable effects on some species but no common response emerged. Because its adaptation to frequent disturbances, phytoplankton communities in upwelling ecosystems appear less sensitive to changes in regional climate than other communities characterized by short and well defined productive periods. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Detrending phenological time series improves climate-phenology analyses and reveals evidence of plasticity.

    PubMed

    Iler, Amy M; Inouye, David W; Schmidt, Niels M; Høye, Toke T

    2017-03-01

    Time series have played a critical role in documenting how phenology responds to climate change. However, regressing phenological responses against climatic predictors involves the risk of finding potentially spurious climate-phenology relationships simply because both variables also change across years. Detrending by year is a way to address this issue. Additionally, detrending isolates interannual variation in phenology and climate, so that detrended climate-phenology relationships can represent statistical evidence of phenotypic plasticity. Using two flowering phenology time series from Colorado, USA and Greenland, we detrend flowering date and two climate predictors known to be important in these ecosystems: temperature and snowmelt date. In Colorado, all climate-phenology relationships persist after detrending. In Greenland, 75% of the temperature-phenology relationships disappear after detrending (three of four species). At both sites, the relationships that persist after detrending suggest that plasticity is a major component of sensitivity of flowering phenology to climate. Finally, simulations that created different strengths of correlations among year, climate, and phenology provide broader support for our two empirical case studies. This study highlights the utility of detrending to determine whether phenology is related to a climate variable in observational data sets. Applying this as a best practice will increase our understanding of phenological responses to climatic variation and change. © 2016 by the Ecological Society of America.

  15. Differential responses of carbon and water vapor fluxes to climate among evergreen needleleaf forests in the USA

    USDA-ARS?s Scientific Manuscript database

    Understanding of differences in carbon and water vapor fluxes of spatially distributed evergreen needle leaf forests (ENFs) is crucial to accurately estimating regional carbon and water budgets and when predicting the responses of ENFs to future climate. We investigated cross-site variability in car...

  16. The Effect of ENSO on Phytoplankton Composition in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile

    2012-01-01

    The effect of climate variability on phytoplankton communities was assessed for the tropical and sub-tropical Pacific Ocean between 1998 and 2005 using an established biogeochemical assimilation model. The phytoplankton communities exhibited wide range of responses to climate variability, from radical shifts in the Equatorial Pacific, to changes of only a couple of phytoplankton groups in the North Central Pacific, to no significant changes in the South Pacific. In the Equatorial Pacific, climate variability dominated the variability of phytoplankton. Here, nitrate, chlorophyll and all but one of the 4 phytoplankton types (diatoms, cyanobacteria and coccolithophores) were strongly correlated (p less than 0.01) with the Multivariate El Nino Southern Oscillation Index (MEI). In the North Central Pacific, MEI and chlorophyll were significantly (p<0.01) correlated along with two of the phytoplankton groups (chlorophytes and coccolithophores). Ocean biology in the South Pacific was not significantly correlated with MEI. During La Ni a events, diatoms increased and expanded westward along the cold tongue (correlation with MEI, r=-0.81), while cyanobacteria concentrations decreased significantly (r=0.78). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. The diverse response of phytoplankton in the different major basins of the Pacific suggests the different roles climate variability can play in ocean biology.

  17. Climate Change: Modeling the Human Response

    NASA Astrophysics Data System (ADS)

    Oppenheimer, M.; Hsiang, S. M.; Kopp, R. E.

    2012-12-01

    Integrated assessment models have historically relied on forward modeling including, where possible, process-based representations to project climate change impacts. Some recent impact studies incorporate the effects of human responses to initial physical impacts, such as adaptation in agricultural systems, migration in response to drought, and climate-related changes in worker productivity. Sometimes the human response ameliorates the initial physical impacts, sometimes it aggravates it, and sometimes it displaces it onto others. In these arenas, understanding of underlying socioeconomic mechanisms is extremely limited. Consequently, for some sectors where sufficient data has accumulated, empirically based statistical models of human responses to past climate variability and change have been used to infer response sensitivities which may apply under certain conditions to future impacts, allowing a broad extension of integrated assessment into the realm of human adaptation. We discuss the insights gained from and limitations of such modeling for benefit-cost analysis of climate change.

  18. Phenology at the crossroads?

    NASA Astrophysics Data System (ADS)

    Menzel, Annette

    2014-05-01

    Phenology is the study of the timing of natural events such as plant growth or animal migration. Currently nearly 500 papers are published annually that include 'phenolog*' in their title; many are related to anthropogenic change. Since seasonal events are triggered predominantly by climate, phenology has emerged as a key asset in identifying fingerprints of climate change in natural systems, especially since recent warming has been mirrored by significantly advancing spring events. Phenological changes have been reported across continents, habitats and taxa, predominantly as mean temporal changes ('trends') or as relationships to temperature and other drivers ('responses'), and have been summarised in various meta-analyses. However, a considerable variability in observed trends and responses is reported along with mixed messages of the footprint of climate change in nature. Phenology has made considerable advances but is a crossroads of understanding this variability. At the same time a change of emphasis in explanation, prediction and adaptation is emerging, which needs a full acknowledgement of this variability; likely yielding to more plasticity and resilience. In this review, I summarize current knowledge and recent insights into the role of • different observation methods, their accuracy and their target phenophases • observed events, species, traits, ontogenetic effects • species-specific safeguarding strategies, e.g. chilling, photoperiod • additional drivers other than climate, e.g. nutrients, GHG, biotic effects, anthropogenic / agricultural management • seasonal as well as spatio-temporal variation, effects of regional climate changes and analogous climates. This review clearly demonstrated that, comparable to weather and climate ensembles, only a full consideration of variation in responses allows a complete understanding of ecological, cultural and socioeconomic consequences of these phenological changes.

  19. The climatic implications of the Holocene floods in the north-western Himalaya, India

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Shukla, A. D.; Bartarya, S.; Marh, B.; Juyal, N.

    2016-12-01

    Understanding the growing trend of extreme hydrological events in response to climate variabilities is a major area of interest in the climate change science. More important so as the predictions suggest increased frequency and/or magnitude of floods in the Himalayan region due to more intense/frequent coupling between the Indian Summer Monsoon (ISM) and the mid-latitude westerlies. In view of this, studies pertaining to the geological evidence of extreme hydrological events (paleofloods) become important as these not only extend beyond the instrumental records but ensures better understanding of the pattern of river response to the extreme climate variability.The Satluj River in the north-western Himalaya is infamous for its history of recurrent and devastating floods for which there is no data beyond the historical record. The present study in the middle Satluj valley is a contribution towards expanding the cognizance of the climate and geomorphic processes responsible for the Holocene extreme events. Based on sedimentology and grain size variability a total of 24 flood events of increasing magnitude are identified. The geochemical data indicate that the flood sediments were mostly generated and transported from the Higher Himalayan Crystalline with some contribution from the Trans-Himalaya. The optical chronology allow us to identify four major flood clusters which are dated between 13-11 ka; 8-4 ka; 4-2 ka and < 2 ka respectively. Climatically, these correspond to the cooler/relatively drier climatic condition (weak monsoon) and broadly correlate with the phases of negative Arctic Oscillation (‒AO) and negative North Atlantic Oscillation (-NAO).

  20. Fine-scale variability in growth-climate relationships of Douglas-fir, North Cascade Range, Washington.

    Treesearch

    Michael J. Case; David L. Peterson

    2005-01-01

    Information about the sensitivity to climate of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is valuable because it will allow forest managers to maximize growth, better understand how carbon sequestration may change over time, and better model and predict future ecosystem responses to climatic change. We examined the effects of climatic...

  1. The USDA Southern Plains Climate Hub: Regional agricultural management in the context of weather and climate variability and change

    USDA-ARS?s Scientific Manuscript database

    In the Southern Great Plains of the United States, extremes of weather and climate are the norm. Farmers, ranchers, and foresters rely upon timely and authoritative data and information when making management decisions that are weather- and climate-dependent. In response to the needs of these agricu...

  2. Effects of climate on growth traits of river red gum are determined by respiration parameters

    Treesearch

    Richard S. Criddle; Thimmappa S. Anekonda; Sharon Tong; John N. Church; F. Thomas Ledig; Lee D. Hansen

    2000-01-01

    Temperature is the major uncontrollable climate variable in plantation forestry. Matching plants to climate is essential for optimizing growth. Matching is usually done with field trials because of the lack of a predictive relation between laboratory measurements of physiological responses and climatic factors affecting growth. This paper evaluates the potential of...

  3. Are GRACE-era terrestrial water trends driven by anthropogenic climate change?

    DOE PAGES

    Fasullo, J. T.; Lawrence, D. M.; Swenson, S. C.

    2016-01-01

    To provide context for observed trends in terrestrial water storage (TWS) during GRACE (2003–2014), trends and variability in the CESM1-CAM5 Large Ensemble (LE) are examined. Motivated in part by the anomalous nature of climate variability during GRACE, the characteristics of both forced change and internal modes are quantified and their influences on observations are estimated. Trends during the GRACE era in the LE are dominated by internal variability rather than by the forced response, with TWS anomalies in much of the Americas, eastern Australia, Africa, and southwestern Eurasia largely attributable to the negative phases of the Pacific Decadal Oscillation (PDO)more » and Atlantic Multidecadal Oscillation (AMO). While similarities between observed trends and the model-inferred forced response also exist, it is inappropriate to attribute such trends mainly to anthropogenic forcing. For several key river basins, trends in the mean state and interannual variability and the time at which the forced response exceeds background variability are also estimated while aspects of global mean TWS, including changes in its annual amplitude and decadal trends, are quantified. Lastly, the findings highlight the challenge of detecting anthropogenic climate change in temporally finite satellite datasets and underscore the benefit of utilizing models in the interpretation of the observed record.« less

  4. Are GRACE-era terrestrial water trends driven by anthropogenic climate change?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasullo, J. T.; Lawrence, D. M.; Swenson, S. C.

    To provide context for observed trends in terrestrial water storage (TWS) during GRACE (2003–2014), trends and variability in the CESM1-CAM5 Large Ensemble (LE) are examined. Motivated in part by the anomalous nature of climate variability during GRACE, the characteristics of both forced change and internal modes are quantified and their influences on observations are estimated. Trends during the GRACE era in the LE are dominated by internal variability rather than by the forced response, with TWS anomalies in much of the Americas, eastern Australia, Africa, and southwestern Eurasia largely attributable to the negative phases of the Pacific Decadal Oscillation (PDO)more » and Atlantic Multidecadal Oscillation (AMO). While similarities between observed trends and the model-inferred forced response also exist, it is inappropriate to attribute such trends mainly to anthropogenic forcing. For several key river basins, trends in the mean state and interannual variability and the time at which the forced response exceeds background variability are also estimated while aspects of global mean TWS, including changes in its annual amplitude and decadal trends, are quantified. Lastly, the findings highlight the challenge of detecting anthropogenic climate change in temporally finite satellite datasets and underscore the benefit of utilizing models in the interpretation of the observed record.« less

  5. The absence of an Atlantic imprint on the multidecadal variability of wintertime European temperature.

    PubMed

    Yamamoto, Ayako; Palter, Jaime B

    2016-03-15

    Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air-sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline.

  6. Nitrate and dissolved organic carbon mobilization in response to soil freezing variability

    Treesearch

    Colin B. Fuss; Charles T. Driscoll; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer; Jorge Durán; Jennifer L. Morse

    2016-01-01

    Reduced snowpack and associated increases in soil freezing severity resulting from winter climate change have the potential to disrupt carbon (C) and nitrogen (N) cycling in soils. We used a natural winter climate gradient based on elevation and aspect in a northern hardwood forest to examine the effects of variability in soil freezing depth, duration, and frequency on...

  7. Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.

    PubMed

    Steen, Valerie; Skagen, Susan K; Noon, Barry R

    2014-01-01

    The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971-2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981-2000 and projected future distributions to climate scenarios for 2040-2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.

  8. Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations

    NASA Astrophysics Data System (ADS)

    Dogar, Muhammad Mubashar; Stenchikov, Georgiy; Osipov, Sergey; Wyman, Bruce; Zhao, Ming

    2017-08-01

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/National Centers for Environmental Prediction Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory's High-Resolution Atmospheric Model. A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon, and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  9. Climate variability and nitrogen rate interactions affecting corn nitrogen use efficiency in Alabama

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) fertilization is an important practice to increase yield; however, plant–soil interactions to in-season changes in climatic conditions result on site-specific responses of corn to nitrogen rates. The objective of this study was to evaluate the effect of different climatic conditions and...

  10. New climate change scenarios for the Netherlands.

    PubMed

    van den Hurk, B; Tank, A K; Lenderink, G; Ulden, A van; Oldenborgh, G J van; Katsman, C; Brink, H van den; Keller, F; Bessembinder, J; Burgers, G; Komen, G; Hazeleger, W; Drijfhout, S

    2007-01-01

    A new set of climate change scenarios for 2050 for the Netherlands was produced recently. The scenarios span a wide range of possible future climate conditions, and include climate variables that are of interest to a broad user community. The scenario values are constructed by combining output from an ensemble of recent General Climate Model (GCM) simulations, Regional Climate Model (RCM) output, meteorological observations and a touch of expert judgment. For temperature, precipitation, potential evaporation and wind four scenarios are constructed, encompassing ranges of both global mean temperature rise in 2050 and the strength of the response of the dominant atmospheric circulation in the area of interest to global warming. For this particular area, wintertime precipitation is seen to increase between 3.5 and 7% per degree global warming, but mean summertime precipitation shows opposite signs depending on the assumed response of the circulation regime. Annual maximum daily mean wind speed shows small changes compared to the observed (natural) variability of this variable. Sea level rise in the North Sea in 2100 ranges between 35 and 85 cm. Preliminary assessment of the impact of the new scenarios on water management and coastal defence policies indicate that particularly dry summer scenarios and increased intensity of extreme daily precipitation deserves additional attention in the near future.

  11. Recent changes in county-level corn yield variability in the United States from observations and crop models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong

    The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota,more » Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially underestimated the change trend of corn yield variability, in projecting its future changes.« less

  12. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of climate and management.

    PubMed

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2008-04-27

    The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO 2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO 2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (R eco ) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while R eco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods.

  13. Inter-model Diversity of ENSO simulation and its relation to basic states

    NASA Astrophysics Data System (ADS)

    Kug, J. S.; Ham, Y. G.

    2016-12-01

    In this study, a new methodology is developed to improve the climate simulation of state-of-the-art coupledglobal climate models (GCMs), by a postprocessing based on the intermodel diversity. Based on the closeconnection between the interannual variability and climatological states, the distinctive relation between theintermodel diversity of the interannual variability and that of the basic state is found. Based on this relation,the simulated interannual variabilities can be improved, by correcting their climatological bias. To test thismethodology, the dominant intermodel difference in precipitation responses during El Niño-SouthernOscillation (ENSO) is investigated, and its relationship with climatological state. It is found that the dominantintermodel diversity of the ENSO precipitation in phase 5 of the Coupled Model Intercomparison Project(CMIP5) is associated with the zonal shift of the positive precipitation center during El Niño. This dominantintermodel difference is significantly correlated with the basic states. The models with wetter (dryer) climatologythan the climatology of the multimodel ensemble (MME) over the central Pacific tend to shift positiveENSO precipitation anomalies to the east (west). Based on the model's systematic errors in atmosphericENSO response and bias, the models with better climatological state tend to simulate more realistic atmosphericENSO responses.Therefore, the statistical method to correct the ENSO response mostly improves the ENSO response. Afterthe statistical correction, simulating quality of theMMEENSO precipitation is distinctively improved. Theseresults provide a possibility that the present methodology can be also applied to improving climate projectionand seasonal climate prediction.

  14. Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region

    NASA Astrophysics Data System (ADS)

    Teutschbein, Claudia; Grabs, Thomas; Karlsen, Reinert H.; Laudon, Hjalmar; Bishop, Kevin

    2016-04-01

    It has long been recognized that streamflow-generating processes are not only dependent on climatic conditions, but also affected by physical catchment properties such as topography, geology, soils and land cover. We hypothesize that these landscape characteristics do not only lead to highly variable hydrologic behavior of rather similar catchments under the same stationary climate conditions (Karlsen et al., 2014), but that they also play a fundamental role for the sensitivity of a catchment to a changing climate (Teutschbein et al., 2015). A multi-model ensemble based on 15 regional climate models was combined with a multi-catchment approach to explore the hydrologic sensitivity of 14 partially nested and rather similar catchments in Northern Sweden to changing climate conditions and the importance of small-scale spatial variability. Current (1981-2010) and future (2061-2090) streamflow was simulated with the HBV model. As expected, projected increases in temperature and precipitation resulted in increased total available streamflow, with lower spring and summer flows, but substantially higher winter streamflow. Furthermore, significant changes in flow durations with lower chances of both high and low flows can be expected in boreal Sweden in the future. This overall trend in projected streamflow pattern changes was comparable among the analyzed catchments while the magnitude of change differed considerably. This suggests that catchments belonging to the same region can show distinctly different degrees of hydrological responses to the same external climate change signal. We reason that differences in spatially distributed physical catchment properties at smaller scales are not only of great importance for current streamflow behavior, but also play a major role as first-order control for the sensitivity of catchments to changing climate conditions. References Karlsen, R.H., T. Grabs, K. Bishop, H. Laudon, and J. Seibert (2014). Landscape controls on spatiotemporal variability of specific discharge in a boreal region, Abstract #H52B-07 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15-19 Dec. [Available at http://adsabs.harvard.edu/abs/2014AGUFM.H52B..07K, last accessed 11 Jan 2016]. Teutschbein, C., T. Grabs, R.H. Karlsen, H. Laudon and K. Bishop (2015). Hydrological Response to Changing Climate Conditions: Spatial Streamflow Variability in the Boreal Region, Water Resour Res, doi: 10.1002/2015WR017337. [Available at http://onlinelibrary.wiley.com/doi/10.1002/2015WR017337/abstract, last accessed 11 Jan 2016].

  15. Climate Variability and Wildfires: Insights from Global Earth System Models

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; Lamarque, J. F.; Wittenberg, A. T.

    2016-12-01

    Better understanding of the relationship between variability in global climate and emissions from wildfires is needed for predictions of fire activity on interannual to multi-decadal timescales. Here we investigate this relationship using the long, preindustrial control simulations and historical ensembles of two Earth System models; CESM1 and the NOAA/GFDL ESM2Mb. There is smaller interannual variability of global fires in both models than in present day inventories, especially in boreal regions where observed fires vary substantially from year to year. Patterns of fire response to climate oscillation indices, including the El Niño / Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Meridional Oscillation (AMO) are explored with the model results and compared to the response derived from satellite measurements and proxy observations. Increases in fire emissions in southeast Asia and boreal North America are associated with positive ENSO and PDO, while United States fires and Sahel fires decrease for the same climate conditions. Boreal fire emissions decrease in CESM1 for the warm phase of the AMO, while ESM2Mb did not produce a reliable AMO. CESM1 produces a weak negative trend in global fire emissions for the period 1920 to 2005, while ESM2Mb produces a positive trend over the same period. Both trends are statistically significant at a confidence level of 95% or greater given the variability derived from the respective preindustrial controls. In addition to climate variability impacts on fires, we also explore the impacts of fire emissions on climate variability and atmospheric chemistry. We analyze three long, free-evolving ESM2Mb simulations; one without fire emissions, one with constant year-over-year fire emissions based on a present day inventory, and one with interannually varying fire emissions coupled between the terrestrial and atmospheric components of the model, to gain a better understanding of the role of fire emissions in climate over long timescales.

  16. Climate responses to anthropogenic emissions of short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Collins, W. J.; Olivié, D. J. L.; Cherian, R.; Hodnebrog, Ø.; Myhre, G.; Quaas, J.; Samset, B. H.

    2015-02-01

    Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealised, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all three models showing an increase in surface temperature focussed in the northern hemisphere high latitudes, and a corresponding increase in global mean precipitation and run-off. Changes in precipitation and run-off patterns are driven mostly by a northward shift in the ITCZ, consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker forcing signal, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the BC and OC mitigation measures do not necessarily lead to a discernible climate response.

  17. Beyond equilibrium climate sensitivity

    NASA Astrophysics Data System (ADS)

    Knutti, Reto; Rugenstein, Maria A. A.; Hegerl, Gabriele C.

    2017-10-01

    Equilibrium climate sensitivity characterizes the Earth's long-term global temperature response to increased atmospheric CO2 concentration. It has reached almost iconic status as the single number that describes how severe climate change will be. The consensus on the 'likely' range for climate sensitivity of 1.5 °C to 4.5 °C today is the same as given by Jule Charney in 1979, but now it is based on quantitative evidence from across the climate system and throughout climate history. The quest to constrain climate sensitivity has revealed important insights into the timescales of the climate system response, natural variability and limitations in observations and climate models, but also concerns about the simple concepts underlying climate sensitivity and radiative forcing, which opens avenues to better understand and constrain the climate response to forcing. Estimates of the transient climate response are better constrained by observed warming and are more relevant for predicting warming over the next decades. Newer metrics relating global warming directly to the total emitted CO2 show that in order to keep warming to within 2 °C, future CO2 emissions have to remain strongly limited, irrespective of climate sensitivity being at the high or low end.

  18. Adaptation to Interannual and Interdecadal Climate Variability in Agricultural Production Systems of the Argentine Pampas

    NASA Astrophysics Data System (ADS)

    Podestá, G. P.; Bert, F.; Weber, E.; Laciana, C.; Rajagopalan, B.; Letson, D.

    2007-05-01

    Agricultural ecosystems play a central role in world food production and food security, and involve one of the most climate-sensitive sectors of society-agriculture. We focus on crop production in the Argentine Pampas, one of the world's major agricultural regions. Climate of the Pampas shows marked variability at both interannual and decadal time scales. We explored the scope for adaptive management in response to climate information on interannual scales. We show that different assumptions about what decision makers are trying to achieve (i.e., their objective functions) may change what actions are considered as "optimal" for a given climate context. Optimal actions also were used to estimate the economic value of forecasts of an ENSO phase. Decision constraints (e.g., crop rotations) have critical influence on value of the forecasting system. Gaps in knowledge or misconceptions about climate variability were identified in open-ended "mental model" interviews. Results were used to design educational interventions. A marked increase in precipitation since the 1970s, together with new production technologies, led to major changes in land use patterns in the Pampas. Continuous cropping has widely replaced agriculture-pasture rotations. Nevertheless, production systems that evolved partly in response to increased rainfall may not be viable if climate reverts to a drier epoch. We use historical data to define a range of plausible climate trajectories 20-30 years hence. Regional scenarios are downscaled using semi-parametric weather generators to produce multiple realizations of daily weather consistent with decadal scenarios. Finally, we use the synthetic climate, crop growth models, and realistic models of decision-making under risk to compute risk metrics (e.g., probability of yields or profits being below a threshold). Climatically optimal and marginal locations show differential responses: probabilities of negative economic results are much higher in currently marginal areas if precipitations decrease.

  19. Interannual and spatial variability of maple syrup yield as related to climatic factors

    PubMed Central

    Houle, Daniel

    2014-01-01

    Sugar maple syrup production is an important economic activity for eastern Canada and the northeastern United States. Since annual variations in syrup yield have been related to climate, there are concerns about the impacts of climatic change on the industry in the upcoming decades. Although the temporal variability of syrup yield has been studied for specific sites on different time scales or for large regions, a model capable of accounting for both temporal and regional differences in yield is still lacking. In the present study, we studied the factors responsible for interregional and interannual variability in maple syrup yield over the 2001–2012 period, by combining the data from 8 Quebec regions (Canada) and 10 U.S. states. The resulting model explained 44.5% of the variability in yield. It includes the effect of climatic conditions that precede the sapflow season (variables from the previous growing season and winter), the effect of climatic conditions during the current sapflow season, and terms accounting for intercountry and temporal variability. Optimal conditions for maple syrup production appear to be spatially restricted by less favourable climate conditions occurring during the growing season in the north, and in the south, by the warmer winter and earlier spring conditions. This suggests that climate change may favor maple syrup production northwards, while southern regions are more likely to be negatively affected by adverse spring conditions. PMID:24949244

  20. Thermal barriers constrain microbial elevational range size via climate variability.

    PubMed

    Wang, Jianjun; Soininen, Janne

    2017-08-01

    Range size is invariably limited and understanding range size variation is an important objective in ecology. However, microbial range size across geographical gradients remains understudied, especially on mountainsides. Here, the patterns of range size of stream microbes (i.e., bacteria and diatoms) and macroorganisms (i.e., macroinvertebrates) along elevational gradients in Asia and Europe were examined. In bacteria, elevational range size showed non-significant phylogenetic signals. In all taxa, there was a positive relationship between niche breadth and species elevational range size, driven by local environmental and climatic variables. No taxa followed the elevational Rapoport's rule. Climate variability explained the most variation in microbial mean elevational range size, whereas local environmental variables were more important for macroinvertebrates. Seasonal and annual climate variation showed negative effects, while daily climate variation had positive effects on community mean elevational range size for all taxa. The negative correlation between range size and species richness suggests that understanding the drivers of range is key for revealing the processes underlying diversity. The results advance the understanding of microbial species thermal barriers by revealing the importance of seasonal and diurnal climate variation, and highlight that aquatic and terrestrial biota may differ in their response to short- and long-term climate variability. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis

    USGS Publications Warehouse

    Bartlein, P.J.; Harrison, S.P.; Brewer, Sandra; Connor, S.; Davis, B.A.S.; Gajewski, K.; Guiot, J.; Harrison-Prentice, T. I.; Henderson, A.; Peyron, O.; Prentice, I.C.; Scholze, M.; Seppa, H.; Shuman, B.; Sugita, S.; Thompson, R.S.; Viau, A.E.; Williams, J.; Wu, H.

    2011-01-01

    Subfossil pollen and plant macrofossil data derived from 14C-dated sediment profiles can provide quantitative information on glacial and interglacial climates. The data allow climate variables related to growing-season warmth, winter cold, and plant-available moisture to be reconstructed. Continental-scale reconstructions have been made for the mid-Holocene (MH, around 6 ka) and Last Glacial Maximum (LGM, around 21 ka), allowing comparison with palaeoclimate simulations currently being carried out as part of the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. The synthesis of the available MH and LGM climate reconstructions and their uncertainties, obtained using modern-analogue, regression and model-inversion techniques, is presented for four temperature variables and two moisture variables. Reconstructions of the same variables based on surface-pollen assemblages are shown to be accurate and unbiased. Reconstructed LGM and MH climate anomaly patterns are coherent, consistent between variables, and robust with respect to the choice of technique. They support a conceptual model of the controls of Late Quaternary climate change whereby the first-order effects of orbital variations and greenhouse forcing on the seasonal cycle of temperature are predictably modified by responses of the atmospheric circulation and surface energy balance. ?? 2010 The Author(s).

  2. A first-order global model of Late Cenozoic climatic change: Orbital forcing as a pacemaker of the ice ages

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry

    1992-01-01

    The development of a theory of the evolution of the climate of the earth over millions of years can be subdivided into three fundamental, nested, problems: (1) to establish by equilibrium climate models (e.g., general circulation models) the diagnostic relations, valid at any time, between the fast-response climate variables (i.e., the 'weather statistics') and both the prescribed external radiative forcing and the prescribed distribution of the slow response variables (e.g., the ice sheets and shelves, the deep ocean state, and the atmospheric CO2 concentration); (2) to construct, by an essentially inductive process, a model of the time-dependent evolution of the slow-response climatic variables over time scales longer than the damping times of these variables but shorter than the time scale of tectonic changes in the boundary conditions (e.g., altered geography and elevation of the continents, slow outgassing, and weathering) and ultra-slow astronomical changes such as in the solar radiative output; and (3) to determine the nature of these ultra-slow processes and their effects on the evolution of the equilibrium state of the climatic system about which the above time-dependent variations occur. All three problems are discussed in the context of the theory of the Quaternary climate, which will be incomplete unless it is embedded in a more general theory for the fuller Cenozoic that can accommodate the onset of the ice-age fluctuations. We construct a simple mathematical model for the Late Cenozoic climatic changes based on the hypothesis that forced and free variations of the concentration of atmospheric greenhouse gases (notably CO2), coupled with changes in the deep ocean state and ice mass, under the additional 'pacemaking' influence of earth-orbital forcing, are primary determinants of the climate state over this period. Our goal is to illustrate how a single model governing both very long term variations and higher frequency oscillatory variations in the Pleistocene can be formulated with relatively few adjustable parameters.

  3. VEMAP phase 2 bioclimatic database. I. Gridded historical (20th century) climate for modeling ecosystem dynamics across the conterminous USA

    Treesearch

    Timothy G.F. Kittel; Nan. A. Rosenbloom; J.A. Royle; C. Daly; W.P. Gibson; H.H. Fisher; P. Thornton; D.N. Yates; S. Aulenbach; C. Kaufman; R. McKeown; Dominque Bachelet; David S. Schimel

    2004-01-01

    Analysis and simulation of biospheric responses to historical forcing require surface climate data that capture those aspects of climate that control ecological processes, including key spatial gradients and modes of temporal variability. We developed a multivariate, gridded historical climate dataset for the conterminous USA as a common input database for the...

  4. Spatial and Temporal Variation in the Effects of Climatic Variables on Dugong Calf Production.

    PubMed

    Fuentes, Mariana M P B; Delean, Steven; Grayson, Jillian; Lavender, Sally; Logan, Murray; Marsh, Helene

    2016-01-01

    Knowledge of the relationships between environmental forcing and demographic parameters is important for predicting responses from climatic changes and to manage populations effectively. We explore the relationships between the proportion of sea cows (Dugong dugon) classified as calves and four climatic drivers (rainfall anomaly, Southern Oscillation El Niño Index [SOI], NINO 3.4 sea surface temperature index, and number of tropical cyclones) at a range of spatially distinct locations in Queensland, Australia, a region with relatively high dugong density. Dugong and calf data were obtained from standardized aerial surveys conducted along the study region. A range of lagged versions of each of the focal climatic drivers (1 to 4 years) were included in a global model containing the proportion of calves in each population crossed with each of the lagged versions of the climatic drivers to explore relationships. The relative influence of each predictor was estimated via Gibbs variable selection. The relationships between the proportion of dependent calves and the climatic drivers varied spatially and temporally, with climatic drivers influencing calf counts at sub-regional scales. Thus we recommend that the assessment of and management response to indirect climatic threats on dugongs should also occur at sub-regional scales.

  5. Estimating glacier response times and disequilibrium in a changing climate

    NASA Astrophysics Data System (ADS)

    Christian, J. E.; Koutnik, M.; Roe, G.

    2017-12-01

    Glaciers respond to climate variations according to a characteristic timescale that, for most mountain glaciers, is on the order of 10—100 years. An important consequence of this multi-decadal memory is that a glacier's transient response to a climate trend exhibits a persistent lag behind the equilibrium response. In the context of anthropogenic warming, this means that most glaciers are currently well out of equilibrium, and that a substantial amount of retreat is committed even without further warming. The degree of disequilibrium depends fundamentally on the glacier response timescale, making it an important parameter to constrain. A common and robust metric for the response timescale is τ=H/bt, where H and bt are characteristic values for ice thickness and the terminus mass-balance rate, respectively. However, sparse observations, climate variability, and glacier disequilibrium make it difficult to define these characteristic values. We compare several sources of uncertainty that will affect estimates of the response timescale and thus the degree of disequilibrium. Ice thickness is poorly constrained for many glaciers, which bears directly on estimates of the response timescale. However, errors may also arise from estimating thickness and mass-balance rates in a variable climate. We assess how noisy mass balance and observed terminus fluctuations introduce sampling errors into estimates of the glacier's response timescale and the expected equilibrium response to a climate change. Additionally, the instantaneous value of τ evolves during sustained warming as the glacier thins and retreats. Perhaps counterintuitively, τ can increase if retreat into higher elevations exceeds thinning. This has implications for estimating the timescale based on currently observed geometry and mass balance. We use shallow-ice and 3-stage linear models to explore these effects with synthetic glacier geometries and climate forcings. In this way, we can diagnose the geometric and climatic sources of uncertainty in glacier response timescales and degrees of disequilibrium. Estimating these metrics from existing datasets is necessary to relate mass balance to glacier state and to anticipate future responses; our analyses will help constrain such estimates and improve understanding of their limitations.

  6. The Borderlands and climate change: Chapter 10 in United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    USGS Publications Warehouse

    Fitzpatrick, Joan; Gray, Floyd; Dubiel, Russell; Langman, Jeff; Moring, J. Bruce; Norman, Laura M.; Page, William R.; Parcher, Jean W.

    2013-01-01

    The prediction of global climate change in response to both natural forces and human activity is one of the defining issues of our times. The unprecedented observational capacity of modern earth-orbiting satellites coupled with the development of robust computational representations (models) of the Earth’s weather and climate systems afford us the opportunity to observe and investigate how these systems work now, how they have worked in the past, and how they will work in the future when forced in specific ways. In the most recent report on global climate change by the Intergovernmental Panel on Climate Change (IPCC; Solomon and others, 2007), analyses using multiple climate models support recent observations that the Earth’s climate is changing in response to a combination of natural and human-induced causes. These changes will be significant in the United States–Mexican border region, where the process of climate change affects all of the Borderlands challenge themes discussed in the preceding chapters. The dual possibilities of both significantly-changed climate and increasing variability in climate make it challenging to take full measure of the potential effects because the Borderlands already experience a high degree of interannual variability and climatological extremes.

  7. climwin: An R Toolbox for Climate Window Analysis.

    PubMed

    Bailey, Liam D; van de Pol, Martijn

    2016-01-01

    When studying the impacts of climate change, there is a tendency to select climate data from a small set of arbitrary time periods or climate windows (e.g., spring temperature). However, these arbitrary windows may not encompass the strongest periods of climatic sensitivity and may lead to erroneous biological interpretations. Therefore, there is a need to consider a wider range of climate windows to better predict the impacts of future climate change. We introduce the R package climwin that provides a number of methods to test the effect of different climate windows on a chosen response variable and compare these windows to identify potential climate signals. climwin extracts the relevant data for each possible climate window and uses this data to fit a statistical model, the structure of which is chosen by the user. Models are then compared using an information criteria approach. This allows users to determine how well each window explains variation in the response variable and compare model support between windows. climwin also contains methods to detect type I and II errors, which are often a problem with this type of exploratory analysis. This article presents the statistical framework and technical details behind the climwin package and demonstrates the applicability of the method with a number of worked examples.

  8. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2018-06-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  9. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2017-12-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  10. Response and adaptation of grapevine cultivars to hydrological conditions forced by a changing climate in a complex landscape

    NASA Astrophysics Data System (ADS)

    De Lorenzi, Francesca; Bonfante, Antonello; Alfieri, Silvia Maria; Monaco, Eugenia; De Mascellis, Roberto; Manna, Piero; Menenti, Massimo

    2014-05-01

    Soil water availability is one of the main components of the terroir concept, influencing crop yield and fruit composition in grapes. The aim of this work is to analyze some elements of the "natural environment" of terroir (climate and soil) in combination with the intra-specific biodiversity of yield responses of grapevine to water availability. From a reference (1961-90) to a future (2021-50) climate case, the effects of climate evolution on soil water availability are assessed and, regarding soil water regime as a predictor variable, the potential spatial distribution of wine-producing cultivars is determined. In a region of Southern Italy (Valle Telesina, 20,000 ha), where a terroir classification has been produced (Bonfante et al., 2011), we applied an agro-hydrological model to determine water availability indicators. Simulations were performed in 60 soil typological units, over the entire study area, and water availability (= hydrological) indicators were determined. Two climate cases were considered: reference (1961-90) and future (2021-2050), the former from climatic statistics on observed variables, and the latter from statistical downscaling of predictions by general circulation models (AOGCM) under A1B SRES scenario. Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. Spatial and temporal variability of hydrological indicators was addressed. With respect to temporal variability, both inter-annual and intra-annual (i.e. at different stages of crop cycle) variability were analyzed. Some cultivar-specific relations between hydrological indicators and characteristics of must quality were established. Moreover, for several wine-producing cultivars, hydrological requirements were determined by means of yield response functions to soil water availability, through the re-analysis of experimental data derived from scientific literature. The standard errors of estimated requirements were determined. To assess cultivars adaptability, hydrological requirements were evaluated against hydrological indicators. A probabilistic assessment of adaptability was performed, and the inaccuracy of estimated hydrological requirements was accounted for by the error of estimate and its distribution. Maps of cultivars potential distribution, i.e. locations where each cultivar is expected to be compatible with climate, were derived and possible options for adaptation to climate change were defined. The 2021 - 2050 climate scenario was characterized by higher temperatures throughout the year and by a significant decrease in precipitation during spring and autumn. The results have shown the relevant variability of soils water regime and its effects on cultivars adaptability. In the future climate scenario, a hydrological indicator (i.e. relative evapotranspiration deficit - RETD), averaged over the growing season, showed an average increase of 5-8 %, and more pronounced increases occurred in the phenological phases of berry formation and ripening. At the locations where soil hydrological conditions were favourable (like the ancient terraces), hydrological indicators were quite similar in both climate scenarios and the adaptability of the cultivars was high both in the reference and future climate case. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: climate change, Vitis vinifera L., simulation model, yield response functions, potential cultivation area.

  11. Relevant climate response tests for stratospheric aerosol injection: A combined ethical and scientific analysis

    NASA Astrophysics Data System (ADS)

    Lenferna, Georges Alexandre; Russotto, Rick D.; Tan, Amanda; Gardiner, Stephen M.; Ackerman, Thomas P.

    2017-06-01

    In this paper, we focus on stratospheric sulfate injection as a geoengineering scheme, and provide a combined scientific and ethical analysis of climate response tests, which are a subset of outdoor tests that would seek to impose detectable and attributable changes to climate variables on global or regional scales. We assess the current state of scientific understanding on the plausibility and scalability of climate response tests. Then, we delineate a minimal baseline against which to consider whether certain climate response tests would be relevant for a deployment scenario. Our analysis shows that some climate response tests, such as those attempting to detect changes in regional climate impacts, may not be deployable in time periods relevant to realistic geoengineering scenarios. This might pose significant challenges for justifying stratospheric sulfate aerosol injection deployment overall. We then survey some of the major ethical challenges that proposed climate response tests face. We consider what levels of confidence would be required to ethically justify approving a proposed test; whether the consequences of tests are subject to similar questions of justice, compensation, and informed consent as full-scale deployment; and whether questions of intent and hubris are morally relevant for climate response tests. We suggest further research into laboratory-based work and modeling may help to narrow the scientific uncertainties related to climate response tests, and help inform future ethical debate. However, even if such work is pursued, the ethical issues raised by proposed climate response tests are significant and manifold.

  12. Examining the response of larch needle carbohydrates to climate using compound-specific δ13C and concentration analyses

    NASA Astrophysics Data System (ADS)

    Rinne, Katja T.; Saurer, Matthias; Kirdyanov, Alexander V.; Bryukhanova, Marina V.; Prokushkin, Anatoly S.; Churakova Sidorova, Olga V.; Siegwolf, Rolf T. W.

    2016-04-01

    Little is known about the dynamics of concentrations and carbon isotope ratios of individual carbohydrates in leaves in response to climatic and physiological factors. Improved knowledge of the isotopic ratio in sugars will enhance our understanding of the tree ring isotope ratio and will help to decipher environmental conditions in retrospect more reliably. Carbohydrate samples from larch (Larix gmelinii) needles of two sites in the continuous permafrost zone of Siberia with differing growth conditions were analysed with the Compound-Specific Isotope Analysis (CSIA). We compared concentrations and carbon isotope values (δ13C) of sucrose, fructose, glucose and pinitol combined with phenological data. The results for the variability of the needle carbohydrates show high dynamics with distinct seasonal characteristics between and within the studied years with a clear link to the climatic conditions, particularly vapour pressure deficit. Compound-specific differences in δ13C values as a response to climate were detected. The δ13C of pinitol, which contributes up to 50% of total soluble carbohydrates, was almost invariant during the whole growing season. Our study provides the first in-depth characterization of compound-specific needle carbohydrate isotope variability, identifies involved mechanisms and shows the potential of such results for linking tree physiological responses to different climatic conditions.

  13. Forecasting climate change impacts to plant community composition in the Sonoran Desert region

    USGS Publications Warehouse

    Munson, Seth M.; Webb, Robert H.; Belnap, Jayne; Hubbard, J. Andrew; Swann, Don E.; Rutman, Sue

    2012-01-01

    Hotter and drier conditions projected for the southwestern United States can have a large impact on the abundance and composition of long-lived desert plant species. We used long-term vegetation monitoring results from 39 large plots across four protected sites in the Sonoran Desert region to determine how plant species have responded to past climate variability. This cross-site analysis identified the plant species and functional types susceptible to climate change, the magnitude of their responses, and potential climate thresholds. In the relatively mesic mesquite savanna communities, perennial grasses declined with a decrease in annual precipitation, cacti increased, and there was a reversal of the Prosopis velutina expansion experienced in the 20th century in response to increasing mean annual temperature (MAT). In the more xeric Arizona Upland communities, the dominant leguminous tree, Cercidium microphyllum, declined on hillslopes, and the shrub Fouquieria splendens decreased, especially on south- and west-facing slopes in response to increasing MAT. In the most xeric shrublands, the codominant species Larrea tridentata and its hemiparasite Krameria grayi decreased with a decrease in cool season precipitation and increased aridity, respectively. This regional-scale assessment of plant species response to recent climate variability is critical for forecasting future shifts in plant community composition, structure, and productivity.

  14. Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches

    PubMed Central

    Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D.; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel

    2016-01-01

    Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for adding value to existing observational data in agriculture by allowing embedded knowledge to be quickly leveraged. It generates site-specific information on cultivar response to climatic factors and supports on-farm management decisions for adaptation to climate variability. PMID:27560980

  15. Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches.

    PubMed

    Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel

    2016-01-01

    Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for adding value to existing observational data in agriculture by allowing embedded knowledge to be quickly leveraged. It generates site-specific information on cultivar response to climatic factors and supports on-farm management decisions for adaptation to climate variability.

  16. Adaptation with climate uncertainty: An examination of agricultural land use in the United States

    USGS Publications Warehouse

    Mu, Jianhong E.; McCarl, Bruce A.; Sleeter, Benjamin M.; Abatzoglou, John T.; Zhang, Hongliang

    2018-01-01

    This paper examines adaptation responses to climate change through adjustment of agricultural land use. The climate drivers we examine are changes in long-term climate normals (e.g., 10-year moving averages) and changes in inter-annual climate variability. Using US county level data over 1982 to 2012 from Census of Agriculture, we find that impacts of long-term climate normals are as important as that of inter-annual climate variability. Projecting into the future, we find projected climate change will lead to an expansion in crop land share across the northern and interior western United States with decreases in the south. We also find that grazing land share increases in southern regions and Inland Pacific Northwest and declines in the northern areas. However, the extent to which the adaptation potential would be is dependent on the climate model, emission scenario and time horizon under consideration.

  17. Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: Dendrochronological, demographic, and experimental perspectives

    USGS Publications Warehouse

    McGuire, A. David; Ruess, Roger W.; Lloyd, A.; Yarie, J.; Clein, Joy S.; Juday, G.P.

    2010-01-01

    This paper integrates dendrochronological, demographic, and experimental perspectives to improve understanding of the response of white spruce (Picea glauca (Moench) Voss) tree growth to climatic variability in interior Alaska. The dendrochronological analyses indicate that climate warming has led to widespread declines in white spruce growth throughout interior Alaska that have become more prevalent during the 20th century. Similarly, demographic studies show that white spruce tree growth is substantially limited by soil moisture availability in both mid- and late-successional stands. Interannual variability in tree growth among stands within a landscape exhibits greater synchrony than does growth of trees that occupy different landscapes, which agrees with dendrochronological findings that the responses depend on landscape position and prevailing climate. In contrast, the results from 18 years of a summer moisture limitation experiment showed that growth in midsuccessional upland stands was unaffected by moisture limitation and that moisture limitation decreased white spruce growth in floodplain stands where it was expected that growth would be less vulnerable because of tree access to river water. Taken together, the evidence from the different perspectives analyzed in this study clearly indicates that white spruce tree growth in interior Alaska is vulnerable to the effects of warming on plant water balance.

  18. Cross-continent comparisons reveal differing environmental drivers of growth of the coral reef fish, Lutjanus bohar

    NASA Astrophysics Data System (ADS)

    Ong, Joyce J. L.; Rountrey, Adam N.; Marriott, Ross J.; Newman, Stephen J.; Meeuwig, Jessica J.; Meekan, Mark G.

    2017-03-01

    Biochronologies provide important insights into the growth responses of fishes to past variability in physical and biological environments and, in so doing, allow modelling of likely responses to climate change in the future. We examined spatial variability in the key drivers of inter-annual growth patterns of a widespread, tropical snapper, Lutjanus bohar, at similar tropical latitudes on the north-western and north-eastern coasts of the continent of Australia. For this study, we developed biochronologies from otoliths that provided proxies of somatic growth and these were analysed using mixed-effects models to examine the historical drivers of growth. Our analyses demonstrated that growth patterns of fish were driven by different climatic and biological factors in each region, including Pacific Ocean climate indices, regional sea level and the size structure of the fish community. Our results showed that the local oceanographic and biological context of reef systems strongly influenced the growth of L. bohar and that a single age-related growth trend cannot be assumed for separate populations of this species that are likely to experience different environmental conditions. Generalised predictions about the growth response of fishes to climate change will thus require adequate characterisation of the spatial variability in growth determinants likely to be found throughout the range of species that have cosmopolitan distributions.

  19. The relative impacts of climate and land-use change on conterminous United States bird species from 2001 to 2075

    USGS Publications Warehouse

    Sohl, Terry L.

    2014-01-01

    Species distribution models often use climate data to assess contemporary and/or future ranges for animal or plant species. Land use and land cover (LULC) data are important predictor variables for determining species range, yet are rarely used when modeling future distributions. In this study, maximum entropy modeling was used to construct species distribution maps for 50 North American bird species to determine relative contributions of climate and LULC for contemporary (2001) and future (2075) time periods. Species presence data were used as a dependent variable, while climate, LULC, and topographic data were used as predictor variables. Results varied by species, but in general, measures of model fit for 2001 indicated significantly poorer fit when either climate or LULC data were excluded from model simulations. Climate covariates provided a higher contribution to 2001 model results than did LULC variables, although both categories of variables strongly contributed. The area deemed to be "suitable" for 2001 species presence was strongly affected by the choice of model covariates, with significantly larger ranges predicted when LULC was excluded as a covariate. Changes in species ranges for 2075 indicate much larger overall range changes due to projected climate change than due to projected LULC change. However, the choice of study area impacted results for both current and projected model applications, with truncation of actual species ranges resulting in lower model fit scores and increased difficulty in interpreting covariate impacts on species range. Results indicate species-specific response to climate and LULC variables; however, both climate and LULC variables clearly are important for modeling both contemporary and potential future species ranges.

  20. The Relative Impacts of Climate and Land-Use Change on Conterminous United States Bird Species from 2001 to 2075

    PubMed Central

    Sohl, Terry L.

    2014-01-01

    Species distribution models often use climate data to assess contemporary and/or future ranges for animal or plant species. Land use and land cover (LULC) data are important predictor variables for determining species range, yet are rarely used when modeling future distributions. In this study, maximum entropy modeling was used to construct species distribution maps for 50 North American bird species to determine relative contributions of climate and LULC for contemporary (2001) and future (2075) time periods. Species presence data were used as a dependent variable, while climate, LULC, and topographic data were used as predictor variables. Results varied by species, but in general, measures of model fit for 2001 indicated significantly poorer fit when either climate or LULC data were excluded from model simulations. Climate covariates provided a higher contribution to 2001 model results than did LULC variables, although both categories of variables strongly contributed. The area deemed to be “suitable” for 2001 species presence was strongly affected by the choice of model covariates, with significantly larger ranges predicted when LULC was excluded as a covariate. Changes in species ranges for 2075 indicate much larger overall range changes due to projected climate change than due to projected LULC change. However, the choice of study area impacted results for both current and projected model applications, with truncation of actual species ranges resulting in lower model fit scores and increased difficulty in interpreting covariate impacts on species range. Results indicate species-specific response to climate and LULC variables; however, both climate and LULC variables clearly are important for modeling both contemporary and potential future species ranges. PMID:25372571

  1. The next generation of scenarios for climate change research and assessment.

    PubMed

    Moss, Richard H; Edmonds, Jae A; Hibbard, Kathy A; Manning, Martin R; Rose, Steven K; van Vuuren, Detlef P; Carter, Timothy R; Emori, Seita; Kainuma, Mikiko; Kram, Tom; Meehl, Gerald A; Mitchell, John F B; Nakicenovic, Nebojsa; Riahi, Keywan; Smith, Steven J; Stouffer, Ronald J; Thomson, Allison M; Weyant, John P; Wilbanks, Thomas J

    2010-02-11

    Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth's climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community.

  2. Curve number method response to historical climate variability and trends

    USDA-ARS?s Scientific Manuscript database

    With the dependence on the curve number (CN) model by the engineering community, the question arises as to whether changes in climate may affect the performance of the CN algorithm which impacts estimates of runoff. A study was conducted to determine the effects of “climate period” (period of unifor...

  3. Groundwater Variability in a Sandstone Catchment and Linkages with Large-scale Climatic Circulatio

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Lavers, D. A.; Bradley, C.

    2015-12-01

    Groundwater is a crucial water resource that sustains river ecosystems and provides public water supply. Furthermore, during periods of prolonged high rainfall, groundwater-dominated catchments can be subject to protracted flooding. Climate change and associated projected increases in the frequency and intensity of hydrological extremes have implications for groundwater levels. This study builds on previous research undertaken on a Chalk catchment by investigating groundwater variability in a UK sandstone catchment: the Tern in Shropshire. In contrast to the Chalk, sandstone is characterised by a more lagged response to precipitation inputs; and, as such, it is important to determine the groundwater behaviour and its links with the large-scale climatic circulation to improve process understanding of recharge, groundwater level and river flow responses to hydroclimatological drivers. Precipitation, river discharge and groundwater levels for borehole sites in the Tern basin over 1974-2010 are analysed as the target variables; and we use monthly gridded reanalysis data from the Twentieth Century Reanalysis Project (20CR). First, groundwater variability is evaluated and associations with precipitation / discharge are explored using monthly concurrent and lagged correlation analyses. Second, gridded 20CR reanalysis data are used in composite and correlation analyses to identify the regions of strongest climate-groundwater association. Results show that reasonably strong climate-groundwater connections exist in the Tern basin, with a several months lag. These lags are associated primarily with the time taken for recharge waters to percolate through to the groundwater table. The uncovered patterns improve knowledge of large-scale climate forcing of groundwater variability and may provide a basis to inform seasonal prediction of groundwater levels, which would be useful for strategic water resource planning.

  4. Growth gains from selective breeding in a spruce hybrid zone do not compromise local adaptation to climate.

    PubMed

    MacLachlan, Ian R; Yeaman, Sam; Aitken, Sally N

    2018-02-01

    Hybrid zones contain extensive standing genetic variation that facilitates rapid responses to selection. The Picea glauca  ×  Picea engelmannii hybrid zone in western Canada is the focus of tree breeding programs that annually produce ~90 million reforestation seedlings. Understanding the direct and indirect effects of selective breeding on adaptive variation is necessary to implement assisted gene flow (AGF) polices in Alberta and British Columbia that match these seedlings with future climates. We decomposed relationships among hybrid ancestry, adaptive traits, and climate to understand the implications of selective breeding for climate adaptations and AGF strategies. The effects of selection on associations among hybrid index estimated from ~6,500 SNPs, adaptive traits, and provenance climates were assessed for ~2,400 common garden seedlings. Hybrid index differences between natural and selected seedlings within breeding zones were small in Alberta (average +2%), but larger and more variable in BC (average -7%, range -24% to +1%), slightly favoring P. glauca ancestry. The average height growth gain of selected seedlings over natural seedlings within breeding zones was 36% (range 12%-86%). Clines in growth with temperature-related variables were strong, but differed little between selected and natural populations. Seedling hybrid index and growth trait associations with evapotranspiration-related climate variables were stronger in selected than in natural seedlings, indicating possible preadaptation to drier future climates. Associations among cold hardiness, hybrid ancestry, and cold-related climate variables dominated signals of local adaptation and were preserved in breeding populations. Strong hybrid ancestry-phenotype-climate associations suggest that AGF will be necessary to match interior spruce breeding populations with shifting future climates. The absence of antagonistic selection responses among traits and maintenance of cold adaptation in selected seedlings suggests breeding populations can be safely redeployed using AGF prescriptions similar to those of natural populations.

  5. Vulnerability of Breeding Waterbirds to Climate Change in the Prairie Pothole Region, U.S.A

    PubMed Central

    Steen, Valerie; Skagen, Susan K.; Noon, Barry R.

    2014-01-01

    The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981–2000 and projected future distributions to climate scenarios for 2040–2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts. PMID:24927165

  6. Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.

    USGS Publications Warehouse

    Steen, Valerie; Skagen, Susan K.; Noon, Barry R.

    2014-01-01

    The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981–2000 and projected future distributions to climate scenarios for 2040–2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.

  7. Quantifying the Hydrologic Effect of Climate Variability in the Lower Colorado Basin

    NASA Astrophysics Data System (ADS)

    Switanek, M.; Troch, P. A.

    2007-12-01

    Regional climate patterns are driven in large part by ocean states and associated atmospheric circulations, but modified through feedbacks from land surface conditions. The latter defines the climate elasticity of a river basin. Many regions that lie between semi-arid and semi-humid zones with seasonal rainfall, for instance, experience prolonged periods of wet and dry spells. Understanding the triggers that bring a river basin from one state (e.g. wet period of late 90s in the Colorado basin) abruptly to another state (multi-year drought initiated in 2001 to present) is what motivates the present study. Our research methodology investigates the causes of regional climate variability and its effect on hydrologic response. By correlating, using different monthly time lags, sea surface temperatures (SST) and sea level pressures (SLP) with basin averaged precipitation and surface temperature, we determine the most influential regions of the Pacific Ocean on lower Colorado climate variability. Using the most correlated data for each month, we derive precipitation and temperature distributions under similar conditions to that of the El Niño Southern Oscillation (ENSO). We compare the distributions of the climatic data, given ENSO constraints on SST and SLP, to the distributions considering non-ENSO years. Finally, we use observed stream flows and climatic data to determine the basin's climate elasticity. This allows us to quantitatively translate the predicted regional climate effects of ENSO on hydrologic response. Our presentation will use data for the Little Colorado as an example to demonstrate the procedure and produce preliminary results.

  8. The long view: Causes of climate change over the instrumental period

    NASA Astrophysics Data System (ADS)

    Hegerl, G. C.; Schurer, A. P.; Polson, D.; Iles, C. E.; Bronnimann, S.

    2016-12-01

    The period of instrumentally recorded data has seen remarkable changes in climate, with periods of rapid warming, and periods of stagnation or cooling. A recent analysis of the observed temperature change from the instrumental record confirms that most of the warming recorded since the middle of the 20rst century has been caused by human influences, but shows large uncertainty in separating greenhouse gas from aerosol response if accounting for model uncertainty. The contribution by natural forcing and internal variability to the recent warming is estimated to be small, but becomes more important when analysing climate change over earlier or shorter time periods. For example, the enigmatic early 20th century warming was a period of strong climate anomalies, including the US dustbowl drought and exceptional heat waves, and pronounced Arctic warming. Attribution results suggests that about half of the global warming 1901-1950 was forced by greenhouse gases increases, with an anomalously strong contribution by climate variability, and contributions by natural forcing. Long term variations in circulation are important for some regional climate anomalies. Precipitation is important for impacts of climate change and precipitation changes are uncertain in models. Analysis of the instrumental record suggests a human influence on mean and heavy precipitation, and supports climate model estimates of the spatial pattern of precipitation sensitivity to warming. Broadly, and particularly over ocean, wet regions are getting wetter and dry regions are getting drier. In conclusion, the historical record provides evidence for a strong response to external forcings, supports climate models, and raises questions about multi-decadal variability.

  9. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current.

    PubMed

    Fleming, Alyson H; Clark, Casey T; Calambokidis, John; Barlow, Jay

    2016-03-01

    Large, migratory predators are often cited as sentinel species for ecosystem processes and climate-related changes, but their utility as indicators is dependent upon an understanding of their response to environmental variability. Documentation of the links between climate variability, ecosystem change and predator dynamics is absent for most top predators. Identifying species that may be useful indicators and elucidating these mechanistic links provides insight into current ecological dynamics and may inform predictions of future ecosystem responses to climatic change. We examine humpback whale response to environmental variability through stable isotope analysis of diet over a dynamic 20-year period (1993-2012) in the California Current System (CCS). Humpback whale diets captured two major shifts in oceanographic and ecological conditions in the CCS. Isotopic signatures reflect a diet dominated by krill during periods characterized by positive phases of the North Pacific Gyre Oscillation (NPGO), cool sea surface temperature (SST), strong upwelling and high krill biomass. In contrast, humpback whale diets are dominated by schooling fish when the NPGO is negative, SST is warmer, seasonal upwelling is delayed and anchovy and sardine populations display increased biomass and range expansion. These findings demonstrate that humpback whales trophically respond to ecosystem shifts, and as a result, their foraging behavior is a synoptic indicator of oceanographic and ecological conditions across the CCS. Multi-decadal examination of these sentinel species thus provides insight into biological consequences of interannual climate fluctuations, fundamental to advancing ecosystem predictions related to global climate change. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  10. Climate, water use, and land surface transformation in an irrigation intensive watershed - streamflow responses from 1950 through 2010

    USGS Publications Warehouse

    Dale, Joseph; Zou, Chris B.; Andrews, William J.; Long, James M.; Liang, Ye; Qiao, Lei

    2015-01-01

    Climatic variability and land surface change have a wide range of effects on streamflow and are often difficult to separate. We analyzed long-term records of climate, land use and land cover, and re-constructed the water budget based on precipitation, groundwater levels, and water use from 1950 through 2010 in the Cimarron–Skeleton watershed and a portion of the Cimarron–Eagle Chief watershed in Oklahoma, an irrigation-intensive agricultural watershed in the Southern Great Plains, USA. Our results show that intensive irrigation through alluvial aquifer withdrawal modifies climatic feedback and alters streamflow response to precipitation. Increase in consumptive water use was associated with decreases in annual streamflow, while returning croplands to non-irrigated grasslands was associated with increases in streamflow. Along with groundwater withdrawal, anthropogenic-induced factors and activities contributed nearly half to the observed variability of annual streamflow. Streamflow was more responsive to precipitation during the period of intensive irrigation between 1965 and 1984 than the period of relatively lower water use between 1985 and 2010. The Cimarron River is transitioning from a historically flashy river to one that is more stable with a lower frequency of both high and low flow pulses, a higher baseflow, and an increased median flow due in part to the return of cropland to grassland. These results demonstrated the interrelationship among climate, land use, groundwater withdrawal and streamflow regime and the potential to design agricultural production systems and adjust irrigation to mitigate impact of increasing climate variability on streamflow in irrigation intensive agricultural watershed.

  11. Climate-growth relationships of Abies spectabilis in a central Himalayan treeline ecotone

    NASA Astrophysics Data System (ADS)

    Schwab, Niels; Kaczka, Ryszard J.; Schickhoff, Udo

    2017-04-01

    Climate warming is expected to induce treelines to advance to higher elevations. Empirical studies in diverse mountain ranges, however, give evidence of both advancing alpine treelines as well as rather insignificant responses. The large spectrum of responses is not fully understood. In the framework of investigating the sensitivity and response of a near-natural treeline ecotone in Rolwaling Himal, Nepal, to climate warming we present results from dendroclimatological analyses of Abies spectabilis (Himalayan Fir) increment cores. Tree ring width was measured and cross-dated. After standardization, the chronology was correlated with temperature and precipitation variables. Preliminary results point to positive correlations with autumn temperature and precipitation. We will present improved climate-growth relationships. The resulting climate - tree growth relationships may be used as an indication of future growth patterns and treeline dynamics under climate change conditions.

  12. Effects of changing climate on European stream invertebrate communities: A long-term data analysis.

    PubMed

    Jourdan, Jonas; O'Hara, Robert B; Bottarin, Roberta; Huttunen, Kaisa-Leena; Kuemmerlen, Mathias; Monteith, Don; Muotka, Timo; Ozoliņš, Dāvis; Paavola, Riku; Pilotto, Francesca; Springe, Gunta; Skuja, Agnija; Sundermann, Andrea; Tonkin, Jonathan D; Haase, Peter

    2018-04-15

    Long-term observations on riverine benthic invertebrate communities enable assessments of the potential impacts of global change on stream ecosystems. Besides increasing average temperatures, many studies predict greater temperature extremes and intense precipitation events as a consequence of climate change. In this study we examined long-term observation data (10-32years) of 26 streams and rivers from four ecoregions in the European Long-Term Ecological Research (LTER) network, to investigate invertebrate community responses to changing climatic conditions. We used functional trait and multi-taxonomic analyses and combined examinations of general long-term changes in communities with detailed analyses of the impact of different climatic drivers (i.e., various temperature and precipitation variables) by focusing on the response of communities to climatic conditions of the previous year. Taxa and ecoregions differed substantially in their response to climate change conditions. We did not observe any trend of changes in total taxonomic richness or overall abundance over time or with increasing temperatures, which reflects a compensatory turnover in the composition of communities; sensitive Plecoptera decreased in response to warmer years and Ephemeroptera increased in northern regions. Invasive species increased with an increasing number of extreme days which also caused an apparent upstream community movement. The observed changes in functional feeding group diversity indicate that climate change may be associated with changes in trophic interactions within aquatic food webs. These findings highlight the vulnerability of riverine ecosystems to climate change and emphasize the need to further explore the interactive effects of climate change variables with other local stressors to develop appropriate conservation measures. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Ecological controls on water-cycle response to climate variability in deserts.

    PubMed

    Scanlon, B R; Levitt, D G; Reedy, R C; Keese, K E; Sully, M J

    2005-04-26

    The impact of climate variability on the water cycle in desert ecosystems is controlled by biospheric feedback at interannual to millennial timescales. This paper describes a unique field dataset from weighing lysimeters beneath nonvegetated and vegetated systems that unequivocally demonstrates the role of vegetation dynamics in controlling water cycle response to interannual climate variability related to El Nino southern oscillation in the Mojave Desert. Extreme El Nino winter precipitation (2.3-2.5 times normal) typical of the U.S. Southwest would be expected to increase groundwater recharge, which is critical for water resources in semiarid and arid regions. However, lysimeter data indicate that rapid increases in vegetation productivity in response to elevated winter precipitation reduced soil water storage to half of that in a nonvegetated lysimeter, thereby precluding deep drainage below the root zone that would otherwise result in groundwater recharge. Vegetation dynamics have been controlling the water cycle in interdrainage desert areas throughout the U.S. Southwest, maintaining dry soil conditions and upward soil water flow since the last glacial period (10,000-15,000 yr ago), as shown by soil water chloride accumulations. Although measurements are specific to the U.S. Southwest, correlations between satellite-based vegetation productivity and elevated precipitation related to El Nino southern oscillation indicate this model may be applicable to desert basins globally. Understanding the two-way coupling between vegetation dynamics and the water cycle is critical for predicting how climate variability influences hydrology and water resources in water-limited landscapes.

  14. Tracking of climatic niche boundaries under recent climate change.

    PubMed

    La Sorte, Frank A; Jetz, Walter

    2012-07-01

    1. Global climate has changed significantly during the past 30 years and especially in northern temperate regions which have experienced poleward shifts in temperature regimes. While there is evidence that some species have responded by moving their distributions to higher latitudes, the efficiency of this response in tracking species' climatic niche boundaries over time has yet to be addressed. 2. Here, we provide a continental assessment of the temporal structure of species responses to recent spatial shifts in climatic conditions. We examined geographic associations with minimum winter temperature for 59 species of winter avifauna at 476 Christmas Bird Count circles in North America from 1975 to 2009 under three sampling schemes that account for spatial and temporal sampling effects. 3. Minimum winter temperature associated with species occurrences showed an overall increase with a weakening trend after 1998. Species displayed highly variable responses that, on average and across sampling schemes, contained a strong lag effect that weakened in strength over time. In general, the conservation of minimum winter temperature was relevant when all species were considered together but only after an initial lag period (c. 35 years) was overcome. The delayed niche tracking observed at the combined species level was likely supported by the post1998 lull in the warming trend. 4. There are limited geographic and ecological explanations for the observed variability, suggesting that the efficiency of species' responses under climate change is likely to be highly idiosyncratic and difficult to predict. This outcome is likely to be even more pronounced and time lags more persistent for less vagile taxa, particularly during the periods of consistent or accelerating warming. Current modelling efforts and conservation strategies need to better appreciate the variation, strength and duration of lag effects and their association with climatic variability. Conservation strategies in particular will benefit through identifying and maintaining dispersal corridors that accommodate diverging dispersal strategies and timetables. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  15. Phenology of seed and leaves rain in response to periodic climatic variability in a seasonal wet tropical forest

    NASA Astrophysics Data System (ADS)

    Matteo, D.; Wright, S. J.; Davies, S. J.; Muller-Landau, H. C.; Wolfe, B.; Detto, M.

    2016-12-01

    Phenology, by controlling the rhythms of plants, plays a fundamental role in regulating access to resources, ecosystem processes, competition among species, interactions with consumers and feedbacks to the climate. In high biodiverse tropical forests, where phenology of flowering and leafing are complex, an adequate representation of phenology must take into account a given set of climatic, edaphic and biotic factors. Climatic factors are particularly important because plants may use them as cues for timing different phenological phases and be influenced by their intensity. Climatic variability can be periodic, if events occur with regular frequency, or aperiodic. One prominent periodic large-scale pattern that causes unusual weather is ENSO event. In general, Central America tends to be dry and warm during a mature phase of an ENSO event, which usually peaks between October and January with a frequency of 2-3 events per decade. Because in many tropical areas the effect of ENSO is highly prominent, it is plausible that plants have adapted their growth and reproduction mechanisms to synchronize ENSO phases, in a similar way that plants do during the seasonal cycle. We used a long dataset (30+ years) of fruits and leaves rains of tropical trees and lianas to determine ecosystem response and species specific response of these phenological events to local climate variability corresponding to the modes of ENSO. Specifically, we tested the hypothesis that phenological responses to ENSO are similar to response to seasonal cycles, i.e., higher litterfall before a warm-dry phase and higher fruiting after such phase, with strong correlation between seeds and leaves. At sub-community level, we evaluated whether evergreen and deciduous, biotic and abiotic dispersers and free and climbing life forms, have the same response to ENSO in terms of leaves and seeds rain. At species level we tested the hypothesis that species with low photosynthetic capacity leaves are more responsive to ENSO in relation to variation in solar radiation. High Amax is usually associated with light-demanding, fast growing, gap species. These species must disperse seeds to ephemeral gaps to germinate successfully. Consequently they strategize to have more even seed fall across years

  16. Native temperature regime influences soil response to simulated warming

    Treesearch

    Timothy G. Whitby; Michael D. Madritch

    2013-01-01

    Anthropogenic climate change is expected to increase global temperatures and potentially increase soil carbon (C) mineralization, which could lead to a positive feedback between global warming and soil respiration. However the magnitude and spatial variability of belowground responses to warming are not yet fully understood. Some of the variability may depend...

  17. Alternating high and low climate variability: The context of natural selection and speciation in Plio-Pleistocene hominin evolution.

    PubMed

    Potts, Richard; Faith, J Tyler

    2015-10-01

    Interaction of orbital insolation cycles defines a predictive model of alternating phases of high- and low-climate variability for tropical East Africa over the past 5 million years. This model, which is described in terms of climate variability stages, implies repeated increases in landscape/resource instability and intervening periods of stability in East Africa. It predicts eight prolonged (>192 kyr) eras of intensified habitat instability (high variability stages) in which hominin evolutionary innovations are likely to have occurred, potentially by variability selection. The prediction that repeated shifts toward high climate variability affected paleoenvironments and evolution is tested in three ways. In the first test, deep-sea records of northeast African terrigenous dust flux (Sites 721/722) and eastern Mediterranean sapropels (Site 967A) show increased and decreased variability in concert with predicted shifts in climate variability. These regional measurements of climate dynamics are complemented by stratigraphic observations in five basins with lengthy stratigraphic and paleoenvironmental records: the mid-Pleistocene Olorgesailie Basin, the Plio-Pleistocene Turkana and Olduvai Basins, and the Pliocene Tugen Hills sequence and Hadar Basin--all of which show that highly variable landscapes inhabited by hominin populations were indeed concentrated in predicted stages of prolonged high climate variability. Second, stringent null-model tests demonstrate a significant association of currently known first and last appearance datums (FADs and LADs) of the major hominin lineages, suites of technological behaviors, and dispersal events with the predicted intervals of prolonged high climate variability. Palynological study in the Nihewan Basin, China, provides a third test, which shows the occupation of highly diverse habitats in eastern Asia, consistent with the predicted increase in adaptability in dispersing Oldowan hominins. Integration of fossil, archeological, sedimentary, and paleolandscape evidence illustrates the potential influence of prolonged high variability on the origin and spread of critical adaptations and lineages in the evolution of Homo. The growing body of data concerning environmental dynamics supports the idea that the evolution of adaptability in response to climate and overall ecological instability represents a unifying theme in hominin evolutionary history. Published by Elsevier Ltd.

  18. Forest carbon changes of the United States in response to impacts of disturbances, succession, climate variability and atmospheric chemistry

    Treesearch

    Yude Pan; Richard Birdsey; Jing Chen; kevin McCullough

    2008-01-01

    U.S. forests and forest products currently offset about 20% of the nation's fossil fuel emissions. Two of the most significant recent scientific findings cast doubt on the sustainability of this offset. First, there are clear indications that the strength of the U.S. forest carbon offset is weakening due to increasing forest age, climate variability, and...

  19. Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests.

    PubMed

    Dong, Shirley Xiaobi; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Supardi, M N Nur; Kassim, Abd Rahman; Tan, Sylvester; Moorcroft, Paul R

    2012-10-07

    The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.

  20. West African Monsoon dynamics in idealized simulations: the competitive roles of SST warming and CO2

    NASA Astrophysics Data System (ADS)

    Gaetani, Marco; Flamant, Cyrille; Hourdin, Frederic; Bastin, Sophie; Braconnot, Pascale; Bony, Sandrine

    2015-04-01

    The West African Monsoon (WAM) is affected by large climate variability at different timescales, from interannual to multidecadal, with strong environmental and socio-economic impacts associated to climate-related rainfall variability, especially in the Sahelian belt. State-of-the-art coupled climate models still show poor ability in correctly simulating the WAM past variability and also a large spread is observed in future climate projections. In this work, the July-to-September (JAS) WAM variability in the period 1979-2008 is studied in AMIP-like simulations (SST-forced) from CMIP5. The individual roles of global SST warming and CO2 concentration increasing are investigated through idealized experiments simulating a 4K warmer SST and a 4x CO2 concentration, respectively. Results show a dry response in Sahel to SST warming, with dryer conditions over western Sahel. On the contrary, wet conditions are observed when CO2 is increased, with the strongest response over central-eastern Sahel. The precipitation changes are associated to modifications in the regional atmospheric circulation: dry (wet) conditions are associated with reduced (increased) convergence in the lower troposphere, a southward (northward) shift of the African Easterly Jet, and a weaker (stronger) Tropical Easterly Jet. The co-variability between global SST and WAM precipitation is also investigated, highlighting a reorganization of the main co-variability modes. Namely, in the 4xCO2 simulation the influence of Tropical Pacific is dominant, while it is reduced in the 4K simulation, which also shows an increased coupling with the eastern Pacific and the Indian Ocean. The above results suggest a competitive action of SST warming and CO2 increasing on the WAM climate variability, with opposite effects on precipitation. The combination of the observed positive and negative response in precipitation, with wet conditions in central-eastern Sahel and dry conditions in western Sahel, is consistent with the future precipitation trends over West Africa resulting from CMIP5 coupled simulations. It is argued that the large spread in CMIP5 future projections may be related to the weight given to SST warming and direct CO2 effect by individual models. The capability of climate models in reproducing the SST-precipitation relationship appears to be crucial in this respect.

  1. Climate, Water and Renewable Energy in the Nordic Countries

    NASA Astrophysics Data System (ADS)

    Snorrason, A.; Jonsdottir, J. F.

    2004-05-01

    Climate and Energy (CE) is a new Nordic research project with funding from Nordic Energy Research (NEFP) and the Nordic energy sector. The project has the objective of a comprehensive assessment of the impact of climate variability and change on Nordic renewable energy resources including hydropower, wind power, bio-fuels and solar energy. This will include assessment of the power production of the hydropower dominated Nordic energy system and its sensitivity and vulnerability to climate change on both temporal and spatial scales; assessment of the impacts of extremes including floods, droughts, storms, seasonal patterns and variability. Within the CE project several thematic groups work on specific issues of climatic change and their impacts on renewable energy. A primary aim of the CE climate group is to supply a standard set of common scenarios of climate change in northern Europe and Greenland, based on recent global and regional climate change experiments. The snow and ice group has chosen glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. Preliminary work with dynamic modelling and climate scenarios shows a dramatic response of glacial runoff to increased temperature and precipitation. The statistical analysis group has reported on the status of time series analysis in the Nordic countries. The group has selected and quality controlled time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. Preliminary work using multivariate analysis on stream flow and climate variables shows strong linkages with the long term atmospheric circulation in the North Atlantic. The hydrological modelling group has already reported on "Climate change impacts on water resources in the Nordic countries - State of the art and discussion of principles". The group will compare different approaches of transferring the climate change signal into hydrological models and discuss uncertainties in models and climate scenarios. Furthermore, comprehensive assessment and mapping of impact of climate change will be produced for the whole Nordic region based on the scenarios from the CE-climate group.

  2. The impacts of climatologically-driven megadrought, past and future, on semi-arid watersheds and the water resource system they support in central Arizona, USA.

    NASA Astrophysics Data System (ADS)

    Murphy, K. W.; Ellis, A. W.

    2017-12-01

    The sustainability of water resource systems in the western United States has previously been brought into question by drought concerns and how it will be influenced by future climate change. Although decadal droughts are observed in instrumental records, the data are typically too short and the droughts too few to render the range of hydroclimatic variability that might impact modern water resource systems in the future. Natural modes of variability are not well represented in climate models, which limits the applicability of their downscaled projections in a region of interest since drought risk would be understated. Paleoclimate data have provided evidence of megadroughts from centuries ago whose hydrologic manifestations of climate variability could readily reoccur again in the future. These can be applied to research into watershed hydrologic response and resource system resilience - past, present, and future. A 645-year tree ring reconstruction of stream flow for the Salt and Verde River watersheds in central Arizona has revealed several drought periods, some more severe than seen in the 129-year instrumental record, including a late 16th century megadrought which affected large portions of the United States. This research study translated the tree ring record into net basin water supply which drives a reservoir operations simulation model to assess how the resource system performs under such severe drought. Regional climate change scenarios were developed from the observation that watershed climate sensitivity has been twice the global warming response. These were applied to the watersheds' temperature sensitivities and precipitation elasticities (reported at AGU2014) to obtain detailed renditions of hydrologic response should megadrought reoccur in a future climate. This provided one of the first rigorous projections of surface water supply under future climate change that amplifies the impact of megadrought arising from modes of climate variability often seen in the western United States. The implications to a large reservoir system serving 40% of water demand in the metropolitan Phoenix, Arizona area is reported which enables decision making for future adaptation planning.

  3. Modelling the Response of Energy, Water and CO2 Fluxes Over Forests to Climate Variability

    NASA Astrophysics Data System (ADS)

    Ju, W.; Chen, J.; Liu, J.; Chen, B.

    2004-05-01

    Understanding the response of energy, water and CO2 fluxes of terrestrial ecosystems to climate variability at various temporal scales is of interest to climate change research. To simulate carbon (C) and water dynamics and their interactions at the continental scale with high temporal and spatial resolutions, the remote sensing driven BEPS (Boreal Ecosystem Productivity Simulator) model was updated to couple with the soil model of CENTURY and a newly developed biophysical model. This coupled model separates the whole canopy into two layers. For the top layer, the leaf-level conductance is scaled up to canopy level using a sunlit and shaded leaf separation approach. Fluxes of water, and CO{2} are simulated as the sums of those from sunlit and shaded leaves separately. This new approach allows for close coupling in modeling these fluxes. The whole profile of soil under a seasonal snowpack is split into four layers for estimating soil moisture and temperature. Long-term means of the vegetation productivity and climate are employed to initialize the carbon pools for the computation of heterotrophic respiration. Validated against tower data at four forested sites, this model is able to describe these fluxes and their response to climate variability. The model captures over 55% of year-round half/one hourly variances of these fluxes. The highest agreement of model results with tower data was achieved for CO2 flux at Southern Old Aspen (SOA) (R2>0.85 and RMSE<2.37 μ mol C m-2 s-1, N=17520). However, the model slightly overestimates the diurnal amplitude of sensible heat flux in winter and sometimes underestimates that of CO2 flux in the growing season. Model simulations suggest that C uptakes of forests are controlled by climate variability and the response of C cycle to climate depends on forest type. For SOA, the annual NPP (Net Primary Productivity) is more sensitive to temperature than to precipitation. This forest usually has higher NPP in warm years than in cool years. Interannual variability of heterotrophic respiration, however, is strongly related to precipitation. The soil releases more CO2 in wet years than in dry years. Warm and relatively dry climate enhances the C uptake in this forest stand. Compared with SOA, a temperate deciduous forest in the southern part of the temperate deciduous forest biome in eastern United States responds to climate variability differently. High temperature and low precipitation in the growing season reduces NPP and consequently NEP (Net Ecosystem Productivity). In warm years, the Southern Old Jack Pine forest uptakes less C than in cool years. The modeled heterotrophic respiration and NEP are very sensitive to soil moisture and the empirical equation used to describe the effect of soil moisture on decomposition. This suggests that hydrological modelling is critical in C budget estimation. Next step, this model will be validated against more tower data and used for upscaling from site to region.

  4. Changes in Intense Precipitation Events in West Africa and the central U.S. under Global Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Kerry H.; Vizy, Edward

    The purpose of the proposed project is to improve our understanding of the physical processes and large-scale connectivity of changes in intense precipitation events (high rainfall rates) under global warming in West Africa and the central U.S., including relationships with low-frequency modes of variability. This is in response to the requested subject area #2 “simulation of climate extremes under a changing climate … to better quantify the frequency, duration, and intensity of extreme events under climate change and elucidate the role of low frequency climate variability in modulating extremes.” We will use a regional climate model and emphasize an understandingmore » of the physical processes that lead to an intensification of rainfall. The project objectives are as follows: 1. Understand the processes responsible for simulated changes in warm-season rainfall intensity and frequency over West Africa and the Central U.S. associated with greenhouse gas-induced global warming 2. Understand the relationship between changes in warm-season rainfall intensity and frequency, which generally occur on regional space scales, and the larger-scale global warming signal by considering modifications of low-frequency modes of variability. 3. Relate changes simulated on regional space scales to global-scale theories of how and why atmospheric moisture levels and rainfall should change as climate warms.« less

  5. Fast and Slow Precipitation Responses to Individual Climate Forcers: A PDRMIP Multimodel Study

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Forster, P.M.; Hodnebrog, O.; Andrews, T.; Faluvegi, G.; Flaschner, D.; Kasoar, M.; Kharin, V.; Kirkevag, A.; hide

    2016-01-01

    Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We present the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation. We divide the resulting changes to global mean and regional precipitation into fast responses that scale with changes in atmospheric absorption and slow responses scaling with surface temperature change. While the overall features are broadly similar between models, we find significant regional intermodel variability, especially over land. Black carbon stands out as a component that may cause significant model diversity in predicted precipitation change. Processes linked to atmospheric absorption are less consistently modeled than those linked to top-of-atmosphere radiative forcing. We identify a number of land regions where the model ensemble consistently predicts that fast precipitation responses to climate perturbations dominate over the slow, temperature-driven responses.

  6. Why do some people do "more" to mitigate climate change than others? Exploring heterogeneity in psycho-social associations.

    PubMed

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized--and differentiated from common mitigation behavior--as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change--but not in motivational or socio-demographic links--with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries.

  7. The absence of an Atlantic imprint on the multidecadal variability of wintertime European temperature

    PubMed Central

    Yamamoto, Ayako; Palter, Jaime B.

    2016-01-01

    Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air–sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline. PMID:26975331

  8. Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna)

    PubMed Central

    Mercuri, Anna Maria; Torri, Paola; Fornaciari, Rita; Florenzano, Assunta

    2016-01-01

    Aerobiological data have especially demonstrated that there is correlation between climate warming and the pollination season of plants. This paper focuses on airborne pollen monitoring of Betulaceae and Poaceae, two of the main plant groups with anemophilous pollen and allergenic proprieties in Northern Italy. The aim is to investigate plant responses to temperature variations by considering long-term pollen series. The 15-year aerobiological analysis is reported from the monitoring station of Vignola (located near Modena, in the Emilia-Romagna region) that had operated in the years 1990–2004 with a Hirst spore trap. The Yearly Pollen Index calculated for these two botanical families has shown contrasting trends in pollen production and release. These trends were well identifiable but fairly variable, depending on both meteorological variables and anthropogenic causes. Based on recent reference literature, we considered that some oscillations in pollen concentration could have been a main effect of temperature variability reflecting global warming. The duration of pollen seasons of Betulaceae and Poaceae, depending on the different species included in each family, has not unequivocally been determined. Phenological responses were particularly evident in Alnus and especially in Corylus as a general moving up of the end of pollination. The study shows that these trees can be affected by global warming more than other, more tolerant, plants. The research can be a contribution to the understanding of phenological plant responses to climate change and suggests that alder and hazelnut trees have to be taken into high consideration as sensible markers of plant responses to climate change. PMID:27929423

  9. Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna).

    PubMed

    Mercuri, Anna Maria; Torri, Paola; Fornaciari, Rita; Florenzano, Assunta

    2016-12-06

    Aerobiological data have especially demonstrated that there is correlation between climate warming and the pollination season of plants. This paper focuses on airborne pollen monitoring of Betulaceae and Poaceae, two of the main plant groups with anemophilous pollen and allergenic proprieties in Northern Italy. The aim is to investigate plant responses to temperature variations by considering long-term pollen series. The 15-year aerobiological analysis is reported from the monitoring station of Vignola (located near Modena, in the Emilia-Romagna region) that had operated in the years 1990-2004 with a Hirst spore trap. The Yearly Pollen Index calculated for these two botanical families has shown contrasting trends in pollen production and release. These trends were well identifiable but fairly variable, depending on both meteorological variables and anthropogenic causes. Based on recent reference literature, we considered that some oscillations in pollen concentration could have been a main effect of temperature variability reflecting global warming. The duration of pollen seasons of Betulaceae and Poaceae, depending on the different species included in each family, has not unequivocally been determined. Phenological responses were particularly evident in Alnus and especially in Corylus as a general moving up of the end of pollination. The study shows that these trees can be affected by global warming more than other, more tolerant, plants. The research can be a contribution to the understanding of phenological plant responses to climate change and suggests that alder and hazelnut trees have to be taken into high consideration as sensible markers of plant responses to climate change.

  10. Phenological response of an Arizona dryland forest to short-term climatic extremes

    USGS Publications Warehouse

    Walker, Jessica; de Beurs, Kirsten; Wynne, Randolph

    2015-01-01

    Baseline information about dryland forest phenology is necessary to accurately anticipate future ecosystem shifts. The overarching goal of our study was to investigate the variability of vegetation phenology across a dryland forest landscape in response to climate alterations. We analyzed the influence of site characteristics and climatic conditions on the phenological patterns of an Arizona, USA, ponderosa pine (Pinus ponderosa) forest during a five-year period (2005 to 2009) that encompassed extreme wet and dry precipitation regimes. We assembled 80 synthetic Landsat images by applying the spatial and temporal adaptive reflectance fusion method (STARFM) to 500 m MODIS and 30 m Landsat-5 Thematic Mapper (TM) data. We tested relationships between site characteristics and the timing of peak Normalized Difference Vegetation Index (NDVI) to assess the effect of climatic stress on the green-up of individual pixels during or after the summer monsoon. Our results show that drought-induced stress led to a fragmented phenological response that was highly dependent on microsite parameters, as both the spatial autocorrelation of peak timing and the number of significant site variables increased during the drought year. Pixels at lower elevations and with higher proportions of herbaceous vegetation were more likely to exhibit dynamic responses to changes in precipitation conditions. Our study demonstrates the complexity of responses within dryland forest ecosystems and highlights the need for standardized monitoring of phenology trends in these areas. The spatial and temporal variability of phenological signals may provide a quantitative solution to the problem of how to evaluate dryland land surface trends across time.

  11. Modeling responses of large-river fish populations to global climate change through downscaling and incorporation of predictive uncertainty

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Anderson, Christopher J.; Franz, Kristie J.; Moran, Edward H.; Dey, Rima; Mader, Helmut; Kraml, Julia

    2012-01-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding its effects on ecosystems requires multi-scale models. For understanding effects on fish populations of riverine ecosystems, climate predicted by coarse-resolution Global Climate Models must be downscaled to Regional Climate Models to watersheds to river hydrology to population response. An additional challenge is quantifying sources of uncertainty given the highly nonlinear nature of interactions between climate variables and community level processes. We present a modeling approach for understanding and accomodating uncertainty by applying multi-scale climate models and a hierarchical Bayesian modeling framework to Midwest fish population dynamics and by linking models for system components together by formal rules of probability. The proposed hierarchical modeling approach will account for sources of uncertainty in forecasts of community or population response. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. This understanding will aid evaluation of management options for coping with global climate change. In our initial analyses, we found that predicted pallid sturgeon population responses were dependent on the climate scenario considered.

  12. Pronounced differences between observed and CMIP5-simulated multidecadal climate variability in the twentieth century

    NASA Astrophysics Data System (ADS)

    Kravtsov, Sergey

    2017-06-01

    Identification and dynamical attribution of multidecadal climate undulations to either variations in external forcings or to internal sources is one of the most important topics of modern climate science, especially in conjunction with the issue of human-induced global warming. Here we utilize ensembles of twentieth century climate simulations to isolate the forced signal and residual internal variability in a network of observed and modeled climate indices. The observed internal variability so estimated exhibits a pronounced multidecadal mode with a distinctive spatiotemporal signature, which is altogether absent in model simulations. This single mode explains a major fraction of model-data differences over the entire climate index network considered; it may reflect either biases in the models' forced response or models' lack of requisite internal dynamics, or a combination of both.Plain Language SummaryGlobal and regional warming trends over the course of the twentieth century have been nonuniform, with decadal and longer periods of faster or slower warming, or even cooling. Here we show that state-of-the-art global models used to predict climate fail to adequately reproduce such multidecadal climate variations. In particular, the models underestimate the magnitude of the observed variability and misrepresent its spatial pattern. Therefore, our ability to interpret the observed climate change using these models is limited.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49679','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49679"><span>Big sagebrush (Artemisia tridentata) in a shifting climate context: Assessment of seedling responses to climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Martha A. Brabec</p> <p>2014-01-01</p> <p>The loss of big sagebrush (Artemisia tridentata) throughout the Great Basin Desert has motivated efforts to restore it because of fire and other disturbance effects on sagebrush-dependent wildlife and ecosystem function. Initial establishment is the first challenge to restoration, and appropriateness of seeds, climate, and weather variability are factors that may...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150004431','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150004431"><span>Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina</p> <p>2014-01-01</p> <p>Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3948295','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3948295"><span>Climate change effects on agriculture: Economic responses to biophysical shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d’Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk</p> <p>2014-01-01</p> <p>Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change. PMID:24344285</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24344285','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24344285"><span>Climate change effects on agriculture: economic responses to biophysical shocks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nelson, Gerald C; Valin, Hugo; Sands, Ronald D; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk</p> <p>2014-03-04</p> <p>Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5324094','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5324094"><span>Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Rob A.; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit</p> <p>2017-01-01</p> <p>Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies. PMID:28233791</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28233791','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28233791"><span>Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D; Massom, Rob A; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A; Charrassin, Jean-Benoit</p> <p>2017-02-24</p> <p>Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGD....1017511W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGD....1017511W"><span>Climate-mediated spatiotemporal variability in the terrestrial productivity across Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, X.; Mahecha, M. D.; Reichstein, M.; Ciais, P.; Wattenbach, M.; Babst, F.; Frank, D.; Zang, C.</p> <p>2013-11-01</p> <p>Quantifying the interannual variability (IAV) of the terrestrial productivity and its sensitivity to climate is crucial for improving carbon budget predictions. However, the influence of climate and other mechanisms underlying the spatiotemporal patterns of IAV of productivity are not well understood. In this study we investigated the spatiotemporal patterns of IAV of historical observations of crop yields, tree ring width, remote sensing retrievals of FAPAR and NDVI, and other variables relevant to the terrestrial productivity in Europe in tandem with a set of climate variables. Our results reveal distinct spatial patterns in the IAV of most variables linked to terrestrial productivity. In particular, we find higher IAV in water-limited regions of Europe (Mediterranean and temperate continental Europe) compared to other regions. Our results further indicate that variations in the water balance during active growing season exert a more pronounced and direct effect than variations of temperature on explaining the spatial patterns in IAV of productivity related variables in temperate Europe. We also observe a~temporally increasing trend in the IAV of terrestrial productivity and an increasing sensitivity of productivity to water availability in dry regions of Europe, which is likely attributable to the recently increased IAV of water availability in these regions. These findings suggest nonlinear responses of carbon fluxes to climate variability in Europe and that the IAV of terrestrial productivity has become more sensitive and more vulnerable to changes in water availability in the dry regions in Europe. The changing climate sensitivity of terrestrial productivity accompanied by the changing IAV of climate could impact carbon stocks and the net carbon balance of European ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C11E..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C11E..07M"><span>Global Climate Change: Valuable Insights from Concordant and Discordant Ice Core Histories</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mosley-Thompson, E.; Thompson, L. G.; Porter, S. E.; Goodwin, B. P.; Wilson, A. B.</p> <p>2014-12-01</p> <p>Earth's ice cover is responding to the ongoing large-scale warming driven in part by anthropogenic forces. The highest tropical and subtropical ice fields are dramatically shrinking and/or thinning and unique climate histories archived therein are now threatened, compromised or lost. Many ice fields in higher latitudes are also experiencing and recording climate system changes although these are often manifested in less evident and spectacular ways. The Antarctic Peninsula (AP) has experienced a rapid, widespread and dramatic warming over the last 60 years. Carefully selected ice fields in the AP allow reconstruction of long histories of key climatic variables. As more proxy climate records are recovered it is clear they reflect a combination of expected and unexpected responses to seemingly similar climate forcings. Recently acquired temperature and precipitation histories from the Bruce Plateau are examined within the context provided by other cores recently collected in the AP. Understanding the differences and similarities among these records provides a better understanding of the forces driving climate variability in the AP over the last century. The Arctic is also rapidly warming. The δ18O records from the Bona-Churchill and Mount Logan ice cores from southeast Alaska and southwest Yukon Territory, respectively, do not record this strong warming. The Aleutian Low strongly influences moisture transport to this geographically complex region, yet its interannual variability is preserved differently in these cores located just 110 km apart. Mount Logan is very sensitive to multi-decadal to multi-centennial climate shifts in the tropical Pacific while low frequency variability on Bona-Churchill is more strongly connected to Western Arctic sea ice extent. There is a natural tendency to focus more strongly on commonalities among records, particularly on regional scales. However, it is also important to investigate seemingly poorly correlated records, particularly those from geographically complex settings that appear to be dominated by similar large-scale climatological processes. Better understanding of the spatially and temporally diverse responses in such regions will expand our understanding of the mechanisms forcing climate variability in meteorologically complex environments.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913511D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913511D"><span>Assessing climate change impact on complementarity between solar and hydro power in areas affected by glacier shrinkage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Diah Puspitarini, Handriyanti; François, Baptiste; Zoccatelli, Davide; Brown, Casey; Creutin, Jean-Dominique; Zaramella, Mattia; Borga, Marco</p> <p>2017-04-01</p> <p>Variable Renewable Energy (VRE) sources such as wind, solar and runoff sources are variable in time and space, following their driving weather variables. In this work we aim to analyse optimal mixes of energy sources, i.e. mixes of sources which minimize the deviation between energy load and generation, for a region in the Upper Adige river basin (Eastern Italian Alps) affected by glacier shrinking. The study focuses on hydropower (run of the river - RoR) and solar energy, and analyses the current situation as well different climate change scenarios. Changes in glacier extent in response to climate warming and/or altered precipitation regimes have the potential to substantially alter the magnitude and timing, as well as the spatial variation of watershed-scale hydrologic fluxes. This may change the complementarity with solar power as well. In this study, we analyse the climate change impact on complementarity between RoR and solar using the Decision Scaling approach (Brown et al. 2012). With this approach, the system vulnerability is separated from the climatic hazard that can come from any set of past or future climate conditions. It departs from conventional top-down impact studies because it explores the sensitivity of the system response to a plausible range of climate variations rather than its sensitivity to the time-varying outcome of individual GCM projections. It mainly relies on the development of Climate Response Functions that bring together i) the sensitivity of some system success and/or failure indicators to key external drivers (i.e. mean features of regional climate) and ii) the future values of these drivers as simulated from climate simulation chains. The main VRE sources used in the study region are solar- and hydro-power (with an important fraction of run-of-the river hydropower). The considered indicator of success is the 'energy penetration' coefficient, defined as the long-run percentage of energy demand naturally met by the VRE on an hourly basis. Climate response functions, developed in a 2D climate change space (change in mean temperature and precipitation), are built from multiple hydro-climatic scenarios obtained by perturbing the observed weather time series with the change factor method, and considering given glacier storage states. Climate experiments are further used for assessing these change factors from different emission scenarios, climate models and future prediction lead times. Their positioning on the Climate Response Function allows discussing the risk/opportunities pertaining to changes in VRE penetration in the future. Results show i) the large impact of glacier shrinkage on the complementarity between solar and RoR energy sources and ii) that the impact is decreasing with time, with the main alterations to be expected in the coming 30 years. Brown, C., Ghile, Y., Laverty, M., Li, K., (2012). Decision scaling: Linking bottom up vulnerability analysis with climate projections in the water sector. Water Resour Res 48. 515 doi:10.1029/2011WR011212</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12k4003M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12k4003M"><span>Impact of internal variability on projections of Sahel precipitation change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monerie, Paul-Arthur; Sanchez-Gomez, Emilia; Pohl, Benjamin; Robson, Jon; Dong, Buwen</p> <p>2017-11-01</p> <p>The impact of the increase of greenhouse gases on Sahelian precipitation is very uncertain in both its spatial pattern and magnitude. In particular, the relative importance of internal variability versus external forcings depends on the time horizon considered in the climate projection. In this study we address the respective roles of the internal climate variability versus external forcings on Sahelian precipitation by using the data from the CESM Large Ensemble Project, which consists of a 40 member ensemble performed with the CESM1-CAM5 coupled model for the period 1920-2100. We show that CESM1-CAM5 is able to simulate the mean and interannual variability of Sahel precipitation, and is representative of a CMIP5 ensemble of simulations (i.e. it simulates the same pattern of precipitation change along with equivalent magnitude and seasonal cycle changes as the CMIP5 ensemble mean). However, CESM1-CAM5 underestimates the long-term decadal variability in Sahel precipitation. For short-term (2010-2049) and mid-term (2030-2069) projections the simulated internal variability component is able to obscure the projected impact of the external forcing. For long-term (2060-2099) projections external forcing induced change becomes stronger than simulated internal variability. Precipitation changes are found to be more robust over the central Sahel than over the western Sahel, where climate change effects struggle to emerge. Ten (thirty) members are needed to separate the 10 year averaged forced response from climate internal variability response in the western Sahel for a long-term (short-term) horizon. Over the central Sahel two members (ten members) are needed for a long-term (short-term) horizon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29043046','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29043046"><span>Among-tree variability and feedback effects result in different growth responses to climate change at the upper treeline in the Swiss Alps.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof</p> <p>2017-10-01</p> <p>Upper treeline ecotones are important life form boundaries and particularly sensitive to a warming climate. Changes in growth conditions at these ecotones have wide-ranging implications for the provision of ecosystem services in densely populated mountain regions like the European Alps. We quantify climate effects on short- and long-term tree growth responses, focusing on among-tree variability and potential feedback effects. Although among-tree variability is thought to be substantial, it has not been considered systematically yet in studies on growth-climate relationships. We compiled tree-ring data including almost 600 trees of major treeline species ( Larix decidua , Picea abies , Pinus cembra , and Pinus mugo ) from three climate regions of the Swiss Alps. We further acquired tree size distribution data using unmanned aerial vehicles. To account for among-tree variability, we employed information-theoretic model selections based on linear mixed-effects models (LMMs) with flexible choice of monthly temperature effects on growth. We isolated long-term trends in ring-width indices (RWI) in interaction with elevation. The LMMs revealed substantial amounts of previously unquantified among-tree variability, indicating different strategies of single trees regarding when and to what extent to invest assimilates into growth. Furthermore, the LMMs indicated strongly positive temperature effects on growth during short summer periods across all species, and significant contributions of fall ( L. decidua ) and current year's spring ( L. decidua , P. abies ). In the longer term, all species showed consistently positive RWI trends at highest elevations, but different patterns with decreasing elevation. L. decidua exhibited even negative RWI trends compared to the highest treeline sites, whereas P. abies , P. cembra , and P. mugo showed steeper or flatter trends with decreasing elevation. This does not only reflect effects of ameliorated climate conditions on tree growth over time, but also reveals first signs of long-suspected negative and positive feedback of climate change on stand dynamics at treeline.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC11D1172S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC11D1172S"><span>Climate Controls on Tree Growth Across Species and Sites in Northeastern Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwan, M. R.; Guiterman, C. H.; Anchukaitis, K. J.</p> <p>2016-12-01</p> <p>Understanding how forests will respond to ongoing climate change is important for conservation and resource management. Conifer forests in the US Southwest are predicted to be particularly at risk from increased drought and higher temperatures projected to occur in the region. Tree-ring studies shed light on how trees respond to climate, but there remains considerable uncertainty as to which climate factors are most important, and which species are most at risk. Confounding climate and environmental factors, biological differences among species, and biogeography often complicate cross-species analysis. Here we present a multi-species, multivariate analysis of tree growth response to climate variability. We analyze data from three coexisting conifer tree species at two sites near Canyon de Chelly, Arizona. We use a high-resolution PRISM gridded climate dataset to determine the growth responses across species and sites to temperature and precipitation. We identify both common and differential responses in our data and use these to infer possible risks these forest communities may face under a changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......436B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......436B"><span>Forecasting seasonal hydrologic response in major river basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhuiyan, A. M.</p> <p>2014-05-01</p> <p>Seasonal precipitation variation due to natural climate variation influences stream flow and the apparent frequency and severity of extreme hydrological conditions such as flood and drought. To study hydrologic response and understand the occurrence of extreme hydrological events, the relevant forcing variables must be identified. This study attempts to assess and quantify the historical occurrence and context of extreme hydrologic flow events and quantify the relation between relevant climate variables. Once identified, the flow data and climate variables are evaluated to identify the primary relationship indicators of hydrologic extreme event occurrence. Existing studies focus on developing basin-scale forecasting techniques based on climate anomalies in El Nino/La Nina episodes linked to global climate. Building on earlier work, the goal of this research is to quantify variations in historical river flows at seasonal temporal-scale, and regional to continental spatial-scale. The work identifies and quantifies runoff variability of major river basins and correlates flow with environmental forcing variables such as El Nino, La Nina, sunspot cycle. These variables are expected to be the primary external natural indicators of inter-annual and inter-seasonal patterns of regional precipitation and river flow. Relations between continental-scale hydrologic flows and external climate variables are evaluated through direct correlations in a seasonal context with environmental phenomenon such as sun spot numbers (SSN), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO). Methods including stochastic time series analysis and artificial neural networks are developed to represent the seasonal variability evident in the historical records of river flows. River flows are categorized into low, average and high flow levels to evaluate and simulate flow variations under associated climate variable variations. Results demonstrated not any particular method is suited to represent scenarios leading to extreme flow conditions. For selected flow scenarios, the persistence model performance may be comparable to more complex multivariate approaches, and complex methods did not always improve flow estimation. Overall model performance indicates inclusion of river flows and forcing variables on average improve model extreme event forecasting skills. As a means to further refine the flow estimation, an ensemble forecast method is implemented to provide a likelihood-based indication of expected river flow magnitude and variability. Results indicate seasonal flow variations are well-captured in the ensemble range, therefore the ensemble approach can often prove efficient in estimating extreme river flow conditions. The discriminant prediction approach, a probabilistic measure to forecast streamflow, is also adopted to derive model performance. Results show the efficiency of the method in terms of representing uncertainties in the forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1352763','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1352763"><span>Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central U.S. forest: Test Model in Ecosystem Functional Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai</p> <p></p> <p>Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better representation and parameterization of process responses to environmental stresses and on more complete and robust representations of carbon-specific processes so that adequate responses to climate variability and a proper degree of coupling between carbon and water exchanges are captured.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1352763-testing-land-model-ecosystem-functional-space-via-comparison-observed-modeled-ecosystem-flux-responses-precipitation-regimes-associated-stresses-central-forest-test-model-ecosystem-functional-space','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1352763-testing-land-model-ecosystem-functional-space-via-comparison-observed-modeled-ecosystem-flux-responses-precipitation-regimes-associated-stresses-central-forest-test-model-ecosystem-functional-space"><span>Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central U.S. forest: Test Model in Ecosystem Functional Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai; ...</p> <p>2016-07-14</p> <p>Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better representation and parameterization of process responses to environmental stresses and on more complete and robust representations of carbon-specific processes so that adequate responses to climate variability and a proper degree of coupling between carbon and water exchanges are captured.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..807G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..807G"><span>Integrating inter- and intra-annual tree-ring width, carbon isotopes and anatomy: responses to climate variability in a temperate oak forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Granda, Elena; Bazot, Stéphane; Fresneau, Chantal; Boura, Anaïs; Faccioni, Georgia; Damesin, Claire</p> <p>2015-04-01</p> <p>While many forests are experiencing strong tree declines due to climate change in temperate ecosystems, others nearby to those declining show no apparent signs of decline. This could be due to particular microsite conditions or, for instance, to a higher plasticity of given traits that allow a better performance under stressful conditions. We studied oak functional mechanisms (Quercus petraea) leading to the apparently healthy status of the forest and their relation to the observed climatic variability. This study was conducted in the Barbeau Forest (northern France), where cores from mature trees were collected. Three types of functional traits (secondary growth, physiological variables - δ13C and derived Δ13C and iWUE- and several anatomical ones -e.g. vessel area, density-) were recorded for each ring for the 1991-2011 period, distinguishing EW from LW in all measured traits. Among the three types of functional traits, those related to growth experienced the highest variability both between years and between individuals, followed by anatomical and physiological ones. Secondary growth maintained a constant trend during the study period. Instead, ring, EW and LW δ13C slightly declined from 1991 to 2011. Additional intra-ring δ13C analyses allowed for a more detailed understanding of the seasonal dynamics within each year. In particular, the year 2007 (an especially favorable climatic year during the growing season) showed the lowest δ13C values during the EW-LW transition for the whole study period. Inter-annual anatomical traits varied in their responses, but in general, no temporal trends were found. The results from structural equation modeling (SEM) showed direct relationships of seasonal climate and growth, as well as indirect relationships mediated by anatomical and physiological traits. We further discuss the implications of these results on future forest responses to ongoing climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000198','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000198"><span>Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Christensen, L.; Tague, C.L.; Baron, Jill S.</p> <p>2008-01-01</p> <p>Transpiration is an important component of soil water storage and stream-flow and is linked with ecosystem productivity, species distribution, and ecosystem health. In mountain environments, complex topography creates heterogeneity in key controls on transpiration as well as logistical challenges for collecting representative measurements. In these settings, ecosystem models can be used to account for variation in space and time of the dominant controls on transpiration and provide estimates of transpiration patterns and their sensitivity to climate variability and change. The Regional Hydro-Ecological Simulation System (RHESSys) model was used to assess elevational differences in sensitivity of transpiration rates to the spatiotemporal variability of climate variables across the Upper Merced River watershed, Yosemite Valley, California, USA. At the basin scale, predicted annual transpiration was lowest in driest and wettest years, and greatest in moderate precipitation years (R2 = 0.32 and 0.29, based on polynomial regression of maximum snow depth and annual precipitation, respectively). At finer spatial scales, responsiveness of transpiration rates to climate differed along an elevational gradient. Low elevations (1200-1800 m) showed little interannual variation in transpiration due to topographically controlled high soil moistures along the river corridor. Annual conifer stand transpiration at intermediate elevations (1800-2150 m) responded more strongly to precipitation, resulting in a unimodal relationship between transpiration and precipitation where highest transpiration occurred during moderate precipitation levels, regardless of annual air temperatures. Higher elevations (2150-2600 m) maintained this trend, but air temperature sensitivities were greater. At these elevations, snowfall provides enough moisture for growth, and increased temperatures influenced transpiration. Transpiration at the highest elevations (2600-4000 m) showed strong sensitivity to air temperature, little sensitivity to precipitation. Model results suggest elevational differences in vegetation water use and sensitivity to climate were significant and will likely play a key role in controlling responses and vulnerability of Sierra Nevada ecosystems to climate change. Copyright ?? 2008 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29059630','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29059630"><span>Anthropogenic nitrogen deposition alters growth responses of European beech (Fagus sylvativa L.) to climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hess, Carsten; Niemeyer, Thomas; Fichtner, Andreas; Jansen, Kirstin; Kunz, Matthias; Maneke, Moritz; von Wehrden, Henrik; Quante, Markus; Walmsley, David; von Oheimb, Goddert; Härdtle, Werner</p> <p>2018-02-01</p> <p>Global change affects the functioning of forest ecosystems and the services they provide, but little is known about the interactive effects of co-occurring global change drivers on important functions such as tree growth and vitality. In the present study we quantified the interactive (i.e. synergistic or antagonistic) effects of atmospheric nitrogen (N) deposition and climatic variables (temperature, precipitation) on tree growth (in terms of tree-ring width, TRW), taking forest ecosystems with European beech (Fagus sylvatica L.) as an example. We hypothesised that (i) N deposition and climatic variables can evoke non-additive responses of the radial increment of beech trees, and (ii) N loads have the potential to strengthen the trees' sensitivity to climate change. In young stands, we found a synergistic positive effect of N deposition and annual mean temperature on TRW, possibly linked to the alleviation of an N shortage in young stands. In mature stands, however, high N deposition significantly increased the trees' sensitivity to increasing annual mean temperatures (antagonistic effect on TRW), possibly due to increased fine root dieback, decreasing mycorrhizal colonization or shifts in biomass allocation patterns (aboveground vs. belowground). Accordingly, N deposition and climatic variables caused both synergistic and antagonistic effects on the radial increment of beech trees, depending on tree age and stand characteristics. Hence, the nature of interactions could mediate the long-term effects of global change drivers (including N deposition) on forest carbon sequestration. In conclusion, our findings illustrate that interaction processes between climatic variables and N deposition are complex and have the potential to impair growth and performance of European beech. This in turn emphasises the importance of multiple-factor studies to foster an integrated understanding and models aiming at improved projections of tree growth responses to co-occurring drivers of global change. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GMDD....8.4781L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GMDD....8.4781L"><span>Modelling spatial and temporal vegetation variability with the Climate Constrained Vegetation Index: evidence of CO2 fertilisation and of water stress in continental interiors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Los, S. O.</p> <p>2015-06-01</p> <p>A model was developed to simulate spatial, seasonal and interannual variations in vegetation in response to temperature, precipitation and atmospheric CO2 concentrations; the model addresses shortcomings in current implementations. The model uses the minimum of 12 temperature and precipitation constraint functions to simulate NDVI. Functions vary based on the Köppen-Trewartha climate classification to take adaptations of vegetation to climate into account. The simulated NDVI, referred to as the climate constrained vegetation index (CCVI), captured the spatial variability (0.82 < r <0.87), seasonal variability (median r = 0.83) and interannual variability (median global r = 0.24) in NDVI. The CCVI simulated the effects of adverse climate on vegetation during the 1984 drought in the Sahel and during dust bowls of the 1930s and 1950s in the Great Plains in North America. A global CO2 fertilisation effect was found in NDVI data, similar in magnitude to that of earlier estimates (8 % for the 20th century). This effect increased linearly with simple ratio, a transformation of the NDVI. Three CCVI scenarios, based on climate simulations using the representative concentration pathway RCP4.5, showed a greater sensitivity of vegetation towards precipitation in Northern Hemisphere mid latitudes than is currently implemented in climate models. This higher sensitivity is of importance to assess the impact of climate variability on vegetation, in particular on agricultural productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H23M..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H23M..06T"><span>Holistic uncertainty analysis in river basin modeling for climate vulnerability assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taner, M. U.; Wi, S.; Brown, C.</p> <p>2017-12-01</p> <p>The challenges posed by uncertain future climate are a prominent concern for water resources managers. A number of frameworks exist for assessing the impacts of climate-related uncertainty, including internal climate variability and anthropogenic climate change, such as scenario-based approaches and vulnerability-based approaches. While in many cases climate uncertainty may be dominant, other factors such as future evolution of the river basin, hydrologic response and reservoir operations are potentially significant sources of uncertainty. While uncertainty associated with modeling hydrologic response has received attention, very little attention has focused on the range of uncertainty and possible effects of the water resources infrastructure and management. This work presents a holistic framework that allows analysis of climate, hydrologic and water management uncertainty in water resources systems analysis with the aid of a water system model designed to integrate component models for hydrology processes and water management activities. The uncertainties explored include those associated with climate variability and change, hydrologic model parameters, and water system operation rules. A Bayesian framework is used to quantify and model the uncertainties at each modeling steps in integrated fashion, including prior and the likelihood information about model parameters. The framework is demonstrated in a case study for the St. Croix Basin located at border of United States and Canada.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4927176','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4927176"><span>Spatial and Temporal Variation in the Effects of Climatic Variables on Dugong Calf Production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fuentes, Mariana M. P. B.; Delean, Steven; Grayson, Jillian; Lavender, Sally; Logan, Murray; Marsh, Helene</p> <p>2016-01-01</p> <p>Knowledge of the relationships between environmental forcing and demographic parameters is important for predicting responses from climatic changes and to manage populations effectively. We explore the relationships between the proportion of sea cows (Dugong dugon) classified as calves and four climatic drivers (rainfall anomaly, Southern Oscillation El Niño Index [SOI], NINO 3.4 sea surface temperature index, and number of tropical cyclones) at a range of spatially distinct locations in Queensland, Australia, a region with relatively high dugong density. Dugong and calf data were obtained from standardized aerial surveys conducted along the study region. A range of lagged versions of each of the focal climatic drivers (1 to 4 years) were included in a global model containing the proportion of calves in each population crossed with each of the lagged versions of the climatic drivers to explore relationships. The relative influence of each predictor was estimated via Gibbs variable selection. The relationships between the proportion of dependent calves and the climatic drivers varied spatially and temporally, with climatic drivers influencing calf counts at sub-regional scales. Thus we recommend that the assessment of and management response to indirect climatic threats on dugongs should also occur at sub-regional scales. PMID:27355367</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4079655','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4079655"><span>Climate Exposure of US National Parks in a New Era of Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Monahan, William B.; Fisichelli, Nicholas A.</p> <p>2014-01-01</p> <p>US national parks are challenged by climate and other forms of broad-scale environmental change that operate beyond administrative boundaries and in some instances are occurring at especially rapid rates. Here, we evaluate the climate change exposure of 289 natural resource parks administered by the US National Park Service (NPS), and ask which are presently (past 10 to 30 years) experiencing extreme (<5th percentile or >95th percentile) climates relative to their 1901–2012 historical range of variability (HRV). We consider parks in a landscape context (including surrounding 30 km) and evaluate both mean and inter-annual variation in 25 biologically relevant climate variables related to temperature, precipitation, frost and wet day frequencies, vapor pressure, cloud cover, and seasonality. We also consider sensitivity of findings to the moving time window of analysis (10, 20, and 30 year windows). Results show that parks are overwhelmingly at the extreme warm end of historical temperature distributions and this is true for several variables (e.g., annual mean temperature, minimum temperature of the coldest month, mean temperature of the warmest quarter). Precipitation and other moisture patterns are geographically more heterogeneous across parks and show greater variation among variables. Across climate variables, recent inter-annual variation is generally well within the range of variability observed since 1901. Moving window size has a measureable effect on these estimates, but parks with extreme climates also tend to exhibit low sensitivity to the time window of analysis. We highlight particular parks that illustrate different extremes and may facilitate understanding responses of park resources to ongoing climate change. We conclude with discussion of how results relate to anticipated future changes in climate, as well as how they can inform NPS and neighboring land management and planning in a new era of change. PMID:24988483</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24988483','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24988483"><span>Climate exposure of US national parks in a new era of change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Monahan, William B; Fisichelli, Nicholas A</p> <p>2014-01-01</p> <p>US national parks are challenged by climate and other forms of broad-scale environmental change that operate beyond administrative boundaries and in some instances are occurring at especially rapid rates. Here, we evaluate the climate change exposure of 289 natural resource parks administered by the US National Park Service (NPS), and ask which are presently (past 10 to 30 years) experiencing extreme (<5th percentile or >95th percentile) climates relative to their 1901-2012 historical range of variability (HRV). We consider parks in a landscape context (including surrounding 30 km) and evaluate both mean and inter-annual variation in 25 biologically relevant climate variables related to temperature, precipitation, frost and wet day frequencies, vapor pressure, cloud cover, and seasonality. We also consider sensitivity of findings to the moving time window of analysis (10, 20, and 30 year windows). Results show that parks are overwhelmingly at the extreme warm end of historical temperature distributions and this is true for several variables (e.g., annual mean temperature, minimum temperature of the coldest month, mean temperature of the warmest quarter). Precipitation and other moisture patterns are geographically more heterogeneous across parks and show greater variation among variables. Across climate variables, recent inter-annual variation is generally well within the range of variability observed since 1901. Moving window size has a measureable effect on these estimates, but parks with extreme climates also tend to exhibit low sensitivity to the time window of analysis. We highlight particular parks that illustrate different extremes and may facilitate understanding responses of park resources to ongoing climate change. We conclude with discussion of how results relate to anticipated future changes in climate, as well as how they can inform NPS and neighboring land management and planning in a new era of change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23825288','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23825288"><span>Assessing climate change beliefs: Response effects of question wording and response alternatives.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Greenhill, Murni; Leviston, Zoe; Leonard, Rosemary; Walker, Iain</p> <p>2014-11-01</p> <p>To date, there is no 'gold standard' on how to best measure public climate change beliefs. We report a study (N = 897) testing four measures of climate change causation beliefs, drawn from four sources: the CSIRO, Griffith University, the Gallup poll, and the Newspoll. We found that question wording influences the outcome of beliefs reported. Questions that did not allow respondents to choose the option of believing in an equal mix of natural and anthropogenic climate change obtained different results to those that included the option. Age and belief groups were found to be important predictors of how consistent people were in reporting their beliefs. Response consistency gave some support to past findings suggesting climate change beliefs reflect something deeper in the individual belief system. Each belief question was assessed against five criterion variables commonly used in climate change literature. Implications for future studies are discussed. © The Author(s) 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS13A1793K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS13A1793K"><span>Uncovering the Anthropogenic Sea Level Change using an Improved Sea Level Reconstruction for the Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, P.; Hamlington, B.; Thompson, P. R.; Han, W.</p> <p>2016-12-01</p> <p>Despite having some of the world's most densely populated and vulnerable coastal regions, sea level (SL) variability in the Indian Ocean (IO) has received considerably less attention than the Pacific Ocean. Differentiating the internal variability from the long-term trend in global mean sea level (GMSL) at decadal time-scales is vital for planning and mitigation efforts in the IO region. Understanding the dynamics of internal and anthropogenic SL change is essential for understanding the dynamic pathways that link the IO basin to terrestrial climates world-wide. With a sparse pre-satellite observational record of the IO, the Indo-Pacific internal climate variability is difficult to represent accurately. However, an improved representation of pre-satellite SL variability can be achieved by using a multivariate reconstruction technique. By using cyclostationary empirical orthogonal functions (CSEOFs) that can capture time-varying spatial patterns, gaps in the historical record when observations are sparse are filled using spatial relationships from time periods when the observational network is dense. This reconstruction method combines SL data and sea surface temperature (SST) to create a SL reconstruction that spans a period from 1900 to present, long enough to study climate signals over interannual to decadal time scales. This study aims at estimating the component of SL rise that relates to anthropogenic forcing by identifying and removing the fraction related to internal variability. An improved understanding of how the internal climate variability can affect the IO SL trend and variability, will provide an insight into the future SL changes. It is also important to study links between SL and climate variability in the past to understand how SL will respond to similar climatic events in the future and if this response will be influenced by the changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160014732','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160014732"><span>GC23G-1310: Investigation Into the Effects of Climate Variability and Land Cover Change on the Hydrologic System of the Lower Mekong Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Markert, Kel N.; Griffin, Robert; Limaye, Ashutosh S.; McNider, Richard T.; Anderson, Eric R.</p> <p>2016-01-01</p> <p>The Lower Mekong Basin (LMB) is an economically and ecologically important region that experiences hydrologic hazards such as floods and droughts, which can directly affect human well-being and limit economic growth and development. To effectively develop long-term plans for addressing hydrologic hazards, the regional hydrological response to climate variability and land cover change needs to be evaluated. This research aims to investigate how climate variability, specifically variations in the precipitation regime, and land cover change will affect hydrologic parameters both spatially and temporally within the LMB. The research goal is achieved by (1) modeling land cover change for a baseline land cover change scenario as well as changes in land cover with increases in forest or agriculture and (2) using projected climate variables and modeled land cover data as inputs into the Variable Infiltration Capacity (VIC) hydrologic model to simulate the changes to the hydrologic system. The VIC model outputs were analyzed against historic values to understand the relative contribution of climate variability and land cover to change, where these changes occur, and to what degree these changes affect the hydrology. This study found that the LMB hydrologic system is more sensitive to climate variability than land cover change. On average, climate variability was found to increase discharge and evapotranspiration (ET) while decreasing water storage. The change in land cover show that increasing forest area will slightly decrease discharge and increase ET while increasing agriculture area increases discharge and decreases ET. These findings will help the LMB by supporting individual country policy to plan for future hydrologic changes as well as policy for the basin as a whole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816621S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816621S"><span>The impact of warming on greenhouse gas fluxes: an experimental comparison which reveals the varied response of ecosystems to climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stockdale, James; Ineson, Philip</p> <p>2016-04-01</p> <p>Modelled predictions of the response of terrestrial systems to climate change are highly variable, yet the response of net ecosystem exchange (NEE) is a vital ecosystem behaviour to understand due to its inherent feedback to the carbon cycle. The establishment and subsequent monitoring of replicated experimental manipulations are a direct method to reveal these responses, yet are difficult to achieve as they typically resource-heavy and labour intensive. We actively manipulated the temperature at three agricultural grasslands in southern England and deployed novel 'SkyLine' systems, recently developed at the University of York, to continuously monitor GHG fluxes. Each 'SkyLine' is a low-cost and fully autonomous technology yet produces fluxes at a near-continuous temporal frequency and across a wide spatial area. The results produced by 'SkyLine' enable the detail response of each system to increased temperature over diurnal and seasonal timescales. Unexpected differences in NEE are shown between superficially similar ecosystems which, upon investigation, suggest that interactions between a variety of environmental variables are key and that knowledge of pre-existing environmental conditions help to predict a systems response to future climate. For example, the prevailing hydrological conditions at each site appear to affect its response to changing temperature. The high-frequency data shown here, combined with the fully-replicated experimental design reveal complex interactions which must be understood to improve predictions of ecosystem response to a changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.1559P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.1559P"><span>Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo</p> <p>2017-03-01</p> <p>The performance of urban drainage systems is typically examined using hydrological and hydrodynamic models where rainfall input is uniformly distributed, i.e., derived from a single or very few rain gauges. When models are fed with a single uniformly distributed rainfall realization, the response of the urban drainage system to the rainfall variability remains unexplored. The goal of this study was to understand how climate variability and spatial rainfall variability, jointly or individually considered, affect the response of a calibrated hydrodynamic urban drainage model. A stochastic spatially distributed rainfall generator (STREAP - <span style="text-decoration:underline; " class="text">Space-<span style="text-decoration:underline; " class="text">Time <span style="text-decoration:underline; " class="text">Realizations of <span style="text-decoration:underline; " class="text">Areal <span style="text-decoration:underline; " class="text">Precipitation) was used to simulate many realizations of rainfall for a 30-year period, accounting for both climate variability and spatial rainfall variability. The generated rainfall ensemble was used as input into a calibrated hydrodynamic model (EPA SWMM - the US EPA's Storm Water Management Model) to simulate surface runoff and channel flow in a small urban catchment in the city of Lucerne, Switzerland. The variability of peak flows in response to rainfall of different return periods was evaluated at three different locations in the urban drainage network and partitioned among its sources. The main contribution to the total flow variability was found to originate from the natural climate variability (on average over 74 %). In addition, the relative contribution of the spatial rainfall variability to the total flow variability was found to increase with longer return periods. This suggests that while the use of spatially distributed rainfall data can supply valuable information for sewer network design (typically based on rainfall with return periods from 5 to 15 years), there is a more pronounced relevance when conducting flood risk assessments for larger return periods. The results show the importance of using multiple distributed rainfall realizations in urban hydrology studies to capture the total flow variability in the response of the urban drainage systems to heavy rainfall events.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/31786','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/31786"><span>Response of Subalpine Conifers in the Sierra Nevada, California, U.S.A., to 20th-Century Warming and Decadal Climate Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Constance I. Millar; Robert D. Westfall; Diane L. Delany; John C. King; Lisa J. Graumlich</p> <p>2004-01-01</p> <p>Four independent studies of conifer growth between 1880 and 2002 in upper elevation forests of the central Sierra Nevada, California, U.S.A., showed correlated multidecadal and century-long responses associated with climate. Using tree-ring and ecological plot analysis, we studied annual branch growth of krummholz Pinus albicaulis; invasion by P....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.1965B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.1965B"><span>Forward modeling of tree-ring data: a case study with a global network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breitenmoser, P. D.; Frank, D.; Brönnimann, S.</p> <p>2012-04-01</p> <p>Information derived from tree-rings is one of the most powerful tools presently available for studying past climatic variability as well as identifying fundamental relationships between tree-growth and climate. Climate reconstructions are typically performed by extending linear relationships, established during the overlapping period of instrumental and climate proxy archives into the past. Such analyses, however, are limited by methodological assumptions, including stationarity and linearity of the climate-proxy relationship. We investigate climate and tree-ring data using the Vaganov-Shashkin-Lite (VS-Lite) forward model of tree-ring width formation to examine the relations among actual tree growth and climate (as inferred from the simulated chronologies) to reconstruct past climate variability. The VS-lite model has been shown to produce skill comparable to that achieved using classical dendrochronological statistical modeling techniques when applied on simulations of a network of North American tree-ring chronologies. Although the detailed mechanistic processes such as photosynthesis, storage, or cell processes are not modeled directly, the net effect of the dominating nonlinear climatic controls on tree-growth are implemented into the model by the principle of limiting factors and threshold growth response functions. The VS-lite model requires as inputs only latitude, monthly mean temperature and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree-rings to monthly climate conditions obtained from the 20th century reanalysis project back to 1871. These simulated tree-ring chronologies are compared to the climate-driven variability in worldwide observed tree-ring chronologies from the International Tree Ring Database. Results point toward the suitability of the relationship among actual tree growth and climate (as inferred from the simulated chronologies) for use in global palaeoclimate reconstructions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915026D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915026D"><span>Sometimes processes don't matter: the general effect of short term climate variability on erosional systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deal, Eric; Braun, Jean</p> <p>2017-04-01</p> <p>Climatic forcing undoubtedly plays an important role in shaping the Earth's surface. However, precisely how climate affects erosion rates, landscape morphology and the sedimentary record is highly debated. Recently there has been a focus on the influence of short-term variability in rainfall and river discharge on the relationship between climate and erosion rates. Here, we present a simple probabilistic argument, backed by modelling, that demonstrates that the way the Earth's surface responds to short-term climatic forcing variability is primarily determined by the existence and magnitude of erosional thresholds. We find that it is the ratio between the threshold magnitude and the mean magnitude of climatic forcing that determines whether variability matters or not and in which way. This is a fundamental result that applies regardless of the nature of the erosional process. This means, for example, that we can understand the role that discharge variability plays in determining fluvial erosion efficiency despite doubts about the processes involved in fluvial erosion. We can use this finding to reproduce the main conclusions of previous studies on the role of discharge variability in determining long-term fluvial erosion efficiency. Many aspects of the landscape known to influence discharge variability are affected by human activity, such as land use and river damming. Another important control on discharge variability, rainfall intensity, is also expected to increase with warmer temperatures. Among many other implications, our findings help provide a general framework to understand and predict the response of the Earth's surface to changes in mean and variability of rainfall and river discharge associated with the anthropogenic activity. In addition, the process independent nature of our findings suggest that previous work on river discharge variability and erosion thresholds can be applied to other erosional systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMNH43D..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMNH43D..03D"><span>The Dynamics of Vulnerability and Implications for Climate Change Adaptation: Lessons from Urban Water Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dilling, L.; Daly, M.; Travis, W.; Wilhelmi, O.; Klein, R.; Kenney, D.; Ray, A. J.; Miller, K.</p> <p>2013-12-01</p> <p>Recent reports and scholarship have suggested that adapting to current climate variability may represent a "no regrets" strategy for adapting to climate change. Filling "adaptation deficits" and other approaches that rely on addressing current vulnerabilities are of course helpful for responding to current climate variability, but we find here that they are not sufficient for adapting to climate change. First, following a comprehensive review and unique synthesis of the natural hazards and climate adaptation literatures, we advance six reasons why adapting to climate variability is not sufficient for adapting to climate change: 1) Vulnerability is different at different levels of exposure; 2) Coping with climate variability is not equivalent to adaptation to longer term change; 3) The socioeconomic context for vulnerability is constantly changing; 4) The perception of risk associated with climate variability does not necessarily promote adaptive behavior in the face of climate change; 5) Adaptations made to short term climate variability may reduce the flexibility of the system in the long term; and 6) Adaptive actions may shift vulnerabilities to other parts of the system or to other people. Instead we suggest that decision makers faced with choices to adapt to climate change must consider the dynamics of vulnerability in a connected system-- how choices made in one part of the system might impact other valued outcomes or even create new vulnerabilities. Furthermore we suggest that rather than expressing climate change adaptation as an extension of adaptation to climate variability, the research and practice communities would do well to articulate adaptation as an imperfect policy, with tradeoffs and consequences and that decisions be prioritized to preserve flexibility be revisited often as climate change unfolds. We then present the results of a number of empirical studies of decision making for drought in urban water systems in the United States to understand: a) the variety of actions taken; b) the limitations of actions available to water managers; and c) the effectiveness of actions taken to date. Time permitting, we briefly present the results of 3 in-depth case studies of drought response and current perception of preparedness with respect to future drought and climate change among urban water system managers. We examine the role of governance, system connectivity, public perceptions and other factors in driving decision making and outcomes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3198350','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3198350"><span>The causality analysis of climate change and large-scale human crisis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, David D.; Lee, Harry F.; Wang, Cong; Li, Baosheng; Pei, Qing; Zhang, Jane; An, Yulun</p> <p>2011-01-01</p> <p>Recent studies have shown strong temporal correlations between past climate changes and societal crises. However, the specific causal mechanisms underlying this relation have not been addressed. We explored quantitative responses of 14 fine-grained agro-ecological, socioeconomic, and demographic variables to climate fluctuations from A.D. 1500–1800 in Europe. Results show that cooling from A.D. 1560–1660 caused successive agro-ecological, socioeconomic, and demographic catastrophes, leading to the General Crisis of the Seventeenth Century. We identified a set of causal linkages between climate change and human crisis. Using temperature data and climate-driven economic variables, we simulated the alternation of defined “golden” and “dark” ages in Europe and the Northern Hemisphere during the past millennium. Our findings indicate that climate change was the ultimate cause, and climate-driven economic downturn was the direct cause, of large-scale human crises in preindustrial Europe and the Northern Hemisphere. PMID:21969578</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21969578','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21969578"><span>The causality analysis of climate change and large-scale human crisis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, David D; Lee, Harry F; Wang, Cong; Li, Baosheng; Pei, Qing; Zhang, Jane; An, Yulun</p> <p>2011-10-18</p> <p>Recent studies have shown strong temporal correlations between past climate changes and societal crises. However, the specific causal mechanisms underlying this relation have not been addressed. We explored quantitative responses of 14 fine-grained agro-ecological, socioeconomic, and demographic variables to climate fluctuations from A.D. 1500-1800 in Europe. Results show that cooling from A.D. 1560-1660 caused successive agro-ecological, socioeconomic, and demographic catastrophes, leading to the General Crisis of the Seventeenth Century. We identified a set of causal linkages between climate change and human crisis. Using temperature data and climate-driven economic variables, we simulated the alternation of defined "golden" and "dark" ages in Europe and the Northern Hemisphere during the past millennium. Our findings indicate that climate change was the ultimate cause, and climate-driven economic downturn was the direct cause, of large-scale human crises in preindustrial Europe and the Northern Hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194743','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194743"><span>Heterogeneous responses of temperate-zone amphibian populations to climate change complicates conservation planning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Muths, Erin L.; Chambert, Thierry A.; Schmidt, B. R.; Miller, D. A. W.; Hossack, Blake R.; Joly, P.; Grolet, O.; Green, D. M.; Pilliod, David S.; Cheylan, M.; Fisher, Robert N.; McCaffery, R. M.; Adams, M. J.; Palen, W. J.; Arntzen, J. W.; Garwood, J.; Fellers, Gary M.; Thirion, J. M.; Grant, Evan H. Campbell; Besnard, A.</p> <p>2017-01-01</p> <p>The pervasive and unabated nature of global amphibian declines suggests common demographic responses to a given driver, and quantification of major drivers and responses could inform broad-scale conservation actions. We explored the influence of climate on demographic parameters (i.e., changes in the probabilities of survival and recruitment) using 31 datasets from temperate zone amphibian populations (North America and Europe) with more than a decade of observations each. There was evidence for an influence of climate on population demographic rates, but the direction and magnitude of responses to climate drivers was highly variable among taxa and among populations within taxa. These results reveal that climate drivers interact with variation in life-history traits and population-specific attributes resulting in a diversity of responses. This heterogeneity complicates the identification of conservation ‘rules of thumb’ for these taxa, and supports the notion of local focus as the most effective approach to overcome global-scale conservation challenges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20080722','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20080722"><span>High skill in low-frequency climate response through fluctuation dissipation theorems despite structural instability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Majda, Andrew J; Abramov, Rafail; Gershgorin, Boris</p> <p>2010-01-12</p> <p>Climate change science focuses on predicting the coarse-grained, planetary-scale, longtime changes in the climate system due to either changes in external forcing or internal variability, such as the impact of increased carbon dioxide. The predictions of climate change science are carried out through comprehensive, computational atmospheric, and oceanic simulation models, which necessarily parameterize physical features such as clouds, sea ice cover, etc. Recently, it has been suggested that there is irreducible imprecision in such climate models that manifests itself as structural instability in climate statistics and which can significantly hamper the skill of computer models for climate change. A systematic approach to deal with this irreducible imprecision is advocated through algorithms based on the Fluctuation Dissipation Theorem (FDT). There are important practical and computational advantages for climate change science when a skillful FDT algorithm is established. The FDT response operator can be utilized directly for multiple climate change scenarios, multiple changes in forcing, and other parameters, such as damping and inverse modelling directly without the need of running the complex climate model in each individual case. The high skill of FDT in predicting climate change, despite structural instability, is developed in an unambiguous fashion using mathematical theory as guidelines in three different test models: a generic class of analytical models mimicking the dynamical core of the computer climate models, reduced stochastic models for low-frequency variability, and models with a significant new type of irreducible imprecision involving many fast, unstable modes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2000453','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2000453"><span>Tracing the effects of the Little Ice Age in the tropical lowlands of eastern Mesoamerica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>del Socorro Lozano-García, Ma.; Caballero, Margarita; Ortega, Beatriz; Rodríguez, Alejandro; Sosa, Susana</p> <p>2007-01-01</p> <p>The causes of late-Holocene centennial to millennial scale climatic variability and the impact that such variability had on tropical ecosystems are still poorly understood. Here, we present a high-resolution, multiproxy record from lowland eastern Mesoamerica, studied to reconstruct climate and vegetation history during the last 2,000 years, in particular to evaluate the response of tropical vegetation to the cooling event of the Little Ice Age (LIA). Our data provide evidence that the densest tropical forest cover and the deepest lake of the last two millennia were coeval with the LIA, with two deep lake phases that follow the Spörer and Maunder minima in solar activity. The high tropical pollen accumulation rates limit LIA's winter cooling to a maximum of 2°C. Tropical vegetation expansion during the LIA is best explained by a reduction in the extent of the dry season as a consequence of increased meridional flow leading to higher winter precipitation. These results highlight the importance of seasonal responses to climatic variability, a factor that could be of relevance when evaluating the impact of recent climate change. PMID:17913875</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C31A0633O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C31A0633O"><span>Quantitative Assessment of Antarctic Climate Variability and Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ordonez, A.; Schneider, D. P.</p> <p>2013-12-01</p> <p>The Antarctic climate is both extreme and highly variable, but there are indications it may be changing. As the climate in Antarctica can affect global sea level and ocean circulation, it is important to understand and monitor its behavior. Observational and model data have been used to study climate change in Antarctica and the Southern Ocean, though observational data is sparse and models have difficulty reproducing many observed climate features. For example, a leading hypothesis that ozone depletion has been responsible for sea ice trends is struggling with the inability of ozone-forced models to reproduce the observed sea ice increase. The extent to which this data-model disagreement represents inadequate observations versus model biases is unknown. This research assessed a variety of climate change indicators to present an overview of Antarctic climate that will allow scientists to easily access this data and compare indicators with other observational data and model output. Indicators were obtained from observational and reanalysis data for variables such as temperature, sea ice area, and zonal wind stress. Multiple datasets were used for key variables. Monthly and annual anomaly data from Antarctica and the Southern Ocean as well as tropical indices were plotted as time series on common axes for comparison. Trends and correlations were also computed. Zonal wind, surface temperature, and austral springtime sea ice had strong relationships and were further discussed in terms of how they may relate to climate variability and change in the Antarctic. This analysis will enable hypothesized mechanisms of Antarctic climate change to be critically evaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5389124','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5389124"><span>Climate Variability and Inter-Provincial Migration in South America, 1970-2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Thiede, Brian; Gray, Clark; Mueller, Valerie</p> <p>2016-01-01</p> <p>We examine the effect of climate variability on human migration in South America. Our analyses draw on over 21 million observations of adults aged 15-40 from 25 censuses conducted in eight South American countries. Addressing limitations associated with methodological diversity among prior studies, we apply a common analytic approach and uniform definitions of migration and climate across all countries. We estimate the effects of climate variability on migration overall and also investigate heterogeneity across sex, age, and socioeconomic groups, across countries, and across historical climate conditions. We also disaggregate migration by the rural/urban status of destination. We find that exposure to monthly temperature shocks has the most consistent effects on migration relative to monthly rainfall shocks and gradual changes in climate over multi-year periods. We also find evidence of heterogeneity across demographic groups and countries. Analyses that disaggregate migration by the rural/urban status of destination suggest that much of the climate-related inter-province migration is directed toward urban areas. Overall, our results underscore the complexity of environment-migration linkages and challenge simplistic narratives that envision a linear and monolithic migratory response to changing climates. PMID:28413264</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28413264','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28413264"><span>Climate Variability and Inter-Provincial Migration in South America, 1970-2011.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thiede, Brian; Gray, Clark; Mueller, Valerie</p> <p>2016-11-01</p> <p>We examine the effect of climate variability on human migration in South America. Our analyses draw on over 21 million observations of adults aged 15-40 from 25 censuses conducted in eight South American countries. Addressing limitations associated with methodological diversity among prior studies, we apply a common analytic approach and uniform definitions of migration and climate across all countries. We estimate the effects of climate variability on migration overall and also investigate heterogeneity across sex, age, and socioeconomic groups, across countries, and across historical climate conditions. We also disaggregate migration by the rural/urban status of destination. We find that exposure to monthly temperature shocks has the most consistent effects on migration relative to monthly rainfall shocks and gradual changes in climate over multi-year periods. We also find evidence of heterogeneity across demographic groups and countries. Analyses that disaggregate migration by the rural/urban status of destination suggest that much of the climate-related inter-province migration is directed toward urban areas. Overall, our results underscore the complexity of environment-migration linkages and challenge simplistic narratives that envision a linear and monolithic migratory response to changing climates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003E%26PSL.210..437R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003E%26PSL.210..437R"><span>A mid-twentieth century reduction in tropical upwelling inferred from coralline trace element proxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reuer, Matthew K.; Boyle, Edward A.; Cole, Julia E.</p> <p>2003-05-01</p> <p>The Cariaco Basin is an important archive of past climate variability given its response to inter- and extratropical climate forcing and the accumulation of annually laminated sediments within an anoxic water column. This study presents high-resolution surface coral trace element records ( Montastrea annularis and Siderastrea siderea) from Isla Tortuga, Venezuela, located within the upwelling center of this region. A two-fold reduction in Cd/Ca ratios (3.5-1.7 nmol/mol) is observed from 1946 to 1952 with no concurrent shift in Ba/Ca ratios. This reduction agrees with the hydrographic distribution of dissolved cadmium and barium and their expected response to upwelling. Significant anthropogenic variability is also observed from Pb/Ca analysis, observing three lead maxima since 1920. Kinetic control of trace element ratios is inferred from an interspecies comparison of Cd/Ca and Ba/Ca ratios (consistent with the Sr/Ca kinetic artifact), but these artifacts are smaller than the environmental signal and do not explain the Cd/Ca transition. The trace element records agree with historical climate data and differ from sedimentary faunal abundance records, suggesting a linear response to North Atlantic extratropical forcing cannot account for the observed historical variability in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5504352','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5504352"><span>Greening of the Sahara suppressed ENSO activity during the mid-Holocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pausata, Francesco S. R.; Zhang, Qiong; Muschitiello, Francesco; Lu, Zhengyao; Chafik, Léon; Niedermeyer, Eva M.; Stager, J. Curt; Cobb, Kim M.; Liu, Zhengyu</p> <p>2017-01-01</p> <p>The evolution of the El Niño-Southern Oscillation (ENSO) during the Holocene remains uncertain. In particular, a host of new paleoclimate records suggest that ENSO internal variability or other external forcings may have dwarfed the fairly modest ENSO response to precessional insolation changes simulated in climate models. Here, using fully coupled ocean-atmosphere model simulations, we show that accounting for a vegetated and less dusty Sahara during the mid-Holocene relative to preindustrial climate can reduce ENSO variability by 25%, more than twice the decrease obtained using orbital forcing alone. We identify changes in tropical Atlantic mean state and variability caused by the momentous strengthening of the West Africa Monsoon (WAM) as critical factors in amplifying ENSO’s response to insolation forcing through changes in the Walker circulation. Our results thus suggest that potential changes in the WAM due to anthropogenic warming may influence ENSO variability in the future as well. PMID:28685758</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28685758','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28685758"><span>Greening of the Sahara suppressed ENSO activity during the mid-Holocene.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pausata, Francesco S R; Zhang, Qiong; Muschitiello, Francesco; Lu, Zhengyao; Chafik, Léon; Niedermeyer, Eva M; Stager, J Curt; Cobb, Kim M; Liu, Zhengyu</p> <p>2017-07-07</p> <p>The evolution of the El Niño-Southern Oscillation (ENSO) during the Holocene remains uncertain. In particular, a host of new paleoclimate records suggest that ENSO internal variability or other external forcings may have dwarfed the fairly modest ENSO response to precessional insolation changes simulated in climate models. Here, using fully coupled ocean-atmosphere model simulations, we show that accounting for a vegetated and less dusty Sahara during the mid-Holocene relative to preindustrial climate can reduce ENSO variability by 25%, more than twice the decrease obtained using orbital forcing alone. We identify changes in tropical Atlantic mean state and variability caused by the momentous strengthening of the West Africa Monsoon (WAM) as critical factors in amplifying ENSO's response to insolation forcing through changes in the Walker circulation. Our results thus suggest that potential changes in the WAM due to anthropogenic warming may influence ENSO variability in the future as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012CliPD...8.3043Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012CliPD...8.3043Z"><span>An Ocean - ice coupled response during the last glacial: zooming on the marine isotopic stage 3 south of the Faeroe Shetland Gateway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zumaque, J.; Eynaud, F.; Zaragosi, S.; Marret, F.; Matsuzaki, K. M.; Kissel, C.; Roche, D. M.; Malaizé, B.; Michel, E.; Billy, I.; Richter, T.; Palis, E.</p> <p>2012-08-01</p> <p>The rapid climatic variability characterising the Marine Isotopic Stage (MIS) 3 (~ 60-30 CAL-ka BP) provides key issues to understand the atmosphere-ocean-cryosphere dynamics. Here we investigate the response of sea-surface paleoenvironments to the MIS3 climatic variability through the study of a high resolution oceanic sedimentological archive (core MD99-2281, 60°21' N; 09°27' W; 1197 m water depth), retrieved during the MD114-IMAGES (International Marine Global Change Study) cruise from the Southern part of the Faeroe Bank. This sector was under the proximal influence of European Ice Sheets (Fennoscandian Ice Sheet to the East, British Irish Ice Sheet to the South) and thus probably recorded their response to the MIS3 pulsed climatic changes. We conducted a multi-proxy analysis on core MD99-2281, including magnetic properties, X-Ray Fluorescence measurements, characterisation of the coarse (> 150 μm) lithic fraction (grain concentration) and the analysis of selected biogenic proxies (assemblages and stable isotope ratio of calcareous planktonic foraminifera, dinoflagellate cyst - e.g. dinocyst - assemblages). Results presented here are focussed on the dinocyst response, this proxy providing the reconstruction of past sea-surface hydrological conditions, qualitatively as well as quantitatively (e.g. transfer function sensu lato). Our study documents a very coherent and sensitive oceanic response to the MIS3 rapid climatic variability: strong fluctuations, matching those of stadial/interstadial climatic oscillations as depicted by Greenland Ice Cores, are recorded in the MD99-2281 archive. Proxies of terrigeneous and detritical material typify increases in continental advection during Greenland Stadials (including Heinrich events), the latter corresponding also to southward migrations of polar waters. At the opposite, milder sea-surface conditions seem to develop during Greenland Interstadials. After 30 ka, reconstructed paleohydrological conditions evidence strong shifts in SST: this increasing variability seems consistent with the hypothesised coalescence of the British and Fennoscandian ice sheets at that time, which could have directly influenced sea-surface environments in the vicinity of core MD99-2281.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.4393R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.4393R"><span>How are streamflow responses to the El Nino Southern Oscillation affected by watershed characteristics?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rice, Joshua S.; Emanuel, Ryan E.</p> <p>2017-05-01</p> <p>Understanding the factors that influence how global climate phenomena, such as the El-Nino Southern Oscillation (ENSO), affect streamflow behavior is an important area of research in the hydrologic sciences. While large-scale patterns in ENSO-streamflow relationships have been thoroughly studied, and are relatively well-understood, information is scarce concerning factors that affect variation in ENSO responses from one watershed to another. To this end, we examined relationships between variability in ENSO activity and streamflow for 2731 watersheds across the conterminous U.S. from 1970 to 2014 using a novel approach to account for the intermediary role of precipitation. We applied an ensemble of regression techniques to describe relationships between variability in ENSO activity and streamflow as a function of watershed characteristics including: hydroclimate, topography, geomorphology, geographic location, land cover, soil characteristics, bedrock geology, and anthropogenic influences. We found that variability in watershed scale ENSO-streamflow relationships was strongly related to factors including: precipitation timing and phase, forest cover, and interactions between watershed topography and geomorphology. These, and other influential factors, share in common the ability to affect the partitioning and movement of water within watersheds. Our results demonstrate that the conceptualization of watersheds as signal filters for hydroclimate inputs, commonly applied to short-term rainfall-runoff responses, also applies to long-term hydrologic responses to sources of recurrent climate variability. These results also show that watershed processes, which are typically studied at relatively fine spatial scales, are also critical for understanding continental scale hydrologic responses to global climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21778392','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21778392"><span>Projecting coral reef futures under global warming and ocean acidification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pandolfi, John M; Connolly, Sean R; Marshall, Dustin J; Cohen, Anne L</p> <p>2011-07-22</p> <p>Many physiological responses in present-day coral reefs to climate change are interpreted as consistent with the imminent disappearance of modern reefs globally because of annual mass bleaching events, carbonate dissolution, and insufficient time for substantial evolutionary responses. Emerging evidence for variability in the coral calcification response to acidification, geographical variation in bleaching susceptibility and recovery, responses to past climate change, and potential rates of adaptation to rapid warming supports an alternative scenario in which reef degradation occurs with greater temporal and spatial heterogeneity than current projections suggest. Reducing uncertainty in projecting coral reef futures requires improved understanding of past responses to rapid climate change; physiological responses to interacting factors, such as temperature, acidification, and nutrients; and the costs and constraints imposed by acclimation and adaptation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28894162','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28894162"><span>A regime shift in the Sun-Climate connection with the end of the Medieval Climate Anomaly.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smirnov, D A; Breitenbach, S F M; Feulner, G; Lechleitner, F A; Prufer, K M; Baldini, J U L; Marwan, N; Kurths, J</p> <p>2017-09-11</p> <p>Understanding the influence of changes in solar activity on Earth's climate and distinguishing it from other forcings, such as volcanic activity, remains a major challenge for palaeoclimatology. This problem is best approached by investigating how these variables influenced past climate conditions as recorded in high precision paleoclimate archives. In particular, determining if the climate system response to these forcings changes through time is critical. Here we use the Wiener-Granger causality approach along with well-established cross-correlation analysis to investigate the causal relationship between solar activity, volcanic forcing, and climate as reflected in well-established Intertropical Convergence Zone (ITCZ) rainfall proxy records from Yok Balum Cave, southern Belize. Our analysis reveals a consistent influence of volcanic activity on regional Central American climate over the last two millennia. However, the coupling between solar variability and local climate varied with time, with a regime shift around 1000-1300 CE after which the solar-climate coupling weakened considerably.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1087913','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1087913"><span>Ecological controls on water-cycle response to climate variability in deserts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Scanlon, B. R.; Levitt, D. G.; Reedy, R. C.; Keese, K. E.; Sully, M. J.</p> <p>2005-01-01</p> <p>The impact of climate variability on the water cycle in desert ecosystems is controlled by biospheric feedback at interannual to millennial timescales. This paper describes a unique field dataset from weighing lysimeters beneath nonvegetated and vegetated systems that unequivocally demonstrates the role of vegetation dynamics in controlling water cycle response to interannual climate variability related to El Niño southern oscillation in the Mojave Desert. Extreme El Niño winter precipitation (2.3-2.5 times normal) typical of the U.S. Southwest would be expected to increase groundwater recharge, which is critical for water resources in semiarid and arid regions. However, lysimeter data indicate that rapid increases in vegetation productivity in response to elevated winter precipitation reduced soil water storage to half of that in a nonvegetated lysimeter, thereby precluding deep drainage below the root zone that would otherwise result in groundwater recharge. Vegetation dynamics have been controlling the water cycle in interdrainage desert areas throughout the U.S. Southwest, maintaining dry soil conditions and upward soil water flow since the last glacial period (10,000-15,000 yr ago), as shown by soil water chloride accumulations. Although measurements are specific to the U.S. Southwest, correlations between satellite-based vegetation productivity and elevated precipitation related to El Niño southern oscillation indicate this model may be applicable to desert basins globally. Understanding the two-way coupling between vegetation dynamics and the water cycle is critical for predicting how climate variability influences hydrology and water resources in water-limited landscapes. PMID:15837922</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917299H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917299H"><span>The susceptibility of large river basins to orogenic and climatic drivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haedke, Hanna; Wittmann, Hella; von Blanckenburg, Friedhelm</p> <p>2017-04-01</p> <p>Large rivers are known to buffer pulses in sediment production driven by changes in climate as sediment is transported through lowlands. Our new dataset of in situ cosmogenic nuclide concentration and chemical composition of 62 sandy bedload samples from the world largest rivers integrates over 25% of Earth's terrestrial surface, distributed over a variety of climatic zones across all continents, and represents the millennial-scale denudation rate of the sediment's source area. We can show that these denudation rates do not respond to climatic forcing, but faithfully record orogenic forcing, when analyzed with respective variables representing orogeny (strain rate, relief, bouguer anomaly, free-air anomaly), and climate (runoff, temperature, precipitation) and basin properties (floodplain response time, drainage area). In contrast to this orogenic forcing of denudation rates, elemental bedload chemistry from the fine-grained portion of the same samples correlates with climate-related variables (precipitation, runoff) and floodplain response times. It is also well-known from previous compilations of river-gauged sediment loads that the short-term basin-integrated sediment export is also climatically controlled. The chemical composition of detrital sediment shows a climate control that can originate in the rivers source area, but this signal is likely overprinted during transfer through the lowlands because we also find correlation with floodplain response times. At the same time, cosmogenic nuclides robustly preserve the orogenic forcing of the source area denudation signal through of the floodplain buffer. Conversely, previous global compilations of cosmogenic nuclides in small river basins show the preservation of climate drivers in their analysis, but these are buffered in large lowland rivers. Hence, we can confirm the assumption that cosmogenic nuclides in large rivers are poorly susceptible to climate changes, but are at the same time highly suited to detect changes in orogenic forcing in their paleo sedimentary records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2487W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2487W"><span>Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wills, Robert C.; Schneider, Tapio; Wallace, John M.; Battisti, David S.; Hartmann, Dennis L.</p> <p>2018-03-01</p> <p>A key challenge in climate science is to separate observed temperature changes into components due to internal variability and responses to external forcing. Extended integrations of forced and unforced climate models are often used for this purpose. Here we demonstrate a novel method to separate modes of internal variability from global warming based on differences in time scale and spatial pattern, without relying on climate models. We identify uncorrelated components of Pacific sea surface temperature variability due to global warming, the Pacific Decadal Oscillation (PDO), and the El Niño-Southern Oscillation (ENSO). Our results give statistical representations of PDO and ENSO that are consistent with their being separate processes, operating on different time scales, but are otherwise consistent with canonical definitions. We isolate the multidecadal variability of the PDO and find that it is confined to midlatitudes; tropical sea surface temperatures and their teleconnections mix in higher-frequency variability. This implies that midlatitude PDO anomalies are more persistent than previously thought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70136253','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70136253"><span>Sources of global climate data and visualization portals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Douglas, David C.</p> <p>2014-01-01</p> <p>Climate is integral to the geophysical foundation upon which ecosystems are structured. Knowledge about mechanistic linkages between the geophysical and biological environments is essential for understanding how global warming may reshape contemporary ecosystems and ecosystem services. Numerous global data sources spanning several decades are available that document key geophysical metrics such as temperature and precipitation, and metrics of primary biological production such as vegetation phenology and ocean phytoplankton. This paper provides an internet directory to portals for visualizing or servers for downloading many of the more commonly used global datasets, as well as a description of how to write simple computer code to efficiently retrieve these data. The data are broadly useful for quantifying relationships between climate, habitat availability, and lower-trophic-level habitat quality - especially in Arctic regions where strong seasonality is accompanied by intrinsically high year-to-year variability. If defensible linkages between the geophysical (climate) and the biological environment can be established, general circulation model (GCM) projections of future climate conditions can be used to infer future biological responses. Robustness of this approach is, however, complicated by the number of direct, indirect, or interacting linkages involved. For example, response of a predator species to climate change will be influenced by the responses of its prey and competitors, and so forth throughout a trophic web. The complexities of ecological systems warrant sensible and parsimonious approaches for assessing and establishing the role of natural climate variability in order to substantiate inferences about the potential effects of global warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Influence+AND+cloud+AND+climate&id=ED204158','ERIC'); return false;" href="https://eric.ed.gov/?q=Influence+AND+cloud+AND+climate&id=ED204158"><span>Weather, Climate, and You.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Blai, Boris, Jr.</p> <p></p> <p>Information from the American Institute of Medical Climatologists on human responses to weather and climatic conditions, including clouds, winds, humidity, barometric pressure, heat, cold, and other variables that may exert a pervasive impact on health, behavior, disposition, and the level of efficiency with which individuals function is reviewed.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170009785','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170009785"><span>Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga</p> <p>2016-01-01</p> <p>Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS33D..03R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS33D..03R"><span>Understanding multidecadal variability in ENSO amplitude</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, A.; Gnanadesikan, A.</p> <p>2013-12-01</p> <p>Sea surface temperatures (SSTs) in the tropical Pacific vary as a result of the coupling between the ocean and atmosphere driven largely by the El Niño - Southern Oscillation (ENSO). ENSO has a large impact on the local climate and hydrology of the tropical Pacific, as well as broad-reaching effects on global climate. ENSO amplitude is known to vary on long timescales, which makes it very difficult to quantify its response to climate change and constrain the physical processes that drive it. In order to assess the extent of unforced multidecadal changes in ENSO variability, a linear regression of local SST changes is applied to the GFDL CM2.1 model 4000-yr pre-industrial control run. The resulting regression coefficient strengths, which represent the sensitivity of SST changes to thermocline depth and zonal wind stress, vary by up to a factor of 2 on multi-decadal time scales. This long-term modulation in ocean-atmosphere coupling is highly correlated with ENSO variability, but do not explain the reasons for such variability. Variation in the relationship between SST changes and wind stress points to a role for changing stratification in the central equatorial Pacific in modulating ENSO amplitudes with stronger stratification reducing the response to winds. The main driving mechanism we have identified for higher ENSO variance are changes in the response of zonal winds to SST anomalies. The shifting convection and precipitation patterns associated with the changing state of the atmosphere also contribute to the variability of the regression coefficients. These mechanisms drive much of the variability in ENSO amplitude and hence ocean-atmosphere coupling in the tropical Pacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23361002','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23361002"><span>Climate change patterns in Amazonia and biodiversity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Hai; Sinha, Ashish; Cruz, Francisco W; Wang, Xianfeng; Edwards, R Lawrence; d'Horta, Fernando M; Ribas, Camila C; Vuille, Mathias; Stott, Lowell D; Auler, Augusto S</p> <p>2013-01-01</p> <p>Precise characterization of hydroclimate variability in Amazonia on various timescales is critical to understanding the link between climate change and biodiversity. Here we present absolute-dated speleothem oxygen isotope records that characterize hydroclimate variation in western and eastern Amazonia over the past 250 and 20 ka, respectively. Although our records demonstrate the coherent millennial-scale precipitation variability across tropical-subtropical South America, the orbital-scale precipitation variability between western and eastern Amazonia exhibits a quasi-dipole pattern. During the last glacial period, our records imply a modest increase in precipitation amount in western Amazonia but a significant drying in eastern Amazonia, suggesting that higher biodiversity in western Amazonia, contrary to 'Refugia Hypothesis', is maintained under relatively stable climatic conditions. In contrast, the glacial-interglacial climatic perturbations might have been instances of loss rather than gain in biodiversity in eastern Amazonia, where forests may have been more susceptible to fragmentation in response to larger swings in hydroclimate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C12B..05T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C12B..05T"><span>Assessing the role of internal climate variability in Antarctica's contribution to future sea-level rise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsai, C. Y.; Forest, C. E.; Pollard, D.</p> <p>2017-12-01</p> <p>The Antarctic ice sheet (AIS) has the potential to be a major contributor to future sea-level rise (SLR). Current projections of SLR due to AIS mass loss remain highly uncertain. Better understanding of how ice sheets respond to future climate forcing and variability is essential for assessing the long-term risk of SLR. However, the predictability of future climate is limited by uncertainties from emission scenarios, model structural differences, and the internal variability that is inherently generated within the fully coupled climate system. Among those uncertainties, the impact of internal variability on the AIS changes has not been explicitly assessed. In this study, we quantify the effect of internal variability on the AIS evolutions by using climate fields from two large-ensemble experiments using the Community Earth System Model to force a three-dimensional ice sheet model. We find that internal variability of climate fields, particularly atmospheric fields, among ensemble members leads to significantly different AIS responses. Our results show that the internal variability can cause about 80 mm differences of AIS contribution to SLR by 2100 compared to the ensemble-mean contribution of 380-450 mm. Moreover, using ensemble-mean climate fields as the forcing in the ice sheet model does not produce realistic simulations of the ice loss. Instead, it significantly delays the onset of retreat of the West Antarctic Ice Sheet for up to 20 years and significantly underestimates the AIS contribution to SLR by 0.07-0.11 m in 2100 and up to 0.34 m in the 2250's. Therefore, because the uncertainty caused by internal variability is irreducible, we seek to highlight a critical need to assess the role of internal variability in projecting the AIS loss over the next few centuries. By quantifying the impact of internal variability on AIS contribution to SLR, policy makers can obtain more robust estimates of SLR and implement suitable adaptation strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70168360','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70168360"><span>Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tipton, John; Hooten, Mevin B.; Pederson, Neil; Tingley, Martin; Bishop, Daniel</p> <p>2016-01-01</p> <p>Reconstruction of pre-instrumental, late Holocene climate is important for understanding how climate has changed in the past and how climate might change in the future. Statistical prediction of paleoclimate from tree ring widths is challenging because tree ring widths are a one-dimensional summary of annual growth that represents a multi-dimensional set of climatic and biotic influences. We develop a Bayesian hierarchical framework using a nonlinear, biologically motivated tree ring growth model to jointly reconstruct temperature and precipitation in the Hudson Valley, New York. Using a common growth function to describe the response of a tree to climate, we allow for species-specific parameterizations of the growth response. To enable predictive backcasts, we model the climate variables with a vector autoregressive process on an annual timescale coupled with a multivariate conditional autoregressive process that accounts for temporal correlation and cross-correlation between temperature and precipitation on a monthly scale. Our multi-scale temporal model allows for flexibility in the climate response through time at different temporal scales and predicts reasonable climate scenarios given tree ring width data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.U24B..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.U24B..01L"><span>Assessing Extratropical Influence on Tropical Climatology and Variability with Regional Coupled Data Assimilation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, F.; Liu, Z.; Liu, Y.; Zhang, S.; Jacob, R. L.</p> <p>2017-12-01</p> <p>The Regional Coupled Data Assimilation (RCDA) method is introduced as a tool to study coupled climate dynamics and teleconnections. The RCDA method is built on an ensemble-based coupled data assimilation (CDA) system in a coupled general circulation model (CGCM). The RCDA method limits the data assimilation to the desired model components (e.g. atmosphere) and regions (e.g. the extratropics), and studies the ensemble-mean model response (e.g. tropical response to "observed" extratropical atmospheric variability). When applied to the extratropical influence on tropical climate, the RCDA method has shown some unique advantages, namely the combination of a fully coupled model, real-world observations and an ensemble approach. Tropical variability (e.g. El Niño-Southern Oscillation or ENSO) and climatology (e.g. asymmetric Inter-Tropical Convergence Zone or ITCZ) were initially thought to be determined mostly by local forcing and ocean-atmosphere interaction in the tropics. Since late 20th century, numerous studies have showed that extratropical forcing could affect, or even largely determine some aspects of the tropical climate. Due to the coupled nature of the climate system, however, the challenge of determining and further quantifying the causality of extratropical forcing on the tropical climate remains. Using the RCDA method, we have demonstrated significant control of extratropical atmospheric forcing on ENSO variability in a CGCM, both with model-generated and real-world observation datasets. The RCDA method has also shown robust extratropical impact on the tropical double-ITCZ bias in a CGCM. The RCDA method has provided the first systematic and quantitative assessment of extratropical influence on tropical climatology and variability by incorporating real world observations in a CGCM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMS...160...64D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMS...160...64D"><span>Response of waves and coastline evolution to climate variability off the Niger Delta coast during the past 110 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dada, Olusegun A.; Li, Guangxue; Qiao, Lulu; Ma, Yanyan; Ding, Dong; Xu, Jishang; Li, Pin; Yang, Jichao</p> <p>2016-08-01</p> <p>River deltas, low-lying landforms that host critical economic infrastructures and diverse ecosystems as well as high concentrations of human population, are highly vulnerable to the effects of global climate change. In order to understand the wave climate, their potential changes and implication on coastline evolution for environment monitoring and sustainable management of the Niger Delta in the Gulf of Guinea, an investigation was carried out based on offshore wave statistics of an 110-year time series (1900-2010) dataset obtained from the ECMWF ERA-20C atmospheric reanalysis. Results of multivariate regression analyses indicate that interannual mean values of Hs and Tm trends tended to increase over time, especially in the western part of the delta coast, so that they are presently (1980 and 2010) up to 264 mm (300%) and 0.32 s (22%), respectively, higher than 80 years (1900-1930) ago. The maximum directions of the wave have become more westerly (southward) than southerly (westward) by up to 2° (33%) and the mean longshore sediment transport rate has increased by more than 8% over the last 80 years. The linear regression analysis for shoreline changes from 1987 to 2013 shows an erosional trend at the western part of the delta and accretional trends towards eastern part. The relationship between wave climate of the study area and atmospheric circulation using Pearson's correlation shows that the Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO), East Atlantic pattern (EA) and El-Nino/Southern Oscillation (ENSO) Index explain significant proportion of the seasonal and annual wave variabilities compared to other indices. But it is most likely that the combination of these climatic indices acting together or separately constitutes a powerful and effective mechanism responsible for much of the variability of the offshore Niger Delta wave climate. The study concludes that changing wave climate off the Niger Delta has strong implications on the delta coastline changes. However, other processes (such as fluvial discharge variability due climatic variability and anthropogenic effect) may be acting concomitantly with changes in wave regime and associated littoral transport to influence shoreline evolution along the Niger Delta coast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29194879','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29194879"><span>Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Uriarte, María; Muscarella, Robert; Zimmerman, Jess K</p> <p>2018-02-01</p> <p>Predicting the fate of tropical forests under a changing climate requires understanding species responses to climatic variability and extremes. Seedlings may be particularly vulnerable to climatic stress given low stored resources and undeveloped roots; they also portend the potential effects of climate change on future forest composition. Here we use data for ca. 50,000 tropical seedlings representing 25 woody species to assess (i) the effects of interannual variation in rainfall and solar radiation between 2007 and 2016 on seedling survival over 9 years in a subtropical forest; and (ii) how spatial heterogeneity in three environmental factors-soil moisture, understory light, and conspecific neighborhood density-modulate these responses. Community-wide seedling survival was not sensitive to interannual rainfall variability but interspecific variation in these responses was large, overwhelming the average community response. In contrast, community-wide responses to solar radiation were predominantly positive. Spatial heterogeneity in soil moisture and conspecific density were the predominant and most consistent drivers of seedling survival, with the majority of species exhibiting greater survival at low conspecific densities and positive or nonlinear responses to soil moisture. This environmental heterogeneity modulated impacts of rainfall and solar radiation. Negative conspecific effects were amplified during rainy years and at dry sites, whereas the positive effects of radiation on survival were more pronounced for seedlings existing at high understory light levels. These results demonstrate that environmental heterogeneity is not only the main driver of seedling survival in this forest but also plays a central role in buffering or exacerbating impacts of climate fluctuations on forest regeneration. Since seedlings represent a key bottleneck in the demographic cycle of trees, efforts to predict the long-term effects of a changing climate on tropical forests must take into account this environmental heterogeneity and how its effects on regeneration dynamics play out in long-term stand dynamics. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC41A1006Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC41A1006Z"><span>Tropical rainforests dominate multi-decadal variability of the global carbon cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, X.; Wang, Y. P.; Peng, S.; Rayner, P. J.; Silver, J.; Ciais, P.; Piao, S.; Zhu, Z.; Lu, X.; Zheng, X.</p> <p>2017-12-01</p> <p>Recent studies find that inter-annual variability of global atmosphere-to-land CO2 uptake (NBP) is dominated by semi-arid ecosystems. However, the NBP variations at decadal to multi-decadal timescales are still not known. By developing a basic theory for the role of net primary production (NPP) and heterotrophic respiration (Rh) on NBP and applying it to 100-year simulations of terrestrial ecosystem models forced by observational climate, we find that tropical rainforests dominate the multi-decadal variability of global NBP (48%) rather than the semi-arid lands (35%). The NBP variation at inter-annual timescales is almost 90% contributed by NPP, but across longer timescales is progressively controlled by Rh that constitutes the response from the NPP-derived soil carbon input (40%) and the response of soil carbon turnover rates to climate variability (60%). The NBP variations of tropical rainforests is modulated by the ENSO and the PDO through their significant influences on temperature and precipitation at timescales of 2.5-7 and 25-50 years, respectively. This study highlights the importance of tropical rainforests on the multi-decadal variability of global carbon cycle, suggesting that we need to carefully differentiate the effect of NBP long-term fluctuations associated with ocean-related climate modes on the long-term trend in land sink.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B44C..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B44C..02B"><span>Satellite-derived SIF and CO2 Observations Show Coherent Responses to Interannual Climate Variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Butterfield, Z.; Hogikyan, A.; Kulawik, S. S.; Keppel-Aleks, G.</p> <p>2017-12-01</p> <p>Gross primary production (GPP) is the single largest carbon flux in the Earth system, but its sensitivity to changes in climate is subject to significant uncertainty. Satellite measurements of solar-induced chlorophyll fluorescence (SIF) offer insight into spatial and temporal patterns in GPP at a global scale and, combined with other satellite-derived datasets, provide unprecedented opportunity to explore interactions between atmospheric CO2, GPP, and climate variability. To explore potential drivers of GPP in the Northern Hemisphere (NH), we compare monthly-averaged SIF data from the Global Ozone Monitoring Experiment 2 (GOME-2) with observed anomalies in temperature (T; CRU-TS), liquid water equivalent (LWE) from the Gravity Recovery and Climate Experiment (GRACE), and photosynthetically active radiation (PAR; CERES SYN1deg). Using observations from 2007 through 2015 for several NH regions, we calculate month-specific sensitivities of SIF to variability in T, LWE, and PAR. These sensitivities provide insight into the seasonal progression of how productivity is affected by climate variability and can be used to effectively model the observed SIF signal. In general, we find that high temperatures are beneficial to productivity in the spring, but detrimental in the summer. The influences of PAR and LWE are more heterogeneous between regions; for example, higher LWE in North American temperate forest leads to decreased springtime productivity, while exhibiting a contrasting effect in water-limited regions. Lastly, we assess the influence of variations in terrestrial productivity on atmospheric carbon using a new lower tropospheric CO2 product derived from the Greenhouse Gases Observing Satellite (GOSAT). Together, these data shed light on the drivers of interannual variability in the annual cycle of NH atmospheric CO2, and may provide improved constraints on projections of long-term carbon cycle responses to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28257501','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28257501"><span>Remote-sensing based approach to forecast habitat quality under climate change scenarios.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier</p> <p>2017-01-01</p> <p>As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5336225','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5336225"><span>Remote-sensing based approach to forecast habitat quality under climate change scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier</p> <p>2017-01-01</p> <p>As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B11C0474T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B11C0474T"><span>Investigating the Contribution of Climate Variables to Estimates of Net Primary Productivity in a Tropical Ecosystem in India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tripathi, P.; Behera, M. D.; Behera, S. K.; Sahu, N.</p> <p>2016-12-01</p> <p>Investigating the impact of climate variables on net primary productivity is crucial to evaluate the ecosystem health and the status of forest type response to climate change. The objective of this paper is (1) to analyze the spatio-temporal pattern of net primary productivity (NPP) in a tropical forest ecosystem situated along the Himalayan foothills in India and (2) to investigate the continuous and delayed effects of climatic variables. Weapplied simple Monteith equation based Light use efficiency model for two dominant plant functional types; sal (Shorea robusta) forest and teak (Tectona grandis) plantation to estimate the NPP for a decadal period from 2001 to 2010. The impact of climate variables on NPP for these 10 years was seen by applying two correlation analyses; generalized linear modelling (GLM) and time lag correlation approach.The impact of different climate variables was observed to vary throughout the study period.A decline in mean NPP during 2002-2003, 2005 and 2008 to 2010 could be attributed to drought, increased vapour pressure deficit, and decreased humidity and solar radiation. In time lag correlation analysis, precipitation and humidity were observed to be the major variables affecting NPP; whereas combination of temperature, humidity and VPD showed dominant effect on NPP in GLM. Shorea robusta forest showed slightly higher NPP than that of Tectona grandis plantation throughout the study period. Highest decrease in NPP was observed during 2010,pertaining to lower solar radiation, humidity and precipitation along with increased VPD.Higher gains in NPP by sal during all years indicates their better adaptability to climate compared to teak. Contribution of different climatic variables through some link process is revealed in statistical analysis clearly indicates the co-dominance of all the variables in explaining NPP. Lacking of site specific meteorological observations and microclimate put constraint on broad level analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatCC...8..200A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatCC...8..200A"><span>Sampling bias in climate-conflict research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adams, Courtland; Ide, Tobias; Barnett, Jon; Detges, Adrien</p> <p>2018-03-01</p> <p>Critics have argued that the evidence of an association between climate change and conflict is flawed because the research relies on a dependent variable sampling strategy1-4. Similarly, it has been hypothesized that convenience of access biases the sample of cases studied (the `streetlight effect'5). This also gives rise to claims that the climate-conflict literature stigmatizes some places as being more `naturally' violent6-8. Yet there has been no proof of such sampling patterns. Here we test whether climate-conflict research is based on such a biased sample through a systematic review of the literature. We demonstrate that research on climate change and violent conflict suffers from a streetlight effect. Further, studies which focus on a small number of cases in particular are strongly informed by cases where there has been conflict, do not sample on the independent variables (climate impact or risk), and hence tend to find some association between these two variables. These biases mean that research on climate change and conflict primarily focuses on a few accessible regions, overstates the links between both phenomena and cannot explain peaceful outcomes from climate change. This could result in maladaptive responses in those places that are stigmatized as being inherently more prone to climate-induced violence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25385668','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25385668"><span>Climate change and dead zones.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Altieri, Andrew H; Gedan, Keryn B</p> <p>2015-04-01</p> <p>Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones. © 2014 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034449','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034449"><span>Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhou, G.; Wei, X.; Wu, Y.; Huang, Y.; Yan, J.; Zhang, Dongxiao; Zhang, Q.; Liu, J.; Meng, Z.; Wang, C.; Chu, G.; Liu, S.; Tang, X.; Liu, Xiuying</p> <p>2011-01-01</p> <p>Responses of hydrological processes to climate change are key components in the Intergovernmental Panel for Climate Change (IPCC) assessment. Understanding these responses is critical for developing appropriate mitigation and adaptation strategies for sustainable water resources management and protection of public safety. However, these responses are not well understood and little long-term evidence exists. Herein, we show how climate change, specifically increased air temperature and storm intensity, can affect soil moisture dynamics and hydrological variables based on both long-term observation and model simulations using the Soil and Water Assessment Tool (SWAT) in an intact forested watershed (the Dinghushan Biosphere Reserve) in Southern China. Our results show that, although total annual precipitation changed little from 1950 to 2009, soil moisture decreased significantly. A significant decline was also found in the monthly 7-day low flow from 2000 to 2009. However, the maximum daily streamflow in the wet season and unconfined groundwater tables have significantly increased during the same 10-year period. The significant decreasing trends on soil moisture and low flow variables suggest that the study watershed is moving towards drought-like condition. Our analysis indicates that the intensification of rainfall storms and the increasing number of annual no-rain days were responsible for the increasing chance of both droughts and floods. We conclude that climate change has indeed induced more extreme hydrological events (e.g. droughts and floods) in this watershed and perhaps other areas of Southern China. This study also demonstrated usefulness of our research methodology and its possible applications on quantifying the impacts of climate change on hydrology in any other watersheds where long-term data are available and human disturbance is negligible. ?? 2011 Blackwell Publishing Ltd.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70043371','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70043371"><span>Quantifying the hydrological responses to climate change in an intact forested small watershed in southern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhou, Guo-Yi; Wei, Xiaohua; Wu, Yiping; Liu, Shu-Guang; Huang, Yuhui; Yan, Junhua; Zhang, Deqiang; Zhang, Qianmei; Liu, Juxiu; Meng, Ze; Wang, Chunlin; Chu, Guowei; Liu, Shizhong; Tang, Xu-Li; Liu, Xiaodong</p> <p>2011-01-01</p> <p>Responses of hydrological processes to climate change are key components in the Intergovernmental Panel for Climate Change (IPCC) assessment. Understanding these responses is critical for developing appropriate mitigation and adaptation strategies for sustainable water resources management and protection of public safety. However, these responses are not well understood and little long-term evidence exists. Herein, we show how climate change, specifically increased air temperature and storm intensity, can affect soil moisture dynamics and hydrological variables based on both long-term observation and model simulations using the Soil and Water Assessment Tool (SWAT) in an intact forested watershed (the Dinghushan Biosphere Reserve) in Southern China. Our results show that, although total annual precipitation changed little from 1950 to 2009, soil moisture decreased significantly. A significant decline was also found in the monthly 7-day low flow from 2000 to 2009. However, the maximum daily streamflow in the wet season and unconfined groundwater tables have significantly increased during the same 10-year period. The significant decreasing trends on soil moisture and low flow variables suggest that the study watershed is moving towards drought-like condition. Our analysis indicates that the intensification of rainfall storms and the increasing number of annual no-rain days were responsible for the increasing chance of both droughts and floods. We conclude that climate change has indeed induced more extreme hydrological events (e.g. droughts and floods) in this watershed and perhaps other areas of Southern China. This study also demonstrated usefulness of our research methodology and its possible applications on quantifying the impacts of climate change on hydrology in any other watersheds where long-term data are available and human disturbance is negligible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSMGC41B..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSMGC41B..03G"><span>Implementation of a Time Series Analysis for the Assessment of the Role of Climate Variability in a Post-Disturbance Savanna System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gibbes, C.; Southworth, J.; Waylen, P. R.</p> <p>2013-05-01</p> <p>How do climate variability and climate change influence vegetation cover and vegetation change in savannas? A landscape scale investigation of the effect of changes in precipitation on vegetation is undertaken through the employment of a time series analysis. The multi-national study region is located within the Kavango-Zambezi region, and is delineated by the Okavango, Kwando, and Zambezi watersheds. A mean-variance time-series analysis quantifies vegetation dynamics and characterizes vegetation response to climate. The spatially explicit approach used to quantify the persistence of vegetation productivity permits the extraction of information regarding long term climate-landscape dynamics. Results show a pattern of reduced mean annual precipitation and increased precipitation variability across key social and ecological areas within the study region. Despite decreased mean annual precipitation since the mid to late 1970's vegetation trends predominantly indicate increasing biomass. The limited areas which have diminished vegetative cover relate to specific vegetation types, and are associated with declines in precipitation variability. Results indicate that in addition to short term changes in vegetation cover, long term trends in productive biomass are apparent, relate to spatial differences in precipitation variability, and potentially represent shifts vegetation composition. This work highlights the importance of time-series analyses for examining climate-vegetation linkages in a spatially explicit manner within a highly vulnerable region of the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4156351','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4156351"><span>Why Do Some People Do “More” to Mitigate Climate Change than Others? Exploring Heterogeneity in Psycho-Social Associations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel</p> <p>2014-01-01</p> <p>The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized—and differentiated from common mitigation behavior—as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change—but not in motivational or socio-demographic links—with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries. PMID:25191841</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B34B..04H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B34B..04H"><span>Spatiotemporal Trends in late-Holocene Fire Regimes in Arctic and Boreal Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoecker, T. J.; Higuera, P. E.; Hu, F.; Kelly, R.</p> <p>2015-12-01</p> <p>Alaskan arctic and boreal ecosystems are of global importance owing to their sensitivity and feedbacks to directional climate change. Wildfires are a primary driver of boreal carbon balance, and altered fire regimes may significantly impact global climate through the release of stored carbon and changes to surface albedo. Paleoecological records provide a window to how these systems respond to change by revealing climatic and disturbance variability throughout the Holocene. These long-term records highlight the sensitivity of fire regimes to climate and vegetation change, including responses to the relatively warm Medieval Climate Anomaly (MCA), and the relatively cool Little Ice Age (LIA). Over millennial timescales, boreal forests and arctic tundra have been resilient to climate change, but continued directional climate change may result in novel vegetation compositions and fire regimes, with potentially significant implications for global climate. Here we present a spatiotemporal synthesis of 22 published sediment-charcoal records from three Alaskan ecoregions. We add to this network eight records collected in June 2015 from an additional ecoregion. Variability in fire return intervals (FRIs) was quantified within and among ecoregions and climatic periods spanning the past 2 millennia, based on a peak analysis representing local fire events. Preliminary results suggest that fire regimes were responsive to centennial-scale climatic shifts, including the MCA and LIA, but the degree of sensitivity varies by ecoregion. Over the past 2000 years, FRIs were shortest during the MCA, indicating the potential for climate warming to promote high rates of burning. FRIs in tundra regions of northwestern Alaska and in interior boreal forests were 20% shorter during the MCA than during the LIA, and 25% shorter in boreal forest in the south-central Brooks Range. Burning was likely promoted during the warmer, drier MCA through lower fuel moisture. Quantifying fire-regime response to climate forcing across multiple ecoregions helps reveal the mechanisms that connect fire and climate in Alaskan ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8544D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8544D"><span>Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Vleeschouwer, David; Vahlenkamp, Maximilian; Crucifix, Michel; Pälike, Heiko</p> <p>2017-04-01</p> <p>Earth's climate has undergone different intervals of gradual change as well as abrupt shifts between climate states. Here we aim to characterize the corresponding changes in climate response to astronomical forcing in the icehouse portion of the Cenozoic, from the latest Eocene to the present. As a tool, we use a 35-m.y.-long δ18Obenthic record compiled from different high-resolution benthic isotope records spliced together (what we refer to as a megasplice). An important feature of the evolutive spectrum of the megasplice is the sustained power at the frequency of the 405-kyr long eccentricity cycle throughout the Oligocene and early to middle Miocene. That power disappears after the mid-Miocene Climatic Transition, along with a weakening of the power of the 100-kyr short eccentricity cycles. While this general feature has been previously recognized, this is the first long record where this significant transition is clearly observed. We analyze the climate response to astronomical forcing during four 800-k.y.-long time windows. During the mid-Miocene Climatic Optimum (ca. 15.5 Ma), global climate variability was mainly dependent on Southern Hemisphere summer insolation, amplified by a dynamic Antarctic ice sheet; 2.5 m.y. later, relatively warm global climate states occurred during maxima in both Southern Hemisphere and Northern Hemisphere summer insolation. At that point, the Antarctic ice sheet grew too big to pulse on the beat of precession, and the Southern Hemisphere lost its overwhelming influence on the global climate state. Likewise, we juxtapose response regimes of the Miocene (ca. 19 Ma) and Oligocene (ca. 25.5 Ma) warming periods. Despite the similarity in δ18Obenthic values and variability, we find different responses to precession forcing. While Miocene warmth occurs during summer insolation maxima in both hemispheres, Oligocene global warmth is consistently triggered when Earth reaches perihelion in the Northern Hemisphere summer. The presence of a dynamic cryosphere in the Southern or Northern Hemisphere thus seems to exert the principal control on the response of global climate to astronomical forcing in the icehouse of the past 35 m.y. We report an alternation of the driving hemisphere from the Northern Hemisphere during the late Oligocene, to the Southern Hemisphere during the MMCO, and back to the Northern Hemisphere during the Quaternary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=260801','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=260801"><span>MODIS EVI as a Surrogate for Net Primary Production across Precipitation Regimes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>According to Global Climate Models (GCMs) the occurrence of extreme events of precipitation will be more frequent in the future. Therefore, important challenges arise regarding climate variability, which are mainly related to the understanding of ecosystem responses to changes in precipitation patte...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGD....12.9839S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGD....12.9839S"><span>Earth system responses to cumulative carbon emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steinacher, M.; Joos, F.</p> <p>2015-07-01</p> <p>Information on the relationship between cumulative fossil carbon emissions and multiple climate targets are essential to design emission mitigation and climate adaptation strategies. In this study, the transient responses in different climate variables are quantified for a large set of multi-forcing scenarios extended to year 2300 towards stabilization and in idealized experiments using the Bern3D-LPJ carbon-climate model. The model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte-Carlo type framework. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.88 °C (68 % confidence interval (c.i.): 1.28 to 2.69 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and in steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic Meridional Overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The slopes of the relationships change when CO2 is stabilized. The Transient Climate Response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the Equilibrium Climate Sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models, but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185031','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185031"><span>Relations of alpine plant communities across environmental gradients: Multilevel versus multiscale analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Malanson, George P.; Zimmerman, Dale L.; Kinney, Mitch; Fagre, Daniel B.</p> <p>2017-01-01</p> <p>Alpine plant communities vary, and their environmental covariates could influence their response to climate change. A single multilevel model of how alpine plant community composition is determined by hierarchical relations is compared to a separate examination of those relations at different scales. Nonmetric multidimensional scaling of species cover for plots in four regions across the Rocky Mountains created dependent variables. Climate variables are derived for the four regions from interpolated data. Plot environmental variables are measured directly and the presence of thirty-seven site characteristics is recorded and used to create additional independent variables. Multilevel and best subsets regressions are used to determine the strength of the hypothesized relations. The ordinations indicate structure in the assembly of plant communities. The multilevel analyses, although revealing significant relations, provide little explanation; of the site variables, those related to site microclimate are most important. In multiscale analyses (whole and separate regions), different variables are better explanations within the different regions. This result indicates weak environmental niche control of community composition. The weak relations of the structure in the patterns of species association to the environment indicates that either alpine vegetation represents a case of the neutral theory of biogeography being a valid explanation or that it represents disequilibrium conditions. The implications of neutral theory and disequilibrium explanations are similar: Response to climate change will be difficult to quantify above equilibrium background turnover.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ihdp.unu.edu/file/get/7722','USGSPUBS'); return false;" href="http://www.ihdp.unu.edu/file/get/7722"><span>Some guidelines for helping natural resources adapt to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Baron, Jill S.; Julius, Susan Herrod; West, Jordan M.; Joyce, Linda A.; Blate, Geoffrey; Peterson, Charles H.; Palmer, Margaret; Keller, Brian D.; Kareiva, Peter; Scott, J. Michael; Griffith, Brad</p> <p>2008-01-01</p> <p>The changes occurring in mountain regions are an epitome of climate change. The dramatic shrinkage of major glaciers over the past century – and especially in the last 30 years – is one of several iconic images that have come to symbolize climate change. Climate creates the context for ecosystems, and climate variables strongly influence the structure, composition, and processes that characterize distinct ecosystems. Climate change, therefore, is having direct and indirect effects on species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue regardless of emissions mitigation, management strategies to enhance the resilience of ecosystems will become increasingly important. It is essential that management responses to climate change proceed using the best available science despite uncertainties associated with the future path of climate change, the response of ecosystems to climate effects, and the effects of management. Given these uncertainties, management adaptation will require flexibility to reflect our growing understanding of climate change impacts and management effectiveness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27859101','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27859101"><span>Can trait patterns along gradients predict plant community responses to climate change?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guittar, John; Goldberg, Deborah; Klanderud, Kari; Telford, Richard J; Vandvik, Vigdis</p> <p>2016-10-01</p> <p>Plant functional traits vary consistently along climate gradients and are therefore potential predictors of plant community response to climate change. We test this space-for-time assumption by combining a spatial gradient study with whole-community turf transplantation along temperature and precipitation gradients in a network of 12 grassland sites in Southern Norway. Using data on eight traits for 169 species and annual vegetation censuses of 235 turfs over 5 yr, we quantify trait-based responses to climate change by comparing observed community dynamics in transplanted turfs to field-parameterized null model simulations. Three traits related to species architecture (maximum height, number of dormant meristems, and ramet-ramet connection persistence) varied consistently along spatial temperature gradients and also correlated to changes in species abundances in turfs transplanted to warmer climates. Two traits associated with resource acquisition strategy (SLA, leaf area) increased along spatial temperature gradients but did not correlate to changes in species abundances following warming. No traits correlated consistently with precipitation. Our study supports the hypothesis that spatial associations between plant traits and broad-scale climate variables can be predictive of community response to climate change, but it also suggests that not all traits with clear patterns along climate gradients will necessarily influence community response to an equal degree. © 2016 by the Ecological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CliPa..12.2107C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CliPa..12.2107C"><span>The 1430s: a cold period of extraordinary internal climate variability during the early Spörer Minimum with social and economic impacts in north-western and central Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Camenisch, Chantal; Keller, Kathrin M.; Salvisberg, Melanie; Amann, Benjamin; Bauch, Martin; Blumer, Sandro; Brázdil, Rudolf; Brönnimann, Stefan; Büntgen, Ulf; Campbell, Bruce M. S.; Fernández-Donado, Laura; Fleitmann, Dominik; Glaser, Rüdiger; González-Rouco, Fidel; Grosjean, Martin; Hoffmann, Richard C.; Huhtamaa, Heli; Joos, Fortunat; Kiss, Andrea; Kotyza, Oldřich; Lehner, Flavio; Luterbacher, Jürg; Maughan, Nicolas; Neukom, Raphael; Novy, Theresa; Pribyl, Kathleen; Raible, Christoph C.; Riemann, Dirk; Schuh, Maximilian; Slavin, Philip; Werner, Johannes P.; Wetter, Oliver</p> <p>2016-12-01</p> <p>Changes in climate affected human societies throughout the last millennium. While European cold periods in the 17th and 18th century have been assessed in detail, earlier cold periods received much less attention due to sparse information available. New evidence from proxy archives, historical documentary sources and climate model simulations permit us to provide an interdisciplinary, systematic assessment of an exceptionally cold period in the 15th century. Our assessment includes the role of internal, unforced climate variability and external forcing in shaping extreme climatic conditions and the impacts on and responses of the medieval society in north-western and central Europe.Climate reconstructions from a multitude of natural and anthropogenic archives indicate that the 1430s were the coldest decade in north-western and central Europe in the 15th century. This decade is characterised by cold winters and average to warm summers resulting in a strong seasonal cycle in temperature. Results from comprehensive climate models indicate consistently that these conditions occurred by chance due to the partly chaotic internal variability within the climate system. External forcing like volcanic eruptions tends to reduce simulated temperature seasonality and cannot explain the reconstructions. The strong seasonal cycle in temperature reduced food production and led to increasing food prices, a subsistence crisis and a famine in parts of Europe. Societies were not prepared to cope with failing markets and interrupted trade routes. In response to the crisis, authorities implemented numerous measures of supply policy and adaptation such as the installation of grain storage capacities to be prepared for future food production shortfalls.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916932D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916932D"><span>Analysis of shifts in the spatial distribution of vegetation due to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>del Jesus, Manuel; Díez-Sierra, Javier; Rinaldo, Andrea; Rodríguez-Iturbe, Ignacio</p> <p>2017-04-01</p> <p>Climate change will modify the statistical regime of most climatological variables, inducing changes on average values and in the natural variability of environmental variables. These environmental variables may be used to explain the spatial distribution of functional types of vegetation in arid and semiarid watersheds through the use of plant optimization theories. Therefore, plant optimization theories may be used to approximate the response of the spatial distribution of vegetation to a changing climate. Predicting changes in these spatial distributions is important to understand how climate change may affect vegetated ecosystems, but it is also important for hydrological engineering applications where climate change effects on water availability are assessed. In this work, Maximum Entropy Production (MEP) is used as the plant optimization theory that describes the spatial distribution of functional types of vegetation. Current climatological conditions are obtained from direct observations from meteorological stations. Climate change effects are evaluated for different temporal horizons and different climate change scenarios using numerical model outputs from the CMIP5. Rainfall estimates are downscaled by means of a stochastic point process used to model rainfall. The study is carried out for the Rio Salado watershed, located within the Sevilleta LTER site, in New Mexico (USA). Results show the expected changes in the spatial distribution of vegetation and allow to evaluate the expected variability of the changes. The updated spatial distributions allow to evaluate the vegetated ecosystem health and its updated resilience. These results can then be used to inform the hydrological modeling part of climate change assessments analyzing water availability in arid and semiarid watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCC...6..622H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCC...6..622H"><span>Meta-analyses of the determinants and outcomes of belief in climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hornsey, Matthew J.; Harris, Emily A.; Bain, Paul G.; Fielding, Kelly S.</p> <p>2016-06-01</p> <p>Recent growth in the number of studies examining belief in climate change is a positive development, but presents an ironic challenge in that it can be difficult for academics, practitioners and policy makers to keep pace. As a response to this challenge, we report on a meta-analysis of the correlates of belief in climate change. Twenty-seven variables were examined by synthesizing 25 polls and 171 academic studies across 56 nations. Two broad conclusions emerged. First, many intuitively appealing variables (such as education, sex, subjective knowledge, and experience of extreme weather events) were overshadowed in predictive power by values, ideologies, worldviews and political orientation. Second, climate change beliefs have only a small to moderate effect on the extent to which people are willing to act in climate-friendly ways. Implications for converting sceptics to the climate change cause--and for converting believers’ intentions into action--are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/54199','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/54199"><span>Forest cover change, climate variability, and hydrological responses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Xiaohua Wei; Rita Winkler; Ge Sun</p> <p>2017-01-01</p> <p>Understanding ecohydrological response to environmental change is critical for protecting watershed functions, sustaining clean water supply, and other ecosystem services, safeguarding public safety, floods mitigation, and drought response. Understanding ecohyhdrological processes and their implications to forest and water management has become increasingly important...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4611653','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4611653"><span>Enhanced precipitation variability decreases grass- and increases shrub-productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gherardi, Laureano A.; Sala, Osvaldo E.</p> <p>2015-01-01</p> <p>Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production. Dominant plant-functional types showed opposite responses: perennial-grass productivity decreased by 81%, whereas shrub productivity increased by 67%. This pattern was explained by different nonlinear responses to precipitation. Grass productivity presented a saturating response to precipitation where dry years had a larger negative effect than the positive effects of wet years. In contrast, shrubs showed an increasing response to precipitation that resulted in an increase in average productivity with increasing precipitation variability. In addition, the effects of precipitation variation increased through time. We argue that the differential responses of grasses and shrubs to precipitation variability and the amplification of this phenomenon through time result from contrasting root distributions of grasses and shrubs and competitive interactions among plant types, confirmed by structural equation analysis. Under drought conditions, grasses reduce their abundance and their ability to absorb water that then is transferred to deep soil layers that are exclusively explored by shrubs. Our work addresses an understudied dimension of climate change that might lead to widespread shrub encroachment reducing the provisioning of ecosystem services to society. PMID:26417095</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.bioone.org/doi/abs/10.2980/17-3-3353','USGSPUBS'); return false;" href="http://www.bioone.org/doi/abs/10.2980/17-3-3353"><span>Spatial variability in growth-increment chronologies of long-lived freshwater mussels: Implications for climate impacts and reconstructions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Black, Bryan A.; Dunham, Jason B.; Blundon, Brett W.; Raggon, Mark F.; Zima, Daniela</p> <p>2010-01-01</p> <p>Estimates of historical variability in river ecosystems are often lacking, but long-lived freshwater mussels could provide unique opportunities to understand past conditions in these environments. We applied dendrochronology techniques to quantify historical variability in growth-increment widths in valves (shells) of western pearlshell freshwater mussels (Margaritifera falcata). A total of 3 growth-increment chronologies, spanning 19 to 26 y in length, were developed. Growth was highly synchronous among individuals within each site, and to a lesser extent, chronologies were synchronous among sites. All 3 chronologies negatively related to instrumental records of stream discharge, while correlations with measures of water temperature were consistently positive but weaker. A reconstruction of stream discharge was performed using linear regressions based on a mussel growth chronology and the regional Palmer Drought Severity Index (PDSI). Models based on mussel growth and PDSI yielded similar coefficients of prediction (R2Pred) of 0.73 and 0.77, respectively, for predicting out-ofsample observations. From an ecological perspective, we found that mussel chronologies provided a rich source of information for understanding climate impacts. Responses of mussels to changes in climate and stream ecosystems can be very site- and process-specific, underscoring the complex nature of biotic responses to climate change and the need to understand both regional and local processes in projecting climate impacts on freshwater species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16737361','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16737361"><span>Getting even or moving on? Power, procedural justice, and types of offense as predictors of revenge, forgiveness, reconciliation, and avoidance in organizations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aquino, Karl; Tripp, Thomas M; Bies, Robert J</p> <p>2006-05-01</p> <p>A field study and an experimental study examined relationships among organizational variables and various responses of victims to perceived wrongdoing. Both studies showed that procedural justice climate moderates the effect of organizational variables on the victim's revenge, forgiveness, reconciliation, or avoidance behaviors. In Study 1, a field study, absolute hierarchical status enhanced forgiveness and reconciliation, but only when perceptions of procedural justice climate were high; relative hierarchical status increased revenge, but only when perceptions of procedural justice climate were low. In Study 2, a laboratory experiment, victims were less likely to endorse vengeance or avoidance depending on the type of wrongdoing, but only when perceptions of procedural justice climate were high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27092012','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27092012"><span>Country-Specific Effects of Climate Variability on Human Migration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gray, Clark; Wise, Erika</p> <p>2016-04-01</p> <p>Involuntary human migration is among the social outcomes of greatest concern in the current era of global climate change. Responding to this concern, a growing number of studies have investigated the consequences of short to medium-term climate variability for human migration using demographic and econometric approaches. These studies have provided important insights, but at the same time have been significantly limited by lack of expertise in the use of climate data, access to cross-national data on migration, and attention to model specification. To address these limitations, we link data on internal and international migration over a 6-year period from 9,812 origin households in Kenya, Uganda, Nigeria, Burkina Faso and Senegal to high-resolution gridded climate data from both station and satellite sources. Analyses of these data using several plausible specifications reveal that climate variability has country-specific effects on migration: Migration tends to increase with temperature anomalies in Uganda, tends to decrease with temperature anomalies in Kenya and Burkina Faso, and shows no consistent relationship with temperature in Nigeria and Senegal. Consistent with previous studies, precipitation shows weak and inconsistent relationships with migration across countries. These results challenge generalizing narratives that foresee a consistent migratory response to climate change across the globe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...742281Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...742281Z"><span>ENSO elicits opposing responses of semi-arid vegetation between Hemispheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Anzhi; Jia, Gensuo; Epstein, Howard E.; Xia, Jiangjiang</p> <p>2017-02-01</p> <p>Semi-arid ecosystems are key contributors to the global carbon cycle and may even dominate the inter-annual variability (IAV) and trends of the land carbon sink, driven largely by the El Niño-Southern Oscillation (ENSO). The linkages between dynamics of semi-arid ecosystems and climate at the hemispheric scale however are not well known. Here, we use satellite data and climate observations from 2000 to 2014 to explore the impacts of ENSO on variability of semi-arid ecosystems, using the Ensemble Empirical Mode Decomposition method. We show that the responses of semi-arid vegetation to ENSO occur in opposite directions, resulting from opposing controls of ENSO on precipitation between the Northern Hemisphere (positively correlated to ENSO) and the Southern Hemisphere (negatively correlated to ENSO). Also, the Southern Hemisphere, with a robust negative coupling of temperature and precipitation anomalies, exhibits stronger and faster responses of semi-arid ecosystems to ENSO than the Northern Hemisphere. Our findings suggest that natural coherent variability in semi-arid ecosystem productivity responded to ENSO in opposite ways between two hemispheres, which may imply potential prediction of global semi-arid ecosystem variability, particularly based on variability in tropical Pacific Sea Surface Temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23600253','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23600253"><span>Variability in winter climate and winter extremes reduces population growth of an alpine butterfly.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roland, Jens; Matter, Stephen F</p> <p>2013-01-01</p> <p>We examined the long-term, 15-year pattern of population change in a network of 21 Rocky Mountain populations of Parnassius smintheus butterflies in response to climatic variation. We found that winter values of the broadscale climate variable, the Pacific Decadal Oscillation (PDO) index, were a strong predictor of annual population growth, much more so than were endogenous biotic factors related to population density. The relationship between PDO and population growth was nonlinear. Populations declined in years with extreme winter PDO values, when there were either extremely warm or extremely cold sea surface temperatures in the eastern Pacific relative to that in the western Pacific. Results suggest that more variable winters, and more frequent extremely cold or warm winters, will result in more frequent decline of these populations, a pattern exacerbated by the trend for increasingly variable winters seen over the past century.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189489','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189489"><span>Behavioral flexibility as a mechanism for coping with climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Beever, Erik; Hall, L. Embere; Varner, Johanna; Loosen, Anne E.; Dunham, Jason B.; Gahl, Megan K.; Smith, Felisa A.; Lawler, Joshua J.</p> <p>2017-01-01</p> <p>Of the primary responses to contemporary climate change – “move, adapt, acclimate, or die” – that are available to organisms, “acclimate” may be effectively achieved through behavioral modification. Behavioral flexibility allows animals to rapidly cope with changing environmental conditions, and behavior represents an important component of a species’ adaptive capacity in the face of climate change. However, there is currently a lack of knowledge about the limits or constraints on behavioral responses to changing conditions. Here, we characterize the contexts in which organisms respond to climate variability through behavior. First, we quantify patterns in behavioral responses across taxa with respect to timescales, climatic stimuli, life-history traits, and ecology. Next, we identify existing knowledge gaps, research biases, and other challenges. Finally, we discuss how conservation practitioners and resource managers can incorporate an improved understanding of behavioral flexibility into natural resource management and policy decisions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/46029','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/46029"><span>More than the sum of the parts: forest climate response from joint species distribution models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James S. Clark; Alan E. Gelfand; Christopher W. Woodall; Kai Zhu</p> <p>2014-01-01</p> <p>The perceived threat of climate change is often evaluated from species distribution models that are fitted to many species independently and then added together. This approach ignores the fact that species are jointly distributed and limit one another. Species respond to the same underlying climatic variables, and the abundance of any one species can be constrained by...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003BAMS...84.1741T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003BAMS...84.1741T"><span>Climate Research and Seasonal Forecasting for West Africans: Perceptions, Dissemination, and Use?.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tarhule, Aondover; Lamb, Peter J.</p> <p>2003-12-01</p> <p>Beginning in response to the disastrous drought of 1968 73, considerable research and monitoring have focused on the characteristics, causes, predictability, and impacts of West African Soudano Sahel (10° 18°N) rainfall variability and drought. While these efforts have generated substantial information on a range of these topics, very little is known of the extent to which communities, activities at risk, and policy makers are aware of, have access to, or use such information. This situation has prevailed despite Glantz&;s provocative BAMS paper on the use and value of seasonal forecasts for the Sahel more than a quarter century ago. We now provide a systematic reevaluation of these issues based on questionnaire responses of 566 participants (in 13 communities) and 26 organizations in Burkina Faso, Mali, Niger, and Nigeria. The results reveal that rural inhabitants have limited access to climate information, with nongovernmental organizations (NGOs) being the most important source. Moreover, the pathways for information flow are generally weakly connected and informal. As a result, utilization of the results of climate research is very low to nonexistent, even by organizations responsible for managing the effects of climate variability. Similarly, few people have access to seasonal climate forecasts, although the vast majority expressed a willingness to use such information when it becomes available. Those respondents with access expressed great enthusiasm and satisfaction with seasonal forecasts. The results suggest that inhabitants of the Soudano Sahel savanna are keen for changes that improve their ability to cope with climate variability, but the lack of information on alternative courses of action is a major constraint. Our study, thus, essentially leaves unchanged both Glantz&;s negative “tentative conclusion” and more positive “preliminary assessment” of 25 years ago. Specifically, while many of the infrastructural deficiencies and socioeconomic impediments remain, the great yearning for climate information by Soudano Sahalians suggests that the time is finally ripe for fostering increased use. Therefore, a simple model for improved dissemination of climate research and seasonal climate forecast information is proposed. The tragedy is that a quarter century has passed since Glantz&;s clarion call.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC14A2047B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC14A2047B"><span>Disentangling synergistic climate drivers on the evolution of two species of planktonic foraminifera on regional and global scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brombacher, A.; Wilson, P. A.; Bailey, I.; Ezard, T. H. G.</p> <p>2016-02-01</p> <p>Evolution is driven by a combination of biotic and abiotic factors. When quantifying the effects of abiotic drivers, evolutionary change is generally described as a response to a single environmental parameter assumed to represent global climate. However, climate is a complex system of many interacting factors and characterized by high regional variability. Therefore, to understand the role of climate in evolutionary change, we need to consider multiple environmental parameters, across local, regional and global scales, as well as their interactions. The deep-sea microfossil record is sufficiently complete that sufficiently continuous multivariate climatic and multivariate trait data can be obtained from the same samples. Here we present morphological records of the planktonic foraminifera species Globoconella puncticulata and Truncorotalia crassaformis over a 500,000-year interval directly preceding the extinction of G. puncticulata (2.41 Ma). Material was collected from five North Atlantic sites (ODP Sites 659 [18° N], 925 [3° N] and 981 [55° N], IODP Site U1313 [41° N] and DSDP Site 606 [37° N]). Test size and shape of over 35,000 individuals were measured and compared to site-specific records of sea surface temperature, primary productivity and marine aeolian dust deposition, as well as to global records of ice volume, ocean circulation and atmospheric CO2, and all two-way interactions. Morphological parameters respond weakly to individual climate parameters. Once interactions among all studied climate parameters were incorporated, abiotic change explained around 35% of the evolutionary variance. Observed covariances between environmental parameters vary strongly with glacial-interglacial cyclicity, implying that the relationships among climate variables and their relative influences on evolutionary change varied through time. This time dependence cautions against unfettered use of dimension reduction techniques, such as principal components analysis, to extract a single, supposedly dominant, proxy. Furthermore species' responses differed between geographic locations, impressing the need to test how interactions among multiple climate variables at different regional settings shape the biotic microevolutionary response to local and global abiotic change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014HESSD..11.8067C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014HESSD..11.8067C"><span>Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.</p> <p>2014-07-01</p> <p>Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which is expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of Global Climate Model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the Integrated Catchment Model of Phosphorus Dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivity) were highly varied. Sensitivity was governed by soil type (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy-loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014HESS...18.5125C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014HESS...18.5125C"><span>Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.</p> <p>2014-12-01</p> <p>Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which are expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as it is to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of global climate model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the INtegrated CAtchment model of Phosphorus dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivities) were highly varied. Sensitivity was governed by quaternary geology (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1164294','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1164294"><span>Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Deng, Yi</p> <p>2014-11-24</p> <p>DOE-GTRC-05596 11/24/2104 Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate PI: Dr. Yi Deng (PI) School of Earth and Atmospheric Sciences Georgia Institute of Technology 404-385-1821, yi.deng@eas.gatech.edu El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The projection of future changes in the ENSO and AM variability, however, remains highly uncertain with the state-of-the-science climate models. This project conducted a process-resolving, quantitative evaluations of the ENSO and AM variability in the modern reanalysis observationsmore » and in climate model simulations. The goal is to identify and understand the sources of uncertainty and biases in models’ representation of ENSO and AM variability. Using a feedback analysis method originally formulated by one of the collaborative PIs, we partitioned the 3D atmospheric temperature anomalies and surface temperature anomalies associated with ENSO and AM variability into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. In the past 4 years, the research conducted at Georgia Tech under the support of this project has led to 15 peer-reviewed publications and 9 conference/workshop presentations. Two graduate students and one postdoctoral fellow also received research training through participating the project activities. This final technical report summarizes key scientific discoveries we made and provides also a list of all publications and conference presentations resulted from research activities at Georgia Tech. The main findings include: 1) the distinctly different roles played by atmospheric dynamical processes in establishing surface temperature response to ENSO at tropics and extratropics (i.e., atmospheric dynamics disperses energy out of tropics during ENSO warm events and modulate surface temperature at mid-, high-latitudes through controlling downward longwave radiation); 2) the representations of ENSO-related temperature response in climate models fail to converge at the process-level particularly over extratropics (i.e., models produce the right temperature responses to ENSO but with wrong reasons); 3) water vapor feedback contributes substantially to the temperature anomalies found over U.S. during different phases of the Northern Annular Mode (NAM), which adds new insight to the traditional picture that cold/warm advective processes are the main drivers of local temperature responses to the NAM; 4) the overall land surface temperature biases in the latest NCAR model (CESM1) are caused by biases in surface albedo while the surface temperature biases over ocean are related to multiple factors including biases in model albedo, cloud and oceanic dynamics, and the temperature biases over different ocean basins are also induced by different process biases. These results provide a detailed guidance for process-level model turning and improvement, and thus contribute directly to the overall goal of reducing model uncertainty in projecting future changes in the Earth’s climate system, especially in the ENSO and AM variability.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B53C0465A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B53C0465A"><span>Climate controls photosynthetic capacity more than leaf nitrogen contents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ali, A. A.; Xu, C.; McDowell, N. G.</p> <p>2013-12-01</p> <p>Global vegetation models continue to lack the ability to make reliable predictions because the photosynthetic capacity varies a lot with growth conditions, season and among species. It is likely that vegetation models link photosynthetic capacity to concurrent changes in leaf nitrogen content only. To improve the predictions of the vegetation models, there is an urgent need to review species growth conditions and their seasonal response to changing climate. We sampled the global distribution of the Vcmax (maximum carboxylation rates) data of various species across different environmental gradients from the literature and standardized its value to 25 degree Celcius. We found that species explained the largest variation in (1) the photosynthetic capacity and (2) the proportion of nitrogen allocated for rubisco (PNcb). Surprisingly, climate variables explained more variations in photosynthetic capacity as well as PNcb than leaf nitrogen content and/or specific leaf area. The chief climate variables that explain variation in photosynthesis and PNcb were radiation, temperature and daylength. Our analysis suggests that species have the greatest control over photosynthesis and PNcb. Further, compared to leaf nitrogen content and/or specific leaf area, climate variables have more control over photosynthesis and PNcb. Therefore, climate variables should be incorporated in the global vegetation models when making predictions about the photosynthetic capacity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159196','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159196"><span>Hierarchical stochastic modeling of large river ecosystems and fish growth across spatio-temporal scales and climate models: the Missouri River endangered pallid sturgeon example</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wildhaber, Mark L.; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.; Dey, Rima</p> <p>2017-01-01</p> <p>We present a hierarchical series of spatially decreasing and temporally increasing models to evaluate the uncertainty in the atmosphere – ocean global climate model (AOGCM) and the regional climate model (RCM) relative to the uncertainty in the somatic growth of the endangered pallid sturgeon (Scaphirhynchus albus). For effects on fish populations of riverine ecosystems, cli- mate output simulated by coarse-resolution AOGCMs and RCMs must be downscaled to basins to river hydrology to population response. One needs to transfer the information from these climate simulations down to the individual scale in a way that minimizes extrapolation and can account for spatio-temporal variability in the intervening stages. The goal is a framework to determine whether, given uncertainties in the climate models and the biological response, meaningful inference can still be made. The non-linear downscaling of climate information to the river scale requires that one realistically account for spatial and temporal variability across scale. Our down- scaling procedure includes the use of fixed/calibrated hydrological flow and temperature models coupled with a stochastically parameterized sturgeon bioenergetics model. We show that, although there is a large amount of uncertainty associated with both the climate model output and the fish growth process, one can establish significant differences in fish growth distributions between models, and between future and current climates for a given model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1132713-climate-change-effects-agriculture-economic-responses-biophysical-shocks','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1132713-climate-change-effects-agriculture-economic-responses-biophysical-shocks"><span>Climate change effects on agriculture: Economic responses to biophysical shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nelson, Gerald; Valin, Hugo; Sands, Ronald</p> <p></p> <p>Agricultural production is sensitive to weather and will thus be directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments inmore » yields, area, consumption, and international trade. We apply biophysical shocks derived from the IPCC’s Representative Concentration Pathway that result in end-of-century radiative forcing of 8.5 watts per square meter. The mean biophysical impact on crop yield with no incremental CO2 fertilization is a 17 percent reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11 percent, increase area of major crops by 12 percent, and reduce consumption by 2 percent. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences includes model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13f4031L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13f4031L"><span>Changes in rainfed and irrigated crop yield response to climate in the western US</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, X.; Troy, T. J.</p> <p>2018-06-01</p> <p>As the global population increases and the climate changes, ensuring a secure food supply is increasingly important. One strategy is irrigation, which allows for crops to be grown outside their optimal climate growing regions and which buffers against climate variability. Although irrigation is a positive climate adaptation mechanism for agriculture, it has a potentially negative effect on water resources as it can lead to groundwater depletion and diminished surface water supplies. This study quantifies how crop yields are affected by climate variability and extremes and the impact of irrigation on crop yield increases under various growing-season climate conditions. To do this, we use historical climate data and county-level rainfed and irrigated crop yields for maize, soybean, winter and spring wheat over the US to analyze the relationship between climate, crop yields, and irrigation. We find that there are optimal climates, specific to each crop, where irrigation provides a benefit and other conditions where irrigation proves to have marginal, if any, benefits. Furthermore, the relationship between crop yields and climate has changed over the last decades, with a changing sensitivity in the relationship of soybean and winter wheat yields to certain climate variables, like crop reference evapotranspiration. These two conclusions have important implications for agricultural and water resource system planning, as it implies there are more optimal climate conditions where irrigation is particularly productive and regions where irrigation should be reconsidered as there is not a significant agricultural benefit and the water could be used more productively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HESS...22.1221S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HESS...22.1221S"><span>Characterization and evaluation of controls on post-fire streamflow response across western US watersheds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saxe, Samuel; Hogue, Terri S.; Hay, Lauren</p> <p>2018-02-01</p> <p>This research investigates the impact of wildfires on watershed flow regimes, specifically focusing on evaluation of fire events within specified hydroclimatic regions in the western United States, and evaluating the impact of climate and geophysical variables on response. Eighty-two watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. Percent change in annual runoff ratio, low flows, high flows, peak flows, number of zero flow days, baseflow index, and Richards-Baker flashiness index were calculated for each watershed using pre- and post-fire periods. Independent variables were identified for each watershed and fire event, including topographic, vegetation, climate, burn severity, percent area burned, and soils data. Results show that low flows, high flows, and peak flows increase in the first 2 years following a wildfire and decrease over time. Relative response was used to scale response variables with the respective percent area of watershed burned in order to compare regional differences in watershed response. To account for variability in precipitation events, runoff ratio was used to compare runoff directly to PRISM precipitation estimates. To account for regional differences in climate patterns, watersheds were divided into nine regions, or clusters, through k-means clustering using climate data, and regression models were produced for watersheds grouped by total area burned. Watersheds in Cluster 9 (eastern California, western Nevada, Oregon) demonstrate a small negative response to observed flow regimes after fire. Cluster 8 watersheds (coastal California) display the greatest flow responses, typically within the first year following wildfire. Most other watersheds show a positive mean relative response. In addition, simple regression models show low correlation between percent watershed burned and streamflow response, implying that other watershed factors strongly influence response. Spearman correlation identified NDVI, aridity index, percent of a watershed's precipitation that falls as rain, and slope as being positively correlated with post-fire streamflow response. This metric also suggested a negative correlation between response and the soil erodibility factor, watershed area, and percent low burn severity. Regression models identified only moderate burn severity and watershed area as being consistently positively/negatively correlated, respectively, with response. The random forest model identified only slope and percent area burned as significant watershed parameters controlling response. Results will help inform post-fire runoff management decisions by helping to identify expected changes to flow regimes, as well as facilitate parameterization for model application in burned watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Sci...347..255F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Sci...347..255F"><span>Reduced El Niño-Southern Oscillation during the Last Glacial Maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ford, Heather L.; Ravelo, A. Christina; Polissar, Pratigya J.</p> <p>2015-01-01</p> <p>El Niño-Southern Oscillation (ENSO) is a major source of global interannual variability, but its response to climate change is uncertain. Paleoclimate records from the Last Glacial Maximum (LGM) provide insight into ENSO behavior when global boundary conditions (ice sheet extent, atmospheric partial pressure of CO2) were different from those today. In this work, we reconstruct LGM temperature variability at equatorial Pacific sites using measurements of individual planktonic foraminifera shells. A deep equatorial thermocline altered the dynamics in the eastern equatorial cold tongue, resulting in reduced ENSO variability during the LGM compared to the Late Holocene. These results suggest that ENSO was not tied directly to the east-west temperature gradient, as previously suggested. Rather, the thermocline of the eastern equatorial Pacific played a decisive role in the ENSO response to LGM climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25548195','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25548195"><span>Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Fosaa, Anna Maria; Gould, William A; Hermanutz, Luise; Hofgaard, Annika; Jónsdóttir, Ingibjörg S; Jónsdóttir, Ingibjörg I; Jorgenson, Janet C; Lévesque, Esther; Magnusson, Borgþór; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Rixen, Christian; Tweedie, Craig E; Walker, Marilyn D; Walker, Marilyn</p> <p>2015-01-13</p> <p>Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26951654','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26951654"><span>Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli</p> <p>2016-03-22</p> <p>Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=310776&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=310776&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>An analysis of historic and projected climate scenarios in the Western United States using hydrologic landscape classification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>: Identifying areas of similar hydrology within the United States and its regions (hydrologic landscapes - HLs) is an active area of research. HLs are being used to construct spatially distributed assessments of variability in streamflow and climatic response in Oregon, Alaska, a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=310357&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=310357&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>An analysis of historic and projected climate scenarios in the Western united States using hydrologic landscape classification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Identifying areas of similar hydrology within the United States and its regions (Hydrologic landscapes - HLs) is an active area of research. HLs have been used to make spatially distributed assessments of variability in streamflow and climatic response in Oregon, Alaska, and the ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=309954&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=309954&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Using Hydrologic Landscape Classification to Evaluate the Hydrologic Effects of Climate in the Southwestern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Hydrologic landscapes (HLs) have been an active area of research at regional and national scales in the United States. The concept has been used to make spatially distributed assessments of variability in streamflow and climatic response in Oregon, Alaska, and the Pacific Northwe...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=76718&keyword=potomac&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=76718&keyword=potomac&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>CLIMATE CHANGE AND EUTROPHICATION RESPONSES IN THE POTOMAC ESTUARY AND CHESAPEAKE BAY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Our analysis of tree ring and sediment core data indicates that climate variability in the 1900s had different consequences in the Potomac Estuary and Chesapeake Bay than in the previous two centuries as a result of anthropogenic activity affecting nutrient loadings in associated...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=80253&keyword=potomac&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=80253&keyword=potomac&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>THE ROLES OF ANTHROPOGENIC WATERSHED LOADING AND CLIMATE VARIABILITY ON NITROGEN FLUXES TO THE POTOMAC RIVER ESTUARY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>To better anticipate responses of estuaries and coastal ecosystems to human activity and climate variation, it is useful to examine the historical record of nitrogen fluxes from watersheds to receiving waters and the factors affecting them. This study undertook a statistical exam...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=school+AND+aggression&pg=5&id=EJ892578','ERIC'); return false;" href="https://eric.ed.gov/?q=school+AND+aggression&pg=5&id=EJ892578"><span>Perceptions of School and Family Climates and Experiences of Relational Aggression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pernice-Duca, Francesca; Taiariol, Jennifer; Yoon, Jina</p> <p>2010-01-01</p> <p>The role of family and school-level variables on relational aggression and relational victimization was investigated among 158 fourth- and fifth-grade children. Family cohesion, maternal and paternal responsiveness, and school climate were hypothesized to be significant predictors of relational aggression and relational victimization. The results…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.4217C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.4217C"><span>Multi-year climate variability in the Southwestern United States within a context of a dynamically downscaled twentieth century reanalysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrillo, Carlos M.; Castro, Christopher L.; Chang, Hsin-I.; Luong, Thang M.</p> <p>2017-12-01</p> <p>This investigation evaluates whether there is coherency in warm and cool season precipitation at the low-frequency scale that may be responsible for multi-year droughts in the US Southwest. This low-frequency climate variability at the decadal scale and longer is studied within the context of a twentieth-century reanalysis (20CR) and its dynamically-downscaled version (DD-20CR). A spectral domain matrix methods technique (Multiple-Taper-Method Singular Value Decomposition) is applied to these datasets to identify statistically significant spatiotemporal precipitation patterns for the cool (November-April) and warm (July-August) seasons. The low-frequency variability in the 20CR is evaluated by exploring global to continental-scale spatiotemporal variability in moisture flux convergence (MFC) to the occurrence of multiyear droughts and pluvials in Central America, as this region has a demonstrated anti-phase relationship in low-frequency climate variability with northern Mexico and the southwestern US By using the MFC in lieu of precipitation, this study reveals that the 20CR is able to resolve well the low-frequency, multiyear climate variability. In the context of the DD-20CR, multiyear droughts and pluvials in the southwestern US (in the early twentieth century) are significantly related to this low-frequency climate variability. The precipitation anomalies at these low-frequency timescales are in phase between the cool and warm seasons, consistent with the concept of dual-season drought as has been suggested in tree ring studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27144929','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27144929"><span>Adaptation to climate through flowering phenology: a case study in Medicago truncatula.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burgarella, Concetta; Chantret, Nathalie; Gay, Laurène; Prosperi, Jean-Marie; Bonhomme, Maxime; Tiffin, Peter; Young, Nevin D; Ronfort, Joelle</p> <p>2016-07-01</p> <p>Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness-related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome-wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest. We found that flowering time mediates adaptation to climatic conditions mainly by variation at genes located upstream in the flowering pathways, close to the environmental stimuli. Variables related to the annual precipitation regime reflected selective constraints on flowering time genes better than the other variables tested (temperature, altitude, latitude or longitude). By comparing phenotype and climate associations, we identified 12 flowering genes as the most promising candidates responsible for phenological adaptation to climate. Four of these genes were located in the known flowering time QTL region on chromosome 7. However, climate and flowering associations also highlighted largely distinct gene sets, suggesting different genetic architectures for adaptation to climate and flowering onset. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911865M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911865M"><span>Hydrocentric view of Agro-ecosystem Resiliency to Extreme Hydrometeorological and Climate Events in the High Plains, US.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Munoz-Arriola, Francisco; Sharma, Ashutosh; Werner, Katherine; Chacon, Juan-Carlos; Corzo, Gerald; Goyal, Manish-Kumar</p> <p>2017-04-01</p> <p>An increasing incidence of Hydrometeorological and Climate Extreme Events (EHCEs) is challenging food, water, and ecosystem services security at local to global contexts. This study aims to understand how a large-scale representation of agroecosystems and ecosystems respond to EHCE in the Northern Highplains, US. To track such responses the Variable Infiltration Capacity model (VIC) Land Surface Hydrology model was used and two experiments were implemented. The first experiment uses the LAI MODIS15A2 product to capture dynamic responses of vegetation with a time span from 2000 to 2013. The second experiment used a climatological fixed seasonal cycle calculated as the average from the 2000-2013 dynamic MODIS15A2 product to isolate vegetation from soil physical responses. Based on the analyses of multiple hydrological variables and state variables and high-level organization of agroecosystems and ecosystems, we evidence how the influence of droughts and anomalously wet conditions affect hydrological resilience at large scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411878S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411878S"><span>The Response of Ice Sheets to Climate Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snow, K.; Goldberg, D. N.; Holland, P. R.; Jordan, J. R.; Arthern, R. J.; Jenkins, A.</p> <p>2017-12-01</p> <p>West Antarctic Ice Sheet loss is a significant contributor to sea level rise. While the ice loss is thought to be triggered by fluctuations in oceanic heat at the ice shelf bases, ice sheet response to ocean variability remains poorly understood. Using a synchronously coupled ice-ocean model permitting grounding line migration, this study evaluates the response of an ice sheet to periodic variations in ocean forcing. Resulting oscillations in grounded ice volume amplitude is shown to grow as a nonlinear function of ocean forcing period. This implies that slower oscillations in climatic forcing are disproportionately important to ice sheets. The ice shelf residence time offers a critical time scale, above which the ice response amplitude is a linear function of ocean forcing period and below which it is quadratic. These results highlight the sensitivity of West Antarctic ice streams to perturbations in heat fluxes occurring at decadal time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H44C..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H44C..01G"><span>Process connectivity reveals ecohydrologic sensitivity to drought and rainfall pulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodwell, A. E.; Kumar, P.</p> <p>2017-12-01</p> <p>Ecohydrologic fluxes within atmosphere, canopy and soil systems exhibit complex and joint variability. This complexity arises from direct and indirect forcing and feedback interactions that can cause fluctuations to propagate between water, energy, and nutrient fluxes at various time scales. When an ecosystem is perturbed in the form of a single storm event, an accumulating drought, or changes in climate and land cover, this aspect of joint variability may dictate responsiveness and resilience of the entire system. A characterization of the time-dependent and multivariate connectivity between processes, fluxes, and states is necessary to identify and understand these aspects of ecohydrologic systems. We construct Temporal Information Partitioning Networks (TIPNets), based on information theory measures, to identify time-dependencies between variables measured at flux towers along elevation and climate gradients in relation to their responses to moisture-related perturbations. Along a flux tower transect in the Reynolds Creek Critical Zone Observatory (CZO) in Idaho, we detect a significant network response to a large 2015 dry season rainfall event that enhances microbial respiration and latent heat fluxes. At a transect in the Southern Sierra CZO in California, we explore network properties in relation to drought responses from 2011 to 2015. We find that both high and low elevation sites exhibit decreased connectivity between atmospheric and soil variables and latent heat fluxes, but the higher elevation site is less sensitive to this altered connectivity in terms of average monthly heat fluxes. Through a novel approach to gage the responsiveness of ecosystem fluxes to shifts in connectivity, this study aids our understanding of ecohydrologic sensitivity to short-term rainfall events and longer term droughts. This study is relevant to ecosystem resilience under a changing climate, and can lead to a greater understanding of shifting behaviors in many types of complex systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999GMS...112..203B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999GMS...112..203B"><span>Records of millennial-scale climate change from the Great Basin of the Western United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benson, Larry</p> <p></p> <p>High-resolution (decadal) records of climate change from the Owens, Mono, and Pyramid Lake basins of California and Nevada indicate that millennialscale oscillations in climate of the Great Basin occurred between 52.6 and 9.2 14C ka. Climate records from the Owens and Pyramid Lake basins indicate that most, but not all, glacier advances (stades) between 52.6 and ˜15.0 14C ka occurred during relatively dry times. During the last alpine glacial period (˜60.0 to ˜14.0 14C ka), stadial/interstadial oscillations were recorded in Owens and Pyramid Lake sediments by the negative response of phytoplankton productivity to the influx of glacially derived silicates. During glacier advances, rock flour diluted the TOC fraction of lake sediments and introduction of glacially derived suspended sediment also increased the turbidity of lake water, decreasing light penetration and photosynthetic production of organic carbon. It is not possible to correlate objectively peaks in the Owens and Pyramid Lake TOC records (interstades) with Dansgaard-Oeschger interstades in the GISP2 ice-core δ18O record given uncertainties in age control and difference in the shapes of the OL90, PLC92 and GISP2 records. In the North Atlantic region, some climate records have clearly defined variability/cyclicity with periodicities of 102 to 103 yr; these records are correlatable over several thousand km. In the Great Basin, climate proxies also have clearly defined variability with similar time constants, but the distance over which this variability can be correlated remains unknown. Globally, there may be minimal spatial scales (domains) within which climate varies coherently on centennial and millennial scales, but it is likely that the sizes of these domains vary with geographic setting and time. A more comprehensive understanding of the mechanisms of climate forcing and the physical linkages between climate forcing and system response is needed in order to predict the spatial scale(s) over which climate varies coherently.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110012422','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110012422"><span>CLARREO Cornerstone of the Earth Observing System: Measuring Decadal Change Through Accurate Emitted Infrared and Reflected Solar Spectra and Radio Occultation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sandford, Stephen P.</p> <p>2010-01-01</p> <p>The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is one of four Tier 1 missions recommended by the recent NRC Decadal Survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to provide accurate, broadly acknowledged climate records that are used to enable validated long-term climate projections that become the foundation for informed decisions on mitigation and adaptation policies that address the effects of climate change on society. The CLARREO mission accomplishes this critical objective through rigorous SI traceable decadal change observations that are sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. These same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. For the first time CLARREO will make highly accurate, global, SI-traceable decadal change observations sensitive to the most critical, but least understood, climate forcings, responses, and feedbacks. The CLARREO breakthrough is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. The required accuracy levels are determined so that climate trend signals can be detected against a background of naturally occurring variability. Climate system natural variability therefore determines what level of accuracy is overkill, and what level is critical to obtain. In this sense, the CLARREO mission requirements are considered optimal from a science value perspective. The accuracy for decadal change traceability to SI standards includes uncertainties associated with instrument calibration, satellite orbit sampling, and analysis methods. Unlike most space missions, the CLARREO requirements are driven not by the instantaneous accuracy of the measurements, but by accuracy in the large time/space scale averages that are key to understanding decadal changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917558L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917558L"><span>Changes in tree functional composition amplify the response of forest biomass to climate variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lichstein, Jeremy; Zhang, Tao; Niinemets, Ulo; Sheffield, Justin</p> <p>2017-04-01</p> <p>The response of forest carbon storage to climate change is highly uncertain, contributing substantially to the divergence among global climate model projections. Numerous studies have documented responses of forest ecosystems to climate change and variability, including drought-induced increases in tree mortality rates. However, the sensitivity of forests to climate variability - in terms of both biomass carbon storage and functional components of tree species composition - has yet to be quantified across a large region using systematically sampled data. Here, we combine systematic forest inventories across the eastern USA with a species-level drought-tolerance index, derived from a meta-analysis of published literature, to quantify changes in forest biomass and community-mean-drought-tolerance in one-degree grid cells from the 1980s to 2000s. We show that forest biomass responds to decadal-scale changes in water deficit and that this biomass response is amplified by concurrent changes in community-mean-drought-tolerance. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards more drought-tolerant but lower-biomass species. Multiple plant functional traits are correlated with the above species-level drought-tolerance index, and likely contribute to the decrease in biomass with increasing drought-tolerance. These traits include wood density and P50 (the xylem water potential at which a plant loses 50% of its hydraulic conductivity). Simulations with a trait- and competition-based dynamic global vegetation model suggest that species differences in plant carbon allocation to wood, leaves, and fine roots also likely contribute to the observed decrease in biomass with increasing drought-tolerance, because competition drives plants to over-invest in fine roots when water is limiting. Thus, the most competitive species under dry conditions have greater root allocation but lower total biomass than productivity-maximizing plants. Amplification of the biomass-climate response due to shifts in species functional composition (temporal beta diversity) contrasts with evidence that local (alpha) diversity increases ecosystem stability, including increased resistance to climate extremes. These contrasting effects of alpha and beta diversity highlight the need to better understand how different components of biodiversity, including changes in the functional traits of the dominant plant species, affect ecosystem functioning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31A1475W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31A1475W"><span>Modeling land surface hydrology sensitivity in the Colorado River Basin to historical climate variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whitney, K. M.; Bohn, T. J.; Vivoni, E. R.</p> <p>2017-12-01</p> <p>Over the past century, the Colorado River Basin (CRB) has experienced substantial warming and interannual climate variations, including prolonged drought periods. These patterns are projected to accelerate in the 21st century, with major consequences for water resources in the southwestern U.S. and northwestern Mexico. To evaluate future projections appropriately, however, it is important to first quantify the regional hydrologic response to historical climate variability in the CRB. In the current effort, we force the Variable Infiltration Capacity (VIC) land surface hydrology model and a river routing model with historical meteorological data to estimate water balance components and naturalized streamflow response in the CRB at 1/16o spatial resolution and at an hourly time step over the period 1950-2013. We utilize data products from satellite remote sensing to specify spatiotemporal variations in vegetation parameters and include an irrigation scheme to account for evapotranspiration from croplands in the CRB. Furthermore, we apply recent modifications in VIC to more properly account for bare soil evaporation in arid and semiarid ecosystems. Analyses of the historical model simulations are focused on quantifying the spatiotemporal variability of the soil moisture, evapotranspiration, streamflow and snowmelt response and their linkages to extreme meteorological events. Here we characterize the annual and monthly distributions, trends, and statistical extremes and central tendencies of water balance terms averaged over the CRB and its sub-basins for the entire study period 1950-2013. By building a model-based hydrologic climatology and catalog of historical extreme events for the CRB, we aim to construct a basis for future activities that analyze the impact of statistically downscaled climate change projections on the hydrology of the CRB and its urban areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940026132','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940026132"><span>Evaluating models of climate and forest vegetation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clark, James S.</p> <p>1992-01-01</p> <p>Understanding how the biosphere may respond to increasing trace gas concentrations in the atmosphere requires models that contain vegetation responses to regional climate. Most of the processes ecologists study in forests, including trophic interactions, nutrient cycling, and disturbance regimes, and vital components of the world economy, such as forest products and agriculture, will be influenced in potentially unexpected ways by changing climate. These vegetation changes affect climate in the following ways: changing C, N, and S pools; trace gases; albedo; and water balance. The complexity of the indirect interactions among variables that depend on climate, together with the range of different space/time scales that best describe these processes, make the problems of modeling and prediction enormously difficult. These problems of predicting vegetation response to climate warming and potential ways of testing model predictions are the subjects of this chapter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035847','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035847"><span>Response of the everglades ridge and slough landscape to climate variability and 20th-century water management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bernhardt, C.E.; Willard, D.A.</p> <p>2009-01-01</p> <p>The ridge and slough landscape of the Florida Everglades consists of a mosaic of linear sawgrass ridges separated by deeper-water sloughs with tree islands interspersed throughout the landscape. We used pollen assemblages from transects of sediment cores spanning sawgrass ridges, sloughs, and ridge-slough transition zones to determine the timing of ridge and slough formation and to evaluate the response of components of the ridge and slough landscape to climate variability and 20th-century water management. These pollen data indicate that sawgrass ridges and sloughs have been vegetationally distinct from one another since initiation of the Everglades wetland in mid-Holocene time. Although the position and community composition of sloughs have remained relatively stable throughout their history, modern sawgrass ridges formed on sites that originally were occupied by marshes. Ridge formation and maturation were initiated during intervals of drier climate (the Medieval Warm Period and the Little Ice Age) when the mean position of the Intertropical Convergence Zone shifted southward. During these drier intervals, marsh taxa were more common in sloughs, but they quickly receded when precipitation increased. Comparison with regional climate records suggests that slough vegetation is strongly influenced by North Atlantic Oscillation variability, even under 20th-century water management practices. ?? 2009 by the Ecological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034672','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034672"><span>Divergence in Forest-Type Response to Climate and Weather: Evidence for Regional Links Between Forest-Type Evenness and Net Primary Productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bradford, J.B.</p> <p>2011-01-01</p> <p>Climate change is altering long-term climatic conditions and increasing the magnitude of weather fluctuations. Assessing the consequences of these changes for terrestrial ecosystems requires understanding how different vegetation types respond to climate and weather. This study examined 20 years of regional-scale remotely sensed net primary productivity (NPP) in forests of the northern Lake States to identify how the relationship between NPP and climate or weather differ among forest types, and if NPP patterns are influenced by landscape-scale evenness of forest-type abundance. These results underscore the positive relationship between temperature and NPP. Importantly, these results indicate significant differences among broadly defined forest types in response to both climate and weather. Essentially all weather variables that were strongly related to annual NPP displayed significant differences among forest types, suggesting complementarity in response to environmental fluctuations. In addition, this study found that forest-type evenness (within 8 ?? 8 km2 areas) is positively related to long-term NPP mean and negatively related to NPP variability, suggesting that NPP in pixels with greater forest-type evenness is both higher and more stable through time. This is landscape- to subcontinental-scale evidence of a relationship between primary productivity and one measure of biological diversity. These results imply that anthropogenic or natural processes that influence the proportional abundance of forest types within landscapes may influence long-term productivity patterns. ?? 2011 Springer Science+Business Media, LLC (outside the USA).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.U34A..05N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.U34A..05N"><span>Food Security Under Shifting Economic, Demographic, and Climatic Conditions (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naylor, R. L.</p> <p>2013-12-01</p> <p>Global demand for food, feed, and fuel will continue to rise in a more populous and affluent world. Meeting this demand in the future will become increasingly challenging with global climate change; when production shocks stemming from climate variability are added to the new mean climate state, food markets could become more volatile. This talk will focus on the interacting market effects of demand and supply for major food commodities, with an eye on climate-related supply trends and shocks. Lessons from historical patterns of climate variability (e.g., ENSO and its global teleconnections) will be used to infer potential food security outcomes in the event of abrupt changes in the mean climate state. Domestic food and trade policy responses to crop output and price volatility in key producing and consuming nations, such as export bans and import tariffs, will be discussed as a potentially major destabilizing force, underscoring the important influence of uncertainty in achieving--or failing to achieve--food security.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23800223','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23800223"><span>Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Quintero, Ignacio; Wiens, John J</p> <p>2013-08-01</p> <p>A key question in predicting responses to anthropogenic climate change is: how quickly can species adapt to different climatic conditions? Here, we take a phylogenetic approach to this question. We use 17 time-calibrated phylogenies representing the major tetrapod clades (amphibians, birds, crocodilians, mammals, squamates, turtles) and climatic data from distributions of > 500 extant species. We estimate rates of change based on differences in climatic variables between sister species and estimated times of their splitting. We compare these rates to predicted rates of climate change from 2000 to 2100. Our results are striking: matching projected changes for 2100 would require rates of niche evolution that are > 10,000 times faster than rates typically observed among species, for most variables and clades. Despite many caveats, our results suggest that adaptation to projected changes in the next 100 years would require rates that are largely unprecedented based on observed rates among vertebrate species. © 2013 John Wiley & Sons Ltd/CNRS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020194','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020194"><span>Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Swetnam, T.W.; Betancourt, J.L.</p> <p>1998-01-01</p> <p>Ecological responses to climatic variability in the Southwest include regionally synchronized fires, insect outbreaks, and pulses in tree demography (births and deaths). Multicentury, tree-ring reconstructions of drought, disturbance history, and tree demography reveal climatic effects across scales, from annual to decadal, and from local (<102 km2) to mesoscale (104-106 km2). Climate-disturbance relations are more variable and complex than previously assumed. During the past three centuries, mesoscale outbreaks of the western spruce budworm (Choristoneura occidentalis) were associated with wet, not dry episodes, contrary to conventional wisdom. Regional fires occur during extreme droughts but, in some ecosystems, antecedent wet conditions play a secondary role by regulating accumulation of fuels. Interdecadal changes in fire-climate associations parallel other evidence for shifts in the frequency or amplitude of the Southern Oscillation (SO) during the past three centuries. High interannual, fire-climate correlations (r = 0.7 to 0.9) during specific decades (i.e., circa 1740-80 and 1830-60) reflect periods of high amplitude in the SO and rapid switching from extreme wet to dry years in the Southwest, thereby entraining fire occurrence across the region. Weak correlations from 1780 to 1830 correspond with a decrease in SO frequency or amplitude inferred from independent tree-ring width, ice core, and coral isotope reconstructions. Episodic dry and wet episodes have altered age structures and species composition of woodland and conifer forests. The scarcity of old, living conifers established before circa 1600 suggests that the extreme drought of 1575-95 had pervasive effects on tree populations. The most extreme drought of the past 400 years occurred in the mid-twentieth century (1942-57). This drought resulted in broadscale plant dieoffs in shrublands, woodlands, and forests and accelerated shrub invasion of grasslands. Drought conditions were broken by the post-1976 shift to the negative SO phase and wetter cool seasons in the Southwest. The post-1976 period shows up as an unprecedented surge in tree-ring growth within millennia-length chronologies. This unusual episode may have produced a pulse in tree recruitment and improved rangeland conditions (e.g., higher grass production), though additional study is needed to disentangle the interacting roles of land use and climate. The 1950s drought and the post-1976 wet period and their aftermaths offer natural experiments to study long-term ecosystem response to interdecadal climate variability.Ecological responses to climatic variability in the Southwest include regionally synchronized fires, insect outbreaks, and pulses in tree demography (births and deaths). Multicentury, tree-ring reconstructions of drought, disturbance history, and tree demography reveal climatic effects across scales, from annual to decadal, and from local (<102 km2) to mesoscale (104-106 km2). Climate-disturbance relations are more variable and complex than previously assumed. During the past three centuries, mesoscale outbreaks of the western spruce budworm (Choristoneura occidentalis) were associated with wet, not dry episodes, contrary to conventional wisdom. Regional fires occur during extreme droughts but, in some ecosystems, antecedent wet conditions play a secondary role by regulating accumulation of fuels. Interdecadal changes in fire-climate associations parallel other evidence for shifts in the frequency or amplitude of the Southern Oscillation (SO) during the past three centuries. High interannual, fire-climate correlations (r = 0.7 to 0.9) during specific decades (i.e., circa 1740-80 and 1830-60) reflect periods of high amplitude in the SO and rapid switching from extreme wet to dry years in the Southwest, thereby entraining fire occurrence across the region. Weak correlations from 1780 to 1830 correspond with a decrease in SO frequency or amplitude inferred from independent tree-ring width, ic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012CliPa...8.1997Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012CliPa...8.1997Z"><span>An ocean-ice coupled response during the last glacial: a view from a marine isotopic stage 3 record south of the Faeroe Shetland Gateway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zumaque, J.; Eynaud, F.; Zaragosi, S.; Marret, F.; Matsuzaki, K. M.; Kissel, C.; Roche, D. M.; Malaizé, B.; Michel, E.; Billy, I.; Richter, T.; Palis, E.</p> <p>2012-12-01</p> <p>The rapid climatic variability characterising the Marine Isotopic Stage (MIS) 3 (~60-30 cal ka BP) provides key issues to understand the atmosphere-ocean-cryosphere dynamics. Here we investigate the response of sea-surface paleoenvironments to the MIS3 climatic variability through the study of a high resolution oceanic sedimentological archive (core MD99-2281, 60°21' N; 09°27' W; 1197 m water depth), retrieved during the MD114-IMAGES (International Marine Global Change Study) cruise from the southern part of the Faeroe Bank. This sector was under the proximal influence of European ice sheets (Fennoscandian Ice Sheet to the East, British Irish Ice Sheet to the South) during the last glacial and thus probably responded to the MIS3 pulsed climatic changes. We conducted a multi-proxy analysis of core MD99-2281, including magnetic properties, x-ray fluorescence measurements, characterisation of the coarse (>150 μm) lithic fraction (grain concentration) and the analysis of selected biogenic proxies (assemblages and stable isotope ratio of calcareous planktonic foraminifera, dinoflagellate cyst - e.g. dinocyst - assemblages). Results presented here are focussed on the dinocyst response, this proxy providing the reconstruction of past sea-surface hydrological conditions, qualitatively as well as quantitatively (e.g. transfer function sensu lato). Our study documents a very coherent and sensitive oceanic response to the MIS3 rapid climatic variability: strong fluctuations, matching those of stadial/interstadial climatic oscillations as depicted by Greenland ice cores, are recorded in the MD99-2281 archive. Proxies of terrigeneous and detritical material suggest increases in continental advection during Greenland Stadials (including Heinrich events), the latter corresponding also to southward migrations of polar waters. At the opposite, milder sea-surface conditions seem to develop during Greenland Interstadials. After 30 ka, reconstructed paleohydrological conditions evidence strong shifts in SST: this increasing variability seems consistent with the hypothesised coalescence of the British and Fennoscandian ice sheets at that time, which could have directly influenced sea-surface environments in the vicinity of core MD99-2281.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMED31D..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMED31D..01C"><span>Communicating the Results and Activities of the U.S. Climate Change Science Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chatterjee, K.; Parker, K.</p> <p>2004-12-01</p> <p>The Climate Change Science Program (CCSP) has a responsibility for credible and effective communications on issues related to climate variability and climate change science. As an essential part of its mission and responsibilities, the CCSP aims to enhance the quality of public discussion by stressing openness and transparency in its scientific research processes and results, and ensuring the widespread availability of credible, science-based information. The CCSP and individual federal agencies generate substantial amounts of authoritative scientific information on climate variability and change. Research findings are generally well reported in the scientific literature, but relevant aspects of these findings need to be reported in formats suitable for use by diverse audiences whose understanding and familiarity with climate change science issues vary. To further its commitment to the effective communication of climate change science information, the CCSP has established the Communications Interagency Working Group, which has produced an implementation plan for Climate Change communication, aimed at achieving the following goals: * Disseminate the results of CCSP activities credibly and effectively * Make CCSP science findings and products easily available to a diverse set of audiences. In addition to CCSP efforts, the individual federal agencies that comprise CCSP disseminate science-based climate information through their agency networks. The agencies of the CCSP are the Departments of Agriculture, Commerce, Defense, Energy, Health and Human Services, Interior, State, and Transportation and the U.S. EPA, NASA, NSF, Smithsonian Institute, and USAID.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4922588','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4922588"><span>Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo</p> <p>2016-01-01</p> <p>Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995–2014) and near future (2015–2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses. PMID:27348224</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27348224','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27348224"><span>Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo</p> <p>2016-01-01</p> <p>Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995-2014) and near future (2015-2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QuRes..86..373O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QuRes..86..373O"><span>The complexity of millennial-scale variability in southwestern Europe during MIS 11</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oliveira, Dulce; Desprat, Stéphanie; Rodrigues, Teresa; Naughton, Filipa; Hodell, David; Trigo, Ricardo; Rufino, Marta; Lopes, Cristina; Abrantes, Fátima; Sánchez Goñi, Maria Fernanda</p> <p>2016-11-01</p> <p>Climatic variability of Marine Isotope Stage (MIS) 11 is examined using a new high-resolution direct land-sea comparison from the SW Iberian margin Site U1385. This study, based on pollen and biomarker analyses, documents regional vegetation, terrestrial climate and sea surface temperature (SST) variability. Suborbital climate variability is revealed by a series of forest decline events suggesting repeated cooling and drying episodes in SW Iberia throughout MIS 11. Only the most severe events on land are coeval with SST decreases, under larger ice volume conditions. Our study shows that the diverse expression (magnitude, character and duration) of the millennial-scale cooling events in SW Europe relies on atmospheric and oceanic processes whose predominant role likely depends on baseline climate states. Repeated atmospheric shifts recalling the positive North Atlantic Oscillation mode, inducing dryness in SW Iberia without systematical SST changes, would prevail during low ice volume conditions. In contrast, disruption of the Atlantic meridional overturning circulation (AMOC), related to iceberg discharges, colder SST and increased hydrological regime, would be responsible for the coldest and driest episodes of prolonged duration in SW Europe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H43I1338K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H43I1338K"><span>Integration of ENSO Signal Power Through Hydrological Processes in the Little River Watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keener, V. W.; Jones, J. W.; Bosch, D. D.; Cho, J.</p> <p>2011-12-01</p> <p>The relationship of the El-Nino/Southern Oscillation (ENSO) to hydrology is typically discussed in terms of the ability to separate significantly different hydrologic variable responses versus the anomaly that has taken place. Most of the work relating ENSO trends to proxy variables had been done on precipitation records until the mid 1990s, at which point increasing numbers of studies started to focus on ENSO relationships with streamflow as well as other environmental variables. The signals in streamflow are typically complex, representing the integration of both climatic, landscape, and anthropological responses that are able to strengthen the inherent ENSO signal in chaotic regional precipitation data. There is a need to identify climate non-stationarities related to ENSO and their links to watershed-scale outcomes. For risk-management in particular, inter-annual modes of climate variability and their seasonal expression are of interest. In this study, we analyze 36 years of historical monthly streamflow data from the Little River Watershed (LWR), a coastal plain ecosystem in Georgia, in conjunction with wavelet spectral analysis and modeling via the Soil & Water Assessment Tool (SWAT). Using both spectral and physical models allows us to identify the mechanism by which the ENSO signal power in surface and simulated groundwater flow is strengthened as compared to precipitation. The clear increase in the power of the inter-annual climate signal is demonstrated by shared patterns in water budget and exceedance curves, as well as in high ENSO related energy in the 95% significant wavelet spectra for each variable and the NINO 3.4 index. In the LRW, the power of the ENSO teleconnection is increased in both the observed and simulated stream flow through the mechanisms of groundwater flow and interflow, through confinement by a geological layer, the Hawthorn Formation. This non-intuitive relationship between ENSO signal strength and streamflow could prove to be helpful for making seasonal climate predictions in a geographic area with a weaker than desirable ENSO signal, as a predictive relationship could be found between streamflow or other proxy hydro-climatic variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatCC...8..493M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatCC...8..493M"><span>Model tropical Atlantic biases underpin diminished Pacific decadal variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGregor, Shayne; Stuecker, Malte F.; Kajtar, Jules B.; England, Matthew H.; Collins, Mat</p> <p>2018-06-01</p> <p>Pacific trade winds have displayed unprecedented strengthening in recent decades1. This strengthening has been associated with east Pacific sea surface cooling2 and the early twenty-first-century slowdown in global surface warming2,3, amongst a host of other substantial impacts4-9. Although some climate models produce the timing of these recently observed trends10, they all fail to produce the trend magnitude2,11,12. This may in part be related to the apparent model underrepresentation of low-frequency Pacific Ocean variability and decadal wind trends2,11-13 or be due to a misrepresentation of a forced response1,14-16 or a combination of both. An increasingly prominent connection between the Pacific and Atlantic basins has been identified as a key driver of this strengthening of the Pacific trade winds12,17-20. Here we use targeted climate model experiments to show that combining the recent Atlantic warming trend with the typical climate model bias leads to a substantially underestimated response for the Pacific Ocean wind and surface temperature. The underestimation largely stems from a reduction and eastward shift of the atmospheric heating response to the tropical Atlantic warming trend. This result suggests that the recent Pacific trends and model decadal variability may be better captured by models with improved mean-state climatologies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4136776','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4136776"><span>Region-Specific Sensitivity of Anemophilous Pollen Deposition to Temperature and Precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Donders, Timme H.; Hagemans, Kimberley; Dekker, Stefan C.; de Weger, Letty A.; de Klerk, Pim; Wagner-Cremer, Friederike</p> <p>2014-01-01</p> <p>Understanding relations between climate and pollen production is important for several societal and ecological challenges, importantly pollen forecasting for pollinosis treatment, forensic studies, global change biology, and high-resolution palaeoecological studies of past vegetation and climate fluctuations. For these purposes, we investigate the role of climate variables on annual-scale variations in pollen influx, test the regional consistency of observed patterns, and evaluate the potential to reconstruct high-frequency signals from sediment archives. A 43-year pollen-trap record from the Netherlands is used to investigate relations between annual pollen influx, climate variables (monthly and seasonal temperature and precipitation values), and the North Atlantic Oscillation climate index. Spearman rank correlation analysis shows that specifically in Alnus, Betula, Corylus, Fraxinus, Quercus and Plantago both temperature in the year prior to (T-1), as well as in the growing season (T), are highly significant factors (TApril rs between 0.30 [P<0.05[ and 0.58 [P<0.0001]; TJuli-1 rs between 0.32 [P<0.05[ and 0.56 [P<0.0001]) in the annual pollen influx of wind-pollinated plants. Total annual pollen prediction models based on multiple climate variables yield R2 between 0.38 and 0.62 (P<0.0001). The effect of precipitation is minimal. A second trapping station in the SE Netherlands, shows consistent trends and annual variability, suggesting the climate factors are regionally relevant. Summer temperature is thought to influence the formation of reproductive structures, while temperature during the flowering season influences pollen release. This study provides a first predictive model for seasonal pollen forecasting, and also aides forensic studies. Furthermore, variations in pollen accumulation rates from a sub-fossil peat deposit are comparable with the pollen trap data. This suggests that high frequency variability pollen records from natural archives reflect annual past climate variability, and can be used in palaeoecological and -climatological studies to bridge between population- and species-scale responses to climate forcing. PMID:25133631</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PrOce..77..252Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PrOce..77..252Y"><span>Elucidating dynamic responses of North Pacific fish populations to climatic forcing: Influence of life-history strategy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yatsu, A.; Aydin, K. Y.; King, J. R.; McFarlane, G. A.; Chiba, S.; Tadokoro, K.; Kaeriyama, M.; Watanabe, Y.</p> <p>2008-05-01</p> <p>In order to explore mechanistic linkages between low-frequency ocean/climate variability, and fish population responses, we undertook comparative studies of time-series of recruitment-related productivity and the biomass levels of fish stocks representing five life-history strategies in the northern North Pacific between the 1950s and the present. We selected seven species: Japanese sardine ( Sardinopus melanostictus) and California sardine ( Sardinopus sagax) (opportunistic strategists), walleye pollock ( Theragra chalcogramma, intermediate strategist), pink salmon ( Oncorhynchus gorbuscha, salmonic strategist), sablefish ( Anoplopoma fimbria) and Pacific halibut ( Hippoglossus stenolepis) (periodic strategists) and spiny dogfish ( Squalus acanthias, equilibrium strategist). The responses in terms of productivity of sardine, pink salmon, sablefish and halibut to climatic regime shifts were generally immediate, delayed, or no substantial responses depending on the particular regime shift year and fish stock (population). In walleye pollock, there were some periods of high productivity and low productivity, but not coincidental to climatic regime shifts, likely due to indirect climate forcing impacts on both bottom-up and top-down processes. Biomass of zooplankton and all fish stocks examined, except for spiny dogfish whose data were limited, indicated a decadal pattern with the most gradual changes in periodic strategists and most intensive and rapid changes in opportunistic strategists. Responses of sardine productivity to regime shifts were the most intense, probably due to the absence of density-dependent effects and the availability of refuges from predators when sardine biomass was extremely low. Spiny dogfish were least affected by environmental variability. Conversely, spiny dogfish are likely to withstand only modest harvest rates due to their very low intrinsic rate of increase. Thus, each life-history strategy type had a unique response to climatic forcing, owing to their inherent biological traits such as mode, frequency and intensity of reproduction, early life style, age of maturity and longevity. On the other hand, responses of different stocks within a species to climatic regime shifts were unique to each local region, because large-scale climatic forcings are modulated by local physical, chemical and biological processes. The observed response time or absence of response in recruitment-related fish productivity to climatic regime shifts may be influenced by (1) local environmental conditions (immediate, with a delay or no effects), (2) phenological shifts in zooplankton life-history (immediate or with a delay), and (3) stochastic episodic events in both top-down and bottom-up processes (immediate, with a delay or no effects).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51L..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51L..02D"><span>Role of the North Atlantic Ocean in Low Frequency Climate Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Danabasoglu, G.; Yeager, S. G.; Kim, W. M.; Castruccio, F. S.</p> <p>2017-12-01</p> <p>The Atlantic Ocean is a unique basin with its extensive, North - South overturning circulation, referred to as the Atlantic meridional overturning circulation (AMOC). AMOC is thought to represent the dynamical memory of the climate system, playing an important role in decadal and longer time scale climate variability as well as prediction of the earth's future climate on these time scales via its large heat and salt transports. This oceanic memory is communicated to the atmosphere primarily through the influence of persistent sea surface temperature (SST) variations. Indeed, many modeling studies suggest that ocean circulation, i.e., AMOC, is largely responsible for the creation of coherent SST variability in the North Atlantic, referred to as Atlantic Multidecadal Variability (AMV). AMV has been linked to many (multi)decadal climate variations in, e.g., Sahel and Brazilian rainfall, Atlantic hurricane activity, and Arctic sea-ice extent. In the absence of long, continuous observations, much of the evidence for the ocean's role in (multi)decadal variability comes from model simulations. Although models tend to agree on the role of the North Atlantic Oscillation in creating the density anomalies that proceed the changes in ocean circulation, model fidelity in representing variability characteristics, mechanisms, and air-sea interactions remains a serious concern. In particular, there is increasing evidence that models significantly underestimate low frequency variability in the North Atlantic compared to available observations. Such model deficiencies can amplify the relative influence of external or stochastic atmospheric forcing in generating (multi)decadal variability, i.e., AMV, at the expense of ocean dynamics. Here, a succinct overview of the current understanding of the (North) Atlantic Ocean's role on the regional and global climate, including some outstanding questions, will be presented. In addition, a few examples of the climate impacts of the AMV via atmospheric teleconnections from a set of coupled simulations, also considering the relative roles of its tropical and extratropical components, will be highlighted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012WRR....4812510S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012WRR....4812510S"><span>Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sulis, M.; Paniconi, C.; Marrocu, M.; Huard, D.; Chaumont, D.</p> <p>2012-12-01</p> <p>General circulation models (GCMs) are the primary instruments for obtaining projections of future global climate change. Outputs from GCMs, aided by dynamical and/or statistical downscaling techniques, have long been used to simulate changes in regional climate systems over wide spatiotemporal scales. Numerous studies have acknowledged the disagreements between the various GCMs and between the different downscaling methods designed to compensate for the mismatch between climate model output and the spatial scale at which hydrological models are applied. Very little is known, however, about the importance of these differences once they have been input or assimilated by a nonlinear hydrological model. This issue is investigated here at the catchment scale using a process-based model of integrated surface and subsurface hydrologic response driven by outputs from 12 members of a multimodel climate ensemble. The data set consists of daily values of precipitation and min/max temperatures obtained by combining four regional climate models and five GCMs. The regional scenarios were downscaled using a quantile scaling bias-correction technique. The hydrologic response was simulated for the 690 km2des Anglais catchment in southwestern Quebec, Canada. The results show that different hydrological components (river discharge, aquifer recharge, and soil moisture storage) respond differently to precipitation and temperature anomalies in the multimodel climate output, with greater variability for annual discharge compared to recharge and soil moisture storage. We also find that runoff generation and extreme event-driven peak hydrograph flows are highly sensitive to any uncertainty in climate data. Finally, the results show the significant impact of changing sequences of rainy days on groundwater recharge fluxes and the influence of longer dry spells in modifying soil moisture spatial variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010047842','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010047842"><span>Northern Hemisphere Winter Climate Response to Greenhouse Gas, Ozone, Solar and Volcanic Forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shindell, Drew T.; Schmidt, Gavin A.; Miller, Ron L.; Rind, David; Hansen, James E. (Technical Monitor)</p> <p>2001-01-01</p> <p>The Goddard Institute for Space Studies (GISS) climate/middle atmosphere model has been used to study the impacts of increasing greenhouse gases, polar ozone depletion, volcanic eruptions, and solar cycle variability. We focus on the projection of the induced responses onto Northern Hemisphere winter surface climate. Changes in the model's surface climate take place largely through enhancement of existing variability patterns, with greenhouse gases, polar ozone depletion and volcanic eruptions primarily affecting the Arctic Oscillation (AO) pattern. Perturbations descend from the stratosphere to the surface in the model by altering the propagation of planetary waves coming up from the surface, in accord with observational evidence. Models lacking realistic stratospheric dynamics fail to capture these wave flux changes. The results support the conclusion that the stratosphere plays a crucial role in recent AO trends. We show that in our climate model, while ozone depletion has a significant effect, greenhouse gas forcing is the only one capable of causing the large, sustained increase in the AO observed over recent decades. This suggests that the AO trend, and a concurrent strengthening of the stratospheric vortex over the Arctic, are very likely anthropogenic in origin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26159934','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26159934"><span>Biotic context and soil properties modulate native plant responses to enhanced rainfall.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eskelinen, Anu; Harrison, Susan</p> <p>2015-11-01</p> <p>The environmental and biotic context within which plants grow have a great potential to modify responses to climatic changes, yet few studies have addressed both the direct effects of climate and the modulating roles played by variation in the biotic (e.g. competitors) and abiotic (e.g. soils) environment. In a grassland with highly heterogeneous soils and community composition, small seedlings of two native plants, Lasthenia californica and Calycadenia pauciflora, were transplanted into factorially watered and fertilized plots. Measurements were made to test how the effect of climatic variability (mimicked by the watering treatment) on the survival, growth and seed production of these species was modulated by above-ground competition and by edaphic variables. Increased competition outweighed the direct positive impacts of enhanced rainfall on most fitness measures for both species, resulting in no net effect of enhanced rainfall. Both species benefitted from enhanced rainfall when the absence of competitors was accompanied by high soil water retention capacity. Fertilization did not amplify the watering effects; rather, plants benefitted from enhanced rainfall or competitor removal only in ambient nutrient conditions with high soil water retention capacity. The findings show that the direct effects of climatic variability on plant fitness may be reversed or neutralized by competition and, in addition, may be strongly modulated by soil variation. Specifically, coarse soil texture was identified as a factor that may limit plant responsiveness to altered water availability. These results highlight the importance of considering the abiotic as well as biotic context when making future climate change forecasts. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/24488','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/24488"><span>Simulating the response of natural ecosystems and their fire regimes to climatic variability in Alaska.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>D. Bachelet; J. Lenihan; R. Neilson; R. Drapek; T. Kittel</p> <p>2005-01-01</p> <p>The dynamic global vegetation model MC1 was used to examine climate, fire, and ecosystems interactions in Alaska under historical (1922-1996) and future (1997-2100) climate conditions. Projections show that by the end of the 21st century, 75%-90% of the area simulated as tundra in 1922 is replaced by boreal and temperate forest. From 1922 to 1996, simulation results...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/46513','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/46513"><span>Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Irena F. Creed; Adam T. Spargo; Julia A. Jones; Jim M. Buttle; Mary B. Adams; Fred D. Beall; Eric G. Booth; John L. Campbell; Dave Clow; Kelly Elder; Mark B. Green; Nancy B. Grimm; Chelcy Miniat; Patricia Ramlal; Amartya Saha; Stephen Sebestyen; Dave Spittlehouse; Shannon Sterling; Mark W. Williams; Rita Winkler; Huaxia Yao</p> <p>2014-01-01</p> <p>Climate warming is projected to affect forest water yields but the effects are expected to vary.We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AnGeo..36..717P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AnGeo..36..717P"><span>Araucaria growth response to solar and climate variability in South Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prestes, Alan; Klausner, Virginia; Rojahn da Silva, Iuri; Ojeda-González, Arian; Lorensi, Caren</p> <p>2018-05-01</p> <p>In this work, the Sun-Earth-climate relationship is studied using tree growth rings of Araucaria angustifolia (Bertol.) O. Kuntze collected in the city of Passo Fundo, located in the state of Rio Grande do Sul (RS), Brazil. These samples were previously studied by Rigozo et al. (2008); however, their main interest was to search for the solar periodicities in the tree-ring width mean time series without interpreting the rest of the periodicities found. The question arises as to what are the drivers related to those periodicities. For this reason, the classical method of spectral analysis by iterative regression and wavelet methods are applied to find periodicities and trends present in each tree-ring growth, in Southern Oscillation Index (SOI), and in annual mean temperature anomaly between the 24 and 44° S. In order to address the aforementioned question, this paper discusses the correlation between the growth rate of the tree rings with temperature and SOI. In each tree-ring growth series, periods between 2 and 7 years were found, possibly related to the El Niño/La Niña phenomena, and a ˜ 23-year period was found, which may be related to temperature variation. These novel results might represent the tree-ring growth response to local climate conditions during its lifetime, and to nonlinear coupling between the Sun and the local climate variability responsible to the regional climate variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10431E..0WZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10431E..0WZ"><span>Urban green land cover changes and their relation to climatic variables in an anthropogenically impacted area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zoran, Maria A.; Dida, Adrian I.</p> <p>2017-10-01</p> <p>Urban green areas are experiencing rapid land cover change caused by human-induced land degradation and extreme climatic events. Vegetation index time series provide a useful way to monitor urban vegetation phenological variations. This study quantitatively describes Normalized Difference Vegetation Index NDVI) /Enhanced Vegetation Index (EVI) and Leaf Area Index (LAI) temporal changes for Bucharest metropolitan region land cover in Romania from the perspective of vegetation phenology and its relation with climate changes and extreme climate events. The time series from 2000 to 2016 of the NOAA AVHRR and MODIS Terra/Aqua satellite data were analyzed to extract anomalies. Time series of climatic variables were also analyzed through anomaly detection techniques and the Fourier Transform. Correlations between NDVI/EVI time series and climatic variables were computed. Temperature, rainfall and radiation were significantly correlated with almost all land-cover classes for the harmonic analysis amplitude term. However, vegetation phenology was not correlated with climatic variables for the harmonic analysis phase term suggesting a delay between climatic variations and vegetation response. Training and validation were based on a reference dataset collected from IKONOS high resolution remote sensing data. The mean detection accuracy for period 2000- 2016 was assessed to be of 87%, with a reasonable balance between change commission errors (19.3%), change omission errors (24.7%), and Kappa coefficient of 0.73. This paper demonstrates the potential of moderate - and high resolution, multispectral imagery to map and monitor the evolution of the physical urban green land cover under climate and anthropogenic pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B42A..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B42A..02F"><span>Using Time Series of Landsat Data to Improve Understanding of Short- and Long-Term Changes to Vegetation Phenology in Response to Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Friedl, M. A.; Melaas, E. K.; Sulla-menashe, D. J.; Gray, J. M.</p> <p>2014-12-01</p> <p>Phenology, the seasonal progression of organisms through stages of dormancy, active growth, and senescence is a key regulator of ecosystem processes and is widely used as an indicator of vegetation responses to climate change. This is especially true in temperate forests, where seasonal dynamics in canopy development and senescence are tightly coupled to the climate system. Despite this, understanding of climate-phenology interactions is incomplete. A key impediment to improving this understanding is that available datasets are geographically sparse, and in most cases include relatively short time series. Remote sensing has been widely promoted as a useful tool for studies of large-scale phenology, but long-term studies from remote sensing have been limited to AVHRR data, which suffers from limitations related to its coarse spatial resolution and uncertainties in atmospheric corrections and radiometric adjustments that are used to create AVHRR time series. In this study, we used 30 years of Landsat data to quantify the nature and magnitude of long-term trends and short-term variability in the timing of spring leaf emergence and fall senescence. Our analysis focuses on temperate forest locations in the Northeastern United States that are co-located with surface meteorological observations, where we have estimated the timing of leaf emergence and leaf senescence at annual time steps using atmospherically corrected surface reflectances from Landsat TM and ETM+ imagery. Comparison of results from Landsat against ground observations demonstrates that phenological events can be reliably estimated from Landsat time series. More importantly, results from this analysis suggest two main conclusions related to the nature of climate change impacts on temperate forest phenology. First, there is clear evidence of trends towards longer growing seasons in the Landsat record. Second, interannual variability is large, with average year-to-year variability exceeding the magnitude of total changes to the growing season that have occurred over the last three decades. Based on these results we suggest that year-to-year variability in phenology, rather than long-term trends, provides the best basis for predicting future changes in temperate forest phenology in response to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21756317','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21756317"><span>Climate forcing and desert malaria: the effect of irrigation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baeza, Andres; Bouma, Menno J; Dobson, Andy P; Dhiman, Ramesh; Srivastava, Harish C; Pascual, Mercedes</p> <p>2011-07-14</p> <p>Rainfall variability and associated remote sensing indices for vegetation are central to the development of early warning systems for epidemic malaria in arid regions. The considerable change in land-use practices resulting from increasing irrigation in recent decades raises important questions on concomitant change in malaria dynamics and its coupling to climate forcing. Here, the consequences of irrigation level for malaria epidemics are addressed with extensive time series data for confirmed Plasmodium falciparum monthly cases, spanning over two decades for five districts in north-west India. The work specifically focuses on the response of malaria epidemics to rainfall forcing and how this response is affected by increasing irrigation. Remote sensing data for the Normalized Difference Vegetation Index (NDVI) are used as an integrated measure of rainfall to examine correlation maps within the districts and at regional scales. The analyses specifically address whether irrigation has decreased the coupling between malaria incidence and climate variability, and whether this reflects (1) a breakdown of NDVI as a useful indicator of risk, (2) a weakening of rainfall forcing and a concomitant decrease in epidemic risk, or (3) an increase in the control of malaria transmission. The predictive power of NDVI is compared against that of rainfall, using simple linear models and wavelet analysis to study the association of NDVI and malaria variability in the time and in the frequency domain respectively. The results show that irrigation dampens the influence of climate forcing on the magnitude and frequency of malaria epidemics and, therefore, reduces their predictability. At low irrigation levels, this decoupling reflects a breakdown of local but not regional NDVI as an indicator of rainfall forcing. At higher levels of irrigation, the weakened role of climate variability may be compounded by increased levels of control; nevertheless this leads to no significant decrease in the actual risk of disease. This implies that irrigation can lead to more endemic conditions for malaria, creating the potential for unexpectedly large epidemics in response to excess rainfall if these climatic events coincide with a relaxation of control over time. The implications of our findings for control policies of epidemic malaria in arid regions are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25729797','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25729797"><span>Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anderegg, William R L</p> <p>2015-02-01</p> <p>Plant hydraulics mediate terrestrial woody plant productivity, influencing global water, carbon, and biogeochemical cycles, as well as ecosystem vulnerability to drought and climate change. While inter-specific differences in hydraulic traits are widely documented, intra-specific hydraulic variability is less well known and is important for predicting climate change impacts. Here, I present a conceptual framework for this intra-specific hydraulic trait variability, reviewing the mechanisms that drive variability and the consequences for vegetation response to climate change. I performed a meta-analysis on published studies (n = 33) of intra-specific variation in a prominent hydraulic trait - water potential at which 50% stem conductivity is lost (P50) - and compared this variation to inter-specific variability within genera and plant functional types used by a dynamic global vegetation model. I found that intra-specific variability is of ecologically relevant magnitudes, equivalent to c. 33% of the inter-specific variability within a genus, and is larger in angiosperms than gymnosperms, although the limited number of studies highlights that more research is greatly needed. Furthermore, plant functional types were poorly situated to capture key differences in hydraulic traits across species, indicating a need to approach prediction of drought impacts from a trait-based, rather than functional type-based perspective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70042809','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70042809"><span>Prediction, time variance, and classification of hydraulic response to recharge in two karst aquifers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Long, Andrew J.; Mahler, Barbara J.</p> <p>2013-01-01</p> <p>Many karst aquifers are rapidly filled and depleted and therefore are likely to be susceptible to changes in short-term climate variability. Here we explore methods that could be applied to model site-specific hydraulic responses, with the intent of simulating these responses to different climate scenarios from high-resolution climate models. We compare hydraulic responses (spring flow, groundwater level, stream base flow, and cave drip) at several sites in two karst aquifers: the Edwards aquifer (Texas, USA) and the Madison aquifer (South Dakota, USA). A lumped-parameter model simulates nonlinear soil moisture changes for estimation of recharge, and a time-variant convolution model simulates the aquifer response to this recharge. Model fit to data is 2.4% better for calibration periods than for validation periods according to the Nash–Sutcliffe coefficient of efficiency, which ranges from 0.53 to 0.94 for validation periods. We use metrics that describe the shapes of the impulse-response functions (IRFs) obtained from convolution modeling to make comparisons in the distribution of response times among sites and between aquifers. Time-variant IRFs were applied to 62% of the sites. Principal component analysis (PCA) of metrics describing the shapes of the IRFs indicates three principal components that together account for 84% of the variability in IRF shape: the first is related to IRF skewness and temporal spread and accounts for 51% of the variability; the second and third largely are related to time-variant properties and together account for 33% of the variability. Sites with IRFs that dominantly comprise exponential curves are separated geographically from those dominantly comprising lognormal curves in both aquifers as a result of spatial heterogeneity. The use of multiple IRF metrics in PCA is a novel method to characterize, compare, and classify the way in which different sites and aquifers respond to recharge. As convolution models are developed for additional aquifers, they could contribute to an IRF database and a general classification system for karst aquifers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJBm...62..861B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJBm...62..861B"><span>Past crops yield dynamics reconstruction from tree-ring chronologies in the forest-steppe zone based on low- and high-frequency components</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babushkina, Elena A.; Belokopytova, Liliana V.; Shah, Santosh K.; Zhirnova, Dina F.</p> <p>2018-05-01</p> <p>Interrelations of the yield variability of the main crops (wheat, barley, and oats) with hydrothermal regime and growth of conifer trees ( Pinus sylvestris and Larix sibirica) in forest-steppes were investigated in Khakassia, South Siberia. An attempt has been made to understand the role and mechanisms of climatic impact on plants productivity. It was found that amongst variables describing moisture supply, wetness index had maximum impact. Strength of climatic response and correlations with tree growth are different for rain-fed and irrigated crops yield. Separated high-frequency variability components of yield and tree-ring width have more pronounced relationships between each other and with climatic variables than their chronologies per se. Corresponding low-frequency variability components are strongly correlated with maxima observed after 1- to 5-year time shift of tree-ring width. Results of analysis allowed us to develop original approach of crops yield dynamics reconstruction on the base of high-frequency variability component of the growth of pine and low-frequency one of larch.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070031957&hterms=land+use+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dland%2Buse%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070031957&hterms=land+use+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dland%2Buse%2Bchange"><span>Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Quattrochi, Dale A.; Wilbanks, Thomas J.; Kirshen, Paul; Romero-Lnkao, Patricia; Rosenzweig, Cynthia; Ruth, Matthias; Solecki, William; Tarr, Joel</p> <p>2007-01-01</p> <p>Human settlements, both large and small, are where the vast majority of people on the Earth live. Expansion of cities both in population and areal extent, is a relentless process that will accelerate in the 21st century. As a consequence of urban growth both in the United States and around the globe, it is important to develop an understanding of how urbanization will affect the local and regional environment. Of equal importance, however, is the assessment of how cities will be impacted by the looming prospects of global climate change and climate variability. The potential impacts of climate change and variability has recently been annunciated by the IPCC's "Climate Change 2007" report. Moreover, the U.S. Climate Change Science Program (CCSP) is preparing a series of "Synthesis and Assessment Products" (SAPs) reports to support informed discussion and decision making regarding climate change and variability by policy matters, resource managers, stakeholders, the media, and the general public. We are authors on a SAP describing the effects of global climate change on human settlements. This paper will present the elements of our SAP report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We will also present some recommendations about what should be done to further research on how climate change and variability will impact human settlements in the U.S., as well as how to engage government officials, policy and decision makers, and the general public in understanding the implications of climate change and variability on the local and regional levels. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e.g. public health, urban planning for mitigation strategies) on how cities can cope and adapt to climate change and variability. This latter point parallels the concepts and ideas presented in the U.S. National Academy of Sciences, Decadal Survey report on "Earth Science Applications from Space: National Imperatives for the Next Decade and Beyond" wherein the analysis of the impacts of climate change and variability, human health, and land use change are listed as key areas for development of future Earth observing remote sensing systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29888389','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29888389"><span>First-graders' allocation of attentional resources in an emotional Stroop task: The role of heart period variability and classroom climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scrimin, Sara; Moscardino, Ughetta; Mason, Lucia</p> <p>2018-06-11</p> <p>Children's ability to remain focused on a task despite the presence of emotionally salient distractors in the environment is crucial for successful learning and academic performance. This study investigated first-graders' allocation of attentional resources in the presence of distracting emotional, school-related social interaction stimuli. Moreover, we examined whether such attentional processes were influenced by students' self-regulation, as indexed by heart period variability, observed classroom climate, or their interaction. Seventy-two-first graders took part in the study. To assess allocation of attentional resources, students' reaction times on an emotional Stroop task were registered by recording response times to colour frames placed around pictures of distracting emotional, school-related social interaction stimuli (i.e., emotional interference index). Moreover, heart period variability was measured by recording children's electrocardiogram at rest during an individual session, whereas classroom climate was observed during class activities by a trained researcher. Images representing negative social interactions required greater attentional resources than images depicting positive ones. Heart period variability and classroom climate were each significantly and independently associated with the emotional interference index. A significant interaction also emerged, indicating that among children experiencing a negative classroom climate, those who had a higher basal heart period variability (higher self-regulation) were less distracted by negative emotional material and remained more focused on a task compared to those with lower heart period variability (lower self-regulation). Negative interactions require greater attentional resources than positive scenes. Moreover, with a negative classroom climate, higher basal heart period variability is a protective factor. Implications for theory and practice are discussed. © 2018 The British Psychological Society.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/45879','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/45879"><span>Divergent phenological response to hydroclimate variability in forested mountain watersheds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Taehee Hwang; Lawrence E. Band; Chelcy F. Miniat; Conghe Song; Paul V . Bolstad; James M. Vose; Jason P. Love</p> <p>2014-01-01</p> <p>Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27392297','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27392297"><span>Carbon cycle responses of semi-arid ecosystems to positive asymmetry in rainfall.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Haverd, Vanessa; Ahlström, Anders; Smith, Benjamin; Canadell, Josep G</p> <p>2017-02-01</p> <p>Recent evidence shows that warm semi-arid ecosystems are playing a disproportionate role in the interannual variability and greening trend of the global carbon cycle given their mean lower productivity when compared with other biomes (Ahlström et al. 2015 Science, 348, 895). Using multiple observations (land-atmosphere fluxes, biomass, streamflow and remotely sensed vegetation cover) and two state-of-the-art biospheric models, we show that climate variability and extremes lead to positive or negative responses in the biosphere, depending on vegetation type. We find Australia to be a global hot spot for variability, with semi-arid ecosystems in that country exhibiting increased carbon uptake due to both asymmetry in the interannual distribution of rainfall (extrinsic forcing), and asymmetry in the response of gross primary production (GPP) to rainfall change (intrinsic response). The latter is attributable to the pulse-response behaviour of the drought-adapted biota of these systems, a response that is estimated to be as much as half of that from the CO 2 fertilization effect during 1990-2013. Mesic ecosystems, lacking drought-adapted species, did not show an intrinsic asymmetric response. Our findings suggest that a future more variable climate will induce large but contrasting ecosystem responses, differing among biomes globally, independent of changes in mean precipitation alone. The most significant changes are occurring in the extensive arid and semi-arid regions, and we suggest that the reported increased carbon uptake in response to asymmetric responses might be contributing to the observed greening trends there. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27111095','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27111095"><span>Biological responses to environmental heterogeneity under future ocean conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boyd, Philip W; Cornwall, Christopher E; Davison, Andrew; Doney, Scott C; Fourquez, Marion; Hurd, Catriona L; Lima, Ivan D; McMinn, Andrew</p> <p>2016-08-01</p> <p>Organisms are projected to face unprecedented rates of change in future ocean conditions due to anthropogenic climate-change. At present, marine life encounters a wide range of environmental heterogeneity from natural fluctuations to mean climate change. Manipulation studies suggest that biota from more variable marine environments have more phenotypic plasticity to tolerate environmental heterogeneity. Here, we consider current strategies employed by a range of representative organisms across various habitats - from short-lived phytoplankton to long-lived corals - in response to environmental heterogeneity. We then discuss how, if and when organismal responses (acclimate/migrate/adapt) may be altered by shifts in the magnitude of the mean climate-change signal relative to that for natural fluctuations projected for coming decades. The findings from both novel climate-change modelling simulations and prior biological manipulation studies, in which natural fluctuations are superimposed on those of mean change, provide valuable insights into organismal responses to environmental heterogeneity. Manipulations reveal that different experimental outcomes are evident between climate-change treatments which include natural fluctuations vs. those which do not. Modelling simulations project that the magnitude of climate variability, along with mean climate change, will increase in coming decades, and hence environmental heterogeneity will increase, illustrating the need for more realistic biological manipulation experiments that include natural fluctuations. However, simulations also strongly suggest that the timescales over which the mean climate-change signature will become dominant, relative to natural fluctuations, will vary for individual properties, being most rapid for CO2 (~10 years from present day) to 4 decades for nutrients. We conclude that the strategies used by biota to respond to shifts in environmental heterogeneity may be complex, as they will have to physiologically straddle wide-ranging timescales in the alteration of ocean conditions, including the need to adapt to rapidly rising CO2 and also acclimate to environmental heterogeneity in more slowly changing properties such as warming. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710029D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710029D"><span>Planetary boundary layer as an essential component of the earth's climate system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davy, Richard; Esau, Igor</p> <p>2015-04-01</p> <p>Following the traditional engineering approach proposed by Prandtl, the turbulent planetary boundary layers (PBLs) are considered in the climate science as complex, non-linear, essential but nevertheless subordinated components of the earth's climate system. Correspondingly, the temperature variations, dT - a popular and practically important measure of the climate variability, are seen as the system's response to the external heat forcing, Q, e.g. in the energy balance model of the type dT=Q/C (1). The moderation of this response by non-linear feedbacks embedded in the effective heat capacity, C, are to a large degree overlooked. The effective heat capacity is globally determined by the depth of the ocean mixed layer (on multi-decadal and longer time scales) but regionally, over the continents, C is much smaller and determined (on decadal time scales) by the depth, h, of the PBL. The present understanding of the climatological features of turbulent boundary layers is set by the works of Frankignoul & Hasselmann (1976) and Manabe & Stauffer (1980). The former explained how large-scale climate anomalies could be generated in the case of a large C (in the sea surface temperature) by the delta-correlated stochastic forcing (white noise). The latter demonstrated that the climate response to a given forcing is moderated by the depth, h, so that in the shallow PBL the signal should be significantly amplified. At present there are more than 3000 publications (ISI Web of Knowledge) which detail this understanding but the physical mechanisms, which control the boundary layer depth, and statistical relationships between the turbulent and climatological measures remain either unexplored or incorrectly attributed. In order to identify the climatic role of the PBL, the relationships between the PBL depth, h, - as the integral measure of the turbulent processes and micro-circulations due to the surface heterogeneity - and the climatic variability (variations and trends) of temperature have to be established. These relationships are necessary to complete the model (1) where the relationships between temperature variability, dT, and heat forcing, Q, are intensively studied. We demonstrate that the statistical dependences between dT and h becomes the primary factor in controlling the climate features of the earth's climate system when h is shallow (less than about 500 m). Such conditions are found in the cold (with negative surface heat balance on average) and dry (with large-scale air subsidence) climates. To get those climates and their variations correct, the climate models must be able to reproduce the shallow stably-stratified PBL. We show that the present-day CMIP-5 models are systematically and strongly biased towards producing deeper PBLs (between 20-50% deeper than observed) in this part of the parameter space which leads to large errors (around 15 K) and a damped variability of the surface temperatures under these conditions. More generally, this bias indicates that the models represent the earth's cooling processes incorrectly, which may be a part of the puzzle of the observed "hiatus" (or pause) in global warming. Frankignoul, C. & K. Hasselmann, 1977: Stochastic climate models. Part 2, Application to sea-surface temperature anomalies and thermocline variability, Tellus, 29, 289-305. Manabe, S. & R. Stouffer, 1980: Sensitivity of a Global Climate Model to an increase of CO2 concentration in the atmosphere, Journal of Geophysical Research, 85(C10): 5529-5554.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RvGeo..54....5B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RvGeo..54....5B"><span>Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buckley, Martha W.; Marshall, John</p> <p>2016-03-01</p> <p>This is a review about the Atlantic Meridional Overturning Circulation (AMOC), its mean structure, temporal variability, controlling mechanisms, and role in the coupled climate system. The AMOC plays a central role in climate through its heat and freshwater transports. Northward ocean heat transport achieved by the AMOC is responsible for the relative warmth of the Northern Hemisphere compared to the Southern Hemisphere and is thought to play a role in setting the mean position of the Intertropical Convergence Zone north of the equator. The AMOC is a key means by which heat anomalies are sequestered into the ocean's interior and thus modulates the trajectory of climate change. Fluctuations in the AMOC have been linked to low-frequency variability of Atlantic sea surface temperatures with a host of implications for climate variability over surrounding landmasses. On intra-annual timescales, variability in AMOC is large and primarily reflects the response to local wind forcing; meridional coherence of anomalies is limited to that of the wind field. On interannual to decadal timescales, AMOC changes are primarily geostrophic and related to buoyancy anomalies on the western boundary. A pacemaker region for decadal AMOC changes is located in a western "transition zone" along the boundary between the subtropical and subpolar gyres. Decadal AMOC anomalies are communicated meridionally from this region. AMOC observations, as well as the expanded ocean observational network provided by the Argo array and satellite altimetry, are inspiring efforts to develop decadal predictability systems using coupled atmosphere-ocean models initialized by ocean data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27885754','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27885754"><span>Adaptive and plastic responses of Quercus petraea populations to climate across Europe.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sáenz-Romero, Cuauhtémoc; Lamy, Jean-Baptiste; Ducousso, Alexis; Musch, Brigitte; Ehrenmann, François; Delzon, Sylvain; Cavers, Stephen; Chałupka, Władysław; Dağdaş, Said; Hansen, Jon Kehlet; Lee, Steve J; Liesebach, Mirko; Rau, Hans-Martin; Psomas, Achilleas; Schneck, Volker; Steiner, Wilfried; Zimmermann, Niklaus E; Kremer, Antoine</p> <p>2017-07-01</p> <p>How temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150 000 trees sourced from 116 geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (i) to identify the source of differential population responses to climate (genetic differentiation due to past divergent climatic selection vs. plastic responses to ongoing climate change) and (ii) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled for contemporary climate and then projected using data from four regional climate models for years 2071-2100, using two greenhouse gas concentration trajectory scenarios each. Overall, results indicated a moderate response of tree height and survival to climate variation, with changes in dryness (either annual or during the growing season) explaining the major part of the response. While, on average, populations exhibited local adaptation, there was significant clinal population differentiation for height growth with winter temperature at the site of origin. The most moderate climate model (HIRHAM5-EC; rcp4.5) predicted minor decreases in height and survival, while the most extreme model (CCLM4-GEM2-ES; rcp8.5) predicted large decreases in survival and growth for southern and southeastern edge populations (Hungary and Turkey). Other nonmarginal populations with continental climates were predicted to be severely and negatively affected (Bercé, France), while populations at the contemporary northern limit (colder and humid maritime regions; Denmark and Norway) will probably not show large changes in growth and survival in response to climate change. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26833671','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26833671"><span>Grassland responses to increased rainfall depend on the timescale of forcing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sullivan, Martin J P; Thomsen, Meredith A; Suttle, K B</p> <p>2016-04-01</p> <p>Forecasting impacts of future climate change is an important challenge to biologists, both for understanding the consequences of different emissions trajectories and for developing adaptation measures that will minimize biodiversity loss. Existing variation provides a window into the effects of climate on species and ecosystems, but in many places does not encompass the levels or timeframes of forcing expected under directional climatic change. Experiments help us to fill in these uncertainties, simulating directional shifts to examine outcomes of new levels and sustained changes in conditions. Here, we explore the translation between short-term responses to climate variability and longer-term trajectories that emerge under directional climatic change. In a decade-long experiment, we compare effects of short-term and long-term forcings across three trophic levels in grassland plots subjected to natural and experimental variation in precipitation. For some biological responses (plant productivity), responses to long-term extension of the rainy season were consistent with short-term responses, while for others (plant species richness, abundance of invertebrate herbivores and predators), there was pronounced divergence of long-term trajectories from short-term responses. These differences between biological responses mean that sustained directional changes in climate can restructure ecological relationships characterizing a system. Importantly, a positive relationship between plant diversity and productivity turned negative under one scenario of climate change, with a similar change in the relationship between plant productivity and consumer biomass. Inferences from experiments such as this form an important part of wider efforts to understand the complexities of climate change responses. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B42B..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B42B..06S"><span>Sensitivity of regional forest carbon budgets to continuous and stochastic climate change pressures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sulman, B. N.; Desai, A. R.; Scheller, R. M.</p> <p>2010-12-01</p> <p>Climate change is expected to impact forest-atmosphere carbon budgets through three processes: 1. Increased disturbance rates, including fires, mortality due to pest outbreaks, and severe storms 2. Changes in patterns of inter-annual variability, related to increased incidence of severe droughts and defoliating insect outbreaks 3. Continuous changes in forest productivity and respiration, related to increases in mean temperature, growing season length, and CO2 fertilization While the importance of these climate change effects in future regional carbon budgets has been established, quantitative characterization of the relative sensitivity of forested landscapes to these different types of pressures is needed. We present a model- and- data-based approach to understanding the sensitivity of forested landscapes to climate change pressures. Eddy-covariance and biometric measurements from forests in the northern United States were used to constrain two forest landscape models. The first, LandNEP, uses a prescribed functional form for the evolution of net ecosystem productivity (NEP) over the age of a forested grid cell, which is reset following a disturbance event. This model was used for investigating the basic statistical properties of a simple landscape’s responses to climate change pressures. The second model, LANDIS-II, includes different tree species and models forest biomass accumulation and succession, allowing us to investigate the effects of more complex forest processes such as species change and carbon pool accumulation on landscape responses to climate change effects. We tested the sensitivity of forested landscapes to these three types of climate change pressures by applying ensemble perturbations of random disturbance rates, distribution functions of inter-annual variability, and maximum potential carbon uptake rates, in the two models. We find that landscape-scale net carbon exchange responds linearly to continuous changes in potential carbon uptake and inter-annual variability, while responses to stochastic changes are non-linear and become more important at shorter mean disturbance intervals. These results provide insight on how to better parameterize coupled carbon-climate models to more realistically simulate feedbacks between forests and the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.9489S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.9489S"><span>From South to North: flowering phenological responses at different geographical latitudes in 12 European countries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szabó, Barbara; Lehoczky, Annamária; Filzmoser, Peter; Templ, Matthias; Szentkirályi, Ferenc; Pongrácz, Rita; Ortner, Thomas; Mert, Can; Czúcz, Bálint</p> <p>2014-05-01</p> <p>Phenological sensitivity of plants strongly depends on regional climate variability, moreover it is also influenced by large-scale atmospheric circulation patterns. Plants in different environmental conditions (determined by geographical latitude and longitude, altitude, continentality) may show diverse responses to climate change. The first results of an international cooperation aiming at the analysis of plant phenological data along a latitudinal gradient over 12 European countries (Macedonia, Bosnia and Herzegovina, Montenegro, Slovenia, Croatia, Hungary, Slovakia, Poland, Lithuania, Latvia, Estonia and Finland) are presented. The spatio-temporal changes in the flowering onset dates of common lilac (Syringa vulgaris L.) during the period of 1970-2000 were analysed. To characterise the environmental conditions driving the phenological responses, climatic variables (atmospheric pressure, air temperature, precipitation) obtained from a gridded observational dataset (E-OBS 9.0) and time series of the North Atlantic Oscillation (NAO) index were used. Preliminary results for this particular species found a gradual advance of mean flowering onsets along latitudes from 40° N to 65° N, at the rate of -0.12 to -0.32 day/year. Significant zonal differences were found in these rates, which can be explained by the sensitivity of flowering to climatic conditions while moving from Mediterranen to boreal regions of Europe. Thus our results were coherent with most observations in the literature, that higher latitudes can exhibit more pronounced responses, particularly in case of spring phenological events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160010643&hterms=Experimental+design&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DExperimental%2Bdesign','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160010643&hterms=Experimental+design&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DExperimental%2Bdesign"><span>The Model Intercomparison Project on the Climatic Response to Volcanic Forcing (VolMIP): Experimental Design and Forcing Input Data for CMIP6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zanchettin, Davide; Khodri, Myriam; Timmreck, Claudia; Toohey, Matthew; Schmidt, Anja; Gerber, Edwin P.; Hegerl, Gabriele; Robock, Alan; Pausata, Francesco; Ball, William T.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160010643'); toggleEditAbsImage('author_20160010643_show'); toggleEditAbsImage('author_20160010643_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160010643_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160010643_hide"></p> <p>2016-01-01</p> <p>The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC11A0964H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC11A0964H"><span>Hydrological Responses of Andean Lakes and Tropical Floodplains to Climate Variability and Human Intervention: an Integrative Modelling Framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoyos, I. C.; González Morales, C.; Serna López, J. P.; Duque, C. L.; Canon Barriga, J. E.; Dominguez, F.</p> <p>2013-12-01</p> <p>Andean water bodies in tropical regions are significantly influenced by fluctuations associated with climatic and anthropogenic drivers, which implies long term changes in mountain snow peaks, land covers and ecosystems, among others. Our work aims at providing an integrative framework to realistically assess the possible future of natural water bodies with different degrees of human intervention. We are studying in particular the evolution of three water bodies in Colombia: two Andean lakes and a floodplain wetland. These natural reservoirs represent the accumulated effect of hydrological processes in their respective basins, which exhibit different patterns of climate variability and distinct human intervention and environmental histories. Modelling the hydrological responses of these local water bodies to climate variability and human intervention require an understanding of the strong linkage between geophysical and social factors. From the geophysical perspective, the challenge is how to downscale global climate projections in the local context: complex orography and relative lack of data. To overcome this challenge we combine the correlational and physically based analysis of several sources of spatially distributed biophysical and meteorological information to accurately determine aspects such as moisture sources and sinks and past, present and future local precipitation and temperature regimes. From the social perspective, the challenge is how to adequately represent and incorporate into the models the likely response of social agents whose water-related interests are diverse and usually conflictive. To deal with the complexity of these systems we develop interaction matrices, which are useful tools to holistically discuss and represent each environment as a complex system. Our goal is to assess partially the uncertainties of the hydrological balances in these intervened water bodies we establish climate/social scenarios, using hybrid models that combine the computational power of numerical simulations (of both physical and social components) with interactive responses given by users who define strategies and make decisions in real time, providing valuable information about people's attitudes and choices regarding future climate perspectives. Part of our interest with this project is to effectively transfer the knowledge and scientific information gathered to the communities in a way that is useful and propositive. To this end we developed a website (http://peerlagoscolombia.udea.edu.co) that includes relevant information about the project outcomes. We also developed and installed telemetric hydrologic stations in each site, whose data on water storage levels and basic meteorological variables can be accessed online. Acknowledgement: this project is funded by the USAID-NSF PEER program (First cycle, project 31).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918026M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918026M"><span>Hydrological response of karst systems to large-scale climate variability for different catchments of the French karst observatory network INSU/CNRS SNO KARST</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Massei, Nicolas; Labat, David; Jourde, Hervé; Lecoq, Nicolas; Mazzilli, Naomi</p> <p>2017-04-01</p> <p>The french karst observatory network SNO KARST is a national initiative from the National Institute for Earth Sciences and Astronomy (INSU) of the National Center for Scientific Research (CNRS). It is also part of the new french research infrastructure for the observation of the critical zone OZCAR. SNO KARST is composed by several karst sites distributed over conterminous France which are located in different physiographic and climatic contexts (Mediterranean, Pyrenean, Jura mountain, western and northwestern shore near the Atlantic or the English Channel). This allows the scientific community to develop advanced research and experiments dedicated to improve understanding of the hydrological functioning of karst catchments. Here we used several sites of SNO KARST in order to assess the hydrological response of karst catchments to long-term variation of large-scale atmospheric circulation. Using NCEP reanalysis products and karst discharge, we analyzed the links between large-scale circulation and karst water resources variability. As karst hydrosystems are highly heterogeneous media, they behave differently across different time-scales : we explore the large-scale/local-scale relationships according to time-scales using a wavelet multiresolution approach of both karst hydrological variables and large-scale climate fields such as sea level pressure (SLP). The different wavelet components of karst discharge in response to the corresponding wavelet component of climate fields are either 1) compared to physico-chemical/geochemical responses at karst springs, or 2) interpreted in terms of hydrological functioning by comparing discharge wavelet components to internal components obtained from precipitation/discharge models using the KARSTMOD conceptual modeling platform of SNO KARST.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/13380','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/13380"><span>Modeling impacts of CO2, ozone, and climate change on tree growth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>George E. Host; Gary W. Theseira; J. G. Isebrands</p> <p>1996-01-01</p> <p>Understanding the influence of ozone, CO2, and changing climatic regimes on basic plant physiological processes is essential for predicting the response of forest ecosystems. To understand the relationships among these interacting factors, in the face of genetic and other environmental variability, requires a means of synthesis. Physiological...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950046568&hterms=Jun+Make&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DJun%2BMake','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950046568&hterms=Jun+Make&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DJun%2BMake"><span>The Sun as a variable star: Solar and stellar irradiance variations; Colloquium of the International Astronomical Union, 143rd, Boulder, CO, Jun. 20-25, 1993</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pap, Judit M. (Editor); Froehlich, Claus (Editor); Hudson, Hugh S. (Editor); Tobiska, W. Kent (Editor)</p> <p>1994-01-01</p> <p>Variations in solar and stellar irradiances have long been of interest. An International Astronomical Union (IAU) colloquium reviewed such relevant subjects as observations, theoretical interpretations, and empirical and physical models, with a special emphasis on climatic impact of solar irradiance variability. Specific topics discussed included: (1) General Reviews on Observations of Solar and Stellar Irradiance Variability; (2) Observational Programs for Solar and Stellar Irradiance Variability; (3) Variability of Solar and Stellar Irradiance Related to the Network, Active Regions (Sunspots and Plages), and Large-Scale Magnetic Structures; (4) Empirical Models of Solar Total and Spectral Irradiance Variability; (5) Solar and Stellar Oscillations, Irradiance Variations and their Interpretations; and (6) The Response of the Earth's Atmosphere to Solar Irradiance Variations and Sun-Climate Connections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25330325','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25330325"><span>Response of wheat restricted-tillering and vigorous growth traits to variables of climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dias de Oliveira, Eduardo A; Siddique, Kadambot H M; Bramley, Helen; Stefanova, Katia; Palta, Jairo A</p> <p>2015-02-01</p> <p>The response of wheat to the variables of climate change includes elevated CO2, high temperature, and drought which vary according to the levels of each variable and genotype. Independently, elevated CO2, high temperature, and terminal drought affect wheat biomass and grain yield, but the interactive effects of these three variables are not well known. The aim of this study was to determine the effects of elevated CO2 when combined with high temperature and terminal drought on the high-yielding traits of restricted-tillering and vigorous growth. It was hypothesized that elevated CO2 alone, rather than combined with high temperature, ameliorates the effects of terminal drought on wheat biomass and grain yield. It was also hypothesized that wheat genotypes with more sink capacity (e.g. high-tillering capacity and leaf area) have more grain yield under combined elevated CO2, high temperature, and terminal drought. Two pairs of sister lines with contrasting tillering and vigorous growth were grown in poly-tunnels in a four-factor completely randomized split-plot design with elevated CO2 (700 µL L(-1)), high day time temperature (3 °C above ambient), and drought (induced from anthesis) in all combinations to test whether elevated CO2 ameliorates the effects of high temperature and terminal drought on biomass accumulation and grain yield. For biomass and grain yield, only main effects for climate change variables were significant. Elevated CO2 significantly increased grain yield by 24-35% in all four lines and terminal drought significantly reduced grain yield by 16-17% in all four lines, while high temperature (3 °C above the ambient) had no significant effect. A trade-off between yield components limited grain yield in lines with greater sink capacity (free-tillering lines). This response suggests that any positive response to predicted changes in climate will not overcome the limitations imposed by the trade-off in yield components. © 2014 Commonwealth of Australia. Global Change Biology © 2014 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SGeo...38..277R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SGeo...38..277R"><span>Phenological Responses to ENSO in the Global Oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Racault, M.-F.; Sathyendranath, S.; Menon, N.; Platt, T.</p> <p>2017-01-01</p> <p>Phenology relates to the study of timing of periodic events in the life cycle of plants or animals as influenced by environmental conditions and climatic forcing. Phenological metrics provide information essential to quantify variations in the life cycle of these organisms. The metrics also allow us to estimate the speed at which living organisms respond to environmental changes. At the surface of the oceans, microscopic plant cells, so-called phytoplankton, grow and sometimes form blooms, with concentrations reaching up to 100 million cells per litre and extending over many square kilometres. These blooms can have a huge collective impact on ocean colour, because they contain chlorophyll and other auxiliary pigments, making them visible from space. Phytoplankton populations have a high turnover rate and can respond within hours to days to environmental perturbations. This makes them ideal indicators to study the first-level biological response to environmental changes. In the Earth's climate system, the El Niño-Southern Oscillation (ENSO) dominates large-scale inter-annual variations in environmental conditions. It serves as a natural experiment to study and understand how phytoplankton in the ocean (and hence the organisms at higher trophic levels) respond to climate variability. Here, the ENSO influence on phytoplankton is estimated through variations in chlorophyll concentration, primary production and timings of initiation, peak, termination and duration of the growing period. The phenological variabilities are used to characterise phytoplankton responses to changes in some physical variables: sea surface temperature, sea surface height and wind. It is reported that in oceanic regions experiencing high annual variations in the solar cycle, such as in high latitudes, the influence of ENSO may be readily measured using annual mean anomalies of physical variables. In contrast, in oceanic regions where ENSO modulates a climate system characterised by a seasonal reversal of the wind forcing, such as the monsoon system in the Indian Ocean, phenology-based mean anomalies of physical variables help refine evaluation of the mechanisms driving the biological responses and provide a more comprehensive understanding of the integrated processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26506134','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26506134"><span>Large-scale climatic anomalies affect marine predator foraging behaviour and demography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bost, Charles A; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri</p> <p>2015-10-27</p> <p>Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920045127&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920045127&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DGlobal%2Bwarming"><span>Chapman Conference on the Hydrologic Aspects of Global Climate Change, Lake Chelan, WA, June 12-14, 1990, Selected Papers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lettenmaier, Dennis P. (Editor); Rind, D. (Editor)</p> <p>1992-01-01</p> <p>The present conference on the hydrological aspects of global climate change discusses land-surface schemes for future climate models, modeling of the land-surface boundary in climate models as a composite of independent vegetation, a land-surface hydrology parameterizaton with subgrid variability for general circulation models, and conceptual aspects of a statistical-dynamical approach to represent landscape subgrid-scale heterogeneities in atmospheric models. Attention is given to the impact of global warming on river runoff, the influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin, a comparison of observations and model simulations of tropospheric water vapor, and the use of weather types to disaggregate the prediction of general circulation models. Topics addressed include the potential response of an Arctic watershed during a period of global warming and the sensitivity of groundwater recharge estimates to climate variability and change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatCo...6E8220B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatCo...6E8220B"><span>Large-scale climatic anomalies affect marine predator foraging behaviour and demography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri</p> <p>2015-10-01</p> <p>Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.U53C0072M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.U53C0072M"><span>Socio-climatic Exposure of an Afghan Poppy Farmer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mankin, J. S.; Diffenbaugh, N. S.</p> <p>2011-12-01</p> <p>Many posit that climate impacts from anthropogenic greenhouse gas emissions will have consequences for the natural and agricultural systems on which humans rely for food, energy, and livelihoods, and therefore, on stability and human security. However, many of the potential mechanisms of action in climate impacts and human systems response, as well as the differential vulnerabilities of such systems, remain underexplored and unquantified. Here I present two initial steps necessary to characterize and quantify the consequences of climate change for farmer livelihood in Afghanistan, given both climate impacts and farmer vulnerabilities. The first is a conceptual model mapping the potential relationships between Afghanistan's climate, the winter agricultural season, and the country's political economy of violence and instability. The second is a utility-based decision model for assessing farmer response sensitivity to various climate impacts based on crop sensitivities. A farmer's winter planting decision can be modeled roughly as a tradeoff between cultivating the two crops that dominate the winter growing season-opium poppy (a climate tolerant cash crop) and wheat (a climatically vulnerable crop grown for household consumption). Early sensitivity analysis results suggest that wheat yield dominates farmer decision making variability; however, such initial results may dependent on the relative parameter ranges of wheat and poppy yields. Importantly though, the variance in Afghanistan's winter harvest yields of poppy and wheat is tightly linked to household livelihood and thus, is indirectly connected to the wider instability and insecurity within the country. This initial analysis motivates my focused research on the sensitivity of these crops to climate variability in order to project farmer well-being and decision sensitivity in a warmer world.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28107770','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28107770"><span>Different parts, different stories: climate sensitivity of growth is stronger in root collars vs. stems in tundra shrubs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ropars, Pascale; Angers-Blondin, Sandra; Gagnon, Marianne; Myers-Smith, Isla H; Lévesque, Esther; Boudreau, Stéphane</p> <p>2017-08-01</p> <p>Shrub densification has been widely reported across the circumpolar arctic and subarctic biomes in recent years. Long-term analyses based on dendrochronological techniques applied to shrubs have linked this phenomenon to climate change. However, the multi-stemmed structure of shrubs makes them difficult to sample and therefore leads to non-uniform sampling protocols among shrub ecologists, who will favor either root collars or stems to conduct dendrochronological analyses. Through a comparative study of the use of root collars and stems of Betula glandulosa, a common North American shrub species, we evaluated the relative sensitivity of each plant part to climate variables and assessed whether this sensitivity is consistent across three different types of environments in northwestern Québec, Canada (terrace, hilltop and snowbed). We found that root collars had greater sensitivity to climate than stems and that these differences were maintained across the three types of environments. Growth at the root collar was best explained by spring precipitation and summer temperature, whereas stem growth showed weak and inconsistent responses to climate variables. Moreover, sensitivity to climate was not consistent among plant parts, as individuals having climate-sensitive root collars did not tend to have climate-sensitive stems. These differences in sensitivity of shrub parts to climate highlight the complexity of resource allocation in multi-stemmed plants. Whereas stem initiation and growth are driven by microenvironmental variables such as light availability and competition, root collars integrate the growth of all plant parts instead, rendering them less affected by mechanisms such as competition and more responsive to signals of global change. Although further investigations are required to determine the degree to which these findings are generalizable across the tundra biome, our results indicate that consistency and caution in the choice of plant parts are a key consideration for the success of future dendroclimatological studies on shrubs. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP41A1271C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP41A1271C"><span>Early Holocene hydroclimate of Baffin Bay: Understanding the interplay between abrupt climate change events and ice sheet fluctuations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corcoran, M. C.; Thomas, E. K.; Castañeda, I. S.; Briner, J. P.</p> <p>2017-12-01</p> <p>Understanding the causes of ice sheet fluctuations resulting in sea level rise is essential in today's warming climate. In high-latitude ice-sheet-proximal environments such as Baffin Bay, studying both the cause and the rate of ice sheet variability during past abrupt climate change events aids in predictions. Past climate reconstructions are used to understand ice sheet responses to changes in temperature and precipitation. The 9,300 and 8,200 yr BP events are examples of abrupt climate change events in the Baffin Bay region during which there were multiple re-advances of the Greenland and Laurentide ice sheets. High-resolution (decadal-scale) hydroclimate variability near the ice sheet margins during these abrupt climate change events is still unknown. We will generate a decadal-scale record of early Holocene temperature and precipitation using leaf wax hydrogen isotopes, δ2Hwax, from a lake sediment archive on Baffin Island, western Baffin Bay, to better understand abrupt climate change in this region. Shifts in temperature and moisture source result in changes in environmental water δ2H, which in turn is reflected in δ2Hwax, allowing for past hydroclimate to be determined from these compound-specific isotopes. The combination of terrestrial and aquatic δ2Hwax is used to determine soil evaporation and is ultimately used to reconstruct moisture variability. We will compare our results with a previous analysis of δ2Hwax and branched glycerol dialkyl glycerol tetraethers, a temperature and pH proxy, in lake sediment from western Greenland, eastern Baffin Bay, which indicates that cool and dry climate occurred in response to freshwater forcing events in the Labrador Sea. Reconstructing and comparing records on both the western and eastern sides of Baffin Bay during the early Holocene will allow for a spatial understanding of temperature and moisture balance changes during abrupt climate events, aiding in ice sheet modeling and predictions of future sea level rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCo...713502R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCo...713502R"><span>Annually resolved North Atlantic marine climate over the last millennium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reynolds, D. J.; Scourse, J. D.; Halloran, P. R.; Nederbragt, A. J.; Wanamaker, A. D.; Butler, P. G.; Richardson, C. A.; Heinemeier, J.; Eiríksson, J.; Knudsen, K. L.; Hall, I. R.</p> <p>2016-12-01</p> <p>Owing to the lack of absolutely dated oceanographic information before the modern instrumental period, there is currently significant debate as to the role played by North Atlantic Ocean dynamics in previous climate transitions (for example, Medieval Climate Anomaly-Little Ice Age, MCA-LIA). Here we present analyses of a millennial-length, annually resolved and absolutely dated marine δ18O archive. We interpret our record of oxygen isotope ratios from the shells of the long-lived marine bivalve Arctica islandica (δ18O-shell), from the North Icelandic shelf, in relation to seawater density variability and demonstrate that solar and volcanic forcing coupled with ocean circulation dynamics are key drivers of climate variability over the last millennium. During the pre-industrial period (AD 1000-1800) variability in the sub-polar North Atlantic leads changes in Northern Hemisphere surface air temperatures at multi-decadal timescales, indicating that North Atlantic Ocean dynamics played an active role in modulating the response of the atmosphere to solar and volcanic forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1638004','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1638004"><span>The potential health impacts of climate variability and change for the United States: executive summary of the report of the health sector of the U.S. National Assessment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Patz, J A; McGeehin, M A; Bernard, S M; Ebi, K L; Epstein, P R; Grambsch, A; Gubler, D J; Reither, P; Romieu, I; Rose, J B; Samet, J M; Trtanj, J</p> <p>2000-01-01</p> <p>We examined the potential impacts of climate variability and change on human health as part of a congressionally mandated study of climate change in the United States. Our author team, comprising experts from academia, government, and the private sector, was selected by the federal interagency U.S. Global Change Research Program, and this report stems from our first 18 months of work. For this assessment we used a set of assumptions and/or projections of future climates developed for all participants in the National Assessment of the Potential Consequences of Climate Variability and Change. We identified five categories of health outcomes that are most likely to be affected by climate change because they are associated with weather and/or climate variables: temperature-related morbidity and mortality; health effects of extreme weather events (storms, tornadoes, hurricanes, and precipitation extremes); air-pollution-related health effects; water- and foodborne diseases; and vector- and rodent-borne diseases. We concluded that the levels of uncertainty preclude any definitive statement on the direction of potential future change for each of these health outcomes, although we developed some hypotheses. Although we mainly addressed adverse health outcomes, we identified some positive health outcomes, notably reduced cold-weather mortality, which has not been extensively examined. We found that at present most of the U.S. population is protected against adverse health outcomes associated with weather and/or climate, although certain demographic and geographic populations are at increased risk. We concluded that vigilance in the maintenance and improvement of public health systems and their responsiveness to changing climate conditions and to identified vulnerable subpopulations should help to protect the U.S. population from any adverse health outcomes of projected climate change. PMID:10753097</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10753097','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10753097"><span>The potential health impacts of climate variability and change for the United States: executive summary of the report of the health sector of the U.S. National Assessment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Patz, J A; McGeehin, M A; Bernard, S M; Ebi, K L; Epstein, P R; Grambsch, A; Gubler, D J; Reither, P; Romieu, I; Rose, J B; Samet, J M; Trtanj, J</p> <p>2000-04-01</p> <p>We examined the potential impacts of climate variability and change on human health as part of a congressionally mandated study of climate change in the United States. Our author team, comprising experts from academia, government, and the private sector, was selected by the federal interagency U.S. Global Change Research Program, and this report stems from our first 18 months of work. For this assessment we used a set of assumptions and/or projections of future climates developed for all participants in the National Assessment of the Potential Consequences of Climate Variability and Change. We identified five categories of health outcomes that are most likely to be affected by climate change because they are associated with weather and/or climate variables: temperature-related morbidity and mortality; health effects of extreme weather events (storms, tornadoes, hurricanes, and precipitation extremes); air-pollution-related health effects; water- and foodborne diseases; and vector- and rodent-borne diseases. We concluded that the levels of uncertainty preclude any definitive statement on the direction of potential future change for each of these health outcomes, although we developed some hypotheses. Although we mainly addressed adverse health outcomes, we identified some positive health outcomes, notably reduced cold-weather mortality, which has not been extensively examined. We found that at present most of the U.S. population is protected against adverse health outcomes associated with weather and/or climate, although certain demographic and geographic populations are at increased risk. We concluded that vigilance in the maintenance and improvement of public health systems and their responsiveness to changing climate conditions and to identified vulnerable subpopulations should help to protect the U.S. population from any adverse health outcomes of projected climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25590734','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25590734"><span>Analysis of morpho-agronomic and climatic variables in successive agricultural years provides novel information regarding the phenological cycle of Jatropha in conditions of the Brazilian cerrado.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Domiciano, Gisele P; Alves, Alexandre A; Laviola, Bruno G; Albrecht, Julio C</p> <p>2014-12-01</p> <p>Phenological studies can provide information that enables the understanding of the dynamics of plants and how these dynamics are related to the biotic and abiotic environment. In order to study the phenological phases of Jatropha during two agricultural years, agronomic and climatic variables, such as temperature and rainfall, were evaluated. Data for each variable in each year and each genotype were subjected to analysis of variance (ANOVA) and the differences were tested at 5% probability by F test. In addition, the correlation of growth behavior and reproductive development of two Jatropha accessions (CNPAE-102 and CNPAE-169) as a function of time elapsed after the start of the phenological cycle with climatic variables were analyzed through Pearson's correlation. It was found that: (i) the resuming of plant growth by producing new branches and flowers of both genotypes coincides with the start of the rainy season, (ii) the flowering may be related to the increase in temperature and rainfall; (iii) the number of inflorescences per plant and number of female flowers determine the number of green fruits, (iv) the environmental changes are responsible for the delimitation of phenophases; and finally that (v) the responses to phenological changes are genotype-dependent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187293','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187293"><span>Accounting for multiple climate components when estimating climate change exposure and velocity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nadeau, Christopher P.; Fuller, Angela K.</p> <p>2015-01-01</p> <p>The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (<1·5% overlap) across most of the global land surface and that exposure is likely to be highest in areas with low historical climate variation. Last, we show that accounting for changes in the variation and correlation between multiple weather variables can dramatically affect velocity estimates; mean velocity estimates in the continental United States were between 3·1 and 19·0 km yr−1when estimated using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710397F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710397F"><span>Astronomical forcing, insolation and millennial-scale climate variability: evidence from the North Atlantic Ocean (IODP Expedition 306, Site U1313) during the Early-Middle Pleistocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferretti, Patrizia; Crowhurst, Simon; Naafs, David; Barbante, Carlo</p> <p>2015-04-01</p> <p>Since the seminal work by Hays, Imbrie and Shackleton (1976), a plethora of studies mostly based on marine sediments collected during DSDP-ODP-IODP Expeditions has demonstrated a correlation between orbital variations and climatic change. However, information on how changes in orbital boundary conditions affected the frequency and amplitude of millennial-scale climate variability is still fragmentary. Here we examine the record of climatic conditions from MIS 23 to 17 (c. 920-670 ka) using high-resolution stable isotope records from benthic and planktonic foraminifera from a sedimentary sequence in the North Atlantic (Integrated Ocean Drilling Program Expedition 306, Site U1313) in order to evaluate the climate system's response in the millennial band to known orbitally induced insolation changes. Special emphasis is placed on Marine Isotope Stage (MIS) 19, an interglacial centred at around 785 ka during which the insolation appears comparable to the current orbital geometry: MIS 19 is characterised by a minimum of the 400-kyr eccentricity cycle, subdued amplitude of precessional changes, and small amplitude variations in insolation making this marine isotopic stage a potential astronomical analogue for the Holocene and its future evolution, if this remains governed by natural forcing (Loutre and Berger 2000). Benthic and planktonic foraminiferal oxygen isotope values indicate relatively stable conditions during the peak warmth of MIS 19, but sea-surface and deep-water reconstructions start diverging during the transition towards the glacial MIS 18, when large, cold excursions disrupt the surface waters whereas low amplitude millennial scale fluctuations persist in the deep waters as recorded by the oxygen isotope signal (Ferretti et al., 2015). The glacial inception occurred at ˜779 ka, in agreement with an increased abundance of tetra-unsaturated alkenones, reflecting the influence of icebergs and associated meltwater pulses and high-latitude waters at the study site. Using a variety of time series analysis techniques, we evaluate the evolution of millennial climate variability in response to changing orbital boundary conditions during the early-middle Pleistocene. Suborbital variability in both surface- and deep-water records is mainly concentrated at a period of ˜11 kyr and, additionally, at ˜5.8 and ˜3.9 kyr in the deep ocean; these periods are equal to harmonics of precession band oscillations. The fact that the response at the 11 kyr period increased over the same interval during which the amplitude of the response to the precessional cycle increased supports the notion that most of the variance in the 11 kyr band in the sedimentary record is nonlinearly transferred from precession band oscillations. Considering that these periodicities are important features in the equatorial and intertropical insolation, these observations are in line with the view that the low-latitude regions play an important role in the response of the climate system to the astronomical forcing. We conclude that the effect of the orbitally induced insolation is of fundamental importance in regulating the timing and amplitude of millennial scale climate variability. Ferretti P., Crowhurst S.J., Naafs B.D.A., Barbante C., 2015. Quaternary Science Reviews 108, 95-110. Hays J.D., Imbrie J., Shackleton N.J., 1976. Science 194, 1121-1132. Loutre M.F., Berger A., 2000. Climatic Change 46, 61-90.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4832924','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4832924"><span>Country-Specific Effects of Climate Variability on Human Migration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gray, Clark; Wise, Erika</p> <p>2016-01-01</p> <p>Involuntary human migration is among the social outcomes of greatest concern in the current era of global climate change. Responding to this concern, a growing number of studies have investigated the consequences of short to medium-term climate variability for human migration using demographic and econometric approaches. These studies have provided important insights, but at the same time have been significantly limited by lack of expertise in the use of climate data, access to cross-national data on migration, and attention to model specification. To address these limitations, we link data on internal and international migration over a 6-year period from 9,812 origin households in Kenya, Uganda, Nigeria, Burkina Faso and Senegal to high-resolution gridded climate data from both station and satellite sources. Analyses of these data using several plausible specifications reveal that climate variability has country-specific effects on migration: Migration tends to increase with temperature anomalies in Uganda, tends to decrease with temperature anomalies in Kenya and Burkina Faso, and shows no consistent relationship with temperature in Nigeria and Senegal. Consistent with previous studies, precipitation shows weak and inconsistent relationships with migration across countries. These results challenge generalizing narratives that foresee a consistent migratory response to climate change across the globe. PMID:27092012</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1514190L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1514190L"><span>The MedCLIVAR Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lionello, Piero; Medclivar sg, The</p> <p>2013-04-01</p> <p>The MedCLIVAR initiative was first proposed at the 2003 European Geosciences Union assembly in Nice, France. In 2005, it was endorsed by the International Climate Variability and Predictability (CLIVAR) office. Subsequently, the MedCLIVAR Research Network Project was formally approved by the European Science Foundation and launched in May 2006 with the support of funding agencies from 12 countries. Since then, MedCLIVAR has served as a scientific network to promote interaction among different scientific disciplines and to develop a multidisciplinary vision of the evolution of the Mediterranean climate through studies that integrate atmospheric, marine, and terrestrial climate components at time scales ranging from paleoreconstructions to future climate scenarios. Presently, the network continues dealing with scientific issues including past climate variability; connections between the Mediterranean and global climate; the Mediterranean Sea circulation and sea level; feedbacks on the global climate system; and regional responses to greenhouse gas, air pollution, and aerosols. Its present activities include the publication of a newsletter, the organization of the next MedCLIVAR conference in 2014 and the publication of a special issue of Regional Environmental Change devoted to the climate of the Mediterranean region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMPP13A1809A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMPP13A1809A"><span>Evolution of the Climate Continuum from the Mid-Miocene Climatic Optimum to the Present</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aswasereelert, W.; Meyers, S. R.; Hinnov, L. A.; Kelly, D.</p> <p>2011-12-01</p> <p>The recognition of orbital rhythms in paleoclimate data has led to a rich understanding of climate evolution during the Neogene and Quaternary. In contrast, changes in stochastic variability associated with the transition from unipolar to bipolar glaciation have received less attention, although the stochastic component likely preserves key insights about climate. In this study, we seek to evaluate the dominance and character of stochastic climate energy since the Middle Miocene Climatic Optimum (~17 Ma). These analyses extend a previous study that suggested diagnostic stochastic responses associated with Northern Hemisphere ice sheet development during the Plio-Pleistocene (Meyers and Hinnov, 2010). A critical and challenging step necessary to conduct the work is the conversion of depth data to time data. We investigate climate proxy datasets using multiple time scale hypotheses, including depth-derived time scales, sedimentologic/geochemical "tuning", minimal orbital tuning, and comprehensive orbital tuning. To extract the stochastic component of climate, and also explore potential relationships between the orbital parameters and paleoclimate response, a number of approaches rooted in Thomson's (1982) multi-taper spectral method (MTM) are applied. Importantly, the MTM technique is capable of separating the spectral "continuum" - a measure of stochastic variability - from the deterministic periodic orbital signals (spectral "lines") preserved in proxy data. Time series analysis of the proxy records using different chronologic approaches allows us to evaluate the sensitivity of our conclusion about stochastic and deterministic orbital processes during the Middle Miocene to present. Moreover, comparison of individual records permits examination of the spatial dependence of the identified climate responses. Meyers, S.R., and Hinnov, L.A. (2010), Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise: Paleoceanography, 25, PA3207, doi:10.1029/2009PA001834. Thomson, D.J. (1982), Spectrum estimation and harmonic analysis: IEEE Proceedings, v. 70, p. 1055-1096.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=65922&keyword=ocean+AND+climate+AND+changes&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=65922&keyword=ocean+AND+climate+AND+changes&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>THE RESPONSE OF MARINE ECOSYSTEMS TO CLIMATE VARIABILITY ASSOCIATED WITH THE NORTH ATLANTIC OSCILLATION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>A strong association is documented between variability of the North Atlantic Oscillation (NAO) and changes in various trophic levels of the marine ecosystems of the North Atlantic. Examples are presented for phytoplankton, zooplankton, benthos, fish, marine diseases, whales and s...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25983336','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25983336"><span>Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation: The Roles of Trust in Sources of Climate Information, Climate Change Beliefs, and Perceived Risk.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arbuckle, J Gordon; Morton, Lois Wright; Hobbs, Jon</p> <p>2015-02-01</p> <p>Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers' trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19005552','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19005552"><span>Transient nature of late Pleistocene climate variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Crowley, Thomas J; Hyde, William T</p> <p>2008-11-13</p> <p>Climate in the early Pleistocene varied with a period of 41 kyr and was related to variations in Earth's obliquity. About 900 kyr ago, variability increased and oscillated primarily at a period of approximately 100 kyr, suggesting that the link was then with the eccentricity of Earth's orbit. This transition has often been attributed to a nonlinear response to small changes in external boundary conditions. Here we propose that increasing variablility within the past million years may indicate that the climate system was approaching a second climate bifurcation point, after which it would transition again to a new stable state characterized by permanent mid-latitude Northern Hemisphere glaciation. From this perspective the past million years can be viewed as a transient interval in the evolution of Earth's climate. We support our hypothesis using a coupled energy-balance/ice-sheet model, which furthermore predicts that the future transition would involve a large expansion of the Eurasian ice sheet. The process responsible for the abrupt change seems to be the albedo discontinuity at the snow-ice edge. The best-fit model run, which explains almost 60% of the variance in global ice volume during the past 400 kyr, predicts a rapid transition in the geologically near future to the proposed glacial state. Should it be attained, this state would be more 'symmetric' than the present climate, with comparable areas of ice/sea-ice cover in each hemisphere, and would represent the culmination of 50 million years of evolution from bipolar nonglacial climates to bipolar glacial climates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1394474-advancing-model-validated-statistical-method-decomposing-key-oceanic-drivers-regional-climate-focus-northern-tropical-african-climate-variability-community-earth-system-model-cesm','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1394474-advancing-model-validated-statistical-method-decomposing-key-oceanic-drivers-regional-climate-focus-northern-tropical-african-climate-variability-community-earth-system-model-cesm"><span>Advancing a Model-Validated Statistical Method for Decomposing the Key Oceanic Drivers of Regional Climate: Focus on Northern and Tropical African Climate Variability in the Community Earth System Model (CESM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Fuyao; Yu, Yan; Notaro, Michael</p> <p></p> <p>This study advances the practicality and stability of the traditional multivariate statistical method, generalized equilibrium feedback assessment (GEFA), for decomposing the key oceanic drivers of regional atmospheric variability, especially when available data records are short. An advanced stepwise GEFA methodology is introduced, in which unimportant forcings within the forcing matrix are eliminated through stepwise selection. Method validation of stepwise GEFA is performed using the CESM, with a focused application to northern and tropical Africa (NTA). First, a statistical assessment of the atmospheric response to each primary oceanic forcing is carried out by applying stepwise GEFA to a fully coupled controlmore » run. Then, a dynamical assessment of the atmospheric response to individual oceanic forcings is performed through ensemble experiments by imposing sea surface temperature anomalies over focal ocean basins. Finally, to quantify the reliability of stepwise GEFA, the statistical assessment is evaluated against the dynamical assessment in terms of four metrics: the percentage of grid cells with consistent response sign, the spatial correlation of atmospheric response patterns, the area-averaged seasonal cycle of response magnitude, and consistency in associated mechanisms between assessments. In CESM, tropical modes, namely El Niño–Southern Oscillation and the tropical Indian Ocean Basin, tropical Indian Ocean dipole, and tropical Atlantic Niño modes, are the dominant oceanic controls of NTA climate. In complementary studies, stepwise GEFA is validated in terms of isolating terrestrial forcings on the atmosphere, and observed oceanic and terrestrial drivers of NTA climate are extracted to establish an observational benchmark for subsequent coupled model evaluation and development of process-based weights for regional climate projections.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1394474-advancing-model-validated-statistical-method-decomposing-key-oceanic-drivers-regional-climate-focus-northern-tropical-african-climate-variability-community-earth-system-model-cesm','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1394474-advancing-model-validated-statistical-method-decomposing-key-oceanic-drivers-regional-climate-focus-northern-tropical-african-climate-variability-community-earth-system-model-cesm"><span>Advancing a Model-Validated Statistical Method for Decomposing the Key Oceanic Drivers of Regional Climate: Focus on Northern and Tropical African Climate Variability in the Community Earth System Model (CESM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wang, Fuyao; Yu, Yan; Notaro, Michael; ...</p> <p>2017-09-27</p> <p>This study advances the practicality and stability of the traditional multivariate statistical method, generalized equilibrium feedback assessment (GEFA), for decomposing the key oceanic drivers of regional atmospheric variability, especially when available data records are short. An advanced stepwise GEFA methodology is introduced, in which unimportant forcings within the forcing matrix are eliminated through stepwise selection. Method validation of stepwise GEFA is performed using the CESM, with a focused application to northern and tropical Africa (NTA). First, a statistical assessment of the atmospheric response to each primary oceanic forcing is carried out by applying stepwise GEFA to a fully coupled controlmore » run. Then, a dynamical assessment of the atmospheric response to individual oceanic forcings is performed through ensemble experiments by imposing sea surface temperature anomalies over focal ocean basins. Finally, to quantify the reliability of stepwise GEFA, the statistical assessment is evaluated against the dynamical assessment in terms of four metrics: the percentage of grid cells with consistent response sign, the spatial correlation of atmospheric response patterns, the area-averaged seasonal cycle of response magnitude, and consistency in associated mechanisms between assessments. In CESM, tropical modes, namely El Niño–Southern Oscillation and the tropical Indian Ocean Basin, tropical Indian Ocean dipole, and tropical Atlantic Niño modes, are the dominant oceanic controls of NTA climate. In complementary studies, stepwise GEFA is validated in terms of isolating terrestrial forcings on the atmosphere, and observed oceanic and terrestrial drivers of NTA climate are extracted to establish an observational benchmark for subsequent coupled model evaluation and development of process-based weights for regional climate projections.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1254864-differential-responses-carbon-water-vapor-fluxes-climate-among-evergreen-needleleaf-forests-usa','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1254864-differential-responses-carbon-water-vapor-fluxes-climate-among-evergreen-needleleaf-forests-usa"><span>Differential responses of carbon and water vapor fluxes to climate among evergreen needleleaf forests in the USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wagle, Pradeep; Xiao, Xiangming; Kolb, Thomas E.; ...</p> <p>2016-05-31</p> <p>Here, understanding the differences in carbon and water vapor fluxes of spatially distributed evergreen needleleaf forests (ENFs) is crucial for accurately estimating regional or global carbon and water budgets and when predicting the responses of ENFs to current and future climate. We compared the fluxes of ten AmeriFlux ENF sites to investigate cross-site variability in net ecosystem exchange of carbon (NEE), gross primary production (GPP), and evapotranspiration (ET). We used wavelet cross-correlation analysis to examine responses of NEE and ET to common climatic drivers over multiple timescales and also determined optimum values of air temperature (T a) and vapor pressuremore » deficit (VPD) for NEE and ET.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1254864-differential-responses-carbon-water-vapor-fluxes-climate-among-evergreen-needleleaf-forests-usa','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1254864-differential-responses-carbon-water-vapor-fluxes-climate-among-evergreen-needleleaf-forests-usa"><span>Differential responses of carbon and water vapor fluxes to climate among evergreen needleleaf forests in the USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wagle, Pradeep; Xiao, Xiangming; Kolb, Thomas E.</p> <p></p> <p>Here, understanding the differences in carbon and water vapor fluxes of spatially distributed evergreen needleleaf forests (ENFs) is crucial for accurately estimating regional or global carbon and water budgets and when predicting the responses of ENFs to current and future climate. We compared the fluxes of ten AmeriFlux ENF sites to investigate cross-site variability in net ecosystem exchange of carbon (NEE), gross primary production (GPP), and evapotranspiration (ET). We used wavelet cross-correlation analysis to examine responses of NEE and ET to common climatic drivers over multiple timescales and also determined optimum values of air temperature (T a) and vapor pressuremore » deficit (VPD) for NEE and ET.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4359208','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4359208"><span>Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Morton, Lois Wright; Hobbs, Jon</p> <p>2015-01-01</p> <p>Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers’ trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management). PMID:25983336</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC21E0983K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC21E0983K"><span>Efficient design based on perturbed parameter ensembles to identify plausible and diverse variants of a model for climate change projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karmalkar, A.; Sexton, D.; Murphy, J.</p> <p>2017-12-01</p> <p>We present exploratory work towards developing an efficient strategy to select variants of a state-of-the-art but expensive climate model suitable for climate projection studies. The strategy combines information from a set of idealized perturbed parameter ensemble (PPE) and CMIP5 multi-model ensemble (MME) experiments, and uses two criteria as basis to select model variants for a PPE suitable for future projections: a) acceptable model performance at two different timescales, and b) maintaining diversity in model response to climate change. We demonstrate that there is a strong relationship between model errors at weather and climate timescales for a variety of key variables. This relationship is used to filter out parts of parameter space that do not give credible simulations of historical climate, while minimizing the impact on ranges in forcings and feedbacks that drive model responses to climate change. We use statistical emulation to explore the parameter space thoroughly, and demonstrate that about 90% can be filtered out without affecting diversity in global-scale climate change responses. This leads to identification of plausible parts of parameter space from which model variants can be selected for projection studies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B13C0198M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B13C0198M"><span>A Hierarchical Analysis of Tree Growth and Environmental Drivers Across Eastern US Temperate Forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mantooth, J.; Dietze, M.</p> <p>2014-12-01</p> <p>Improving predictions of how forests in the eastern United States will respond to future global change requires a better understanding of the drivers of variability in tree growth rates. Current inventory data lack the temporal resolution to characterize interannual variability, while existing growth records lack the extent required to assess spatial scales of variability. Therefore, we established a network of forest inventory plots across ten sites across the eastern US, and measured growth in adult trees using increment cores. Sites were chosen to maximize climate space explored, while within sites, plots were spread across primary environmental gradients to explore landscape-level variability in growth. Using the annual growth record available from tree cores, we explored the responses of trees to multiple environmental covariates over multiple spatial and temporal scales. We hypothesized that within and across sites growth rates vary among species, and that intraspecific growth rates increase with temperature along a species' range. We also hypothesized that trees show synchrony in growth responses to landscape-scale climatic changes. Initial analyses of growth increments indicate that across sites, trees with intermediate shade tolerance, e.g. Red Oak (Quercus rubra), tend to have the highest growth rates. At the site level, there is evidence for synchrony in response to large-scale climatic events (e.g. prolonged drought and above average temperatures). However, growth responses to climate at the landscape scale have yet to be detected. Our current analysis utilizes hierarchical Bayesian state-space modeling to focus on growth responses of adult trees to environmental covariates at multiple spatial and temporal scales. This predictive model of tree growth currently incorporates observed effects at the individual, plot, site, and landscape scale. Current analysis using this model shows a potential slowing of growth in the past decade for two sites in the northeastern US (Harvard Forest and Bartlett Experimental Forest), however more work is required to determine the robustness of this trend. Finally, these observations are being incorporated into ecosystem models using the Brown Dog informatics tools and the Predictive Ecosystem Analyzer (PEcAn) data assimilation workflow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.476...34D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.476...34D"><span>Improved spectral comparisons of paleoclimate models and observations via proxy system modeling: Implications for multi-decadal variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dee, S. G.; Parsons, L. A.; Loope, G. R.; Overpeck, J. T.; Ault, T. R.; Emile-Geay, J.</p> <p>2017-10-01</p> <p>The spectral characteristics of paleoclimate observations spanning the last millennium suggest the presence of significant low-frequency (multi-decadal to centennial scale) variability in the climate system. Since this low-frequency climate variability is critical for climate predictions on societally-relevant scales, it is essential to establish whether General Circulation models (GCMs) are able to simulate it faithfully. Recent studies find large discrepancies between models and paleoclimate data at low frequencies, prompting concerns surrounding the ability of GCMs to predict long-term, high-magnitude variability under greenhouse forcing (Laepple and Huybers, 2014a, 2014b). However, efforts to ground climate model simulations directly in paleoclimate observations are impeded by fundamental differences between models and the proxy data: proxy systems often record a multivariate and/or nonlinear response to climate, precluding a direct comparison to GCM output. In this paper we bridge this gap via a forward proxy modeling approach, coupled to an isotope-enabled GCM. This allows us to disentangle the various contributions to signals embedded in ice cores, speleothem calcite, coral aragonite, tree-ring width, and tree-ring cellulose. The paper addresses the following questions: (1) do forward-modeled ;pseudoproxies; exhibit variability comparable to proxy data? (2) if not, which processes alter the shape of the spectrum of simulated climate variability, and are these processes broadly distinguishable from climate? We apply our method to representative case studies, and broaden these insights with an analysis of the PAGES2k database (PAGES2K Consortium, 2013). We find that current proxy system models (PSMs) can help resolve model-data discrepancies on interannual to decadal timescales, but cannot account for the mismatch in variance on multi-decadal to centennial timescales. We conclude that, specific to this set of PSMs and isotope-enabled model, the paleoclimate record may exhibit larger low-frequency variability than GCMs currently simulate, indicative of incomplete physics and/or forcings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43D1670D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43D1670D"><span>Improve projections of changes in southern African summer rainfall through comprehensive multi-timescale empirical statistical downscaling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dieppois, B.; Pohl, B.; Eden, J.; Crétat, J.; Rouault, M.; Keenlyside, N.; New, M. G.</p> <p>2017-12-01</p> <p>The water management community has hitherto neglected or underestimated many of the uncertainties in climate impact scenarios, in particular, uncertainties associated with decadal climate variability. Uncertainty in the state-of-the-art global climate models (GCMs) is time-scale-dependant, e.g. stronger at decadal than at interannual timescales, in response to the different parameterizations and to internal climate variability. In addition, non-stationarity in statistical downscaling is widely recognized as a key problem, in which time-scale dependency of predictors plays an important role. As with global climate modelling, therefore, the selection of downscaling methods must proceed with caution to avoid unintended consequences of over-correcting the noise in GCMs (e.g. interpreting internal climate variability as a model bias). GCM outputs from the Coupled Model Intercomparison Project 5 (CMIP5) have therefore first been selected based on their ability to reproduce southern African summer rainfall variability and their teleconnections with Pacific sea-surface temperature across the dominant timescales. In observations, southern African summer rainfall has recently been shown to exhibit significant periodicities at the interannual timescale (2-8 years), quasi-decadal (8-13 years) and inter-decadal (15-28 years) timescales, which can be interpret as the signature of ENSO, the IPO, and the PDO over the region. Most of CMIP5 GCMs underestimate southern African summer rainfall variability and their teleconnections with Pacific SSTs at these three timescales. In addition, according to a more in-depth analysis of historical and pi-control runs, this bias is might result from internal climate variability in some of the CMIP5 GCMs, suggesting potential for bias-corrected prediction based empirical statistical downscaling. A multi-timescale regression based downscaling procedure, which determines the predictors across the different timescales, has thus been used to simulate southern African summer rainfall. This multi-timescale procedure shows much better skills in simulating decadal timescales of variability compared to commonly used statistical downscaling approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060011212','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060011212"><span>Revealing Relationships among Relevant Climate Variables with Information Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Knuth, Kevin H.; Golera, Anthony; Curry, Charles T.; Huyser, Karen A.; Kevin R. Wheeler; Rossow, William B.</p> <p>2005-01-01</p> <p>The primary objective of the NASA Earth-Sun Exploration Technology Office is to understand the observed Earth climate variability, thus enabling the determination and prediction of the climate's response to both natural and human-induced forcing. We are currently developing a suite of computational tools that will allow researchers to calculate, from data, a variety of information-theoretic quantities such as mutual information, which can be used to identify relationships among climate variables, and transfer entropy, which indicates the possibility of causal interactions. Our tools estimate these quantities along with their associated error bars, the latter of which is critical for describing the degree of uncertainty in the estimates. This work is based upon optimal binning techniques that we have developed for piecewise-constant, histogram-style models of the underlying density functions. Two useful side benefits have already been discovered. The first allows a researcher to determine whether there exist sufficient data to estimate the underlying probability density. The second permits one to determine an acceptable degree of round-off when compressing data for efficient transfer and storage. We also demonstrate how mutual information and transfer entropy can be applied so as to allow researchers not only to identify relations among climate variables, but also to characterize and quantify their possible causal interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC51D1120S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC51D1120S"><span>Differential Impacts of Climate Change on Crops and Agricultural Regions in India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, A. N.</p> <p>2015-12-01</p> <p>As India's farmers and policymakers consider potential adaptation strategies to climate change, some questions loom large: - Which climate variables best explain the variability of crop yields? - How does the vulnerability of crop yields to climate vary regionally? - How are these risks likely to change in the future? While process-based crop modelling has started to answer many of these questions, we believe statistical approaches can complement these in improving our understanding of climate vulnerabilities and appropriate responses. We use yield data collected over three decades for more than ten food crops grown in India along with a variety of statistical approaches to answer the above questions. The ability of climate variables to explain yield variation varies greatly by crop and season, which is expected. Equally important, the ability of models to predict crop yields as well as their coefficients varies greatly by district even for districts which are relatively close to each other and similar in their agricultural practices. We believe these results encourage caution and nuance when making projections about climate impacts on crop yields in the future. Most studies about climate impacts on crop yields focus on a handful of major food crops. By extending our analysis to all the crops with long-term district level data in India as well as two growing seasons we gain a more comprehensive picture. Our results indicate that there is a great deal of variability even at relatively small scales, and that this must be taken into account if projections are to be made useful to policymakers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.U53A0716C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.U53A0716C"><span>The hydrologic and biogeochemical response of undisturbed mountain ecosystems in the Western United States to multiple stressors: Interactions between climate variability and atmospheric deposition of contaminants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campbell, D. H.; Mast, M. A.; Clow, D. W.; Ingersoll, G. P.; Nanus, L.</p> <p>2004-12-01</p> <p>Wilderness areas and national parks of the West are largely protected from acute changes in land use such as urbanization and natural resource development. However, the ecosystems in these areas are sensitive to both climate variability and atmospheric deposition of acids, nitrogen (N), and toxic contaminants, and these stressors interact in ways that we are just beginning to understand. Here we examine some examples of the interactions between climate variability and nitrogen and mercury cycling in high elevation watersheds. During the recent drought, which began in 2000, streamwater nitrate concentrations nearly doubled in the Loch Vale watershed in Rocky Mountain National Park, exceeding 60 μ M during early snowmelt. Much of the elevated nitrate resulted from an increased percentage contribution to streamwater of nitrate-rich shallow groundwater. In a nearby pond used for breeding by a threatened amphibian species, nitrate concentrations were negligible but ammonium concentrations were extremely high (850 μ M) during the drought. In this case, organic N in pond sediments was likely mineralized and released during cycles of drying and rewetting of pond sediments. Even after 2 years of near-average precipitation, water levels remained below normal and ammonium concentrations remained elevated, indicating that the hydrologic response of this small system has a timescale of many years. Mercury (Hg) deposition at high elevations of the Rocky Mountains is comparable to that of the Midwest and Northeast, but the processes that control Hg cycling in alpine/subalpine ecosystems are not well understood. Methylation and bioaccumulation of Hg must occur before Hg reaches levels harmful to the ecosystem or human health, and both climate and nutrient cycling affect these processes. Fluctuating water levels caused by climate variability can mobilize Hg from lake and pond sediments, increasing reactivity and bioavailability of Hg in the ecosystem. Increased nutrient release from the terrestrial ecosystem (eg. from N saturation) may increase productivity and accumulation of organic matter, altering Hg cycling in the aquatic system. Long durations of ice cover and thick snowpacks are likely to cause elevated methyl Hg in aquatic ecosystems. Snow and ice cover on lakes promotes hypoxia in lake water, favoring production and accumulation of methyl Hg- the percentage of methyl-Hg in lake water under snow and ice was as much as 6 times greater than the percentage measured during late summer in a northwestern Colorado lake. Analysis of long-term trends indicates that climate variability is increasing in the Mountain West. Climatic extremes appear to exacerbate adverse impacts of atmospheric deposition, as well as stressing ecosystems directly. A better understanding of these interactions is needed in order to predict the response of mountain ecosystems to future changes in climate and atmospheric deposition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT........63F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT........63F"><span>Vegetation coupling to global climate: Trajectories of vegetation change and phenology modeling from satellite observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fisher, Jeremy Isaac</p> <p></p> <p>Important systematic shifts in ecosystem function are often masked by natural variability. The rich legacy of over two decades of continuous satellite observations provides an important database for distinguishing climatological and anthropogenic ecosystem changes. Examples from semi-arid Sudanian West Africa and New England (USA) illustrate the response of vegetation to climate and land-use. In Burkina Faso, West Africa, pastoral and agricultural practices compete for land area, while degradation may follow intensification. The Nouhao Valley is a natural experiment in which pastoral and agricultural land uses were allocated separate, coherent reserves. Trajectories of annual net primary productivity were derived from 18 years of coarse-grain (AVHRR) satellite data. Trends suggested that pastoral lands had responded rigorously to increasing rainfall after the 1980's droughts. A detailed analysis at Landsat resolution (30m) indicated that the increased vegetative cover was concentrated in the river basins of the pastoral region, implying a riparian wood expansion. In comparison, riparian cover was reduced in agricultural regions. We suggest that broad-scale patterns of increasing semi-arid West African greenness may be indicative of climate variability, whereas local losses may be anthropogenic in nature. The contiguous deciduous forests, ocean proximity, topography, and dense urban developments of New England provide an ideal landscape to examine influences of climate variability and the impact of urban development vegetation response. Spatial and temporal patterns of interannual climate variability were examined via green leaf phenology. Phenology, or seasonal growth and senescence, is driven by deficits of light, temperature, and water. In temperate environments, phenology variability is driven by interannual temperature and precipitation shifts. Average and interannual phenology analyses across southern New England were conducted at resolutions of 30m (Landsat) and 500m Moderate Resolution Imaging Spectrometer (MODIS). A robust logistic-growth model of canopy cover was employed to determine phenological characteristics at each forest stand. The duel analyses revealed important findings: (a) local phenological gradients from microclimatic structures are highly influential in broad-scale phenological observations; (b) satellite observed phenology reflects observations of canopy growth from field studies; (c) phenological anomalies in urban areas which were previously attributed to urban heat may be a function of urban-specific land cover (i.e. green lawns); and (d) patterns of interannual variability in phenology at the regional scale have high spatial coherency and appear to be driven by broad-scale climatic change. Satellite-observed phenology may reflect temperatures during spring and provides a proxy of climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3894899','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3894899"><span>Plastic and evolutionary responses to climate change in fish</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Crozier, Lisa G; Hutchings, Jeffrey A</p> <p>2014-01-01</p> <p>The physical and ecological ‘fingerprints’ of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to ‘fine-grained’ population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change. PMID:24454549</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26158846','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26158846"><span>What Is a Mild Winter? Regional Differences in Within-Species Responses to Climate Change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vetter, Sebastian G; Ruf, Thomas; Bieber, Claudia; Arnold, Walter</p> <p>2015-01-01</p> <p>Climate change is known to affect ecosystems globally, but our knowledge of its impact on large and widespread mammals, and possibly population-specific responses is still sparse. We investigated large-scale and long-term effects of climate change on local population dynamics using the wild boar (Sus scrofa L.) as a model species. Our results show that population increases across Europe are strongly associated with increasingly mild winters, yet with region-specific threshold temperatures for the onset of exponential growth. Additionally, we found that abundant availability of critical food resources, e.g. beech nuts, can outweigh the negative effects of cold winters on population growth of wild boar. Availability of beech nuts is highly variable and highest in years of beech mast which increased in frequency since 1980, according to our data. We conclude that climate change drives population growth of wild boar directly by relaxing the negative effect of cold winters on survival and reproduction, and indirectly by increasing food availability. However, region-specific responses need to be considered in order to fully understand a species' demographic response to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24454549','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24454549"><span>Plastic and evolutionary responses to climate change in fish.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Crozier, Lisa G; Hutchings, Jeffrey A</p> <p>2014-01-01</p> <p>The physical and ecological 'fingerprints' of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to 'fine-grained' population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810887A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810887A"><span>Revealing, Reducing, and Representing Uncertainties in New Hydrologic Projections for Climate-changed Futures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arnold, Jeffrey; Clark, Martyn; Gutmann, Ethan; Wood, Andy; Nijssen, Bart; Rasmussen, Roy</p> <p>2016-04-01</p> <p>The United States Army Corps of Engineers (USACE) has had primary responsibility for multi-purpose water resource operations on most of the major river systems in the U.S. for more than 200 years. In that time, the USACE projects and programs making up those operations have proved mostly robust against the range of natural climate variability encountered over their operating life spans. However, in some watersheds and for some variables, climate change now is known to be shifting the hydroclimatic baseline around which that natural variability occurs and changing the range of that variability as well. This makes historical stationarity an inappropriate basis for assessing continued project operations under climate-changed futures. That means new hydroclimatic projections are required at multiple scales to inform decisions about specific threats and impacts, and for possible adaptation responses to limit water-resource vulnerabilities and enhance operational resilience. However, projections of possible future hydroclimatologies have myriad complex uncertainties that require explicit guidance for interpreting and using them to inform those decisions about climate vulnerabilities and resilience. Moreover, many of these uncertainties overlap and interact. Recent work, for example, has shown the importance of assessing the uncertainties from multiple sources including: global model structure [Meehl et al., 2005; Knutti and Sedlacek, 2013]; internal climate variability [Deser et al., 2012; Kay et al., 2014]; climate downscaling methods [Gutmann et al., 2012; Mearns et al., 2013]; and hydrologic models [Addor et al., 2014; Vano et al., 2014; Mendoza et al., 2015]. Revealing, reducing, and representing these uncertainties is essential for defining the plausible quantitative climate change narratives required to inform water-resource decision-making. And to be useful, such quantitative narratives, or storylines, of climate change threats and hydrologic impacts must sample from the full range of uncertainties associated with all parts of the simulation chain, from global climate models with simulations of natural climate variability, through regional climate downscaling, and on to modeling of affected hydrologic processes and downstream water resources impacts. This talk will present part of the work underway now both to reveal and reduce some important uncertainties and to develop explicit guidance for future generation of quantitative hydroclimatic storylines. Topics will include: 1- model structural and parameter-set limitations of some methods widely used to quantify climate impacts to hydrologic processes [Gutmann et al., 2014; Newman et al., 2015]; 2- development and evaluation of new, spatially consistent, U.S. national-scale climate downscaling and hydrologic simulation capabilities directly relevant at the multiple scales of water-resource decision-making [Newman et al., 2015; Mizukami et al., 2015; Gutmann et al., 2016]; and 3- development and evaluation of advanced streamflow forecasting methods to reduce and represent integrated uncertainties in a tractable way [Wood et al., 2014; Wood et al., 2015]. A key focus will be areas where climatologic and hydrologic science is currently under-developed to inform decisions - or is perhaps wrongly scaled or misapplied in practice - indicating the need for additional fundamental science and interpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.treesearch.fs.fed.us/pubs/39026','USGSPUBS'); return false;" href="https://www.treesearch.fs.fed.us/pubs/39026"><span>Foreword: The dynamics of change in Alaska’s boreal forests: Resilience and vulnerability in response to climate warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McGuire, A. David; Chapin, F. Stuart; Ruess, Roger W.</p> <p>2016-01-01</p> <p>Long-term research by the Bonanza Creek (BNZ) Long Term Ecological Research (LTER) program has documented natural patterns of interannual and successional variability of the boreal forest in interior Alaska against which we can detect changes in system behavior. Between 2004 and 2010 the BNZ LTER program focused on understanding the dynamics of change through studying the resilience and vulnerability of Alaska's boreal forest in response to climate warming. The overarching question in this endeavor has been “How are boreal ecosystems responding, both gradually and abruptly, to climate warming, and what new landscape patterns are emerging?”</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.1813H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.1813H"><span>Sensitivity of Antarctic sea ice to the Southern Annular Mode in coupled climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holland, Marika M.; Landrum, Laura; Kostov, Yavor; Marshall, John</p> <p>2017-09-01</p> <p>We assess the sea ice response to Southern Annular Mode (SAM) anomalies for pre-industrial control simulations from the Coupled Model Intercomparison Project (CMIP5). Consistent with work by Ferreira et al. (J Clim 28:1206-1226, 2015. doi: 10.1175/JCLI-D-14-00313.1), the models generally simulate a two-timescale response to positive SAM anomalies, with an initial increase in ice followed by an eventual sea ice decline. However, the models differ in the cross-over time at which the change in ice response occurs, in the overall magnitude of the response, and in the spatial distribution of the response. Late twentieth century Antarctic sea ice trends in CMIP5 simulations are related in part to different modeled responses to SAM variability acting on different time-varying transient SAM conditions. This explains a significant fraction of the spread in simulated late twentieth century southern hemisphere sea ice extent trends across the model simulations. Applying the modeled sea ice response to SAM variability but driven by the observed record of SAM suggests that variations in the austral summer SAM, which has exhibited a significant positive trend, have driven a modest sea ice decrease. However, additional work is needed to narrow the considerable model uncertainty in the climate response to SAM variability and its implications for 20th-21st century trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70154952','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70154952"><span>Impacts of weather on long-term patterns of plant richness and diversity vary with location and management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jonas, Jayne L.; Buhl, Deborah A.; Symstad, Amy J.</p> <p>2015-01-01</p> <p>Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess 1) the portion of interannual variability of richness and diversity explained by weather, 2) how relationships between these metrics and weather vary among plant assemblages, and 3) which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six datasets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.Read More: http://www.esajournals.org/doi/abs/10.1890/14-1989.1</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......193C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......193C"><span>Fine scale climatic and soil variability effects on plant species cover along the Front Range of Colorado, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cumming, William Frank Preston</p> <p></p> <p>Fine scale studies are rarely performed to address landscape level responses to microclimatic variability. Is it the timing, distribution, and magnitude of soil temperature and moisture that affects what species emerge each season and, in turn, their resilience to fluctuations in microclimate. For this dissertation research, I evaluated the response of vegetation change to microclimatic variability within two communities over a three year period (2009-2012) utilizing 25 meter transects at two locations along the Front Range of Colorado near Boulder, CO and Golden, CO respectively. To assess microclimatic variability, spatial and temporal autocorrelation analyses were performed with soil temperature and moisture. Species cover was assessed along several line transects and correlated with microclimatic variability. Spatial and temporal autocorrelograms are useful tools in identifying the degree of dependency of soil temperature and moisture on the distance and time between pairs of measurements. With this analysis I found that a meter spatial resolution and two-hour measurements are sufficient to capture the fine scale variability in soil properties throughout the year. By comparing this to in situ measurements of soil properties and species percent cover I found that there are several plant functional types and/or species origin in particular that are more sensitive to variations in temperature and moisture than others. When all seasons, locations, correlations, and regional climate are looked at, it is the month of March that stands out in terms of significance. Additionally, of all of the vegetation types represented at these two sites C4, C3, native, non-native, and forb species seem to be the most sensitive to fluctuations in soil temperature, moisture, and regional climate in the spring season. The steady decline in percent species cover the study period and subsequent decrease in percent species cover and size at both locations may indicate that certain are unable to respond to continually higher temperatures and lower moisture availability that is inevitable with future climatic variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26594699','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26594699"><span>Impacts of weather on long-term patterns of plant richness and diversity vary with location and management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jonas, Jayne L; Buhl, Deborah A; Symstad, Amy J</p> <p>2015-09-01</p> <p>Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess the portion of interannual variability of richness and diversity explained by weather, how relationships between these metrics and weather vary among plant assemblages, and which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six data sets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPA24A..02J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPA24A..02J"><span>Putting climate impact estimates to work: the empirical approach of the American Climate Prospectus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jina, A.; Hsiang, S. M.; Kopp, R. E., III; Rasmussen, D.; Rising, J.</p> <p>2014-12-01</p> <p>The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assesses climate risks posed to the United States' economy in a number of sectors [1]. Four of these - crop yield, crime, labor productivity, and mortality - draw upon research which identifies social impacts using contemporary variability in climate. We first identify a group of rigorous studies that use climate variability to identify responses to temperature and precipitation, while controlling for unobserved differences between locations. To incorporate multiple studies from a single sector, we employ a meta-analytical approach that draws on Bayesian methods commonly used in medical research and previously implemented in [2]. We generate a series of aggregate response functions for each sector using this meta-analytical method. We combine response functions with downscaled physical climate projections to estimate climate impacts out to the end of the century, incorporating uncertainty from statistical estimates, weather, climate models, and different emissions scenarios. Incorporating multiple studies in a single estimation framework allows us to directly compare impacts across the economy. We find that increased mortality has the largest effect on the US economy, followed by costs associated with decreased labor productivity. Agricultural losses and increases in crime contribute lesser but nonetheless substantial costs, and agriculture, notably, shows many areas benefitting from projected climate changes. The ACP also presents results throughout the 21stcentury. The dynamics of each of the impact categories differs, with, for example, mortality showing little change until the end of the century, but crime showing a monotonic increase from the present day. The ACP approach can expand to include new findings in current sectors, new sectors, and new geographical areas of interest. It represents an analytical framework that can incorporate empirical studies into a broad characterization of climate impacts across an economy, ensuring that each individual study can contribute to guiding policy priorities on climate change. References: [1] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org. [2] Hsiang, Burke, and Miguel (2013), Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28504631','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28504631"><span>[Climate change, floods and health intervention].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Furu, Peter; Tellier, Siri; Vestergaard, Lasse S</p> <p>2017-05-15</p> <p>Climate change and variability are considered some of the biggest threats to human health in the 21st century. Extreme weather events such as floods and storms are examples of natural hazards resulting in highest number of disasters and with considerable mortality and morbidity among vulnerable communities. A coordinated, well-planned management of health interventions must be taken for timely action in the response, recovery, prevention and preparedness phases of disasters. Roles and responsibilities of international as well as national organizations and authorities are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B23C0559P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B23C0559P"><span>A collaborative characterization of North American grasslands and rangelands: climate, ecohydrology and carbon sink-source dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petrie, M. D.; Brunsell, N. A.; Vargas, R.; Collins, S. L.</p> <p>2013-12-01</p> <p>Grassland and rangeland ecoregions extend across the North American continent and exhibit diversity in climate, ecosystem services, and biophysical processes. In many grasslands and rangelands, the potential for reductions in ecosystem services and for large-scale ecosystem state change may increase under future climate scenarios. Climate change projections for North America vary, however, and the way changing climate will influence specific ecoregions is largely unknown. To better understand the regional effects of climate change on grasslands and rangelands, it is important to better understand the biophysical characteristics of these systems locally, and to identify the sensitivity of these characteristics to observed climate variation. In our study, we propose to use eddy covariance, soil moisture and precipitation data to identify how the grasslands and rangelands of North America differ in their responses to climate variability through time, with specific focus on the active growing season. Our primary goal is to determine the sensitivity of ecosystem Net Primary Productivity [NPP] to variation in temperature and precipitation patterns, and classify North American grasslands and rangelands by these sensitivities in addition to more standard climate and productivity variables. Our preliminary analyses in mesic, semiarid and arid grasslands in Kansas, Colorado and New Mexico show significant (P < 0.05) differences in climate, carbon sink strength and growing season length, and suggest that patterns of seasonal productivity and precipitation sensitivity may elucidate important grassland and rangeland responses to changing climate. Using change in Gross Primary Productivity (GPP) as an indicator of the onset of photosynthesis in spring and of senescense in the fall, grassland and rangeland ecosystems in Kansas (top and bottom left panels) and New Mexico (bottom right panel) display differing patterns of activity throughout the year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70044659','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70044659"><span>Bioenergetic response by steelhead to variation in diet, thermal habitat, and climate in the north Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Atcheson, Margaret E.; Myers, Katherine W.; Beauchamp, David A.; Mantua, Nathan J.</p> <p>2012-01-01</p> <p>Energetic responses of steelhead Oncorhynchus mykiss to climate-driven changes in marine conditions are expected to affect the species’ ocean distribution, feeding, growth, and survival. With a unique 18-year data series (1991–2008) for steelhead sampled in the open ocean, we simulated interannual variation in prey consumption and growth efficiency of steelhead using a bioenergetics model to evaluate the temperature-dependent growth response of steelhead to past climate events and to estimate growth potential of steelhead under future climate scenarios. Our results showed that annual ocean growth of steelhead is highly variable depending on prey quality, consumption rates, total consumption, and thermal experience. At optimal growing temperatures, steelhead can compensate for a low-energy diet by increasing consumption rates and consuming more prey, if available. Our findings suggest that steelhead have a narrow temperature window in which to achieve optimal growth, which is strongly influenced by climate-driven changes in ocean temperature.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900034386&hterms=pollen&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpollen','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900034386&hterms=pollen&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpollen"><span>Climate-induced changes in forest disturbance and vegetation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Overpeck, Jonathan T.; Rind, David; Goldberg, Richard</p> <p>1990-01-01</p> <p>New and published climate-model results are discussed which indicate that global warming favors increased rates of forest disturbance as a result of weather more likely to cause forest fires, convective wind storms, coastal flooding, and hurricanes. New sensitivity tests carried out with a vegetation model indicate that climate-induced increases in disturbance could, in turn, significantly alter the total biomass and compositional response of forests to future warming. An increase in disturbance frequency is also likely to increase the rate at which natural vegetation responses to future climate change. The results reinforce the hypothesis that forests could be significantly altered by the first part of the next century. The modeling also confirms the potential utility of selected time series of fossil pollen data for investigating the poorly understood natural patterns of century-scale climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=252188','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=252188"><span>Agroecology: Implications for plant response to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Agricultural ecosystems (agroecosystems) represent the balance between the physiological responses of plants and plant canopies and the energy exchanges. Rising temperature and increasing CO2 coupled with an increase in variability of precipitation will create a complex set of interactions on plant ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..983L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..983L"><span>Meridional Modes and Increasing Pacific Decadal Variability Under Anthropogenic Forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liguori, Giovanni; Di Lorenzo, Emanuele</p> <p>2018-01-01</p> <p>Pacific decadal variability has strong impacts on the statistics of weather, atmosphere extremes, droughts, hurricanes, marine heatwaves, and marine ecosystems. Sea surface temperature (SST) observations show that the variance of the El Niño-like decadal variability has increased by 30% (1920-2015) with a stronger coupling between the major Pacific climate modes. Although we cannot attribute these trends to global climate change, the examination of 30 members of the Community Earth System Model Large Ensemble (LENS) forced with the RCP8.5 radiative forcing scenario (1920-2100) suggests that significant anthropogenic trends in Pacific decadal variance will emerge by 2020 in response to a more energetic North Pacific Meridional Mode (PMM)—a well-known El Niño precursor. The PMM is a key mechanism for energizing and coupling tropical and extratropical decadal variability. In the LENS, the increase in PMM variance is consistent with an intensification of the winds-evaporation-SST thermodynamic feedback that results from a warmer mean climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176844','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176844"><span>Climate change is advancing spring onset across the U.S. national park system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Monahan, William B.; Rosemartin, Alyssa; Gerst, Katharine L.; Fisichelli, Nicholas A.; Ault, Toby R.; Schwartz, Mark D.; Gross, John E.; Weltzin, Jake F.</p> <p>2016-01-01</p> <p>Many U.S. national parks are already at the extreme warm end of their historical temperature distributions. With rapidly warming conditions, park resource management will be enhanced by information on seasonality of climate that supports adjustments in the timing of activities such as treating invasive species, operating visitor facilities, and scheduling climate-related events (e.g., flower festivals and fall leaf-viewing). Seasonal changes in vegetation, such as pollen, seed, and fruit production, are important drivers of ecological processes in parks, and phenology has thus been identified as a key indicator for park monitoring. Phenology is also one of the most proximate biological responses to climate change. Here, we use estimates of start of spring based on climatically modeled dates of first leaf and first bloom derived from indicator plant species to evaluate the recent timing of spring onset (past 10–30 yr) in each U.S. natural resource park relative to its historical range of variability across the past 112 yr (1901–2012). Of the 276 high latitude to subtropical parks examined, spring is advancing in approximately three-quarters of parks (76%), and 53% of parks are experiencing “extreme” early springs that exceed 95% of historical conditions. Our results demonstrate how changes in climate seasonality are important for understanding ecological responses to climate change, and further how spatial variability in effects of climate change necessitates different approaches to management. We discuss how our results inform climate change adaptation challenges and opportunities facing parks, with implications for other protected areas, by exploring consequences for resource management and planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ERL.....8b4032O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ERL.....8b4032O"><span>Climate system properties determining the social cost of carbon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Otto, Alexander; Todd, Benjamin J.; Bowerman, Niel; Frame, David J.; Allen, Myles R.</p> <p>2013-06-01</p> <p>The choice of an appropriate scientific target to guide global mitigation efforts is complicated by uncertainties in the temperature response to greenhouse gas emissions. Much climate policy discourse has been based on the equilibrium global mean temperature increase following a concentration stabilization scenario. This is determined by the equilibrium climate sensitivity (ECS) which, in many studies, shows persistent, fat-tailed uncertainty. However, for many purposes, the equilibrium response is less relevant than the transient response. Here, we show that one prominent policy variable, the social cost of carbon (SCC), is generally better constrained by the transient climate response (TCR) than by the ECS. Simple analytic expressions show the SCC to be directly proportional to the TCR under idealized assumptions when the rate at which we discount future damage equals 2.8%. Using ensemble simulations of a simple climate model we find that knowing the true value of the TCR can reduce the relative uncertainty in the SCC substantially more, up to a factor of 3, than knowing the ECS under typical discounting assumptions. We conclude that the TCR, which is better constrained by observations, less subject to fat-tailed uncertainty and more directly related to the SCC, is generally preferable to the ECS as a single proxy for the climate response in SCC calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22988975','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22988975"><span>A global model of malaria climate sensitivity: comparing malaria response to historic climate data based on simulation and officially reported malaria incidence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Edlund, Stefan; Davis, Matthew; Douglas, Judith V; Kershenbaum, Arik; Waraporn, Narongrit; Lessler, Justin; Kaufman, James H</p> <p>2012-09-18</p> <p>The role of the Anopheles vector in malaria transmission and the effect of climate on Anopheles populations are well established. Models of the impact of climate change on the global malaria burden now have access to high-resolution climate data, but malaria surveillance data tends to be less precise, making model calibration problematic. Measurement of malaria response to fluctuations in climate variables offers a way to address these difficulties. Given the demonstrated sensitivity of malaria transmission to vector capacity, this work tests response functions to fluctuations in land surface temperature and precipitation. This study of regional sensitivity of malaria incidence to year-to-year climate variations used an extended Macdonald Ross compartmental disease model (to compute malaria incidence) built on top of a global Anopheles vector capacity model (based on 10 years of satellite climate data). The predicted incidence was compared with estimates from the World Health Organization and the Malaria Atlas. The models and denominator data used are freely available through the Eclipse Foundation's Spatiotemporal Epidemiological Modeller (STEM). Although the absolute scale factor relating reported malaria to absolute incidence is uncertain, there is a positive correlation between predicted and reported year-to-year variation in malaria burden with an averaged root mean square (RMS) error of 25% comparing normalized incidence across 86 countries. Based on this, the proposed measure of sensitivity of malaria to variations in climate variables indicates locations where malaria is most likely to increase or decrease in response to specific climate factors. Bootstrapping measures the increased uncertainty in predicting malaria sensitivity when reporting is restricted to national level and an annual basis. Results indicate a potential 20x improvement in accuracy if data were available at the level ISO 3166-2 national subdivisions and with monthly time sampling. The high spatial resolution possible with state-of-the-art numerical models can identify regions most likely to require intervention due to climate changes. Higher-resolution surveillance data can provide a better understanding of how climate fluctuations affect malaria incidence and improve predictions. An open-source modelling framework, such as STEM, can be a valuable tool for the scientific community and provide a collaborative platform for developing such models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC44A..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC44A..07S"><span>A new large initial condition ensemble to assess avoided impacts in a climate mitigation scenario</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanderson, B. M.; Tebaldi, C.; Knutti, R.; Oleson, K. W.</p> <p>2014-12-01</p> <p>It has recently been demonstrated that when considering timescales of up to 50 years, natural variability may play an equal role to anthropogenic forcing on subcontinental trends for a variety of climate indicators. Thus, for many questions assessing climate impacts on such time and spatial scales, it has become clear that a significant number of ensemble members may be required to produce robust statistics (and especially so for extreme events). However, large ensemble experiments to date have considered the role of variability in a single scenario, leaving uncertain the relationship between the forced climate trajectory and the variability about that path. To address this issue, we present a new, publicly available, 15 member initial condition ensemble of 21st century climate projections for the RCP 4.5 scenario using the CESM1.1 Earth System Model, which we propose as a companion project to the existing 40 member CESM large ensemble which uses the higher greenhouse gas emission future of RCP8.5. This provides a valuable data set for assessing what societal and ecological impacts might be avoided through a moderate mitigation strategy in contrast to a fossil fuel intensive future. We present some early analyses of these combined ensembles to assess to what degree the climate variability can be considered to combine linearly with the underlying forced response. In regions where there is no detectable relationship between the mean state and the variability about the mean trajectory, then linear assumptions can be trivially exploited to utilize a single ensemble or control simulation to characterize the variability in any scenario of interest. We highlight regions where there is a detectable nonlinearity in extreme event frequency, how far in the future they will be manifested and propose mechanisms to account for these effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/11555','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/11555"><span>On the sources of vegetation activity variation, and their relation with water balance in Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>F. Mora; L.R. Iverson</p> <p>1998-01-01</p> <p>Natural landscape surface processes are largely controlled by the relationship between climate and vegetation. Water balance integrates the effects of climate on patterns of vegetation distribution and productivity, and for that season, functional relationships can be established using water balance variables as predictors of vegetation response. In this study, we...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=115978&keyword=consequences+AND+climate+AND+change&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=115978&keyword=consequences+AND+climate+AND+change&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>EFFECT OF CLIMATE-INDUCED CHANGES OF FRESHWATER INFLOW ON ESTUARIES: REPORT OF THE ESTUARINE RESEARCH FEDERATION BIOCOMPLEXITY WORKING GROUP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>It is likely that the total amount of freshwater runoff that reaches many estuaries, the timing of that input, and the amount of variability (i.e. flashiness) associated with its delivery will all be altered in response to climate change. However, global change models are not con...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013158','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013158"><span>The Effects of Climate Variability on Phytoplankton Composition in the Equatorial Pacific Ocean using a Model and a Satellite-Derived Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rousseaux, C. S.; Gregg, W. W.</p> <p>2012-01-01</p> <p>Compared the interannual variation in diatoms, cyanobacteria, coccolithophores and chlorophytes from the NASA Ocean Biogeochemical Model with those derived from satellite data (Hirata et al. 2011) between 1998 and 2006 in the Equatorial Pacific. Using NOBM, La Ni a events were characterized by an increase in diatoms (correlation with MEI, r=-0.81, P<0.05), while cyanobacteria concentrations decreased significantly (r=0.61; P<0.05). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. This represented a radical shift in the phytoplankton community in response to climate variability. However, satellite-derived phytoplankton groups were all negatively correlated with climate variability (r ranged from -0.39 for diatoms to -0.64 for coccolithophores, P<0.05). Spatially, the satellite-derived approach was closer to an independent in situ dataset for all phytoplankton groups except diatoms than NOBM. However, the different responses of phytoplankton to intense interannual events in the Equatorial Pacific raises questions about the representation of phytoplankton dynamics in models and algorithms: is a phytoplankton community shift as in the model or an across-the-board change in abundances of all phytoplankton as in the satellite-derived approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24720862','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24720862"><span>Cold truths: how winter drives responses of terrestrial organisms to climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Williams, Caroline M; Henry, Hugh A L; Sinclair, Brent J</p> <p>2015-02-01</p> <p>Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing-season studies to incorporate winter. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A41E2347B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A41E2347B"><span>Future vegetation ecosystem response to warming climate over the Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bao, Y.; Gao, Y.; Wang, Y.</p> <p>2017-12-01</p> <p>The amplified vegetation response to climate variability has been found over the Tibetan Plateau (TP) in recent decades. In this study, the potential impacts of 21st century climate change on the vegetation ecosystem over the TP are assessed based on the dynamic vegetation outputs of models from Coupled Model Intercomparison Project Phase 5 (CMIP5), and the sensitivity of the TP vegetation in response to warming climate was investigated. Models project a continuous and accelerating greening in future, especially in the eastern TP, which closely associates with the plant type upgrade due to the pronouncing warming in growing season.Vegetation leaf area index (LAI) increase well follows the global warming, suggesting the warming climate instead of co2 fertilization controlls the future TP plant growth. The warming spring may advance the start of green-up day and extend the growing season length. More carbon accumulation in vegetation and soil will intensify the TP carbon cycle and will keep it as a carbon sink in future. Keywords: Leaf Area Index (LAI), Climate Change, Global Dynamic Vegetation Models (DGVMs), CMIP5, Tibetan Plateau (TP)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29133863','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29133863"><span>A real-time Global Warming Index.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Haustein, K; Allen, M R; Forster, P M; Otto, F E L; Mitchell, D M; Matthews, H D; Frame, D J</p> <p>2017-11-13</p> <p>We propose a simple real-time index of global human-induced warming and assess its robustness to uncertainties in climate forcing and short-term climate fluctuations. This index provides improved scientific context for temperature stabilisation targets and has the potential to decrease the volatility of climate policy. We quantify uncertainties arising from temperature observations, climate radiative forcings, internal variability and the model response. Our index and the associated rate of human-induced warming is compatible with a range of other more sophisticated methods to estimate the human contribution to observed global temperature change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43O..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43O..08S"><span>Changes in precipitation-streamflow transformation around the world: interdecadal variability and trends.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saft, M.; Peel, M. C.; Andreassian, V.; Parajka, J.; Coxon, G.; Freer, J. E.; Woods, R. A.</p> <p>2017-12-01</p> <p>Accurate prediction of hydrologic response to potentially changing climatic forcing is a key current challenge in hydrology. Recent studies exploring decadal to multidecadal climate drying in the African Sahel and south-eastern and south-western Australia demonstrated that long dry periods also had an indirect cumulative impact on streamflow via altered catchment biophysical properties. As a result, hydrologic response to persisting change in climatic conditions, i.e. precipitation, cannot be confidently inferred from the hydrologic response to short-term interannual climate fluctuations of similar magnitude. This study aims to characterise interdecadal changes in precipitation-runoff conversion processes globally. The analysis is based on long continuous records from near-natural baseline catchments in North America, Europe, and Australia. We used several complimentary metrics characterising precipitation-runoff relationship to assess how partitioning changed over recent decades. First, we explore the hypothesis that during particularly dry or wet decades the precipitation elasticity of streamflow increases over what can be expected from inter-annual variability. We found this hypothesis holds for both wet and dry periods in some regions, but not everywhere. Interestingly, trend-like behaviour in the precipitation-runoff partitioning, unrelated to precipitation changes, offset the impact of persisting precipitation change in some regions. Therefore, in the second part of this study we explored longer-term trends in precipitation-runoff partitioning, and related them to climate and streamflow changes. We found significant changes in precipitation-runoff relationship around the world, which implies that runoff response to a given precipitation can vary over decades even in near-natural catchments. When significant changes occur, typically less runoff is generated for a given precipitation over time - even when precipitation is increasing. We discuss the consistency of the results and how the likely drivers differ between regions, and between water-limited and energy limited environments. We argue that when considering the impact of climatic change on hydrological systems we need to consider potential cumulative impacts of climatic shifts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26839967','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26839967"><span>A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hare, Jonathan A; Morrison, Wendy E; Nelson, Mark W; Stachura, Megan M; Teeters, Eric J; Griffis, Roger B; Alexander, Michael A; Scott, James D; Alade, Larry; Bell, Richard J; Chute, Antonie S; Curti, Kiersten L; Curtis, Tobey H; Kircheis, Daniel; Kocik, John F; Lucey, Sean M; McCandless, Camilla T; Milke, Lisa M; Richardson, David E; Robillard, Eric; Walsh, Harvey J; McManus, M Conor; Marancik, Katrin E; Griswold, Carolyn A</p> <p>2016-01-01</p> <p>Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability) and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region). These results will inform research and management activities related to understanding and adapting marine fisheries management and conservation to climate change and decadal variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4739546','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4739546"><span>A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hare, Jonathan A.; Morrison, Wendy E.; Nelson, Mark W.; Stachura, Megan M.; Teeters, Eric J.; Griffis, Roger B.; Alexander, Michael A.; Scott, James D.; Alade, Larry; Bell, Richard J.; Chute, Antonie S.; Curti, Kiersten L.; Curtis, Tobey H.; Kircheis, Daniel; Kocik, John F.; Lucey, Sean M.; McCandless, Camilla T.; Milke, Lisa M.; Richardson, David E.; Robillard, Eric; Walsh, Harvey J.; McManus, M. Conor; Marancik, Katrin E.; Griswold, Carolyn A.</p> <p>2016-01-01</p> <p>Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability) and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region). These results will inform research and management activities related to understanding and adapting marine fisheries management and conservation to climate change and decadal variability. PMID:26839967</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26768143','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26768143"><span>Spatiotemporal variability and predictability of Normalized Difference Vegetation Index (NDVI) in Alberta, Canada.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Rengui; Xie, Jiancang; He, Hailong; Kuo, Chun-Chao; Zhu, Jiwei; Yang, Mingxiang</p> <p>2016-09-01</p> <p>As one of the most popular vegetation indices to monitor terrestrial vegetation productivity, Normalized Difference Vegetation Index (NDVI) has been widely used to study the plant growth and vegetation productivity around the world, especially the dynamic response of vegetation to climate change in terms of precipitation and temperature. Alberta is the most important agricultural and forestry province and with the best climatic observation systems in Canada. However, few studies pertaining to climate change and vegetation productivity are found. The objectives of this paper therefore were to better understand impacts of climate change on vegetation productivity in Alberta using the NDVI and provide reference for policy makers and stakeholders. We investigated the following: (1) the variations of Alberta's smoothed NDVI (sNDVI, eliminated noise compared to NDVI) and two climatic variables (precipitation and temperature) using non-parametric Mann-Kendall monotonic test and Thiel-Sen's slope; (2) the relationships between sNDVI and climatic variables, and the potential predictability of sNDVI using climatic variables as predictors based on two predicted models; and (3) the use of a linear regression model and an artificial neural network calibrated by the genetic algorithm (ANN-GA) to estimate Alberta's sNDVI using precipitation and temperature as predictors. The results showed that (1) the monthly sNDVI has increased during the past 30 years and a lengthened growing season was detected; (2) vegetation productivity in northern Alberta was mainly temperature driven and the vegetation in southern Alberta was predominantly precipitation driven for the period of 1982-2011; and (3) better performances of the sNDVI-climate relationships were obtained by nonlinear model (ANN-GA) than using linear (regression) model. Similar results detected in both monthly and summer sNDVI prediction using climatic variables as predictors revealed the applicability of two models for different period of year ecologists might focus on.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17553770','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17553770"><span>Environmental forcing and Southern Ocean marine predator populations: effects of climate change and variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trathan, P N; Forcada, J; Murphy, E J</p> <p>2007-12-29</p> <p>The Southern Ocean is a major component within the global ocean and climate system and potentially the location where the most rapid climate change is most likely to happen, particularly in the high-latitude polar regions. In these regions, even small temperature changes can potentially lead to major environmental perturbations. Climate change is likely to be regional and may be expressed in various ways, including alterations to climate and weather patterns across a variety of time-scales that include changes to the long interdecadal background signals such as the development of the El Niño-Southern Oscillation (ENSO). Oscillating climate signals such as ENSO potentially provide a unique opportunity to explore how biological communities respond to change. This approach is based on the premise that biological responses to shorter-term sub-decadal climate variability signals are potentially the best predictor of biological responses over longer time-scales. Around the Southern Ocean, marine predator populations show periodicity in breeding performance and productivity, with relationships with the environment driven by physical forcing from the ENSO region in the Pacific. Wherever examined, these relationships are congruent with mid-trophic-level processes that are also correlated with environmental variability. The short-term changes to ecosystem structure and function observed during ENSO events herald potential long-term changes that may ensue following regional climate change. For example, in the South Atlantic, failure of Antarctic krill recruitment will inevitably foreshadow recruitment failures in a range of higher trophic-level marine predators. Where predator species are not able to accommodate by switching to other prey species, population-level changes will follow. The Southern Ocean, though oceanographically interconnected, is not a single ecosystem and different areas are dominated by different food webs. Where species occupy different positions in different regional food webs, there is the potential to make predictions about future change scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC11F..05W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC11F..05W"><span>Assessing the impact of climate variability on cropping patterns in Kenya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.</p> <p>2017-12-01</p> <p>Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm inputs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1330997','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1330997"><span>Toward a Unified Representation of Atmospheric Convection in Variable-Resolution Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Walko, Robert</p> <p>2016-11-07</p> <p>The purpose of this project was to improve the representation of convection in atmospheric weather and climate models that employ computational grids with spatially-variable resolution. Specifically, our work targeted models whose grids are fine enough over selected regions that convection is resolved explicitly, while over other regions the grid is coarser and convection is represented as a subgrid-scale process. The working criterion for a successful scheme for representing convection over this range of grid resolution was that identical convective environments must produce very similar convective responses (i.e., the same precipitation amount, rate, and timing, and the same modification of themore » atmospheric profile) regardless of grid scale. The need for such a convective scheme has increased in recent years as more global weather and climate models have adopted variable resolution meshes that are often extended into the range of resolving convection in selected locations.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>