Sample records for climatic tests designed

  1. Vulnerability-based evaluation of water supply design under climate change

    NASA Astrophysics Data System (ADS)

    Umit Taner, Mehmet; Ray, Patrick; Brown, Casey

    2015-04-01

    Long-lived water supply infrastructures are strategic investments in the developing world, serving the purpose of balancing water deficits compounded by both population growth and socio-economic development. Robust infrastructure design under climate change is compelling, and often addressed by focusing on the outcomes of climate model projections ('scenario-led' planning), or by identifying design options that are less vulnerable to a wide range of plausible futures ('vulnerability-based' planning). Decision-Scaling framework combines these two approaches by first applying a climate stress test on the system to explore vulnerabilities across many traces of the future, and then employing climate projections to inform the decision-making process. In this work, we develop decision scaling's nascent risk management concepts further, directing actions on vulnerabilities identified during the climate stress test. In the process, we present a new way to inform climate vulnerability space using climate projections, and demonstrate the use of multiple decision criteria to guide to a final design recommendation. The concepts are demonstrated for a water supply project in the Mombasa Province of Kenya, planned to provide domestic and irrigation supply. Six storage design capacities (from 40 to 140 million cubic meters) are explored through a stress test, under a large number climate traces representing both natural climate variability and plausible climate changes. Design outcomes are simulated over a 40-year planning period with a coupled hydrologic-water resources systems model and using standard reservoir operation rules. Resulting performance is expressed in terms of water supply reliability and economic efficiency. Ensemble climate projections are used for assigning conditional likelihoods to the climate traces using a statistical distance measure. The final design recommendations are presented and discussed for the decision criteria of expected regret, satisficing, and conditional value-at-risk (CVaR).

  2. A test of safety, violence prevention, and civility climate domain-specific relationships with relevant workplace hazards.

    PubMed

    Gazica, Michele W; Spector, Paul E

    2016-01-01

    Safety climate, violence prevention climate, and civility climate were independently developed and linked to domain-specific workplace hazards, although all three were designed to promote the physical and psychological safety of workers. To test domain specificity between conceptually related workplace climates and relevant workplace hazards. Data were collected from 368 persons employed in various industries and descriptive statistics were calculated for all study variables. Correlational and relative weights analyses were used to test for domain specificity. The three climate domains were similarly predictive of most workplace hazards, regardless of domain specificity. This study suggests that the three climate domains share a common higher order construct that may predict relevant workplace hazards better than any of the scales alone.

  3. A test of safety, violence prevention, and civility climate domain-specific relationships with relevant workplace hazards

    PubMed Central

    Spector, Paul E.

    2016-01-01

    Background Safety climate, violence prevention climate, and civility climate were independently developed and linked to domain-specific workplace hazards, although all three were designed to promote the physical and psychological safety of workers. Purpose To test domain specificity between conceptually related workplace climates and relevant workplace hazards. Methods Data were collected from 368 persons employed in various industries and descriptive statistics were calculated for all study variables. Correlational and relative weights analyses were used to test for domain specificity. Results The three climate domains were similarly predictive of most workplace hazards, regardless of domain specificity. Discussion This study suggests that the three climate domains share a common higher order construct that may predict relevant workplace hazards better than any of the scales alone. PMID:27110930

  4. SysSon - A Framework for Systematic Sonification Design

    NASA Astrophysics Data System (ADS)

    Vogt, Katharina; Goudarzi, Visda; Holger Rutz, Hanns

    2015-04-01

    SysSon is a research approach on introducing sonification systematically to a scientific community where it is not yet commonly used - e.g., in climate science. Thereby, both technical and socio-cultural barriers have to be met. The approach was further developed with climate scientists, who participated in contextual inquiries, usability tests and a workshop of collaborative design. Following from these extensive user tests resulted our final software framework. As frontend, a graphical user interface allows climate scientists to parametrize standard sonifications with their own data sets. Additionally, an interactive shell allows to code new sonifications for users competent in sound design. The framework is a standalone desktop application, available as open source (for details see http://sysson.kug.ac.at/) and works with data in NetCDF format.

  5. A Design-Based Approach to Fostering Understanding of Global Climate Change

    ERIC Educational Resources Information Center

    Svihla, Vanessa; Linn, Marcia C.

    2012-01-01

    To prepare students to make informed decisions and gain coherent understanding about global climate change, we tested and refined a middle school inquiry unit that featured interactive visualizations. Based on evidence from student pre-test responses, we increased emphasis on energy transfer and transformation. The first iteration improved…

  6. Toward a Knowledge Base for School Climate in Cyprus's Schools

    ERIC Educational Resources Information Center

    Pashiardis, Georgia

    2008-01-01

    Purpose: The main purpose of this study was to explore and analyze secondary school students' (8th grade) perceptions about school climate in three areas, namely: the physical environment of the school, the social environment and the learning environment Design/methodology/approach: A questionnaire, which was designed and pilot-tested around the…

  7. Designing climate-smart conservation: guidance and case studies.

    PubMed

    Hansen, Lara; Hoffman, Jennifer; Drews, Carlos; Mielbrecht, Eric

    2010-02-01

    To be successful, conservation practitioners and resource managers must fully integrate the effects of climate change into all planning projects. Some conservation practitioners are beginning to develop, test, and implement new approaches that are designed to deal with climate change. We devised four basic tenets that are essential in climate-change adaptation for conservation: protect adequate and appropriate space, reduce nonclimate stresses, use adaptive management to implement and test climate-change adaptation strategies, and work to reduce the rate and extent of climate change to reduce overall risk. To illustrate how this approach applies in the real world, we explored case studies of coral reefs in the Florida Keys; mangrove forests in Fiji, Tanzania, and Cameroon; sea-level rise and sea turtles in the Caribbean; tigers in the Sundarbans of India; and national planning in Madagascar. Through implementation of these tenets conservation efforts in each of these regions can be made more robust in the face of climate change. Although these approaches require reconsidering some traditional approaches to conservation, this new paradigm is technologically, economically, and intellectually feasible.

  8. Complexity Science and the Dynamics of Climate and Communication: Reducing Nursing Home Turnover

    ERIC Educational Resources Information Center

    Anderson, Ruth A.; Corazzini, Kirsten N.; McDaniel, Reuben R., Jr.

    2004-01-01

    Purpose: Turnover in nursing homes is a widespread problem adversely affecting care quality. Using complexity theory, we tested the effect of administrative climate, communication patterns, and the interaction between the two on turnover, controlling for facility context. Design and Methods: Perceptions of administrative climate and communication…

  9. Test Plan for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; Hair, Jason; McAndrew, Brendan; Daw, Adrian; Jennings, Donald; Rabin, Douglas

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change. One of the major objectives of CLARREO is to advance the accuracy of SI traceable absolute calibration at infrared and reflected solar wavelengths. This advance is required to reach the on-orbit absolute accuracy required to allow climate change observations to survive data gaps while remaining sufficiently accurate to observe climate change to within the uncertainty of the limit of natural variability. While these capabilities exist at NIST in the laboratory, there is a need to demonstrate that it can move successfully from NIST to NASA and/or instrument vendor capabilities for future spaceborne instruments. The current work describes the test plan for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches , alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result of efforts with the SOLARIS CDS will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections. The CLARREO mission addresses the need to observe high-accuracy, long-term climate change trends and advance the accuracy of SI traceable absolute calibration. The current work describes the test plan for the SOLARIS which is the calibration demonstration system for the reflected solar portion of CLARREO. SOLARIS provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections.

  10. Developing effective communication materials on the health effects of climate change for vulnerable groups: a mixed methods study.

    PubMed

    Kreslake, Jennifer M; Price, Katherine M; Sarfaty, Mona

    2016-09-07

    Individuals with chronic health conditions or low socioeconomic status (SES) are more vulnerable to the health impacts of climate change. Health communication can provide information on the management of these impacts. This study tested, among vulnerable audiences, whether viewing targeted materials increases knowledge about the health impacts of climate change and strength of climate change beliefs, and whether each are associated with stronger intentions to practice recommended behaviors. Low-SES respondents with chronic conditions were recruited for an online survey in six cities. Respondents were shown targeted materials illustrating the relationship between climate change and chronic conditions. Changes in knowledge and climate change beliefs (pre- and post-test) and behavioral intentions (post-test only) were tested using McNemar tests of marginal frequencies of two binary outcomes or paired t-tests, and multivariable linear regression. Qualitative interviews were conducted among target audiences to triangulate survey findings and make recommendations on the design of messages. Respondents (N = 122) reflected the target population regarding income, educational level and prevalence of household health conditions. (1) Knowledge. Significant increases in knowledge were found regarding: groups that are most vulnerable to heat (children [p < 0.001], individuals with heart disease [p < 0.001], or lung disease [p = 0.019]); and environmental conditions that increase allergy-producing pollen (increased heat [p = 0.003], increased carbon dioxide [p < 0.001]). (2) Strength of certainty that climate change is happening increased significantly between pre- and post-test (p < 0.001), as did belief that climate change affected respondents' health (p < 0.001). (3) Behavioral intention. At post-test, higher knowledge of heat vulnerabilities and environmental conditions that trigger pollen allergies were associated with greater behavioral intention scores (p = 0.001 and p = 0.002, respectively). In-depth interviews (N = 15) revealed that vulnerable audiences are interested in immediate-term advice on health management and protective behaviors related to their chronic conditions, but took less notice of messages about collective action to slow or stop climate change. Respondents identified both appealing and less favorable design elements in the materials. Individuals who are vulnerable to the health effects of climate change benefit from communication materials that explain, using graphics and concise language, how climate change affects health conditions and how to engage in protective adaptation behaviors.

  11. The Interplay among Environmental Attitudes, Pro-Environmental Behavior, Social Identity, and Pro-Environmental Institutional Climate. A Longitudinal Study

    ERIC Educational Resources Information Center

    Prati, Gabriele; Albanesi, Cinzia; Pietrantoni, Luca

    2017-01-01

    By using a panel design in a sample of 298 undergraduate/master students at an Italian public university, the present study aimed to test longitudinally the interplay among environmental attitudes, pro-environmental behavior, social identity, and pro-environmental institutional climate. The relationships were tested with cross-lagged analysis…

  12. 75 FR 2517 - Notice of Solicitation for Estuary Habitat Restoration Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... related to climate change on the viability of the proposed restoration. This may take the form of considering climate change in the planning, design, siting, and construction of the project, or in testing new restoration technologies that may help to alleviate effects of climate change. This document describes project...

  13. Climate-Smart Design for Ecosystem Management: A Test Application for Coral Reefs.

    PubMed

    West, Jordan M; Courtney, Catherine A; Hamilton, Anna T; Parker, Britt A; Julius, Susan H; Hoffman, Jennie; Koltes, Karen H; MacGowan, Petra

    2017-01-01

    The interactive and cumulative impacts of climate change on natural resources such as coral reefs present numerous challenges for conservation planning and management. Climate change adaptation is complex due to climate-stressor interactions across multiple spatial and temporal scales. This leaves decision makers worldwide faced with local, regional, and global-scale threats to ecosystem processes and services, occurring over time frames that require both near-term and long-term planning. Thus there is a need for structured approaches to adaptation planning that integrate existing methods for vulnerability assessment with design and evaluation of effective adaptation responses. The Corals and Climate Adaptation Planning project of the U.S. Coral Reef Task Force seeks to develop guidance for improving coral reef management through tailored application of a climate-smart approach. This approach is based on principles from a recently-published guide which provides a framework for adopting forward-looking goals, based on assessing vulnerabilities to climate change and applying a structured process to design effective adaptation strategies. Work presented in this paper includes: (1) examination of the climate-smart management cycle as it relates to coral reefs; (2) a compilation of adaptation strategies for coral reefs drawn from a comprehensive review of the literature; (3) in-depth demonstration of climate-smart design for place-based crafting of robust adaptation actions; and (4) feedback from stakeholders on the perceived usefulness of the approach. We conclude with a discussion of lessons-learned on integrating climate-smart design into real-world management planning processes and a call from stakeholders for an "adaptation design tool" that is now under development.

  14. A Numerical Climate Observing Network Design Study

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef

    2003-01-01

    This project was concerned with three related questions of an optimal design of a climate observing system: 1. The spatial sampling characteristics required from an ARGO system. 2. The degree to which surface observations from ARGO can be used to calibrate and test satellite remote sensing observations of sea surface salinity (SSS) as it is anticipated now. 3. The more general design of an climate observing system as it is required in the near future for CLIVAR in the Atlantic. An important question in implementing an observing system is that of the sampling density required to observe climate-related variations in the ocean. For that purpose this project was concerned with the sampling requirements for the ARGO float system, but investigated also other elements of a climate observing system. As part of this project we studied the horizontal and vertical sampling characteristics of a global ARGO system which is required to make it fully complementary to altimeter data with the goal to capture climate related variations on large spatial scales (less thanAttachment: 1000 km). We addressed this question in the framework of a numerical model study in the North Atlantic with an 1/6 horizontal resolution. The advantage of a numerical design study is the knowledge of the full model state. Sampled by a synthetic float array, model results will therefore allow to test and improve existing deployment strategies with the goal to make the system as optimal and cost-efficient as possible. Attachment: "Optimal observations for variational data assimilation".

  15. Analysis and Experimental Investigation of Optimum Design of Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)

    NASA Astrophysics Data System (ADS)

    Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung

    2018-02-01

    The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.

  16. Predicting optimum crop designs using crop models and seasonal climate forecasts.

    PubMed

    Rodriguez, D; de Voil, P; Hudson, D; Brown, J N; Hayman, P; Marrou, H; Meinke, H

    2018-02-02

    Expected increases in food demand and the need to limit the incorporation of new lands into agriculture to curtail emissions, highlight the urgency to bridge productivity gaps, increase farmers profits and manage risks in dryland cropping. A way to bridge those gaps is to identify optimum combination of genetics (G), and agronomic managements (M) i.e. crop designs (GxM), for the prevailing and expected growing environment (E). Our understanding of crop stress physiology indicates that in hindsight, those optimum crop designs should be known, while the main problem is to predict relevant attributes of the E, at the time of sowing, so that optimum GxM combinations could be informed. Here we test our capacity to inform that "hindsight", by linking a tested crop model (APSIM) with a skillful seasonal climate forecasting system, to answer "What is the value of the skill in seasonal climate forecasting, to inform crop designs?" Results showed that the GCM POAMA-2 was reliable and skillful, and that when linked with APSIM, optimum crop designs could be informed. We conclude that reliable and skillful GCMs that are easily interfaced with crop simulation models, can be used to inform optimum crop designs, increase farmers profits and reduce risks.

  17. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Roth, Wolff-Michael; Bin Abdullah, Mohd Nor Syahrir

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that…

  18. Testing the Causal Links between School Climate, School Violence, and School Academic Performance: A Cross-Lagged Panel Autoregressive Model

    ERIC Educational Resources Information Center

    Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan; Wrabel, Stephani L.

    2016-01-01

    The present study explores the causal link between school climate, school violence, and a school's general academic performance over time using a school-level, cross-lagged panel autoregressive modeling design. We hypothesized that reductions in school violence and climate improvement would lead to schools' overall improved academic performance.…

  19. Designing Flood Management Systems for Joint Economic and Ecological Robustness

    NASA Astrophysics Data System (ADS)

    Spence, C. M.; Grantham, T.; Brown, C. M.; Poff, N. L.

    2015-12-01

    Freshwater ecosystems across the United States are threatened by hydrologic change caused by water management operations and non-stationary climate trends. Nonstationary hydrology also threatens flood management systems' performance. Ecosystem managers and flood risk managers need tools to design systems that achieve flood risk reduction objectives while sustaining ecosystem functions and services in an uncertain hydrologic future. Robust optimization is used in water resources engineering to guide system design under climate change uncertainty. Using principles introduced by Eco-Engineering Decision Scaling (EEDS), we extend robust optimization techniques to design flood management systems that meet both economic and ecological goals simultaneously across a broad range of future climate conditions. We use three alternative robustness indices to identify flood risk management solutions that preserve critical ecosystem functions in a case study from the Iowa River, where recent severe flooding has tested the limits of the existing flood management system. We seek design modifications to the system that both reduce expected cost of flood damage while increasing ecologically beneficial inundation of riparian floodplains across a wide range of plausible climate futures. The first robustness index measures robustness as the fraction of potential climate scenarios in which both engineering and ecological performance goals are met, implicitly weighting each climate scenario equally. The second index builds on the first by using climate projections to weight each climate scenario, prioritizing acceptable performance in climate scenarios most consistent with climate projections. The last index measures robustness as mean performance across all climate scenarios, but penalizes scenarios with worse performance than average, rewarding consistency. Results stemming from alternate robustness indices reflect implicit assumptions about attitudes toward risk and reveal the tradeoffs between using structural and non-structural flood management strategies to ensure economic and ecological robustness.

  20. Model-Based Development of Automotive Electronic Climate Control Software

    NASA Astrophysics Data System (ADS)

    Kakade, Rupesh; Murugesan, Mohan; Perugu, Bhupal; Nair, Mohanan

    With increasing complexity of software in today's products, writing and maintaining thousands of lines of code is a tedious task. Instead, an alternative methodology must be employed. Model-based development is one candidate that offers several benefits and allows engineers to focus on the domain of their expertise than writing huge codes. In this paper, we discuss the application of model-based development to the electronic climate control software of vehicles. The back-to-back testing approach is presented that ensures flawless and smooth transition from legacy designs to the model-based development. Simulink report generator to create design documents from the models is presented along with its usage to run the simulation model and capture the results into the test report. Test automation using model-based development tool that support the use of unique set of test cases for several testing levels and the test procedure that is independent of software and hardware platform is also presented.

  1. Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messmer, Craig S.

    2016-09-30

    This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series.more » Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.« less

  2. Remediating Misconception on Climate Change among Secondary School Students in Malaysia

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Roth, Wolff-Michael; Chandrakesan, Kasturi

    2015-01-01

    Existing studies report on secondary school students' misconceptions related to climate change; they also report on the methods of teaching as reinforcing misconceptions. This quasi-experimental study was designed to test the null hypothesis that a curriculum based on constructivist principles does not lead to greater understanding and fewer…

  3. The Academic Experiences Survey (AES): Measuring Perceptions of Academic Climate in Liberal Arts Institutions

    ERIC Educational Resources Information Center

    Galotti, Kathleen M.; Clare, Lacey R.; McManus, Courtney; Nixon, Andrea Lisa

    2016-01-01

    In today's educational climate, liberal arts institutions must demonstrate that their educational goals are being met. This paper presents reliability and stability testing of a concise, research-based survey instrument designed to examine student perceptions of academic experiences that is particularly suited to institutions rooted in the liberal…

  4. Two Brief Interventions to Mitigate a "Chilly Climate" Transform Women's Experience, Relationships, and Achievement in Engineering

    ERIC Educational Resources Information Center

    Walton, Gregory M.; Logel, Christine; Peach, Jennifer M.; Spencer, Steven J.; Zanna, Mark P.

    2015-01-01

    In a randomized-controlled trial, we tested 2 brief interventions designed to mitigate the effects of a "chilly climate" women may experience in engineering, especially in male-dominated fields. Participants were students entering a selective university engineering program. The "social-belonging intervention" aimed to protect…

  5. Complexity Science and the Dynamics of Climate and Communication: Reducing Nursing Home Turnover

    PubMed Central

    Anderson, Ruth A.; Corazzini, Kirsten N.; McDaniel, Reuben R.

    2008-01-01

    Purpose Turnover in nursing homes is a widespread problem adversely affecting care quality. Using complexity theory, we tested the effect of administrative climate, communication patterns, and the interaction between the two on turnover, controlling for facility context. Design and Methods Perceptions of administrative climate and communication were collected from 3,449 employees in 164 randomly sampled nursing homes, and they were linked to secondary data on facility characteristics, resource allocation, and turnover. We used hierarchical regression to test the hypotheses. Results Climate and communication both affected turnover, but lower turnover was dependent on the interaction between climate and communication. In nursing homes with reward-based administrative climates, higher levels of communication openness and accuracy explained lower turnover of licensed vocational nurses and certified nurse assistants, relative to nursing homes with an ambiguous climate. Adequate staffing and longer tenure of the nursing director were also important predictors of turnover. Implications Although context is important, managers can also influence turnover by addressing climate and communication patterns and by encouraging stable nursing leadership. PMID:15197292

  6. Climate Informed Low Flow Frequency Analysis Using Nonstationary Modeling

    NASA Astrophysics Data System (ADS)

    Liu, D.; Guo, S.; Lian, Y.

    2014-12-01

    Stationarity is often assumed for frequency analysis of low flows in water resources management and planning. However, many studies have shown that flow characteristics, particularly the frequency spectrum of extreme hydrologic events,were modified by climate change and human activities and the conventional frequency analysis without considering the non-stationary characteristics may lead to costly design. The analysis presented in this paper was based on the more than 100 years of daily flow data from the Yichang gaging station 44 kilometers downstream of the Three Gorges Dam. The Mann-Kendall trend test under the scaling hypothesis showed that the annual low flows had significant monotonic trend, whereas an abrupt change point was identified in 1936 by the Pettitt test. The climate informed low flow frequency analysis and the divided and combined method are employed to account for the impacts from related climate variables and the nonstationarities in annual low flows. Without prior knowledge of the probability density function for the gaging station, six distribution functions including the Generalized Extreme Values (GEV), Pearson Type III, Gumbel, Gamma, Lognormal, and Weibull distributions have been tested to find the best fit, in which the local likelihood method is used to estimate the parameters. Analyses show that GEV had the best fit for the observed low flows. This study has also shown that the climate informed low flow frequency analysis is able to exploit the link between climate indices and low flows, which would account for the dynamic feature for reservoir management and provide more accurate and reliable designs for infrastructure and water supply.

  7. A mediation model linking dispatcher leadership and work ownership with safety climate as predictors of truck driver safety performance.

    PubMed

    Zohar, Dov; Huang, Yueng-hsiang; Lee, Jin; Robertson, Michelle

    2014-01-01

    The study was designed to test the effect of safety climate on safety behavior among lone employees whose work environment promotes individual rather than consensual or shared climate perceptions. The paper presents a mediation path model linking psychological (individual-level) safety climate antecedents and consequences as predictors of driving safety of long-haul truck drivers. Climate antecedents included dispatcher (distant) leadership and driver work ownership, two contextual attributes of lone work, whereas its proximal consequence included driving safety. Using a prospective design, safety outcomes, consisting of hard-braking frequency (i.e. traffic near-miss events) were collected six months after survey completion, using GPS-based truck deceleration data. Results supported the hypothesized model, indicating that distant leadership style and work ownership promote psychological safety climate perceptions, with subsequent prediction of hard-braking events mediated by driving safety. Theoretical and practical implications for studying safety climate among lone workers in general and professional drivers in particular are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Demonstrating the Error Budget for the Climate Absolute Radiance and Refractivity Observatory Through Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2016-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  9. Bringing Engineering Design into High School Science Classrooms: The Heating/Cooling Unit

    ERIC Educational Resources Information Center

    Apedoe, Xornam S.; Reynolds, Birdy; Ellefson, Michelle R.; Schunn, Christian D.

    2008-01-01

    Infusing engineering design projects in K-12 settings can promote interest and attract a wide range of students to engineering careers. However, the current climate of high-stakes testing and accountability to standards leaves little room to incorporate engineering design into K-12 classrooms. We argue that design-based learning, the combination…

  10. Unmasking Students' Sense of Academic Supportiveness and Climate: Results from Field Testing the AEL MASC

    ERIC Educational Resources Information Center

    Cowley, Kimberly S.; Copley, Lisa; Howley, Caitlin W.; Voelkel, Susan

    2004-01-01

    The AEL Measure of Academic Supportiveness and Climate (AEL MASC) was developed as part of the MAACK Pilot Schools project currently underway at AEL. MAACK stands for Maximizing Achievement for African American Children in Kanawha. The AEL MASC was designed to determine students' perceptions about themselves as students and about their school…

  11. A longitudinal study of an intervention to improve road safety climate: climate as an organizational boundary spanner.

    PubMed

    Naveh, Eitan; Katz-Navon, Tal

    2015-01-01

    This study presents and tests an intervention to enhance organizational climate and expands existing conceptualization of organizational climate to include its influence on employee behaviors outside the organization's physical boundaries. In addition, by integrating the literatures of climate and work-family interface, the study explored climate spillover and crossover from work to the home domain. Focusing on an applied practical problem within organizations, we investigated the example of road safety climate and employees' and their families' driving, using a longitudinal study design of road safety intervention versus control groups. Results demonstrated that the intervention increased road safety climate and decreased the number of traffic violation tickets and that road safety climate mediated the relationship between the intervention and the number of traffic violation tickets. Road safety climate spilled over to the family domain but did not cross over to influence family members' driving. (c) 2015 APA, all rights reserved.

  12. Hospital safety climate surveys: measurement issues.

    PubMed

    Jackson, Jeanette; Sarac, Cakil; Flin, Rhona

    2010-12-01

    Organizational safety culture relates to behavioural norms in the workplace and is usually assessed by safety climate surveys. These can be a diagnostic indicator on the state of safety in a hospital. This review examines recent studies using staff surveys of hospital safety climate, focussing on measurement issues. Four questionnaires (hospital survey on patient safety culture, safety attitudes questionnaire, patient safety climate in healthcare organizations, hospital safety climate scale), with acceptable psychometric properties, are now applied across countries and clinical settings. Comparisons for benchmarking must be made with caution in case of questionnaire modifications. Increasing attention is being paid to the unit and hospital level wherein distinct cultures may be located, as well as to associated measurement and study design issues. Predictive validity of safety climate is tested against safety behaviours/outcomes, with some relationships reported, although effects may be specific to professional groups/units. Few studies test the role of intervening variables that could influence the effect of climate on outcomes. Hospital climate studies are becoming a key component of healthcare safety management systems. Large datasets have established more reliable instruments that allow a more focussed investigation of the role of culture in the improvement and maintenance of staff's safety perceptions within units, as well as within hospitals.

  13. Teaching Urban High School Students Global Climate Change Information and Graph Interpretation Skills Using Evidence from the Scientific Literature

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Meyer, Mary A.

    2009-01-01

    Curriculum materials designed to provide students with practice interpreting plotted evidence of global climate change were developed using graphs from the scientific literature and tested with one hundred urban high school students from a high-poverty school in a major northern city in the US. The graph interpretation lessons followed a…

  14. Evaluating the Usability of a Professional Modeling Tool Repurposed for Middle School Learning

    ERIC Educational Resources Information Center

    Peters, Vanessa L.; Songer, Nancy Butler

    2013-01-01

    This paper reports the results of a three-stage usability test of a modeling tool designed to support learners' deep understanding of the impacts of climate change on ecosystems. The design process involved repurposing an existing modeling technology used by professional scientists into a learning tool specifically designed for middle school…

  15. Development and psychometric testing of an instrument to measure safety climate perceptions in community pharmacy.

    PubMed

    Newham, Rosemary; Bennie, Marion; Maxwell, David; Watson, Anne; de Wet, Carl; Bowie, Paul

    2014-12-01

    A positive and strong safety culture underpins effective learning from patient safety incidents in health care, including the community pharmacy (CP) setting. To build this culture, perceptions of safety climate must be measured with context-specific and reliable instruments. No pre-existing instruments were specifically designed or suitable for CP within Scotland. We therefore aimed to develop a psychometrically sound instrument to measure perceptions of safety climate within Scottish CPs. The first stage, development of a preliminary instrument, comprised three steps: (i) a literature review; (ii) focus group feedback; and (iii) content validation. The second stage, psychometric testing, consisted of three further steps: (iv) a pilot survey; (v) a survey of all CP staff within a single health board in NHS Scotland; and (vi) application of statistical methods, including principal components analysis and calculation of Cronbach's reliability coefficients, to derive the final instrument. The preliminary questionnaire was developed through a process of literature review and feedback. This questionnaire was completed by staff in 50 CPs from the 131 (38%) sampled. 250 completed questionnaires were suitable for analysis. Psychometric evaluation resulted in a 30-item instrument with five positively correlated safety climate factors: leadership, teamwork, safety systems, communication and working conditions. Reliability coefficients were satisfactory for the safety climate factors (α > 0.7) and overall (α = 0.93). The robust nature of the technical design and testing process has resulted in the development of an instrument with sufficient psychometric properties, which can be implemented in the community pharmacy setting in NHS Scotland. © 2014 John Wiley & Sons, Ltd.

  16. Highway pavement performance test for colored thin anti-skidding layers

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Cui, Wei; Xu, Ming

    2018-03-01

    Based on the actual service condition of highway pavement colored thin anti-skidding layers, with materials of color quartz sand and two-component acrylic resin as basis, we designed such tests as the bond strength, shearing strength, tear strength, fatigue performance and aggregate polished value, and included the freeze-thaw cycle and de-icing salt and other factors in the experiment, connecting with the climate characteristics of circumpolar latitude and low altitude in Heilongjiang province. Through the pavement performance test, it is confirmed that the colored thin anti-skidding layers can adapt to cold and humid climate conditions, and its physical mechanical properties are good.

  17. Organizational and media stress among professional football players: testing an achievement goal theory model.

    PubMed

    Kristiansen, E; Halvari, H; Roberts, G C

    2012-08-01

    The purpose of this study was to investigate media and coach-athlete stress experienced by professional football players and their relationship to motivational variables by testing an achievement goal theory (AGT) stress model. In order to do so, we developed scales specifically designed to assess media and coach-athlete stress. Eighty-two elite football players (M(age) =25.17 years, SD=5.19) completed a series of questionnaires. Correlations and bootstrapping were used as primary statistical analyses, supplemented by LISREL, to test the hypotheses. Results revealed that a mastery climate was directly and negatively associated with coach-athlete stress, while a performance climate was directly and positively associated with coach-athlete stress. In addition, an indirect positive path between the performance climate and media stress was revealed through ego orientation. These findings support some of the key postulates of AGT; a mastery climate reduces the perception of stress among athletes, and the converse is true for a performance climate. Coaches of elite footballers are advised to try to reduce the emphasis on performance criteria because of its stress-reducing effects. © 2011 John Wiley & Sons A/S.

  18. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  19. Designing optimized multi-species monitoring networks to detect range shifts driven by climate change: a case study with bats in the North of Portugal.

    PubMed

    Amorim, Francisco; Carvalho, Sílvia B; Honrado, João; Rebelo, Hugo

    2014-01-01

    Here we develop a framework to design multi-species monitoring networks using species distribution models and conservation planning tools to optimize the location of monitoring stations to detect potential range shifts driven by climate change. For this study, we focused on seven bat species in Northern Portugal (Western Europe). Maximum entropy modelling was used to predict the likely occurrence of those species under present and future climatic conditions. By comparing present and future predicted distributions, we identified areas where each species is likely to gain, lose or maintain suitable climatic space. We then used a decision support tool (the Marxan software) to design three optimized monitoring networks considering: a) changes in species likely occurrence, b) species conservation status, and c) level of volunteer commitment. For present climatic conditions, species distribution models revealed that areas suitable for most species occur in the north-eastern part of the region. However, areas predicted to become climatically suitable in the future shifted towards west. The three simulated monitoring networks, adaptable for an unpredictable volunteer commitment, included 28, 54 and 110 sampling locations respectively, distributed across the study area and covering the potential full range of conditions where species range shifts may occur. Our results show that our framework outperforms the traditional approach that only considers current species ranges, in allocating monitoring stations distributed across different categories of predicted shifts in species distributions. This study presents a straightforward framework to design monitoring schemes aimed specifically at testing hypotheses about where and when species ranges may shift with climatic changes, while also ensuring surveillance of general population trends.

  20. Development and psychometric testing of the Nurse Practitioner Primary Care Organizational Climate Questionnaire.

    PubMed

    Poghosyan, Lusine; Nannini, Angela; Finkelstein, Stacey R; Mason, Emanuel; Shaffer, Jonathan A

    2013-01-01

    Policy makers and healthcare organizations are calling for expansion of the nurse practitioner (NP) workforce in primary care settings to assure timely access and high-quality care for the American public. However, many barriers, including those at the organizational level, exist that may undermine NP workforce expansion and their optimal utilization in primary care. This study developed a new NP-specific survey instrument, Nurse Practitioner Primary Care Organizational Climate Questionnaire (NP-PCOCQ), to measure organizational climate in primary care settings and conducted its psychometric testing. Using instrument development design, the organizational climate domain pertinent for primary care NPs was identified. Items were generated from the evidence and qualitative data. Face and content validity were established through two expert meetings. Content validity index was computed. The 86-item pool was reduced to 55 items, which was pilot tested with 81 NPs using mailed surveys and then field-tested with 278 NPs in New York State. SPSS 18 and Mplus software were used for item analysis, reliability testing, and maximum likelihood exploratory factor analysis. Nurse Practitioner Primary Care Organizational Climate Questionnaire had face and content validity. The content validity index was .90. Twenty-nine items loaded on four subscale factors: professional visibility, NP-administration relations, NP-physician relations, and independent practice and support. The subscales had high internal consistency reliability. Cronbach's alphas ranged from.87 to .95. Having a strong instrument is important to promote future research. Also, administrators can use it to assess organizational climate in their clinics and propose interventions to improve it, thus promoting NP practice and the expansion of NP workforce.

  1. Assessing safety climate in acute hospital settings: a systematic review of the adequacy of the psychometric properties of survey measurement tools.

    PubMed

    Alsalem, Gheed; Bowie, Paul; Morrison, Jillian

    2018-05-10

    The perceived importance of safety culture in improving patient safety and its impact on patient outcomes has led to a growing interest in the assessment of safety climate in healthcare organizations; however, the rigour with which safety climate tools were developed and psychometrically tested was shown to be variable. This paper aims to identify and review questionnaire studies designed to measure safety climate in acute hospital settings, in order to assess the adequacy of reported psychometric properties of identified tools. A systematic review of published empirical literature was undertaken to examine sample characteristics and instrument details including safety climate dimensions, origin and theoretical basis, and extent of psychometric evaluation (content validity, criterion validity, construct validity and internal reliability). Five questionnaire tools, designed for general evaluation of safety climate in acute hospital settings, were included. Detailed inspection revealed ambiguity around concepts of safety culture and climate, safety climate dimensions and the methodological rigour associated with the design of these measures. Standard reporting of the psychometric properties of developed questionnaires was variable, although evidence of an improving trend in the quality of the reported psychometric properties of studies was noted. Evidence of the theoretical underpinnings of climate tools was limited, while a lack of clarity in the relationship between safety culture and patient outcome measures still exists. Evidence of the adequacy of the psychometric development of safety climate questionnaire tools is still limited. Research is necessary to resolve the controversies in the definitions and dimensions of safety culture and climate in healthcare and identify related inconsistencies. More importance should be given to the appropriate validation of safety climate questionnaires before extending their usage in healthcare contexts different from those in which they were originally developed. Mixed methods research to understand why psychometric assessment and measurement reporting practices can be inadequate and lacking in a theoretical basis is also necessary.

  2. Proceedings of the Workshop on Measurement and Analysis of Structural Response in Concrete Armor Units Held in Vicksburg, Mississippi on 23-24 January 1985

    DTIC Science & Technology

    1988-02-01

    57 Summary--"Comments from Dr. Hans Burcharth" ............81 "Strength of Armour Blocks...335 APPENDICES........................................................ 387 A--"Strength of Concrete Armour Units for Breakwaters"’ --Delft...STAT!STICS DESIGN WAVE CLIMATE PRELIMINARY DESIGN CALCULATION OF ARMOUR STABILIY ETC MODEL TESTS OF PRELIMINARY DESIGN FINAL DESIGN Figure 1. Ideal

  3. Reserve Design under Climate Change: From Land Facets Back to Ecosystem Representation

    PubMed Central

    Schneider, Richard R.; Bayne, Erin M.

    2015-01-01

    Ecosystem distributions are expected to shift as a result of global warming, raising concerns about the long-term utility of reserve systems based on coarse-filter ecosystem representation. We tested the extent to which proportional ecosystem representation targets would be maintained under a changing climate by projecting the distribution of the major ecosystems of Alberta, Canada, into the future using bioclimatic envelope models and then calculating the composition of reserves in successive periods. We used the Marxan conservation planning software to generate the suite of reserve systems for our test, varying the representation target and degree of reserve clumping. Our climate envelope projections for the 2080s indicate that virtually all reserves will, in time, be comprised of different ecosystem types than today. Nevertheless, our proportional targets for ecosystem representation were maintained across all time periods, with only minor exceptions. We hypothesize that this stability in representation arises because ecosystems may be serving as proxies for land facets, the stable abiotic landscape features that delineate major arenas of biological activity. The implication is that accommodating climate change may not require abandoning the conventional ecosystem-based approach to reserve design in favour of a strictly abiotic approach, since the two approaches may be largely synonymous. PMID:25978759

  4. Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods

    NASA Astrophysics Data System (ADS)

    Werner, A. T.; Cannon, A. J.

    2015-06-01

    Gridded statistical downscaling methods are the main means of preparing climate model data to drive distributed hydrological models. Past work on the validation of climate downscaling methods has focused on temperature and precipitation, with less attention paid to the ultimate outputs from hydrological models. Also, as attention shifts towards projections of extreme events, downscaling comparisons now commonly assess methods in terms of climate extremes, but hydrologic extremes are less well explored. Here, we test the ability of gridded downscaling models to replicate historical properties of climate and hydrologic extremes, as measured in terms of temporal sequencing (i.e., correlation tests) and distributional properties (i.e., tests for equality of probability distributions). Outputs from seven downscaling methods - bias correction constructed analogues (BCCA), double BCCA (DBCCA), BCCA with quantile mapping reordering (BCCAQ), bias correction spatial disaggregation (BCSD), BCSD using minimum/maximum temperature (BCSDX), climate imprint delta method (CI), and bias corrected CI (BCCI) - are used to drive the Variable Infiltration Capacity (VIC) model over the snow-dominated Peace River basin, British Columbia. Outputs are tested using split-sample validation on 26 climate extremes indices (ClimDEX) and two hydrologic extremes indices (3 day peak flow and 7 day peak flow). To characterize observational uncertainty, four atmospheric reanalyses are used as climate model surrogates and two gridded observational datasets are used as downscaling target data. The skill of the downscaling methods generally depended on reanalysis and gridded observational dataset. However, CI failed to reproduce the distribution and BCSD and BCSDX the timing of winter 7 day low flow events, regardless of reanalysis or observational dataset. Overall, DBCCA passed the greatest number of tests for the ClimDEX indices, while BCCAQ, which is designed to more accurately resolve event-scale spatial gradients, passed the greatest number of tests for hydrologic extremes. Non-stationarity in the observational/reanalysis datasets complicated the evaluation of downscaling performance. Comparing temporal homogeneity and trends in climate indices and hydrological model outputs calculated from downscaled reanalyses and gridded observations was useful for diagnosing the reliability of the various historical datasets. We recommend that such analyses be conducted before such data are used to construct future hydro-climatic change scenarios.

  5. Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods

    NASA Astrophysics Data System (ADS)

    Werner, Arelia T.; Cannon, Alex J.

    2016-04-01

    Gridded statistical downscaling methods are the main means of preparing climate model data to drive distributed hydrological models. Past work on the validation of climate downscaling methods has focused on temperature and precipitation, with less attention paid to the ultimate outputs from hydrological models. Also, as attention shifts towards projections of extreme events, downscaling comparisons now commonly assess methods in terms of climate extremes, but hydrologic extremes are less well explored. Here, we test the ability of gridded downscaling models to replicate historical properties of climate and hydrologic extremes, as measured in terms of temporal sequencing (i.e. correlation tests) and distributional properties (i.e. tests for equality of probability distributions). Outputs from seven downscaling methods - bias correction constructed analogues (BCCA), double BCCA (DBCCA), BCCA with quantile mapping reordering (BCCAQ), bias correction spatial disaggregation (BCSD), BCSD using minimum/maximum temperature (BCSDX), the climate imprint delta method (CI), and bias corrected CI (BCCI) - are used to drive the Variable Infiltration Capacity (VIC) model over the snow-dominated Peace River basin, British Columbia. Outputs are tested using split-sample validation on 26 climate extremes indices (ClimDEX) and two hydrologic extremes indices (3-day peak flow and 7-day peak flow). To characterize observational uncertainty, four atmospheric reanalyses are used as climate model surrogates and two gridded observational data sets are used as downscaling target data. The skill of the downscaling methods generally depended on reanalysis and gridded observational data set. However, CI failed to reproduce the distribution and BCSD and BCSDX the timing of winter 7-day low-flow events, regardless of reanalysis or observational data set. Overall, DBCCA passed the greatest number of tests for the ClimDEX indices, while BCCAQ, which is designed to more accurately resolve event-scale spatial gradients, passed the greatest number of tests for hydrologic extremes. Non-stationarity in the observational/reanalysis data sets complicated the evaluation of downscaling performance. Comparing temporal homogeneity and trends in climate indices and hydrological model outputs calculated from downscaled reanalyses and gridded observations was useful for diagnosing the reliability of the various historical data sets. We recommend that such analyses be conducted before such data are used to construct future hydro-climatic change scenarios.

  6. Lessons Learned from the Advanced Topographic Laser Altimeter System

    NASA Technical Reports Server (NTRS)

    Garrison, Matt; Patel, Deepak; Bradshaw, Heather; Robinson, Frank; Neuberger, Dave

    2016-01-01

    The ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instrument is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This presentation walks through the lessons learned from design, hardware, analysis and testing perspective. ATLAS lessons learned include general thermal design, analysis, hardware, and testing issues as well as lessons specific to laser systems, two-phase thermal control, and optical assemblies with precision alignment requirements.

  7. The Effectiveness of a Geospatial Technologies-Integrated Curriculum to Promote Climate Literacy

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Bodzin, A. M.; Peffer, T.; Sahagian, D. L.; Cirucci, L.

    2011-12-01

    This study examined the effectiveness of a geospatial technologies - integrated climate change curriculum (http://www.ei.lehigh.edu/eli/cc/) to promote climate literacy in an urban school district. Five 8th grade Earth and Space Science classes in an urban middle school (Bethlehem, Pennsylvania) consisting of three different ability level tracks participated in the study. Data gathering methods included pre/posttest assessments, daily classroom observations, daily teacher meetings, and examination of student produced artifacts. Data was gathered using a climate change literacy assessment instrument designed to measure students' climate change content knowledge. The items included distractors that address misunderstandings and knowledge deficits about climate change from the existing literature. Paired-sample t-test analyses were conducted to compare the pre- and post-test assessment results. The results of these analyses were used to compare overall gains as well as ability level track groups. Overall results regarding the use of the climate change curriculum showed significant improvement in urban middle school students' understanding of climate change concepts. Effect sizes were large (ES>0.8) and significant (p<0.001) for the entire assessment and for each ability level subgroup. Findings from classroom observations, assessments embedded in the curriculum, and the examination of all student artifacts revealed that the use of geospatial technologies enable middle school students to improve their knowledge of climate change and improve their spatial thinking and reasoning skills.

  8. Simple Messages Help Set the Record Straight about Scientific Agreement on Human-Caused Climate Change: The Results of Two Experiments

    PubMed Central

    Myers, Teresa A.; Maibach, Edward; Peters, Ellen; Leiserowitz, Anthony

    2015-01-01

    Human-caused climate change is happening; nearly all climate scientists are convinced of this basic fact according to surveys of experts and reviews of the peer-reviewed literature. Yet, among the American public, there is widespread misunderstanding of this scientific consensus. In this paper, we report results from two experiments, conducted with national samples of American adults, that tested messages designed to convey the high level of agreement in the climate science community about human-caused climate change. The first experiment tested hypotheses about providing numeric versus non-numeric assertions concerning the level of scientific agreement. We found that numeric statements resulted in higher estimates of the scientific agreement. The second experiment tested the effect of eliciting respondents’ estimates of scientific agreement prior to presenting them with a statement about the level of scientific agreement. Participants who estimated the level of agreement prior to being shown the corrective statement gave higher estimates of the scientific consensus than respondents who were not asked to estimate in advance, indicating that incorporating an “estimation and reveal” technique into public communication about scientific consensus may be effective. The interaction of messages with political ideology was also tested, and demonstrated that messages were approximately equally effective among liberals and conservatives. Implications for theory and practice are discussed. PMID:25812121

  9. Simple messages help set the record straight about scientific agreement on human-caused climate change: the results of two experiments.

    PubMed

    Myers, Teresa A; Maibach, Edward; Peters, Ellen; Leiserowitz, Anthony

    2015-01-01

    Human-caused climate change is happening; nearly all climate scientists are convinced of this basic fact according to surveys of experts and reviews of the peer-reviewed literature. Yet, among the American public, there is widespread misunderstanding of this scientific consensus. In this paper, we report results from two experiments, conducted with national samples of American adults, that tested messages designed to convey the high level of agreement in the climate science community about human-caused climate change. The first experiment tested hypotheses about providing numeric versus non-numeric assertions concerning the level of scientific agreement. We found that numeric statements resulted in higher estimates of the scientific agreement. The second experiment tested the effect of eliciting respondents' estimates of scientific agreement prior to presenting them with a statement about the level of scientific agreement. Participants who estimated the level of agreement prior to being shown the corrective statement gave higher estimates of the scientific consensus than respondents who were not asked to estimate in advance, indicating that incorporating an "estimation and reveal" technique into public communication about scientific consensus may be effective. The interaction of messages with political ideology was also tested, and demonstrated that messages were approximately equally effective among liberals and conservatives. Implications for theory and practice are discussed.

  10. Short-term Time Step Convergence in a Climate Model

    DOE PAGES

    Wan, Hui; Rasch, Philip J.; Taylor, Mark; ...

    2015-02-11

    A testing procedure is designed to assess the convergence property of a global climate model with respect to time step size, based on evaluation of the root-mean-square temperature difference at the end of very short (1 h) simulations with time step sizes ranging from 1 s to 1800 s. A set of validation tests conducted without sub-grid scale parameterizations confirmed that the method was able to correctly assess the convergence rate of the dynamical core under various configurations. The testing procedure was then applied to the full model, and revealed a slow convergence of order 0.4 in contrast to themore » expected first-order convergence. Sensitivity experiments showed without ambiguity that the time stepping errors in the model were dominated by those from the stratiform cloud parameterizations, in particular the cloud microphysics. This provides a clear guidance for future work on the design of more accurate numerical methods for time stepping and process coupling in the model.« less

  11. DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Rice, C Keith; Abdelaziz, Omar

    2015-01-01

    This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.

  12. A replicated climate change field experiment reveals rapid evolutionary response in an ecologically important soil invertebrate.

    PubMed

    Bataillon, Thomas; Galtier, Nicolas; Bernard, Aurelien; Cryer, Nicolai; Faivre, Nicolas; Santoni, Sylvain; Severac, Dany; Mikkelsen, Teis N; Larsen, Klaus S; Beier, Claus; Sørensen, Jesper G; Holmstrup, Martin; Ehlers, Bodil K

    2016-07-01

    Whether species can respond evolutionarily to current climate change is crucial for the persistence of many species. Yet, very few studies have examined genetic responses to climate change in manipulated experiments carried out in natural field conditions. We examined the evolutionary response to climate change in a common annelid worm using a controlled replicated experiment where climatic conditions were manipulated in a natural setting. Analyzing the transcribed genome of 15 local populations, we found that about 12% of the genetic polymorphisms exhibit differences in allele frequencies associated to changes in soil temperature and soil moisture. This shows an evolutionary response to realistic climate change happening over short-time scale, and calls for incorporating evolution into models predicting future response of species to climate change. It also shows that designed climate change experiments coupled with genome sequencing offer great potential to test for the occurrence (or lack) of an evolutionary response. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. Person-centred ward climate as experienced by mentally lucid residents in long-term care facilities.

    PubMed

    Bergland, Ådel; Hofoss, Dag; Kirkevold, Marit; Vassbø, Tove; Edvardsson, David

    2015-02-01

    To assess the content validity and reliability of the Person-centred Climate Questionnaire-Patient version in long-term care facilities, to describe residents' perceptions of the extent to which their ward climate was person-centred and to explore whether person-centredness was associated with facility and resident characteristics, such as facility and ward size, having a sensory garden and having a primary caregiver. The importance of the physical environment to persons with dementia has been investigated. However, research is lacking regarding the extent to which mentally lucid residents experience their physical and psycho-social ward climate as person-centred and the factors influencing their experience. Cross-sectional survey design. The Person-centred Climate Questionnaire-Patient version was translated into Norwegian with forward and backward translation. The content validity index for scales was assessed. The Person-centred Climate Questionnaire -Patient version was completed by 145 mentally lucid residents in 17 Norwegian long-term care facilities. Reliability was assessed by Cronbach's α and item-total correlations. Test-retest reliability was assessed by paired samples t-test and Spearman's correlation. To explore differences based on facility and resident characteristics, independent-samples t-test and one-way anova were used. The content validity index for scales was satisfactory. The Person-centred Climate Questionnaire-Patient version was internally consistent and had satisfactory test-retest reliability. The climate was experienced as highly person-centred. No significant differences were found, except that residents in larger facilities experienced the climate as more person-centred in relation to everyday activities (subscale 2) than residents in smaller facilities. The Norwegian version of the Person-centred Climate Questionnaire-Patient version can be regarded as reliable in a long-term care facility context. Perceived degree of person-centredness was not associated with facility or resident characteristics, such as the number of residents, having a sensory garden or knowing that one has a primary caregiver. A person-centred climate can be attained in different kinds of long-term care facilities. © 2014 John Wiley & Sons Ltd.

  14. Metal removal efficiency, operational life and secondary environmental impacts of a stormwater filter developed from iron-oxide-amended bottom ash.

    PubMed

    Ilyas, Aamir; Muthanna, Tone M

    2017-12-06

    The aim of this paper was to conduct pilot-scale column tests on an alternative treatment filter designed for the treatment of highway stormwater in cold climates. The study evaluated adsorption performance of the filter with regard to the four most commonly found metals (Cu, Ni, Pb, and Zn) in highway stormwater. An alternative method was used to estimate the operational life of the filter from the adsorption test data without a breakthrough under high hydraulic loads. The potential environmental impact of the filter was assessed by comparing desorption test data with four different environmental quality standards. The proposed filter achieved high adsorption (over 90%) of the target metals. The comparisons of desorption and leaching data with the environmental standards indicated that iron-oxide/bottom ash was non-hazardous, reusable and without serious environmental risks. The operational life and filter dimensions were highly dependent on rainfall depth, which indicated that the filter design would have to be adapted to suit the climate. To fully appreciate the performance and environmental aspects, the filter unit should be tested in the field and the testing should explicitly include ecotoxicological and life cycle impacts.

  15. CARVE: The Carbon in Arctic Reservoirs Vulnerability Experiment

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.; Dinardo, Steven J.

    2012-01-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. CARVE's objectives are to: (1) Directly test hypotheses attributing the mobilization of vulnerable Arctic carbon reservoirs to climate warming; (2) Deliver the first direct measurements and detailed maps of CO2 and CH4 sources on regional scales in the Alaskan Arctic; and (3) Demonstrate new remote sensing and modeling capabilities to quantify feedbacks between carbon fluxes and carbon cycle-climate processes in the Arctic (Figure 1). We describe the investigation design and results from 2011 test flights in Alaska.

  16. Adaptation Design Tool for Climate-Smart Management of Coral Reefs and Other Natural Resources.

    PubMed

    West, Jordan M; Courtney, Catherine A; Hamilton, Anna T; Parker, Britt A; Gibbs, David A; Bradley, Patricia; Julius, Susan H

    2018-06-22

    Scientists and managers of natural resources have recognized an urgent need for improved methods and tools to enable effective adaptation of management measures in the face of climate change. This paper presents an Adaptation Design Tool that uses a structured approach to break down an otherwise overwhelming and complex process into tractable steps. The tool contains worksheets that guide users through a series of design considerations for adapting their planned management actions to be more climate-smart given changing environmental stressors. Also provided with other worksheets is a framework for brainstorming new adaptation options in response to climate threats not yet addressed in the current plan. Developed and tested in collaboration with practitioners in Hawai'i and Puerto Rico using coral reefs as a pilot ecosystem, the tool and associated reference materials consist of worksheets, instructions and lessons-learned from real-world examples. On the basis of stakeholder feedback from expert consultations during tool development, we present insights and recommendations regarding how to maximize tool efficiency, gain the greatest value from the thought process, and deal with issues of scale and uncertainty. We conclude by reflecting on how the tool advances the theory and practice of assessment and decision-making science, informs higher level strategic planning, and serves as a platform for a systematic, transparent and inclusive process to tackle the practical implications of climate change for management of natural resources.

  17. Climate Signals: An On-Line Digital Platform for Mapping Climate Change Impacts in Real Time

    NASA Astrophysics Data System (ADS)

    Cutting, H.

    2016-12-01

    Climate Signals is an on-line digital platform for cataloging and mapping the impacts of climate change. The CS platform specifies and details the chains of connections between greenhouse gas emissions and individual climate events. Currently in open-beta release, the platform is designed to to engage and serve the general public, news media, and policy-makers, particularly in real-time during extreme climate events. Climate Signals consists of a curated relational database of events and their links to climate change, a mapping engine, and a gallery of climate change monitors offering real-time data. For each event in the database, an infographic engine provides a custom attribution "tree" that illustrates the connections to climate change. In addition, links to key contextual resources are aggregated and curated for each event. All event records are fully annotated with detailed source citations and corresponding hyper links. The system of attribution used to link events to climate change in real-time is detailed here. This open-beta release is offered for public user testing and engagement. Launched in May 2016, the operation of this platform offers lessons for public engagement in climate change impacts.

  18. Validation of Nurse Practitioner Primary Care Organizational Climate Questionnaire: A New Tool to Study Nurse Practitioner Practice Settings.

    PubMed

    Poghosyan, Lusine; Chaplin, William F; Shaffer, Jonathan A

    2017-04-01

    Favorable organizational climate in primary care settings is necessary to expand the nurse practitioner (NP) workforce and promote their practice. Only one NP-specific tool, the Nurse Practitioner Primary Care Organizational Climate Questionnaire (NP-PCOCQ), measures NP organizational climate. We confirmed NP-PCOCQ's factor structure and established its predictive validity. A crosssectional survey design was used to collect data from 314 NPs in Massachusetts in 2012. Confirmatory factor analysis and regression models were used. The 4-factor model characterized NP-PCOCQ. The NP-PCOCQ score predicted job satisfaction (beta = .36; p < .001) and intent to leave job (odds ratio = .28; p = .011). NP-PCOCQ can be used by researchers to produce new evidence and by administrators to assess organizational climate in their clinics. Further testing of NP-PCOCQ is needed.

  19. Impacts of Non-Stationarity in Climate on Flood Intensity-Duration-Frequency: Case Studies in Mountainous Areas with Snowmelt

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Ren, H.; Sun, N.; Leung, L. R.; Liu, Y.; Coleman, A. M.; Skaggs, R.; Wigmosta, M. S.

    2017-12-01

    Hydrologic engineering design usually involves intensity-duration-frequency (IDF) analysis for calculating runoff from a design storm of specified precipitation frequency and duration using event-based hydrologic rainfall-runoff models. Traditionally, the procedure assumes climate stationarity and neglects snowmelt-driven runoff contribution to floods. In this study, we used high resolution climate simulations to provide inputs to the physics-based Distributed Hydrology Soil and Vegetation Model (DHSVM) to determine the spatially distributed precipitation and snowmelt available for runoff. Climate model outputs were extracted around different mountainous field sites in Colorado and California. IDF curves were generated at each numerical grid of DHSVM based on the simulated precipitation, temperature, and available water for runoff. Quantitative evaluation of trending and stationarity tests were conducted to identify (quasi-)stationary time periods for reliable IDF analysis. The impact of stationarity was evaluated by comparing the derived IDF attributes with respect to time windows of different length and level of stationarity. Spatial mapping of event return-period was performed for various design storms, and spatial mapping of event intensity was performed for given duration and return periods. IDF characteristics were systematically compared (historical vs RCP4.5 vs RCP8.5) using annual maximum series vs partial duration series data with the goal of providing reliable IDF analyses to support hydrologic engineering design.

  20. Rapid genetic divergence in response to 15 years of simulated climate change.

    PubMed

    Ravenscroft, Catherine H; Whitlock, Raj; Fridley, Jason D

    2015-11-01

    Genetic diversity may play an important role in allowing individual species to resist climate change, by permitting evolutionary responses. Our understanding of the potential for such responses to climate change remains limited, and very few experimental tests have been carried out within intact ecosystems. Here, we use amplified fragment length polymorphism (AFLP) data to assess genetic divergence and test for signatures of evolutionary change driven by long-term simulated climate change applied to natural grassland at Buxton Climate Change Impacts Laboratory (BCCIL). Experimental climate treatments were applied to grassland plots for 15 years using a replicated and spatially blocked design and included warming, drought and precipitation treatments. We detected significant genetic differentiation between climate change treatments and control plots in two coexisting perennial plant study species (Festuca ovina and Plantago lanceolata). Outlier analyses revealed a consistent signature of selection associated with experimental climate treatments at individual AFLP loci in P. lanceolata, but not in F. ovina. Average background differentiation at putatively neutral AFLP loci was close to zero, and genomewide genetic structure was associated neither with species abundance changes (demography) nor with plant community-level responses to long-term climate treatments. Our results demonstrate genetic divergence in response to a suite of climatic environments in reproductively mature populations of two perennial plant species and are consistent with an evolutionary response to climatic selection in P. lanceolata. These genetic changes have occurred in parallel with impacts on plant community structure and may have contributed to the persistence of individual species through 15 years of simulated climate change at BCCIL. © 2015 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd.

  1. Reviewers required major changes, including rearranging the two articles, so the new title of the first paper is: HVAC and Refrigeration Experiments at Wal-Mart Experimental Supercenters in Texas and Colorado --- original title: ASHRAE Journal DRAFT article McKinney and Aurora Wal-Mart Stores, Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, J Michael; Deru, Michael

    2007-01-01

    In 2005, Wal-Mart opened experimental stores in McKinney, Texas (hot climate), and Aurora, Colo. (cold climate). With these projects Wal-Mart can: * Learn how to achieve sustainability improvements; * Gain experience with the design, design process, and operations for some specific advanced technologies; * Understand energy use patterns in their stores more clearly; * Lay groundwork for better understanding of how to achieve major carbon footprint reductions; and * Measure the potential benefits of specific technologies tested.

  2. Controlled soil warming powered by alternative energy for remote field sites.

    PubMed

    Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  3. Measuring Engagement and Learning Outcomes During a Teacher Professional Development Workshop about Creative Climate Communication

    NASA Astrophysics Data System (ADS)

    Morrison, A.; Gold, A. U.; Soltis, N.; McNeal, K.; Kay, J. E.

    2017-12-01

    Climate science and global climate change are complex topics that require system-level thinking and the application of general science concepts. Identifying effective instructional approaches for improving climate literacy is an emerging research area with important broader impacts. Active learning techniques can ensure engagement throughout the learning process and increase retention of climate science content. Conceptual changes that can be measured as lasting learning gains occur when both the cognitive and affective domain are engaged. Galvanic skin sensors are a relatively new technique to directly measure engagement and cognitive load in science education. We studied the engagement and learning gains of 16 teachers throughout a one-day teacher professional development workshop focused on creative strategies to communicate about climate change. The workshop consisted of presentations about climate science, climate communication, storytelling and filmmaking, which were delivered using different pedagogical approaches. Presentations alternated with group exercises, clicker questions, videos and discussions. Using a pre-post test design we measured learning gains and attitude changes towards climate change among participating teachers. Each teacher wore a hand sensor to measure galvanic skin conductance as a proxy for emotional engagement. We surveyed teachers to obtain self-reflection data on engagement and on their skin conductance data during and after the workshop. Qualitative data provide critical information to aid the interpretation of skin conductance readings. Based on skin conductance data, teachers were most engaged during group work, discussions and videos as compared to lecture-style presentations. We discuss the benefits and limitations of using galvanic skin sensors to inform the design of teacher professional development opportunities. Results indicate that watching videos or doing interactive activities may be the most effective strategies for increasing teachers' knowledge of climate science.

  4. Climate Risk Informed Decision Analysis (CRIDA): A novel practical guidance for Climate Resilient Investments and Planning

    NASA Astrophysics Data System (ADS)

    Jeuken, Ad; Mendoza, Guillermo; Matthews, John; Ray, Patrick; Haasnoot, Marjolijn; Gilroy, Kristin; Olsen, Rolf; Kucharski, John; Stakhiv, Gene; Cushing, Janet; Brown, Casey

    2016-04-01

    Engineers and water managers have always incorporated uncertainty in water resources operations, design and planning. In recent years, concern has been growing concern that many of the fundamental principles to address uncertainty in planning and design are insufficient for coping with unprecedented shifts in climate, especially given the long lifetimes of water investments - spanning decades, even centuries. Can we design and operate new flood risk management, energy, water supply and sanitation, and agricultural projects that are robust to shifts over 20, 50, or more years? Since about 2009, better approaches to planning and designing under climate uncertainty have been gaining ground worldwide. The main challenge is to operationalize these approaches and bring them from science to practice, embed them within the existing decision-making processes of particular institutions, and shift from highly specialized "boutique" applications to methods that result in consistent, replicable outcomes accessible to water managers worldwide. With CRIDA a serious step is taken to achieve these goals. CRIDA is built on two innovative but complementary approaches that have developed in isolation across the Atlantic over the past seven years: diagnosing and assessing risk (decision scaling), and developing sequential decision steps to compensate for uncertainty within regulatory / performance standards (adaptation pathways). First, the decision scaling or "bottom up" framework to climate change adaptation was first conceptualized during the US/Canada Great Lakes regulation study and has recently been placed in a decision-making context for water-related investments published by the World Bank Second, the adaptation pathways approach was developed in the Netherlands to cope with the level of climate uncertainty we now face. Adaptation pathways is a tool for maintaining options and flexibility while meeting operational goals by envisioning how sequences of decisions can be navigated over time. They are part of the Dutch adaptive planning approach Adaptive Delta Management, executed and develop by the Dutch Delta program. Both decision scaling and adaptation pathways have been piloted in studies worldwide. The objective of CRIDA is to mainstream effective climate adaptation for professional water managers. The CRIDA publication, due in april 2016, follows the generic water design planning design cycle. At each step, CRIDA describes stepwise guidance for incorporating climate robustness: problem definition, stress test, alternatives formulation and recommendation, evaluation and selection. In the presentation the origin, goal, steps and practical tools available at each step of CRIDA will be explained. In two other abstracts ("Climate Risk Informed Decision Analysis: A Hypothetical Application to the Waas Region" by Gilroy et al., "The Application of Climate Risk Informed Decision Analysis to the Ioland Water Treatment Plant in Lusaka, Zambia, by Kucharski et al.), the application of CRIDA to cases is explained

  5. A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate

    NASA Astrophysics Data System (ADS)

    El Dallal, Norhan; Visser, Florentine

    2017-09-01

    In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.

  6. Considering Climate Change in Road and Building Design

    NASA Astrophysics Data System (ADS)

    Jacobs, Jennifer M.; Kirshen, Paul H.; Daniel, Jo Sias

    2013-07-01

    What is the role of climate in infrastructure design? How can engineers design for a changing climate? How can climate scientists better inform the design process? These were the questions posed at the first Infrastructure and Climate Network (ICNet) Steering Committee Workshop, which was sponsored by a U.S. National Science Foundation research grant (CBET-1231326) from the Research Coordination Networks-Science, Engineering and Education for Sustainability (RCN-SEES) program.

  7. Nurses' perception of ethical climate and organizational commitment.

    PubMed

    Borhani, Fariba; Jalali, Tayebe; Abbaszadeh, Abbas; Haghdoost, Aliakbar

    2014-05-01

    The high turnover of nurses has become a universal issue. The manner in which nurses view their organization's ethical climate has direct bearing on their organizational commitment. The aim of this study was to determine the correlation between nurses' perception of ethical climate and organizational commitment in teaching hospitals in the southeastern region of Iran. A descriptive analytical design was used in this study. The sample consisted of 275 nurses working in four teaching hospitals in the southeastern region of Iran. The instruments used in this study included a demographic questionnaire, Ethical Climate Questionnaire, and Organizational Commitment Questionnaire. Data analysis was carried out using Pearson's correlation, t-test, and descriptive statistic through Statistical Package for Social Science, version 16. The result of this research indicated a positive correlation among professionalism, caring, rules, independence climate, and organizational commitment. Therefore, findings of this study are a guideline for researchers and managers alike who endeavor to improve organizational commitment.

  8. Design and operation of an outdoor microalgae test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weissman, J.C.; Tillett, D.M.; Goebel, R.P.

    The objective of the project covered in this report is to establish and operate a facility in the American Southwest to test the concept of producing microalgae on a large scale. This microalgae would then be used as a feedstock for producing liquid fuels. The site chosen for this project was an existing water research station in Roswell, New Mexico; the climate and water resources are representative of those in the Southwest. For this project, researchers tested specific designs, modes of operation, and strains of microalgae; proposed and evaluated modifications to technological concepts; and assessed the progress toward meeting costmore » objectives.« less

  9. The Dependencies of Ecosystem Pattern, Structure, and Dynamics on Climate, Climate Variability, and Climate Change

    NASA Astrophysics Data System (ADS)

    Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.

    2012-12-01

    A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data shown in the database construction and by the model reinforces the need for high-resolution datasets and stresses the importance of understanding and incorporating climate change scenarios into earth system models.

  10. The Relationship between Organizational Climate and Quality of Chronic Disease Management

    PubMed Central

    Benzer, Justin K; Young, Gary; Stolzmann, Kelly; Osatuke, Katerine; Meterko, Mark; Caso, Allison; White, Bert; Mohr, David C

    2011-01-01

    Objective To test the utility of a two-dimensional model of organizational climate for explaining variation in diabetes care between primary care clinics. Data Sources/Study Setting Secondary data were obtained from 223 primary care clinics in the Department of Veterans Affairs health care system. Study Design Organizational climate was defined using the dimensions of task and relational climate. The association between primary care organizational climate and diabetes processes and intermediate outcomes were estimated for 4,539 patients in a cross-sectional study. Data Collection/Extraction Methods All data were collected from administrative datasets. The climate data were drawn from the 2007 VA All Employee Survey, and the outcomes data were collected as part of the VA External Peer Review Program. Climate data were aggregated to the facility level of analysis and merged with patient-level data. Principal Findings Relational climate was related to an increased likelihood of diabetes care process adherence, with significant but small effects for adherence to intermediate outcomes. Task climate was generally not shown to be related to adherence. Conclusions The role of relational climate in predicting the quality of chronic care was supported. Future research should examine the mediators and moderators of relational climate and further investigate task climate. PMID:21210799

  11. Investigation of biogeophysical feedback on the African climate using a two-dimensional model

    NASA Technical Reports Server (NTRS)

    Xue, Yongkang; Liou, Kuo-Nan; Kasahara, Akira

    1990-01-01

    A numerical scheme is specifically designed to develop a time-dependent climate model to ensure the conservation of mass, momentum, energy, and water vapor, in order to study the biogeophysical feedback for the climate of Africa. A vegetation layer is incorporated in the present two-dimensional climate model. Using the coupled climate-vegetation model, two tests were performed involving the removal and expansion of the Sahara Desert. Results show that variations in the surface conditions produce a significant feedback to the climate system. It is noted that the simulation responses to the temperature and zonal wind in the case of an expanded desert agree with the climatological data for African dry years. Perturbed simulations have also been performed by changing the albedo only, without allowing the variation in the vegetation layer. It is shown that the variation in latent heat release is significant and is related to changes in the vegetation cover. As a result, precipitation and cloud cover are reduced.

  12. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    NASA Astrophysics Data System (ADS)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  13. Inspiring Climate Education Excellence (ICEE): Developing self-directed professional development modules for secondary science teachers

    NASA Astrophysics Data System (ADS)

    Buhr, S. M.; Lynds, S. E.; McCaffrey, M. S.; Morton, E.

    2010-12-01

    Inspiring Climate Education Excellence (ICEE) is a NASA-funded project to develop online course modules and self-directed learning resources aligned with the Essential Principles of Climate Science. Following a national needs assessment survey and a face to face workshop to pilot test topics, a suite of online modules is being developed suitable for self-directed learning by secondary science teachers. Modules are designed around concepts and topics in which teachers express the most interest and need for instruction. Module design also includes attention to effective teaching strategies, such as awareness of student misconceptions, strategies for forestalling controversy and advice from master teachers on implementation and curriculum development. The resources are being developed in partnership with GLOBE, and the National Science Digital Library (NSDL) and is informed by the work of the Climate Literacy and Energy Awareness Network (CLEAN) project. ICEE will help to meet the professional development needs of teachers, including those participating in the GLOBE Student Climate Research Campaign. Modules and self-directed learning resources will be developed and disseminated in partnership with the National Science Digital Library (NSDL). This presentation introduces the needs assessment and pilot workshop data upon which the modules are based, and describes the modules that are available and in development.

  14. Modelling the effectiveness of grass buffer strips in managing muddy floods under a changing climate

    NASA Astrophysics Data System (ADS)

    Mullan, Donal; Vandaele, Karel; Boardman, John; Meneely, John; Crossley, Laura H.

    2016-10-01

    Muddy floods occur when rainfall generates runoff on agricultural land, detaching and transporting sediment into the surrounding natural and built environment. In the Belgian Loess Belt, muddy floods occur regularly and lead to considerable economic costs associated with damage to property and infrastructure. Mitigation measures designed to manage the problem have been tested in a pilot area within Flanders and were found to be cost-effective within three years. This study assesses whether these mitigation measures will remain effective under a changing climate. To test this, the Water Erosion Prediction Project (WEPP) model was used to examine muddy flooding diagnostics (precipitation, runoff, soil loss and sediment yield) for a case study hillslope in Flanders where grass buffer strips are currently used as a mitigation measure. The model was run for present day conditions and then under 33 future site-specific climate scenarios. These future scenarios were generated from three earth system models driven by four representative concentration pathways and downscaled using quantile mapping and the weather generator CLIGEN. Results reveal that under the majority of future scenarios, muddy flooding diagnostics are projected to increase, mostly as a consequence of large scale precipitation events rather than mean changes. The magnitude of muddy flood events for a given return period is also generally projected to increase. These findings indicate that present day mitigation measures may have a reduced capacity to manage muddy flooding given the changes imposed by a warming climate with an enhanced hydrological cycle. Revisions to the design of existing mitigation measures within existing policy frameworks are considered the most effective way to account for the impacts of climate change in future mitigation planning.

  15. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  16. A transient stochastic weather generator incorporating climate model uncertainty

    NASA Astrophysics Data System (ADS)

    Glenis, Vassilis; Pinamonti, Valentina; Hall, Jim W.; Kilsby, Chris G.

    2015-11-01

    Stochastic weather generators (WGs), which provide long synthetic time series of weather variables such as rainfall and potential evapotranspiration (PET), have found widespread use in water resources modelling. When conditioned upon the changes in climatic statistics (change factors, CFs) predicted by climate models, WGs provide a useful tool for climate impacts assessment and adaption planning. The latest climate modelling exercises have involved large numbers of global and regional climate models integrations, designed to explore the implications of uncertainties in the climate model formulation and parameter settings: so called 'perturbed physics ensembles' (PPEs). In this paper we show how these climate model uncertainties can be propagated through to impact studies by testing multiple vectors of CFs, each vector derived from a different sample from a PPE. We combine this with a new methodology to parameterise the projected time-evolution of CFs. We demonstrate how, when conditioned upon these time-dependent CFs, an existing, well validated and widely used WG can be used to generate non-stationary simulations of future climate that are consistent with probabilistic outputs from the Met Office Hadley Centre's Perturbed Physics Ensemble. The WG enables extensive sampling of natural variability and climate model uncertainty, providing the basis for development of robust water resources management strategies in the context of a non-stationary climate.

  17. A generalized forest growth projection system applied to the Lake States region.

    Treesearch

    USDA FS

    1979-01-01

    A collection of 12 papers describing the need, design, calibration database, potential diameter growth function, crown ratio, modifier, and mortality functions, as well as a diameter growth allocation rule, management algorithms, computer program, tests, and Lake State climate during calibration.

  18. Climate Change Professional Development: Design, Implementation, and Initial Outcomes on Teacher Learning, Practice, and Student Beliefs

    NASA Astrophysics Data System (ADS)

    Shea, Nicole A.; Mouza, Chrystalla; Drewes, Andrea

    2016-04-01

    In this work, we present the design, implementation, and initial outcomes of the Climate Academy, a hybrid professional development program delivered through a combination of face-to-face and online interactions, intended to prepare formal and informal science teachers (grades 5-16) in teaching about climate change. The Climate Academy was designed around core elements of successful environmental professional development programs and aligned with practices advocated in benchmarked science standards. Data were collected from multiple sources including observations of professional development events, participants' reflections on their learning, and collection of instructional units designed during the Academy. Data were also collected from a focal case study teacher in a middle school setting. Case study data included classroom observations, teacher interviews, and student beliefs toward climate change. Results indicated that the Climate Academy fostered increased learning among participants of both climate science content and pedagogical strategies for teaching about climate change. Additionally, results indicated that participants applied their new learning in the design of climate change instructional units. Finally, results from the case study indicated positive impacts on student beliefs and greater awareness about climate change. Results have implications for the design of professional development programs on climate change, a topic included for the first time in national standards.

  19. The Impact of Project-Based Climate Change Learning Experiences on Students' Broad Climate Literacy

    NASA Astrophysics Data System (ADS)

    DeWaters, J.; Powers, S. E.; Dhaniyala, S.

    2014-12-01

    Evidence-based pedagogical approaches such as project- and inquiry-based techniques have been shown to promote effective learning in science and engineering. The impact of project-based learning experiences on middle school (MS), high school (HS), and undergraduate (UG) students' climate literacy was investigated as part of a NASA Innovations in Climate Education (NICE) project. Project-based modules were developed and taught by MS and HS teachers who participated in climate change education workshops. UG students enrolled in a climate science course completed independent research projects that provided the basis for several of the HS/MS modules. All modules required students to acquire and analyze historical temperature data and future climate predictions, and apply their analysis to the solution of a societal or environmental problem related to our changing climate. Three versions of a quantitative survey were developed and used in a pre-test/post-test research design to help evaluate the project's impact on MS, HS, and UG students' climate literacy, which includes broad climate knowledge as well as affective and behavioral aspects. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. All three groups of students made modest but statistically significant cognitive (p<<0.001) and affective (p<0.01) gains; UG students also showed an increase in behavior scores (p=0.001). Results of an ANCOVA showed significant differences in students' cognitive (p<0.001), behavioral (p=0.005) and self-efficacy (p=0.012) outcomes among the 9 participating MS and HS classrooms, where both teacher and module content varied. The presentation will include a description of some key aspects of the project-based curricula developed and used in this research, the development and content of the climate literacy survey, and the interpretation of specific pre/post changes in participating students relative to the content of and approach used in the project-based modules.

  20. Toward a theory of persuasive hope: effects of cognitive appraisals, hope appeals, and hope in the context of climate change.

    PubMed

    Chadwick, Amy E

    2015-01-01

    Hope has the potential to be a powerful motivator for influencing behavior. However, hope and messages that evoke hope (hope appeals) have rarely been the focus of theoretical development or empirical research. As a step toward the effective development and use of hope appeals in persuasive communication, this study conceptualized and operationalized hope appeals in the context of climate change prevention. Then, the study manipulated components of the hope evocation part of a hope appeal. Specifically, the components were designed to address appraisals of the importance, goal congruence, future expectation, and possibility of climate protection, resulting in a 2 (strong/weak importance) × 2 (strong/weak goal congruence) × 2 (strong/weak future expectation) × 2 (strong/weak possibility) between-subjects pretest-posttest factorial design. Two hundred forty-five undergraduate students were randomly assigned to one of the 16 message conditions and completed the study online. The study tested whether the four appraisals predict feelings of hope. It determined whether message components that address importance, goal congruence, future expectation, and possibility affect appraisals, feelings of hope, and persuasion outcomes. Finally, this study tested the effects of feelings of hope on persuasion outcomes. This study takes an important step toward enabling the effective use of hope appeals in persuasive communication.

  1. Examining the Stationarity Assumption for Statistically Downscaled Climate Projections of Precipitation

    NASA Astrophysics Data System (ADS)

    Wootten, A.; Dixon, K. W.; Lanzante, J. R.; Mcpherson, R. A.

    2017-12-01

    Empirical statistical downscaling (ESD) approaches attempt to refine global climate model (GCM) information via statistical relationships between observations and GCM simulations. The aim of such downscaling efforts is to create added-value climate projections by adding finer spatial detail and reducing biases. The results of statistical downscaling exercises are often used in impact assessments under the assumption that past performance provides an indicator of future results. Given prior research describing the danger of this assumption with regards to temperature, this study expands the perfect model experimental design from previous case studies to test the stationarity assumption with respect to precipitation. Assuming stationarity implies the performance of ESD methods are similar between the future projections and historical training. Case study results from four quantile-mapping based ESD methods demonstrate violations of the stationarity assumption for both central tendency and extremes of precipitation. These violations vary geographically and seasonally. For the four ESD methods tested the greatest challenges for downscaling of daily total precipitation projections occur in regions with limited precipitation and for extremes of precipitation along Southeast coastal regions. We conclude with a discussion of future expansion of the perfect model experimental design and the implications for improving ESD methods and providing guidance on the use of ESD techniques for impact assessments and decision-support.

  2. Multisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry Farms

    PubMed Central

    Bustamante, Eliseo; Guijarro, Enrique; García-Diego, Fernando-Juan; Balasch, Sebastián; Hospitaler, Antonio; Torres, Antonio G.

    2012-01-01

    The rearing of poultry for meat production (broilers) is an agricultural food industry with high relevance to the economy and development of some countries. Periodic episodes of extreme climatic conditions during the summer season can cause high mortality among birds, resulting in economic losses. In this context, ventilation systems within poultry houses play a critical role to ensure appropriate indoor climatic conditions. The objective of this study was to develop a multisensor system to evaluate the design of the ventilation system in broiler houses. A measurement system equipped with three types of sensors: air velocity, temperature and differential pressure was designed and built. The system consisted in a laptop, a data acquisition card, a multiplexor module and a set of 24 air temperature, 24 air velocity and two differential pressure sensors. The system was able to acquire up to a maximum of 128 signals simultaneously at 5 second intervals. The multisensor system was calibrated under laboratory conditions and it was then tested in field tests. Field tests were conducted in a commercial broiler farm under four different pressure and ventilation scenarios in two sections within the building. The calibration curves obtained under laboratory conditions showed similar regression coefficients among temperature, air velocity and pressure sensors and a high goodness fit (R2 = 0.99) with the reference. Under field test conditions, the multisensor system showed a high number of input signals from different locations with minimum internal delay in acquiring signals. The variation among air velocity sensors was not significant. The developed multisensor system was able to integrate calibrated sensors of temperature, air velocity and differential pressure and operated succesfully under different conditions in a mechanically-ventilated broiler farm. This system can be used to obtain quasi-instantaneous fields of the air velocity and temperature, as well as differential pressure maps to assess the design and functioning of ventilation system and as a verification and validation (V&V) system of Computational Fluid Dynamics (CFD) simulations in poultry farms. PMID:22778611

  3. Testing a theory of organizational culture, climate and youth outcomes in child welfare systems: a United States national study.

    PubMed

    Williams, Nathaniel J; Glisson, Charles

    2014-04-01

    Theories of organizational culture and climate (OCC) applied to child welfare systems hypothesize that strategic dimensions of organizational culture influence organizational climate and that OCC explains system variance in youth outcomes. This study provides the first structural test of the direct and indirect effects of culture and climate on youth outcomes in a national sample of child welfare systems and isolates specific culture and climate dimensions most associated with youth outcomes. The study applies multilevel path analysis (ML-PA) to a U.S. nationwide sample of 2,380 youth in 73 child welfare systems participating in the second National Survey of Child and Adolescent Well-being. Youths were selected in a national, two-stage, stratified random sample design. Youths' psychosocial functioning was assessed by caregivers' responses to the Child Behavior Checklist at intake and at 18-month follow-up. OCC was assessed by front-line caseworkers' (N=1,740) aggregated responses to the Organizational Social Context measure. Comparison of the a priori and subsequent trimmed models confirmed a reduced model that excluded rigid organizational culture and explained 70% of the system variance in youth outcomes. Controlling for youth- and system-level covariates, systems with more proficient and less resistant organizational cultures exhibited more functional, more engaged, and less stressful climates. Systems with more proficient cultures and more engaged, more functional, and more stressful climates exhibited superior youth outcomes. Findings suggest child welfare administrators can support service effectiveness with interventions that improve specific dimensions of culture and climate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Testing a theory of organizational culture, climate and youth outcomes in child welfare systems: A United States national study

    PubMed Central

    Williams, Nathaniel J.; Glisson, Charles

    2013-01-01

    Theories of organizational culture and climate (OCC) applied to child welfare systems hypothesize that strategic dimensions of organizational culture influence organizational climate and that OCC explains system variance in youth outcomes. This study provides the first structural test of the direct and indirect effects of culture and climate on youth outcomes in a national sample of child welfare systems and isolates specific culture and climate dimensions most associated with youth outcomes. The study applies multilevel path analysis (ML-PA) to a U.S. nationwide sample of 2,380 youth in 73 child welfare systems participating in the second National Survey of Child and Adolescent Well-being. Youths were selected in a national, two-stage, stratified random sample design. Youths’ psychosocial functioning was assessed by caregivers’ responses to the Child Behavior Checklist at intake and at 18-month follow-up. OCC was assessed by front-line caseworkers’ (N=1,740) aggregated responses to the Organizational Social Context measure. Comparison of the a priori and subsequent trimmed models confirmed a reduced model that excluded rigid organizational culture and explained 70% of the system variance in youth outcomes. Controlling for youth- and system-level covariates, systems with more proficient and less resistant organizational cultures exhibited more functional, more engaged, and less stressful climates. Systems with more proficient cultures and more engaged, more functional, and more stressful climates exhibited superior youth outcomes. Findings suggest child welfare administrators can support service effectiveness with interventions that improve specific dimensions of culture and climate. PMID:24094999

  5. Xanthos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-05-30

    Xanthos is a Python package designed to quantify and analyze global water availability in history and in future at 0.5° × 0.5° spatial resolution and a monthly time step under a changing climate. Its performance was also tested through real applications. It is open-source, extendable and convenient to researchers who work on long-term climate data for studies of global water supply, and Global Change Assessment Model (GCAM). This package integrates inherent global gridded data maps, I/O modules, Water-Balance Model modules and diagnostics modules by user-defined configuration.

  6. Reconstructing a lost Eocene Paradise, Part II: On the utility of dynamic global vegetation models in pre-Quaternary climate studies

    NASA Astrophysics Data System (ADS)

    Shellito, Cindy J.; Sloan, Lisa C.

    2006-02-01

    Models that allow vegetation to respond to and interact with climate provide a unique method for addressing questions regarding feedbacks between the ecosystem and climate in pre-Quaternary time periods. In this paper, we consider how Dynamic Global Vegetation Models (DGVMs), which have been developed for simulations with present day climate, can be used for paleoclimate studies. We begin with a series of tests in the NCAR Land Surface Model (LSM)-DGVM with Eocene geography to examine (1) the effect of removing C 4 grasses from the available plant functional types in the model; (2) model sensitivity to a change in soil texture; and (3), model sensitivity to a change in the value of pCO 2 used in the photosynthetic rate equations. The tests were designed to highlight some of the challenges of using these models and prompt discussion of possible improvements. We discuss how lack of detail in model boundary conditions, uncertainties in the application of modern plant functional types to paleo-flora simulations, and inaccuracies in the model climatology used to drive the DGVM can affect interpretation of model results. However, we also review a number of DGVM features that can facilitate understanding of past climates and offer suggestions for improving paleo-DGVM studies.

  7. Lemonade's the Name, Simulation's the Game.

    ERIC Educational Resources Information Center

    Friel, Susan

    1983-01-01

    Provides a detailed description of Lemonade, a business game designed to introduce elementary and secondary students to the basics of business; i.e., problem solving strategies, hypothesis formulation and testing, trend analysis, prediction, comparative analysis, and effects of such factors as advertising and climatic conditions on sales and…

  8. Probabilistic seasonal Forecasts to deterministic Farm Leve Decisions: Innovative Approach

    NASA Astrophysics Data System (ADS)

    Mwangi, M. W.

    2015-12-01

    Climate change and vulnerability are major challenges in ensuring household food security. Climate information services have the potential to cushion rural households from extreme climate risks. However, most the probabilistic nature of climate information products is not easily understood by majority of smallholder farmers. Despite the probabilistic nature, climate information have proved to be a valuable climate risk adaptation strategy at the farm level. This calls for innovative ways to help farmers understand and apply climate information services to inform their farm level decisions. The study endeavored to co-design and test appropriate innovation systems for climate information services uptake and scale up necessary for achieving climate risk development. In addition it also determined the conditions necessary to support the effective performance of the proposed innovation system. Data and information sources included systematic literature review, secondary sources, government statistics, focused group discussions, household surveys and semi-structured interviews. Data wasanalyzed using both quantitative and qualitative data analysis techniques. Quantitative data was analyzed using the Statistical Package for Social Sciences (SPSS) software. Qualitative data was analyzed using qualitative techniques, which involved establishing the categories and themes, relationships/patterns and conclusions in line with the study objectives. Sustainable livelihood, reduced household poverty and climate change resilience were the impact that resulted from the study.

  9. Combined influence of multiple climatic factors on the incidence of bacterial foodborne diseases.

    PubMed

    Park, Myoung Su; Park, Ki Hwan; Bahk, Gyung Jin

    2018-01-01

    Information regarding the relationship between the incidence of foodborne diseases (FBD) and climatic factors is useful in designing preventive strategies for FBD based on anticipated future climate change. To better predict the effect of climate change on foodborne pathogens, the present study investigated the combined influence of multiple climatic factors on bacterial FBD incidence in South Korea. During 2011-2015, the relationships between 8 climatic factors and the incidences of 13 bacterial FBD, were determined based on inpatient stays, on a monthly basis using the Pearson correlation analyses, multicollinearity tests, principal component analysis (PCA), and the seasonal autoregressive integrated moving average (SARIMA) modeling. Of the 8 climatic variables, the combination of temperature, relative humidity, precipitation, insolation, and cloudiness was significantly associated with salmonellosis (P<0.01), vibriosis (P<0.05), and enterohemorrhagic Escherichia coli O157:H7 infection (P<0.01). The combined effects of snowfall, wind speed, duration of sunshine, and cloudiness were not significant for these 3 FBD. Other FBD, including campylobacteriosis, were not significantly associated with any combination of climatic factors. These findings indicate that the relationships between multiple climatic factors and bacterial FBD incidence can be valuable for the development of prediction models for future patterns of diseases in response to changes in climate. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    NASA Astrophysics Data System (ADS)

    Karpudewan, Mageswary; Roth, Wolff-Michael; Abdullah, Mohd Nor Syahrir Bin

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that child-centred, 5E learning cycle-based climate change activities would have over more traditional teacher-centred activities on Malaysian Year 5 primary students (11 years). A quasi-experimental design involving a treatment (n = 55) and a group representing typical teaching method (n = 60) was used to measure the effectiveness of these activities on (a) increasing children's knowledge about global warming; (b) changing their attitudes to be more favourable towards the environment and (c) identify the relationship between knowledge and attitude that exist in this study. Statistically significant differences in favour of the treatment group were detected for both knowledge and environmental attitudes. Non-significant relationship was identified between knowledge and attitude in this study. Interviews with randomly selected students from treatment and comparison groups further underscore these findings. Implications are discussed.

  11. Development and validation of safety climate scales for mobile remote workers using utility/electrical workers as exemplar.

    PubMed

    Huang, Yueng-Hsiang; Zohar, Dov; Robertson, Michelle M; Garabet, Angela; Murphy, Lauren A; Lee, Jin

    2013-10-01

    The objective of this study was to develop and test the reliability and validity of a new scale designed for measuring safety climate among mobile remote workers, using utility/electrical workers as exemplar. The new scale employs perceived safety priority as the metric of safety climate and a multi-level framework, separating the measurement of organization- and group-level safety climate items into two sub-scales. The question of the emergence of shared perceptions among remote workers was also examined. For the initial survey development, several items were adopted from a generic safety climate scale and new industry-specific items were generated based on an extensive literature review, expert judgment, 15-day field observations, and 38 in-depth individual interviews with subject matter experts (i.e., utility industry electrical workers, trainers and supervisors of electrical workers). The items were revised after 45 cognitive interviews and a pre-test with 139 additional utility/electrical workers. The revised scale was subsequently implemented with a total of 2421 workers at two large US electric utility companies (1560 participants for the pilot company and 861 for the second company). Both exploratory (EFA) and confirmatory factor analyses (CFA) were adopted to finalize the items and to ensure construct validity. Reliability of the scale was tested based on Cronbach's α. Homogeneity tests examined whether utility/electrical workers' safety climate perceptions were shared within the same supervisor group. This was followed by an analysis of the criterion-related validity, which linked the safety climate scores to self-reports of safety behavior and injury outcomes (i.e., recordable incidents, missing days due to work-related injuries, vehicle accidents, and near misses). Six dimensions (Safety pro-activity, General training, Trucks and equipment, Field orientation, Financial Investment, and Schedule flexibility) with 29 items were extracted from the EFA to measure the organization-level safety climate. Three dimensions (Supervisory care, Participation encouragement, and Safety straight talk) with 19 items were extracted to measure the group-level safety climate. Acceptable ranges of internal consistency statistics for the sub-scales were observed. Whether or not to aggregate these multi-dimensions of safety climate into a single higher-order construct (overall safety climate) was discussed. CFAs confirmed the construct validity of the developed safety climate scale for utility/electrical workers. Homogeneity tests showed that utility/electrical workers' safety climate perceptions were shared within the same supervisor group. Both the organization- and group-level safety climate scores showed a statistically significant relationship with workers' self-reported safety behaviors and injury outcomes. A valid and reliable instrument to measure the essential elements of safety climate for utility/electrical workers in the remote working situation has been introduced. The scale can provide an in-depth understanding of safety climate based on its key dimensions and show where improvements can be made at both group and organization levels. As such, it may also offer a valuable starting point for future safety interventions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The impact of different climates on window and skylight design for daylighting and passive cooling and heating in residential buildings: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Sallal, K.A.

    1999-07-01

    The study aims to explore the effect of different climates on window and skylight design in residential buildings. The study house is evaluated against climates that have design opportunities for passive systems, with emphasis on passive cooling. The study applies a variety of methods to evaluate the design. It has found that earth sheltering and night ventilation have the potential to provide 12--29% and 25--77% of the cooling requirements respectively for the study house in the selected climates. The reduction of the glazing area from 174 ft{sup 2} to 115 ft{sup 2} has different impacts on the cooling energy costmore » in the different climates. In climates such Fresno and Tucson, one should put the cooling energy savings as a priority for window design, particularly when determining the window size. In other climates such as Albuquerque, the priority of window design should be first given to heating savings requirements.« less

  13. User-Defined Meteorological (MET) Profiles from Climatological and Extreme Condition Data

    DTIC Science & Technology

    2018-04-01

    this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation of...well as test and evaluation . Estimates of changes in the atmosphere, often forecasted via numerical weather models, have application in the shorter...to provide the required meteorological information. This report investigates the application of climate data for use in test and evaluation , though

  14. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    NASA Astrophysics Data System (ADS)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs, and web browsers. The framework is designed to be scalable to large datasets, yet easy to use and familiar to scientists using previous tools. Integration in the ACME overall user interface facilitates data publication, further analysis, and quick feedback to model developers and scientists making component or coupled model runs.

  15. The PMIP4 contribution to CMIP6 - Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations

    NASA Astrophysics Data System (ADS)

    Otto-Bliesner, Bette L.; Braconnot, Pascale; Harrison, Sandy P.; Lunt, Daniel J.; Abe-Ouchi, Ayako; Albani, Samuel; Bartlein, Patrick J.; Capron, Emilie; Carlson, Anders E.; Dutton, Andrea; Fischer, Hubertus; Goelzer, Heiko; Govin, Aline; Haywood, Alan; Joos, Fortunat; LeGrande, Allegra N.; Lipscomb, William H.; Lohmann, Gerrit; Mahowald, Natalie; Nehrbass-Ahles, Christoph; Pausata, Francesco S. R.; Peterschmitt, Jean-Yves; Phipps, Steven J.; Renssen, Hans; Zhang, Qiong

    2017-11-01

    Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project (PMIP4) simulations in the Coupled Model Intercomparison Project (CMIP6). The experimental protocols for simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 127 000 years before present) are described here. These equilibrium simulations are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern ones. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional sensitivity experiments, to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the importance of external feedbacks (e.g., vegetation, dust) and the ability of state-of-the-art models to simulate climate changes realistically.

  16. The implications of climate change on pavement performance and design.

    DOT National Transportation Integrated Search

    2011-09-25

    Pavements are designed based on historic climatic patterns, reflecting local climate and : incorporating assumptions about a reasonable range of temperatures and precipitation levels. : Given anticipated climate changes and the inherent uncertainty a...

  17. Continuous flow hygroscopicity-resolved relaxed eddy accumulation (Hy-Res REA) method of measuring size-resolved sodium chloride particle fluxes

    EPA Science Inventory

    The accurate representation of aerosols in climate models requires direct ambient measurement of the size- and composition-dependent particle production fluxes. Here, we present the design, testing, and analysis of data collected through the first instrument capable of measuring ...

  18. Energy Design Guidelines for High Performance Schools: Hot and Dry Climates.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Energy Efficiency and Renewable Energy.

    This guide contains recommendations for designing high performance, energy efficient schools located in hot and dry climates. A high performance checklist for designers is included along with several case studies of projects that successfully demonstrated high performance design solutions for hot and dry climates. The guide's 10 sections…

  19. Relevant climate response tests for stratospheric aerosol injection: A combined ethical and scientific analysis

    NASA Astrophysics Data System (ADS)

    Lenferna, Georges Alexandre; Russotto, Rick D.; Tan, Amanda; Gardiner, Stephen M.; Ackerman, Thomas P.

    2017-06-01

    In this paper, we focus on stratospheric sulfate injection as a geoengineering scheme, and provide a combined scientific and ethical analysis of climate response tests, which are a subset of outdoor tests that would seek to impose detectable and attributable changes to climate variables on global or regional scales. We assess the current state of scientific understanding on the plausibility and scalability of climate response tests. Then, we delineate a minimal baseline against which to consider whether certain climate response tests would be relevant for a deployment scenario. Our analysis shows that some climate response tests, such as those attempting to detect changes in regional climate impacts, may not be deployable in time periods relevant to realistic geoengineering scenarios. This might pose significant challenges for justifying stratospheric sulfate aerosol injection deployment overall. We then survey some of the major ethical challenges that proposed climate response tests face. We consider what levels of confidence would be required to ethically justify approving a proposed test; whether the consequences of tests are subject to similar questions of justice, compensation, and informed consent as full-scale deployment; and whether questions of intent and hubris are morally relevant for climate response tests. We suggest further research into laboratory-based work and modeling may help to narrow the scientific uncertainties related to climate response tests, and help inform future ethical debate. However, even if such work is pursued, the ethical issues raised by proposed climate response tests are significant and manifold.

  20. Improvement of Michigan climatic files in pavement ME design.

    DOT National Transportation Integrated Search

    2015-10-01

    Climatic inputs have a great influence on Mechanistic-Empirical design results of flexible : and rigid pavements. Currently the state of Michigan has 24 climatic files embedded in Pavement ME : Design (PMED), but several limitations have been identif...

  1. An evaluation of applying the 'Critical thinking model' to teaching global warming to junior high school students

    NASA Astrophysics Data System (ADS)

    Huang, J.; Hong, C.; Hsu, Y.

    2013-12-01

    Climate change is a consequence of interaction among the biosphere, atmosphere, hydrosphere and geosphere. The causes of climate change are extremely complicated for scientists to explain. The fact that the global climate has kept warming in the past few decades is one example. It remains controversial for scientists whether this warming is the result of human activity or natural causes. This research aims to lead students to discuss the causes of global warming from distinct and controversial viewpoints to help the students realize the uncertainty and complicated characteristics of the global warming issue. The context of applying the critical thinking model to teaching the scientific concepts of climate change and global warming is designed for use in junior high schools. The videos of the upside concept 'An Inconvenient Truth' (a 2006 documentary film directed by Davis Guggenheim) and the reverse-side concept 'The Great Global Warming Swindle' (a 2007 documentary film made by British television producer/director Martin Durkin) about the global warming crisis are incorporated into lessons in order to guide students to make their own decisions appropriately when discussing the earth climate change crisis. A questionnaire, individual teacher interviews and observations in class were conducted to evaluate the curriculum. The pre-test and post-test questionnaires showed differences in the students' knowledge, attitudes and behavior towards the global warming phenomenon before and after attending the lessons. The results show that those students who attended the whole curriculum had a significant increase in their knowledge and behavior factors of global climate (P value <0.001*). However, there was no significant improvement in their attitudes between the pre-test and post-test questionnaires (P value=0.329). From the individual interviews, the teachers who gave the lessons indicated that this project could increase the interaction with their students during class and improve the efficiency of learning.

  2. Neutralizing misinformation through inoculation: Exposing misleading argumentation techniques reduces their influence

    PubMed Central

    Cook, John; Lewandowsky, Stephan; Ecker, Ullrich K. H.

    2017-01-01

    Misinformation can undermine a well-functioning democracy. For example, public misconceptions about climate change can lead to lowered acceptance of the reality of climate change and lowered support for mitigation policies. This study experimentally explored the impact of misinformation about climate change and tested several pre-emptive interventions designed to reduce the influence of misinformation. We found that false-balance media coverage (giving contrarian views equal voice with climate scientists) lowered perceived consensus overall, although the effect was greater among free-market supporters. Likewise, misinformation that confuses people about the level of scientific agreement regarding anthropogenic global warming (AGW) had a polarizing effect, with free-market supporters reducing their acceptance of AGW and those with low free-market support increasing their acceptance of AGW. However, we found that inoculating messages that (1) explain the flawed argumentation technique used in the misinformation or that (2) highlight the scientific consensus on climate change were effective in neutralizing those adverse effects of misinformation. We recommend that climate communication messages should take into account ways in which scientific content can be distorted, and include pre-emptive inoculation messages. PMID:28475576

  3. The Impact of Market Orientation on Patient Safety Climate Among Hospital Nurses.

    PubMed

    Weng, Rhay-Hung; Chen, Jung-Chien; Pong, Li-Jung; Chen, Li-Mei; Lin, Tzu-Chi

    2016-03-01

    Improving market orientation and patient safety have become the key concerns of nursing management. For nurses, establishing a patient safety climate is the key to enhancing nursing quality. This study explores how market orientation affects the climate of patient safety among hospital nurses. We proposed adopting a cross-sectional research design and using questionnaires to collect responses from nurses working in two Taiwanese hospitals. Three-hundred and forty-three valid samples were obtained. Multiple regression and path analyses were conducted to test the study. Market orientation was defined as the combination of customer orientation, competitor orientation, and interfunctional coordination. Customer orientation directly affects the climate of patient safety. Although the findings only supported Hypothesis 1, competitor orientation and interfunctional coordination positively affected the patient safety climate through the mediating effects of hospital support for staff. Health care managers could encourage nurses to adopt customer-oriented perspectives to enhance their nursing care. In addition, to enhance competitor orientation, interfunctional coordination, and the patient safety climate, hospital managers could strengthen their support for staff members. © The Author(s) 2014.

  4. DOE unveils climate model in advance of global test

    NASA Astrophysics Data System (ADS)

    Popkin, Gabriel

    2018-05-01

    The world's growing collection of climate models has a high-profile new entry. Last week, after nearly 4 years of work, the U.S. Department of Energy (DOE) released computer code and initial results from an ambitious effort to simulate the Earth system. The new model is tailored to run on future supercomputers and designed to forecast not just how climate will change, but also how those changes might stress energy infrastructure. Results from an upcoming comparison of global models may show how well the new entrant works. But so far it is getting a mixed reception, with some questioning the need for another model and others saying the $80 million effort has yet to improve predictions of the future climate. Even the project's chief scientist, Ruby Leung of the Pacific Northwest National Laboratory in Richland, Washington, acknowledges that the model is not yet a leader.

  5. Regulating Emotional Responses to Climate Change – A Construal Level Perspective

    PubMed Central

    Ejelöv, Emma; Hansla, André; Bergquist, Magnus; Nilsson, Andreas

    2018-01-01

    This experimental study (N = 139) examines the role of emotions in climate change risk communication. Drawing on Construal Level Theory, we tested how abstract vs. concrete descriptions of climate threat affect basic and self-conscious emotions and three emotion regulation strategies: changing oneself, repairing the situation and distancing oneself. In a 2 × 2 between subjects factorial design, climate change consequences were described as concrete/abstract and depicted as spatially proximate/distant. Results showed that, as hypothesized, increased self-conscious emotions mediate overall positive effects of abstract description on self-change and repair attempts. Unexpectedly and independent of any emotional process, a concrete description of a spatially distant consequence is shown to directly increase self-change and repair attempts, while it has no such effects when the consequence is spatially proximate. “Concretizing the remote” might refer to a potentially effective strategy for overcoming spatial distance barriers and motivating mitigating behavior. PMID:29780340

  6. Regulating Emotional Responses to Climate Change - A Construal Level Perspective.

    PubMed

    Ejelöv, Emma; Hansla, André; Bergquist, Magnus; Nilsson, Andreas

    2018-01-01

    This experimental study ( N = 139) examines the role of emotions in climate change risk communication. Drawing on Construal Level Theory, we tested how abstract vs. concrete descriptions of climate threat affect basic and self-conscious emotions and three emotion regulation strategies: changing oneself, repairing the situation and distancing oneself. In a 2 × 2 between subjects factorial design, climate change consequences were described as concrete/abstract and depicted as spatially proximate/distant. Results showed that, as hypothesized, increased self-conscious emotions mediate overall positive effects of abstract description on self-change and repair attempts. Unexpectedly and independent of any emotional process, a concrete description of a spatially distant consequence is shown to directly increase self-change and repair attempts, while it has no such effects when the consequence is spatially proximate. "Concretizing the remote" might refer to a potentially effective strategy for overcoming spatial distance barriers and motivating mitigating behavior.

  7. Measuring Student Improvement in Lower- and Upper-Level University Climate Science Courses

    NASA Astrophysics Data System (ADS)

    Harris, S. E.; Taylor, S. V.; Schoonmaker, J. E.; Lane, E.; Francois, R. H.; Austin, P.

    2011-12-01

    What do university students know about climate? What do they learn in a climate course? On the second-to-last day of a course about global climate change, only 48% of our upper-level science students correctly answered a multiple-choice question about the greenhouse effect. The good news: improvement. Only 16% had answered correctly on the first day of class. The bad news: the learning opportunities we've provided appear to have missed more than half the class on a fundamental climate concept. To evaluate the effectiveness of instruction on student learning about climate, we have developed a prototype assessment tool, designed to be deployed as a low-stakes pre-post test. The items included were validated through student interviews to ensure that students interpret the wording and answer choices in the way we intend. This type of validated assessment, administered both at the beginning and end of term, with matched individuals, provides insight regarding the baseline knowledge with which our students enter a course, and the impact of that course on their learning. We administered test items to students in (1) an upper-level climate course for science majors and (2) a lower-level climate course open to all students. Some items were given to both groups, others to only one of the groups. Both courses use evidence-based pedagogy with active student engagement (clickers, small group activities, regular pre-class preparation). Our results with upper-level students show strong gains in student thinking (>70% of students who missed a question on the pre-test answered correctly on the post-test) about stock-and-flow (box model) problems, annual cycles in the Keeling curve, ice-albedo feedbacks, and isotopic fractionation. On different questions, lower-level students showed strong gains regarding albedo and blackbody emission spectra. Both groups show similar baseline knowledge and lower-than-expected gains on greenhouse effect fundamentals, and zero gain regarding the relative importance of different greenhouse gases. A larger percentage of upper-level students (compared to lower-level students) arrive with correct knowledge comparing different greenhouse gases, and explanations of annual cycles in the Keeling curve, but both groups show similar gains with instruction. Instructors can use feedback from these pre-post assessment results to iteratively modify and test the learning opportunities they provide. We aim to continue development and further validation of this tool such that it can be used in many university-level climate courses.

  8. Establishing a Water Resources Resilience Baseline for Mexico City

    NASA Astrophysics Data System (ADS)

    Behzadi, F.; Ray, P. A.

    2017-12-01

    There is a growing concern for the vulnerability of the Mexico City water system to shocks, and the capacity of the system to accommodate climate and demographic change. This study presents a coarse-resolution, lumped model of the water system of Mexico City as a whole, designed to identify system-wide imbalances, and opportunities for large-scale improvements in city-wide resilience through investments in water imports, exports, and storage. In order to investigate the impact of climate change in Mexico City, the annual and monthly trends of precipitation and temperature at 46 stations near or inside the Mexico City were analyzed. The statistical significance of the trends in rainfall and temperature, both over the entire period of record, and the more recent "climate-change-impacted period" (1970-2015), were determined using the non-parametric Mann-Kendall test. Results show a statistically significant increasing trend in the annual mean precipitation, mean temperature, and annual maximum daily temperature. However, minimum daily temperature does not appear to be increasing, and might be decreasing. Water management in Mexico City faces particular challenges, where the winter dry season is warming more quickly than the wet summer season. A stress test of Mexico City water system is conducted to identify vulnerabilities to changes in exogenous factors (esp., climate, demographics, land use). Following on the stress test, the relative merits of adaptation options that might improve the system's resilience and sustainability will be assessed.

  9. A user-centred design process of new cold-protective clothing for offshore petroleum workers operating in the Barents Sea

    PubMed Central

    NAESGAARD, Ole Petter; STORHOLMEN, Tore Christian Bjørsvik; WIGGEN, Øystein Nordrum; REITAN, Jarl

    2017-01-01

    Petroleum operations in the Barents Sea require personal protective clothing (PPC) to ensure the safety and performance of the workers. This paper describes the accomplishment of a user-centred design process of new PPC for offshore workers operating in this area. The user-centred design process was accomplished by mixed-methods. Insights into user needs and context of use were established by group interviews and on-the-job observations during a field-trip. The design was developed based on these insights, and refined by user feedback and participatory design. The new PPC was evaluated via field-tests and cold climate chamber tests. The insight into user needs and context of use provided useful input to the design process and contributed to tailored solutions. Providing users with clothing prototypes facilitated participatory design and iterations of design refinement. The group interviews following the final field test showed consensus of enhanced user satisfaction compared to PPC in current use. The final cold chamber test indicated that the new PPC provides sufficient thermal protection during the 60 min of simulated work in a wind-chill temperature of −25°C. Conclusion: Accomplishing a user-centred design process contributed to new PPC with enhanced user satisfaction and included relevant functional solutions. PMID:29046494

  10. A user-centred design process of new cold-protective clothing for offshore petroleum workers operating in the Barents Sea.

    PubMed

    Naesgaard, Ole Petter; Storholmen, Tore Christian Bjørsvik; Wiggen, Øystein Nordrum; Reitan, Jarl

    2017-12-07

    Petroleum operations in the Barents Sea require personal protective clothing (PPC) to ensure the safety and performance of the workers. This paper describes the accomplishment of a user-centred design process of new PPC for offshore workers operating in this area. The user-centred design process was accomplished by mixed-methods. Insights into user needs and context of use were established by group interviews and on-the-job observations during a field-trip. The design was developed based on these insights, and refined by user feedback and participatory design. The new PPC was evaluated via field-tests and cold climate chamber tests. The insight into user needs and context of use provided useful input to the design process and contributed to tailored solutions. Providing users with clothing prototypes facilitated participatory design and iterations of design refinement. The group interviews following the final field test showed consensus of enhanced user satisfaction compared to PPC in current use. The final cold chamber test indicated that the new PPC provides sufficient thermal protection during the 60 min of simulated work in a wind-chill temperature of -25°C. Accomplishing a user-centred design process contributed to new PPC with enhanced user satisfaction and included relevant functional solutions.

  11. Teaching Climate Change to Future Teachers Using 'Real' Data: Challenges and Opportunities (Invited)

    NASA Astrophysics Data System (ADS)

    Petcovic, H. L.; Barone, S.; Fulford, J.

    2013-12-01

    A climate-literate public is essential to resolving pressing problems related to global change. Future elementary teachers are a critical audience in climate and climate change education, as they will introduce children in early grades (USA grades K-8, children ages 5-14) to fundamentals of the climate system, natural and anthropogenic drivers of climate change, and impacts of global change on human and natural systems. Here we describe challenges we have encountered in teaching topics of the carbon cycle, greenhouse gases, past climate, recent anthropogenic change, and carbon footprints to future elementary teachers. We also describe how we have met (to varying degrees of success) these challenges in an introductory earth science course that is specifically designed for this audience. Two prominent challenges we have encountered are: the complex nature of the scientific content of climate change, and robust misconceptions held by our students about these topics. To address the first challenge, we attempt to adjust the scientific content to a level appropriate for future K-8 teachers, without sacrificing too much accuracy or critical detail. To address the second challenge, we explicitly discuss alternate conceptions of each topic. The use of authentic data sets can also address both of these challenges. Yet incorporating 'real' climate and paleoclimate data into the classroom poses still an additional challenge of instructional design. We use a variety of teaching approaches in our laboratory-based course including student-designed experiments, computer simulations, physical models, and authentic data sets. We have found that students strongly prefer the physical models and experiments, because these are 'hands-on' and perceived as easily adaptable to the K-8 classroom. Students often express dislike for activities that use authentic data sets (for example, an activity using graphs of CO2 and methane concentrations in Vostok ice cores), in particular because they have difficulty interpreting graphs. To respond to this concern, we couple physical models/experiments with data sets in a guided inquiry teaching format in order to satisfy those students who prefer 'hands-on' learning yet tie the models to the real world. Pre/post testing of students shows that this method is effective in most topics, yet future teachers still struggle with identifying natural versus anthropogenic drivers of climate change. We continue to address these challenges in future course modifications.

  12. Exploring the impact of transformational leadership on nurse innovation behaviour: a cross-sectional study.

    PubMed

    Weng, Rhay-Hung; Huang, Ching-Yuan; Chen, Li-Mei; Chang, Li-Yu

    2015-05-01

    This study explored the influences of transformational leadership on nurse innovation behaviour and the mediating role of organisational climate. Recently, global nursing experts have been aggressively encouraging nurses to pursue innovation in nursing in order to improve nursing outcomes. Nursing innovation, in turn, is affected by nursing leadership. We employed a questionnaire survey to collect data, and selected a sample of nurses from hospitals in Taiwan. A total of 439 valid surveys were obtained. Hierarchical multiple regression model analysis was conducted to test the study hypothesis. The mean values of agreement of nurse innovation behaviour and transformational leadership were 3.40 and 3.78, respectively. Patient safety climate and innovation climate were found to have full mediating effects on the relationship between transformational leadership and innovation behaviour. Organisational climate has a significant impact on innovation behaviour. Transformational leadership has indirect effects on innovation behaviour via the mediation of patient safety climate and innovation climate. Hospitals should enhance transformational leadership by designing leadership training programmes and establishing transformational culture. In addition, nursing managers should foster nursing innovation through improvements in organisational climate. © 2013 John Wiley & Sons Ltd.

  13. Cracking The Climate Change Conundrum With Derivatives

    NASA Astrophysics Data System (ADS)

    Annan, J.

    2016-12-01

    There is a long history of scientific wagers being used to demonstrate and test confidence in uncertain outcomes, with the Hawking-Thorne black hole bet and Simon-Ehrlich commodity wager being well-known examples. Perhaps the largest such bet in climate science is the author's $10,000 wager on ongoing warming up to 2017. Such bets are commonly interpreted as personal Bayesian probabilities of the people involved. A broadening of these single bets, into betting markets, would allow for aggregation of views and so find the consensus view across a larger group. A further natural extension of this idea would be to develop financial instruments such as derivatives, which are essentially bets designed to facilitate hedging of risks associated with climate change. In this presentation, I will discuss how such derivatives could protect those vulnerable to climate change by allowing risks to be transferred.As an additional benefit, these climate-based derivatives could create both a mechanism and an incentive for carbon emitters to help finance new technologies and industries that will reduce carbon emissions in the future. These financial instruments would also dynamically incorporate any new information concerning climate change and, in effect, generate probabilities associated with a variety of climate change scenarios.

  14. Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for a Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Parkin, G.; O'Donnell, G.; Ewen, J.; Bathurst, J. C.; O'Connell, P. E.; Lavabre, J.

    1996-02-01

    Validation methods commonly used to test catchment models are not capable of demonstrating a model's fitness for making predictions for catchments where the catchment response is not known (including hypothetical catchments, and future conditions of existing catchments which are subject to land-use or climate change). This paper describes the first use of a new method of validation (Ewen and Parkin, 1996. J. Hydrol., 175: 583-594) designed to address these types of application; the method involves making 'blind' predictions of selected hydrological responses which are considered important for a particular application. SHETRAN (a physically based, distributed catchment modelling system) is tested on a small Mediterranean catchment. The test involves quantification of the uncertainty in four predicted features of the catchment response (continuous hydrograph, peak discharge rates, monthly runoff, and total runoff), and comparison of observations with the predicted ranges for these features. The results of this test are considered encouraging.

  15. Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallay, Dave; Wiehagen, Joseph; Kochkin, Vladimir

    This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders.

  16. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backman, C.; German, A.; Dakin, B.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 tomore » test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).« less

  17. The Mars Polar Lander undergoes spin test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers maneuver the Mars Polar Lander onto a spin table for testing. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  18. The Mars Polar Lander undergoes spin test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is lowered toward a spin table for testing. The lander, which will be launched on Jan. 3, 1999, is a solar- powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  19. Industrial technology for the economic and viable encapsulation for large-scale solar panels (technologie industrielle d'encapsulation economique et fiable pour panneaux solaires de grandes dimensions). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anguet, J.; Salles, Y.

    The aim of the work is to apply the laminated glass technology used in buildings and car windscreens to the encapsulation of solar panels so as to form a glass-polyvinylbutyral-glass 'sandwich'. Based on small-scale experimental panels, the following studies were made: (1) adhesion techniques; (2) structure studies to find the most suitable means for maintaining the mechanical stability of the cells; (3) types of connections for the solar panels and (4) climatic tests and humidity resistance. Mechanical and climatic tests with the minimodules gave encouraging results, whereupon larger scale models were designed. The results obtained with these confirmed those obtainedmore » with the mini-modules.« less

  20. Efficient Computation of Atmospheric Flows with Tempest: Development of Next-Generation Climate and Weather Prediction Algorithms at Non-Hydrostatic Scales

    NASA Astrophysics Data System (ADS)

    Guerra, J. E.; Ullrich, P. A.

    2015-12-01

    Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods at very high spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At global horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of meso-scale test cases to validate the performance of the SNFEM applied in the vertical. Internal gravity wave, mountain wave, convective, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.

  1. Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallay, Dave; Wiehagen, Joseph; Kochkin, Vladimir

    This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wallmore » system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.« less

  2. Using Four Downscaling Techniques to Characterize Uncertainty in Updating Intensity-Duration-Frequency Curves Under Climate Change

    NASA Astrophysics Data System (ADS)

    Cook, L. M.; Samaras, C.; McGinnis, S. A.

    2017-12-01

    Intensity-duration-frequency (IDF) curves are a common input to urban drainage design, and are used to represent extreme rainfall in a region. As rainfall patterns shift into a non-stationary regime as a result of climate change, these curves will need to be updated with future projections of extreme precipitation. Many regions have begun to update these curves to reflect the trends from downscaled climate models; however, few studies have compared the methods for doing so, as well as the uncertainty that results from the selection of the native grid scale and temporal resolution of the climate model. This study examines the variability in updated IDF curves for Pittsburgh using four different methods for adjusting gridded regional climate model (RCM) outputs into station scale precipitation extremes: (1) a simple change factor applied to observed return levels, (2) a naïve adjustment of stationary and non-stationary Generalized Extreme Value (GEV) distribution parameters, (3) a transfer function of the GEV parameters from the annual maximum series, and (4) kernel density distribution mapping bias correction of the RCM time series. Return level estimates (rainfall intensities) and confidence intervals from these methods for the 1-hour to 48-hour duration are tested for sensitivity to the underlying spatial and temporal resolution of the climate ensemble from the NA-CORDEX project, as well as, the future time period for updating. The first goal is to determine if uncertainty is highest for: (i) the downscaling method, (ii) the climate model resolution, (iii) the climate model simulation, (iv) the GEV parameters, or (v) the future time period examined. Initial results of the 6-hour, 10-year return level adjusted with the simple change factor method using four climate model simulations of two different spatial resolutions show that uncertainty is highest in the estimation of the GEV parameters. The second goal is to determine if complex downscaling methods and high-resolution climate models are necessary for updating, or if simpler methods and lower resolution climate models will suffice. The final results can be used to inform the most appropriate method and climate model resolutions to use for updating IDF curves for urban drainage design.

  3. Testing alternative response designs for training forest disturbance and attribution models

    Treesearch

    T. Schroeder; G. Moisen; K. Schleeweis

    2014-01-01

    Understanding and modeling land cover and land use change is evolving into a foundational element of climate, environmental, and sustainability science. Land cover and land use data are core to applications such as carbon accounting, greenhouse gas emissions reporting, biomass and bioenergy assessments, hydrologic function assessments, fire and fuels planning and...

  4. Continuing a Culture of Evidence: Assessment for Improvement. Research Report. ETS RR-17-08

    ERIC Educational Resources Information Center

    Russell, Javarro; Markle, Ross

    2017-01-01

    From 2006 to 2008, Educational Testing Service (ETS) produced a series of reports titled "A Culture of Evidence," designed to capture a changing climate in higher education assessment. A decade later, colleges and universities already face new and different challenges resulting from societal, technological, and scientific influences.…

  5. Culture & Technology[TM]. [CD-ROM].

    ERIC Educational Resources Information Center

    2000

    This three CD-ROM set is designed to integrate social studies and science. There are 1,300 lessons developed and field tested by curriculum specialists, teachers, and students over a period of 15 years. Using dramatic video, audio, and photos, students can make connections between diet and temperature, location and climate, safety and energy,…

  6. Planning for Desperate Climate Intervention: can it Make Sense?

    NASA Astrophysics Data System (ADS)

    Duncan, Robert

    2014-07-01

    The three National Academies of the United States, working together, authored a comprehensive report in 1992 titled: Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. The authors discussed various possible methods of geoengineering to mitigate the adverse climate effects of the slow, steady buildup of greenhouse gasses in the Earth's atmosphere. Subsequently far less expensive, clever designs were developed by inventors such as Bill Gates and his collaborators, and these have been patented. Many of the techniques in this geoengineering proposition were commonly considered as methods of selectively polluting the upper atmosphere to block the solar luminosity, and hence they met with staunch resistance from the international scientific community. At the time, these geoengineering approaches were proposed as a method of countering the slow steady increase of the earth's temperature that was assumed to be a consequence of the increase in concentration of atmospheric molecules that contain carbon, such as CO2 and CH4. Such intentional intervention in a system as complex as the earth's atmosphere was considered by most scientists, including the authors, as reckless. Within this paper, we propose that the less expensive of these geoengineering plans be reconsidered, but that such a system never be deployed or tested at scale unless a genuine climate runaway condition arises in the future. The more economically compelling approaches should be further tested at the `lab bench' level, and in small laboratory-scale tests, and simulations. A comprehensive plan should be developed to manufacture the required materials at scale and to finalize the design of the necessary system, but no such deployment should be entered into at this time. The many risks of an intense, sudden release of greenhouse gasses, mainly methane and carbon dioxide from geologic sources, are reviewed briefly herein. We consider it only prudent to develop an economical and viable geoengineered plan to block part of the solar luminosity on the Earth, given the small but credible risk of a global climate runaway situation in the future.

  7. Creating an environment for patient safety and teamwork training in the operating theatre: A quasi-experimental study.

    PubMed

    Wallin, Carl-Johan; Kalman, Sigridur; Sandelin, Annika; Färnert, May-Lena; Dahlstrand, Ursula; Jylli, Leena

    2015-03-01

    Positive safety and a teamwork climate in the training environment may be a precursor for successful teamwork training. This pilot project aimed to implement and test whether a new interdisciplinary and team-based approach would result in a positive training climate in the operating theatre. A 3-day educational module for training the complete surgical team of specialist nursing students and residents in safe teamwork skills in an authentic operative theatre, named Co-Op, was implemented in a university hospital. Participants' (n=22) perceptions of the 'safety climate' and the 'teamwork climate', together with their 'readiness for inter-professional learning', were measured to examine if the Co-Op module produced a positive training environment compared with the perceptions of a control group (n=11) attending the conventional curriculum. The participants' perceptions of 'safety climate' and 'teamwork climate' and their 'readiness for inter-professional learning' scores were significantly higher following the Co-Op module compared with their perceptions following the conventional curriculum, and compared with the control group's perceptions following the conventional curriculum. The Co-Op module improved 'safety climate' and 'teamwork climate' in the operating theatre, which suggests that a deliberate and designed educational intervention can shape a learning environment as a model for the establishment of a safety culture.

  8. Climate services for society: origins, institutional arrangements, and design elements for an evaluation framework

    PubMed Central

    Vaughan, Catherine; Dessai, Suraje

    2014-01-01

    Climate services involve the generation, provision, and contextualization of information and knowledge derived from climate research for decision making at all levels of society. These services are mainly targeted at informing adaptation to climate variability and change, widely recognized as an important challenge for sustainable development. This paper reviews the development of climate services, beginning with a historical overview, a short summary of improvements in climate information, and a description of the recent surge of interest in climate service development including, for example, the Global Framework for Climate Services, implemented by the World Meteorological Organization in October 2012. It also reviews institutional arrangements of selected emerging climate services across local, national, regional, and international scales. By synthesizing existing literature, the paper proposes four design elements of a climate services evaluation framework. These design elements include: problem identification and the decision-making context; the characteristics, tailoring, and dissemination of the climate information; the governance and structure of the service, including the process by which it is developed; and the socioeconomic value of the service. The design elements are intended to serve as a guide to organize future work regarding the evaluation of when and whether climate services are more or less successful. The paper concludes by identifying future research questions regarding the institutional arrangements that support climate services and nascent efforts to evaluate them. PMID:25798197

  9. Climate services for society: origins, institutional arrangements, and design elements for an evaluation framework.

    PubMed

    Vaughan, Catherine; Dessai, Suraje

    2014-09-01

    Climate services involve the generation, provision, and contextualization of information and knowledge derived from climate research for decision making at all levels of society. These services are mainly targeted at informing adaptation to climate variability and change, widely recognized as an important challenge for sustainable development. This paper reviews the development of climate services, beginning with a historical overview, a short summary of improvements in climate information, and a description of the recent surge of interest in climate service development including, for example, the Global Framework for Climate Services, implemented by the World Meteorological Organization in October 2012. It also reviews institutional arrangements of selected emerging climate services across local, national, regional, and international scales. By synthesizing existing literature, the paper proposes four design elements of a climate services evaluation framework. These design elements include: problem identification and the decision-making context; the characteristics, tailoring, and dissemination of the climate information; the governance and structure of the service, including the process by which it is developed; and the socioeconomic value of the service. The design elements are intended to serve as a guide to organize future work regarding the evaluation of when and whether climate services are more or less successful. The paper concludes by identifying future research questions regarding the institutional arrangements that support climate services and nascent efforts to evaluate them.

  10. The Dynamical Core Model Intercomparison Project (DCMIP-2016): Results of the Supercell Test Case

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.; Reed, K. A.; Jablonowski, C.; Ullrich, P. A.; Kent, J.; Lauritzen, P. H.; Nair, R. D.

    2016-12-01

    The 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) assesses the modeling techniques for global climate and weather models and was recently held at the National Center for Atmospheric Research (NCAR) in conjunction with a two-week summer school. Over 12 different international modeling groups participated in DCMIP-2016 and focused on the evaluation of the newest non-hydrostatic dynamical core designs for future high-resolution weather and climate models. The paper highlights the results of the third DCMIP-2016 test case, which is an idealized supercell storm on a reduced-radius Earth. The supercell storm test permits the study of a non-hydrostatic moist flow field with strong vertical velocities and associated precipitation. This test assesses the behavior of global modeling systems at extremely high spatial resolution and is used in the development of next-generation numerical weather prediction capabilities. In this regime the effective grid spacing is very similar to the horizontal scale of convective plumes, emphasizing resolved non-hydrostatic dynamics. The supercell test case sheds light on the physics-dynamics interplay and highlights the impact of diffusion on model solutions.

  11. Incorporating climate change projections into riparian restoration planning and design

    USGS Publications Warehouse

    Perry, Laura G.; Reynolds, Lindsay V.; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  12. Design of sports clothing for hot environments.

    PubMed

    Varadaraju, R; Srinivasan, J

    2018-02-22

    The clothing design based on sweat distribution pattern is called as body mapping clothing. Comparisons of three designs of body mapped and one conventional design of T-shirt was done in a wearer testing at a controlled chamber of 33 °C and 60% relativity humidity in a treadmill at 12 km/h for 40 min followed by 10 min resting. It is concluded that with the full body mapped T-shirt the increase in skin temperature is reduced in the chest area, shoulder, the body back by 47%,44% and 55% respectively; the increase in skin micro climate relative humidity is reduced in the chest area, shoulder, the body back by 54%,39.2% and 53% respectively; the increase in heart beat rate is reduced by 5.1%; the subjective perceptions of skin temperature, skin moisture and comfort are better; the wearer will be able to improve the running performance due better comfort level in terms lesser increase skin temperature, skin micro climate relative humidity and heart beat rate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Design, Development and Testing of the GMI Reflector Deployment Assembly

    NASA Technical Reports Server (NTRS)

    Guy, Larry; Foster, Mike; McEachen, Mike; Pellicciotti, Joseph; Kubitschek, Michael

    2011-01-01

    The GMI Reflector Deployment Assembly (RDA) is an articulating structure that accurately positions and supports the main reflector of the Global Microwave Imager (GMI) throughout the 3 year mission life. The GMI instrument will fly on the core Global Precipitation Measurement (GPM) spacecraft and will be used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydrometeorological predictions through more accurate and frequent precipitation measurements1. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard to design, build, and test the GMI instrument. The RDA was designed and manufactured by ATK Aerospace Systems Group to meet a number of challenging packaging and performance requirements. ATK developed a flight-like engineering development unit (EDU) and two flight mechanisms that have been delivered to BATC. This paper will focus on driving GMI instrument system requirements, the RDA design, development, and test activities performed to demonstrate that requirements have been met.

  14. Innovative Air Conditioning and Climate Control

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA needed to develop a desiccant wheel based humidity removal system to enable the long term testing of the Orion CO2 scrubber on the International Space Station. In the course of developing that system, we learned three things that are relevant to energy efficient air conditioning of office towers. NASA developed a conceptual design for a humidity removal system for an office tower environment. We are looking for interested partners to prototype and field test this concept.

  15. Assessing the Robustness of Green Infrastructure under Stochastic Design Storms and Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Chui, T. F. M.; Yang, Y.

    2017-12-01

    Green infrastructures (GI) have been widely used to mitigate flood risk, improve surface water quality, and to restore predevelopment hydrologic regimes. Commonly-used GI include, bioretention system, porous pavement and green roof, etc. They are normally sized to fulfil different design criteria (e.g. providing certain storage depths, limiting peak surface flow rates) that are formulated for current climate conditions. While GI commonly have long lifespan, the sensitivity of their performance to climate change is however unclear. This study first proposes a method to formulate suitable design criteria to meet different management interests (e.g. different levels of first flush reduction and peak flow reduction). Then typical designs of GI are proposed. In addition, a high resolution stochastic design storm generator using copulas and random cascade model is developed, which is calibrated using recorded rainfall time series. Then, few climate change scenarios are generated by varying the duration and depth of design storms, and changing the parameters of the calibrated storm generator. Finally, the performance of GI with typical designs under the random synthesized design storms are then assessed using numerical modeling. The robustness of the designs is obtained by the comparing their performance in the future scenarios to the current one. This study overall examines the robustness of the current GI design criteria under uncertain future climate conditions, demonstrating whether current GI design criteria should be modified to account for climate change.

  16. Signs of the Land: Reaching Arctic Communities Facing Climate Change

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Chase, M. J.; Demientieff, S.; Pfirman, S. L.; Brunacini, J.

    2014-12-01

    In July 2014, a diverse and intergenerational group of Alaskan Natives came together on Howard Luke's Galee'ya Camp by the Tanana River in Fairbanks, Alaska to talk about climate change and it's impacts on local communities. Over a period of four days, the Signs of the Land Climate Change Camp wove together traditional knowledge, local observations, Native language, and climate science through a mix of storytelling, presentations, dialogue, and hands-on, community-building activities. This camp adapted the model developed several years ago under the Association for Interior Native Educators (AINE)'s Elder Academy. Part of the Polar Learning and Responding Climate Change Education Partnership, the Signs of the Land Climate Change Camp was developed and conducted collaboratively with multiple partners to test a model for engaging indigenous communities in the co-production of climate change knowledge, communication tools, and solutions-building. Native Alaskans have strong subsistence and cultural connections to the land and its resources, and, in addition to being keen observers of their environment, have a long history of adapting to changing conditions. Participants in the camp included Elders, classroom teachers, local resource managers and planners, community members, and climate scientists. Based on their experiences during the camp, participants designed individualized outreach plans for bringing culturally-responsive climate learning to their communities and classrooms throughout the upcoming year. Plans included small group discussions, student projects, teacher training, and conference presentations.

  17. Linking climate projections to performance: A yield-based decision scaling assessment of a large urban water resources system

    NASA Astrophysics Data System (ADS)

    Turner, Sean W. D.; Marlow, David; Ekström, Marie; Rhodes, Bruce G.; Kularathna, Udaya; Jeffrey, Paul J.

    2014-04-01

    Despite a decade of research into climate change impacts on water resources, the scientific community has delivered relatively few practical methodological developments for integrating uncertainty into water resources system design. This paper presents an application of the "decision scaling" methodology for assessing climate change impacts on water resources system performance and asks how such an approach might inform planning decisions. The decision scaling method reverses the conventional ethos of climate impact assessment by first establishing the climate conditions that would compel planners to intervene. Climate model projections are introduced at the end of the process to characterize climate risk in such a way that avoids the process of propagating those projections through hydrological models. Here we simulated 1000 multisite synthetic monthly streamflow traces in a model of the Melbourne bulk supply system to test the sensitivity of system performance to variations in streamflow statistics. An empirical relation was derived to convert decision-critical flow statistics to climatic units, against which 138 alternative climate projections were plotted and compared. We defined the decision threshold in terms of a system yield metric constrained by multiple performance criteria. Our approach allows for fast and simple incorporation of demand forecast uncertainty and demonstrates the reach of the decision scaling method through successful execution in a large and complex water resources system. Scope for wider application in urban water resources planning is discussed.

  18. The PMIP4 contribution to CMIP6 - Part 1: Overview and over-arching analysis plan

    NASA Astrophysics Data System (ADS)

    Kageyama, Masa; Braconnot, Pascale; Harrison, Sandy P.; Haywood, Alan M.; Jungclaus, Johann H.; Otto-Bliesner, Bette L.; Peterschmitt, Jean-Yves; Abe-Ouchi, Ayako; Albani, Samuel; Bartlein, Patrick J.; Brierley, Chris; Crucifix, Michel; Dolan, Aisling; Fernandez-Donado, Laura; Fischer, Hubertus; Hopcroft, Peter O.; Ivanovic, Ruza F.; Lambert, Fabrice; Lunt, Daniel J.; Mahowald, Natalie M.; Peltier, W. Richard; Phipps, Steven J.; Roche, Didier M.; Schmidt, Gavin A.; Tarasov, Lev; Valdes, Paul J.; Zhang, Qiong; Zhou, Tianjun

    2018-03-01

    This paper is the first of a series of four GMD papers on the PMIP4-CMIP6 experiments. Part 2 (Otto-Bliesner et al., 2017) gives details about the two PMIP4-CMIP6 interglacial experiments, Part 3 (Jungclaus et al., 2017) about the last millennium experiment, and Part 4 (Kageyama et al., 2017) about the Last Glacial Maximum experiment. The mid-Pliocene Warm Period experiment is part of the Pliocene Model Intercomparison Project (PlioMIP) - Phase 2, detailed in Haywood et al. (2016).The goal of the Paleoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the climate system to different climate forcings for documented climatic states very different from the present and historical climates. Through comparison with observations of the environmental impact of these climate changes, or with climate reconstructions based on physical, chemical, or biological records, PMIP also addresses the issue of how well state-of-the-art numerical models simulate climate change. Climate models are usually developed using the present and historical climates as references, but climate projections show that future climates will lie well outside these conditions. Palaeoclimates very different from these reference states therefore provide stringent tests for state-of-the-art models and a way to assess whether their sensitivity to forcings is compatible with palaeoclimatic evidence. Simulations of five different periods have been designed to address the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6): the millennium prior to the industrial epoch (CMIP6 name: past1000); the mid-Holocene, 6000 years ago (midHolocene); the Last Glacial Maximum, 21 000 years ago (lgm); the Last Interglacial, 127 000 years ago (lig127k); and the mid-Pliocene Warm Period, 3.2 million years ago (midPliocene-eoi400). These climatic periods are well documented by palaeoclimatic and palaeoenvironmental records, with climate and environmental changes relevant for the study and projection of future climate changes. This paper describes the motivation for the choice of these periods and the design of the numerical experiments and database requests, with a focus on their novel features compared to the experiments performed in previous phases of PMIP and CMIP. It also outlines the analysis plan that takes advantage of the comparisons of the results across periods and across CMIP6 in collaboration with other MIPs.

  19. Present Status of Janaese Venus Climate Orbiter

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Imamura, T.; Ishii, N.; Satoh, T.; Abe, T.; Ueno, M.; Suzuki, M.; Yamazaki, A.

    2007-08-01

    The start of the Japanese Venus Exploration program was in 2001, and last year (2006) we moved it to Phase C after PDR in August.We would like to report the present status of our Venus Climate Orbiter. Planet-C is the project name in ISAS/JAXA. The launch vehicle is changed from M-V to H-IIA. It will be launched from Tanegashima Space Center (TNSC) in Kagoshima. With this modification, we changed some minor design of the spacecraft and the total weight is slightly heavier than before, but the basic design has not been modified. The launch window will be kept in summer in 2010 and it will arrive at Venus in December 2010. The spacecraft will be directly put into the interplanetary orbit. Now we are preparing the Mechanical and Thermal engineering Model (MTM) which will end in middle of 2007 and will shake it and do the thermal vacuum test. Later this model will be modified to the flight model and the final integration test will be in 2009 which takes 1 year. Development of all the science instruments are going well. The first integration test of science instruments will be in August this year. We can report the results of it in the meeting.

  20. Improving the social and emotional climate of classrooms: a clustered randomized controlled trial testing the RULER Approach.

    PubMed

    Rivers, Susan E; Brackett, Marc A; Reyes, Maria R; Elbertson, Nicole A; Salovey, Peter

    2013-02-01

    The RULER Approach ("RULER") is a setting-level, social and emotional learning program that is grounded in theory and evidence. RULER is designed to modify the quality of classroom social interactions so that the climate becomes more supportive, empowering, and engaging. This is accomplished by integrating skill-building lessons and tools so that teachers and students develop their emotional literacy. In a clustered randomized control trial, we tested the hypothesis that RULER improves the social and emotional climate of classrooms. Depending upon condition assignment, 62 schools either integrated RULER into fifth- and sixth-grade English language arts (ELA) classrooms or served as comparison schools, using their standard ELA curriculum only. Multi-level modeling analyses showed that compared to classrooms in comparison schools, classrooms in RULER schools were rated as having higher degrees of warmth and connectedness between teachers and students, more autonomy and leadership among students, and teachers who focused more on students' interests and motivations. These findings suggest that RULER enhances classrooms in ways that can promote positive youth development.

  1. Design and Implementation of a Thermal Load Reduction System for a Hyundai Sonata PHEV for Improved Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugh, John P; Kreutzer, Cory J; Scott, Matthew

    Increased adoption of electric-drive vehicles requires overcoming hurdles including limited vehicle range. Vehicle cabin heating and cooling demand for occupant climate control requires energy from the main battery and has been shown to significantly degrade vehicle range. During peak cooling and heating conditions, climate control can require as much as or more energy than propulsion. As part of an ongoing project, the National Renewable Energy Laboratory and project partners Hyundai America Technical Center, Inc., Gentherm, Pittsburgh Glass Works, PPG Industries, Sekisui, 3 M, and Hanon Systems developed a thermal load reduction system to reduce the range penalty associated with electricmore » vehicle climate control. Solar reflective paint, solar control glass, heated and cooled/ventilated seats, heated surfaces, and a heated windshield with door demisters were integrated into a Hyundai Sonata plug-in hybrid electric vehicle. Cold weather field-testing was conducted in Fairbanks, Alaska, and warm weather testing was conducted in Death Valley, California, to assess the system performance in comparison to the baseline production vehicle. In addition, environmental chamber testing at peak heating and cooling conditions was performed to assess the performance of the system in standardized conditions compared to the baseline. Experimental results are presented in this paper, providing quantitative data to automobile manufacturers on the impact of climate control thermal load reduction technologies to increase the advanced thermal technology adoption and market penetration of electric drive vehicles.« less

  2. The Mars Polar Lander undergoes spin test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) lift the Mars Polar Lander to move it to a spin table for testing. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  3. Efficient Computation of Atmospheric Flows with Tempest: Validation of Next-Generation Climate and Weather Prediction Algorithms at Non-Hydrostatic Scales

    NASA Astrophysics Data System (ADS)

    Guerra, Jorge; Ullrich, Paul

    2016-04-01

    Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods for a wide range of spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of idealized test cases to validate the performance of the SNFEM applied in the vertical with an emphasis on flow features and dynamic behavior. Internal gravity wave, mountain wave, convective bubble, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.

  4. A Health Impact Assessment Framework for Assessing Vulnerability and Adaptation Planning for Climate Change

    PubMed Central

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-01-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru. PMID:25514146

  5. A health impact assessment framework for assessing vulnerability and adaptation planning for climate change.

    PubMed

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-12-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru.

  6. Testing the effects of safety climate and disruptive children behavior on school bus drivers performance: A multilevel model.

    PubMed

    Zohar, Dov; Lee, Jin

    2016-10-01

    The study was designed to test a multilevel path model whose variables exert opposing effects on school bus drivers' performance. Whereas departmental safety climate was expected to improve driving safety, the opposite was true for in-vehicle disruptive children behavior. The driving safety path in this model consists of increasing risk-taking practices starting with safety shortcuts leading to rule violations and to near-miss events. The study used a sample of 474 school bus drivers in rural areas, driving children to school and school-related activities. Newly developed scales for measuring predictor, mediator and outcome variables were validated with video data taken from inner and outer cameras, which were installed in 29 buses. Results partially supported the model by indicating that group-level safety climate and individual-level children distraction exerted opposite effects on the driving safety path. Furthermore, as hypothesized, children disruption moderated the strength of the safety rule violation-near miss relationship, resulting in greater strength under high disruptiveness. At the same time, the hypothesized interaction between the two predictor variables was not supported. Theoretical and practical implications for studying safety climate in general and distracted driving in particular for professional drivers are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Engineering a future for amphibians under climate change

    USGS Publications Warehouse

    Shoo, L.P.; Olson, D.H.; Mcmenamin, S.K.; Murray, K.A.; Van Sluys, M.; Donnelly, M.A.; Stratford, D.; Terhivuo, J.; Merino-Viteri, A.; Herbert, S.M.; Bishop, P.J.; Corn, P.S.; Dovey, L.; Griffiths, R.A.; Lowe, K.; Mahony, M.; McCallum, H.; Shuker, J.D.; Simpkins, C.; Skerratt, L.F.; Williams, S.E.; Hero, J.-M.

    2011-01-01

    1. Altered global climates in the 21st century pose serious threats for biological systems and practical actions are needed to mount a response for species at risk. 2. We identify management actions from across the world and from diverse disciplines that are applicable to minimizing loss of amphibian biodiversity under climate change. Actions were grouped under three thematic areas of intervention: (i) installation of microclimate and microhabitat refuges; (ii) enhancement and restoration of breeding sites; and (iii) manipulation of hydroperiod or water levels at breeding sites. 3. Synthesis and applications. There are currently few meaningful management actions that will tangibly impact the pervasive threat of climate change on amphibians. A host of potentially useful but poorly tested actions could be incorporated into local or regional management plans, programmes and activities for amphibians. Examples include: installation of irrigation sprayers to manipulate water potentials at breeding sites; retention or supplementation of natural and artificial shelters (e.g. logs, cover boards) to reduce desiccation and thermal stress; manipulation of canopy cover over ponds to reduce water temperature; and, creation of hydrologoically diverse wetland habitats capable of supporting larval development under variable rainfall regimes. We encourage researchers and managers to design, test and scale up new initiatives to respond to this emerging crisis.

  8. Continuing a Culture of Evidence: Student-Level Assessment. Research Report. ETS RR-17-10

    ERIC Educational Resources Information Center

    Markle, Ross

    2017-01-01

    From 2006 to 2008, Educational Testing Service (ETS) produced a series of reports titled "A Culture of Evidence", designed to capture a changing climate in higher education assessment. A decade later, colleges and universities already face a new set of challenges resulting from societal, technological, and various other influences. ETS…

  9. Nonstationarity RC Workshop Report: Nonstationary Weather Patterns and Extreme Events Informing Design and Planning for Long-Lived Infrastructure

    DTIC Science & Technology

    2017-11-01

    magnitude, intensity, and seasonality of climate. For infrastructure projects, relevant design life often exceeds 30 years—a period of time of...uncertainty about future statistical properties of climate at time and spatial scales required for planning and design purposes. Information...about future statistical properties of climate at time and spatial scales required for planning and design , and for assessing future operational

  10. Local perceptions of climate change validated by scientific evidence in the Himalayas.

    PubMed

    Chaudhary, Pashupati; Bawa, Kamaljit S

    2011-10-23

    The Himalayas are assumed to be undergoing rapid climate change, with serious environmental, social and economic consequences for more than two billion people. However, data on the extent of climate change or its impact on the region are meagre. Based on local knowledge, we report perceived changes in climate and consequences of such changes for biodiversity and agriculture. Our analyses are based on 250 household interviews administered in 18 villages, and focused group discussions conducted in 10 additional villages in Darjeeling Hills, West Bengal, India and Ilam district of Nepal. There is a widespread feeling that weather is getting warmer, the water sources are drying up, the onset of summer and monsoon has advanced during last 10 years and there is less snow on mountains than before. Local perceptions of the impact of climate change on biodiversity included early budburst and flowering, new agricultural pests and weeds and appearance of mosquitoes. People at high altitudes appear more sensitive to climate change than those at low altitudes. Most local perceptions conform to scientific data. Local knowledge can be rapidly and efficiently gathered using systematic tools. Such knowledge can allow scientists to test specific hypotheses, and policy makers to design mitigation and adaptation strategies for climate change, especially in an extraordinarily important part of our world that is experiencing considerable change.

  11. The influence of causal knowledge on the willingness to change attitude towards climate change: results from an empirical study

    NASA Astrophysics Data System (ADS)

    Tasquier, Giulia; Pongiglione, Francesca

    2017-09-01

    Climate change is one of the significant global challenges currently facing humanity. Even though its seriousness seems to be common knowledge among the public, the reaction of individuals to it has been slow and uncertain. Many studies assert that simply knowing about climate change is not enough to generate people's behavioural response. They claim, indeed, that in some cases scientific literacy can even obstruct behavioural response instead. However, recent surveys show a rather poor understanding of climate dynamics and argue that lack of knowledge about causal relationships within climate dynamics can hinder behavioural response, since the individual is not able to understand his/her role as causal agent and therefore doesn't know how to take proper action. This study starts from the hypothesis that scientific knowledge focused on clarifying climate dynamics can make people understand not only dynamics themselves, but also their interactive relationship with the environment. Teaching materials on climate change based on such considerations were designed and implemented in a course for secondary-school students with the aim of investigating whether this kind of knowledge had an influence on students' willingness to adopt pro-environmental behaviours. Questionnaires were delivered for testing the effect of the teaching experience on knowledge and behaviour.

  12. Software Engineering Support of the Third Round of Scientific Grand Challenge Investigations: An Earth Modeling System Software Framework Strawman Design that Integrates Cactus and UCLA/UCB Distributed Data Broker

    NASA Technical Reports Server (NTRS)

    Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn

    2002-01-01

    One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task. both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation, while maintaining high performance across numerous supercomputer and workstation architectures. This document proposes a strawman framework design for the climate community based on the integration of Cactus, from the relativistic physics community, and UCLA/UCB Distributed Data Broker (DDB) from the climate community. This design is the result of an extensive survey of climate models and frameworks in the climate community as well as frameworks from many other scientific communities. The design addresses fundamental development and runtime needs using Cactus, a framework with interfaces for FORTRAN and C-based languages, and high-performance model communication needs using DDB. This document also specifically explores object-oriented design issues in the context of climate modeling as well as climate modeling issues in terms of object-oriented design.

  13. Mass support for global climate agreements depends on institutional design.

    PubMed

    Bechtel, Michael M; Scheve, Kenneth F

    2013-08-20

    Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation--costs and distribution, participation, and enforcement--affect individuals' willingness to support these international efforts. We find that design features have significant effects on public support. Specifically, our results indicate that support is higher for global climate agreements that involve lower costs, distribute costs according to prominent fairness principles, encompass more countries, and include a small sanction if a country fails to meet its emissions reduction targets. In contrast to well-documented baseline differences in public support for climate mitigation efforts, opinion responds similarly to changes in climate policy design in all four countries. We also find that the effects of institutional design features can bring about decisive changes in the level of public support for a global climate agreement. Moreover, the results appear consistent with the view that the sensitivity of public support to design features reflects underlying norms of reciprocity and individuals' beliefs about the potential effectiveness of specific agreements.

  14. Building America Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House, Mount Joy, Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This report presents the design and evaluation of a innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wallmore » system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.« less

  15. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    At North Vandenberg Air Force Base in California, the AIM spacecraft has been rotated to horizontal prior to its move to the clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  16. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    At North Vandenberg Air Force Base in California, the AIM spacecraft is prepared for its move to the clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  17. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    At North Vandenberg Air Force Base in California, the AIM spacecraft is moved into a clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  18. Climate Change Professional Development: Design, Implementation, and Initial Outcomes on Teacher Learning, Practice, and Student Beliefs

    ERIC Educational Resources Information Center

    Shea, Nicole A.; Mouza, Chrystalla; Drewes, Andrea

    2016-01-01

    In this work, we present the design, implementation, and initial outcomes of the Climate Academy, a hybrid professional development program delivered through a combination of face-to-face and online interactions, intended to prepare formal and informal science teachers (grades 5-16) in teaching about climate change. The Climate Academy was…

  19. Test Driven Development of a Parameterized Ice Sheet Component

    NASA Astrophysics Data System (ADS)

    Clune, T.

    2011-12-01

    Test driven development (TDD) is a software development methodology that offers many advantages over traditional approaches including reduced development and maintenance costs, improved reliability, and superior design quality. Although TDD is widely accepted in many software communities, the suitability to scientific software is largely undemonstrated and warrants a degree of skepticism. Indeed, numerical algorithms pose several challenges to unit testing in general, and TDD in particular. Among these challenges are the need to have simple, non-redundant closed-form expressions to compare against the results obtained from the implementation as well as realistic error estimates. The necessity for serial and parallel performance raises additional concerns for many scientific applicaitons. In previous work I demonstrated that TDD performed well for the development of a relatively simple numerical model that simulates the growth of snowflakes, but the results were anecdotal and of limited relevance to far more complex software components typical of climate models. This investigation has now been extended by successfully applying TDD to the implementation of a substantial portion of a new parameterized ice sheet component within a full climate model. After a brief introduction to TDD, I will present techniques that address some of the obstacles encountered with numerical algorithms. I will conclude with some quantitative and qualitative comparisons against climate components developed in a more traditional manner.

  20. Local initiatives and adaptation to climate change.

    PubMed

    Blanco, Ana V Rojas

    2006-03-01

    Climate change is expected to lead to an increase in the number and strength of natural hazards produced by climatic events. This paper presents some examples of the experiences of community-based organisations (CBOs) and non-governmental organisations (NGOs) of variations in climate, and looks at how they have incorporated their findings into the design and implementation of local adaptation strategies. Local organisations integrate climate change and climatic hazards into the design and development of their projects as a means of adapting to their new climatic situation. Projects designed to boost the resilience of local livelihoods are good examples of local adaptation strategies. To upscale these adaptation initiatives, there is a need to improve information exchange between CBOs, NGOs and academia. Moreover, there is a need to bridge the gap between scientific and local knowledge in order to create projects capable of withstanding stronger natural hazards.

  1. Negating Stereotype Threat: Autonomy Support and Academic Identification Boost Performance of African American College Students

    ERIC Educational Resources Information Center

    Nadler, Dustin R.; Komarraju, Meera

    2016-01-01

    Using a 2 × 2 factorial design, we examined the effects of stereotype threat and autonomy support on the test performance of 190 African American college students. Participants completed a set of 7 easy and 7 difficult problems from Raven's Progressive Matrices and a survey including measures of Academic Self-Concept, Learning Climate, and…

  2. Continuing a Culture of Evidence: Expanding Skills in Higher Education. Research Report. ETS RR-17-09

    ERIC Educational Resources Information Center

    Olivieri, María Elena; Markle, Ross

    2017-01-01

    From 2006 to 2008, Educational Testing Service (ETS) produced a series of reports titled "A Culture of Evidence," designed to capture a changing climate in higher education assessment. A decade later, colleges and universities face a new set of challenges resulting from societal, technological, and other influences, leading to a need to…

  3. Identifying the latent failures underpinning medication administration errors: an exploratory study.

    PubMed

    Lawton, Rebecca; Carruthers, Sam; Gardner, Peter; Wright, John; McEachan, Rosie R C

    2012-08-01

    The primary aim of this article was to identify the latent failures that are perceived to underpin medication errors. The study was conducted within three medical wards in a hospital in the United Kingdom. The study employed a cross-sectional qualitative design. Interviews were conducted with 12 nurses and eight managers. Interviews were transcribed and subject to thematic content analysis. A two-step inter-rater comparison tested the reliability of the themes. Ten latent failures were identified based on the analysis of the interviews. These were ward climate, local working environment, workload, human resources, team communication, routine procedures, bed management, written policies and procedures, supervision and leadership, and training. The discussion focuses on ward climate, the most prevalent theme, which is conceptualized here as interacting with failures in the nine other organizational structures and processes. This study is the first of its kind to identify the latent failures perceived to underpin medication errors in a systematic way. The findings can be used as a platform for researchers to test the impact of organization-level patient safety interventions and to design proactive error management tools and incident reporting systems in hospitals. © Health Research and Educational Trust.

  4. On validation of the rain climatic zone designations for Nigeria

    NASA Astrophysics Data System (ADS)

    Obiyemi, O. O.; Ibiyemi, T. S.; Ojo, J. S.

    2017-07-01

    In this paper, validation of rain climatic zone classifications for Nigeria is presented based on global radio-climatic models by the International Telecommunication Union-Radiocommunication (ITU-R) and Crane. Rain rate estimates deduced from several ground-based measurements and those earlier estimated from the precipitation index on the Tropical Rain Measurement Mission (TRMM) were employed for the validation exercise. Although earlier classifications indicated that Nigeria falls into zones P, Q, N, and K for the ITU-R designations, and zones E and H for Crane's climatic zone designations, the results however confirmed that the rain climatic zones across Nigeria can only be classified into four, namely P, Q, M, and N for the ITU-R designations, while the designations by Crane exhibited only three zones, namely E, G, and H. The ITU-R classification was found to be more suitable for planning microwave and millimeter wave links across Nigeria. The research outcomes are vital in boosting the confidence level of system designers in using the ITU-R designations as presented in the map developed for the rain zone designations for estimating the attenuation induced by rain along satellite and terrestrial microwave links over Nigeria.

  5. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians prepare the AIM spacecraft for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  6. KSC-07pd0794

    NASA Image and Video Library

    2007-03-27

    KENNEDY SPACE CENTER, FLA. -- At North Vandenberg Air Force Base in California, the AIM spacecraft is moved into a clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  7. EdGCM: Research Tools for Training the Climate Change Generation

    NASA Astrophysics Data System (ADS)

    Chandler, M. A.; Sohl, L. E.; Zhou, J.; Sieber, R.

    2011-12-01

    Climate scientists employ complex computer simulations of the Earth's physical systems to prepare climate change forecasts, study the physical mechanisms of climate, and to test scientific hypotheses and computer parameterizations. The Intergovernmental Panel on Climate Change 4th Assessment Report (2007) demonstrates unequivocally that policy makers rely heavily on such Global Climate Models (GCMs) to assess the impacts of potential economic and emissions scenarios. However, true climate modeling capabilities are not disseminated to the majority of world governments or U.S. researchers - let alone to the educators who will be training the students who are about to be presented with a world full of climate change stakeholders. The goal is not entirely quixotic; in fact, by the mid-1990's prominent climate scientists were predicting with certainty that schools and politicians would "soon" be running GCMs on laptops [Randall, 1996]. For a variety of reasons this goal was never achieved (nor even really attempted). However, around the same time NASA and the National Science Foundation supported a small pilot project at Columbia University to show the potential of putting sophisticated computer climate models - not just "demos" or "toy models" - into the hands of non-specialists. The Educational Global Climate Modeling Project (EdGCM) gave users access to a real global climate model and provided them with the opportunity to experience the details of climate model setup, model operation, post-processing and scientific visualization. EdGCM was designed for use in both research and education - it is a full-blown research GCM, but the ultimate goal is to develop a capability to embed these crucial technologies across disciplines, networks, platforms, and even across academia and industry. With this capability in place we can begin training the skilled workforce that is necessary to deal with the multitude of climate impacts that will occur over the coming decades. To further increase the educational potential of climate models, the EdGCM project has also created "EZgcm". Through a joint venture of NASA, Columbia University and McGill University EZgcm moves the focus toward a greater use of Web 1.0 and Web 2.0-based technologies. It shifts the educational objectives towards a greater emphasis on teaching students how science is conducted and what role science plays in assessing climate change. That is, students learn about the steps of the scientific process as conveyed by climate modeling research: constructing a hypothesis, designing an experiment, running a computer model, using scientific visualization to support analysis, communicating the results of that analysis, and role playing the scientific peer review process. This is in stark contrast to what they learn from the political debate over climate change, which they often confuse with a scientific debate.

  8. Efficiently enforcing artisanal fisheries to protect estuarine biodiversity.

    PubMed

    Duarte de Paula Costa, Micheli; Mills, Morena; Richardson, Anthony J; Fuller, Richard A; Muelbert, José H; Possingham, Hugh P

    2018-06-26

    Artisanal fisheries support millions of livelihoods worldwide, yet ineffective enforcement can allow for continued environmental degradation due to overexploitation. Here, we use spatial planning to design an enforcement strategy for a pre-existing spatial closure for artisanal fisheries considering climate variability, existing seasonal fishing closures, representative conservation targets and enforcement costs. We calculated enforcement cost in three ways, based on different assumptions about who could be responsible for monitoring the fishery. We applied this approach in the Patos Lagoon estuary (Brazil), where we found three important results. First, spatial priorities for enforcement were similar under different climate scenarios. Second, we found that the cost and percentage of area enforced varied among scenarios tested by the conservation planning analysis, with only a modest increase in budget needed to incorporate climate variability. Third, we found that spatial priorities for enforcement depend on whether enforcement is carried out by a central authority or by the community itself. Here, we demonstrated a method that can be used to efficiently design enforcement plans, resulting in the conservation of biodiversity and estuarine resources. Also, cost of enforcement can be potentially reduced when fishers are empowered to enforce management within their fishing grounds. © 2018 by the Ecological Society of America.

  9. A framework for standardized calculation of weather indices in Germany

    NASA Astrophysics Data System (ADS)

    Möller, Markus; Doms, Juliane; Gerstmann, Henning; Feike, Til

    2018-05-01

    Climate change has been recognized as a main driver in the increasing occurrence of extreme weather. Weather indices (WIs) are used to assess extreme weather conditions regarding its impact on crop yields. Designing WIs is challenging, since complex and dynamic crop-climate relationships have to be considered. As a consequence, geodata for WI calculations have to represent both the spatio-temporal dynamic of crop development and corresponding weather conditions. In this study, we introduce a WI design framework for Germany, which is based on public and open raster data of long-term spatio-temporal availability. The operational process chain enables the dynamic and automatic definition of relevant phenological phases for the main cultivated crops in Germany. Within the temporal bounds, WIs can be calculated for any year and test site in Germany in a reproducible and transparent manner. The workflow is demonstrated on the example of a simple cumulative rainfall index for the phenological phase shooting of winter wheat using 16 test sites and the period between 1994 and 2014. Compared to station-based approaches, the major advantage of our approach is the possibility to design spatial WIs based on raster data characterized by accuracy metrics. Raster data and WIs, which fulfill data quality standards, can contribute to an increased acceptance and farmers' trust in WI products for crop yield modeling or weather index-based insurances (WIIs).

  10. Nurses’ perception of ethical climate and job satisfaction

    PubMed Central

    Borhani, Fariba; Jalali, Tayebeh; Abbaszadeh, Abbas; Haghdoost, Ali Akbar; Amiresmaili, Mohammadreza

    2012-01-01

    The high turnover of nurses has become a universal issue. The manner in which nurses view their organization’s ethical climate has direct bearing on their job satisfaction. There is little empirical evidence confirming a relationship between different sorts of ethical climate within organizations and job satisfaction in Iran. The aim of this study was to determine the correlation between nurses’ perception of ethical climate and job satisfaction in the Teaching Hospital of Kerman University of Medical Sciences. A descriptive analytical design was used in this study. The sample consisted of 275 nurses working in 4 hospitals affiliated with the Kerman University of Medical Sciences. The instruments used in this study included a demographic questionnaire, Ethical Climate Questionnaire (ECQ), and Job Satisfaction Scale (JS). Data analysis was carried out using Pearson’s correlation, one-way ANOVA, T-test and descriptive statistic through Statistical Package for Social Science (SPSS), version 16. Across the five dimensions of ECQ the highest mean score pertained to professionalism (mean = 13.45±3.68), followed by rules climate (mean = 13.41±4.01), caring climate (mean = 12.92±3.95), independence climate (mean = 11.35±3.88), and instrumental climate (mean = 8.93±2.95). The results showed a positive correlation among ethical climate type of: professionalism (p=0.001), rules (p=0.045), caring (p=0.000), independence (p=0.000) with job satisfaction, and no correlation was found between instrumental climate and job satisfaction. The result of this research indicated a positive correlation among professionalism, caring, rules, independence climate and job satisfaction. Therefore managers of hospitals can promote nurses’ job satisfaction by providing ethics training programs that establish a working team and a culture that strengthens team spirit among nurses. PMID:23908759

  11. Integrating Scientific Content with Context to Connect Educators with the Complexities and Consequences of Climate Change

    NASA Astrophysics Data System (ADS)

    Low, R.; Gosselin, D. C.; Oglesby, R. J.; Larson-Miller, C.; Thomas, J.; Mawalagedara, R.

    2011-12-01

    Over the past three years the Nebraska Earth Systems Education Network has designed professional development opportunities for K-12 and extension educators that integrates scientific content into the context of helping educators connect society with the complexities and consequences of climate change. Our professional development approach uses learner-, knowledge-, assessment-, and community-centered strategies to achieve our long-term goal: collaboration of scientists, educators and learners to foster civic literacy about climate change. Two NASA-funded projects, Global Climate Change Literacy for Educators (GCCE, 2009-2012), and the Educators Climatologists Learning Community (ECLC, 2011-2013), have provided the mechanism to provide teachers with scientifically sound and pedagogically relevant educational materials to improve climate and Earth systems literacy among educators. The primary product of the GCCE program is a 16-week, online, distance-delivered, asynchronous course entitled, Laboratory Earth: Human Dimensions of Climate Change. This course consists of four, four-week modules that integrate climate literacy, Earth Systems concepts, and pedagogy focused on active learning processes, building community, action research, and students' sense of place to promote action at the local level to address the challenges of climate change. Overall, the Community of Inquiry Survey (COI) indicated the course was effective in teaching content, developing a community of learners, and engaging students in experiences designed to develop content knowledge. A pre- and post- course Wilcoxan Signed Ranks Test indicated there was a statistically significant increase in participant's beliefs about their personal science teaching efficacy. Qualitative data from concept maps and content mastery assignments support a positive impact on teachers' content knowledge and classroom practice. Service Learning units seemed tohelp teachers connect course learning to their classroom teaching. In addition, qualitative data indicate that teachers' students found service learning to be highly motivational components to learning. The ECLC project, to be initiated in the fall 2011, will build on our GCCE experiences to create a sustainable virtual learning community of educators and scientists. Climate-change issues will serve as a context in which collaborative scientist-educator-teams will develop discrete, locally oriented research projects to facilitate development of confident, knowledgeable citizen-scientists within their classrooms.

  12. How seasonal forecast could help a decision maker: an example of climate service for water resource management

    NASA Astrophysics Data System (ADS)

    Viel, Christian; Beaulant, Anne-Lise; Soubeyroux, Jean-Michel; Céron, Jean-Pierre

    2016-04-01

    The FP7 project EUPORIAS was a great opportunity for the climate community to co-design with stakeholders some original and innovative climate services at seasonal time scales. In this framework, Météo-France proposed a prototype that aimed to provide to water resource managers some tailored information to better anticipate the coming season. It is based on a forecasting system, built on a refined hydrological suite, forced by a coupled seasonal forecast model. It particularly delivers probabilistic river flow prediction on river basins all over the French territory. This paper presents the work we have done with "EPTB Seine Grands Lacs" (EPTB SGL), an institutional stakeholder in charge of the management of 4 great reservoirs on the upper Seine Basin. First, we present the co-design phase, which means the translation of classical climate outputs into several indices, relevant to influence the stakeholder's decision making process (DMP). And second, we detail the evaluation of the impact of the forecast on the DMP. This evaluation is based on an experiment realised in collaboration with the stakeholder. Concretely EPTB SGL has replayed some past decisions, in three different contexts: without any forecast, with a forecast A and with a forecast B. One of forecast A and B really contained seasonal forecast, the other only contained random forecasts taken from past climate. This placebo experiment, realised in a blind test, allowed us to calculate promising skill scores of the DMP based on seasonal forecast in comparison to a classical approach based on climatology, and to EPTG SGL current practice.

  13. Student drug testing and positive school climates: testing the relation between two school characteristics and drug use behavior in a longitudinal study.

    PubMed

    Sznitman, Sharon R; Romer, Daniel

    2014-01-01

    Fostering positive school climates and student drug testing have been separately proposed as strategies to reduce student drug use in high schools. To assess the promise of these strategies, the present research examined whether positive school climates and/or student drug testing successfully predicted changes in youth substance use over a 1-year follow-up. Two waves of panel data from a sample of 361 high school students, assessed 1 year apart, were analyzed. Changes in reported initiation and escalation in frequency of alcohol, cigarette, and marijuana use as a function of perceived student drug testing and positive school climates were analyzed, while we held constant prior substance use. Perceived student drug testing was not associated with changes in substance use, whereas perceived positive school climates were associated with a reduction in cigarette and marijuana initiation and a reduction in escalation of frequency of cigarette use at 1-year follow-up. However, perceived positive school climates were not associated with a reduction in alcohol use. Student drug testing appears to be less associated with substance use than positive school climates. Nevertheless, even favorable school climates may not be able to influence the use of alcohol, which appears to be quite normative in this age group.

  14. Mechanical Description of the Mars Climate Sounder Instrument

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    2008-01-01

    This paper introduces the Mars Climate Sounder (MCS) Instrument of the Mars Reconnaissance Orbiter (MRO) spacecraft. The instrument scans the Martian atmosphere almost continuously to systematically acquire weather and climate observations over time. Its primary components are an optical bench that houses dual telescopes with a total of nine channels for visible and infrared sensing, and a two axis gimbal that provides pointing capabilities. Both rotating joints consist of an integrated actuator with a hybrid planetary/harmonic transmission and a twist cap section that enables the electrical wiring to pass through the rotating joint. Micro stepping is used to reduce spacecraft disturbance torques to acceptable levels while driving the stepper motors. To ensure survivability over its four year life span, suitable mechanical components, lubrication, and an active temperature control system were incorporated. Some life test results and lessons learned are provided to serve as design guidelines for actuator parts and flex cables.

  15. Simulating seasonal tropical cyclone intensities at landfall along the South China coast

    NASA Astrophysics Data System (ADS)

    Lok, Charlie C. F.; Chan, Johnny C. L.

    2018-04-01

    A numerical method is developed using a regional climate model (RegCM3) and the Weather Forecast and Research (WRF) model to predict seasonal tropical cyclone (TC) intensities at landfall for the South China region. In designing the model system, three sensitivity tests have been performed to identify the optimal choice of the RegCM3 model domain, WRF horizontal resolution and WRF physics packages. Driven from the National Centers for Environmental Prediction Climate Forecast System Reanalysis dataset, the model system can produce a reasonable distribution of TC intensities at landfall on a seasonal scale. Analyses of the model output suggest that the strength and extent of the subtropical ridge in the East China Sea are crucial to simulating TC landfalls in the Guangdong and Hainan provinces. This study demonstrates the potential for predicting TC intensities at landfall on a seasonal basis as well as projecting future climate changes using numerical models.

  16. Characterizing and Addressing the Need for Statistical Adjustment of Global Climate Model Data

    NASA Astrophysics Data System (ADS)

    White, K. D.; Baker, B.; Mueller, C.; Villarini, G.; Foley, P.; Friedman, D.

    2017-12-01

    As part of its mission to research and measure the effects of the changing climate, the U. S. Army Corps of Engineers (USACE) regularly uses the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset. However, these data are generated at a global level and are not fine-tuned for specific watersheds. This often causes CMIP5 output to vary from locally observed patterns in the climate. Several downscaling methods have been developed to increase the resolution of the CMIP5 data and decrease systemic differences to support decision-makers as they evaluate results at the watershed scale. Evaluating preliminary comparisons of observed and projected flow frequency curves over the US revealed a simple framework for water resources decision makers to plan and design water resources management measures under changing conditions using standard tools. Using this framework as a basis, USACE has begun to explore to use of statistical adjustment to alter global climate model data to better match the locally observed patterns while preserving the general structure and behavior of the model data. When paired with careful measurement and hypothesis testing, statistical adjustment can be particularly effective at navigating the compromise between the locally observed patterns and the global climate model structures for decision makers.

  17. [Factors related to nurses' patient identification behavior and the moderating effect of person-organization value congruence climate within nursing units].

    PubMed

    Kim, Young Mee; Kang, Seung Wan; Kim, Se Young

    2014-04-01

    This research was an empirical study designed to identify precursors and interaction effects related to nurses' patient identification behavior. A multilevel analysis methodology was used. A self-report survey was administered to registered nurses (RNs) of a university hospital in South Korea. Of the questionnaires, 1114 were analyzed. The individual-level factors that had a significantly positive association with patient identification behavior were person-organization value congruence, organizational commitment, occupational commitment, tenure at the hospital, and tenure at the unit. Significantly negative group-level precursors of patient identification behavior were burnout climate and the number of RNs. Two interaction effects of the person-organization value congruence climate were identified. The first was a group-level moderating effect in which the negative relationship between the number of RNs and patient identification behavior was weaker when the nursing unit's value congruence climate was high. The second was a cross-level moderating effect in which the positive relationship between tenure at the unit and patient identification behavior was weaker when value congruence climate was high. This study simultaneously tested both individual-level and group-level factors that potentially influence patient identification behavior and identified the moderating role of person-organization value congruence climate. Implications of these results are discussed.

  18. Association of parameter, software, and hardware variation with large-scale behavior across 57,000 climate models

    PubMed Central

    Knight, Christopher G.; Knight, Sylvia H. E.; Massey, Neil; Aina, Tolu; Christensen, Carl; Frame, Dave J.; Kettleborough, Jamie A.; Martin, Andrew; Pascoe, Stephen; Sanderson, Ben; Stainforth, David A.; Allen, Myles R.

    2007-01-01

    In complex spatial models, as used to predict the climate response to greenhouse gas emissions, parameter variation within plausible bounds has major effects on model behavior of interest. Here, we present an unprecedentedly large ensemble of >57,000 climate model runs in which 10 parameters, initial conditions, hardware, and software used to run the model all have been varied. We relate information about the model runs to large-scale model behavior (equilibrium sensitivity of global mean temperature to a doubling of carbon dioxide). We demonstrate that effects of parameter, hardware, and software variation are detectable, complex, and interacting. However, we find most of the effects of parameter variation are caused by a small subset of parameters. Notably, the entrainment coefficient in clouds is associated with 30% of the variation seen in climate sensitivity, although both low and high values can give high climate sensitivity. We demonstrate that the effect of hardware and software is small relative to the effect of parameter variation and, over the wide range of systems tested, may be treated as equivalent to that caused by changes in initial conditions. We discuss the significance of these results in relation to the design and interpretation of climate modeling experiments and large-scale modeling more generally. PMID:17640921

  19. Robotic Astrobiology: Searching for Life with Rovers

    NASA Astrophysics Data System (ADS)

    Cabrol, N. A.; Wettergreen, D. S.; Team, L.

    2006-05-01

    The Life In The Atacama (LITA) project has developed and field tested a long-range, solar-powered, automated rover platform (Zoe) and a science payload assembled to search for microbial life in the Atacama desert. Life is hardly detectable over most of the extent of the driest desert on Earth. Its geological, climatic, and biological evolution provides a unique training ground for designing and testing exploration strategies and life detection methods for the robotic search for life on Mars. LITA opens the path to a new generation of rover missions that will transition from the current study of habitability (MER) to the upcoming search for, and study of, habitats and life on Mars. Zoe's science payload reflects this transition by combining complementary elements, some directed towards the remote sensing of the environment (geology, morphology, mineralogy, weather/climate) for the detection of conditions favorable to microbial habitats and oases along survey traverses, others directed toward the in situ detection of life' signatures (biological and physical, such as biological constructs and patterns). New exploration strategies specifically adapted to the search for microbial life were designed and successfully tested in the Atacama between 2003-2005. They required the development and implementation in the field of new technological capabilities, including navigation beyond the horizon, obstacle avoidance, and "science-on-the-fly" (automated detection of targets of science value), and that of new rover planning tools in the remote science operation center.

  20. Indoor and outdoor weathering of PV-modules

    NASA Astrophysics Data System (ADS)

    Koehl, Michael; Heck, Markus; Philipp, Daniel; Weiss, Karl-Anders; Ferrara, Claudio; Herrmann, Werner

    2008-08-01

    Manufacturers of PV-modules usually give a warranty for at least 20 years. There is still only little knowledge about the lifetime of newly developed modules, however. How do they cope with snow, desert-climate or tropical humidity? In order to answer this question the Fraunhofer-Institute for Solar Energy Systems and TUV Rheinland have installed different outdoor exposure sites where modules have to stand extreme climates: high temperatures with high differences between day and night in the Negev desert at Israel, snow, wind and changing irradiation in the German Alps, and high humidity at warm temperatures at Indonesia. Commercial modules from industrial partners as well as innovative modules with different combinations of encapsulants and back-sheets were exposed. UV-irradiation, solar-irradiation, ambient- and module temperatures, ambient humidity and wind speed is measured and collected at a central server in Germany. These data are the basis for the calculation of integral loads for the comparison of different climatic regions and for an estimation of the service life, an exciting field of work since decades. Results from the evaluation of the monitoring during the fist 12 months of exposure are compared. Fluorescent lamps are chosen for accelerated UV-testing, since they simulate the UV-irradiation of the sun well while emitting less thermal radiation than Xenon-lamps. The UV-source is designed for use in climatic cabinets for damp-heat testing with UV.

  1. Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate

    NASA Astrophysics Data System (ADS)

    Samaras, C.; Cook, L.

    2015-12-01

    Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.

  2. Evaluation of Long-Term Pavement Performance (LTTP) Climatic Data for Use in Mechanistic-Empirical Pavement Design Guide (MEPDG) Calibration and Other Pavement Analysis

    DOT National Transportation Integrated Search

    2015-05-01

    Improvements in the Long-Term Pavement Performance (LTPP) Programs climate data are needed to support current and future research into climate effects on pavement materials, design, and performance. The calibration and enhancement of the Mechanist...

  3. 75 FR 54403 - U.S. National Climate Assessment Objectives, Proposed Topics, and Next Steps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ..., methods and design, tools for assessing climate change and impacts, dealing with uncertainty, sources of..., coordination with other Federal climate-related programs, design of documents and tailored communications with... methodological perspectives related to selecting model and downscaling outputs and approaches for their use in...

  4. GREENIFY: A Real-World Action Game for Climate Change Education

    ERIC Educational Resources Information Center

    Lee, Joey J.; Ceyhan, Pinar; Jordan-Cooley, William; Sung, Woonhee

    2013-01-01

    The literature on climate change education recommends social, accessible action-oriented learning that is specifically designed to resonate with a target audience's values and worldview. This article discusses GREENIFY, a real-world action game designed to teach adult learners about climate change and motivate informed action. A pilot study…

  5. Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Fisk, William J.

    2009-07-08

    Demand controlled ventilation (DCV) was evaluated for general office spaces in California. A medium size office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (CEC 2008) was assumed in the building energy simulations performed with the EnergyPlus program to calculate the DCV energy savings potential in five typical California climates. Three design occupancy densities and two minimum ventilation rates were used as model inputs to cover a broader range of design variations. The assumed values of minimum ventilation rates in offices without DCV, based on two different measurement methods, were 81 and 28 cfm per occupant. These rates are based on the co-author's unpublished analyses of data from EPA's survey of 100 U.S. office buildings. These minimum ventilation rates exceed the 15 to 20 cfm per person required in most ventilation standards for offices. The cost effectiveness of applying DCV in general office spaces was estimated via a life cycle cost analyses that considered system costs and energy cost reductions. The results of the energy modeling indicate that the energy savings potential of DCV is largest in the desert area of California (climate zone 14), followed by Mountains (climate zone 16), Central Valley (climate zone 12), North Coast (climate zone 3), and South Coast (climate zone 6). The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rates without DCV is 81 cfm per person, except at the low design occupancy of 10 people per 1000 ft{sup 2} in climate zones 3 and 6. At the low design occupancy of 10 people per 1000 ft{sup 2}, the greatest DCV life cycle cost savings is a net present value (NPV) ofmore » $$0.52/ft{sup 2} in climate zone 14, followed by $$0.32/ft{sup 2} in climate zone 16 and $$0.19/ft{sup 2} in climate zone 12. At the medium design occupancy of 15 people per 1000 ft{sup 2}, the DCV savings are higher with a NPV $$0.93/ft{sup 2} in climate zone 14, followed by $$0.55/ft{sup 2} in climate zone 16, $$0.46/ft{sup 2} in climate zone 12, $$0.30/ft{sup 2} in climate zone 3, $$0.16/ft{sup 2} in climate zone 3. At the high design occupancy of 20 people per 1000 ft{sup 2}, the DCV savings are even higher with a NPV $$1.37/ft{sup 2} in climate zone 14, followed by $$0.86/ft{sup 2} in climate zone 16, $$0.84/ft{sup 2} in climate zone 3, $$0.82/ft{sup 2} in climate zone 12, and $0.65/ft{sup 2} in climate zone 6. DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 28 cfm per occupant, except at high design occupancy of 20 people per 1000 ft{sup 2} in climate zones 14 and 16. Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case.« less

  6. Pliocene Model Intercomparison (PlioMIP) Phase 2: Scientific Objectives and Experimental Design

    NASA Technical Reports Server (NTRS)

    Haywood, A. M.; Dowsett, H. J.; Dolan, A. M.; Rowley, D.; Abe-Ouchi, A.; Otto-Bliesner, B.; Chandler, M. A.; Hunter, S. J.; Lunt, D. J.; Pound, M.; hide

    2015-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP operates under the umbrella of the Palaeoclimate Modelling Intercomparison Project (PMIP), which examines multiple intervals in Earth history, the consistency of model predictions in simulating these intervals and their ability to reproduce climate signals preserved in geological climate archives. This paper provides a thorough model intercomparison project description, and documents the experimental design in a detailed way. Specifically, this paper describes the experimental design and boundary conditions that will be utilized for the experiments in Phase 2 of PlioMIP.

  7. Water resources in the twenty-first century; a study of the implications of climate uncertainty

    USGS Publications Warehouse

    Moss, Marshall E.; Lins, Harry F.

    1989-01-01

    The interactions of the water resources on and within the surface of the Earth with the atmosphere that surrounds it are exceedingly complex. Increased uncertainty can be attached to the availability of water of usable quality in the 21st century, therefore, because of potential anthropogenic changes in the global climate system. For the U.S. Geological Survey to continue to fulfill its mission with respect to assessing the Nation's water resources, an expanded program to study the hydrologic implications of climate uncertainty will be required. The goal for this program is to develop knowledge and information concerning the potential water-resources implications for the United States of uncertainties in climate that may result from both anthropogenic and natural changes of the Earth's atmosphere. Like most past and current water-resources programs of the Geological Survey, the climate-uncertainty program should be composed of three elements: (1) research, (2) data collection, and (3) interpretive studies. However, unlike most other programs, the climate-uncertainty program necessarily will be dominated by its research component during its early years. Critical new concerns to be addressed by the research component are (1) areal estimates of evapotranspiration, (2) hydrologic resolution within atmospheric (climatic) models at the global scale and at mesoscales, (3) linkages between hydrology and climatology, and (4) methodology for the design of data networks that will help to track the impacts of climate change on water resources. Other ongoing activities in U.S. Geological Survey research programs will be enhanced to make them more compatible with climate-uncertainty research needs. The existing hydrologic data base of the Geological Survey serves as a key element in assessing hydrologic and climatologic change. However, this data base has evolved in response to other needs for hydrologic information and probably is not as sensitive to climate change as is desirable. Therefore, as measurement and network-design methodologies are improved to account for climate-change potential, new data-collection activities will be added to the existing programs. One particular area of data-collection concern pertains to the phenomenon of evapotranspiration. Interpretive studies of the hydrologic implications of climate uncertainty will be initiated by establishing several studies at the river-basin scale in diverse hydroclimatic and demographic settings. These studies will serve as tests of the existing methodologies for studying the impacts of climate change and also will help to define subsequent research priorities. A prototype for these studies was initiated in early 1988 in the Delaware River basin.

  8. Design standards for U.S. transportation infrastructure : the implications of climate change

    DOT National Transportation Integrated Search

    2008-01-01

    This paper examines the changes to engineering design practice that might occur given : climate-induced changes in environmental factors. A project design is separated into the : individual components that might be affected by changing environmental ...

  9. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mingyu; WolfeIV, Edward; Craig, Timothy

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs tomore » achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repins, Ingrid; Jordan, Dirk; Bosco, Nick

    The proposed new IEC standard will address the test temperature requirements in IEC 61215 (module design), IEC 61730 (module safety), IEC 62790 (junction box safety) and IEC 62852 (connectors), and will provide guidelines to modify temperature limits in four existing standards to better describe module performance in hotter climates. This workshop includes four presentations: Special Testing for Modules Deployed in Hot Use Environments - Are We Doing This in a Low-Cost Way?, Experimental Evidence, Why the highest temperatures are the most stressful to PV modules during thermal cycling, and Safety Aspects for Modules Deployed in Hot Use Environments.

  11. Searching for Life with Rovers: Exploration Methods & Science Results from the 2004 Field Campaign of the "Life in the Atacama" Project and Applications to Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.a; Wettergreen, D. S.; Whittaker, R.; Grin, E. A.; Moersch, J.; Diaz, G. Chong; Cockell, C.; Coppin, P.; Dohm, J. M.; Fisher, G.

    2005-01-01

    The Life In The Atacama (LITA) project develops and field tests a long-range, solarpowered, automated rover platform (Zo ) and a science payload assembled to search for microbial life in the Atacama desert. Life is barely detectable over most of the driest desert on Earth. Its unique geological, climatic, and biological evolution have created a unique training site for designing and testing exploration strategies and life detection methods for the robotic search for life on Mars.

  12. Use of Climate Information for Decision-Making and Impacts Research: State of Our Understanding

    DTIC Science & Technology

    2016-03-01

    SUMMARY Much of human society and its infrastructure has been designed and built on a key assumption: that future climate conditions at any given...experienced in the past. This assumption affects infrastructure design and maintenance, emergency response management, and long-term investment and planning...our scientific understanding of the climate system in a manner that incorporates user needs into the design of scientific experiments, and that

  13. Introduction to Building Systems Performance: Houses That Work II. Revised February 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-03-01

    Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.

  14. School Climate of Educational Institutions: Design and Validation of a Diagnostic Scale

    ERIC Educational Resources Information Center

    Becerra, Sandra

    2016-01-01

    School climate is recognized as a relevant factor for the improvement of educative processes, favoring the administrative processes and optimum school performance. The present article is the result of a quantitative research model which had the objective of psychometrically designing and validating a scale to diagnose the organizational climate of…

  15. Nonstationary Intensity-Duration-Frequency Curves for Drainge Infrastructure Coping with Climate Change

    NASA Astrophysics Data System (ADS)

    Kim, Byung Sik; Jeung, Se Jin; Lee, Dong Seop; Han, Woo Suk

    2015-04-01

    As the abnormal rainfall condition has been more and more frequently happen and serious by climate change and variabilities, the question whether the design of drainage system could be prepared with abnormal rainfall condition or not has been on the rise. Usually, the drainage system has been designed by rainfall I-D-F (Intensity-Duration-Frequency) curve with assumption that I-D-F curve is stationary. The design approach of the drainage system has limitation not to consider the extreme rainfall condition of which I-D-F curve is non-stationary by climate change and variabilities. Therefore, the assumption that the I-D-F curve is stationary to design drainage system maybe not available in the climate change period, because climate change has changed the characteristics of extremes rainfall event to be non-stationary. In this paper, design rainfall by rainfall duration and non-stationary I-D-F curve are derived by the conditional GEV distribution considering non-stationary of rainfall characteristics. Furthermore, the effect of designed peak flow with increase of rainfall intensity was analyzed by distributed rainfall-runoff model, S-RAT(Spatial Runoff Assessment Tool). Although there are some difference by rainfall duration, the traditional I-D-F curves underestimates the extreme rainfall events for high-frequency rainfall condition. As a result, this paper suggest that traditional I-D-F curves could not be suitable for the design of drainage system under climate change condition. Keywords : Drainage system, Climate Change, non-stationary, I-D-F curves This research was supported by a grant 'Development of multi-function debris flow control technique considering extreme rainfall event' [NEMA-Natural-2014-74] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of KOREA

  16. GMI Spin Mechanism Assembly Design, Development, and Test Results

    NASA Technical Reports Server (NTRS)

    Woolaway, Scott; Kubitschek, Michael; Berdanier, Barry; Newell, David; Dayton, Chris; Pellicciotti, Joseph W.

    2012-01-01

    The GMI Spin Mechanism Assembly (SMA) is a precision bearing and power transfer drive assembly mechanism that supports and spins the Global Microwave Imager (GMI) instrument at a constant rate of 32 rpm continuously for the 3 year plus mission life. The GMI instrument will fly on the core Global Precipitation Measurement (GPM) spacecraft and will be used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and frequent precipitation measurements [1]. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard Space Flight Center (GSFC) to design, build, and test the GMI instrument. The SMA design has to meet a challenging set of requirements and is based on BATC space mechanisms heritage and lessons learned design changes made to the WindSat BAPTA mechanism that is currently operating on orbit and has recently surpassed 8 years of Flight operation.

  17. Global Microwave Imager (GMI) Spin Mechanism Assembly Design, Development, and Performance Test Results

    NASA Technical Reports Server (NTRS)

    Kubitschek, Michael; Woolaway, Scott; Guy, Larry; Dayton, Chris; Berdanier, Barry; Newell, David; Pellicciotti, Joseph W.

    2011-01-01

    The GMI Spin Mechanism Assembly (SMA) is a precision bearing and power transfer drive assembly mechanism that supports and spins the Global Microwave Imager (GMI) instrument at a constant rate of 32 rpm continuously for the 3 year plus mission life. The GMI instrument will fly on the core Global Precipitation Measurement (GPM) spacecraft and will be used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and frequent precipitation measurements [1]. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard Space Flight Center (GSFC) to design, build, and test the GMI instrument. The SMA design has to meet a challenging set of requirements and is based on BATC space mechanisms heritage and lessons learned design changes made to the WindSat BAPTA mechanism that is currently operating on-orbit and has recently surpassed 8 years of Flight operation.

  18. Climate-sensitive urban design through Envi-Met simulation: case study in Kemayoran, Jakarta

    NASA Astrophysics Data System (ADS)

    Kusumastuty, K. D.; Poerbo, H. W.; Koerniawan, M. D.

    2018-03-01

    Indonesia as a tropical country which the character of its climate are hot and humid, the outdoor activity applications are often disrupted due to discomfort in thermal conditions. Massive construction of skyscrapers in urban areas are caused by the increase of human population leads to reduced green and infiltration areas that impact to environmental imbalances and triggering microclimate changes with rising air temperatures on the surface. The area that significantly experiences the rise of temperature in the Central Business District (CBD), which has need an analysis to create thermal comfort conditions to improve the ease of outdoor activities by an approach. This study aims to design the Kemayoran CBD through Climate Sensitive Urban Design especially in hot and humid tropical climate area and analyze thermal comfort level and optimal air conditioning in the outdoor area. This research used a quantitative method by generating the design using Climate Sensitive Urban Design principle through Envi-met 4.1 simulation program to find out the value of PMV, air temperature, wind speed and relative humidity conditions. The design area considers the configuration of buildings such as the distance between buildings, the average height, the orientation of the building, and the width of the road.

  19. Investigating Climate Change Issues With Web-Based Geospatial Inquiry Activities

    NASA Astrophysics Data System (ADS)

    Dempsey, C.; Bodzin, A. M.; Sahagian, D. L.; Anastasio, D. J.; Peffer, T.; Cirucci, L.

    2011-12-01

    In the Environmental Literacy and Inquiry middle school Climate Change curriculum we focus on essential climate literacy principles with an emphasis on weather and climate, Earth system energy balance, greenhouse gases, paleoclimatology, and how human activities influence climate change (http://www.ei.lehigh.edu/eli/cc/). It incorporates a related set of a framework and design principles to provide guidance for the development of the geospatial technology-integrated Earth and environmental science curriculum materials. Students use virtual globes, Web-based tools including an interactive carbon calculator and geologic timeline, and inquiry-based lab activities to investigate climate change topics. The curriculum includes educative curriculum materials that are designed to promote and support teachers' learning of important climate change content and issues, geospatial pedagogical content knowledge, and geographic spatial thinking. The curriculum includes baseline instructional guidance for teachers and provides implementation and adaptation guidance for teaching with diverse learners including low-level readers, English language learners and students with disabilities. In the curriculum, students use geospatial technology tools including Google Earth with embedded spatial data to investigate global temperature changes, areas affected by climate change, evidence of climate change, and the effects of sea level rise on the existing landscape. We conducted a designed-based research implementation study with urban middle school students. Findings showed that the use of the Climate Change curriculum showed significant improvement in urban middle school students' understanding of climate change concepts.

  20. Student Drug Testing in the Context of Positive and Negative School Climates: Results from a National Survey

    ERIC Educational Resources Information Center

    Sznitman, Sharon R.; Dunlop, Sally M.; Nalkur, Priya; Khurana, Atika; Romer, Daniel

    2012-01-01

    Positive school climates and student drug testing have been separately proposed as strategies to reduce student substance use in high schools. However, the effects of drug testing programs may depend on the favorability of school climates. This study examined the association between school drug testing programs and student substance use in schools…

  1. Grasstops and Grassroots Approaches to Building Community Resilience

    NASA Astrophysics Data System (ADS)

    LeBeau, A.; Bader, D.

    2017-12-01

    Climate change and extreme weather events pose complex risks to cities all over the world, impacting not only the built environment, but also social infrastructure. Because urban communities are culturally and socioeconomically diverse, as well as systemically complicated, climate change and extreme weather events will impact people differently even within a single city—not only because of where they live, but also because of who they are. The City of Long Beach, California, is in its very early stages of understanding its vulnerabilities. However, city leaders and community partners including the Aquarium of the Pacific are committed to creating a model climate resilient city. Climate change risks most relevant to Long Beach include drought (and freshwater shortages), extreme heat, sea level rise, and poor air quality. Over the past 18 months, the Aquarium of the Pacific has been testing elements of a broad-reaching education strategy to reach community stakeholders. Two multi-level approaches are designed to build awareness and momentum for climate resilience. A grassroots approach, called RESILIENT LB, focuses on an interactive outreach booth that travels to community events. The booth is staffed by educators with specific training on climate communication. Facilitated conversations help people identify what they love about Long Beach and immediate impacts that climate change will have on the things they value. A second, complimentary approach involves long-term community engagement through a grasstops-to-grassroots approach. Aquarium educators have been facilitating different climate resilience workshops for leaders from a variety of groups across Long Beach. These workshops give leaders the chance to reflect on how their communities may be impacted by climate change, and highlight adaptation (rather than mitigation) to climate change. In this session, we will share how these programs have evolved, lessons learned, and areas of growth.

  2. A preliminary study of mechanistic approach in pavement design to accommodate climate change effects

    NASA Astrophysics Data System (ADS)

    Harnaeni, S. R.; Pramesti, F. P.; Budiarto, A.; Setyawan, A.

    2018-03-01

    Road damage is caused by some factors, including climate changes, overload, and inappropriate procedure for material and development process. Meanwhile, climate change is a phenomenon which cannot be avoided. The effects observed include air temperature rise, sea level rise, rainfall changes, and the intensity of extreme weather phenomena. Previous studies had shown the impacts of climate changes on road damage. Therefore, several measures to anticipate the damage should be considered during the planning and construction in order to reduce the cost of road maintenance. There are three approaches generally applied in the design of flexible pavement thickness, namely mechanistic approach, mechanistic-empirical (ME) approach and empirical approach. The advantages of applying mechanistic approach or mechanistic-empirical (ME) approaches are its efficiency and reliability in the design of flexible pavement thickness as well as its capacity to accommodate climate changes in compared to empirical approach. However, generally, the design of flexible pavement thickness in Indonesia still applies empirical approach. This preliminary study aimed to emphasize the importance of the shifting towards a mechanistic approach in the design of flexible pavement thickness.

  3. Bivariate analysis of floods in climate impact assessments.

    PubMed

    Brunner, Manuela Irene; Sikorska, Anna E; Seibert, Jan

    2018-03-01

    Climate impact studies regarding floods usually focus on peak discharges and a bivariate assessment of peak discharges and hydrograph volumes is not commonly included. A joint consideration of peak discharges and hydrograph volumes, however, is crucial when assessing flood risks for current and future climate conditions. Here, we present a methodology to develop synthetic design hydrographs for future climate conditions that jointly consider peak discharges and hydrograph volumes. First, change factors are derived based on a regional climate model and are applied to observed precipitation and temperature time series. Second, the modified time series are fed into a calibrated hydrological model to simulate runoff time series for future conditions. Third, these time series are used to construct synthetic design hydrographs. The bivariate flood frequency analysis used in the construction of synthetic design hydrographs takes into account the dependence between peak discharges and hydrograph volumes, and represents the shape of the hydrograph. The latter is modeled using a probability density function while the dependence between the design variables peak discharge and hydrograph volume is modeled using a copula. We applied this approach to a set of eight mountainous catchments in Switzerland to construct catchment-specific and season-specific design hydrographs for a control and three scenario climates. Our work demonstrates that projected climate changes have an impact not only on peak discharges but also on hydrograph volumes and on hydrograph shapes both at an annual and at a seasonal scale. These changes are not necessarily proportional which implies that climate impact assessments on future floods should consider more flood characteristics than just flood peaks. Copyright © 2017. Published by Elsevier B.V.

  4. Quantification and Mitigation of Long-Term Impacts of Urbanization and Climate Change in the Tropical Coastal City of San Juan, Puerto Rico

    NASA Technical Reports Server (NTRS)

    Comarazamy, Daniel; Gonzalez, Jorge E.; Luvall, Jeffrey C.

    2014-01-01

    Urbanization, along with other cases of land cover and land use changes, has significant climate impacts in tropical regions with the added complexity of occurring within the context of global warming. The individual and combined effects of these two factors on the surface energy balance of a tropical city are investigated by use of an integrated atmospheric modeling approach, taking the San Juan Metropolitan Area (SJMA), Puerto Rico as the test case. To achieve this goal, an ensemble of climate and weather simulations is performed, with the climate scenarios combining urban development and sprawl with regional climate change over the past 50 years, and the short-term simulations designed to test the sensitivity to different urban vegetation configurations as mitigating alternatives. As indicator of change, we use the thermal response number (TRN), which is a measure of the sensible heating to the thermal storage of a surface or region, and the Bowen ratio, which is defined as the ratio of sensible to latent heat fluxes. The TRN of the area occupied by the SJMA has decreased as a consequence of replacing the low land coastal plain vegetation with man made materials, indicating that it takes less energy to raise the surface temperature of the urban area, whereas the TRN of forested regions has remained virtually unchanged. The global warming signal also has effects on the thermal response of the SJMA, where dryer current conditions generate lower TRN values. Differences due to global warming are more evident in the Bowen ratio pattern, mostly associated with the drier present conditions observed and its effects on sensible and latent heat fluxes. In terms of testing different mitigation strategies, the short-term simulations show that the urban area is more efficient in partitioning surface energy balance terms when green roofs are specified, as opposed to including vegetation inside the urban core.

  5. Building Systems from Scratch: an Exploratory Study of Students Learning About Climate Change

    NASA Astrophysics Data System (ADS)

    Puttick, Gillian; Tucker-Raymond, Eli

    2018-01-01

    Science and computational practices such as modeling and abstraction are critical to understanding the complex systems that are integral to climate science. Given the demonstrated affordances of game design in supporting such practices, we implemented a free 4-day intensive workshop for middle school girls that focused on using the visual programming environment, Scratch, to design games to teach others about climate change. The experience was carefully constructed so that girls of widely differing levels of experience were able to engage in a cycle of game design. This qualitative study aimed to explore the representational choices the girls made as they took up aspects of climate change systems and modeled them in their games. Evidence points to the ways in which designing games about climate science fostered emergent systems thinking and engagement in modeling practices as learners chose what to represent in their games, grappled with the realism of their respective representations, and modeled interactions among systems components. Given the girls' levels of programming skill, parts of systems were more tractable to create than others. The educational purpose of the games was important to the girls' overall design experience, since it influenced their choice of topic, and challenged their emergent understanding of climate change as a systems problem.

  6. An Interdisciplinary Network Making Progress on Climate Change Communication

    NASA Astrophysics Data System (ADS)

    Spitzer, W.; Anderson, J. C.; Bales, S.; Fraser, J.; Yoder, J. A.

    2012-12-01

    Public understanding of climate change continues to lag far behind the scientific consensus not merely because the public lacks information, but because there is in fact too much complex and contradictory information available. Fortunately, we can now (1) build on careful empirical cognitive and social science research to understand what people already value, believe, and understand; and then (2) design and test strategies for translating complex science so that people can examine evidence, make well-informed inferences, and embrace science-based solutions. Informal science education institutions can help bridge the gap between climate scientists and the public. In the US, more than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks, etc.) are visited annually by 61% of the population. Extensive research shows that these visitors are receptive to learning about climate change and trust these institutions as reliable sources. Ultimately, we need to take a strategic approach to the way climate change is communicated. An interdisciplinary approach is needed to bring together three key areas of expertise (as recommended by Pidgeon and Fischhoff, 2011): 1. Climate and decision science experts - who can summarize and explain what is known, characterize risks, and describe appropriate mitigation and adaptation strategies; 2. Social scientists - who can bring to bear research, theory, and best practices from cognitive, communication, knowledge acquisition, and social learning theory; and 3. Informal educators and program designers - who bring a practitioner perspective and can exponentially facilitate a learning process for additional interpreters. With support from an NSF CCEP Phase I grant, we have tested this approach, bringing together Interdisciplinary teams of colleagues for a five month "study circles" to develop skills to communicate climate change based on research in the social and cognitive sciences. In 2011, social scientists, Ph.D. students studying oceanography, and staff from more than 20 institutions that teach science to the public came together in these learning groups. Most participants were motivated to create new or revised training or public programs based on lessons learned together. The success of this program rests on a twofold approach that combines collaborative learning with a cognitive and social sciences research based approach to communications. The learning process facilitated trust and experimentation among co-learners to practice applications for communications that has continued beyond the study circle experience through the networks established during the process. Examples drawn from the study circle outputs suggest that this approach could have a transformative impact on informal science education on a broad scale. Ultimately, we envision informal science interpreters as "vectors" for effective science communication, ocean and climate scientists with enhanced communication skills, and increased public demand for explanation and dialogue about global issues.

  7. Technology Solutions Case Study: High-Performance Ducts in Hot-Dry Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Hoeschele, A. German, E. Weitzel, R. Chitwood

    2015-08-01

    Ducts in conditioned space (DCS) represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. Various strategies exist for incorporating ducts within the conditioned thermal envelope. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of various DCS strategies. Builders were given incentives and design support in exchange for providing site access for construction observation, diagnostic testing, andmore » builder survey feedback. Information from the project was designed to feed into California's 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project complemented information collected in the California project with BEopt simulations of DCS performance in hot/dry climate regions.« less

  8. Exploring adaptations to climate change with stakeholders: A participatory method to design grassland-based farming systems.

    PubMed

    Sautier, Marion; Piquet, Mathilde; Duru, Michel; Martin-Clouaire, Roger

    2017-05-15

    Research is expected to produce knowledge, methods and tools to enhance stakeholders' adaptive capacity by helping them to anticipate and cope with the effects of climate change at their own level. Farmers face substantial challenges from climate change, from changes in the average temperatures and the precipitation regime to an increased variability of weather conditions and the frequency of extreme events. Such changes can have dramatic consequences for many types of agricultural production systems such as grassland-based livestock systems for which climate change influences the seasonality and productivity of fodder production. We present a participatory design method called FARMORE (FARM-Oriented REdesign) that allows farmers to design and evaluate adaptations of livestock systems to future climatic conditions. It explicitly considers three climate features in the design and evaluation processes: climate change, climate variability and the limited predictability of weather. FARMORE consists of a sequence of three workshops for which a pre-existing game-like platform was adapted. Various year-round forage production and animal feeding requirements must be assembled by participants with a computerized support system. In workshop 1, farmers aim to produce a configuration that satisfies an average future weather scenario. They refine or revise the previous configuration by considering a sample of the between-year variability of weather in workshop 2. In workshop 3, they explicitly take the limited predictability of weather into account. We present the practical aspects of the method based on four case studies involving twelve farmers from Aveyron (France), and illustrate it through an in-depth description of one of these case studies with three dairy farmers. The case studies shows and discusses how workshop sequencing (1) supports a design process that progressively accommodates complexity of real management contexts by enlarging considerations of climate change to climate variability and low weather predictability, and (2) increases the credibility and salience of the design method. Further enhancements of the method are outlined, especially the selection of pertinent weather scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Main outcomes of an RCT to pilot test reporting and feedback to foster research integrity climates in the VA.

    PubMed

    Martinson, Brian C; Mohr, David C; Charns, Martin P; Nelson, David; Hagel-Campbell, Emily; Bangerter, Ann; Bloomfield, Hanna E; Owen, Richard; Thrush, Carol R

    2017-01-01

    Assessing the integrity of research climates and sharing such information with research leaders may support research best practices. We report here results of a pilot trial testing the effectiveness of a reporting and feedback intervention using the Survey of Organizational Research Climate (SOuRCe). We randomized 41 Veterans Health Administration (VA) facilities to a phone-based intervention designed to help research leaders understand their survey results (enhanced arm) or to an intervention in which results were simply distributed to research leaders (basic arm). Primary outcomes were (1) whether leaders took action, (2) whether actions taken were consistent with the feedback received, and (3) whether responses differed by receptivity to quality improvement input. Research leaders from 25 of 42 (59%) VA facilities consented to participate in the study intervention and follow-up, of which 14 were at facilities randomized to the enhanced arm. We completed follow-up interviews with 21 of the 25 leaders (88%), 12 from enhanced arm facilities. While not statistically significant, the proportion of leaders reporting taking some action in response to the feedback was twice as high in the enhanced arm than in the basic arm (67% vs. 33%, p = .20). While also not statistically significant, a higher proportion of actions taken among facilities in the enhanced arm were responsive to the survey results than in the basic arm (42% vs. 22%, p = .64). Enhanced feedback of survey results appears to be a promising intervention that may increase the likelihood of responsive action to improve organizational climates. Due to the small sample size of this pilot study, even large percentage-point differences between study arms are not statistically distinguishable. This hypothesis should be tested in a larger trial.

  10. Introduction to Building Systems Performance: Houses That Work II; Period of Performance: January 2003--December 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-04-01

    Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.

  11. "The Hole in the Sky Causes Global Warming": A Case Study of Secondary School Students' Climate Change Alternative Conceptions

    ERIC Educational Resources Information Center

    Chang, Chew-Hung; Pascua, Liberty

    2015-01-01

    This study identified secondary school students' alternative conceptions (ACs) of climate change and their resistance to instruction. Using a case-based approach, a diagnostic test was administered to Secondary 3 male students in a pre-test and post-test. The ACs identified in the pre-test were on the causes of climate change, the natural…

  12. High Reliability R-10 Windows Using Vacuum Insulating Glass Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, David

    2012-08-16

    The objective of this effort was for EverSealed Windows (“EverSealed” or “ESW”) to design, assemble, thermally and environmentally test and demonstrate a Vacuum Insulating Glass Unit (“VIGU” or “VIG”) that would enable a whole window to meet or exceed the an R-10 insulating value (U-factor ≤ 0.1). To produce a VIGU that could withstand any North American environment, ESW believed it needed to design, produce and use a flexible edge seal system. This is because a rigid edge seal, used by all other know VIG producers and developers, limits the size and/or thermal environment of the VIG to where themore » unit is not practical for typical IG sizes and cannot withstand severe outdoor environments. The rigid-sealed VIG’s use would be limited to mild climates where it would not have a reasonable economic payback when compared to traditional double-pane or triple-pane IGs. ESW’s goals, in addition to achieving a sufficiently high R-value to enable a whole window to achieve R-10, included creating a VIG design that could be produced for a cost equal to or lower than a traditional triple-pane IG (low-e, argon filled). ESW achieved these goals. EverSealed produced, tested and demonstrated a flexible edge-seal VIG that had an R-13 insulating value and the edge-seal system durability to operate reliably for at least 40 years in the harshest climates of North America.« less

  13. Culturing Fundamentals Used To Design And Execute A Long-Term Multi-stressor Experiment To Assess Impact Of Deoxygenation, Ocean Acidification, And Warming On Benthic Foraminiferal Community Composition, Growth, And Carbonate Yield: Design And Results

    NASA Astrophysics Data System (ADS)

    Bernhard, J. M.; Wit, J. C.

    2015-12-01

    The geochemistry recorded in carbonate foraminiferal tests (shells) is often used as proxy for past oceanographic events and environments. By understanding past oceanic and climatic conditions, we can better predict future climate scenarios, a relevant ability in these times of global change. The fact that foraminifera are biological entities can be pivotal for understanding their geochemical records. Thus, growing foraminifera under known physicochemical conditions and analyzing the geochemistry of their cultured carbonate can yield insightful perspectives for proxy refinement and development. Because parameters often co-vary in nature, proper proxy calibration can only be done with materials grown in strictly controlled and known environments. This presentation will review the various crucial aspects of foraminiferal maintenance and culturing, especially from the perspective of proxy development. These fundamentals were used to design a long-term multi-stressor experiment with oxygen, pCO2 (pH), and temperature as variables to test the single, double or triple threats of deoxygenation, ocean acidification, and oceanic warming. Results on assemblage composition, survivorship and growth of a continental shelf benthic foraminiferal community will be presented. Although one agglutinated morphospecies grew in each of the five treatments, growth of individual calcareous species was more restricted. Initial results indicate that pCO2 was not the factor that impacted communities most. Supported in part by NSF OCE-1219948.

  14. Serenbe Nest Cottages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, T.; Curtis, O.; Kim, E.

    2012-12-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with Martin Dodson Builders and the Serenbe community on the construction of a new test home in the suburbs of Atlanta, GA, in the mixed humid climate zone. The most recent subdivision within the Serenbe community, the Nest, will contain 15 small footprint cottage-style homes, and Southface has selected Lot Nine, as the test home for this study. This Nest subdivision serves as a project showcase for both the builder partner and the Serenbe community as a whole. The planning and design incorporated into the Nest cottages will bemore » implemented in each home within the subdivision. These homes addresses Building America savings targets and serve as a basis of design for other homes Martin Dodson plans to build within the Serenbe community.« less

  15. Serenbe Nest Cottages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, T.; Curtis, O.; Kim, E.

    2012-12-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with Martin Dodson Builders and the Serenbe community on the construction of a new test home in the suburbs of Atlanta, GA in the mixed humid climate zone. The most recent subdivision within the Serenbe community, the Nest, will contain 15 small footprint cottage style homes, and Southface has selected Lot Nine, as the test home for this study. This Nest subdivision serves as a project showcase for both the builder partner and the Serenbe community as a whole. The planning and design incorporated into the Nest cottages willmore » be implemented in each home within the subdivision. These homes addresses Building America Savings targets and serve as a basis of design for other homes Martin Dodson plans to build within the Serenbe community.« less

  16. An Enhanced Engineering Perspective of Global Climate Systems and Statistical Formulation of Terrestrial CO2 Exchanges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yuanshun; Baek, Seung H.; Garcia-Diza, Alberto

    2012-01-01

    This paper designs a comprehensive approach based on the engineering machine/system concept, to model, analyze, and assess the level of CO2 exchange between the atmosphere and terrestrial ecosystems, which is an important factor in understanding changes in global climate. The focus of this article is on spatial patterns and on the correlation between levels of CO2 fluxes and a variety of influencing factors in eco-environments. The engineering/machine concept used is a system protocol that includes the sequential activities of design, test, observe, and model. This concept is applied to explicitly include various influencing factors and interactions associated with CO2 fluxes.more » To formulate effective models of a large and complex climate system, this article introduces a modeling technique that will be referred to as Stochastic Filtering Analysis of Variance (SFANOVA). The CO2 flux data observed from some sites of AmeriFlux are used to illustrate and validate the analysis, prediction and globalization capabilities of the proposed engineering approach and the SF-ANOVA technology. The SF-ANOVA modeling approach was compared to stepwise regression, ridge regression, and neural networks. The comparison indicated that the proposed approach is a valid and effective tool with similar accuracy and less complexity than the other procedures.« less

  17. Improving 6th Grade Climate Literacy using New Media (CLINM) and Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Smith, G.; Schmidt, C.; Metzger, E. P.; Cordero, E. C.

    2012-12-01

    The NASA-funded project, Improving 6th Grade Climate Literacy using New Media (CLINM), is designed to improve the climate literacy of California's 450,000 6th-grade students through teacher professional development that presents climate change as an engaging context for teaching earth science standards. The project fosters experience-based interaction among learners and encourages expressive creativity and idea-exchange via the web and social media. The heart of the CLINM project is the development of an online educator-friendly experience that provides content expert-reviewed, teacher-tested, standards-based educational resources, classroom activities and lessons that make meaningful connections to NASA data and images as well as new media tools (videos, web, and phone applications) based on the Green Ninja, a climate-action superhero who fights global warming by inspiring personal action (www.greenninja.info). In this session, we will discuss this approach to professional development and share a collection of teacher-tested CLINM resources. CLINM resources are grounded in earth system science; classroom activities and lessons engage students in exploration of connections between natural systems and human systems with a particular focus on how climate change relates to everyone's need for food, water, and energy. CLINM uses a team-based approach to resource development, and partners faculty in San José State University's (SJSU) colleges of Science, Education, and Humanities and the Arts with 6th-grade teachers from local school districts, a scientist from NASA Ames Research Center and climate change education projects at Stanford University, the University of Nebraska at Lincoln, and the University of Idaho. Climate scientists and other content experts identify relevant concepts and work with science educators to develop and/or refine classroom activities to elucidate those concepts; activities are piloted in pre-service science methods courses at SJSU and in teacher professional development workshops offered through the Bay Area Earth Science Institute (BAESI); workshop attendees frame the activities as lessons appropriate for their 6th grade students; participants who use the lessons and resources in their classrooms provide iterative feedback, which is used to improve the resources for other teachers involved in the project.

  18. A comparison of methods to estimate future sub-daily design rainfall

    NASA Astrophysics Data System (ADS)

    Li, J.; Johnson, F.; Evans, J.; Sharma, A.

    2017-12-01

    Warmer temperatures are expected to increase extreme short-duration rainfall due to the increased moisture-holding capacity of the atmosphere. While attention has been paid to the impacts of climate change on future design rainfalls at daily or longer time scales, the potential changes in short duration design rainfalls have been often overlooked due to the limited availability of sub-daily projections and observations. This study uses a high-resolution regional climate model (RCM) to predict the changes in sub-daily design rainfalls for the Greater Sydney region in Australia. Sixteen methods for predicting changes to sub-daily future extremes are assessed based on different options for bias correction, disaggregation and frequency analysis. A Monte Carlo cross-validation procedure is employed to evaluate the skill of each method in estimating the design rainfall for the current climate. It is found that bias correction significantly improves the accuracy of the design rainfall estimated for the current climate. For 1 h events, bias correcting the hourly annual maximum rainfall simulated by the RCM produces design rainfall closest to observations, whereas for multi-hour events, disaggregating the daily rainfall total is recommended. This suggests that the RCM fails to simulate the observed multi-duration rainfall persistence, which is a common issue for most climate models. Despite the significant differences in the estimated design rainfalls between different methods, all methods lead to an increase in design rainfalls across the majority of the study region.

  19. Application of statistical downscaling technique for the production of wine grapes (Vitis vinifera L.) in Spain

    NASA Astrophysics Data System (ADS)

    Gaitán Fernández, E.; García Moreno, R.; Pino Otín, M. R.; Ribalaygua Batalla, J.

    2012-04-01

    Climate and soil are two of the most important limiting factors for agricultural production. Nowadays climate change has been documented in many geographical locations affecting different cropping systems. The General Circulation Models (GCM) has become important tools to simulate the more relevant aspects of the climate expected for the XXI century in the frame of climatic change. These models are able to reproduce the general features of the atmospheric dynamic but their low resolution (about 200 Km) avoids a proper simulation of lower scale meteorological effects. Downscaling techniques allow overcoming this problem by adapting the model outcomes to local scale. In this context, FIC (Fundación para la Investigación del Clima) has developed a statistical downscaling technique based on a two step analogue methods. This methodology has been broadly tested on national and international environments leading to excellent results on future climate models. In a collaboration project, this statistical downscaling technique was applied to predict future scenarios for the grape growing systems in Spain. The application of such model is very important to predict expected climate for the different growing crops, mainly for grape, where the success of different varieties are highly related to climate and soil. The model allowed the implementation of agricultural conservation practices in the crop production, detecting highly sensible areas to negative impacts produced by any modification of climate in the different regions, mainly those protected with protected designation of origin, and the definition of new production areas with optimal edaphoclimatic conditions for the different varieties.

  20. Climate Research by K-12 Students: Can They Do It? Will Anybody Care?

    NASA Astrophysics Data System (ADS)

    Brooks, D. R.

    2011-12-01

    Starting from the premise that engaging students in authentic science research is an activity that benefits science education in general, it is first necessary to consider whether students, in collaboration with teachers and climate scientists, can do climate-related research that actually has scientific value. A workshop held in November 2010, co-sponsored by NSF and NOAA, addressed this question. It took as its starting point this "scientific interest" test: "If students conduct a climate-related research project according to protocols designed in collaboration with climate scientists, when they get done, will any of those scientists care whether they did it or not?" If the answer to this question is "yes," then the project may constitute authentic research, but if the answer is "no," then the project may have educational value, but it is not research. This test is important because only when climate scientists (and other stakeholders interested in climate and climate change) are invested in the outcomes of student research will meaningful student research programs with sustainable support be forthcoming. The absence of climate-related projects in high-level student science fair competitions indicates that, currently, the investment and infrastructure required to support student climate research is lacking. As a result, climate science is losing the battle for the "hearts and minds" of today's best students. The critical task for student climate research is to define projects that are theoretically and practically accessible. This excludes the "big questions" of climate science, such as "Is Earth getting warmer?", but includes many observationally based projects that can help to refine our understanding of climate and climate change. The characteristics of collaborative climate research with students include: 1. carefully drawn distinctions between inquiry-based "learning about" activities and actual research; 2. an identified audience of potential stakeholders who will care about the results of the research; 3. clearly defined expectations, logistics, and outcomes for all participants. Some examples of appropriate data-based research topics include: 1. monitoring black carbon, atmospheric aerosols, and water vapor; 2. pyranometry at sufficiently high temporal resolution to study cloud patterns; 3. urban heat island and other microclimate effects; 4. monitoring benthic habitats and seafloor temperatures; 5. monitoring free-floating ocean buoys to help in the establishment of mobile marine sanctuaries; 6. monitoring surface reflectivity to generate highly localized normalized difference vegetation indices; 7. tracking habitats for vector-borne disease carriers in developing countries. Both education and science communities need to work harder to support student climate research. Educational institutions must build authentic student research into their mission statements. Scientists need to be more aware of the constraints under which teachers and their students must operate on a day-to-day basis. But, students can participate in authentic climate research if educators and scientists expect them to do real research, are honest with them about what is required to do real research, and are willing to provide persistent ongoing support.

  1. The Arctic Climate Modeling Program: K-12 Geoscience Professional Development for Rural Educators

    NASA Astrophysics Data System (ADS)

    Bertram, K. B.

    2009-12-01

    Helping teachers and students connect with scientists is the heart of the Arctic Climate Modeling Program (ACMP), funded from 2005-09 by the National Science Foundation’s Innovative Technology Experience for Students and Teachers. ACMP offered progressive yearlong science, technology and math (STM) professional development that prepared teachers to train youth in workforce technologies used in Arctic research. ACMP was created for the Bering Strait School District, a geographically isolated area with low standardized test scores, high dropout rates, and poverty. Scientists from around the globe have converged in this region and other areas of the Arctic to observe and measure changes in climate that are significant, accelerating, and unlike any in recorded history. Climate literacy (the ability to understand Earth system science and to make scientifically informed decisions about climate changes) has become essential for this population. Program resources were designed in collaboration with scientists to mimic the processes used to study Arctic climate. Because the Bering Strait School District serves a 98 percent Alaska Native student population, ACMP focused on best practices shown to increase the success of minority students. Significant research indicates that Alaska Native students succeed academically at higher rates when instruction addresses topics of local interest, links education to the students’ physical and cultural environment, uses local knowledge and culture in the curriculum, and incorporates hands-on, inquiry-based lessons in the classroom. A seven-partner consortium of research institutes and Alaska Native corporations created ACMP to help teachers understand their role in nurturing STM talent and motivating students to explore geoscience careers. Research underscores the importance of increasing school emphasis in content areas, such as climate, that facilitate global awareness and civic responsibility, and that foster critical thinking and other 21st century learning skills. Climate studies offer insight into a broad cross-section of STM careers, and provide a natural forum for helping students develop problem-solving skills inherent in STM research. Climate research involves sophisticated technology, a complex set of 21st century skills, and the ability to collaborate with an international community. Professional development that trains teachers in these skills is essential considering that recent research shows 90 percent of U.S. secondary students are taught Earth and physical science by a teacher lacking STM certification. ACMP summative evaluation posed three questions: 1) Did ACMP training meet teachers’ needs? 2) Did ACMP involvement result in more effective teachers and teaching? 3) Did participation in ACMP result in higher Bering Strait School District student achievement? Teachers and students were evaluated using a mixed method design incorporating descriptive components with a before/after design to measure what teachers and students learned. Community members, 165 teachers, and 1,738 individual students participated in the program, which was successful in its goals overall.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, T.; Curtis, O.; Stephenson, R.

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta-based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA, in the mixed humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STARmore » requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post-construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowners wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, T.; Curtis, O.; Stephenson, R.

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta-based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach topotential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements,more » and a high performance heating and cooling system. Construction quality and execution was a high priority for TaCStudios and was ensured by a third party review process. Post-construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowners wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this homewas evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored todetermine their impact on overall energy consumption.« less

  4. Big climate data analysis

    NASA Astrophysics Data System (ADS)

    Mudelsee, Manfred

    2015-04-01

    The Big Data era has begun also in the climate sciences, not only in economics or molecular biology. We measure climate at increasing spatial resolution by means of satellites and look farther back in time at increasing temporal resolution by means of natural archives and proxy data. We use powerful supercomputers to run climate models. The model output of the calculations made for the IPCC's Fifth Assessment Report amounts to ~650 TB. The 'scientific evolution' of grid computing has started, and the 'scientific revolution' of quantum computing is being prepared. This will increase computing power, and data amount, by several orders of magnitude in the future. However, more data does not automatically mean more knowledge. We need statisticians, who are at the core of transforming data into knowledge. Statisticians notably also explore the limits of our knowledge (uncertainties, that is, confidence intervals and P-values). Mudelsee (2014 Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Second edition. Springer, Cham, xxxii + 454 pp.) coined the term 'optimal estimation'. Consider the hyperspace of climate estimation. It has many, but not infinite, dimensions. It consists of the three subspaces Monte Carlo design, method and measure. The Monte Carlo design describes the data generating process. The method subspace describes the estimation and confidence interval construction. The measure subspace describes how to detect the optimal estimation method for the Monte Carlo experiment. The envisaged large increase in computing power may bring the following idea of optimal climate estimation into existence. Given a data sample, some prior information (e.g. measurement standard errors) and a set of questions (parameters to be estimated), the first task is simple: perform an initial estimation on basis of existing knowledge and experience with such types of estimation problems. The second task requires the computing power: explore the hyperspace to find the suitable method, that is, the mode of estimation and uncertainty-measure determination that optimizes a selected measure for prescribed values close to the initial estimates. Also here, intelligent exploration methods (gradient, Brent, etc.) are useful. The third task is to apply the optimal estimation method to the climate dataset. This conference paper illustrates by means of three examples that optimal estimation has the potential to shape future big climate data analysis. First, we consider various hypothesis tests to study whether climate extremes are increasing in their occurrence. Second, we compare Pearson's and Spearman's correlation measures. Third, we introduce a novel estimator of the tail index, which helps to better quantify climate-change related risks.

  5. A New Handbook for the Development of Space Vehicle Terrestrial Environment Design Requirements.

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Vaughan, William W.

    2008-01-01

    A new NASA document entitled "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development (NASA-HDBK-1001A) has been developed. The Handbook provides terrestrial environment information, data bases, models, recommendations, etc. for use in the design, development, trade studies, testing, and mission analyses for space (or launch) .vehicles. This document is organized into fourteen specific natural environment disciplines of which some are winds, atmospheric models, thermal radiation, precipitation-for-icing, cloud cover, atmospheric electricity, geologic hazards, toxic chemical release by propulsion systems, and sea state. Atmospheric phenomena play a significant role in the design and flight of aerospace vehicles and in the integrity of the associated aerospace systems and structures. Environmental design criteria guidelines in this document are based on measurements and observations of atmospheric and climatic phenomena relative to various aerospace development, operational, and vehicle launch locations. The natural environment criteria guidelines data presented in this Handbook were formulated based on discussions with and requests from engineers involved in aerospace vehicle development and operations. Therefore, they represent responses to actual engineering problems and are not just a general compilation of environmental data. The Handbook addresses the basis for the information presented, the interpretations of the terrestrial environment guideline given in the Handbook, and its application to the development of aerospace vehicle design requirements. Specific examples of the Handbook content and associated "lessons lenmed" are given in this paper.

  6. A New Handbook for the Development of Space Vehicle Terrestrial Environment Design Requirements

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Vaughan, William W.

    2008-01-01

    A new NASA document entitled "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development (NASA-HDBK-IOO1A) has been developed. The Handbook provides terrestrial environment information, data bases, models, recommendations, etc. for use in the design, development, trade studies, testing, and mission analyses for space (or launch) vehicles. This document is organized into fourteen specific natural environment disciplines of which some are winds, atmospheric models, thermal radiation, precipitation-for-icing, cloud cover, atmospheric electricity, geologic hazards, toxic chemical release by propulsion systems, and sea state. Atmospheric phenomena play a significant role in the design and flight of aerospace vehicles and in the integrity of the associated aerospace systems and structures. Environmental design criteria guidelines in this document are based on measurements and observations of atmospheric and climatic phenomena relative to various aerospace development, operational, and vehicle launch locations. The natural environment criteria guidelines data presented in this Handbook were formulated based on discussions with and requests from engineers involved in aerospace vehicle development and operations. Therefore, they represent responses to actual engineering problems and are not just a general compilation of environmental data. The Handbook addresses the basis for the information presented, the interpretations of the terrestrial environment guideline given in the Handbook, and its application to the development of aerospace vehicle design requirements. Specific examples of the Handbook content and associated "lessons lenmed" are given in this paper.

  7. Validation of the Hospital Ethical Climate Survey for older people care.

    PubMed

    Suhonen, Riitta; Stolt, Minna; Katajisto, Jouko; Charalambous, Andreas; Olson, Linda L

    2015-08-01

    The exploration of the ethical climate in the care settings for older people is highlighted in the literature, and it has been associated with various aspects of clinical practice and nurses' jobs. However, ethical climate is seldom studied in the older people care context. Valid, reliable, feasible measures are needed for the measurement of ethical climate. This study aimed to test the reliability, validity, and sensitivity of the Hospital Ethical Climate Survey in healthcare settings for older people. A non-experimental cross-sectional study design was employed, and a survey using questionnaires, including the Hospital Ethical Climate Survey was used for data collection. Data were analyzed using descriptive statistics, inferential statistics, and multivariable methods. Survey data were collected from a sample of nurses working in the care settings for older people in Finland (N = 1513, n = 874, response rate = 58%) in 2011. This study was conducted according to good scientific inquiry guidelines, and ethical approval was obtained from the university ethics committee. The mean score for the Hospital Ethical Climate Survey total was 3.85 (standard deviation = 0.56). Cronbach's alpha was 0.92. Principal component analysis provided evidence for factorial validity. LISREL provided evidence for construct validity based on goodness-of-fit statistics. Pearson's correlations of 0.68-0.90 were found between the sub-scales and the Hospital Ethical Climate Survey. The Hospital Ethical Climate Survey was found able to reveal discrimination across care settings and proved to be a valid and reliable tool for measuring ethical climate in care settings for older people and sensitive enough to reveal variations across various clinical settings. The Finnish version of the Hospital Ethical Climate Survey, used mainly in the hospital settings previously, proved to be a valid instrument to be used in the care settings for older people. Further studies are due to analyze the factor structure and some items of the Hospital Ethical Climate Survey. © The Author(s) 2014.

  8. Similarity indices of meteo-climatic gauging stations: definition and comparison.

    PubMed

    Barca, Emanuele; Bruno, Delia Evelina; Passarella, Giuseppe

    2016-07-01

    Space-time dependencies among monitoring network stations have been investigated to detect and quantify similarity relationships among gauging stations. In this work, besides the well-known rank correlation index, two new similarity indices have been defined and applied to compute the similarity matrix related to the Apulian meteo-climatic monitoring network. The similarity matrices can be applied to address reliably the issue of missing data in space-time series. In order to establish the effectiveness of the similarity indices, a simulation test was then designed and performed with the aim of estimating missing monthly rainfall rates in a suitably selected gauging station. The results of the simulation allowed us to evaluate the effectiveness of the proposed similarity indices. Finally, the multiple imputation by chained equations method was used as a benchmark to have an absolute yardstick for comparing the outcomes of the test. In conclusion, the new proposed multiplicative similarity index resulted at least as reliable as the selected benchmark.

  9. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    Flight simulation No. 3 is on the schedule for the Pegasus XL launch vehicle, seen here in Building 1555 on North Vandenberg Air Force Base in California. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  10. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians carry the separation system, at left, toward the AIM spacecraft hovering above the stand at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  11. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians work on the separation system to be mated to the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  12. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians look over the spacecraft handling fixture that will be used to lift the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  13. KSC-07pd0793

    NASA Image and Video Library

    2007-03-27

    KENNEDY SPACE CENTER, FLA. -- At North Vandenberg Air Force Base in California, the AIM spacecraft is prepared for its move to the clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  14. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians work on the separation system to be mated to the AIM spacecraft, hovering above it. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  15. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians lift the AIM spacecraft via the spacecraft handling fixture attached to it. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  16. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians roll the AIM spacecraft back under the protective clean tent. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  17. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians maneuver the spacecraft handling fixture toward the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  18. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the spacecraft handling fixture around the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  19. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the AIM spacecraft onto a moveable stand. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  20. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians move a mobile stand toward the AIM spacecraft suspended via a crane at left. . AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  1. Climate-FVS Version 2: Content, users guide, applications, and behavior

    Treesearch

    Nicholas L. Crookston

    2014-01-01

    Climate change in the 21st Century is projected to cause widespread changes in forest ecosystems. Climate-FVS is a modification to the Forest Vegetation Simulator designed to take climate change into account when predicting forest dynamics at decadal to century time scales. Individual tree climate viability scores measure the likelihood that the climate at a given...

  2. Introducing a New Concept Inventory on Climate Change to Support Undergraduate Instruction, Teacher Education, Education Research, and Project Evaluation (Invited)

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Monsaas, J.; Katzenberger, J.; Afolabi, C. Y.

    2013-12-01

    The Concept Inventory on Climate Change (CICC) is a new research-based, multiple-choice 'test' that provides a powerful new assessment tool for undergraduate instructors, teacher educators, education researchers, and project evaluators. This presentation will describe the features and the development process of the (CICC). This includes insights about how the development team (co-authors) integrated and augmented their multi-disciplinary expertise. The CICC has been developed in the context of a popular introductory undergraduate weather and climate course at a southeastern research university (N~400-500 per semester). The CICC is not a test for a grade, but is intended to be a useful measure of how well a given teaching and learning experience has succeeded in improving understanding about climate change and related climate concepts. The science content addressed by the CICC is rooted in the national consensus document, 'Climate Literacy: The Essential Principles of Climate Science'. The CICC has been designed to support undergraduate instruction, and may be valuable in comparable contexts that teach about climate change. CICC results can help to inform decisions about the effectiveness of teaching strategies by 1) flagging conceptual issues (PRE-instruction); and 2) detecting conceptual change (POST-instruction). Specific CICC items and their answer choices are informed by the research literature on common misunderstandings about climate and climate change. Each CICC item is rated on a 3-tier scale of the cognitive sophistication the item is calling for, and there is a balance among all three tiers across the full instrument. The CICC development process has involved data-driven changes to successive versions. Data sources have included item statistics from the administration of progressively evolved versions of the CICC in the weather and climate course, group interviews with students, and expert review by climate scientists, educators, and project evaluators based primarily in the US and Canada. The development team provided an exceptionally well integrated, multi-disciplinary expertise in climate science, climate education, education research, and psychometrics. The valuable integration of the team's expertise was driven by: 1) the prior interdisciplinary inclinations of key team members, which made it natural to openly inquire and learn across boundaries of expertise; and 2) the willingness of key team members to become respectful teachers of essential knowledge to other team members. These qualities, in combination with reviewer contributions, have brought the leading edges of natural and social science research together to produce the CICC. This work has been partially supported by a NASA award to the Georgia State University Research Foundation (NNX09AL69G).

  3. Florida-focused climate change lesson demonstrations from the ASK Florida global and regional climate change professional development workshops

    NASA Astrophysics Data System (ADS)

    Weihs, R. R.

    2013-12-01

    A variety of Florida-focused climate change activities will be featured as part of the ASK Florida global and regional climate change professional development workshops. In a combined effort from Florida State University's Center for Ocean-Atmospheric Prediction Studies (COAPS) and University of South Florida's Coalition for Science Literacy (CSL), and supported by NASA's NICE initiative, the ASK Florida professional development workshops are a series of workshops designed to enhance and support climate change information and related pedagogical skills for middle school science teachers from Title-I schools in Florida. These workshops took place during a two-year period from 2011 to 2013 and consisted of two cohorts in Hillsborough and Volusia counties in Florida. Featured activities include lab-style exercises demonstrating topics such as storm surge and coastal geometry, sea level rise from thermal expansion, and the greenhouse effect. These types of labs are modified so that they allow more independent, inquiry thinking as they require teachers to design their own experiment in order to test a hypothesis. Lecture based activities are used to cover a broad range of topics including hurricanes, climate modeling, and sink holes. The more innovative activities are group activities that utilize roll-playing, technology and resources, and group discussion. For example, 'Climate Gallery Walk' is an activity that features group discussions on each of the climate literacy principles established by the United States Global Change Research Program. By observing discussions between individuals and groups, this activity helps the facilitators gather information on their previous knowledge and identify possible misconceptions that will be addressed within the workshops. Furthermore, 'Fact or Misconception' presents the challenge of identifying whether a given statement is fact or misconception based on the material covered throughout the workshops. It serves as a way to evaluate retention of knowledge as well as clarification and reinforcement of topics. Another featured activity is 'Climate Change Scenario' in which teachers roll play as groups from various facets of local government, who decide how to deal with a given climate change scenario in the Miami-Dade county area. This activity demonstrates the complexities of negotiations that policy makers must make for the greater good of the local economy and ecology. Finally, we highlight activities that utilize online resources for both scientific information and pedagogical strategies for teaching climate change at the middle school level. Such resources include MYNASADATA, hurricane tracking websites, other scientist-vetted climate change lessons, and outreach events like NOAA's Adopt-a-drifter. These activities are highlighted for other scientists, educators, and professional development groups in the hopes that they will inspire further collaboration and further commitment to enhancing climate change education for our nation's youth.

  4. Field Testing of Compartmentalization Methods for Multifamily Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Lstiburek, J. W.

    2015-03-01

    The 2012 International Energy Conservation Code (IECC) has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure (3 ACH50) for single-family and multifamily construction (in climate zones 3–8). The Leadership in Energy & Environmental Design certification program and ASHRAE Standard 189 have comparable compartmentalization requirements. ASHRAE Standard 62.2 will soon be responsible for all multifamily ventilation requirements (low rise and high rise); it has an exceptionally stringent compartmentalization requirement. These code and program requirements are driving the need for easier and more effective methods of compartmentalization in multifamily buildings.

  5. The C20C+ Detection and Attribution Project

    NASA Astrophysics Data System (ADS)

    Stone, D. A.; Angélil, O. M.; Cholia, S.; Christidis, N.; Dittus, A. J.; Folland, C. K.; King, A.; Kinter, J. L.; Krishnan, H.; Min, S. K.; Shiogama, H.; Wehner, M. F.; Wolski, P.

    2015-12-01

    Over the past decade there has been a remarkable growth in interest concerning the effects of anthropogenic emissions on extreme weather. However, research has been constrained by the lack of a public climate-model-based data product optimised for investigation of extreme weather in the context of climate change, relying instead on products designed for other purposes or on bespoke simulations designed for the particular study and not generally applicable to other extremes. The international Climate of the 20th Century Plus (C20C+) Detection and Attribution Project is filling this gap by producing the first large ensemble, multi-model, multi-year, and multi-scenario historical climate data product, specifically designed for resolving variations in the occurrence and characteristics of extreme weather from year to year and their differences from what might have been in the absence of anthropogenic emissions. Updates on project status and tens of terabytes of simulation output are available at http://portal.nersc.gov/c20c.Here we describe the experimental design of the first phase of the project, conducted with six atmospheric climate models, and discuss its various strengths and weaknesses with respect to various types of extreme weather. We also present analyses of the relative importance of climate model, estimate of anthropogenic ocean warming, spatial and temporal scale, and aspects of experimental design on estimates of how much emissions have affected extreme weather.

  6. Report on the Second ARM Mobile Facility (AMF2) Roll, Pitch, and Heave (RPH) Stabilization Platform: Design and Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulter, Richard L.; Martin, Timothy J.

    One of the primary objectives of the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s second Mobile Facility (AMF2) is to obtain reliable measurements of solar, surface, and atmospheric radiation, as well as cloud and atmospheric properties, from ocean-going vessels. To ensure that these climatic measurements are representative and accurate, many AMF2 instrument systems are designed to collect data in a zenith orientation. A pillar of the AMF2 strategy in this effort is the use of a stable platform. The purpose of the platform is to 1) mitigate vessel motion for instruments that require a truly verticalmore » orientation and keep them pointed in the zenith direction, and 2) allow for accurate positioning for viewing or shading of the sensors from direct sunlight. Numerous ARM instruments fall into these categories, but perhaps the most important are the vertically pointing cloud radars, for which vertical motions are a critical parameter. During the design and construction phase of AMF2, an inexpensive stable platform was purchased to perform the stabilization tasks for some of these instruments. The first table compensated for roll, pitch, and yaw (RPY) and was reported upon in a previous technical report (Kafle and Coulter, 2012). Subsequently, a second table was purchased specifically for operation with the Marine W-band cloud radar (MWACR). Computer programs originally developed for RPY were modified to communicate with the new platform controller and with an inertial measurements platform that measures true ship motion components (roll, pitch, yaw, surge, sway, and heave). This platform could not be tested dynamically for RPY because of time constraints requiring its deployment aboard the container ship Horizon Spirit in September 2013. Hence the initial motion tests were conducted on the initial cruise. Subsequent cruises provided additional test results. The platform, as tested, meets all the design and performance criteria established for its use. This is a report of the results of those efforts and the critical points in moving forward« less

  7. nonlinMIP contribution to CMIP6: model intercomparison project for non-linear mechanisms: physical basis, experimental design and analysis principles (v1.0)

    NASA Astrophysics Data System (ADS)

    Good, Peter; Andrews, Timothy; Chadwick, Robin; Dufresne, Jean-Louis; Gregory, Jonathan M.; Lowe, Jason A.; Schaller, Nathalie; Shiogama, Hideo

    2016-11-01

    nonlinMIP provides experiments that account for state-dependent regional and global climate responses. The experiments have two main applications: (1) to focus understanding of responses to CO2 forcing on states relevant to specific policy or scientific questions (e.g. change under low-forcing scenarios, the benefits of mitigation, or from past cold climates to the present day), or (2) to understand the state dependence (non-linearity) of climate change - i.e. why doubling the forcing may not double the response. State dependence (non-linearity) of responses can be large at regional scales, with important implications for understanding mechanisms and for general circulation model (GCM) emulation techniques (e.g. energy balance models and pattern-scaling methods). However, these processes are hard to explore using traditional experiments, which explains why they have had so little attention in previous studies. Some single model studies have established novel analysis principles and some physical mechanisms. There is now a need to explore robustness and uncertainty in such mechanisms across a range of models (point 2 above), and, more broadly, to focus work on understanding the response to CO2 on climate states relevant to specific policy/science questions (point 1). nonlinMIP addresses this using a simple, small set of CO2-forced experiments that are able to separate linear and non-linear mechanisms cleanly, with a good signal-to-noise ratio - while being demonstrably traceable to realistic transient scenarios. The design builds on the CMIP5 (Coupled Model Intercomparison Project Phase 5) and CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) protocols, and is centred around a suite of instantaneous atmospheric CO2 change experiments, with a ramp-up-ramp-down experiment to test traceability to gradual forcing scenarios. In all cases the models are intended to be used with CO2 concentrations rather than CO2 emissions as the input. The understanding gained will help interpret the spread in policy-relevant scenario projections. Here we outline the basic physical principles behind nonlinMIP, and the method of establishing traceability from abruptCO2 to gradual forcing experiments, before detailing the experimental design, and finally some analysis principles. The test of traceability from abruptCO2 to transient experiments is recommended as a standard analysis within the CMIP5 and CMIP6 DECK protocols.

  8. Constant Head Evaluation of Full Scale Soil Absorption Fields

    NASA Astrophysics Data System (ADS)

    Dix, S. P.

    2001-05-01

    Design loading rates for septic tank effluent in trenches of various designs with different geometry and media has been debated for decades. The role of bottom and sidewall is a hot topic with many opinion by experts in the field of agricultural and environmental engineering. Research institutions have conducted numerous studies and developed procedures for measuring both test systems and fundamental of soil hydraulics. Falling head tests have been used more recently to evaluate mature test cells and evaluate both sidewall and basal absorption, (Keys et al). The proposed paper will discuss the design and testing of a constant head permeameter. Testing this equipment and developing the test protocol followed the application of the procedure to on a number of residential systems in both sandy and clay loam soil. Results from this testing showed the relability step that must be taken to successfully use this equipment. Result of the testing show the variability and consistency of absorption, the changes in absorption when systems are flooded above their equilibrium condition and the longer-term changes that occur when trenches are rested in a warm climate. More recent application of the test procedure evaluated affects of head and increased depth sidewall on absorption rates when the effluent level in the trenches was raised. Future modification of the test equipment and procedure by integrating a data logger will permits more exact recording of dose cycles and improved estimate of soil absorption efficiency over time.

  9. Design of high-reliability low-cost amorphous silicon modules for high energy yield

    NASA Astrophysics Data System (ADS)

    Jansen, Kai W.; Varvar, Anthony; Twesme, Edward; Berens, Troy; Dhere, Neelkanth G.

    2008-08-01

    For PV modules to fulfill their intended purpose, they must generate sufficient economic return over their lifetime to justify their initial cost. Not only must modules be manufactured at a low cost/Wp with a high energy yield (kWh/kWp), they must also be designed to withstand the significant environmental stresses experienced throughout their 25+ year lifetime. Based on field experience, the most common factors affecting the lifetime energy yield of glass-based amorphous silicon (a-Si) modules have been identified; these include: 1) light-induced degradation; 2) moisture ingress and thin film corrosion; 3) transparent conductive oxide (TCO) delamination; and 4) glass breakage. The current approaches to mitigating the effect of these degradation mechanisms are discussed and the accelerated tests designed to simulate some of the field failures are described. In some cases, novel accelerated tests have been created to facilitate the development of improved manufacturing processes, including a unique test to screen for TCO delamination. Modules using the most reliable designs are tested in high voltage arrays at customer and internal test sites, as well as at independent laboratories. Data from tests at the Florida Solar Energy Center has shown that a-Si tandem modules can demonstrate an energy yield exceeding 1200 kWh/kWp/yr in a subtropical climate. In the same study, the test arrays demonstrated low long-term power loss over two years of data collection, after initial stabilization. The absolute power produced by the test arrays varied seasonally by approximately +/-7%, as expected.

  10. Locating Pleistocene Refugia: Comparing Phylogeographic and Ecological Niche Model Predictions

    DTIC Science & Technology

    2007-07-01

    the nature of the paleoclimatic layers currently available. Mountain ranges or large ice sheets are reflected in climate layers, as they present major...environmental gradients running both north-south (latitu- dinal) and east to west (North American mountain ranges). To assure that the test could be...Conceived and designed the experiments: RG EW. Analyzed the data: RG EW. Other: Contributed to project planning: SP AN. Provided data layers: AP RH

  11. Ecoclimatic indicators to study climate suitability of areas for the cultivation of specific crops

    NASA Astrophysics Data System (ADS)

    Caubel, J.; Garcia de Cortazar Atauri, I.; Cufi, J.; Huard, F.; Launay, M.; Ripoche, D.; Graux, A.; deNoblet, N.

    2013-12-01

    Climatic conditions play a fundamental role in the suitability of geographical areas for cropping. In the context of climate change, we could expect changes in overall climatic conditions and so, on the suitability for cropping. Therefore, assessing the future climate suitability of areas for cropping is decisive for anticipating agriculture in a given area. Moreover, it is crucial to have access to the split up information concerning the effect of climate on the achievement of the main ecophysiological processes and cultural practices taking place during the crop cycle. In this way, stakeholders can envisage land use adaptations under climate change conditions, such as changes in cultural practices or development of new varieties for example. We proposed an aggregation tool of ecoclimatic indicators to design evaluation trees of climate suitability of areas for cropping, GETARI (Generic Evaluation Tool of Ecoclimatic Indicators). It calculates an overall climate suitability index at the annual scale, from a designed evaluation tree. This aggregation tool allows to characterize climate suitability according to crop ecophysiology, grain/fruit quality or crop management. GETARI proposes the major ecophysiological processes and cultural practices taking place during phenological periods, together with the climatic effects that are known to affect their achievement. The climatic effects on the ecophysiological processes (or cultural practices) during phenological periods are captured by the ecoclimatic indicators, which are agroclimatic indicators calculated over phenological periods. They give information about crop response to climate through ecophysiological or agronomic thresholds. Those indices of suitability are normalized and aggregated according to aggregation rules in order to compute an overall climate index. In order to illustrate how GETARI can be used, we designed evaluation trees in order to study the climate suitability for maize cropping regarding ecophysiology, for wheat cropping regarding its management and for grape cropping regarding its quality. The designed evaluation trees were developed in accordance with expert assessment and were applied in some past climatic conditions in France to verify their consistence. To conclude, the use of indicators does not replace models but represent additional tools for understanding and spatializing some results obtained by models. Their use can provide information about suitability of geographical areas for cropping in future climatic conditions and can enable to minimize the risk of crop failure. This work is carried out under the research program ORACLE (Opportunities and Risks of Agrosystems & forests in response to CLimate, socio-economic and policy changEs in France (and Europe).

  12. C4MIP - The Coupled Climate-Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6

    NASA Astrophysics Data System (ADS)

    Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; Bopp, Laurent; Brovkin, Victor; Dunne, John; Graven, Heather; Hoffman, Forrest; Ilyina, Tatiana; John, Jasmin G.; Jung, Martin; Kawamiya, Michio; Koven, Charlie; Pongratz, Julia; Raddatz, Thomas; Randerson, James T.; Zaehle, Sönke

    2016-08-01

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks are potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate-carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate-carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This paper documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.

  13. An approach to developing local climate change environmental public health indicators, vulnerability assessments, and projections of future impacts.

    PubMed

    Houghton, Adele; English, Paul

    2014-01-01

    Environmental public health indicators (EPHIs) are used by local, state, and federal health agencies to track the status of environmental hazards; exposure to those hazards; health effects of exposure; and public health interventions designed to reduce or prevent the hazard, exposure, or resulting health effect. Climate and health EPHIs have been developed at the state, federal, and international levels. However, they are also needed at the local level to track variations in community vulnerability and to evaluate the effectiveness of interventions designed to enhance community resilience. This review draws on a guidance document developed by the U.S. Council of State and Territorial Epidemiologists' State Environmental Health Indicators Collaborative climate change working group to present a three-tiered approach to develop local climate change EPHIs. Local climate change EPHIs can assist local health departments (LHDs) in implementing key steps of the 10 essential public health services and the U.S. Centers for Disease Control and Prevention's Building Resilience Against Climate Effects framework. They also allow LHDs to incorporate climate-related trends into the larger health department planning process and can be used to perform vulnerability assessments which can be leveraged to ensure that interventions designed to address climate change do not exacerbate existing health disparities.

  14. An Approach to Developing Local Climate Change Environmental Public Health Indicators, Vulnerability Assessments, and Projections of Future Impacts

    PubMed Central

    2014-01-01

    Environmental public health indicators (EPHIs) are used by local, state, and federal health agencies to track the status of environmental hazards; exposure to those hazards; health effects of exposure; and public health interventions designed to reduce or prevent the hazard, exposure, or resulting health effect. Climate and health EPHIs have been developed at the state, federal, and international levels. However, they are also needed at the local level to track variations in community vulnerability and to evaluate the effectiveness of interventions designed to enhance community resilience. This review draws on a guidance document developed by the U.S. Council of State and Territorial Epidemiologists' State Environmental Health Indicators Collaborative climate change working group to present a three-tiered approach to develop local climate change EPHIs. Local climate change EPHIs can assist local health departments (LHDs) in implementing key steps of the 10 essential public health services and the U.S. Centers for Disease Control and Prevention's Building Resilience Against Climate Effects framework. They also allow LHDs to incorporate climate-related trends into the larger health department planning process and can be used to perform vulnerability assessments which can be leveraged to ensure that interventions designed to address climate change do not exacerbate existing health disparities. PMID:25349621

  15. Marble Deterioration and Climate: Examples from the Schlossbrücke Berlin

    NASA Astrophysics Data System (ADS)

    Pirskawetz, S.; Siegesmund, S.; Weise, F.; Rieffel, Y.; Plagge, R.

    2012-04-01

    Protective structures for works of art or antique artefacts have a long architectural tradition and have been known in Germany since the 19th century. The effect of such covers on the microclimate around artworks of natural stone, and hence, their protective capability are insufficiently documented and understood. In 2007, an inter-disciplinary model project and part of a pilot study coordinated by the Berlin State Office for the Protection of Monuments was planned with the aim of developing an innovative winter covering system for marble statuaries located on the Schlossbrücke in Berlin. Such a system would need to fulfil the various requirements for structural stability, aesthetics, climate and practical use. This applied research represents the first complex scientific study of the sustainability of a winter covering system. A climate monitoring system was designed to create a dense database for the numerical prediction of the effect of protective systems, and to compare the given climate conditions to the known factors influencing the marble deterioration. Based on these findings a prototype of an innovative shelter was designed and tested. The project shows, that beside a temporary covering regular inspection and maintenance combined with regular cleaning ensures an effective and sustainable protection of marble sculptures. Such a maintenance program is the precondition for preserving the sculptures of the Schlossbrücke as a historical ensemble. Important scientific results of the project are transferable to similar objects of Carrara marble. The results throw a new light on the conventional protection of such objects and leads to a discussion on the necessity of an all-season protection.

  16. Evaluating the Usability of a Professional Modeling Tool Repurposed for Middle School Learning

    NASA Astrophysics Data System (ADS)

    Peters, Vanessa L.; Songer, Nancy Butler

    2013-10-01

    This paper reports the results of a three-stage usability test of a modeling tool designed to support learners' deep understanding of the impacts of climate change on ecosystems. The design process involved repurposing an existing modeling technology used by professional scientists into a learning tool specifically designed for middle school students. To evaluate usability, we analyzed students' task performance and task completion time as they worked on an activity with the repurposed modeling technology. In stage 1, we conducted remote testing of an early modeling prototype with urban middle school students (n = 84). In stages 2 and 3, we used screencasting software to record students' mouse and keyboard movements during collaborative think-alouds (n = 22) and conducted a qualitative analysis of their peer discussions. Taken together, the study findings revealed two kinds of usability issues that interfered with students' productive use of the tool: issues related to the use of data and information, and issues related to the use of the modeling technology. The study findings resulted in design improvements that led to stronger usability outcomes and higher task performance among students. In this paper, we describe our methods for usability testing, our research findings, and our design solutions for supporting students' use of the modeling technology and use of data. The paper concludes with implications for the design and study of modeling technologies for science learning.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yongkang; De Sales, Fernando; Lau, William K. -M.

    The Sahel climate system had experienced one of the strongest interdecadal climate variabilities and the longest drought on the planet in the twentieth century. Most modeling studies on the decadal variability of the Sahel climate so far have focused on the role of anomalies in either sea surface temperature (SST), land surface processes, or aerosols concentration. The Second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedback of SST, land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales.more » The WAMME II strategy is to apply observationally based anomaly forcing, i.e., “idealized but realistic” forcing, in simulations by general circulation models’ (GCMs) and regional climate models’ (RCMs) to test the relative impacts of such forcings in producing/amplifying the Sahelian seasonal and decadal climate variability, including the 20th century drought. To test individual ocean’s SST effect, a special approach in the experimental design is taken to avoid undermine its effect. This is the first multi-model experiment specifically designed to simultaneously evaluate relative contributions of multiple-external forcings to the Sahel drought. This paper presents the major results and preliminary findings of the WAMME II SST experiment, including each ocean’s contribution to the global SST effect, as well as comparison of the SST effect with the LULCC effect. The common empirical orthogonal functions and other analyses are applied to assess and comprehend the discrepancies among the models. In general, the WAMME II models have reached a consensus on SST’s major contribution to the great Sahel drought and show that with the maximum possible SST forcing, it can produce up to 60% of the absolute amount of precipitation difference between the 1980s and the 1950s. This paper has 3 also delineated the role of SSTs in triggering and maintaining the Sahel drought, suggesting a potential predictability of WAM development linked to SST. Among different ocean basins, the Pacific and Indian Ocean SSTs have the greatest impact on the 1980s drought. The WAMME II, however, fails to reach a consensus on the role of the Mediterranean Sea SST. The changes in circulation, moisture flux convergence, and associated surface energy balances are the main mechanisms for the SST effect. The paper also compares the SST effect with the LULCC effects. It is shown that the prescribed land forcing produces about 40% of the precipitation difference between the 1980s and the 1950s, which is less than SST contribution but still of first order in the Sahel climate system. The role of land surface processes in responding to and amplifying the drought has also been identified. The results demonstrate that catastrophic consequences likely occur in the regional climate when SST anomalies in individual ocean basins and in land conditions combine synergistically to favor drought. Due to limited ensemble members, aerosol effects are not compared. Since the SST and land forcing in the real world are likely smaller than specified in this study, further investigations on the effects of aerosols as well as of other external forcings, such as greenhouse gases, and of atmospheric internal variability, are necessary. Moreover, although the WAMEE II models support a general consensus on SST and LULCC effects, there are still large discrepancies in how these models produce the Sahel drought in the 1980s. Better atmospheric observational and analysis data including more processes and components are necessary to validate and constrain models, and to guide further model development and improvement.« less

  18. An Innovative Concept for Testing Rutting Susceptibility of Asphalt Mixture

    NASA Astrophysics Data System (ADS)

    Mohseni, Alaeddin; Azari, Haleh

    Currently, flow number (FN) is being used for measuring permanent deformation resistance of asphalt mixtures. The provisional AASHTO TP 79-10 test method specifies the requirements of the FN test; however, there are undefined levels of test variables, such as temperature, axial stress, and confinement. Therefore, agreeable FN criteria that can reliably discriminate between various mixtures have not been established yet. As the asphalt industry continues to develop more sophisticated mixtures (Warm Mix, RAP and RAS), the FN value has failed to capture the true complexity of the asphalt mixtures. These shortcomings and the unpredictable testing time of the FN test have affected its usefulness for evaluating high temperature performance of asphalt mixtures. A new test procedure for evaluation of rutting susceptibility of asphalt mixtures is being proposed. The new procedure is conducted at one temperature and multiple stresses on the same replicate in three increments of 500 cycles, which only takes 33 minutes to complete. The property of the test is the permanent strain due to the last cycle of each test increment (Minimum Strain Rate, or MSR). A master curve is developed by plotting the MSR values versus parameter TP, which is a product of Temperature and Pressure. The MSR master curve represents the unit rutting damage (rut per axle) of asphalt mixtures at any stress and temperature and can be used in laboratory for material characterization, mix design verification, ranking of the mixtures, or for pavement design applications to predict rut depth for project climate and design traffic.

  19. A systematic review of the safety climate intervention literature: Past trends and future directions.

    PubMed

    Lee, Jin; Huang, Yueng-Hsiang; Cheung, Janelle H; Chen, Zhuo; Shaw, William S

    2018-04-26

    Safety climate represents the meaningfulness of safety and how safety is valued in an organization. The contributions of safety climate to organizational safety have been well documented. There is a dearth of empirical research, however, on specific safety climate interventions and their effectiveness. The present study aims at examining the trend of safety climate interventions and offering compiled information for designing and implementing evidence-based safety climate interventions. Our literature search yielded 384 titles that were inspected by three examiners. Using a stepwise process that allowed for assessment of interobserver agreement, 19 full articles were selected and reviewed. Results showed that 10 out of the 19 articles (52.6%) were based on a quasi-experimental pre- and postintervention design, whereas 42.1% (n = 8) studies were based on a mixed-design approach (including both between- and within-subject design). All interventions in these 19 studies involved either safety-/health-related communication or education/training. Improvement of safety leadership was also a common component of safety climate interventions. According to the socio-technical systems classification of intervention strategies, all studies were categorized as interventions focusing on improving organizational and managerial structure as well as the personnel subsystem; four of them also aimed at improving technological aspects of work, and five of them aimed at improving the physical work subsystem. In general, a vast majority of the studies (89.5%, n = 17) showed a statistically significant improvement in safety climate across their organizations postintervention. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. How to Reach Decision Makers: Build a network of educators and practitioners with common goals

    NASA Astrophysics Data System (ADS)

    Boudrias, M. A.; Estrada, M.; Anders, S.; Silva-Send, N. J.; Gershunov, A.

    2013-12-01

    In San Diego County, the Climate Education Partners (CEP) includes climate scientists, science educators, behavioral scientists, environmental practitioners and community organizations that are dedicated to providing local decision makers (elected officials, business leaders, community leaders) with sound climate science learning opportunities and resources that promote informed decision making. Their work over the past three years has found that effective climate education programs are designed for specific audiences with tailored information that is relevant to them, while simultaneously building community efficacy, identity and values. An integrated approach that blends rigorous scientific facts, local climate change impact, and social science education theory is contributing towards the development of a cadre of engaged leaders and communities. To track project progress and to inform the project strategy, local Key Influentials are being interviewed to gauge their current understanding of climate change and their interest in either becoming messengers to their community or becoming the portal to their constituency. Innovation comes from productive collaboration. For this reason, CEP has been working with leading scientists (climatologists, hydrologists, meteorologists, ecologists), environmental groups, museums and zoos, media experts and government agencies (Water Authority, CalFire) to develop and refine a program of learning activities and resources geared specifically for Key Influentials. For example, a water tour has been designed to bring 25 key influential leaders in San Diego County to a dam, a pumping station and a reservoir and provide climate change facts, impacts and potential solutions to the critical issue of water supply for the San Diego Region. While learning local facts about the causes and impacts of climate change, participants also learn about what they can do (increasing efficacy), that they can be a part of a solution centered community (building identity), and that everything - the education and the use of this knowledge to promote informed decisions - is connected to doing what is best for the next generation (tying learning to values). In addition, CEP developed locally focused videos, one on heat waves and one on water resources, which are being experimentally tested for their impact on informed decision-making and utilized with various KI audiences. Climate Education Partners is finding that linking excellent science with healthy community partnerships is resulting in San Diego leaders and their communities making more informed decisions on how to adapt to climate change and preserve the quality of life enjoyed in San Diego for all future generations.

  1. Using isotopes for design and monitoring of artificial recharge systems

    USGS Publications Warehouse

    Contributors: Hendriksson, N.; Kulongoski, J.T.; Massmann, G.; Newman, B.

    2013-01-01

    Over the past years, the IAEA has provided support to a number of Member States engaged in the implementation of hydrological projects dealing with the design and monitoring of artificial recharge ( A R ) systems, primarily situated in arid and semiarid regions. AR is defined as any engineered system designed to introduce water to, and store water in, underlying aquifers. Aquifer storage and recovery (ASR) is a specific type of AR used with the purpose of increasing groundwater resources. Different water management strategies have been tested under various geographical, hydrological and climatic regimes. However, the success of such schemes cannot easily be predicted, since many variables need to be taken into account in the early stages of every AR project.

  2. A New Time-varying Concept of Risk in a Changing Climate.

    PubMed

    Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P

    2016-10-20

    In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.

  3. Assessing Climate Misconceptions of Middle School Learners and Teachers

    NASA Astrophysics Data System (ADS)

    Sahagian, D. L.; Anastasio, D. J.; Bodzin, A.; Cirucci, L.; Bressler, D.; Dempsey, C.; Peffer, T.

    2012-12-01

    Middle School students and their teachers are among the many populations in the U.S. with misconceptions regarding the science or even reality of climate change. Teaching climate change science in schools is of paramount importance since all school-age children will eventually assume responsibility for the management and policy-making decisions of our planet. The recently published Framework for K-12 Science Education (National Research Council, 2012) emphasizes the importance of students understanding global climate change and its impacts on society. A preliminary assessment of over a thousand urban middles school students found the following from pretests prior to a climate literacy curriculum: - Do not understand that climate occurs on a time scale of decades (most think it is weeks or months) -Do not know the main atmospheric contributors to global warming -Do not understand the role of greenhouse gases as major contributors to increasing Earth's surface temperature -Do not understand the role of water vapor to trap heat and add to the greenhouse effect -Cannot identify some of the human activities that increase the amount of CO2 -Cannot identify sources of carbon emissions produced by US citizens -Cannot describe human activities that are causing the long-term increase of carbon -dioxide levels over the last 100 years -Cannot describe carbon reduction strategies that are feasible for lowering the levels of carbon dioxide in the atmosphere To address the lack of a well-designed middle school science climate change curriculum that can be used to help teachers promote the teaching and learning of important climate change concepts, we developed a 20-day Environmental Literacy and Inquiry (ELI): Climate Change curriculum in partnership with a local school district. Comprehension increased significantly from pre- to post-test after enactment of the ELI curriculum in the classrooms. This work is part of an ongoing systemic curriculum reform initiative to promote (1) environmental literacy and inquiry and (2) foster the development of geospatial thinking and reasoning using geospatial technologies as an essential component of the middle school science curriculum. The curriculum is designed to align instructional materials and assessments with learning goals. The following frameworks were used to provide guidelines for the climate change science content in addition to the science inquiry upon which schools must focus: Climate Literacy: The Essential Principles of Climate Sciences (U.S. Global Change Research Program, 2009) and the AAAS Project 2061 Communicating and Learning About Global Climate Change (AAAS, 2007). The curriculum is a coherent sequence of learning activities that include climate change investigations with Google Earth, Web-based interactivities that include an online carbon emissions calculator and a Web-based geologic time-line, and inquiry-based ("hands-on") laboratories. The climate change science topics include the atmosphere, Earth system energy balance, weather, greenhouse gases, paleoclimatology, and "humans and climate". It is hoped that with a solid foundation of climate science in the classroom, middle school learners will be in a position to evaluate new scientific discoveries, emerging data sets, and reasonably assess information and misinformation by which they are surrounded on a daily basis.

  4. The importance of organizational climate and implementation strategy at the introduction of a new working tool in primary health care.

    PubMed

    Carlfjord, S; Andersson, A; Nilsen, P; Bendtsen, P; Lindberg, M

    2010-12-01

    The transmission of research findings into routine care is a slow and unpredictable process. Important factors predicting receptivity for innovations within organizations have been identified, but there is a need for further research in this area. The aim of this study was to describe contextual factors and evaluate if organizational climate and implementation strategy influenced outcome, when a computer-based concept for lifestyle intervention was introduced in primary health care (PHC). The study was conducted using a prospective intervention design. The computer-based concept was implemented at six PHC units. Contextual factors in terms of size, leadership, organizational climate and political environment at the units included in the study were assessed before implementation. Organizational climate was measured using the Creative Climate Questionnaire (CCQ). Two different implementation strategies were used: one explicit strategy, based on Rogers' theories about the innovation-decision process, and one implicit strategy. After 6 months, implementation outcome in terms of the proportion of patients who had been referred to the test, was measured. The CCQ questionnaire response rates among staff ranged from 67% to 91% at the six units. Organizational climate differed substantially between the units. Managers scored higher on CCQ than staff at the same unit. A combination of high CCQ scores and explicit implementation strategy was associated with a positive implementation outcome. Organizational climate varies substantially between different PHC units. High CCQ scores in combination with an explicit implementation strategy predict a positive implementation outcome when a new working tool is introduced in PHC. © 2010 Blackwell Publishing Ltd.

  5. Designing a global assessment of climate change on inland fishes and fisheries: knowns and needs

    USGS Publications Warehouse

    Paukert, Craig P.; Lynch, Abigail J.; Beard, T. Douglas; Chen, Yushun; Cooke, Steven J.; Cooperman, Michael S.; Cowx, Ian G.; Infante, Dana M.; Ibengwe, Lilian; Myers, Bonnie; Nguyen, Phu Hoa; Winfield, Ian J.

    2017-01-01

    To date, there are few comprehensive assessments of how climate change affects inland finfish, fisheries, and aquaculture at a global scale, but one is necessary to identify research needs and commonalities across regions and to help guide decision making and funding priorities. Broadly, the consequences of climate change on inland fishes will impact global food security, the livelihoods of people who depend on inland capture and recreational fisheries. However, understanding how climate change will affect inland fishes and fisheries has lagged behind marine assessments. Building from a North American inland fisheries assessment, we convened an expert panel from seven countries to provide a first-step to a framework for determining how to approach an assessment of how climate change may affect inland fishes, capture fisheries, and aquaculture globally. Starting with the small group helped frame the key questions (e.g., who is the audience? What is the best approach and spatial scale?). Data gaps identified by the group include: the tolerances of inland fisheries to changes in temperature, stream flows, salinity, and other environmental factors linked to climate change, and the adaptive capacity of fishes and fisheries to adjust to these changes. These questions are difficult to address, but long-term and large-scale datasets are becoming more readily available as a means to test hypotheses related to climate change. We hope this perspective will help researchers and decision makers identify research priorities and provide a framework to help sustain inland fish populations and fisheries for the diversity of users around the globe.

  6. The Grand Challenges of WCRP and the Climate Observing System of the Future

    NASA Astrophysics Data System (ADS)

    Brasseur, G. P.

    2017-12-01

    The successful implementation the Paris agreement on climate change (COP21) calls for a well-designed global monitoring system of essential climate variables, climate processes and Earth system budgets. The Grand Challenges implemented by the World Climate Research Programme (WCRP) provide an opportunity to investigate issues of high societal relevance, directly related to sea level rise, droughts, floods, extreme heat events, food security, and fresh water availability. These challenges would directly benefit from a well-designed suite of systematic climate observations. Quantification of the evolution of the global energy, water and carbon budgets as well as the development and the production of near-term and regional climate predictions require that a comprehensive, focused, multi-platform observing system (satellites, ground-based and in situ observations) be established in an international context. This system must be accompanied by the development of climate services that should translate and disseminate scientific outcomes as actionable information for users and stakeholders.

  7. Water Resources Management and Hydrologic Design Under Uncertain Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Teegavarapu, R. S.

    2008-05-01

    The impact of climate change on hydrologic design and management of water resource systems could be one of the important challenges faced by future practicing hydrologists and water resources managers. Many water resources managers currently rely on the historical hydrological data and adaptive real-time operations without consideration of the impact of climate change on major inputs influencing the behavior of hydrologic systems and the operating rules. Issues such as risk, reliability and robustness of water resources systems under different climate change scenarios were addressed in the past. However, water resources management with the decision maker's preferences attached to climate change has never been dealt with. This presentation discusses issues related to impacts of climate change on water resources management and application of a soft-computing approach, fuzzy set theory, for climate-sensitive management of water resources systems. A real-life case study example is presented to illustrate the applicability of soft-computing approach for handling the decision maker's preferences in accepting or rejecting the magnitude and direction of climate change.

  8. KSC-98pc1863

    NASA Image and Video Library

    1998-12-10

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers maneuver the Mars Polar Lander onto a spin table for testing. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  9. KSC-98pc1862

    NASA Image and Video Library

    1998-12-10

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is lowered toward a spin table for testing. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  10. 10 CFR 434.301 - Design criteria.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) 586-9127. Adjustments may be made to reflect local climates which differ from the tabulated... climatic data are not available, climate data from a nearby location included in RS-1, appendix C...

  11. 10 CFR 434.301 - Design criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) 586-9127. Adjustments may be made to reflect local climates which differ from the tabulated... climatic data are not available, climate data from a nearby location included in RS-1, appendix C...

  12. 10 CFR 434.301 - Design criteria.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) 586-9127. Adjustments may be made to reflect local climates which differ from the tabulated... climatic data are not available, climate data from a nearby location included in RS-1, appendix C...

  13. 10 CFR 434.301 - Design criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) 586-9127. Adjustments may be made to reflect local climates which differ from the tabulated... climatic data are not available, climate data from a nearby location included in RS-1, Appendix C...

  14. 10 CFR 434.301 - Design criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) 586-9127. Adjustments may be made to reflect local climates which differ from the tabulated... climatic data are not available, climate data from a nearby location included in RS-1, Appendix C...

  15. Climate project screening tool: an aid for climate change adaptation

    Treesearch

    Toni Lyn Morelli; Sharon Yeh; Nikola M. Smith; Mary Beth Hennessy; Constance I. Millar

    2012-01-01

    To address the impacts of climate change, land managers need techniques for incorporating adaptation into ongoing or impending projects. We present a new tool, the Climate Project Screening Tool (CPST), for integrating climate change considerations into project planning as well as for developing concrete adaptation options for land managers. We designed CPST as part of...

  16. Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar

    Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to themore » EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.« less

  17. Introduction to Building Systems Performance: Houses that Work II. Revised February 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2005-03-01

    The Building Science Consortium (BSC) design recommendations are based on the hygrothermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.

  18. Experimental and Metrological Basis for SI-Traceable Infrared Radiance Measurements From Space

    NASA Astrophysics Data System (ADS)

    Gero, P. J.; Dykema, J. A.; Anderson, J. G.; Leroy, S. S.

    2007-12-01

    In order to establish a climate benchmark record and to be useful in interdecadal climate forecast testing, satellite measurements of high spectral resolution infrared radiance must have uncertainty estimates that can be proven beyond a doubt. An uncertainty in radiance of about 1 part in 1000 is required for climate applications. This can be accomplished by appealing to the best measurement practices of the metrology community. The International System of Units (SI) are linked to fundamental physical properties of matter, and can be realized anywhere in the world without bias. By doing so, one can make an accurate observation to within a specified uncertainty. Achieving SI-traceable radiance measurements from space is a novel requirement, and requires specialized sensor design and a disciplined experimental approach. Infrared remote sensing satellite instruments typically employ blackbody calibration targets, which are tied to the SI through Planck's law and the definition of the Kelvin. The blackbody temperature and emissivity, however, must be determined accurately on- orbit, in order for the blackbody emission scale to be SI-traceable. We outline a methodology of instrument design, pre-flight calibration and on-orbit diagnostics for realizing SI- traceable infrared radiance measurements. This instrument is intended as a component of the Climate Absolute Radiance and Refractivity Earth Observatory (CLARREO), a high priority recommendation of the National Research Council decadal survey. Calibration blackbodies for remote sensing differ from a perfect Planckian blackbody; thus the component uncertainties must be evaluated in order to confer traceability. We have performed traceability experiments in the laboratory to verify blackbody temperature, emissivity and the end-to-end radiance scale. We discuss the design of the Harvard standard blackbody and an intercomparison campaign that will be conducted with the GIFTS blackbody (University of Wisconsin, Madison) and radiometric calibration facilities at NIST. The GIFTS blackbody is a high-performance space-qualified design with a new generation of on-orbit thermometer calibration via miniaturized fixed point cells. NIST facilities allow the step-by-step measurement of blackbody surface properties, thermal properties, on-axis emissivity, and end-to-end radiometric performance. These activities will lay the experimental groundwork for achieving SI-traceable infrared radiance measurements on a satellite instrument.

  19. A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment

    NASA Astrophysics Data System (ADS)

    Krassovski, M. B.; Riggs, J. S.; Hook, L. A.; Nettles, W. R.; Hanson, P. J.; Boden, T. A.

    2015-07-01

    Ecosystem-scale manipulation experiments represent large science investments that require well-designed data acquisition and management systems to provide reliable, accurate information to project participants and third party users. The SPRUCE Project (Spruce and Peatland Responses Under Climatic and Environmental Change, http://mnspruce.ornl.gov) is such an experiment funded by the Department of Energy's (DOE), Office of Science, Terrestrial Ecosystem Science (TES) Program. The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. SPRUCE provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemical processes, and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, the cycling and release of CO2 and CH4 to the atmosphere). The SPRUCE experiment will generate a wide range of continuous and discrete measurements. To successfully manage SPRUCE data collection, achieve SPRUCE science objectives, and support broader climate change research, the research staff has designed a flexible data system using proven network technologies and software components. The primary SPRUCE data system components are: 1. Data acquisition and control system - set of hardware and software to retrieve biological and engineering data from sensors, collect sensor status information, and distribute feedback to control components. 2. Data collection system - set of hardware and software to deliver data to a central depository for storage and further processing. 3. Data management plan - set of plans, policies, and practices to control consistency, protect data integrity, and deliver data. This publication presents our approach to meeting the challenges of designing and constructing an efficient data system for managing high volume sources of in-situ observations in a remote, harsh environmental location. The approach covers data flow starting from the sensors and ending at the archival/distribution points, discusses types of hardware and software used, examines design considerations that were used to choose them, and describes the data management practices chosen to control and enhance the value of the data.

  20. A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment

    NASA Astrophysics Data System (ADS)

    Krassovski, M. B.; Riggs, J. S.; Hook, L. A.; Nettles, W. R.; Hanson, P. J.; Boden, T. A.

    2015-11-01

    Ecosystem-scale manipulation experiments represent large science investments that require well-designed data acquisition and management systems to provide reliable, accurate information to project participants and third party users. The SPRUCE project (Spruce and Peatland Responses Under Climatic and Environmental Change, http://mnspruce.ornl.gov) is such an experiment funded by the Department of Energy's (DOE), Office of Science, Terrestrial Ecosystem Science (TES) Program. The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. SPRUCE provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemical processes, and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, and the cycling and release of CO2 and CH4 to the atmosphere). The SPRUCE experiment will generate a wide range of continuous and discrete measurements. To successfully manage SPRUCE data collection, achieve SPRUCE science objectives, and support broader climate change research, the research staff has designed a flexible data system using proven network technologies and software components. The primary SPRUCE data system components are the following: 1. data acquisition and control system - set of hardware and software to retrieve biological and engineering data from sensors, collect sensor status information, and distribute feedback to control components; 2. data collection system - set of hardware and software to deliver data to a central depository for storage and further processing; 3. data management plan - set of plans, policies, and practices to control consistency, protect data integrity, and deliver data. This publication presents our approach to meeting the challenges of designing and constructing an efficient data system for managing high volume sources of in situ observations in a remote, harsh environmental location. The approach covers data flow starting from the sensors and ending at the archival/distribution points, discusses types of hardware and software used, examines design considerations that were used to choose them, and describes the data management practices chosen to control and enhance the value of the data.

  1. Using narratives to motivate climate science

    NASA Astrophysics Data System (ADS)

    Stiller-Reeve, Mathew; Bremer, Scott; Blanchard, Anne

    2015-04-01

    This paper presents the lessons learnt by the climate scientists within an interdisciplinary research project called 'TRACKS': Transforming climate knowledge with and for society. The project uses the climate narratives of local people in northeast Bangladesh as a basis for mobilizing high quality climate knowledge for adaptation. To ensure this high quality climate information, the project demands an interdisciplinary approach. This project is therefore a broad, but tight collaboration between climate science and perspectives from social science and the humanities. For the climate scientists involved, the aim was to do research that would provide local people with climate information that would hopefully aid adaptation. The climate research design had to consider the perceptions of the local people in northeast Bangladesh, and what aspects of the local climate that they thought were important. For the climate scientists to gain an appropriate understanding, they were fully integrated into the whole narrative research process. The different disciplines cooperate fully in all aspects of the TRACKS project. The climate scientists were involved in planning the narrative interview survey about weather and how it impacts the lives of local people in northeast Bangladesh. The climate scientists participated in a workshop with social science colleagues from Bangladesh and Norway, to design the research questions, the interview framework, and the data management plan. The climate scientists then travelled to Bangladesh with social scientist colleagues to observe and discuss ten pilot interviews with local people, and to take part in two 'stakeholder-mapping' workshops. On the basis of these interviews and workshops, the climate scientists arranged an interdisciplinary workshop where all the project's researchers designed the climate science research questions together. The climate research questions have therefore been built around a first-hand interdisciplinary experience of the situation in northeast Bangladesh. At no point did we decide on the pertinent climatic issues independently of the local people. The success of this interdisciplinary approach so far has depended on time, patience, and humility. In this presentation, we present the narrative approach we have initiated in TRACKS. We will look at some of local climate narratives from the full-scale survey, as well as the challenges and the research questions that resulted from the process. We will also discuss future perspectives of how we re-integrate the new climate science into the dialogue with the local people.

  2. Importance of anthropogenic climate impact, sampling error and urban development in sewer system design.

    PubMed

    Egger, C; Maurer, M

    2015-04-15

    Urban drainage design relying on observed precipitation series neglects the uncertainties associated with current and indeed future climate variability. Urban drainage design is further affected by the large stochastic variability of precipitation extremes and sampling errors arising from the short observation periods of extreme precipitation. Stochastic downscaling addresses anthropogenic climate impact by allowing relevant precipitation characteristics to be derived from local observations and an ensemble of climate models. This multi-climate model approach seeks to reflect the uncertainties in the data due to structural errors of the climate models. An ensemble of outcomes from stochastic downscaling allows for addressing the sampling uncertainty. These uncertainties are clearly reflected in the precipitation-runoff predictions of three urban drainage systems. They were mostly due to the sampling uncertainty. The contribution of climate model uncertainty was found to be of minor importance. Under the applied greenhouse gas emission scenario (A1B) and within the period 2036-2065, the potential for urban flooding in our Swiss case study is slightly reduced on average compared to the reference period 1981-2010. Scenario planning was applied to consider urban development associated with future socio-economic factors affecting urban drainage. The impact of scenario uncertainty was to a large extent found to be case-specific, thus emphasizing the need for scenario planning in every individual case. The results represent a valuable basis for discussions of new drainage design standards aiming specifically to include considerations of uncertainty. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Two Contrasting Approaches to Building High School Teacher Capacity to Teach About Local Climate Change Using Powerful Geospatial Data and Visualization Technology

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.

    2011-12-01

    The presentation will compare and contrast two different place-based approaches to helping high school science teachers use geospatial data visualization technology to teach about climate change in their local regions. The approaches are being used in the development, piloting, and dissemination of two projects for high school science led by the author: the NASA-funded Data-enhanced Investigations for Climate Change Education (DICCE) and the NSF funded Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE). DICCE is bringing an extensive portal of Earth observation data, the Goddard Interactive Online Visualization and Analysis Infrastructure, to high school classrooms. STORE is making available data for viewing results of a particular IPCC-sanctioned climate change model in relation to recent data about average temperatures, precipitation, and land cover for study areas in central California and western New York State. Across the two projects, partner teachers of academically and ethnically diverse students from five states are participating in professional development and pilot testing. Powerful geospatial data representation technologies are difficult to implement in high school science because of challenges that teachers and students encounter navigating data access and making sense of data characteristics and nomenclature. Hence, on DICCE, the researchers are testing the theory that by providing a scaffolded technology-supported process for instructional design, starting from fundamental questions about the content domain, teachers will make better instructional decisions. Conversely, the STORE approach is rooted in the perspective that co-design of curricular materials among researchers and teacher partners that work off of "starter" lessons covering focal skills and understandings will lead to the most effective utilizations of the technology in the classroom. The projects' goals and strategies for student learning proceed from research suggesting that students will be more engaged and able to utilize prior knowledge better when seeing the local and hence personal relevance of climate change and other pressing contemporary science-related issues. In these projects, the students look for climate change trends in geospatial Earth System data layers from weather stations, satellites, and models in relation to global trends. They examine these data to (1) reify what they are learning in science class about meteorology, climate, and ecology, (2) build inquiry skills by posing and seeking answers to research questions, and (3) build data literacy skills through experience generating appropriate data queries and examining data output on different forms of geospatial representations such as maps, elevation profiles, and time series plots. Teachers also are given the opportunity to have their students look at geospatially represented census data from the tool Social Explorer (http://www.socialexplorer.com/pub/maps/home.aspx) in order to better understand demographic trends in relation to climate change-related trends in the Earth system. Early results will be reported about teacher professional development and student learning, gleaned from interviews and observations.

  4. Total and Spectral Solar Irradiance Sensor (TSIS) Project Overview

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace; Wedge, Ronnice; Wu, Dong; Stello, Harry; Robinson, Renee

    2015-01-01

    The main objective of the Total and Spectral solar Irradiance Sensor (TSIS) is to acquire measurements to determine the direct and indirect effects of solar radiation on climate. TSIS total solar irradiance measurements will extend a 37-year long uninterrupted measurement record of incoming solar radiation, the dominant energy source driving the Earths climate and the most precise indicator of changes in the Suns energy output. TSIS solar spectral irradiance measurements will determine the regions of the Earths multi-layered atmosphere that are affected by solar variability, from which the solar forcing mechanisms causing changes in climate can be quantified. TSIS includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload. The TSIS TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. TSIS was originally planned for the nadir-pointing National Polar-orbiting Operational Environmental Satellite System (NPOESS) spacecraft. The TSIS instrument passed a Critical Design Review (CDR) for NPOESS in December 2009. In 2010, TSIS was re-planned for the Joint Polar Satellite System (JPSS) Polar Free Flyer (PFF). The TSIS TIM, SIM, and associated electronics were built, tested, and successfully completed pre-ship review as of December 2013.In early 2014, NOAA and NASA agreed to fly TSIS on the International Space Station (ISS). In the FY16 Presidents Budget, NASA assumes responsibility for the TSIS mission on ISS. The TSIS project includes requirements, interface, design, build and test of the TSIS payload, including an updated pointing system, for accommodation on the ISS. It takes advantage of the prior development of the TSIS sensors and electronics. The International Space Station (ISS) program contributions include launch services and robotic installation of the TSIS payload onto an ISS Express Logistics Carrier, mission operations, and communications. Total and Spectral solar irradiance data products will be produced, calibrated, and made publically available through the Goddard Earth Science Data and Information Services Center (GES DISC).The NASA GSFC TSIS project at GSFC is responsible for project management, system engineering, safety and mission assurance, and engineering oversight for the TSIS payload. The TSIS project has contracted with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) for the design, development and testing of TSIS, support for ISS integration, science operations of the TSIS instrument, data processing, data evaluation and delivery to the GES DISC. TSIS will be delivered to Kennedy Space Center for integration in 2017, with launch and installation onto ISS planned for late 2017-early 2018. After a 90-day check-out period, NASA plans five years of TSIS operations.

  5. Climate Prediction Center

    Science.gov Websites

    Climate Stratosphere Pacific Islands International Desks Climate.gov Climate Test Bed (CTB) JAWF USAID FEWS-NET NWS / NCEP Aviation Weather Center Climate Prediction Center Environmental Modeling Center non-operational server hosts the redesigned web pages developed, thus far, as part of the Climate

  6. Design of affordable and ruggedized biomedical devices using virtual instrumentation.

    PubMed

    Mathern, Ryan Michael; Schopman, Sarah; Kalchthaler, Kyle; Mehta, Khanjan; Butler, Peter

    2013-05-01

    Abstract This paper presents the designs of four low-cost and ruggedized biomedical devices, including a blood pressure monitor, thermometer, weighing scale and spirometer, designed for the East African context. The design constraints included a mass-production price point of $10, accuracy and precision comparable to commercial devices and ruggedness to function effectively in the harsh environment of East Africa. The blood pressure device, thermometer and weighing scale were field-tested in Kenya and each recorded data within 6% error of the measurements from commercial devices and withstood the adverse climate and rough handling. The spirometer functioned according to specifications, but a re-design is needed to improve operability and usability by patients. This article demonstrates the feasibility of designing and commercializing virtual instrumentation-based biomedical devices in resource-constrained environments through context-driven design. The next steps for the devices include designing them such that they can be more easily manufactured, use standardized materials, are easily calibrated in the field and have more user-friendly software programs that can be updated remotely.

  7. Tip-Clearance Measurement in the First Stage of the Compressor of an Aircraft Engine.

    PubMed

    García, Iker; Przysowa, Radosław; Amorebieta, Josu; Zubia, Joseba

    2016-11-11

    In this article, we report the design of a reflective intensity-modulated optical fiber sensor for blade tip-clearance measurement, and the experimental results for the first stage of a compressor of an aircraft engine operating in real conditions. The tests were performed in a ground test cell, where the engine completed four cycles from idling state to takeoff and back to idling state. During these tests, the rotational speed of the compressor ranged between 7000 and 15,600 rpm. The main component of the sensor is a tetrafurcated bundle of optical fibers, with which the resulting precision of the experimental measurements was 12 µm for a measurement range from 2 to 4 mm. To get this precision the effect of temperature on the optoelectronic components of the sensor was compensated by calibrating the sensor in a climate chamber. A custom-designed MATLAB program was employed to simulate the behavior of the sensor prior to its manufacture.

  8. Tip-Clearance Measurement in the First Stage of the Compressor of an Aircraft Engine

    PubMed Central

    García, Iker; Przysowa, Radosław; Amorebieta, Josu; Zubia, Joseba

    2016-01-01

    In this article, we report the design of a reflective intensity-modulated optical fiber sensor for blade tip-clearance measurement, and the experimental results for the first stage of a compressor of an aircraft engine operating in real conditions. The tests were performed in a ground test cell, where the engine completed four cycles from idling state to takeoff and back to idling state. During these tests, the rotational speed of the compressor ranged between 7000 and 15,600 rpm. The main component of the sensor is a tetrafurcated bundle of optical fibers, with which the resulting precision of the experimental measurements was 12 µm for a measurement range from 2 to 4 mm. To get this precision the effect of temperature on the optoelectronic components of the sensor was compensated by calibrating the sensor in a climate chamber. A custom-designed MATLAB program was employed to simulate the behavior of the sensor prior to its manufacture. PMID:27845709

  9. Establishing Design Storm Values from Climate Models in Coastal Regions: Challenges and Opportunities

    EPA Science Inventory

    Dynamic interactions of atmospheric and hydrological processes result in large spatiotemporal changes of precipitation and wind speed in coastal storm events under both current and future climates. This variability can impact the design and sustainability of water infrastructure ...

  10. Building accurate historic and future climate MEPDG input files for Louisiana DOTD.

    DOT National Transportation Integrated Search

    2017-02-01

    The pavement design process (originally MEPDG, then DARWin-ME, and now Pavement ME Design) requires a multi-year set of hourly : climate input data that influence pavement material properties. In Louisiana, the software provides nine locations with c...

  11. Assessing reservoir operations risk under climate change

    USGS Publications Warehouse

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  12. Design Life Level: Quantifying risk in a changing climate

    NASA Astrophysics Data System (ADS)

    Rootzén, Holger; Katz, Richard W.

    2013-09-01

    In the past, the concepts of return levels and return periods have been standard and important tools for engineering design. However, these concepts are based on the assumption of a stationary climate and do not apply to a changing climate, whether local or global. In this paper, we propose a refined concept, Design Life Level, which quantifies risk in a nonstationary climate and can serve as the basis for communication. In current practice, typical hydrologic risk management focuses on a standard (e.g., in terms of a high quantile corresponding to the specified probability of failure for a single year). Nevertheless, the basic information needed for engineering design should consist of (i) the design life period (e.g., the next 50 years, say 2015-2064); and (ii) the probability (e.g., 5% chance) of a hazardous event (typically, in the form of the hydrologic variable exceeding a high level) occurring during the design life period. Capturing both of these design characteristics, the Design Life Level is defined as an upper quantile (e.g., 5%) of the distribution of the maximum value of the hydrologic variable (e.g., water level) over the design life period. We relate this concept and variants of it to existing literature and illustrate how they, and some useful complementary plots, may be computed and used. One practically important consideration concerns quantifying the statistical uncertainty in estimating a high quantile under nonstationarity.

  13. Do Leadership Style, Unit Climate, and Safety Climate Contribute to Safe Medication Practices?

    PubMed

    Farag, Amany; Tullai-McGuinness, Susan; Anthony, Mary K; Burant, Christopher

    2017-01-01

    This study aims at: examining if leadership style and unit climate predict safety climate; and testing the direct, indirect, and total effect of leadership style, unit climate, and safety climate on nurses' safe medication practices. The Institute of Medicine and nursing scholars propose that safety climate is a prerequisite to safety practices. However, there is limited empirical evidence about factors contributing to the development of safety climate and about the association with nurses' safe medication practices. This cross-sectional study used survey data from 246 RNs working in a Magnet® hospital. Leadership style and unit climate predicted 20% to 50% of variance on all safety climate dimensions. Model testing revealed the indirect impact of leadership style and unit climate on nurses' safe medication practices. Our hypothesized model explained small amount of the variance on nurses' safe medication practices. This finding suggests that nurses' safe medication practices are influenced by multiple contextual and personal factors that should be further examined.

  14. Impacts of climate change on rainfall extremes and urban drainage systems: a review.

    PubMed

    Arnbjerg-Nielsen, K; Willems, P; Olsson, J; Beecham, S; Pathirana, A; Bülow Gregersen, I; Madsen, H; Nguyen, V-T-V

    2013-01-01

    A review is made of current methods for assessing future changes in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic-induced climate change. The review concludes that in spite of significant advances there are still many limitations in our understanding of how to describe precipitation patterns in a changing climate in order to design and operate urban drainage infrastructure. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified and suitable solutions implemented. Design and optimization of urban drainage infrastructure considering climate change impacts and co-optimizing these with other objectives will become ever more important to keep our cities habitable into the future.

  15. Geoengineering as a design problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Ben; MacMartin, Douglas G.; Wang, Hailong

    2016-01-01

    Understanding the climate impacts of solar geoengineering is essential for evaluating its benefits and risks. Most previous simulations have prescribed a particular strategy and evaluated its modeled effects. Here we turn this approach around by first choosing example climate objectives and then designing a strategy to meet those objectives in climate models. There are four essential criteria for designing a strategy: (i) an explicit specification of the objectives, (ii) defining what climate forcing agents to modify so the objectives are met, (iii) a method for managing uncertainties, and (iv) independent verification of the strategy in an evaluation model. We demonstrate this design perspective throughmore » two multi-objective examples. First, changes in Arctic temperature and the position of tropical precipitation due to CO 2 increases are offset by adjusting high-latitude insolation in each hemisphere independently. Second, three different latitude-dependent patterns of insolation are modified to offset CO 2-induced changes in global mean temperature, interhemispheric temperature asymmetry, and the Equator-to-pole temperature gradient. In both examples, the "design" and "evaluation" models are state-of-the-art fully coupled atmosphere–ocean general circulation models.« less

  16. Regional Design Approach in Designing Climatic Responsive Administrative Building in the 21st Century

    NASA Astrophysics Data System (ADS)

    Haja Bava Mohidin, Hazrina Binti; Ismail, Alice Sabrina

    2015-01-01

    The objective of this paper is to explicate on the study of modern administrative building in Malaysia which portrays regional design approach that conforms to the local context and climate by reviewing two case studies; Perdana Putra (1999) and former Prime Minister's Office (1967). This paper is significant because the country's stature and political statement was symbolized by administrative building as a national icon. In other words, it is also viewed as a cultural object that is closely tied to a particular social context and nation historical moment. Administrative building, therefore, may exhibit various meanings. This paper uses structuralism paradigm and semiotic principles as a methodological approach. This paper is of importance for practicing architects and society in the future as it offers new knowledge and understanding in identifying the suitable climatic consideration that may reflect regionalist design approach in modern administrative building. These elements then may be adopted in designing public buildings in the future with regional values that are important for expressing national culture to symbolize the identity of place and society as well as responsive to climate change.

  17. Evaluation of the enhanced integrated climatic model for specification of subgrade soils in Oklahoma : final report.

    DOT National Transportation Integrated Search

    2014-01-01

    The main objective of this study was to collect and evaluate climatic and soil data pertaining to Oklahoma for the climatic model (EICM) in the mechanistic-empirical design guide for pavements. The EICM climatic input files were updated and extended ...

  18. Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed-humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STARmore » requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowner's wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.« less

  19. Ocean waves from tropical cyclones in the Gulf of Mexico and the effect of climate change

    NASA Astrophysics Data System (ADS)

    Appendini, C. M.; Pedrozo-Acuña, A.; Meza-Padilla, R.; Torres-Freyermuth, A.; Cerezo-Mota, R.; López-González, J.

    2016-12-01

    To generate projections of wave climate associated to tropical cyclones is a challenge due to their short historical record of events, their low occurrence, and the poor wind field resolution in General Circulation Models. Synthetic tropical cyclones provide an alternative to overcome such limitations, improving robust statistics under present and future climates. We use synthetic events to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. The NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to derive present and future wave climate under RCPs 4.5 and 8.5. The results suggest an increase in wave activity for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  20. The Aura Mission and Its Application to Climate and Air Quality

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Schoeberl, Mark; Douglass, Anne

    2003-01-01

    NASA's Aura satellite is scheduled to launch in the second quarter of 2004 into a polar orbit. The Aura mission is designed to collect data to address three high priority environmental science questions: (1) Is the ozone layer recovering as expected? (2) What are the sources and processes that control tropospheric pollutants? And (3) what is the quantitative impact of constituents on climate change? Aura will answer these questions by globally measuring a comprehensive set of trace gases and aerosols in the troposphere and stratosphere. Aura data will also have applications for monitoring and predicting climate and air quality parameters. Aura s observations will continue the TOMS ozone trend record and provide an assessment as to whether the Montreal Protocol is achieving its objective. Aura will measure gases and aerosols in the upper troposphere and lower stratosphere that contribute to climate forcing. These data will be of sufficient coverage, vertical resolution, and accuracy to help constrain climate models. In addition, Aura observations of tropospheric ozone and its precursors will have regional as well as intercontinental coverage, which could improve emission inventories. Near real time data will tested for local air quality forecasts in collaboration with the US's Environmental Protection UV-B forecasts from Aura ozone and cloud cover data. An overview of Aura s instruments, data products, validation, and examples of data applications will be presented.

  1. Performance Verification of Production-Scalable Energy-Efficient Solutions: Winchester/Camberley Homes Mixed-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallay, D.; Wiehagen, J.

    2014-07-01

    Winchester/Camberley Homes collaborated with the Building America team Partnership for Home Innovation to develop a new set of high performance home designs that could be applicable on a production scale. The new home designs are to be constructed in the mixed humid climate zone and could eventually apply to all of the builder's home designs to meet or exceed future energy codes or performance-based programs. However, the builder recognized that the combination of new wall framing designs and materials, higher levels of insulation in the wall cavity, and more detailed air sealing to achieve lower infiltration rates changes the moisturemore » characteristics of the wall system. In order to ensure long term durability and repeatable successful implementation with few call-backs, the project team demonstrated through measured data that the wall system functions as a dynamic system, responding to changing interior and outdoor environmental conditions within recognized limits of the materials that make up the wall system. A similar investigation was made with respect to the complete redesign of the HVAC systems to significantly improve efficiency while maintaining indoor comfort. Recognizing the need to demonstrate the benefits of these efficiency features, the builder offered a new house model to serve as a test case to develop framing designs, evaluate material selections and installation requirements, changes to work scopes and contractor learning curves, as well as to compare theoretical performance characteristics with measured results.« less

  2. Climate change adaptation accounting for huge uncertainties in future projections - the case of urban drainage

    NASA Astrophysics Data System (ADS)

    Willems, Patrick

    2015-04-01

    Hydrological design parameters, which are currently used in the guidelines for the design of urban drainage systems (Willems et al., 2013) have been revised, taking the Flanders region of Belgium as case study. The revision involved extrapolation of the design rainfall statistics, taking into account the current knowledge on future climate change trends till 2100. Uncertainties in these trend projections have been assessed after statistically analysing and downscaling by a quantile perturbation tool based on a broad ensemble set of climate model simulation results (44 regional + 69 global control-scenario climate model run combinations for different greenhouse gas scenarios). The impact results of the climate scenarios were investigated as changes to rainfall intensity-duration-frequency (IDF) curves. Thereafter, the climate scenarios and related changes in rainfall statistics were transferred to changes in flood frequencies of sewer systems and overflow frequencies of storage facilities. This has been done based on conceptual urban drainage models. Also the change in storage capacity required to exceed a given overflow return period, has been calculated for a range of return periods and infiltration or throughflow rates. These results were used on the basis of the revision of the hydraulic design rules of urban drainage systems. One of the major challenges while formulating these policy guidelines was the consideration of the huge uncertainties in the future climate change projections and impact assessments; see also the difficulties and pitfalls reported by the IWA/IAHR Joint Committee on Urban Drainage - Working group on urban rainfall (Willems et al., 2012). We made use of the risk concept, and found it a very useful approach to deal with the high uncertainties. It involves an impact study of the different climate projections, or - for practical reasons - a reduced set of climate scenarios tailored for the specific type of impact considered (urban floods in our case study), following the approach proposed by Ntegeka et al. (2014). When the consequences of given scenarios are high, they should be taken into account in the decision making process. For the Flanders' guidelines, it was agreed among the members of the regional Coordination Commission Integrated Water Management to consider (in addition to the traditional range of return periods up to 5 years) a 20-year design storm for scenario investigation. It was motivated by the outcome of this study that under the high climate scenario a 20-year storm would become - in order of magnitude - a 5-year storm. If after a design for a 5-year storm, the 20-year scenario investigation would conclude that specific zones along the sewer system would have severe additional impacts, it is recommended to apply changes to the system or to design flexible adaptation measures for the future (depending on which of the options would be most cost-efficient). Another adaptation action agreed was the installation of storm water infiltration devices at private houses and make these mandatory for new and renovated houses. Such installation was found to be cost-effective in any of the climate scenario's. This is one way of dealing with climate uncertainties, but lessons learned from other cases/applications are highly welcomed. References Ntegeka, V., Baguis, P., Roulin, E., Willems, P. (2014), 'Developing tailored climate change scenarios for hydrological impact assessments', Journal of Hydrology, 508C, 307-321 Willems, P. (2013). 'Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium', Journal of Hydrology, 496, 166-177 Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V.T.V. (2012), 'Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings', Atmospheric Research, 103, 106-118

  3. Increasing the relevance of GCM simulations for Climate Services

    NASA Astrophysics Data System (ADS)

    Smith, L. A.; Suckling, E.

    2012-12-01

    The design and interpretation of model simulations for climate services differ significantly from experimental design for the advancement of the fundamental research on predictability that underpins it. Climate services consider the sources of best information available today; this calls for a frank evaluation of model skill in the face of statistical benchmarks defined by empirical models. The fact that Physical simulation models are thought to provide the only reliable method for extrapolating into conditions not previously observed has no bearing on whether or not today's simulation models outperform empirical models. Evidence on the length scales on which today's simulation models fail to outperform empirical benchmarks is presented; it is illustrated that this occurs even on global scales in decadal prediction. At all timescales considered thus far (as of July 2012), predictions based on simulation models are improved by blending with the output of statistical models. Blending is shown to be more interesting in the climate context than it is in the weather context, where blending with a history-based climatology is straightforward. As GCMs improve and as the Earth's climate moves further from that of the last century, the skill from simulation models and their relevance to climate services is expected to increase. Examples from both seasonal and decadal forecasting will be used to discuss a third approach that may increase the role of current GCMs more quickly. Specifically, aspects of the experimental design in previous hind cast experiments are shown to hinder the use of GCM simulations for climate services. Alternative designs are proposed. The value in revisiting Thompson's classic approach to improving weather forecasting in the fifties in the context of climate services is discussed.

  4. Climate Change Adopted Building Envelope as A Protector of Human Health in the Urban Environment

    NASA Astrophysics Data System (ADS)

    Januszkiewicz, Krystyna

    2017-10-01

    Recently, an expanded understanding of building performance acknowledges that all forces acting on buildings (climate, energies, information, and human agents) are not static and fixed, but rather mutable and transient. With the use of parametric and multi-criteria optimization digital tools, buildings’ envelopes can be designed to respond to various requirements. This paper explores the possibilities of architectural design to benefit human conditions, which encompasses mental well-being, environmental quality of life during the Climate Change era. The first part of the paper defines the main factors (such as: lack of green nature and sunlight, noise and pollution) which are influencing the formation of psychological disorder in big cities. The negative impact of these factors is constantly increasing in the time of Climate Change progressing. The second part presents results of the research program undertaken at West Pomeranian University of Technology in Szczecin by author. The program goes on to attempt to solve the problem through architectural design. This study highlights a social problem, such as mental well-being, resulting from urbanization or effects of the climate change, and serves as a useful background for further research on the possibilities of redefining sustainable and human friendly design.

  5. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Weiss, E.; Skene, J.; Tran, L.

    2011-12-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It aligns with the Ocean Literacy and Climate Literacy Frameworks, as well as multiple core ideas in the new National Academy of Sciences Framework for K-12 Science Education. In brief, the curriculum comprises 33 45-minute sessions organized into three thematic units that are each driven by an exploratory question: Unit 1 (11 sessions)-How do the ocean and atmosphere interact?; Unit 2 (8 sessions)-How does carbon flow through the ocean, land, and atmosphere?; and Unit 3 (12 sessions)-What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems, and challenges students to use scientific evidence to make explanations about climate change. The Ocean Sciences Sequence for Grades 6-8 is currently being classroom tested by teachers across the United States in a wide variety of classroom settings. Evaluation is also being undertaken to determine the efficacy of the sequence in addressing the curriculum's learning goals.

  6. Bringing a Realistic Global Climate Modeling Experience to a Broader Audience

    NASA Astrophysics Data System (ADS)

    Sohl, L. E.; Chandler, M. A.; Zhou, J.

    2010-12-01

    EdGCM, the Educational Global Climate Model, was developed with the goal of helping students learn about climate change and climate modeling by giving them the ability to run a genuine NASA global climate model (GCM) on a desktop computer. Since EdGCM was first publicly released in January 2005, tens of thousands of users on seven continents have downloaded the software. EdGCM has been utilized by climate science educators from middle school through graduate school levels, and on occasion even by researchers who otherwise do not have ready access to climate model at national labs in the U.S. and elsewhere. The EdGCM software is designed to walk users through the same process a climate scientist would use in designing and running simulations, and analyzing and visualizing GCM output. Although the current interface design gives users a clear view of some of the complexities involved in using a climate model, it can be daunting for users whose main focus is on climate science rather than modeling per se. As part of the work funded by NASA’s Global Climate Change Education (GCCE) program, we will begin modifications to the user interface that will improve the accessibility of EdGCM to a wider array of users, especially at the middle school and high school levels, by: 1) Developing an automated approach (a “wizard”) to simplify the user experience in setting up new climate simulations; 2) Produce a catalog of “rediscovery experiments” that allow users to reproduce published climate model results, and in some cases compare model projections to real world data; and 3) Enhance distance learning and online learning opportunities through the development of a web-based interface. The prototypes for these modifications will then be presented to educators belonging to an EdGCM Users Group for feedback, so that we can further refine the EdGCM software, and thus deliver the tools and materials educators want and need across a wider range of learning environments.

  7. Climate Change Professional Development Approaches: Design Considerations, Teacher Enactment, and Student Learning

    NASA Astrophysics Data System (ADS)

    Drewes, A.; Henderson, J.; Mouza, C.

    2017-12-01

    Climate change is one of the most pressing challenges facing society, and climate change educational models are emerging in response. This study investigates the implementation and enactment of a climate change professional development model for science educators and its impact on student learning. Using an intrinsic case study methodology, we focused analytic attention on how one teacher made specific curricular, pedagogical, and content decisions, and the implications of those decisions for student's conceptual learning.The research presented here reports on the instructional design, pedagogical enactment, and subsequent effects on student learning of a climate change professional development (PD) model in the United States. Using anthropological theories of conceptual travel, we traced salient ideas from the PD through instructional delivery and into the evidence of student reasoning. We sought to address the following research questions: 1) How did a middle school teacher integrate climate change concepts into her science curriculum following PD participation? and 2) How did climate change instruction influence student understanding of key climate change constructs?From observation of the classroom instruction, we determined that the teacher effectively integrated new climate change information into her pre-existing schema. Additionally, through retrospective analysis of the PD, we found the design of the PD foregrounded the causes, mechanisms and likely effects of anthropogenic climate change at the expense of mitigation and adaptation strategies, and this differentially shaped how climate change was taught in the teacher's classroom. Analysis of student reasoning evidence showed that students gained an increased understanding of the enhanced greenhouse effect and the implications of human activity on this enhanced effect at statistically significant levels and with moderate effect sizes. However, students demonstrated a limited, though non-significant gain on the likely effects of climate change. Student reasoning on the tangible actions to deal with these problems also remained underdeveloped, reflecting omissions in both professional development and teacher enactment. We discuss implications and considerations for the emerging field of climate change education.

  8. Testing For The Linearity of Responses To Multiple Anthropogenic Climate Forcings

    NASA Astrophysics Data System (ADS)

    Forest, C. E.; Stone, P. H.; Sokolov, A. P.

    To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally aver- aged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous stud- ies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(TG + TS + TO) - TGSO]/TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitiv- ities of 3.0, 4.5, and 6.2 C, respectively. The values of TGSO for these three cases o are 0.52, 0.62, and 0.76 C. The dependence of linearity on climate system properties, o the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.

  9. Testing for the linearity of responses to multiple anthropogenic climate forcings

    NASA Astrophysics Data System (ADS)

    Forest, C. E.; Stone, P. H.; Sokolov, A. P.

    2001-12-01

    To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally averaged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous studies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(Δ TG + Δ TS + Δ TO) - Δ TGSO ]/ Δ TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitivities of 3.0, 4.5, and 6.2 oC, respectively. The values of Δ TGSO for these three cases are 0.52, 0.62, and 0.76 oC. The dependence of linearity on climate system properties, the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.

  10. Mars Polar Lander undergoes testing in SAEF-2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians lower the Mars Polar Lander onto a workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The Lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere.

  11. Mars Polar Lander undergoes testing in SAEF-2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians look over the Mars Polar Lander. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. Targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The Lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere.

  12. Mars Polar Lander undergoes testing in SAEF-2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a KSC technician takes part in testing science instruments and basic spacecraft subsystems on the Mars Polar Lander. The solar- powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere.

  13. Reliability of regional climate simulations

    NASA Astrophysics Data System (ADS)

    Ahrens, W.; Block, A.; Böhm, U.; Hauffe, D.; Keuler, K.; Kücken, M.; Nocke, Th.

    2003-04-01

    Quantification of uncertainty becomes more and more a key issue for assessing the trustability of future climate scenarios. In addition to the mean conditions, climate impact modelers focus in particular on extremes. Before generating such scenarios using e.g. dynamic regional climate models, a careful validation of present-day simulations should be performed to determine the range of errors for the quantities of interest under recent conditions as a raw estimate of their uncertainty in the future. Often, multiple aspects shall be covered together, and the required simulation accuracy depends on the user's demand. In our approach, a massive parallel regional climate model shall be used on the one hand to generate "long-term" high-resolution climate scenarios for several decades, and on the other hand to provide very high-resolution ensemble simulations of future dry spells or heavy rainfall events. To diagnosis the model's performance for present-day simulations, we have recently developed and tested a first version of a validation and visualization chain for this model. It is, however, applicable in a much more general sense and could be used as a common test bed for any regional climate model aiming at this type of simulations. Depending on the user's interest, integrated quality measures can be derived for near-surface parameters using multivariate techniques and multidimensional distance measures in a first step. At this point, advanced visualization techniques have been developed and included to allow for visual data mining and to qualitatively identify dominating aspects and regularities. Univariate techniques that are especially designed to assess climatic aspects in terms of statistical properties can then be used to quantitatively diagnose the error contributions of the individual used parameters. Finally, a comprehensive in-depth diagnosis tool allows to investigate, why the model produces the obtained near-surface results to answer the question if the model performs well from the modeler's point of view. Examples will be presented for results obtained using this approach for assessing the risk of potential total agricultural yield loss under drought conditions in Northeast Brazil and for evaluating simulation results for a 10-year period for Europe. To support multi-run simulations and result evaluation, the model will be embedded into an already existing simulation environment that provides further postprocessing tools for sensitivity studies, behavioral analysis and Monte-Carlo simulations, but also for ensemble scenario analysis in one of the next steps.

  14. Evaluating the Effectiveness of Cooling Vest in a Hot and Humid Environment.

    PubMed

    Yi, Wen; Zhao, Yijie; Chan, Albert P C

    2017-05-01

    This study aims to evaluate the effectiveness of a newly designed hybrid cooling vest for construction workers in alleviating heat stress. Two types of cooling vests, namely, a commonly worn Vest A and a newly designed Vest B, were tested in a climatic chamber environment (34.0°C temperature, 60% relative humidity, and 0.4 m s-1 air velocity) using a sweating thermal manikin. Four test scenarios were included: fan off with no phase change materials (PCMs) (Fan-off), fan on with no PCMs (Fan-on), fan off with completely solidified PCMs (PCM + Fan-off), and fan on with completely solidified PCMs (PCM + Fan-on). Test results showed that Vests A and B provided a continuous cooling effect during the 3-h test. The average cooling power for the torso region of Vest B was 67 W, which was higher than that of Vest A (56 W). The addition of PCMs offered a cooling effect of approximately 60 min. Ventilation fans considerably improved the evaporative heat loss compared with the Fan-off condition. The newly designed hybrid cooling vest (Vest B) may be an effective means to reduce heat strain and enhance work performance in a hot and humid environment. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  15. Comparison of different synthetic 5-min rainfall time series on the results of rainfall runoff simulations in urban drainage modelling

    NASA Astrophysics Data System (ADS)

    Krämer, Stefan; Rohde, Sophia; Schröder, Kai; Belli, Aslan; Maßmann, Stefanie; Schönfeld, Martin; Henkel, Erik; Fuchs, Lothar

    2015-04-01

    The design of urban drainage systems with numerical simulation models requires long, continuous rainfall time series with high temporal resolution. However, suitable observed time series are rare. As a result, usual design concepts often use uncertain or unsuitable rainfall data, which renders them uneconomic or unsustainable. An expedient alternative to observed data is the use of long, synthetic rainfall time series as input for the simulation models. Within the project SYNOPSE, several different methods to generate synthetic rainfall data as input for urban drainage modelling are advanced, tested, and compared. Synthetic rainfall time series of three different precipitation model approaches, - one parametric stochastic model (alternating renewal approach), one non-parametric stochastic model (resampling approach), one downscaling approach from a regional climate model-, are provided for three catchments with different sewer system characteristics in different climate regions in Germany: - Hamburg (northern Germany): maritime climate, mean annual rainfall: 770 mm; combined sewer system length: 1.729 km (City center of Hamburg), storm water sewer system length (Hamburg Harburg): 168 km - Brunswick (Lower Saxony, northern Germany): transitional climate from maritime to continental, mean annual rainfall: 618 mm; sewer system length: 278 km, connected impervious area: 379 ha, height difference: 27 m - Friburg in Brisgau (southern Germany): Central European transitional climate, mean annual rainfall: 908 mm; sewer system length: 794 km, connected impervious area: 1 546 ha, height difference 284 m Hydrodynamic models are set up for each catchment to simulate rainfall runoff processes in the sewer systems. Long term event time series are extracted from the - three different synthetic rainfall time series (comprising up to 600 years continuous rainfall) provided for each catchment and - observed gauge rainfall (reference rainfall) according national hydraulic design standards. The synthetic and reference long term event time series are used as rainfall input for the hydrodynamic sewer models. For comparison of the synthetic rainfall time series against the reference rainfall and against each other the number of - surcharged manholes, - surcharges per manhole, - and the average surcharge volume per manhole are applied as hydraulic performance criteria. The results are discussed and assessed to answer the following questions: - Are the synthetic rainfall approaches suitable to generate high resolution rainfall series and do they produce, - in combination with numerical rainfall runoff models - valid results for design of urban drainage systems? - What are the bounds of uncertainty in the runoff results depending on the synthetic rainfall model and on the climate region? The work is carried out within the SYNOPSE project, funded by the German Federal Ministry of Education and Research (BMBF).

  16. Climate change streamflow scenarios designed for critical period water resources planning studies

    NASA Astrophysics Data System (ADS)

    Hamlet, A. F.; Snover, A. K.; Lettenmaier, D. P.

    2003-04-01

    Long-range water planning in the United States is usually conducted by individual water management agencies using a critical period planning exercise based on a particular period of the observed streamflow record and a suite of internally-developed simulation tools representing the water system. In the context of planning for climate change, such an approach is flawed in that it assumes that the future climate will be like the historic record. Although more sophisticated planning methods will probably be required as time goes on, a short term strategy for incorporating climate uncertainty into long-range water planning as soon as possible is to create alternate inputs to existing planning methods that account for climate uncertainty as it affects both supply and demand. We describe a straight-forward technique for constructing streamflow scenarios based on the historic record that include the broad-based effects of changed regional climate simulated by several global climate models (GCMs). The streamflow scenarios are based on hydrologic simulations driven by historic climate data perturbed according to regional climate signals from four GCMs using the simple "delta" method. Further data processing then removes systematic hydrologic model bias using a quantile-based bias correction scheme, and lastly, the effects of random errors in the raw hydrologic simulations are removed. These techniques produce streamflow scenarios that are consistent in time and space with the historic streamflow record while incorporating fundamental changes in temperature and precipitation from the GCM scenarios. Planning model simulations based on these climate change streamflow scenarios can therefore be compared directly to planning model simulations based on the historic record of streamflows to help planners understand the potential impacts of climate uncertainty. The methods are currently being tested and refined in two large-scale planning exercises currently being conducted in the Pacific Northwest (PNW) region of the US, and the resulting streamflow scenarios will be made freely available on the internet for a large number of sites in the PNW to help defray the costs of including climate change information in other studies.

  17. Clime: analyzing and producing climate data in GIS environment

    NASA Astrophysics Data System (ADS)

    Cattaneo, Luigi; Rillo, Valeria; Mercogliano, Paola

    2014-05-01

    In the last years, Impacts on Soil and Coasts Division (ISC) of CMCC (Euro-Mediterranean Center on Climate Change) had several collaboration experiences with impact communities, including IS-ENES (FP7-INF) and SafeLand (FP7-ENV) projects, which involved a study of landslide risk in Europe, and is currently active in GEMINA (FIRB) and ORIENTGATE (SEE Transnational Cooperation Programme) research projects. As a result, it has brought research activities about different impact of climate changes as flood and landslide hazards, based on climate simulation obtained from the high resolution regional climate models COSMO CLM, developed at CMCC as member of the consortium CLM Assembly. ISC-Capua also collaborates with local institutions interested in atmospherical climate change and also of their impacts on the soil, such as river basin authorities in the Campania region, ARPA Emilia Romagna and ARPA Calabria. Impact models (e.g. hydraulic or stability models) are usually developed in a GIS environment, since they need an accurate territory description, so Clime has been designed to bridge the usually existing gap between climate data - both observed and simulated - gathered from different sources, and impact communities. The main goal of Clime, special purpose Geographic Information System (GIS) software integrated in ESRI ArcGIS Desktop 10, is to easily evaluate multiple climate features and study climate changes over specific geographical domains with their related effects on environment, including impacts on soil. Developed as an add-in tool, this software has been conceived for research activities of ISC Division in order to provide a substantial contribution during post-processing and validation phase. Therefore, it is possible to analyze and compare multiple datasets (observations, climate simulations, etc.) through processes involving statistical functions, percentiles, trends test and evaluation of extreme events with a flexible system of temporal and spatial filtering, and to represent results as maps, temporal and statistic plots (time series, seasonal cycles, PDFs, scatter plots, Taylor diagrams) or Excel tables; in addition, it features bias correction techniques for climate model results. Summarizing, Clime is able to provide users a simple and fast way to retrieve analysis over simulated climate data and observations within any geographical site of interest (provinces, regions, countries, etc.).

  18. Climate change adaptation in a highly urbanized snowmelt dominated basin in Central Chile

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Bustos, E.; Merino, P.; Henriquez Dole, L. E.; Jansen, S.; Gil, M.; Ocampo, A.; Poblete, D.; Tosoni, D.; Meza, F. J.; Donoso, G.; Melo, O.

    2015-12-01

    The Maipo river basin holds 40% of Chile's total population and produces almost half of the country's Gross Domestic Product. The basin is located in the semiarid and snowmelt dominated central region of the country and, aside from the typical pressures of growth in developing country basins, the Maipo river basin faces climate change impacts associated with a reduction in total runoff and changes in its seasonality. Surface water is the main water source for human settlements, natural ecosystems, and economic activities including agriculture, mining and hydropower production. In 2012 a research project, called MAPA (Maipo Plan de Adaptacion), began with the objective of articulating a climate variability and climate change adaptation plan for the Maipo river basin. The project engaged at the beginning a group of relevant water and land use stakeholders which allowed for a good representation of critical aspects of an adaptation plan such as the definition of objectives and performance indicators, future land use scenarios, modeling of the different components of the system and design of adaptation strategies. The presentation will highlight the main results of the research project with a special focus on the upper catchments of the basin. These results include the assessment of impacts associated with future climate and land use scenarios on key components of the hydrologic cycle including snowmelt and glacier contribution to runoff and subsequent impacts on water availability for the operation of hydropower facilities, satisfaction of instream (recreation and aquatic ecosystem) uses and provision of water for the city of Santiago (7 million people) and to irrigate more than 100,000 hectares of high value crops. The integrative approach followed in this project including different perspectives on the use of water in the basin provides a good opportunity to test the varying degree of impacts that could be associated with a given future scenario and also understand the challenges and opportunities that exist in the process of designing and implementing adaptation strategies.

  19. Developing and Evaluating Workshop Frameworks to Improve Climate Literacy

    NASA Astrophysics Data System (ADS)

    Averyt, K.; Alvord, C.; Joyce, L. A.; Lukas, J.; Barsugli, J. J.; Owen, G.; Udall, B.

    2009-12-01

    A burgeoning need for climate information is rising from a variety of stakeholders. A new federal report encourages federal resource management efforts to consider climate in assessments-leaving agency scientists and resource managers searching for appropriate data and methodologies. At the other end of the spectrum, small-scale decision makers realize the need to develop scientifically-informed climate adaptation plans, but are unclear about what science is relevant. It is becoming necessary to improve the climate literacy across all sectors. However, past examples illustrate that climate science has been insufficiently communicated, resulting in perceptions that misinform decision-making and planning. Given the necessity to include climate science in planning on multiple scales, scientific educators must work with stakeholders to determine how best to improve climate literacy. Doing so will reduce uncertainty in the application of climate data in planning, and thus mitigate vulnerabilities to the impacts of climate change. Here, we present the design and assessment of two workshop frameworks intended to improve the climate literacy of two distinct entities with different climate information needs. This work represents initial steps by the Western Water Assessment, a NOAA- Regionally Integrated Sciences and Assessments (RISA) Program, towards the development of a suite of process-oriented frameworks geared toward improving the climate literacy of different users with distinct informational needs. Both workshops focused on water-related climate issues: the first (Dealing with Drought: Climate Change in Colorado) was geared toward an audience with minimal exposure to climate information; the second was for US Forest Service hydrologists and managers with technical backgrounds. In both cases, the workshop format included presentations of relevant climate science, introductions to varied climate tools and products, and a needs-and-gaps assessment. Evaluation of each workshop drew upon a variety of tested social science methods, such as focus groups, decision games, surveys, and structured interviews. The efficacy of the framework developed was assessed by evaluating the relationship among the climate information presented, user perceptions about climate information, and incorporation into decision-making. In addition to climate literacy evaluations, participants were presented with a scenario at the beginning of the meeting, and were asked to report periodically on their thoughts on how to approach the scenario as new information was presented throughout the workshop. This allowed us to track the co-evolution of climate literacy, accuracy of data interpretation, and the sophistication of participants’ decision-making. In the 12-months after each workshop, we will track how the climate literacy of the participants evolves, and how their informational needs for decision-making change. The results here will frame a process for how a larger, federal climate-training program might be conducted, and how training needs can be assessed through climate literacy assessments.

  20. Evaluation of LTPP Climatic Data for Use in Mechanistic-Empirical Pavement Design Guide (MEPDG) Calibration and Other Pavement Analysis

    DOT National Transportation Integrated Search

    2015-02-01

    This TechBrief describes evaluating the use of the Modern-Era Retrospective Analysis for Research and Applications (MERRA) product as an alternative climatic data source for the Mechanistic-Empirical Pavement Design Guide (MEPDG) and other transporta...

  1. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    ERIC Educational Resources Information Center

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  2. Beyond Reduction: Climate Change Adaptation Planning for Universities and Colleges

    ERIC Educational Resources Information Center

    Owen, Rochelle; Fisher, Erica; McKenzie, Kyle

    2013-01-01

    Purpose: The purpose of this paper is to outline a unique six-step process for the inclusion of climate change adaption goals and strategies in a University Climate Change Plan. Design/methodology/approach: A mixed-method approach was used to gather data on campus climate change vulnerabilities and adaption strategies. A literature review…

  3. Climate of the Frank Church-River of No Return Wilderness, central Idaho

    Treesearch

    Arnold I. Finklin

    1988-01-01

    Describes the climate of the largest designated wilderness in the conterminous United States. Contains numerous maps, graphs, and tables. Shows annual patterns and 10-day details during the fire season. Includes both average values and frequency distributions. Examines relationship of climatic averages to topography, persistence of weather, and climatic trends.

  4. Multilevel Multi-Informant Structure of the Authoritative School Climate Survey

    ERIC Educational Resources Information Center

    Konold, Timothy; Cornell, Dewey; Huang, Francis; Meyer, Patrick; Lacey, Anna; Nekvasil, Erin; Heilbrun, Anna; Shukla, Kathan

    2014-01-01

    The Authoritative School Climate Survey was designed to provide schools with a brief assessment of 2 key characteristics of school climate--disciplinary structure and student support--that are hypothesized to influence 2 important school climate outcomes--student engagement and prevalence of teasing and bullying in school. The factor structure of…

  5. Climate Fundamentals for Solar Heating.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The design of any solar heating system is influenced heavily by climate; in this bulletin, information on climate as related to solar heating is as related to solar heating is provided. Topics discussed include: (1) solar radiation; (2) degree days; (3) climate and calculations which make use of solar radiation and degree days; and (4)…

  6. 76 FR 55673 - Vulnerability Assessments in Support of the Climate Ready Estuaries Program: A Novel Approach...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... exercise was designed to elicit judgments from experts in a workshop setting, regarding climate change... influence under both current and future climate change scenarios. The experts also discussed the high impact... in the diagram, and the potential for threshold changes. These reports show how climate-sensitive...

  7. Development of a Climate Resilience Screening Index (CRSI): An Assessment of Resilience to Acute Meteorological Events and Selected Natural Hazards

    EPA Science Inventory

    We developed a conceptual model of climate resilience (CRSI – Climate Resilience Screening Index ) designed to be sensitive to changes in the natural environment, built environment, governance, and social structure and vulnerability or risk to climate events. CRSI has been used ...

  8. Mini-Split Heat Pump Evaluation and Zero Energy Ready Home Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herk, Anastasia

    This project was created from a partnership between the U.S. Department of Energy’s (DOE’s) Building America research team IBACOS, Inc. and Imagine Homes, a production homebuilder of high-performance homes in San Antonio, Texas—a hot-humid climate. The primary purpose was to evaluate the performance of a multihead mini-split heat pump (MSHP) space-conditioning system, which consists of ducted and ductless indoor units, in maintaining uniform comfort in an occupied test house. The research team evaluated the MSHP space-conditioning strategy for its effectiveness in achieving uniform temperature and relative humidity (RH) levels throughout the test house and for overall constructability and cost. Thismore » evaluation was based on data that were collected from short-term tests and monitoring during 1 year of occupancy, as well as from builder and occupant feedback. Design considerations for integrating an MSHP system into the builder’s full range of production home designs were also explored, with a focus on minimizing the cost and complexity of the system design while meeting the thermal loads of the house and providing occupant comfort according to ANSI/ASHRAE Standard 55-2010 (ASHRAE 2010a).« less

  9. Passive-solar homes for Texas

    NASA Astrophysics Data System (ADS)

    Garrison, M. L.

    1982-06-01

    Acceptance of passive solar technologies has been slow within the conventional building trades in Texas because it is a common misconception that solar is expensive, and data on local applications is severely limited or nonexistent. It is the purpose of this solar development to move passive solar design into the mainstream of public acceptance by helping to overcome and eliminate these barriers. Specifically, the goal is to develop a set of regional climatic building standards to help guide the conventional building trade toward the utilization of soft energy systems which will reduce overall consumption at a price and convenience most Texans can afford. To meet this objective, eight sample passive design structures are presented. These designs represent state of the art regional applications of passive solar space conditioning. The methodology used in the passive solar design process included: analysis of regional climatic data; analysis of historical regional building prototypes; determination of regional climatic design priorities and assets; prototypical design models for the discretionary housing market; quantitative thermal analysis of prototypical designs; and construction drawings of building prototypes.

  10. Improving soil bioengineering techniques to control erosion and sedimentation within the context of torrential Mediterranean climate: a French-Canadian experience

    NASA Astrophysics Data System (ADS)

    Rey, Freddy; Louis, Séverine; Burylo, Mélanie; Raymond, Pierre

    2013-04-01

    On marly eroded terrains of the French Southern Alps, many researches are undertaken in order to better understand the role of vegetation and bioengineering works on erosion and sedimentation control. To this view, the eroded marly gullies of the French Southern Alps are an experimental design where an original French strategy of rehabilitation, developed by scientists from Irstea (ex-Cemagref), has been tested since 2002. It is comprised of the construction of bioengineering works, namely of "brush layers and brush mats of cuttings on deadwood microdams", and implements the use of willow cuttings (Salix purpurea and S. incana). The main objective of these works is to sustainably trap and retain marly sediment, by checking their performance (growth and survival of the cuttings, sediment trapping) in a mountainous and Mediterranean climate. In Canada, several private companies have developed their own knowledge and expertise in the conception and building of bioengineering works for erosion control, especially in the context of hilly and mountainous landscapes and climates. Therefore, it was decided to use the competence and expertise of Terra Erosion Control Ltd., a Canadian company, in the French torrential Mediterranean climate. Ten modalities were tested, the aims being to develop and/or to modify existing designs of current techniques, to experiment with other live cuttings (Populus nigra) and rooted species (Alnus spp. and Hippophae spp.), to evaluate and compare the potential use of different organic soil amendments in order to increase beneficial soil microorganisms and finally, to evaluate the potential use of specialized tools and equipment in order to increase the efficiency of the installation for vegetation establishment and sediment trapping, while decreasing the implementation costs. The experimental design was installed in March 2011 and the early observations in Spring 2012 showed that: 1/ most of the cuttings and the plants resisted to burial and to drought conditions; in particular, the structures using wooden boards instead of locally harvested logs appeared to be holding up well; 2/ designs of current techniques with vertical cuttings were better for resprouting and sediment trapping; 3/ 0.8m live cuttings of Populus nigra may represent an alternative to Salix spp., but resprout appeared lower; 4/ it was not possible to evaluate the performance of rooted species (Alnus spp. and Hippophae spp.); therefore more experiment is needed, especially with longer plants; 5/ organic soil amendments may increase vegetation development (BRF > fertilizer > compost > mixes). By comparing the results with similar sites used as benchmarks, installed since 2002, further observations in the spring of 2013 will allow us to evaluate the efficiency of the different modalities to improve vegetation establishment and sediment trapping.

  11. Linking molar organizational climate and strategic implementation climate to clinicians' use of evidence-based psychotherapy techniques: cross-sectional and lagged analyses from a 2-year observational study.

    PubMed

    Williams, Nathaniel J; Ehrhart, Mark G; Aarons, Gregory A; Marcus, Steven C; Beidas, Rinad S

    2018-06-25

    Behavioral health organizations are characterized by multiple organizational climates, including molar climate, which encompasses clinicians' shared perceptions of how the work environment impacts their personal well-being, and strategic implementation climate, which includes clinicians' shared perceptions of the extent to which evidence-based practice implementation is expected, supported, and rewarded by the organization. Theory suggests these climates have joint, cross-level effects on clinicians' implementation of evidence-based practice and that these effects may be long term (i.e., up to 2 years); however, no empirical studies have tested these relationships. We hypothesize that molar climate moderates implementation climate's concurrent and long-term relationships with clinicians' use of evidence-based practice such that strategic implementation climate will have its most positive effects when it is accompanied by a positive molar climate. Hypotheses were tested using data collected from 235 clinicians in 20 behavioral health organizations. At baseline, clinicians reported on molar climate and implementation climate. At baseline and at a 2-year follow-up, all clinicians who were present in the organizations reported on their use of cognitive-behavioral psychotherapy techniques, an evidence-based practice for youth psychiatric disorders. Two-level mixed-effects regression models tested whether baseline molar climate and implementation climate interacted in predicting clinicians' evidence-based practice use at baseline and at 2-year follow-up. In organizations with more positive molar climates at baseline, higher levels of implementation climate predicted increased evidence-based practice use among clinicians who were present at baseline and among clinicians who were present in the organizations at 2-year follow-up; however, in organizations with less positive molar climates, implementation climate was not related to clinicians' use of evidence-based practice at either time point. Optimizing clinicians' implementation of evidence-based practice in behavioral health requires attention to both molar climate and strategic implementation climate. Strategies that focus exclusively on implementation climate may not be effective levers for behavior change if the organization does not also engender a positive molar climate. These findings have implications for the development of implementation theory and effective implementation strategies.

  12. Advancements to Visualization Control System (VCS, part of UV-CDAT), a Visualization Package Designed for Climate Scientists

    NASA Astrophysics Data System (ADS)

    Lipsa, D.; Chaudhary, A.; Williams, D. N.; Doutriaux, C.; Jhaveri, S.

    2017-12-01

    Climate Data Analysis Tools (UV-CDAT, https://uvcdat.llnl.gov) is a data analysis and visualization software package developed at Lawrence Livermore National Laboratory and designed for climate scientists. Core components of UV-CDAT include: 1) Community Data Management System (CDMS) which provides I/O support and a data model for climate data;2) CDAT Utilities (GenUtil) that processes data using spatial and temporal averaging and statistic functions; and 3) Visualization Control System (VCS) for interactive visualization of the data. VCS is a Python visualization package primarily built for climate scientists, however, because of its generality and breadth of functionality, it can be a useful tool to other scientific applications. VCS provides 1D, 2D and 3D visualization functions such as scatter plot and line graphs for 1d data, boxfill, meshfill, isofill, isoline for 2d scalar data, vector glyphs and streamlines for 2d vector data and 3d_scalar and 3d_vector for 3d data. Specifically for climate data our plotting routines include projections, Skew-T plots and Taylor diagrams. While VCS provided a user-friendly API, the previous implementation of VCS relied on slow performing vector graphics (Cairo) backend which is suitable for smaller dataset and non-interactive graphics. LLNL and Kitware team has added a new backend to VCS that uses the Visualization Toolkit (VTK) as its visualization backend. VTK is one of the most popular open source, multi-platform scientific visualization library written in C++. Its use of OpenGL and pipeline processing architecture results in a high performant VCS library. Its multitude of available data formats and visualization algorithms results in easy adoption of new visualization methods and new data formats in VCS. In this presentation, we describe recent contributions to VCS that includes new visualization plots, continuous integration testing using Conda and CircleCI, tutorials and examples using Jupyter notebooks as well as upgrades that we are planning in the near future which will improve its ease of use and reliability and extend its capabilities.

  13. Adapting Infrastructure and Civil Engineering Practice to a Changing Climate: Developing a Manual of Practice

    NASA Astrophysics Data System (ADS)

    Walker, D.; Ayyub, B. M.

    2017-12-01

    According to U.S. Census, new construction spending in the U.S. for 2014 was $993 Billion (roughly 6 percent of U.S. GDP). Informing the development of standards of engineering practice related to design and maintenance thus represents a significant opportunity to promote climate adaptation and mitigation, as well as community resilience. The climate science community informs us that extremes of climate and weather are changing from historical values and that the changes are driven substantially by emissions of greenhouse gases caused by human activities. Civil infrastructure systems traditionally have been designed, constructed, operated and maintained for appropriate probabilities of functionality, durability and safety while exposed to climate and weather extremes during their full service lives. Because of uncertainties in future greenhouse gas emissions and in the models for future climate and weather extremes, neither the climate science community nor the engineering community presently can define the statistics of future climate and weather extremes. The American Society for Civil Engineering's (ASCE) Committee on Adapting to a Changing Climate is actively involved in efforts internal and external to ASCE to promote understanding of the challenges climate change represents in engineering practice and to promote a re-examination of those practices that may need to change in light of changing climate. In addition to producing an ASCE e-book, as well as number of ASCE webinars, the Committee is currently developing a Manual of Practice intended to provide guidance for the development or enhancement of standards for infrastructure analysis and design in a world in which risk profiles are changing (non-stationarity) and climate change is a reality, but cannot be projected with a high degree of certainty. This presentation will explore both the need for such guidance as well as some of the challenges and opportunities facing its implementation.

  14. CLIMATE CHANGE IN THAILAND AND ITS POTENTIAL IMPACT ON RICE YIELD

    EPA Science Inventory

    Because of the uncertainties surrounding prediction of climate change, it is common to employ climate scenarios to estimate its impacts on a system. Climate scenarios are sets of climatic perturbations used with models to test system sensitivity to projected changes. In this stud...

  15. Flight Testing Under Extreme Climatic Conditions

    DTIC Science & Technology

    1988-09-01

    30 Categorizing Hazards and Risk Levels .. ......... 31 CLIMATIC LABORATORIES ..... .............. 33 UNITED KINGDOM ENVIRONMENTAL...FACILITY .. ........ 33 MCKINLEY CIMATIC LABORATORY .... ............ 34 Climatic Laboratory Description ... ........... 35 Climatic Laboratory...Profile 10 3 Risk Level Chart .... ............. . 32 4 Plan View of Climatic Laboratory Main Chamber 36 5 Relative Humidity vs Ambient Air Temperature for

  16. Impacts of climate change and variability on transportation systems and infrastructure : Gulf Coast study, phase I

    DOT National Transportation Integrated Search

    2008-03-01

    Climate affects the design, construction, safety, operations, and maintenance of transportation : infrastructure and systems. The prospect of a changing climate raises critical questions : regarding how alterations in temperature, precipitation, stor...

  17. Advance strategy for climate change adaptation and mitigation in cities

    NASA Astrophysics Data System (ADS)

    Varquez, A. C. G.; Kanda, M.; Darmanto, N. S.; Sueishi, T.; Kawano, N.

    2017-12-01

    An on-going 5-yr project financially supported by the Ministry of Environment, Japan, has been carried out to specifically address the issue of prescribing appropriate adaptation and mitigation measures to climate change in cities. Entitled "Case Study on Mitigation and Local Adaptation to Climate Change in an Asian Megacity, Jakarta", the project's relevant objectives is to develop a research framework that can consider both urbanization and climate change with the main advantage of being readily implementable for all cities around the world. The test location is the benchmark city, Jakarta, Indonesia, with the end focus of evaluating the benefits of various mitigation and adaptation strategies in Jakarta and other megacities. The framework was designed to improve representation of urban areas when conducting climate change investigations in cities; and to be able to quantify separately the impacts of urbanization and climate change to all cities globally. It is comprised of a sophisticated, top-down, multi-downscaling approach utilizing a regional model (numerical weather model) and a microscale model (energy balance model and CFD model), with global circulation models (GCM) as input. The models, except the GCM, were configured to reasonably consider land cover, urban morphology, and anthropogenic heating (AH). Equally as important, methodologies that can collect and estimate global distribution of urban parametric and AH datasets are continually being developed. Urban growth models, climate scenario matrices that match representative concentration pathways with shared socio-economic pathways, present distribution of socio-demographic indicators such as population and GDP, existing GIS datasets of urban parameters, are utilized. From these tools, future urbanization (urban morphological parameters and AH) can be introduced into the models. Sensitivity using various combinations of GCM and urbanization can be conducted. Furthermore, since the models utilize parameters that can be readily modified to suit certain countermeasures, adaptation and mitigation strategies can be evaluated using thermal comfort and other social indicators. With the approaches introduced through this project, a deeper understanding of urban-climate interactions in the changing global climate can be achieved.

  18. KSC-07pd0703

    NASA Image and Video Library

    2007-03-16

    VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at North Vandenberg Air Force Base, a technician begins the illumination testing of the AIM spacecraft at left. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  19. The third stage of the Orbital Sciences Pegasus XL rocket is bei

    NASA Image and Video Library

    2007-04-03

    At Vandenberg Air Force Base in California, the Orbital Sciences Pegasus XL rocket is ready for mating to the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  20. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In a clean-room environment at North Vandenberg Air Force Base, a technician begins the illumination testing of the AIM spacecraft at left. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  1. KSC-07pd0993

    NASA Image and Video Library

    2007-04-04

    KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, a technician mates the AIM spacecraft, at left, to the Orbital Sciences Pegasus XL rocket, at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  2. KSC-07pd0706

    NASA Image and Video Library

    2007-03-16

    VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at North Vandenberg Air Force Base, a technician monitors the AIM spacecraft after illumination testing on the spacecraft's solar array panels. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  3. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In a clean-room environment at North Vandenberg Air Force Base, a technician prepares the lights for illumination testing of the AIM spacecraft at left. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  4. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In a clean-room environment at North Vandenberg Air Force Base, a technician monitors the AIM spacecraft after illumination testing on the spacecraft's solar array panels. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  5. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In a clean-room environment at North Vandenberg Air Force Base, lights are reflected on the solar array panels of the AIM spacecraft during illumination testing. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  6. KSC-07pd0704

    NASA Image and Video Library

    2007-03-16

    VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at North Vandenberg Air Force Base, lights are reflected on the solar array panels of the AIM spacecraft during illumination testing. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  7. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In a clean-room environment containing the AIM spacecraft (background) at North Vandenberg Air Force Base, a technician studies results of illumination testing on the spacecraft's solar array panels. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  8. KSC-98pc1861

    NASA Image and Video Library

    1998-12-10

    KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) lift the Mars Polar Lander to move it to a spin table for testing. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  9. Evaluation of the safety and durability of low-cost nonprogrammable electric powered wheelchairs.

    PubMed

    Pearlman, Jonathan L; Cooper, Rory A; Karnawat, Jaideep; Cooper, Rosemarie; Boninger, Michael L

    2005-12-01

    To evaluate whether a selection of low-cost, nonprogrammable electric-powered wheelchairs (EPWs) meets the American National Standards Institute (ANSI)/Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Wheelchair Standards requirements. Objective comparison tests of various aspects of power wheelchair design and performance of 4 EPW types. Three of each of the following EPWs: Pride Mobility Jet 10 (Pride), Invacare Pronto M50 (Invacare), Electric Mobility Rascal 250PC (Electric Mobility), and the Golden Technologies Alanté GP-201-F (Golden). Rehabilitation engineering research center. Not applicable. Static tipping angle; dynamic tipping score; braking distance; energy consumption; climatic conditioning; power and control systems integrity and safety; and static, impact, and fatigue life (equivalent cycles). Static tipping angle and dynamic tipping score were significantly different across manufacturers for each tipping direction (range, 6.6 degrees-35.6 degrees). Braking distances were significantly different across manufacturers (range, 7.4-117.3 cm). Significant differences among groups were found with analysis of variance (ANOVA). Energy consumption results show that all EPWs can travel over 17 km before the battery is expected to be exhausted under idealized conditions (range, 18.2-32.0 km). Significant differences among groups were found with ANOVA. All EPWs passed the climatic conditioning tests. Several adverse responses were found during the power and control systems testing, including motors smoking during the stalling condition (Electric Mobility), charger safety issues (Electric Mobility, Invacare), and controller failures (Golden). All EPWs passed static and impact testing; 9 of 12 failed fatigue testing (3 Invacare, 3 Golden, 1 Electric Mobility, 2 Pride). Equivalent cycles did not differ statistically across manufacturers (range, 9759-824,628 cycles). Large variability in the results, especially with respect to static tipping, power and control system failures, and fatigue life suggest design improvements must be made to make these low-cost, nonprogrammable EPWs safe and reliable for the consumer. Based on our results, these EPWs do not, in general, meet the ANSI/RESNA Wheelchair Standards requirements.

  10. Comparison of climate space and phylogeny of Marmota (Mammalia: Rodentia) indicates a connection between evolutionary history and climate preference

    PubMed Central

    Davis, Edward Byrd

    2005-01-01

    Palaeobiologists have investigated the evolutionary responses of extinct organisms to climate change, and have also used extinct organisms to reconstruct palaeoclimates. There is evidence of a disconnection between climate change and evolution that suggests that organisms may not be accurate palaeoclimate indicators. Here, marmots (Marmota sp.) are used as a case study to examine whether similarity of climate preferences is correlated with evolutionary relatedness of species. This study tests for a relationship between phylogenetic distance and `climate distance' of species within a clade. There should be a significant congruence between maximum likelihood distance and standardized Euclidian distance between climates if daughter species tend to stay in environments similar to parent species. Marmots make a good test case because there are many extant species, their phylogenies are well established and individual survival is linked to climatic factors. A Mantel test indicates a significant correlation between climate and phylogenetic distance matrices, but this relationship explains only a small fraction of the variance (regression R2=0.114). These results suggest that (i) closely related species of marmots tend to stay in similar environments; (ii) marmots may be more susceptible than many mammals to global climate change; and (iii) because of the considerable noise in this system, the correlation cannot be used for detailed palaeoclimate reconstruction. PMID:15799948

  11. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input tomore » the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test house been better insulated (more like the house used for the savings predictions noted above) and the IHP system nominal capacity been a bit lower that the energy savings estimate would have been closer to 45% or more (similar to the analytical prediction for the cold climate location of Chicago).« less

  12. A Policy Relevant Theory of Entrepreneurship.

    ERIC Educational Resources Information Center

    Self, George D.

    Combining the approaches of McClelland-Hagan and Schumpeter, the interactive effects of entrepreneurial potential and social climate on growth were examined. Entrepreneurial potential was designated as degree of internality as measured by Rotter's I-E aggregate index of 23 items. Social climate was designated degree of community information flow…

  13. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building America Industrialized Housing Partnership; Building Industry Research Alliance; Building Science Consortium

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studiesmore » in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.« less

  14. Intensity - Duration - Frequency Curves for U.S. Cities in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Ragno, Elisa; AghaKouchak, Amir; Love, Charlotte; Vahedifard, Farshid; Cheng, Linyin; Lima, Carlos

    2017-04-01

    Current infrastructure design procedures rely on the use of Intensity - Duration - Frequency (IDF) curves retrieved under the assumption of temporal stationarity, meaning that occurrences of extreme events are expected to be time invariant. However, numerous studies have observed more severe extreme events over time. Hence, the stationarity assumption for extreme analysis may not be appropriate in a warming climate. This issue raises concerns regarding the safety and resilience of infrastructures and natural slopes. Here we employ daily precipitation data from historical and projected (RCP 8.5) CMIP5 runs to investigate IDF curves of 14 urban areas across the United States. We first statistically assess changes in precipitation extremes using an energy-based test for equal distributions. Then, through a Bayesian inference approach for stationary and non-stationary extreme value analysis, we provide updated IDF curves based on future climatic model projections. We show that, based on CMIP5 simulations, U.S cities may experience extreme precipitation events up to 20% more intense and twice as frequently, relative to historical records, despite the expectation of unchanged annual mean precipitation.

  15. Updated Intensity - Duration - Frequency Curves Under Different Future Climate Scenarios

    NASA Astrophysics Data System (ADS)

    Ragno, E.; AghaKouchak, A.

    2016-12-01

    Current infrastructure design procedures rely on the use of Intensity - Duration - Frequency (IDF) curves retrieved under the assumption of temporal stationarity, meaning that occurrences of extreme events are expected to be time invariant. However, numerous studies have observed more severe extreme events over time. Hence, the stationarity assumption for extreme analysis may not be appropriate in a warming climate. This issue raises concerns regarding the safety and resilience of the existing and future infrastructures. Here we employ historical and projected (RCP 8.5) CMIP5 runs to investigate IDF curves of 14 urban areas across the United States. We first statistically assess changes in precipitation extremes using an energy-based test for equal distributions. Then, through a Bayesian inference approach for stationary and non-stationary extreme value analysis, we provide updated IDF curves based on climatic model projections. This presentation summarizes the projected changes in statistics of extremes. We show that, based on CMIP5 simulations, extreme precipitation events in some urban areas can be 20% more severe in the future, even when projected annual mean precipitation is expected to remain similar to the ground-based climatology.

  16. An approach to designing a national climate service

    PubMed Central

    Miles, E. L.; Snover, A. K.; Whitely Binder, L. C.; Sarachik, E. S.; Mote, P. W.; Mantua, N.

    2006-01-01

    Climate variability and change are considerably important for a wide range of human activities and natural ecosystems. Climate science has made major advances during the last two decades, yet climate information is neither routinely useful for nor used in planning. What is needed is a mechanism, a national climate service (NCS), to connect climate science to decision-relevant questions and support building capacity to anticipate, plan for, and adapt to climate fluctuations. This article contributes to the national debate for an NCS by describing the rationale for building an NCS, the functions and services it would provide, and how it should be designed and evaluated. The NCS is most effectively achieved as a federal interagency partnership with critically important participation by regional climate centers, state climatologists, the emerging National Integrated Drought Information System, and the National Oceanic and Atmospheric Administration (NOAA) Regional Integrated Sciences Assessment (RISA) teams in a sustained relationship with a wide variety of stakeholders. Because the NCS is a service, and because evidence indicates that the regional spatial scale is most important for delivering climate services, given subnational geographical/geophysical complexity, attention is focused on lessons learned from the University of Washington Climate Impacts Group's 10 years of experience, the first of the NOAA RISA teams. PMID:17158218

  17. An approach to designing a national climate service.

    PubMed

    Miles, E L; Snover, A K; Whitely Binder, L C; Sarachik, E S; Mote, P W; Mantua, N

    2006-12-26

    Climate variability and change are considerably important for a wide range of human activities and natural ecosystems. Climate science has made major advances during the last two decades, yet climate information is neither routinely useful for nor used in planning. What is needed is a mechanism, a national climate service (NCS), to connect climate science to decision-relevant questions and support building capacity to anticipate, plan for, and adapt to climate fluctuations. This article contributes to the national debate for an NCS by describing the rationale for building an NCS, the functions and services it would provide, and how it should be designed and evaluated. The NCS is most effectively achieved as a federal interagency partnership with critically important participation by regional climate centers, state climatologists, the emerging National Integrated Drought Information System, and the National Oceanic and Atmospheric Administration (NOAA) Regional Integrated Sciences Assessment (RISA) teams in a sustained relationship with a wide variety of stakeholders. Because the NCS is a service, and because evidence indicates that the regional spatial scale is most important for delivering climate services, given subnational geographical/geophysical complexity, attention is focused on lessons learned from the University of Washington Climate Impacts Group's 10 years of experience, the first of the NOAA RISA teams.

  18. A Power Efficient Exaflop Computer Design for Global Cloud System Resolving Climate Models.

    NASA Astrophysics Data System (ADS)

    Wehner, M. F.; Oliker, L.; Shalf, J.

    2008-12-01

    Exascale computers would allow routine ensemble modeling of the global climate system at the cloud system resolving scale. Power and cost requirements of traditional architecture systems are likely to delay such capability for many years. We present an alternative route to the exascale using embedded processor technology to design a system optimized for ultra high resolution climate modeling. These power efficient processors, used in consumer electronic devices such as mobile phones, portable music players, cameras, etc., can be tailored to the specific needs of scientific computing. We project that a system capable of integrating a kilometer scale climate model a thousand times faster than real time could be designed and built in a five year time scale for US$75M with a power consumption of 3MW. This is cheaper, more power efficient and sooner than any other existing technology.

  19. Multidisciplinary research in the space sciences

    NASA Technical Reports Server (NTRS)

    Broecker, W. S.; Flynn, G. W.

    1983-01-01

    Research activities were carried out in the following areas during this reporting period: (1) astrophysics; (2) climate and atmospheric modeling; and (3) climate applications of earth observations & geological studies. An ultra-low-noise 115 GHz receiver based upon a superconducting tunnel diode mixer has been designed and constructed. The first laboratory tests have yielded spectacular results: a single-sideband noise temperature of 75 K considerably more sensitive than any other receiver at this frequency. The receiver will replace that currently in use on the Columbia-GISS CO Sky Survey telescope. The 1.2 meter millimeter-wave telescope at Columbia University has been used to complete two large-scale surveys of molecular matter in the part of the inner galaxy which is visible from the Northern hemisphere (the first galactic quadrant); one of the distant galaxy and one of the solar neighborhood. The research conducted during the past year in the climate and atmospheric modeling programs has been focused on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. During the past year this project has focused on development of 2-channel satellite analysis methods and radiative transfer studies in support of multichannel analysis techniques.

  20. A pilot-study of a worksite based participatory intervention program: Its acceptability and short-term effects on work climate and attitudes in human service employees.

    PubMed

    Nylén, Eva Charlotta; Lindfors, Petra; Ishäll, Lars; Göransson, Sara; Aronsson, Gunnar; Kylin, Camilla; Sverke, Magnus

    2017-01-01

    Psychosocial factors, including job demands and poor resources, have been linked to stress, health problems, and negative job attitudes. However, worksite based interventions and programs targeting psychosocial factors may change employees' perceptions of their work climate and work attitudes. This pilot study describes a newly developed worksite based participatory organizational intervention program that was tested in the social service sector. It is evaluated using participants' perceptions of the intervention to investigate its acceptability as a feature of feasibility and its short-term effects on work climate factors (job demands and resources) and work-related attitudes. Forty employees of a Swedish social service unit provided self-reports before, during, and after the intervention. As for effects, quantitative role overload and social support decreased while turnover intention increased. Responses to an open-ended question showed that participants considered the intervention program valuable for addressing issues relating to the psychosocial work climate. Although the findings are preliminary, it was possible to carry out this worksite based participatory organizational program in this particular setting. Also, the preliminary findings underscore the challenges associated with designing and implementing this type of intervention program, thus adding to the methodological discussion on implementation and evaluation.

  1. Superensemble of a Regional Climate Model for the Western US using Climateprediction.net

    NASA Astrophysics Data System (ADS)

    Mote, P.; Salahuddin, A.; Allen, M.; Jones, R.

    2010-12-01

    For over a decade, a citizen science experiment called climateprediction.net organized by Oxford University has used computer time contributed by over 80,000 volunteers around the world to create superensembles of global climate simulations. A new climateprediction.net experiment built by the UK Meteorological Office and Oxford, and released in late summer 2010, brings these computing resources to bear on regional climate modeling for the Western US, western Europe, and southern Africa. For the western US, the spatial resolution of 25km permits important topological features -- mountain ranges and valleys -- to be resolved and to influence simulated climate, which consequently includes many important observed features of climate like the fact that California’s Central Valley is hottest at the north and south ends in summer, and cooler in the middle owing to the maritime influence that leaks through the gap in the coast range in the San Francisco area. We designed the output variables to satisfy both research needs and societal and environmental impacts needs. These include atmospheric circulation on regional and global scales, surface fluxes of energy, and hydrologic variables; extremes of temperature, precipitation, and wind; and derived quantities like frost days and number of consecutive dry days. Early results from pre-release beta testing suggest that the simulated fields compare favorably with available observations, and that the model performs as well in the distributed computing environment as on a dedicated high-performance machine. The advantages of a superensemble in interpreting regional climate change will permit an unprecedented combination of statistical completeness and spatial resolution.

  2. Schistosoma japonicum transmission risk maps at present and under climate change in mainland China.

    PubMed

    Zhu, Gengping; Fan, Jingyu; Peterson, A Townsend

    2017-10-01

    The South-to-North Water Diversion (SNWD) project is designed to channel fresh water from the Yangtze River north to more industrialized parts of China. An important question is whether future climate change and dispersal via the SNWD may synergistically favor a northward expansion of species involved in hosting and transmitting schistosomiasis in China, specifically the intermediate host, Oncomelania hupensis. In this study, climate spaces occupied by the four subspecies of O. hupensis (O. h. hupensis, O. h. robertsoni, O. h. guangxiensis and O. h. tangi) were estimated, and niche conservatism tested among each pair of subspecies. Fine-tuned Maxent (fMaxent) and ensemble models were used to anticipate potential distributions of O. hupensis under future climate change scenarios. We were largely unable to reject the null hypothesis that climatic niches are conserved among the four subspecies, so factors other than climate appear to account for the divergence of O. hupensis populations across mainland China. Both model approaches indicated increased suitability and range expansion in O. h. hupensis in the future; an eastward and northward shift in O. h. robertsioni and O. h. guangxiensis, respectively; and relative distributional stability in O. h. gangi. The southern parts of the Central Route of SNWD will coincide with suitable areas for O. h. hupensis in 2050-2060; its suitable areas will also expand northward along the southern parts of the Eastern Route by 2080-2090. Our results call for rigorous monitoring and surveillance of schistosomiasis along the southern Central Route and Eastern Route of the SNWD in a future, warmer China.

  3. Front-end Evaluation as Part of a Comprehensive Approach to Inform the Development of a New Climate Exhibit at NCAR

    NASA Astrophysics Data System (ADS)

    Ristvey, J. D., Jr.; Brinkworth, C.; Hatheway, B.; Williams, V.

    2015-12-01

    In an era of discord in public views of climate change, communicating atmospheric and related sciences to the public at a large research facility like the National Center for Atmospheric Research (NCAR) can be a daunting challenge yet one that is filled with many possibilities. The University Corporation for Atmospheric Research (UCAR) Center for Science Education (SciEd) is responsible for education and outreach activities at UCAR, including the exhibits program. Over 90,000 people visit the NCAR Mesa Lab each year to enjoy a number of exhibits that showcase our community's research. The current climate exhibit is twelve years old, and with advances in our understanding of climate science and exhibit design, SciEd staff are developing a new exhibit that is as cutting edge as the research conducted at NCAR. Based on listening sessions with NCAR scientists, the following big ideas for the exhibit emerged: How the climate system works The climate system is changing How scientists study our climate Regional impacts Solutions The goal of the new climate exhibit is to reach people using a variety of learning styles, including offerings for visitors who learn by doing, as well as providing informative text and images (Hatheway, 2014). Developers and evaluators are working together to conduct front-end, formative, and summative evaluations to understand of the needs of our visitors and collect ongoing data to inform development. The purpose of the front-end evaluation, conducted in the summer of 2014 was to develop informed data-driven strategies to move forward with exhibit design. The evaluation results to be shared in this session include: The demographics and behaviors of visitors Trends in visitors' experiences Visitor input on exhibit design (Williams and Tarsi, 2014). In this presentation, we will share the results, significance, and application of the front-end evaluation as part of a comprehensive approach to study both how we convey information about climate science and plan for the re-design of a new climate exhibit.

  4. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  5. Professional Development Design Considerations in Climate Change Education: Teacher Enactment and Student Learning

    ERIC Educational Resources Information Center

    Drewes, Andrea; Henderson, Joseph; Mouza, Chrystalla

    2018-01-01

    Climate change is one of the most pressing challenges facing society, and climate change educational models are emerging in response. This study investigates the implementation and enactment of a climate change professional development (PD) model for science educators and its impact on student learning. Using an intrinsic case study methodology,…

  6. Using the adaptive cycle in climate-risk insurance to design resilient futures

    NASA Astrophysics Data System (ADS)

    Cremades, R.; Surminski, S.; Máñez Costa, M.; Hudson, P.; Shrivastava, P.; Gascoigne, J.

    2018-01-01

    Assessing the dynamics of resilience could help insurers and governments reduce the costs of climate-risk insurance schemes and secure future insurability in the face of an increase in extreme hydro-meteorological events related to climate change.

  7. Climate Change in Urban Communities | Urban ...

    EPA Pesticide Factsheets

    2017-04-10

    Climate Change in Urban Communities is a PowerPoint presentation designed to inform urban residents about the impact of climate change, why it's a problem for their communities, and how individual actions can help make a difference as well as save people money.

  8. Agricultural climate impacts assessment for economic modeling and decision support

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a mitigation level of 3.7 W/m2, as well as consideration of different levels of climate sensitivity (2, 3, 4.5 and 6oC) and different initial conditions for addressing uncertainty. Since the CMIP 3 and CMIP5 protocols did not include this mitigation level or consider alternative levels of climate sensitivity, additional climate projections were required. These two cases will be discussed to illustrate some of the trade-offs made in development of methodologies for climate impact assessments that are intended for a specific user or audience, and oriented towards addressing a specific topic of interest and providing useable results. This involvement of stakeholders from the design phase of climate impacts methodology serves to both define the appropriate method for the question at hand and also to engage and inform the stakeholders of the myriad options and uncertainties associated with different methodology choices. This type of engagement should benefit decision making in the long run through greater stakeholder understanding of the science of future climate model projections, scenarios, the climate impacts sector models and the types of outputs that can be generated by each along with the respective uncertainties at each step of the climate impacts assessment process.

  9. Investigating the Climate Change Beliefs, Knowledge, Behaviors, and Cultural Worldviews of Rural Middle School Students and their Families During An Out-of-School Intervention: A Mixed-Methods Study

    NASA Astrophysics Data System (ADS)

    Gutierrez, Kristie Susan

    In a recent nationwide survey, 63% of American adults believe that there is global warming, yet 52% received a 'grade' of 'F' on climate change knowledge and beliefs. Climate change is a politically-charged topic in the 21st century. Even for those who support the 97% of scientists who assert that climate change is occurring, many are still uncertain about the role that humans play in this complex process. This mixed-methods study examined the climate change beliefs, content knowledge, worldviews, and behaviors of rural middle school students and their families in four rural, high poverty school districts in the Southeastern United States (US). The students, who ranged from 5-8th grades, were part of an after school STEM Career Club program that met for two hours, six times per semester. STEM Club students (N = 243) and selected students' families (n = 15) interacted with climate change activities and materials in the student clubs and in an at-home intervention. Quantitative pre- and post-intervention surveys were used to measure any changes in climate change content knowledge and beliefs as well as participants' worldviews. Qualitative audio data gathered from at-home intervention activities with students and their family members, as well as during family dyad interviews, was coded using the Determinants of Behavior framework that reflected climate change awareness, during and post-intervention. This embedded mixed-methods design with climate change education was designed to reflect place-based examples in these rural, southeastern US communities, and to empower families to see the relevance of this global issue, consider their role, learn more about climate science, and take actions locally. Initially, a large percentage of students believed that global warming is occurring (69.5%) and is occurring at least in some part due to human influence (69.3%). Students had learned significantly more total climate change knowledge, post-intervention. Analyses of variance (ANOVA) found a significant main effect for gender; males improved significantly more than females on the content knowledge test. Significant gains in content knowledge could be traced to engagement in specific club activities. The vast majority (73.3%) of students held egalitarian worldviews, while students were almost equivalent on the individualism (48.8%) /communitarian (47.7%) worldview scale. Student worldviews correlated to responses on the affective items of the survey, but did not predict students' climate change content knowledge. Findings from this study suggest that significant gains in climate change content knowledge can be attained through short-term out-of-school interventions, but not climate change beliefs. For rural, low income families, knowledge talk was most common (26.6%), followed by discussion of behaviors (11.5%), and talk regarding the seriousness of the problem (10.6%). Seventy-two percent of the participants (n = 18; 9 students, 9 adults) were coded as individualistic egalitarian. Changes in climate change content knowledge from pre- to post-intervention were greatest in the students and parents who were highly engaged in the at-home family intervention, indicating that parents and students can benefit from climate change interventions in their own homes.

  10. Detection of Undocumented Changepoints Using Multiple Test Statistics and Composite Reference Series.

    NASA Astrophysics Data System (ADS)

    Menne, Matthew J.; Williams, Claude N., Jr.

    2005-10-01

    An evaluation of three hypothesis test statistics that are commonly used in the detection of undocumented changepoints is described. The goal of the evaluation was to determine whether the use of multiple tests could improve undocumented, artificial changepoint detection skill in climate series. The use of successive hypothesis testing is compared to optimal approaches, both of which are designed for situations in which multiple undocumented changepoints may be present. In addition, the importance of the form of the composite climate reference series is evaluated, particularly with regard to the impact of undocumented changepoints in the various component series that are used to calculate the composite.In a comparison of single test changepoint detection skill, the composite reference series formulation is shown to be less important than the choice of the hypothesis test statistic, provided that the composite is calculated from the serially complete and homogeneous component series. However, each of the evaluated composite series is not equally susceptible to the presence of changepoints in its components, which may be erroneously attributed to the target series. Moreover, a reference formulation that is based on the averaging of the first-difference component series is susceptible to random walks when the composition of the component series changes through time (e.g., values are missing), and its use is, therefore, not recommended. When more than one test is required to reject the null hypothesis of no changepoint, the number of detected changepoints is reduced proportionately less than the number of false alarms in a wide variety of Monte Carlo simulations. Consequently, a consensus of hypothesis tests appears to improve undocumented changepoint detection skill, especially when reference series homogeneity is violated. A consensus of successive hypothesis tests using a semihierarchic splitting algorithm also compares favorably to optimal solutions, even when changepoints are not hierarchic.

  11. Climate Conditioning for the Learning Environment.

    ERIC Educational Resources Information Center

    Perkins and Will, Architects, Chicago, IL.

    Discusses heating, cooling, and ventilation for the classroom in relationship to students' learning abilities. It is designed to assist school boards, administrators, architects and engineers in understanding the beneficial effects of total climate control, and in evaluating the climate conditioning systems available for schools. Discussion…

  12. Which statistics should tropical biologists learn?

    PubMed

    Loaiza Velásquez, Natalia; González Lutz, María Isabel; Monge-Nájera, Julián

    2011-09-01

    Tropical biologists study the richest and most endangered biodiversity in the planet, and in these times of climate change and mega-extinctions, the need for efficient, good quality research is more pressing than in the past. However, the statistical component in research published by tropical authors sometimes suffers from poor quality in data collection; mediocre or bad experimental design and a rigid and outdated view of data analysis. To suggest improvements in their statistical education, we listed all the statistical tests and other quantitative analyses used in two leading tropical journals, the Revista de Biología Tropical and Biotropica, during a year. The 12 most frequent tests in the articles were: Analysis of Variance (ANOVA), Chi-Square Test, Student's T Test, Linear Regression, Pearson's Correlation Coefficient, Mann-Whitney U Test, Kruskal-Wallis Test, Shannon's Diversity Index, Tukey's Test, Cluster Analysis, Spearman's Rank Correlation Test and Principal Component Analysis. We conclude that statistical education for tropical biologists must abandon the old syllabus based on the mathematical side of statistics and concentrate on the correct selection of these and other procedures and tests, on their biological interpretation and on the use of reliable and friendly freeware. We think that their time will be better spent understanding and protecting tropical ecosystems than trying to learn the mathematical foundations of statistics: in most cases, a well designed one-semester course should be enough for their basic requirements.

  13. Mainstreaming Climate Change: Recent and Ongoing Efforts to Understand, Improve, and Expand Consideration of Climate Change in Federal Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; McGuire, M.; Broman, D.; Gangopadhyay, S.

    2017-12-01

    The Bureau of Reclamation is a Federal agency tasked with developing and managing water supply and hydropower projects in the Western U.S. Climate and hydrologic variability and change significantly impact management actions and outcomes across Reclamation's programs and initiatives, including water resource planning and operations, infrastructure design and maintenance, hydropower generation, and ecosystem restoration, among others. Planning, design, and implementation of these programs therefore requires consideration of future climate and hydrologic conditions will impact program objectives. Over the past decade, Reclamation and other Federal agencies have adopted new guidelines, directives, and mandates that require consideration of climate change in water resources planning and decision making. Meanwhile, the scientific community has developed a large number of climate projections, along with an array of models, methods, and tools to facilitate consideration of climate projections in planning and decision making. However, water resources engineers, planners, and decision makers continue to face challenges regarding how best to use the available data and tools to support major decisions, including decisions regarding infrastructure investments and long-term operating criteria. This presentation will discuss recent and ongoing research towards understanding, improving, and expanding consideration of climate projections and related uncertainties in Federal water resources planning and decision making. These research efforts address a variety of challenges, including: How to choose between available climate projection datasets and related methods, models, and tools—many of which are considered experimental or research tools? How to select an appropriate decision framework when design or operating alternatives may differ between climate scenarios? How to effectively communicate results of a climate impacts analysis to decision makers? And, how to improve robustness and resilience of water resources systems in the face of significant uncertainty? Discussion will focus on the intersection between technical challenges and decision making paradigms and the need for improved scientist-decision maker engagement through the lens of this Federal water management agency.

  14. The Resilient Schools Consortium (RiSC): Linking Climate Literacy, Resilience Thinking and Service Learning

    NASA Astrophysics Data System (ADS)

    Branco, B. F.; Fano, E.; Adams, J.; Shon, L.; Zimmermann, A.; Sioux, H.; Gillis, A.

    2017-12-01

    Public schools and youth voices are largely absent from climate resilience planning and projects in New York City. Additionally, research shows that U.S. science teachers' understanding of climate science is lacking, hence there is not only an urgent need to train and support teachers on both the science and pedagogy of climate change, but to link climate literacy, resilience thinking and service learning in K-12 education. However, research on participation of students and teachers in authentic, civic-oriented experiences points to increased engagement and learning outcomes in science. The Resilient Schools Consortium (RiSC) Project will address all these needs through an afterschool program in six coastal Brooklyn schools that engages teachers and urban youth (grades 6-12), in school and community climate resilience assessment and project design. The RiSC climate curriculum, co-designed by New York City school teachers with Brooklyn College, the National Wildlife Federation, New York Sea Grant and the Science and Resilience Institute at Jamaica Bay, will begin by helping students to understand the difference between climate and weather. The curriculum makes extensive use of existing resources such as NOAA's Digital Coast and the Coastal Resilience Mapping Portal. Through a series of four modules over two school years, the six RiSC teams will; 1. explore and understand the human-induced drivers of climate change and, particularly, the significant climate and extreme weather related risks to their schools and surrounding communities; 2. complete a climate vulnerability assessment within the school and the community that is aligned to OneNYC - the city's resilience planning document; 3. design and execute a school-based resilience project; and 4. propose resilience guidelines for NYC Department of Education schools. At the end of each school year, the six RiSC teams will convene a RiSC summit with city officials and resilience practitioners to share ideas and experiences.

  15. Investigating future climate change impacts on drougt patterns over the Euro-Mediterranean area based on a probabilistic approach

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Brunella; Peres, David Johnny; Cancelliere, Antonino

    2017-04-01

    As extensively documented by the IPCC assessment reports, impacts from recent climate-related extremes, such as heat waves, droughts, floods, cyclones and wildfires, reveal significant vulnerability of many environmental and anthropic systems to climate change. Compared to other extreme weather events, droughts evolve slowly in time. Based on this feature, effective drought preparedness and mitigation strategies could be implemented by decision makers, if appropriate tools, able to anticipate drought evolution in time and space, were available. Climate models' projections combined with probabilistic tools for drought characterization could help in understanding the time evolution of drought hazard in the future. Within the delineated context, the aim of the present study is to investigate potential scenarios of space-time variability of drought occurrences over Europe, by comparing the return periods of design drought events for different future time intervals. More specifically, annual precipitation data from Regional Climate Models (RCMs) of the Med-CORDEX initiative, covering the Euro-Mediterranean area (Northern Africa and Southern and Central Europe) at a grid resolution of about 50 km, are used to assess drought characteristics for three future periods (i.e. 2011-2040, 2041-2070 and 2071-2100), and compared to those in the baseline period (1971-2000). Specifically, three precipitation RCM datasets - produced by the CMMC (Euro-Mediterranean Center on Climate Change, IT), the LMD (Laboratorie del Météorologie Dynamique, FR) and the GUF (Goethe University Frankfurt, DE) - for two Representative Concentration Pathways, RCP 4.5 (intermediate) and RCP8.5 (high emissions), are considered for multi-year drought identification and characterization. First, the goodness of fit of several probability distributions to the considered precipitation gridded dataset is examined cell by cell by the Lilliefors test, and the best distribution is chosen for each cell based on the lowest value of the test statistic. Then, the marginal and multivariate probability distributions of drought characteristics (duration and accumulated deficit) are derived as functions of the parameters of the probability distribution of precipitation and the threshold level selected to identify droughts as negative runs. Finally, the return periods of design drought events are computed as the expected value of the interarrival time between consecutive critical droughts, and the possible spatial patterns are investigated. In general, results confirm an increasing occurrence of severe drought episodes in several regions of the investigated area in the future, although some discordances arise with respect to the different projections over the considered future periods. Apparently, Central Eastern regions of the Mediterranean are likely to become more drought prone, as low values of return periods are obtained.

  16. Organizational Climate and Work Addiction in Shahid Sadoughi University of Medical Sciences, 2014: a Case Study.

    PubMed

    Rafiee, Noora; Bahrami, Mohammad Amin; Zare, Vahid; Mohammadi, Mahan

    2015-12-01

    The occupational nature of employees in headquarters units of the University requires them to deal with support issues. Thus, there is some pressure on these employees to complete their assignments on time so that employees in the line units can accurately and expeditiously perform their duties. As a result, work addiction behaviors are sometimes observed among the headquarters personnel. Considering the importance of work addiction and recognizing the factors that intensify it, this study investigated the relationship between organizational climate and the work addiction of headquarters personnel at the Shahid Sadoughi University of Medical Sciences. This descriptive-analytic study was conducted using stratified random sampling of 151 University employees in 2014. The data collection tool was an organizational climate questionnaire, which was supplemented by the Work Addiction Risk Test (WART). The data were analyzed using the Pearson test, Spearman test, independent t-test, Mann-Whitney test, one-way analysis of variance (ANOVA), and the Kruskal-Wallis test using IBM-SPSS version 20. The findings of this study showed that the organizational climate was at a moderate level, and employees were in the danger level in terms of work addiction. In addition, among the dimensions of organizational climate, the risk dimension had a significant relationship with work addiction (p<0.05), and the dimensions of structure and responsibility were significantly different from occupational group and monthly salary (p<0.05). Single employees showed a significant difference from married employees in the two dimensions of criteria and conflict (p<0.05). Since the organizational climate score was low and the work addiction score was at the high-risk level, this issue demands more attention of senior managers and human resource officers of organizations to improve the organizational climate and increase employees' awareness of work addiction.

  17. Climate Risk Assessment: Technical Guidance Manual for DoD Installations and Built Environment

    DTIC Science & Technology

    2016-09-06

    climate change risks to DoD installations and the built environment. The approach, which we call “decision-scaling,” reveals the core sensitivity of...DoD installations to climate change . It is designed to illuminate the sensitivity of installations and their supporting infrastructure systems...including water and energy, to climate changes and other uncertainties without dependence on climate change projections. In this way the analysis and

  18. Effect of climate-related mass extinctions on escalation in molluscs

    NASA Astrophysics Data System (ADS)

    Hansen, Thor A.; Kelley, Patricia H.; Melland, Vicky D.; Graham, Scott E.

    1999-12-01

    We test the hypothesis that escalated species (e.g., those with antipredatory adaptations such as heavy armor) are more vulnerable to extinctions caused by changes in climate. If this hypothesis is valid, recovery faunas after climate-related extinctions should include significantly fewer species with escalated shell characteristics, and escalated species should undergo greater rates of extinction than nonescalated species. This hypothesis is tested for the Cretaceous-Paleocene, Eocene-Oligocene, middle Miocene, and Pliocene-Pleistocene mass extinctions. Gastropod and bivalve molluscs from the U.S. coastal plain were evaluated for 10 shell characters that confer resistance to predators. Of 40 tests, one supported the hypothesis; highly ornamented gastropods underwent greater levels of Pliocene-Pleistocene extinction than did nonescalated species. All remaining tests were nonsignificant. The hypothesis that escalated species are more vulnerable to climate-related mass extinctions is not supported.

  19. Qualitative criteria and thresholds for low noise asphalt mixture design

    NASA Astrophysics Data System (ADS)

    Vaitkus, A.; Andriejauskas, T.; Gražulytė, J.; Šernas, O.; Vorobjovas, V.; Kleizienė, R.

    2018-05-01

    Low noise asphalt pavements are cost efficient and cost effective alternative for road traffic noise mitigation comparing with noise barriers, façade insulation and other known noise mitigation measures. However, design of low noise asphalt mixtures strongly depends on climate and traffic peculiarities of different regions. Severe climate regions face problems related with short durability of low noise asphalt mixtures in terms of considerable negative impact of harsh climate conditions (frost-thaw, large temperature fluctuations, hydrological behaviour, etc.) and traffic (traffic loads, traffic volumes, studded tyres, etc.). Thus there is a need to find balance between mechanical and acoustical durability as well as to ensure adequate pavement skid resistance for road safety purposes. Paper presents analysis of the qualitative criteria and design parameters thresholds of low noise asphalt mixtures. Different asphalt mixture composition materials (grading, aggregate, binder, additives, etc.) and relevant asphalt layer properties (air void content, texture, evenness, degree of compaction, etc.) were investigated and assessed according their suitability for durable and effective low noise pavements. Paper concluded with the overview of requirements, qualitative criteria and thresholds for low noise asphalt mixture design for severe climate regions.

  20. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Toward a Climate-Specific Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Hacke, Peter L.; Kempe, Michael D.

    2015-06-14

    Reduced optical transmittance of encapsulation resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of installations in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding thatmore » will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xe, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests. Index Terms -- reliability, durability, thermal activation.« less

  1. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Towards a Climate-Specific Test: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Annigoni, Eleonora; Ballion, Amal

    2015-08-12

    Reduced optical transmittance of encapsulants resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of service in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding thatmore » will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xenon, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests.« less

  2. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Towards a Climate-Specific Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Annigoni, Eleonora; Ballion, Amal

    2015-06-14

    Reduced optical transmittance of encapsulants resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of service in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding thatmore » will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xenon, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests.« less

  3. Impact of building forms on thermal performance and thermal comfort conditions in religious buildings in hot climates: a case study in Sharjah city

    NASA Astrophysics Data System (ADS)

    Mushtaha, Emad; Helmy, Omar

    2017-11-01

    The common system used for thermal regulation in mosques of United Arab Emirates (UAE) is the heating, ventilating and air-conditioning (HVAC) system. This system increases demands on energy consumption and increases CO2 emission. A passive design approach is one of the measures to reduce these problems. This study involved an analytical examination of building forms, followed by testing the impact of these forms on its thermal performance and indoor thermal comfort. The tests were conducted using energy simulations software packages. Passive parameters such as shading devices, thermal insulation and natural ventilation were applied in six cases, including the baseline case within each form. The obtained results showed a significant effect of mosque forms as well as passive design techniques on the thermal comfort within the structures. The findings confirmed that the use of passive design alone would not help achieve thermal comfort, but reduce the annual energy consumption by10%. By integrating a hybrid air-conditioning system as another supporting approach, the annual energy consumption could be reduced by 67.5%, which allows for the designing of a much smaller HVAC system.

  4. Forest Adaptation Resources: climate change tools and approaches for land managers, 2nd edition

    Treesearch

    Christopher W. Swanston; Maria K. Janowiak; Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; P. Danielle Shannon; Abigail Derby Lewis; Kimberly Hall; Robert T. Fahey; Lydia Scott; Angela Kerber; Jason W. Miesbauer; Lindsay Darling

    2016-01-01

    Forests across the United States are expected to undergo numerous changes in response to the changing climate. This second edition of the Forest Adaptation Resources provides a collection of resources designed to help forest managers incorporate climate change considerations into management and devise adaptation tactics. It was developed as part of the Climate Change...

  5. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehiclemore » climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.« less

  6. Agricultural response functions to changes in carbon, temperature, and water based on the C3MP data set

    NASA Astrophysics Data System (ADS)

    Snyder, A.; Ruane, A. C.; Phillips, M.; Calvin, K. V.; Clarke, L.

    2017-12-01

    Agricultural yields vary depending on temperature, precipitation/irrigation conditions, fertilizer application, and CO2 concentration. The Coordinated Climate-Crop Modeling Project (C3MP), conducted as a component of the Agricultural Model Intercomparison and Improvement Project (AgMIP), organized a sensitivity experiments across carbon-temperature-water (CTW) space across 1100 management conditions in 50+ countries, sampling 15 crop species and 20 crop models. Such coordinated sensitivity tests allow for the building of emulators of yield response to changes in CTW values, allowing rapid estimation of yield changes from the types of climate changes projected by the climate modeling community. The resulting emulator may be used to supply agricultural responses to climate change in any user-defined scenario, rather than the restriction to the RCPs in many past works. We present the resulting emulators built from the C3MP output data set for use in the Global Change Assessment Model (GCAM) integrated assessment model that allows for the co-evolution of socioeconomic development, greenhouse gas emissions, climate change, and agricultural sector ramifications. C3MP-based emulators may be of use in designing agricultural impact studies in other IAMs, and we place them in the context of past crop modeling efforts, including the Challinor et al. Meta-analysis, the AgMIP Wheat team results, the AgMIP Global Gridded Crop Model Intercomparison (GGCMI) fast-track modeling results, and the MACSUR impact response surface results.

  7. Local adaptation to temperature conserves top-down control in a grassland food web.

    PubMed

    Barton, Brandon T

    2011-10-22

    A fundamental limitation in many climate change experiments is that tests represent relatively short-term 'shock' experiments and so do not incorporate the phenotypic plasticity or evolutionary change that may occur during the gradual process of climate change. However, capturing this aspect of climate change effects in an experimental design is a difficult challenge that few studies have accomplished. I examined the effect of temperature and predator climate history in food webs composed of herbaceous plants, generalist grasshopper herbivores and spider predators across a natural 4.8°C temperature gradient spanning 500 km in northeastern USA. In these grasslands, the effects of rising temperatures on the plant community are indirect and arise via altered predator-herbivore interactions. Experimental warming had no direct effect on grasshoppers, but reduced predation risk effects by causing spiders from all study sites to seek thermal refuge lower in the plant canopy. However, spider thermal tolerance corresponded to spider origin such that spiders from warmer study sites tolerated higher temperatures than spiders from cooler study sites. As a consequence, the magnitude of the indirect effect of spiders on plants did not differ along the temperature gradient, although a reciprocal transplant experiment revealed significantly different effects of spider origin on the magnitude of top-down control. These results suggest that variation in predator response to warming may maintain species interactions and associated food web processes when faced with long term, chronic climate warming.

  8. Creating a Learning Community for Solutions to Climate Change

    NASA Astrophysics Data System (ADS)

    Bloom, A. J.; Benedict, B. A.; Blockstein, D. E.; Hassenzahl, D. M.; Hunter, A.; Jorgensen, A. D.; Pfirman, S. L.

    2011-12-01

    The rapidly evolving and interdisciplinary nature of climate change presents a challenge to colleges and universities as they seek to educate undergraduate students. To address this challenge, the National Council for Science and the Environment (NCSE) with NSF funding is creating a nationwide cyber-enabled learning community called CAMEL (Climate, Adaptation, and Mitigation e-Learning). CAMEL engages experts in science, policy and decision-making, education, and assessment in the production of a virtual toolbox of curricular resources designed for teaching climate change causes, consequences, and solutions. CAMEL is: ? Developing cyberinfrastructure that supports and promotes the creation of materials and community; ? Generating materials for the Encyclopedia of Earth, a site averaging 50,000 views per day; ? Ensuring that materials developed and shared are founded on the best available scientific information and follow the most appropriate educational practices; ? Assisting faculty at institutions of higher education across the United States as they create, improve, test, and share resources for teaching students not only how to diagnose climate change problems, but also to identify and effect solutions; ? Evaluating the determinants of successful community building using cybermedia. The community and resultant content range from general education to upper division courses for students in a variety of majors. At the center of the community are the 160 colleges and universities represented in NCSE's Council of Environmental Deans and Directors. Members of this group represent recognized expertise in virtually all areas of this project. A team with substantial experience with evaluating innovative initiatives in STEM education is administering the evaluation component.

  9. Livelihood Vulnerability Approach to Assess Climate Change Impacts to Mixed Agro-Livestock Smallholders Around the Gandaki River Basin of Nepal

    NASA Astrophysics Data System (ADS)

    Panthi, J., Sr.

    2014-12-01

    Climate change vulnerability depends upon various factors and differs between places, sectors and communities. People in developing countries whose subsistence livelihood depends upon agriculture and livestock are identified as particularly vulnerable. Nepal, where the majority of people are in a mixed agro-livestock system, is identified as the world's fourth most vulnerable country to climate change. However, there are few studies on how vulnerable mixed agro-livestock smallholders are and how their vulnerability differs across different ecological regions. This study aims to test two vulnerability assessment indices, livelihood vulnerability index (LVI) and IPCC vulnerability index (VI-IPCC), around the Gandaki river basin of Nepal. A total of 543 households practicing mixed agro-livestock were surveyed from three districts (Dhading, Syangja and Kapilvastu) representing the mountain, mid-hill and lowland altitudinal belts respectively. Data on socio-demographics, livelihoods, social networks, health, food and water security, natural disasters and climate variability were collected. Both indices differed across the three districts, with mixed agro-livestock smallholders of Dhading district found to be the most vulnerable and that of Syangja least vulnerable. This vulnerability index approach may be used to monitor rural vulnerability and/or evaluate potential program/policy effectiveness in poor countries like Nepal. The present findings are intended to help in designing intervention strategies to reduce vulnerability of mixed agro-livestock smallholders and other rural people in developing countries to climate change.

  10. Climate Change Concepts and POGIL: Using climate change to teach general chemistry

    NASA Astrophysics Data System (ADS)

    King, D. B.; Lewis, J. E.; Anderson, K.; Latch, D.; Sutheimer, S.; Webster, G.; Middlecamp, C.; Moog, R.

    2013-12-01

    Climate change is a topic that can be used to engage students in a variety of courses and disciplines. Through an NSF-funded project, we have written a set of in-class POGIL (Process Oriented Guided Inquiry Learning) activities that use climate change topics to teach general chemistry concepts. POGIL is a pedagogical approach that uses group activities to teach content and process skills. In these group activities an initial model and a series of critical thinking questions are used to guide students through the introduction to or application of course content. Students complete the activities on their own, with the faculty member as a facilitator of learning, rather than a provider of information. Through assigned group roles and intentionally designed activity structure, process skills, such as teamwork, communication, and information processing, are developed during completion of the activity. While POGIL activities were initially developed for chemistry courses, this approach has now been used to create materials for use in other fields, such as biology, math, engineering and computer science. An additional component of this project is the incorporation of questions that relate to socio-scientific issues, e.g., the economic and social effects of climate change policies. The goal is for students to use evidence-based arguments in situations where opinion-based arguments are common. Key components (i.e., models and the corresponding critical thinking questions) of one activity will be presented. We will also report preliminary feedback based on initial classroom testing of several of the activities.

  11. The impact of justice climate and justice orientation on work outcomes: a cross-level multifoci framework.

    PubMed

    Liao, Hui; Rupp, Deborah E

    2005-03-01

    In this article, which takes a person-situation approach, the authors propose and test a cross-level multifoci model of workplace justice. They crossed 3 types of justice (procedural, informational, and interpersonal) with 2 foci (organization and supervisor) and aggregated to the group level to create 6 distinct justice climate variables. They then tested for the effects of these variables on either organization-directed or supervisor-directed commitment, satisfaction, and citizenship behavior. The authors also tested justice orientation as a moderator of these relationships. The results, based on 231 employees constituting 44 work groups representing multiple organizations and occupations, revealed that 4 forms of justice climate (organization-focused procedural and informational justice climate and supervisor-focused procedural and interpersonal justice climate) were significantly related to various work outcomes after controlling for corresponding individual-level justice perceptions. In addition, some moderation effects were found. Implications for organizations and future research are discussed.

  12. Performance Verification of Production-Scalable Energy-Efficient Solutions: Winchester/Camberley Homes Mixed-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallay, D.; Wiehagen, J.

    2014-07-01

    Winchester/Camberley Homes with the Building America program and its NAHB Research Center Industry Partnership collaborated to develop a new set of high performance home designs that could be applicable on a production scale. The new home designs are to be constructed in the mixed humid climate zone four and could eventually apply to all of the builder's home designs to meet or exceed future energy codes or performance-based programs. However, the builder recognized that the combination of new wall framing designs and materials, higher levels of insulation in the wall cavity, and more detailed air sealing to achieve lower infiltrationmore » rates changes the moisture characteristics of the wall system. In order to ensure long term durability and repeatable successful implementation with few call-backs, this report demonstrates through measured data that the wall system functions as a dynamic system, responding to changing interior and outdoor environmental conditions within recognized limits of the materials that make up the wall system. A similar investigation was made with respect to the complete redesign of the heating, cooling, air distribution, and ventilation systems intended to optimize the equipment size and configuration to significantly improve efficiency while maintaining indoor comfort. Recognizing the need to demonstrate the benefits of these efficiency features, the builder offered a new house model to serve as a test case to develop framing designs, evaluate material selections and installation requirements, changes to work scopes and contractor learning curves, as well as to compare theoretical performance characteristics with measured results.« less

  13. Mars Polar Lander undergoes testing in SAEF-2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians check underneath the Mars Polar Lander as it sits on a workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere.

  14. KSC-98pc1234

    NASA Image and Video Library

    1998-10-03

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is secured on a portable stand. The Lander will undergo testing, including a functional test of the science instruments and the basic spacecraft subsystems, before its launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere

  15. KSC-98pc1230

    NASA Image and Video Library

    1998-10-03

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed for testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere

  16. KSC-98pc1231

    NASA Image and Video Library

    1998-10-03

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is secured on a workstand for testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere

  17. KSC-98pc1235

    NASA Image and Video Library

    1998-10-03

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician begins testing on the Mars Polar Lander. The checkout includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere

  18. US DOE Regional Test Centers Program - 2016 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Joshua

    The US Department of Energy’s Regional Test Center (RTC) program provides outdoor validation and bankability data for innovative solar technologies at five sites across the US representing a range of climate conditions. Data helps get new technologies to market faster and improves US industry competitiveness. Managed by Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), the RTC program partners with US manufacturers of photovoltaic (PV) technologies, including modules, inverters, and balance-of-system equipment. The study is collaborative, with manufacturers (also known as RTC industry partners) and the national labs working together on a system design and validation strategy thatmore » meets a clearly defined set of performance and reliability objectives.« less

  19. Leveraging federal science data and tools to help communities & business build climate resilience

    NASA Astrophysics Data System (ADS)

    Herring, D.

    2016-12-01

    Decision-makers in every sector and region of the United States are seeking actionable science-based information to help them understand and manage their climate-related risks. Translating data, tools and information from the domain of climate science to the domains of municipal, social, and economic decision-making raises complex questions—e.g., how to communicate causes and impacts of climate variability and change; how to show projections of plausible future climate scenarios; how to characterize and quantify vulnerabilities, risks, and opportunities facing communities and businesses; and how to make and implement "win-win" adaptation plans. These are the types of challenges being addressed by a public-private partnership of federal agencies, academic institutions, non-governmental organizations, and private businesses that are contributing to the development of the U.S. Climate Resilience Toolkit (toolkit.climate.gov), a new website designed to help people build resilience to extreme events caused by both natural climate variability and long-term climate change. The site's Climate Explorer is designed to help people understand potential climate conditions over the course of this century. It offers easy access to downloadable maps, graphs, and data tables of observed and projected temperature, precipitation and other decision-relevant climate variables dating back to 1950 and out to 2100. Of course, climate change is only one of many variables affecting decisions about the future so the Toolkit also ties climate information to a wide range of other relevant tools and information to help users to explore their vulnerabilities and risks. In this session, we will describe recent enhancements to the Toolkit, lessons learned from user engagements, and evidence that our approach of coupling scientific information with actionable decision-making processes is helping Americans build resilience to climate-related impacts.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitschke, Kim

    The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface.

  1. Building America Best Practices Series - High-Performance Home Technologies: Guide to Determining Climate Regions by County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, Theresa L.; Cole, Pam C.

    2013-11-01

    This report identifies the climate region of each county in the United States. The report is intended as an aid in helping builders to identify the appropriate climate designation for the counties in which they are building.

  2. Approaches to Climate Change & Health in Cuba: Guillermo Mesa MD MPhil, Director, Disasters & Health, National School of Public Health. Paulo Ortiz MS PhD, Senior Researcher, Climate Center, Cuban Meteorology Institute.

    PubMed

    Mesa, Guillermo; Ortiz, Paulo; Gorry, Conner

    2015-04-01

    The US National Institutes of Health predict climate change will cause an additional 250,000 deaths between 2030 and 2050, with damages to health costing US$2-$4 billion by 2030. Although much debate still surrounds climate change, island ecosystems-such as Cuba's-in the developing world are arguably among the most vulnerable contexts in which to confront climate variability. Beginning in the 1990s, Cuba launched research to develop the evidence base, set policy priorities, and design mitigation and adaptation actions specifically to address climate change and its effects on health. Two researchers at the forefront of this interdisciplinary, intersectoral effort are epidemiologist Dr Guillermo Mesa, who directed design and implementation of the nationwide strategy for disaster risk reduction in the Cuban public health system as founding director of the Latin American Center for Disaster Medicine (CLAMED) and now heads the Disasters and Health department at the National School of Public Health; and Dr Paulo Ortiz, a biostatistician and economist at the Cuban Meteorology Institute's Climate Center (CENCLIM), who leads the research on Cuba's Climate and Health project and is advisor on climate change and health for the UN Economic Commission for Latin America and the Caribbean (ECLAC).

  3. Extreme waves from tropical cyclones and climate change in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Appendini, Christian M.; Pedrozo-Acuña, Adrian; Meza-Padilla, Rafael; Torres-Freyermuth, Alec; Cerezo-Mota, Ruth; López-González, José

    2017-04-01

    Tropical cyclones generate extreme waves that represent a risk to infrastructure and maritime activities. The projection of the tropical cyclones derived wave climate are challenged by the short historical record of tropical cyclones, their low occurrence, and the poor wind field resolution in General Circulation Models. In this study we use synthetic tropical cyclones to overcome such limitations and be able to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. Synthetic events derived from the NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to force a third generation wave model to characterize the present and future wave climate under RCP 4.5 and 8.5 escenarios. An increase in wave activity is projected for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  4. The National Climate Assessment: A Treasure Trove for Education, Communications and Outreach

    NASA Astrophysics Data System (ADS)

    McCaffrey, M.; Berbeco, M.; Connolly, R.; Niepold, F., III; Poppleton, K. L. I.; Cloyd, E.; Ledley, T. S.

    2014-12-01

    Required by Congress under the Global Change Act of 1990 to inform the nation on the findings of current climate research, the Third U.S. National Climate Assessment (NCA), released in May 2014, is a rich resource for climate change education, communications and outreach (ECO). Using a website design with mobile applications in mind, NCA takes advantage of mobile learning technology which is revolutionizing how, when and where learning occurs. In an effort to maximize the "teachable moments" inherent in the assessment, a community of experts from the National Center for Science Education and the CLEAN Network, working under the auspices of the National Climate Assessment Network (NCAnet) Education Affinity Group, have developed a series of NCA Learning Pathways that match key NCA messages and resources with reviewed educational materials and trusted online information sources, thereby adding pedagogical depth to the assessment. The NCA Learning Pathways, which focus on the regional chapters of the report, are designed make climate change science more local, human, relevant and, if properly framed by educators and communicators, hopeful for learners. This paper touches on the challenges and opportunities of infusing climate education, communications and outreach into curriculum and society, and details the development and content of NCA Learning Pathways, which are available online through NOAA's Climate.gov website: http://www.climate.gov/teaching

  5. An Overview of Patient Safety Climate in the VA

    PubMed Central

    Hartmann, Christine W; Rosen, Amy K; Meterko, Mark; Shokeen, Priti; Zhao, Shibei; Singer, Sara; Falwell, Alyson; Gaba, David M

    2008-01-01

    Objective To assess variation in safety climate across VA hospitals nationally. Study Setting Data were collected from employees at 30 VA hospitals over a 6-month period using the Patient Safety Climate in Healthcare Organizations survey. Study Design We sampled 100 percent of senior managers and physicians and a random 10 percent of other employees. At 10 randomly selected hospitals, we sampled an additional 100 percent of employees working in units with intrinsically higher hazards (high-hazard units [HHUs]). Data Collection Data were collected using an anonymous survey design. Principal Findings We received 4,547 responses (49 percent response rate). The percent problematic response—lower percent reflecting higher levels of patient safety climate—ranged from 12.0–23.7 percent across hospitals (mean=17.5 percent). Differences in safety climate emerged by management level, clinician status, and workgroup. Supervisors and front-line staff reported lower levels of safety climate than senior managers; clinician responses reflected lower levels of safety climate than those of nonclinicians; and responses of employees in HHUs reflected lower levels of safety climate than those of workers in other areas. Conclusions This is the first systematic study of patient safety climate in VA hospitals. Findings indicate an overall positive safety climate across the VA, but there is room for improvement. PMID:18355257

  6. Application of the Life Cycle Analysis and the Building Information Modelling Software in the Architectural Climate Change-Oriented Design Process

    NASA Astrophysics Data System (ADS)

    Gradziński, Piotr

    2017-10-01

    Whereas World’s climate is changing (inter alia, under the influence of architecture activity), the author attempts to reorientations design practice primarily in a direction the use and adapt to the climatic conditions. Architectural Design using in early stages of the architectural Design Process of the building, among other Life Cycle Analysis (LCA) and digital analytical tools BIM (Building Information Modelling) defines the overriding requirements which the designer/architect should meet. The first part, the text characterized the architecture activity influences (by consumption, pollution, waste, etc.) and the use of building materials (embodied energy, embodied carbon, Global Warming Potential, etc.) within the meaning of the direct negative environmental impact. The second part, the paper presents the revision of the methods and analytical techniques prevent negative influences. Firstly, showing the study of the building by using the Life Cycle Analysis of the structure (e.g. materials) and functioning (e.g. energy consumptions) of the architectural object (stages: before use, use, after use). Secondly, the use of digital analytical tools for determining the benefits of running multi-faceted simulations in terms of environmental factors (exposure to light, shade, wind) directly affecting shaping the form of the building. The conclusion, author’s research results highlight the fact that indicates the possibility of building design using the above-mentioned elements (LCA, BIM) causes correction, early designs decisions in the design process of architectural form, minimizing the impact on nature, environment. The work refers directly to the architectural-environmental dimensions, orienting the design process of buildings in respect of widely comprehended climatic changes.

  7. Climate Velocity Can Inform Conservation in a Warming World.

    PubMed

    Brito-Morales, Isaac; García Molinos, Jorge; Schoeman, David S; Burrows, Michael T; Poloczanska, Elvira S; Brown, Christopher J; Ferrier, Simon; Harwood, Tom D; Klein, Carissa J; McDonald-Madden, Eve; Moore, Pippa J; Pandolfi, John M; Watson, James E M; Wenger, Amelia S; Richardson, Anthony J

    2018-06-01

    Climate change is shifting the ranges of species. Simple predictive metrics of range shifts such as climate velocity, that do not require extensive knowledge or data on individual species, could help to guide conservation. We review research on climate velocity, describing the theory underpinning the concept and its assumptions. We highlight how climate velocity has already been applied in conservation-related research, including climate residence time, climate refugia, endemism, historic and projected range shifts, exposure to climate change, and climate connectivity. Finally, we discuss ways to enhance the use of climate velocity in conservation through tailoring it to be more biologically meaningful, informing design of protected areas, conserving ocean biodiversity in 3D, and informing conservation actions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Targeting climate diversity in conservation planning to build resilience to climate change

    USGS Publications Warehouse

    Heller, Nicole E.; Kreitler, Jason R.; Ackerly, David; Weiss, Stuart; Recinos, Amanda; Branciforte, Ryan; Flint, Lorraine E.; Flint, Alan L.; Micheli, Elisabeth

    2015-01-01

    Climate change is raising challenging concerns for systematic conservation planning. Are methods based on the current spatial patterns of biodiversity effective given long-term climate change? Some conservation scientists argue that planning should focus on protecting the abiotic diversity in the landscape, which drives patterns of biological diversity, rather than focusing on the distribution of focal species, which shift in response to climate change. Climate is one important abiotic driver of biodiversity patterns, as different climates host different biological communities and genetic pools. We propose conservation networks that capture the full range of climatic diversity in a region will improve the resilience of biotic communities to climate change compared to networks that do not. In this study we used historical and future hydro-climate projections from the high resolution Basin Characterization Model to explore the utility of directly targeting climatic diversity in planning. Using the spatial planning tool, Marxan, we designed conservation networks to capture the diversity of climate types, at the regional and sub-regional scale, and compared them to networks we designed to capture the diversity of vegetation types. By focusing on the Conservation Lands Network (CLN) of the San Francisco Bay Area as a real-world case study, we compared the potential resilience of networks by examining two factors: the range of climate space captured, and climatic stability to 18 future climates, reflecting different emission scenarios and global climate models. We found that the climate-based network planned at the sub-regional scale captured a greater range of climate space and showed higher climatic stability than the vegetation and regional based-networks. At the same time, differences among network scenarios are small relative to the variance in climate stability across global climate models. Across different projected futures, topographically heterogeneous areas consistently show greater climate stability than homogenous areas. The analysis suggests that utilizing high-resolution climate and hydrological data in conservation planning improves the likely resilience of biodiversity to climate change. We used these analyses to suggest new conservation priorities for the San Francisco Bay Area.

  9. Methods of Evaluating Protective Clothing Relative to Heat and Cold Stress: Thermal Manikin, Biomedical Modeling, and Human Testing

    DTIC Science & Technology

    2011-01-01

    in the climatic chamber housing the manikin. The most widely accepted test procedures for the operation of a TM are published by ASTM International...insulation value of a complete clothing ensemble. It requires a TM surface temperature of 35◦C and a climatic chamber controlled at 23◦C, 50% relative... climatic chamber controlled at 35◦C, 40% relative humidity, with a 0.4 m/sec air velocity. In addition to the tests conducted at 0.4 m/sec, USARIEM

  10. Software Testing and Verification in Climate Model Development

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.; Rood, RIchard B.

    2011-01-01

    Over the past 30 years most climate models have grown from relatively simple representations of a few atmospheric processes to a complex multi-disciplinary system. Computer infrastructure over that period has gone from punch card mainframes to modem parallel clusters. Model implementations have become complex, brittle, and increasingly difficult to extend and maintain. Existing verification processes for model implementations rely almost exclusively upon some combination of detailed analysis of output from full climate simulations and system-level regression tests. In additional to being quite costly in terms of developer time and computing resources, these testing methodologies are limited in terms of the types of defects that can be detected, isolated and diagnosed. Mitigating these weaknesses of coarse-grained testing with finer-grained "unit" tests has been perceived as cumbersome and counter-productive. In the commercial software sector, recent advances in tools and methodology have led to a renaissance for systematic fine-grained testing. We discuss the availability of analogous tools for scientific software and examine benefits that similar testing methodologies could bring to climate modeling software. We describe the unique challenges faced when testing complex numerical algorithms and suggest techniques to minimize and/or eliminate the difficulties.

  11. Is organizational justice climate at the workplace associated with individual-level quality of care and organizational affective commitment? A multi-level, cross-sectional study on dentistry in Sweden.

    PubMed

    Berthelsen, Hanne; Conway, Paul Maurice; Clausen, Thomas

    2018-02-01

    The aim of this study is to investigate whether organizational justice climate at the workplace level is associated with individual staff members' perceptions of care quality and affective commitment to the workplace. The study adopts a cross-sectional multi-level design. Data were collected using an electronic survey and a response rate of 75% was obtained. Organizational justice climate and affective commitment to the workplace were measured by items from Copenhagen Psychosocial Questionnaire and quality of care by three self-developed items. Non-managerial staff working at dental clinics with at least five respondents (n = 900 from 68 units) was included in analyses. A set of Level-2 random intercept models were built to predict individual-level organizational affective commitment and perceived quality of care from unit-level organizational justice climate, controlling for potential confounding by group size, gender, age, and occupation. The results of the empty model showed substantial between-unit variation for both affective commitment (ICC-1 = 0.17) and quality of care (ICC-1 = 0.12). The overall results showed that the shared perception of organizational justice climate at the clinical unit level was significantly associated with perceived quality of care and affective commitment to the organization (p < 0.001). Organizational justice climate at work unit level explained all variation in affective commitment among dental clinics and was associated with both the individual staff members' affective commitment and perceived quality of care. These findings suggest a potential for that addressing organizational justice climate may be a way to promote quality of care and enhancing affective commitment. However, longitudinal studies are needed to support causality in the examined relationships. Intervention research is also recommended to probe the effectiveness of actions increasing unit-level organizational justice climate and test their impact on quality of care and affective commitment.

  12. `Our Changing Climate' - A new interactive game about weather, climate, the Earth's energy budget and the impacts caused by climate change

    NASA Astrophysics Data System (ADS)

    Colon-Robles, M.; Lorentz, K.; Ruhlman, K.; Gilman, I.; Chambers, L. H.

    2010-12-01

    ‘Our Changing Climate’ is a brand new game developed at NASA’s Langley Research Center by the Informal Education group and the Science Directorate to educate the public on Earth’s climate system how the Sun, ocean, atmosphere, clouds, ice, land, and life interact with each other, and how these interactions are changing due to anthropogenic effects. The game was designed for students in middle school (5th and 8th grade) between the ages of 10-14 as part of the NASA's Summer of Innovation campaign for excellence in science, technology, engineering and mathematics, or STEM, education. The game, ‘Our Changing Climate’, is composed of a series of interactive boards, featuring the following topics: (1) the difference between weather and climate - “Weather vs Climate”, (2) the interactions of clouds and greenhouse gases on short and long wave radiation - “Greenhouse Gases and Clouds”, and (3) the definition of albedo and the importance of bright surfaces over the Arctic - “Arctic Temperature”. Each interactive board presents a climate system and steps the student or spectator through the climate interaction using “clues” and hands-on items that they need to put correctly on the board to understand the concept. Once the student or spectator finishes this part, they then have a better grasp of the concept and are able to understand how these interactions are changing due to the increase in average global temperature. This knowledge is then tested or “driven home” with interactive questions that show how these interactions in our climate are changing today. The concept is then reinforced with an example of a recent event presented in the media. The game has been piloted in outreach and informal settings, as well as for professional development of educators. The game, interactions and engagement of each of the audiences mentioned will be presented.

  13. SysSon: A Sonification Platform for Climate Data

    NASA Astrophysics Data System (ADS)

    Visda, Goudarzi; Hanns Holger, Rutz; Katharina, Vogt

    2014-05-01

    Climate data provide a challenging working basis for sonification. Both model data and measured data are assessed in collaboration with the Wegener Center for Climate and Global Change. The multi dimensionality and multi variety of climate data has a great potential for auditory displays. Furthermore, there is consensus on global climate change and the necessity of intensified climate research today in the scientific community and general public. Sonification provides a new means to communicate scientific results and inform a wider audience. SysSon is a user centered auditory platform for climate scientists to analyze data. It gives scientists broader insights by extracting hidden patterns and features from data that is not possible using a single modal visual interface. A variety of soundscapes to chose from lessens the fatigue that comes with repeated and sustained listening to long streams of data. Initial needs assessments and user tests made the work procedures and the terminology of climate scientists clear and informed the architecture of our system. Furthermore, experiments evaluated the sound design which led to a more advanced soundscape and improvement of the auditory display. We present a novel interactive sonification tool which combines a workspace for the scientists with a development environment for sonification models. The tool runs on different operating systems and is released as open source. In the standalone desktop application, multiple data sources can be imported, navigated and manipulated either via text or a graphical interface, including traditional plotting facilities. Sound models are built from unit generator graphs which are enhanced with matrix manipulation functions. They allow us to systematically experiment with elements known from the visual domain, such as range selections, scaling, thresholding, markers and labels. The models are organized in an extensible library, from which the user can choose and parametrize. Importance is given to the persistence of all configurations, in order to faithfully reproduce sonification instances. Finally, the platform is prepared to allow the composition of interactive sound installations, transitioning between the scientific lab and the gallery space.

  14. Climate Prediction Center - NCEP Global Ocean Data Assimilation System:

    Science.gov Websites

    home page National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Monthly in NetCDF Other formats Links NOAA Ocean Climate Observation Program (OCO) Climate Test Bed About Prediction (NCEP) are a valuable community asset for monitoring different aspects of ocean climate

  15. Is There Any Hope? How Climate Change News Imagery and Text Influence Audience Emotions and Support for Climate Mitigation Policies.

    PubMed

    Feldman, Lauren; Hart, P Sol

    2018-03-01

    Using a national sample, this study experimentally tests the effects of news visuals and texts that emphasize either the causes and impacts of climate change or actions that can be taken to address climate change. We test the effects of variations in text and imagery on discrete emotions (i.e., hope, fear, and anger) and, indirectly, on support for climate mitigation policies. Political ideology is examined as a moderator. The findings indicate that news images and texts that focus on climate-oriented actions can increase hope and, in the case of texts, decrease fear and anger, and these effects generally hold across the ideological spectrum. In turn, the influence of emotions on policy support depends on ideology: Hope and fear increase support for climate policies for all ideological groups but particularly conservatives, whereas anger polarizes the opinions of liberals and conservatives. Implications for climate change communication that appeals to emotions are discussed. © 2017 Society for Risk Analysis.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Frost-protected shallow foundations (FPSFs) offer a proven technology designed to substantially lower construction costs in colder climates, enhancing housing affordability for families in many parts of the United States. This document provides step-by-step procedures to assist building professionals in designing and laying a slab- on-grade FPSF. FPSFs save money over conventional designs by requiring less excavation to construct a frost-proof foundation. It is specially insulated along its perimeter to raise the temperature of the surrounding ground and decrease frost penetration, thus allowing for the construction of a substantially shallower foundation. The FPSF is considered standard practice for homes in Scandinavia,more » where 40 years of field testing has proven it to be economical to construct, durable, and energy efficient. HUD strongly encourages wide spread adoption of FPSF technology in the United States and its incorporation into major model building codes.« less

  17. Sustainability of water uses in managed hydrosystems: human- and climate-induced changes for the mid-21st century

    DOE PAGES

    Fabre, Julie; Ruelland, Denis; Dezetter, Alain; ...

    2016-08-02

    This paper assesses the sustainability of planned water uses in mesoscale river basins under multiple climate change scenarios, and contributes to determining the possible causes of unsustainability. We propose an assessment grounded in real-world water management issues, with water management scenarios built in collaboration with local water agencies. Furthermore, we present an analysis through indicators that relate to management goals and present the implications of climate uncertainty for our results, furthering the significance of our study for water management. A modeling framework integrating hydro-climatic and human dynamics and accounting for interactions between resource and demand was applied in two basinsmore » of different scales and with contrasting water uses: the Herault (2500 km 2, France) and the Ebro (85 000 km 2, Spain) basins. Natural streamflow was evaluated using a conceptual hydrological model. A demand-driven reservoir management model was designed to account for streamflow regulations from the main dams. Human water demand was estimated from time series of demographic, socioeconomic and climatic data. Environmental flows were accounted for by defining streamflow thresholds under which withdrawals were strictly limited. Finally indicators comparing water availability to demand at strategic resource and demand nodes were computed. This framework was applied under different combinations of climatic and water use scenarios for the mid-21st to differentiate the impacts of climate- and human-induced changes on streamflow and water balance. Results showed that objective monthly environmental flows would be guaranteed in current climate conditions in both basins, yet in several areas this could imply limiting human water uses more than once every 5 years. The impact of the tested climate projections on both water availability and demand could question the water allocations and environmental requirements currently planned for the coming decades. Water shortages for human use could become more frequent and intense, and the pressure on water resources and aquatic ecosystems could intensify. Furthermore, the causes of unsustainability vary across sub-basins and scenarios, and in most areas results are highly dependent on the climate change scenario.« less

  18. First Evaluation of the CCAM Aerosol Simulation over Africa: Implications for Regional Climate Modeling

    NASA Astrophysics Data System (ADS)

    Horowitz, H.; Garland, R. M.; Thatcher, M. J.; Naidoo, M.; van der Merwe, J.; Landman, W.; Engelbrecht, F.

    2015-12-01

    An accurate representation of African aerosols in climate models is needed to understand the regional and global radiative forcing and climate impacts of aerosols, at present and under future climate change. However, aerosol simulations in regional climate models for Africa have not been well-tested. Africa contains the largest single source of biomass-burning smoke aerosols and dust globally. Although aerosols are short-lived relative to greenhouse gases, black carbon in particular is estimated to be second only to carbon dioxide in contributing to warming on a global scale. Moreover, Saharan dust is exported great distances over the Atlantic Ocean, affecting nutrient transport to regions like the Amazon rainforest, which can further impact climate. Biomass burning aerosols are also exported from Africa, westward from Angola over the Atlantic Ocean and off the southeastern coast of South Africa to the Indian Ocean. Here, we perform the first extensive quantitative evaluation of the Conformal-Cubic Atmospheric Model (CCAM) aerosol simulation against monitored data, focusing on aerosol optical depth (AOD) observations over Africa. We analyze historical regional simulations for 1999 - 2012 from CCAM consistent with the experimental design of CORDEX at 50 km global horizontal resolution, through the dynamical downscaling of ERA-Interim data reanalysis data, with the CMIP5 emissions inventory (RCP8.5 scenario). CCAM has a prognostic aerosol scheme for organic carbon, black carbon, sulfate, and dust, and non-prognostic sea salt. The CCAM AOD at 550nm was compared to AOD (observed at 440nm, adjusted to 550nm with the Ångström exponent) from long-term AERONET stations across Africa. Sites strongly impacted by dust and biomass burning and with long continuous records were prioritized. In general, the model captures the monthly trends of the AERONET data. This presentation provides a basis for understanding how well aerosol particles are represented over Africa in regional climate modeling and the potential impact on climate predictions, and is the first large scale climate model-measurement verification of aerosols over Africa that we are aware of. CCAM is widely used for regional climate modeling applications, and we also discuss further improvements to the aerosol parameterizations based on our results.

  19. Sustainability of water uses in managed hydrosystems: human- and climate-induced changes for the mid-21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabre, Julie; Ruelland, Denis; Dezetter, Alain

    This paper assesses the sustainability of planned water uses in mesoscale river basins under multiple climate change scenarios, and contributes to determining the possible causes of unsustainability. We propose an assessment grounded in real-world water management issues, with water management scenarios built in collaboration with local water agencies. Furthermore, we present an analysis through indicators that relate to management goals and present the implications of climate uncertainty for our results, furthering the significance of our study for water management. A modeling framework integrating hydro-climatic and human dynamics and accounting for interactions between resource and demand was applied in two basinsmore » of different scales and with contrasting water uses: the Herault (2500 km 2, France) and the Ebro (85 000 km 2, Spain) basins. Natural streamflow was evaluated using a conceptual hydrological model. A demand-driven reservoir management model was designed to account for streamflow regulations from the main dams. Human water demand was estimated from time series of demographic, socioeconomic and climatic data. Environmental flows were accounted for by defining streamflow thresholds under which withdrawals were strictly limited. Finally indicators comparing water availability to demand at strategic resource and demand nodes were computed. This framework was applied under different combinations of climatic and water use scenarios for the mid-21st to differentiate the impacts of climate- and human-induced changes on streamflow and water balance. Results showed that objective monthly environmental flows would be guaranteed in current climate conditions in both basins, yet in several areas this could imply limiting human water uses more than once every 5 years. The impact of the tested climate projections on both water availability and demand could question the water allocations and environmental requirements currently planned for the coming decades. Water shortages for human use could become more frequent and intense, and the pressure on water resources and aquatic ecosystems could intensify. Furthermore, the causes of unsustainability vary across sub-basins and scenarios, and in most areas results are highly dependent on the climate change scenario.« less

  20. A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO 2 experiment

    DOE PAGES

    Krassovski, M. B.; Riggs, J. S.; Hook, L. A.; ...

    2015-11-09

    Ecosystem-scale manipulation experiments represent large science investments that require well-designed data acquisition and management systems to provide reliable, accurate information to project participants and third party users. The SPRUCE project (Spruce and Peatland Responses Under Climatic and Environmental Change, http://mnspruce.ornl.gov) is such an experiment funded by the Department of Energy's (DOE), Office of Science, Terrestrial Ecosystem Science (TES) Program. The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO 2 atmosphere. SPRUCE provides a platform for testing mechanisms controlling the vulnerability of organisms,more » biogeochemical processes, and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, and the cycling and release of CO 2 and CH 4 to the atmosphere). The SPRUCE experiment will generate a wide range of continuous and discrete measurements. In order to successfully manage SPRUCE data collection, achieve SPRUCE science objectives, and support broader climate change research, the research staff has designed a flexible data system using proven network technologies and software components. The primary SPRUCE data system components are the following; 1. data acquisition and control system – set of hardware and software to retrieve biological and engineering data from sensors, collect sensor status information, and distribute feedback to control components; 2. data collection system – set of hardware and software to deliver data to a central depository for storage and further processing; and 3. data management plan – set of plans, policies, and practices to control consistency, protect data integrity, and deliver data. This publication presents our approach to meeting the challenges of designing and constructing an efficient data system for managing high volume sources of in situ observations in a remote, harsh environmental location. Finally, the approach covers data flow starting from the sensors and ending at the archival/distribution points, discusses types of hardware and software used, examines design considerations that were used to choose them, and describes the data management practices chosen to control and enhance the value of the data.« less

  1. Low-cost multi-vehicle air temperature measurements for heat load assessment in local-scale climate applications

    NASA Astrophysics Data System (ADS)

    Zuvela-Aloise, Maja; Weyss, Gernot; Aloise, Giulliano; Mifka, Boris; Löffelmann, Philemon; Hollosi, Brigitta; Nemec, Johana; Vucetic, Visnja

    2014-05-01

    In the recent years there has been a strong interest in exploring the potential of low-cost measurement devices as alternative source of meteorological monitoring data, especially in the urban areas where high-density observations become crucial for appropriate heat load assessment. One of the simple, but efficient approaches for gathering large amount of spatial data is through mobile measurement campaigns in which the sensors are attached to driving vehicles. However, non-standardized data collecting procedure, instrument quality, their response-time and design, variable device ventilation and radiation protection influence the reliability of the gathered data. We investigate what accuracy can be expected from the data collected through low-cost mobile measurements and whether the achieved quality of the data is sufficient for validation of the state-of-the-art local-scale climate models. We tested 5 types of temperature sensors and data loggers: Maxim iButton, Lascar EL-USB-2-LCD+ and Onset HOBO UX100-003 as market available devices and self-designed solar powered Arduino-based data loggers combined with the AOSONG AM2315 and Sensirion SHT21 temperature and humidity sensors. The devices were calibrated and tested in stationary mode at the Austrian Weather Service showing accuracy between 0.1°C and 0.8°C, which was mostly within the device specification range. In mobile mode, the best response-time was found for self-designed device with Arduino-based data logger and Sensirion SHT21 sensor. However, the device lacks the mechanical robustness and should be further improved for broad-range applications. We organized 4 measurement tours: two taking place in urban environment (Vienna, Austria in July 2011 and July 2013) and two in countryside with complex terrain of Mid-Adriatic islands (Hvar and Korcula, Croatia in August 2013). Measurements were taken on clear-sky, dry and hot days. We combined multiple devices attached to bicycle and cars with different radiation protection. Duration of each measurement tour lasted approximately 2 hours covering the distances in radius of about 10-30 km, logging the air temperature and geographical positioning in intervals of 1-5 seconds. The collected data were aggregated on a 100 m horizontal resolution grid and compared with the local-scale climate modelling simulations with the urban climate model MUKLIMO3 initialized with the atmospheric conditions for a given day. Both measurement and modelling results show similar features for distinct local climate zones (built-up area, near water environment, forest, parks, agricultural area, etc). The spatial gradients in temperature can be assigned to different orographical and land use characteristics. Even if many ambiguities remain in both modelling and the measurement approach, the collected data provide useful information for local-scale heat assessment and can serve as a base to increase the model reliability, especially in areas with low data coverage.

  2. Inequalities in School Climate in California

    ERIC Educational Resources Information Center

    Jain, Sonia; Cohen, Alison K.; Huang, Kevin; Hanson, Thomas L.; Austin, Gregory

    2015-01-01

    Purpose: School climate, or the physical and social conditions of the learning environment, has implications for academic achievement. The paper aims to discuss this issue. Design/Methodology/Approach: The authors examine how school climate varies by school-level characteristics in California using administrative data and the California School…

  3. Climatic Concepts and Regions.

    ERIC Educational Resources Information Center

    Thomas, Paul F.

    Designed for students in grades 7 through 12, this teaching unit presents illustrative resource materials depicting concepts related to climate and geographic regions. Emphasis is on giving students an understanding of climatic elements and factors, not as isolated, disjointed entities, but as a dynamic interplay of forces having a very definite…

  4. Development of climate data input files for the Mechanistic-Empirical Pavement Design Guide (MEPDG).

    DOT National Transportation Integrated Search

    2011-06-30

    Prior to this effort, Mississippi's MEPDG climate files were limited to 12 weather stations in only 10 countries and only seven weather stations had over 8 years (100 months)of data. Hence, building MEPDG climate input datasets improves modeling accu...

  5. COMMUNICATING GLOBAL CLIMATE CHANGE: INVESTIGATING MESSAGE STRATEGIES FOR COMMUNICATING THE IMPACT OF GLOBAL CLIMATE CHANGE.

    EPA Science Inventory

    The research program is designed to generate findings that provide specific guidance to science communicators and government officials on how to best communicate knowledge about global climate change and other environmental issues to diverse lay audiences. Beyond providing gui...

  6. Methodology for the Preliminary Design of High Performance Schools in Hot and Humid Climates

    ERIC Educational Resources Information Center

    Im, Piljae

    2009-01-01

    A methodology to develop an easy-to-use toolkit for the preliminary design of high performance schools in hot and humid climates was presented. The toolkit proposed in this research will allow decision makers without simulation knowledge easily to evaluate accurately energy efficient measures for K-5 schools, which would contribute to the…

  7. Preventing Indoor Air Quality Problems in Educational Facilities: Guidelines for Hot, Humid Climates. Revised.

    ERIC Educational Resources Information Center

    Odom, J. David; DuBose, George

    This manual addresses the errors that occur during new construction that subsequently contribute to indoor air quality (IAQ) problems in newly constructed buildings in hot and humid climates, and offers guidelines for preventing them during the design and construction phases. It defines the roles and responsibilities of the design team, the…

  8. 76 FR 71341 - BASINS and WEPP Climate Assessment Tools: Case Study Guide to Potential Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-17

    ... report presents a series of short case studies designed to illustrate the capabilities of these tools for... change impacts on water. This report presents a series of short case studies using the BASINS and WEPP climate assessment tools. The case studies are designed to illustrate the capabilities of these tools for...

  9. Measuring safety climate in health care.

    PubMed

    Flin, R; Burns, C; Mearns, K; Yule, S; Robertson, E M

    2006-04-01

    To review quantitative studies of safety climate in health care to examine the psychometric properties of the questionnaires designed to measure this construct. A systematic literature review was undertaken to study sample and questionnaire design characteristics (source, no of items, scale type), construct validity (content validity, factor structure and internal reliability, concurrent validity), within group agreement, and level of analysis. Twelve studies were examined. There was a lack of explicit theoretical underpinning for most questionnaires and some instruments did not report standard psychometric criteria. Where this information was available, several questionnaires appeared to have limitations. More consideration should be given to psychometric factors in the design of healthcare safety climate instruments, especially as these are beginning to be used in large scale surveys across healthcare organisations.

  10. Development and nationwide scale-up of Climate Matters, a localized climate change education program delivered by TV weathercasters.

    NASA Astrophysics Data System (ADS)

    Cullen, H. M.; Maibach, E.

    2016-12-01

    Most Americans view climate change as a threat that is distant in space (i.e., not here), time (i.e., not now), and species (i.e., not us). TV weathercasters are ideally positioned to educate Americans about the current and projected impacts of climate change in their community: they have tremendous reach, are trusted sources of climate information, and are highly skilled science communicators. In 2009, we learned that many weathercasters were potentially interested in reporting on climate change, but few actually were, citing significant barriers including a lack of time to prepare and air stories, and lack of access to high quality content. To test the premise that TV weathercasters can be effective climate educators - if supported with high quality localized climate communication content - in 2010 George Mason University, Climate Central and WLTX-TV (Columbia, SC) developed and pilot-tested Climate Matters, a series of short on-air (and online) segments about the local impacts of climate change, delivered by the station's chief meteorologist. During the first year, more than a dozen stories aired. To formally evaluate Climate Matters, we conducted pre- and post-test surveys of local TV news viewers in Columbia. After one year, WLTX viewers had developed a more science-based understanding of climate change than viewers of other local news stations, confirming our premise that when TV weathercasters report on the local implications of climate change, their viewers learn. Through a series of expansions, including the addition of important new partners - AMS, NASA, NOAA & Yale University - Climate Matters has become a comprehensive nationwide climate communication resource program for American TV weathercasters. As of March 2016, a network of 313 local weathercasters nationwide (at 202 stations in 111 media markets) are participating in the program, receiving new content on a weekly basis. This presentation will review the theoretical basis of the program, detail its development and national scale-up, and conclude with insights for how to develop climate communication initiatives for other professional communities of practice in the U.S. and other countries.

  11. Numerical simulation of the world ocean circulation

    NASA Technical Reports Server (NTRS)

    Takano, K.; Mintz, Y.; Han, Y. J.

    1973-01-01

    A multi-level model, based on the primitive equations, is developed for simulating the temperature and velocity fields produced in the world ocean by differential heating and surface wind stress. The model ocean has constant depth, free slip at the lower boundary, and neglects momentum advection; so that there is no energy exchange between the barotropic and baroclinic components of the motion, although the former influences the latter through temperature advection. The ocean model was designed to be coupled to the UCLA atmospheric general circulation model, for the study of the dynamics of climate and climate changes. But here, the model is tested by prescribing the observed seasonally varying surface wind stress and the incident solar radiation, the surface air temperature and humidity, cloudiness and the surface wind speed, which, together with the predicted ocean surface temperature, determine the surface flux of radiant energy, sensible heat and latent heat.

  12. KSC-07pd0973

    NASA Image and Video Library

    2007-04-16

    KENNEDY SPACE CENTER, FLA. -- The mated Pegasus XL rocket - AIM spacecraft is moved onto a transporter in Building 1655 at Vandenberg Air Force Base in California. The launch vehicle will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.

  13. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, a technician places a star tracker cover on the AIM spacecraft during testing of the solar array panel deployment. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  14. The third stage of the Orbital Sciences Pegasus XL rocket is bei

    NASA Image and Video Library

    2007-04-03

    At Vandenberg Air Force Base in California, the third stage of the Orbital Sciences Pegasus XL rocket is being mated to the AIM spacecraft, at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  15. KSC-07pd0698

    NASA Image and Video Library

    2007-03-15

    KENNEDY SPACE CENTER, FLA. -- Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, a star tracker cover is ready for placement on the AIM spacecraft during testing of the solar array panel deployment. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  16. The mated Pegasus XL rocket - AIM spacecraft leaves Building 165

    NASA Image and Video Library

    2007-04-16

    The mated Pegasus XL rocket - AIM spacecraft is secured onto a transporter at Vandenberg Air Force Base in California. The rocket will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.

  17. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, two of the solar array panels on the AIM spacecraft are deployed for testing. Inside are the instruments that will study polar mesospheric clouds located at the edge of space. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  18. KSC-07pd0699

    NASA Image and Video Library

    2007-03-15

    KENNEDY SPACE CENTER, FLA. -- Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, a technician places a star tracker cover on the AIM spacecraft during testing of the solar array panel deployment. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  19. KSC-07pd0700

    NASA Image and Video Library

    2007-03-15

    KENNEDY SPACE CENTER, FLA. -- Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, technicians place a star tracker cover on the AIM spacecraft during testing of the solar array panel deployment. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  20. KSC-07pd0705

    NASA Image and Video Library

    2007-03-16

    VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment containing the AIM spacecraft (background) at North Vandenberg Air Force Base, a technician studies results of illumination testing on the spacecraft's solar array panels. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  1. The mated Pegasus XL rocket - AIM spacecraft leaves Building 165

    NASA Image and Video Library

    2007-04-16

    The mated Pegasus XL rocket - AIM spacecraft is moved onto a transporter in Building 1655 at Vandenberg Air Force Base in California. The launch vehicle will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.

  2. KSC-07pd0991

    NASA Image and Video Library

    2007-04-03

    KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, the third stage of the Orbital Sciences Pegasus XL rocket is being mated to the AIM spacecraft, at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  3. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, technicians place a star tracker cover on the AIM spacecraft during testing of the solar array panel deployment. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  4. KSC-07pd0974

    NASA Image and Video Library

    2007-04-16

    KENNEDY SPACE CENTER, FLA. -- The mated Pegasus XL rocket - AIM spacecraft is secured onto a transporter at Vandenberg Air Force Base in California. The rocket will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.

  5. The third stage of the Orbital Sciences Pegasus XL rocket is bei

    NASA Image and Video Library

    2007-04-03

    At Vandenberg Air Force Base in California, a technician mates the AIM spacecraft, at left, to the Orbital Sciences Pegasus XL rocket, at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  6. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, a star tracker cover is ready for placement on the AIM spacecraft during testing of the solar array panel deployment. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  7. The mated Pegasus XL rocket - AIM spacecraft leaves Building 165

    NASA Image and Video Library

    2007-04-16

    The mated Pegasus XL rocket - AIM spacecraft leaves Building 1655 at Vandenberg Air Force Base in California. The rocket will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.

  8. Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchstetter, Thomas; Preble, Chelsea; Hadley, Odelle

    2010-11-05

    Traditional methods of cooking in developing regions of the world emit pollutants that endanger the lives of billions of people and contribute to climate change. This study quantifies the emission of pollutants from the Berkeley-Darfur Stove and the traditional three-stone fire at the Lawrence Berkeley National Laboratory cookstove testing facility. The Berkeley-Darfur Stove was designed as a fuel efficient alternative to the three-stone fire to aid refugees in Darfur, who walk long distances from their camps and risk bodily harm in search of wood for cooking. A potential co-benefit of the more fuel efficient stove may be reduced pollutant emissions.more » This study measured emissions of carbon dioxide, carbon monoxide, particulate matter, and sunlight-absorbing black carbon. It also measured climate-relevant optical properties of the emitted particulate matter. Pollutant monitors were calibrated specifically for measuring cookstove smoke.« less

  9. Assessment of Vulnerability to Climate Change Effects on Urban Stormwater Infrastructure in City of Las Vegas, NV

    NASA Astrophysics Data System (ADS)

    Thakali, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.

    2016-12-01

    In the spring of 2016 the City of Las Vegas and the Southern Illinois University began collaborating on a project that seeks to assess the city's current vulnerability to drought, extreme heat, and extreme precipitation patterns, as well as the response mechanisms that are already in place within its jurisdiction. The document analyzes a series of scenarios to assess to what extent the vulnerability of four Key Planning Areas will change in the long term (30-50 years), what will be the most affected city operations, and what mechanisms the City will need to put into place to adapt to such changes. As part of the vulnerability report, this study assessed the impacts of climate change in the existing stormwater system of the Gowan watershed within City of Las Vegas, NV, by assessing projected design storms. The climate change projection for the region was evaluated using the high-resolution North American Regional Climate Change Assessment Program (NARCCAP) climate model data. The design storms (6h 100y) were calculated using the best fitted probability distribution among twenty-seven distributions for the historic and future NARCCAP climate model projection. North American Regional Reanalysis (NARR) data were used to assess the performance of NARCCAP data. The projected design storms were implemented in an existing U.S. Army Corps of Engineers' Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) model developed by Clark County Regional Flood Control District (CCRFCD), Las Vegas. The simulation results showed an increase in the design storms which exceeded the capacity of existing stormwater infrastructure.

  10. Building America Case Study: Compact Buried Ducts in a Hot-Humid Climate House, Lady's Island, South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-02-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely onmore » encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences, 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs, and 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.« less

  11. Compact Buried Ducts in a Hot-Humid Climate House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallay, Dave

    2016-01-07

    "9A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely onmore » encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences; 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs; 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.« less

  12. Bridging Theory with Practice: An Exploratory Study of Visualization Use and Design for Climate Model Comparison

    DOE PAGES

    Dasgupta, Aritra; Poco, Jorge; Wei, Yaxing; ...

    2015-03-16

    Evaluation methodologies in visualization have mostly focused on how well the tools and techniques cater to the analytical needs of the user. While this is important in determining the effectiveness of the tools and advancing the state-of-the-art in visualization research, a key area that has mostly been overlooked is how well established visualization theories and principles are instantiated in practice. This is especially relevant when domain experts, and not visualization researchers, design visualizations for analysis of their data or for broader dissemination of scientific knowledge. There is very little research on exploring the synergistic capabilities of cross-domain collaboration between domainmore » experts and visualization researchers. To fill this gap, in this paper we describe the results of an exploratory study of climate data visualizations conducted in tight collaboration with a pool of climate scientists. The study analyzes a large set of static climate data visualizations for identifying their shortcomings in terms of visualization design. The outcome of the study is a classification scheme that categorizes the design problems in the form of a descriptive taxonomy. The taxonomy is a first attempt for systematically categorizing the types, causes, and consequences of design problems in visualizations created by domain experts. We demonstrate the use of the taxonomy for a number of purposes, such as, improving the existing climate data visualizations, reflecting on the impact of the problems for enabling domain experts in designing better visualizations, and also learning about the gaps and opportunities for future visualization research. We demonstrate the applicability of our taxonomy through a number of examples and discuss the lessons learnt and implications of our findings.« less

  13. Bridging Theory with Practice: An Exploratory Study of Visualization Use and Design for Climate Model Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Aritra; Poco, Jorge; Wei, Yaxing

    Evaluation methodologies in visualization have mostly focused on how well the tools and techniques cater to the analytical needs of the user. While this is important in determining the effectiveness of the tools and advancing the state-of-the-art in visualization research, a key area that has mostly been overlooked is how well established visualization theories and principles are instantiated in practice. This is especially relevant when domain experts, and not visualization researchers, design visualizations for analysis of their data or for broader dissemination of scientific knowledge. There is very little research on exploring the synergistic capabilities of cross-domain collaboration between domainmore » experts and visualization researchers. To fill this gap, in this paper we describe the results of an exploratory study of climate data visualizations conducted in tight collaboration with a pool of climate scientists. The study analyzes a large set of static climate data visualizations for identifying their shortcomings in terms of visualization design. The outcome of the study is a classification scheme that categorizes the design problems in the form of a descriptive taxonomy. The taxonomy is a first attempt for systematically categorizing the types, causes, and consequences of design problems in visualizations created by domain experts. We demonstrate the use of the taxonomy for a number of purposes, such as, improving the existing climate data visualizations, reflecting on the impact of the problems for enabling domain experts in designing better visualizations, and also learning about the gaps and opportunities for future visualization research. We demonstrate the applicability of our taxonomy through a number of examples and discuss the lessons learnt and implications of our findings.« less

  14. An Integrated Systems Approach to Designing Climate Change Adaptation Policy in Water Resources

    NASA Astrophysics Data System (ADS)

    Ryu, D.; Malano, H. M.; Davidson, B.; George, B.

    2014-12-01

    Climate change projections are characterised by large uncertainties with rainfall variability being the key challenge in designing adaptation policies. Climate change adaptation in water resources shows all the typical characteristics of 'wicked' problems typified by cognitive uncertainty as new scientific knowledge becomes available, problem instability, knowledge imperfection and strategic uncertainty due to institutional changes that inevitably occur over time. Planning that is characterised by uncertainties and instability requires an approach that can accommodate flexibility and adaptive capacity for decision-making. An ability to take corrective measures in the event that scenarios and responses envisaged initially derive into forms at some future stage. We present an integrated-multidisciplinary and comprehensive framework designed to interface and inform science and decision making in the formulation of water resource management strategies to deal with climate change in the Musi Catchment of Andhra Pradesh, India. At the core of this framework is a dialogue between stakeholders, decision makers and scientists to define a set of plausible responses to an ensemble of climate change scenarios derived from global climate modelling. The modelling framework used to evaluate the resulting combination of climate scenarios and adaptation responses includes the surface and groundwater assessment models (SWAT & MODFLOW) and the water allocation modelling (REALM) to determine the water security of each adaptation strategy. Three climate scenarios extracted from downscaled climate models were selected for evaluation together with four agreed responses—changing cropping patterns, increasing watershed development, changing the volume of groundwater extraction and improving irrigation efficiency. Water security in this context is represented by the combination of level of water availability and its associated security of supply for three economic activities (agriculture, urban, industrial) on a spatially distributed basis. The resulting combinations of climate scenarios and adaptation responses were subjected to a combined hydro-economic assessment based on the degree of water security together with its cost-effectiveness against the Business-as-usual scenario.

  15. Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the range -50 to -190 W sq m per unit inadvisable optical depth. The magnitudes are about 15 to 100 times larger than the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger forcing in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce the actual major radiative forcing events that contribute to any global-average climate effect. Detailed comparisons of calculated and measured forcings for specific events are used for more refined tests of closure.

  16. Developing a test-bed for robust research governance of geoengineering: the contribution of ocean iron biogeochemistry

    PubMed Central

    Bressac, Matthieu

    2016-01-01

    Geoengineering to mitigate climate change has long been proposed, but remains nebulous. Exploration of the feasibility of geoengineering first requires the development of research governance to move beyond the conceptual towards scientifically designed pilot studies. Fortuitously, 12 mesoscale (approx. 1000 km2) iron enrichments, funded to investigate how ocean iron biogeochemistry altered Earth's carbon cycle in the geological past, provide proxies to better understand the benefits and drawbacks of geoengineering. The utility of these iron enrichments in the geoengineering debate is enhanced by the GEOTRACES global survey. Here, we outline how GEOTRACES surveys and process studies can provide invaluable insights into geoengineering. Surveys inform key unknowns including the regional influence and magnitude of modes of iron supply, and stimulate iron biogeochemical modelling. These advances will enable quantification of interannual variability of iron supply to assess whether any future purposeful multi-year iron-fertilization meets the principle of ‘additionality’ (sensu Kyoto protocol). Process studies address issues including upscaling of geoengineering, and how differing iron-enrichment strategies could stimulate wide-ranging biogeochemical outcomes. In summary, the availability of databases on both mesoscale iron-enrichment studies and the GEOTRACES survey, along with modelling, policy initiatives and legislation have positioned the iron-enrichment approach as a robust multifaceted test-bed to assess proposed research into climate intervention. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035263

  17. Developing a test-bed for robust research governance of geoengineering: the contribution of ocean iron biogeochemistry.

    PubMed

    Boyd, Philip W; Bressac, Matthieu

    2016-11-28

    Geoengineering to mitigate climate change has long been proposed, but remains nebulous. Exploration of the feasibility of geoengineering first requires the development of research governance to move beyond the conceptual towards scientifically designed pilot studies. Fortuitously, 12 mesoscale (approx. 1000 km 2 ) iron enrichments, funded to investigate how ocean iron biogeochemistry altered Earth's carbon cycle in the geological past, provide proxies to better understand the benefits and drawbacks of geoengineering. The utility of these iron enrichments in the geoengineering debate is enhanced by the GEOTRACES global survey. Here, we outline how GEOTRACES surveys and process studies can provide invaluable insights into geoengineering. Surveys inform key unknowns including the regional influence and magnitude of modes of iron supply, and stimulate iron biogeochemical modelling. These advances will enable quantification of interannual variability of iron supply to assess whether any future purposeful multi-year iron-fertilization meets the principle of 'additionality' ( sensu Kyoto protocol). Process studies address issues including upscaling of geoengineering, and how differing iron-enrichment strategies could stimulate wide-ranging biogeochemical outcomes. In summary, the availability of databases on both mesoscale iron-enrichment studies and the GEOTRACES survey, along with modelling, policy initiatives and legislation have positioned the iron-enrichment approach as a robust multifaceted test-bed to assess proposed research into climate intervention.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  18. Design and Implementation of a Thermal Load Reduction System in a Hyundai PHEV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreutzer, Cory J; Rugh, John P

    Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles including limited vehicle range and the elevated cost of EDVs as compared to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. In order to minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata PHEV. Technologies that impact vehicle cabin heating in cold weather conditions andmore » cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces and increased insulation demonstrated significant reductions in energy use from steady-state heating, including a 29% - 59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.« less

  19. Severe Flooding and Malaria Transmission in the Western Ugandan Highlands: Implications for Disease Control in an Era of Global Climate Change.

    PubMed

    Boyce, Ross; Reyes, Raquel; Matte, Michael; Ntaro, Moses; Mulogo, Edgar; Metlay, Joshua P; Band, Lawrence; Siedner, Mark J

    2016-11-01

     There are several mechanisms by which global climate change may impact malaria transmission. We sought to assess how the increased frequency of extreme precipitation events associated with global climate change will influence malaria transmission in highland areas of East Africa.  We used a differences-in-differences, quasi-experimental design to examine spatial variability in the incidence rate of laboratory-confirmed malaria cases and malaria-related hospitalizations between villages (1) at high versus low elevations, (2) with versus without rivers, and (3) upstream versus downstream before and after severe flooding that occurred in Kasese District, Western Region, Uganda, in May 2013.  During the study period, 7596 diagnostic tests were performed, and 1285 patients were admitted with a diagnosis of malaria. We observed that extreme flooding resulted in an increase of approximately 30% in the risk of an individual having a positive result of a malaria diagnostic test in the postflood period in villages bordering a flood-affected river, compared with villages farther from a river, with a larger relative impact on upstream versus downstream villages (adjusted rate ratio, 1.91 vs 1.33).  Extreme precipitation such as the flooding described here may pose significant challenges to malaria control programs and will demand timely responses to mitigate deleterious impacts on human health. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  20. SPRUCE experiment data infrastructure

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Hanson, P. J.; Boden, T.; Riggs, J.; Nettles, W. R.; Hook, L. A.

    2013-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), USA has provided scientific data management support for the US Department of Energy and international climate change science since 1982. Among the many data activities CDIAC performs are design and implementation of the data systems. One current example is the data system and network for SPRUCE experiment. The SPRUCE experiment (http://mnspruce.ornl.gov) is the primary component of the Terrestrial Ecosystem Science Scientific Focus Area of ORNL's Climate Change Program, focused on terrestrial ecosystems and the mechanisms that underlie their responses to climatic change. The experimental work is to be conducted in a bog forest in northern Minnesota, 40 km north of Grand Rapids, in the USDA Forest Service Marcell Experimental Forest (MEF). The site is located at the southern margin of the boreal peatland forest. Experimental work in the 8.1-ha S1 bog will be a climate change manipulation focusing on the combined responses to multiple levels of warming at ambient or elevated CO2 (eCO2) levels. The experiment provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemical processes and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, the cycling and release of CO2 and CH4 to the atmosphere). The manipulation will evaluate the response of the existing biological communities to a range of warming levels from ambient to +9°C, provided via large, modified open-top chambers. The ambient and +9°C warming treatments will also be conducted at eCO2 (in the range of 800 to 900 ppm). Both direct and indirect effects of these experimental perturbations will be analyzed to develop and refine models needed for full Earth system analyses. SPRUCE provides wide range continuous and discrete measurements. To successfully manage SPRUCE data flow and support climate change research, CDIAC has designed flexible data collection system using proven network technologies and taking advantage of existing software components. The SPRUCE data system comprised primarily of a set of network components, relational database, a web server to monitor data collection status, FTP server and replication/backup arrangement. Later the data interface on the existing website will be expanded to allow users to query the SPRUCE collection in a variety of ways and then subset, visualize and download the data. From the perspective of data stewardship, on the other hand, this system is designed for CDIAC to easily control database content, automate data movement, track data provenance, manage metadata content, and handle additions and corrections. In this presentation, we share our approaches to meet the challenges of designing and constructing data system for managing sources of high volume in situ observations in a remote location. It will demonstrate the dataflow starting from the sensors and ending at the archiving/distribution points, discuss types of hardware and software used, and examine considerations that were used to choose them.

  1. Integrated economic and climate projections for impact assessment

    EPA Science Inventory

    We designed scenarios for impact assessment that explicitly address policy choices and uncertainty in climate response. Economic projections and the resulting greenhouse gas emissions for the “no climate policy” scenario and two stabilization scenarios: at 4.5 W/m2 and 3.7 W/m2 b...

  2. Using Remote Sensing and Geospatial Technology for Climate Change Education

    ERIC Educational Resources Information Center

    Cox, Helen; Kelly, Kimberle; Yetter, Laura

    2014-01-01

    This curriculum and instruction paper describes initial implementation and evaluation of remote-sensing exercises designed to promote post-secondary climate literacy in the geosciences. Tutorials developed by the first author engaged students in the analysis of climate change data obtained from NASA satellite missions, including the LANDSAT,…

  3. Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review

    NASA Astrophysics Data System (ADS)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van

    2013-04-01

    Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. The review considers the following aspects: Analysis of long-term historical trends due to anthropogenic climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e.g. runoff peak flows, flood or surcharge frequencies, and CSO frequencies and volumes), including the impacts of more extreme conditions than considered during impact model calibration and validation. Implications for urban drainage infrastructure design and management: upgrading of the urban drainage system as part of a program of routine and scheduled replacement and renewal of aging infrastructure; how to account for the uncertainties; flexible and sustainable solutions; adaptive approach that provides inherent flexibility and reversibility and avoids closing off options; importance of active learning. References: Willems, P., Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., Nguyen, V-T-V. (2012). Impacts of climate change on rainfall extremes and urban drainage. IWA Publishing, 252 p., Paperback Print ISBN 9781780401256; Ebook ISBN 9781780401263 Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V.T.V. (2012), 'Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings', Atmospheric Research, 103, 106-118

  4. Establishing a Real-Money Prediction Market for Climate on Decadal Horizons

    NASA Astrophysics Data System (ADS)

    Roulston, M. S.; Hand, D. J.; Harding, D. W.

    2016-12-01

    A plan to establish a not-for-profit prediction market that will allow participants to bet on the value of selected climate variables decades into the future will be presented. It is hoped that this market will provide an objective measure of the consensus view on climate change, including information concerning the uncertainty of climate projections. The proposed design of the market and the definition of the climate variables underlying the contracts will be discussed, as well as relevant regulatory and legal issues.

  5. Widespread correlations between climatic niche evolution and species diversification in birds.

    PubMed

    Cooney, Christopher R; Seddon, Nathalie; Tobias, Joseph A

    2016-07-01

    The adaptability of species' climatic niches can influence the dynamics of colonization and gene flow across climatic gradients, potentially increasing the likelihood of speciation or reducing extinction in the face of environmental change. However, previous comparative studies have tested these ideas using geographically, taxonomically and ecologically restricted samples, yielding mixed results, and thus the processes linking climatic niche evolution with diversification remain poorly understood. Focusing on birds, the largest and most widespread class of terrestrial vertebrates, we test whether variation in species diversification among clades is correlated with rates of climatic niche evolution and the extent to which these patterns are modified by underlying gradients in biogeography and species' ecology. We quantified climatic niches, latitudinal distribution and ecological traits for 7657 (˜75%) bird species based on geographical range polygons and then used Bayesian phylogenetic analyses to test whether niche evolution was related to species richness and rates of diversification across genus- and family-level clades. We found that the rate of climatic niche evolution has a positive linear relationship with both species richness and diversification rate at two different taxonomic levels (genus and family). Furthermore, this positive association between labile climatic niches and diversification was detected regardless of variation in clade latitude or key ecological traits. Our findings suggest either that rapid adaptation to unoccupied areas of climatic niche space promotes avian diversification, or that diversification promotes adaptation. Either way, we propose that climatic niche evolution is a fundamental process regulating the link between climate and biodiversity at global scales, irrespective of the geographical and ecological context of speciation and extinction. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  6. Source-Based Modeling Of Urban Stormwater Quality Response to the Selected Scenarios Combining Future Changes in Climate and Socio-Economic Factors

    NASA Astrophysics Data System (ADS)

    Borris, Matthias; Leonhardt, Günther; Marsalek, Jiri; Österlund, Heléne; Viklander, Maria

    2016-08-01

    The assessment of future trends in urban stormwater quality should be most helpful for ensuring the effectiveness of the existing stormwater quality infrastructure in the future and mitigating the associated impacts on receiving waters. Combined effects of expected changes in climate and socio-economic factors on stormwater quality were examined in two urban test catchments by applying a source-based computer model (WinSLAMM) for TSS and three heavy metals (copper, lead, and zinc) for various future scenarios. Generally, both catchments showed similar responses to the future scenarios and pollutant loads were generally more sensitive to changes in socio-economic factors (i.e., increasing traffic intensities, growth and intensification of the individual land-uses) than in the climate. Specifically, for the selected Intermediate socio-economic scenario and two climate change scenarios (RSP = 2.6 and 8.5), the TSS loads from both catchments increased by about 10 % on average, but when applying the Intermediate climate change scenario (RCP = 4.5) for two SSPs, the Sustainability and Security scenarios (SSP1 and SSP3), the TSS loads increased on average by 70 %. Furthermore, it was observed that well-designed and maintained stormwater treatment facilities targeting local pollution hotspots exhibited the potential to significantly improve stormwater quality, however, at potentially high costs. In fact, it was possible to reduce pollutant loads from both catchments under the future Sustainability scenario (on average, e.g., TSS were reduced by 20 %), compared to the current conditions. The methodology developed in this study was found useful for planning climate change adaptation strategies in the context of local conditions.

  7. How model and input uncertainty impact maize yield simulations in West Africa

    NASA Astrophysics Data System (ADS)

    Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli

    2015-02-01

    Crop models are common tools for simulating crop yields and crop production in studies on food security and global change. Various uncertainties however exist, not only in the model design and model parameters, but also and maybe even more important in soil, climate and management input data. We analyze the performance of the point-scale crop model APSIM and the global scale crop model LPJmL with different climate and soil conditions under different agricultural management in the low-input maize-growing areas of Burkina Faso, West Africa. We test the models’ response to different levels of input information from little to detailed information on soil, climate (1961-2000) and agricultural management and compare the models’ ability to represent the observed spatial (between locations) and temporal variability (between years) in crop yields. We found that the resolution of different soil, climate and management information influences the simulated crop yields in both models. However, the difference between models is larger than between input data and larger between simulations with different climate and management information than between simulations with different soil information. The observed spatial variability can be represented well from both models even with little information on soils and management but APSIM simulates a higher variation between single locations than LPJmL. The agreement of simulated and observed temporal variability is lower due to non-climatic factors e.g. investment in agricultural research and development between 1987 and 1991 in Burkina Faso which resulted in a doubling of maize yields. The findings of our study highlight the importance of scale and model choice and show that the most detailed input data does not necessarily improve model performance.

  8. Source-Based Modeling Of Urban Stormwater Quality Response to the Selected Scenarios Combining Future Changes in Climate and Socio-Economic Factors.

    PubMed

    Borris, Matthias; Leonhardt, Günther; Marsalek, Jiri; Österlund, Heléne; Viklander, Maria

    2016-08-01

    The assessment of future trends in urban stormwater quality should be most helpful for ensuring the effectiveness of the existing stormwater quality infrastructure in the future and mitigating the associated impacts on receiving waters. Combined effects of expected changes in climate and socio-economic factors on stormwater quality were examined in two urban test catchments by applying a source-based computer model (WinSLAMM) for TSS and three heavy metals (copper, lead, and zinc) for various future scenarios. Generally, both catchments showed similar responses to the future scenarios and pollutant loads were generally more sensitive to changes in socio-economic factors (i.e., increasing traffic intensities, growth and intensification of the individual land-uses) than in the climate. Specifically, for the selected Intermediate socio-economic scenario and two climate change scenarios (RSP = 2.6 and 8.5), the TSS loads from both catchments increased by about 10 % on average, but when applying the Intermediate climate change scenario (RCP = 4.5) for two SSPs, the Sustainability and Security scenarios (SSP1 and SSP3), the TSS loads increased on average by 70 %. Furthermore, it was observed that well-designed and maintained stormwater treatment facilities targeting local pollution hotspots exhibited the potential to significantly improve stormwater quality, however, at potentially high costs. In fact, it was possible to reduce pollutant loads from both catchments under the future Sustainability scenario (on average, e.g., TSS were reduced by 20 %), compared to the current conditions. The methodology developed in this study was found useful for planning climate change adaptation strategies in the context of local conditions.

  9. Historical evidence for a connection between volcanic eruptions and climate change

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.

    1991-01-01

    The times of historical volcanic aerosol clouds were compared with changes in atmospheric temperatures on regional, hemispheric, and global scales. These involve either a direct comparison of individual significant eruption years with temperature records, or a comparison of eruption years with composited temperature records for several years before and after chosen sets of eruptions. Some studies have challenged the connection between individual eruptions and climate change. Mass and Portman (1989) recently suggested that the volcanic signal was present, but smaller than previously thought. In a study designed to test the idea that eruptions could cause small changes in climate, Hansen and other (1978) chose one of the best monitored eruptions at the time, the 1963 eruption of Agung volcano on the island of Bali. Using a simple radiation-balance model, in which an aerosol cloud in the tropics was simulated, this basic pattern of temperature change in the tropics and subtropics was reproduced. There may be natural limits to the atmospheric effects of any volcanic eruption. Self-limiting physical and chemical effects in eruption clouds were proposed. Model results suggest that aerosol microphysical processes of condensation and coagulation produce larger aerosols as the SO2 injection rate is increased. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on regional temperatures where the effects of volcanic aerosol clouds can be amplified by perturbed atmospheric circulation patterns, especially changes in mid-latitudes where meridional circulation patterns may develop. Such climatic perturbations can be detected in proxy evidence such as decreases in tree-ring widths and frost damage rings in climatically sensitive parts of the world, changes in treelines, weather anomalies such as unusually cold summers, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures.

  10. Schistosoma japonicum transmission risk maps at present and under climate change in mainland China

    PubMed Central

    Fan, Jingyu; Peterson, A. Townsend

    2017-01-01

    Background The South-to-North Water Diversion (SNWD) project is designed to channel fresh water from the Yangtze River north to more industrialized parts of China. An important question is whether future climate change and dispersal via the SNWD may synergistically favor a northward expansion of species involved in hosting and transmitting schistosomiasis in China, specifically the intermediate host, Oncomelania hupensis. Methodology/ Principal findings In this study, climate spaces occupied by the four subspecies of O. hupensis (O. h. hupensis, O. h. robertsoni, O. h. guangxiensis and O. h. tangi) were estimated, and niche conservatism tested among each pair of subspecies. Fine-tuned Maxent (fMaxent) and ensemble models were used to anticipate potential distributions of O. hupensis under future climate change scenarios. We were largely unable to reject the null hypothesis that climatic niches are conserved among the four subspecies, so factors other than climate appear to account for the divergence of O. hupensis populations across mainland China. Both model approaches indicated increased suitability and range expansion in O. h. hupensis in the future; an eastward and northward shift in O. h. robertsioni and O. h. guangxiensis, respectively; and relative distributional stability in O. h. gangi. Conclusions/Significance The southern parts of the Central Route of SNWD will coincide with suitable areas for O. h. hupensis in 2050–2060; its suitable areas will also expand northward along the southern parts of the Eastern Route by 2080–2090. Our results call for rigorous monitoring and surveillance of schistosomiasis along the southern Central Route and Eastern Route of the SNWD in a future, warmer China. PMID:29040273

  11. Mapping of the Land Cover Spatiotemporal Characteristics in Northern Russia Caused by Climate Change

    NASA Astrophysics Data System (ADS)

    Panidi, E.; Tsepelev, V.; Torlopova, N.; Bobkov, A.

    2016-06-01

    The study is devoted to the investigation of regional climate change in Northern Russia. Due to sparseness of the meteorological observation network in northern regions, we investigate the application capabilities of remotely sensed vegetation cover as indicator of climate change at the regional scale. In previous studies, we identified statistically significant relationship between the increase of surface air temperature and increase of the shrub vegetation productivity. We verified this relationship using ground observation data collected at the meteorological stations and Normalised Difference Vegetation Index (NDVI) data produced from Terra/MODIS satellite imagery. Additionally, we designed the technique of growing seasons separation for detailed investigation of the land cover (shrub cover) dynamics. Growing seasons are the periods when the temperature exceeds +5°C and +10°C. These periods determine the vegetation productivity conditions (i.e., conditions that allow growth of the phytomass). We have discovered that the trend signs for the surface air temperature and NDVI coincide on planes and river floodplains. On the current stage of the study, we are working on the automated mapping technique, which allows to estimate the direction and magnitude of the climate change in Northern Russia. This technique will make it possible to extrapolate identified relationship between land cover and climate onto territories with sparse network of meteorological stations. We have produced the gridded maps of NDVI and NDWI for the test area in European part of Northern Russia covered with the shrub vegetation. Basing on these maps, we may determine the frames of growing seasons for each grid cell. It will help us to obtain gridded maps of the NDVI linear trend for growing seasons on cell-by-cell basis. The trend maps can be used as indicative maps for estimation of the climate change on the studied areas.

  12. Intensity-Duration-Frequency (IDF) rainfall curves, for data series and climate projection in African cities.

    PubMed

    De Paola, Francesco; Giugni, Maurizio; Topa, Maria Elena; Bucchignani, Edoardo

    2014-01-01

    Changes in the hydrologic cycle due to increase in greenhouse gases cause variations in intensity, duration, and frequency of precipitation events. Quantifying the potential effects of climate change and adapting to them is one way to reduce urban vulnerability. Since rainfall characteristics are often used to design water structures, reviewing and updating rainfall characteristics (i.e., Intensity-Duration-Frequency (IDF) curves) for future climate scenarios is necessary (Reg Environ Change 13(1 Supplement):25-33, 2013). The present study regards the evaluation of the IDF curves for three case studies: Addis Ababa (Ethiopia), Dar Es Salaam (Tanzania) and Douala (Cameroon). Starting from daily rainfall observed data, to define the IDF curves and the extreme values in a smaller time window (10', 30', 1 h, 3 h, 6 h, 12 h), disaggregation techniques of the collected data have been used, in order to generate a synthetic sequence of rainfall, with statistical properties similar to the recorded data. Then, the rainfall pattern of the three test cities was analyzed and IDF curves were evaluated. In order to estimate the contingent influence of climate change on the IDF curves, the described procedure was applied to the climate (rainfall) simulations over the time period 2010-2050, provided by CMCC (Centro Euro-Mediterraneo sui Cambiamenti Climatici). The evaluation of the IDF curves allowed to frame the rainfall evolution of the three case studies, considering initially only historical data, then taking into account the climate projections, in order to verify the changes in rainfall patterns. The same set of data and projections was also used for evaluating the Probable Maximum Precipitation (PMP).

  13. Building Student Awareness of Societal Decision-Making Challenges about Energy through the Study of Earth System Data and Innovations in Energy-Related Materials Research

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.; Acker, J. G.; Berding, M.

    2014-12-01

    Energy literacy requires knowledge about the trade-offs inherent in energy alternatives, about how humans use energy and have choices in how much energy to use, and about what changes to the Earth system are occurring from energy uses. It also requires collaborative decision-making skills coupled with awareness about what values we bring to the table as we negotiate solutions that serve both personal needs and the common good. Coming up with a notion of the common good requires delineating how environmental crises occurring in other parts of the world compare to our own. We also need to understand criteria for judging what might be viable solutions. This presentation describes work that SRI International is carrying out to meet these awareness-building needs. SRI educational researchers created a curriculum that immerses students in studying regional climate change data about California in comparison to global climate change. Students ponder solution energy-related strategies and impact analyses. The curriculum will be described, as will a collaboration between SRI educational researchers and materials scientists. The scientists are designing and testing technologies for producing biofuels and solar power, and for sequestering carbon from coal fired power plants. As they apply principles of science and engineering to test materials intended to meet these energy challenges, they understand that even if the tests prove successful, if there is not economic feasibility or environmental advantage, the technology may not stand as a viable solution. This educator-scientist team is using the Essential Energy Principles and Next Generation Science Standards to articulate milestones along a trajectory of energy learning. The trajectory starts with simple understandings of what energy is and what constitute our energy challenges. It ends with more the types of more sophisticated understandings needed for designing and testing energy technology solutions.

  14. Employee satisfaction and theft: testing climate perceptions as a mediator.

    PubMed

    Kulas, John T; McInnerney, Joanne E; DeMuth, Rachel Frautschy; Jadwinski, Victoria

    2007-07-01

    Employee theft of both property and time is an expensive and pervasive problem for American organizations. One antecedent of theft behaviors is employee dissatisfaction, but not all dissatisfied employees engage in withdrawal or theft behaviors. The authors tested a model of theft behavior by using an organization's climate for theft as an explanatory mechanism. They found that dissatisfaction influenced employee theft behaviors through the intermediary influence of employees' individual perceptions of the organization's climate for theft. The authors encourage organizations to pay attention to such climate elements and take action to alter employee perceptions if they reflect permissive attitudes toward theft.

  15. Ethical Climate Typology and Questionnaire: A Discussion of Instrument Modifications

    ERIC Educational Resources Information Center

    Webber, Sheri

    2007-01-01

    The Ethical Climate Typology (ECT) and Ethical Climate Questionnaire (ECQ) are instruments traditionally used to examine the ethical work climate in organizations. The instruments were modified to correct shortcomings acknowledged in the literature and tested on a sample of libraries. Data analysis suggested that some modifications improved the…

  16. A Framework For Analysis Of Coastal Infrastructure Vunerabilty To Global Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Obrien, P. S.; White, K. D.; Veatch, W.; Marzion, R.; Moritz, H.; Moritz, H. R.

    2017-12-01

    Recorded impacts of global sea rise on coastal water levels have been documented over the past 100 to 150 years. In the recent 40 years the assumption of hydrologic stationarity has been recognized as invalid. New coastal infrastructure designs must recognize the paradigm shift from hydrologic stationarity to non-stationarity in coastal hydrology. A framework for the evaluation of existing coastal infrastructure is proposed to effectively assess design vulnerability. Two data sets developed from existing structures are chosen to test a proposed framework for vunerabilty to global sea level rise, with the proposed name Climate Preparedness and Resilience Register (CPRR). The CPRR framework consists of four major elements; Datum Adjustment, Coastal Water Levels, Scenario Projections and Performance Thresholds.

  17. Spacecraft Environmental Testing SMAP (Soil, Moisture, Active, Passive)

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2014-01-01

    Testing a complete full up spacecraft to verify it will survive the environment, in which it will be exposed to during its mission, is a formidable task in itself. However, the ''test like you fly'' philosophy sometimes gets compromised because of cost, design and or time. This paper describes the thermal-vacuum and mass properties testing of the Soil Moisture Active Passive (SMAP) earth orbiting satellite. SMAP will provide global observations of soil moisture and freeze/thaw state (the hydrosphere state). SMAP hydrosphere state measurements will be used to enhance understanding of processes that link the water, energy, and carbon cycles, and to extend the capabilities of weather and climate prediction models. It will explain the problems encountered, and the solutions developed, which minimized the risk typically associated with such an arduous process. Also discussed, the future of testing on expensive long lead-time spacecraft. Will we ever reach the ''build and shoot" scenario with minimal or no verification testing?

  18. Assessing the physical service setting: a look at emergency departments.

    PubMed

    Steinke, Claudia

    2015-01-01

    To determine the attributes of the physical setting that are important for developing a positive service climate within emergency departments and to validate a measure for assessing physical service design. The design of the physical setting is an important and contributing factor for creating a service climate in organizations. Service climate is defined as employee perceptions of the practices, procedures, and behaviors that get rewarded, supported, and expected with regard to customer service and customer service quality. There has been research conducted which identifies antecedents within organization that promotes a positive service climate which in turn creates service-oriented behaviors by employees toward clients. The antecedent of the physical setting and its impact on perceptions of service climate has been less commonly explored. Using the concept of the physical service setting (which may be defined as aspects of the physical, built environment that facilitate the delivery of quality service), attributes of the physical setting and their relationship with service climate were explored by means of a quantitative paper survey distributed to emergency nurses (n = 180) throughout a province in Canada. The results highlight the validity and reliability of six scales measuring the physical setting and its relation to service. Respondents gave low ratings to the physical setting of their departments, in addition to low ratings of service climate. Respondents feel that the design of the physical setting in the emergency departments where they work is not conducive to providing quality service to clients. Certain attributes of the physical setting were found to be significant in influencing perceptions of service climate, hence service quality, within the emergency department setting. © The Author(s) 2015.

  19. Pyrotechnic Panel Minutes. Volume 13, Numbers 518-579

    DTIC Science & Technology

    1946-11-01

    fron 5.3.1*6 to 29.10.1*6. Lt. Cdr. M. P. Price , (D.M.O.) from 13.7.1*6. Mr. P. Trier, R.N. (D.N.O.) from 1.1*.1*6. Lt. Col. 0. H...34. Aluminium Cases. Designs and Production . 538 Bomb, Practice, A/C) 10_lb. Nk.IV, Flame. Leakage Test. 539 S.3.432 filling for dockets...Signal and Target Practice. Climatic Trials: Abolition of T7ar Production Permits. DS 82227/1 3 Minute _ , . , PJ. No. SubJect 544

  20. The Impact of School Climate on Student Achievement in the Middle Schools of the Commonwealth of Virginia: A Quantitative Analysis of Existing Data

    ERIC Educational Resources Information Center

    Bergren, David Alexander

    2014-01-01

    This quantitative study was designed to be an analysis of the relationship between school climate and student achievement through the creation of an index of climate-factors (SES, discipline, attendance, and school size) for which publicly available data existed. The index that was formed served as a proxy measure of climate; it was analyzed…

  1. BASINS and WEPP Climate Assessment Tools (CAT): Case ...

    EPA Pesticide Factsheets

    This draft report supports application of two recently developed water modeling tools, the BASINS and WEPP climate assessment tools. The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments of the potential future effects of climate change on water resources. This report presents a series of short, illustrative case studies using the BASINS and WEPP climate assessment tools.

  2. Climate and atmosphere simulator for experiments on ecological systems in changing environments.

    PubMed

    Verdier, Bruno; Jouanneau, Isabelle; Simonnet, Benoit; Rabin, Christian; Van Dooren, Tom J M; Delpierre, Nicolas; Clobert, Jean; Abbadie, Luc; Ferrière, Régis; Le Galliard, Jean-François

    2014-01-01

    Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m(3) chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios. The adaptability of the Ecolab design makes it possible to study interactions between variable climate-atmosphere factors and biotic disturbances. Developed as an open-access, multichamber platform, this equipment is available to the international scientific community for exploring interactions and feedbacks between ecological and climate systems.

  3. User-centered design to improve clinical decision support in primary care.

    PubMed

    Brunner, Julian; Chuang, Emmeline; Goldzweig, Caroline; Cain, Cindy L; Sugar, Catherine; Yano, Elizabeth M

    2017-08-01

    A growing literature has demonstrated the ability of user-centered design to make clinical decision support systems more effective and easier to use. However, studies of user-centered design have rarely examined more than a handful of sites at a time, and have frequently neglected the implementation climate and organizational resources that influence clinical decision support. The inclusion of such factors was identified by a systematic review as "the most important improvement that can be made in health IT evaluations." (1) Identify the prevalence of four user-centered design practices at United States Veterans Affairs (VA) primary care clinics and assess the perceived utility of clinical decision support at those clinics; (2) Evaluate the association between those user-centered design practices and the perceived utility of clinical decision support. We analyzed clinic-level survey data collected in 2006-2007 from 170 VA primary care clinics. We examined four user-centered design practices: 1) pilot testing, 2) provider satisfaction assessment, 3) formal usability assessment, and 4) analysis of impact on performance improvement. We used a regression model to evaluate the association between user-centered design practices and the perceived utility of clinical decision support, while accounting for other important factors at those clinics, including implementation climate, available resources, and structural characteristics. We also examined associations separately at community-based clinics and at hospital-based clinics. User-centered design practices for clinical decision support varied across clinics: 74% conducted pilot testing, 62% conducted provider satisfaction assessment, 36% conducted a formal usability assessment, and 79% conducted an analysis of impact on performance improvement. Overall perceived utility of clinical decision support was high, with a mean rating of 4.17 (±.67) out of 5 on a composite measure. "Analysis of impact on performance improvement" was the only user-centered design practice significantly associated with perceived utility of clinical decision support, b=.47 (p<.001). This association was present in hospital-based clinics, b=.34 (p<.05), but was stronger at community-based clinics, b=.61 (p<.001). Our findings are highly supportive of the practice of analyzing the impact of clinical decision support on performance metrics. This was the most common user-centered design practice in our study, and was the practice associated with higher perceived utility of clinical decision support. This practice may be particularly helpful at community-based clinics, which are typically less connected to VA medical center resources. Published by Elsevier B.V.

  4. Urban climate, weather and sustainability

    NASA Astrophysics Data System (ADS)

    Mills, Gerald

    As concentrated areas of human activities, urban areas and urbanization are key drivers of global environmental change and pose a challenge to the achievement of sustainability. One of the key goals of sustainable development is to separate increases in non-renewable resource use (particularly fossil fuels) from economic growth. This is to be accomplished by modifying individual practices, encouraging technological innovation and redesigning systems of production and consumption. Settlements represent a scale at which significant advances on each of these can be made and where there is an existing management structure. However, urban areas currently consume a disproportionate share of the Earth's resources and urbanization has modified local climate and weather significantly, usually to the detriment of urban dwellers. There is now a lengthy history of urban climate study that links existing settlement form to climatic consequences yet, there is little evidence that climate information is incorporated into urban designs or that the climatic impact of different plans is considered. Consequently, opportunities for planning sustainable urban forms that are suitable to local climates and promote energy conservation and healthy atmospheres are not taken and much effort is later expended in `fixing' problems that emerge. This paper will outline the links between urban climate and sustainability, identify gaps in our urban climate knowledge and discuss the opportunities and barriers to the application of this knowledge to urban design and planning.

  5. Managing the Nation's water in a changing climate

    USGS Publications Warehouse

    Lins, H.F.; Stakhiv, E.Z.

    1998-01-01

    Among the many concerns associated with global climate change, the potential effects on water resources are frequently cited as the most worrisome. In contrast, those who manage water resources do not rate climatic change among their top planning and operational concerns. The difference in these views can be associated with how water managers operate their systems and the types of stresses, and the operative time horizons, that affect the Nation's water resources infrastructure. Climate, or more precisely weather, is an important variable in the management of water resources at daily to monthly time scales because water resources systems generally are operated on a daily basis. At decadal to centennial time scales, though, climate is much less important because (1) forecasts, particularly of regional precipitation, are extremely uncertain over such time periods, and (2) the magnitude of effects due to changes in climate on water resources is small relative to changes in other variables such as population, technology, economics, and environmental regulation. Thus, water management agencies find it difficult to justify changing design features or operating rules on the basis of simulated climatic change at the present time, especially given that reservoir-design criteria incorporate considerable buffering capacity for extreme meteorological and hydrological events.

  6. An exploration of anomia as origin of work absence.

    PubMed

    Zoghbi-Manrique-de-Lara, Pablo; Sánchez-Medina, Agustín J

    2015-01-01

    Although it also portrays a loss of function in psychology, in this context the term anomia (from the Greek, an-: absence, and -nomos: law) is used to describe a sociological phenomenon that can lead individuals to misbehave due to feelings of valuelessness and cynicism resulting from a lack of integration in social life (Srole, 1956). Previous research has neglected anomia as part of the origin of employee work absence. This study tests the association between anomia and absence - operationalized as propensity to abusive absence due to illness. A large variety of job attitudes grouped in terms of organizational climate are controlled for. Data were collected from 84 of the 198 (42.4%) employees of a provincial Spanish Social Security Service. Structural equation modeling (SEM) was used to test the associations. With the climate factors controlled for by entering them together with anomia in a SEM model as causes of absence, the results show a significant relationship between anomia and absence. The findings explain the origin of absence at work and management strategies. The very nature of anomia suggests that strategies can be designed to provide employees with an organizational `micro-cosmos' that promotes support, predictability, and bonds of trust to create an effective bulwark against absenteeism.

  7. Development and testing of transfer functions for generating quantitative climatic estimates from Australian pollen data

    NASA Astrophysics Data System (ADS)

    Cook, Ellyn J.; van der Kaars, Sander

    2006-10-01

    We review attempts to derive quantitative climatic estimates from Australian pollen data, including the climatic envelope, climatic indicator and modern analogue approaches, and outline the need to pursue alternatives for use as input to, or validation of, simulations by models of past, present and future climate patterns. To this end, we have constructed and tested modern pollen-climate transfer functions for mainland southeastern Australia and Tasmania using the existing southeastern Australian pollen database and for northern Australia using a new pollen database we are developing. After testing for statistical significance, 11 parameters were selected for mainland southeastern Australia, seven for Tasmania and six for northern Australia. The functions are based on weighted-averaging partial least squares regression and their predictive ability evaluated against modern observational climate data using leave-one-out cross-validation. Functions for summer, annual and winter rainfall and temperatures are most robust for southeastern Australia, while in Tasmania functions for minimum temperature of the coldest period, mean winter and mean annual temperature are the most reliable. In northern Australia, annual and summer rainfall and annual and summer moisture indexes are the strongest. The validation of all functions means all can be applied to Quaternary pollen records from these three areas with confidence. Copyright

  8. Modeling the Environmental Impact of Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  9. Investigating the Capacity of Hydrological Models to Project Impacts of Climate Change in the Context of Water Allocation

    NASA Astrophysics Data System (ADS)

    Velez, Carlos; Maroy, Edith; Rocabado, Ivan; Pereira, Fernando

    2017-04-01

    To analyse the impacts of climate changes, hydrological models are used to project the hydrology responds under future conditions that normally differ from those for which they were calibrated. The challenge is to assess the validity of the projected effects when there is not data to validate it. A framework for testing the ability of models to project climate change was proposed by Refsgaard et al., (2014). The authors recommend the use of the differential-split sample test (DSST) in order to build confidence in the model projections. The method follow three steps: 1. A small number of sub-periods are selected according to one climate characteristics, 2. The calibration - validation test is applied on these periods, 3. The validation performances are compered to evaluate whether they vary significantly when climatic characteristics differ between calibration and validation. DSST rely on the existing records of climate and hydrological variables; and performances are estimated based on indicators of error between observed and simulated variables. Other authors suggest that, since climate models are not able to reproduce single events but rather statistical properties describing the climate, this should be reflected when testing hydrological models. Thus, performance criteria such as RMSE should be replaced by for instance flow duration curves or other distribution functions. Using this type of performance criteria, Van Steenbergen and Willems, (2012) proposed a method to test the validity of hydrological models in a climate changing context. The method is based on the evaluation of peak flow increases due to different levels of rainfall increases. In contrast to DSST, this method use the projected climate variability and it is especially useful to compare different modelling tools. In the framework of a water allocation project for the region of Flanders (Belgium) we calibrated three hydrological models: NAM, PDM and VHM; for 67 gauged sub-catchments with approx. 40 years of records. This paper investigates the capacity of the three hydrological models to project the impacts of climate change scenarios. It is proposed a general testing framework which combine the use of the existing information through an adapted form of DSST with the approach proposed by Van Steenbergen and Willems, (2012) adapted to assess statistical properties of flows useful in the context of water allocation. To assess the model we use robustness criteria based on a Log Nash-Sutcliffe, BIAS on cummulative volumes and relative changes based on Q50/Q90 estimated from the duration curve. The three conceptual rainfall-runoff models yielded different results per sub-catchments. A relation was found between robustness criteria and changes in mean rainfall and changes in mean potential evapotranspiration. Biases are greatly affected by changes in precipitation, especially when the climate scenarios involve changes in precipitation volume beyond the range used for calibration. Using the combine approach we were able to classify the modelling tools per sub-catchments and create an ensemble of best models to project the impacts of climate variability for the catchments of 10 main rivers in Flanders. Thus, managers could understand better the usability of the modelling tools and the credibility of its outputs for water allocation applications. References Refsgaard, J.C., Madsen, H., Andréassian, V., Arnbjerg-Nielsen, K., Davidson, T.A., Drews, M., Hamilton, D.P., Jeppesen, E., Kjellström, E., Olesen, J.E., Sonnenborg, T.O., Trolle, D., Willems, P., Christensen, J.H., 2014. A framework for testing the ability of models to project climate change and its impacts. Clim. Change. Van Steenbergen, N., Willems, P., 2012. Method for testing the accuracy of rainfall - runoff models in predicting peak flow changes due to rainfall changes , in a climate changing context. J. Hydrol. 415, 425-434.

  10. Climate@Home: Crowdsourcing Climate Change Research

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate scientists configure computer model parameters through the portal user interface. After model configuration, scientists then launch the computing task. Next, data is atomized and distributed to computing engines that are running on citizen participants' computers. Scientists will receive notifications on the completion of computing tasks, and examine modeling results via visualization modules of the portal. Computing tasks, computing resources, and participants are managed by project managers via portal tools. A portal prototype has been built for proof of concept. Three forums have been setup for different groups of users to share information on science aspect, technology aspect, and educational outreach aspect. A facebook account has been setup to distribute messages via the most popular social networking platform. New treads are synchronized from the forums to facebook. A mapping tool displays geographic locations of the participants and the status of tasks on each client node. A group of users have been invited to test functions such as forums, blogs, and computing resource monitoring.

  11. Organizational Climate and Work Addiction in Shahid Sadoughi University of Medical Sciences, 2014: a Case Study

    PubMed Central

    Rafiee, Noora; Bahrami, Mohammad Amin; Zare, Vahid; Mohammadi, Mahan

    2015-01-01

    Introduction The occupational nature of employees in headquarters units of the University requires them to deal with support issues. Thus, there is some pressure on these employees to complete their assignments on time so that employees in the line units can accurately and expeditiously perform their duties. As a result, work addiction behaviors are sometimes observed among the headquarters personnel. Considering the importance of work addiction and recognizing the factors that intensify it, this study investigated the relationship between organizational climate and the work addiction of headquarters personnel at the Shahid Sadoughi University of Medical Sciences. Methods This descriptive-analytic study was conducted using stratified random sampling of 151 University employees in 2014. The data collection tool was an organizational climate questionnaire, which was supplemented by the Work Addiction Risk Test (WART). The data were analyzed using the Pearson test, Spearman test, independent t-test, Mann-Whitney test, one-way analysis of variance (ANOVA), and the Kruskal-Wallis test using IBM-SPSS version 20. Results The findings of this study showed that the organizational climate was at a moderate level, and employees were in the danger level in terms of work addiction. In addition, among the dimensions of organizational climate, the risk dimension had a significant relationship with work addiction (p<0.05), and the dimensions of structure and responsibility were significantly different from occupational group and monthly salary (p<0.05). Single employees showed a significant difference from married employees in the two dimensions of criteria and conflict (p<0.05). Conclusion Since the organizational climate score was low and the work addiction score was at the high-risk level, this issue demands more attention of senior managers and human resource officers of organizations to improve the organizational climate and increase employees’ awareness of work addiction. PMID:26816586

  12. Effect of Integrated Feedback on Classroom Climate of Secondary School Teachers

    ERIC Educational Resources Information Center

    Patel, Nilesh Kumar

    2018-01-01

    This study aimed at finding out the effect of Integrated feedback on Classroom climate of secondary school teachers. This research is experimental in nature. Non-equivalent control group design suggested by Stanley and Campbell (1963) was used for the experiment. Integrated feedback was treatment and independent variable, Classroom climate was…

  13. The Assessment of Organisational Climate in Bedouin Arab Schools in Israel.

    ERIC Educational Resources Information Center

    Abu-Saad, Ismael

    1995-01-01

    Summarizes results of a study designed to identify organizational climate factors in Israel's 29 Bedouin Arab elementary schools and to explore their relation to certain teacher and school-level variables, including sex, educational level, tenure, teachers' origin, school type, and school size. The most important organizational climate factor was…

  14. An Analysis of the Relation between Secondary School Organizational Climate and Teacher Job Satisfaction

    ERIC Educational Resources Information Center

    Xiaofu, Pan; Qiwen, Qin

    2007-01-01

    This study investigates and analyzes the relation between the secondary school organizational climate and teacher job satisfaction using a self-designed school organizational climate scale based on studies in China and abroad. The findings show that except for interpersonal factors there are significant correlations between the various factors of…

  15. Forest adaptation resources: Climate change tools and approaches for land managers

    Treesearch

    Chris Swanston; Maria, eds. Janowiak

    2012-01-01

    The forests of northern Wisconsin, a defining feature of the region's landscape, are expected to undergo numerous changes in response to the changing climate. This document provides a collection of resources designed to help forest managers incorporate climate change considerations into management and devise adaptation tactics. It was developed in northern...

  16. Modelling Impacts of Climate Change: Case Studies using the New Generation of Erosion Models

    USDA-ARS?s Scientific Manuscript database

    Climate change is expected to impact upon a number of soil erosion drivers and processes, which should be taken into account when designing a modelling strategy. The fourth assessment report of the Intergovernmental Panel for Climate Change (IPCC) (Parry et al., 2007; Solomon et al., 2007) reviews a...

  17. More than a Game: Learning about Climate Change through Role-Play

    ERIC Educational Resources Information Center

    Paschall, Melissa; Wustenhagen, Rolf

    2012-01-01

    Educating management students on the connections between business and climate change is essential both to their careers and to society's ability to solve the climate challenge. To impart deep and lasting learning on this topic, the authors developed a multischool negotiation simulation that is unique in its intensiveness, cross-sector design, and…

  18. An Analysis of the Relationship Between Organizational Climate and the Performance of Counselor Functions.

    ERIC Educational Resources Information Center

    Cottingham, Harold F.; And Others

    The study was designed to determine if a significant relationship existed between the organizational climate of the high school and the functions counselors performed in nine selected high schools in Pinellas County, Florida. Two instruments were used: (1) The Organizational Climate Description Questionnaire (OCDQ) dealing with eight…

  19. Foraminifera Models to Interrogate Ostensible Proxy-Model Discrepancies During Late Pliocene

    NASA Astrophysics Data System (ADS)

    Jacobs, P.; Dowsett, H. J.; de Mutsert, K.

    2017-12-01

    Planktic foraminifera faunal assemblages have been used in the reconstruction of past oceanic states (e.g. the Last Glacial Maximum, the mid-Piacenzian Warm Period). However these reconstruction efforts have typically relied on inverse modeling using transfer functions or the modern analog technique, which by design seek to translate foraminifera into one or two target oceanic variables, primarily sea surface temperature (SST). These reconstructed SST data have then been used to test the performance of climate models, and discrepancies have been attributed to shortcomings in climate model processes and/or boundary conditions. More recently forward proxy models or proxy system models have been used to leverage the multivariate nature of proxy relationships to their environment, and to "bring models into proxy space". Here we construct ecological models of key planktic foraminifera taxa, calibrated and validated with World Ocean Atlas (WO13) oceanographic data. Multiple modeling methods (e.g. multilayer perceptron neural networks, Mahalanobis distance, logistic regression, and maximum entropy) are investigated to ensure robust results. The resulting models are then driven by a Late Pliocene climate model simulation with biogeochemical as well as temperature variables. Similarities and differences with previous model-proxy comparisons (e.g. PlioMIP) are discussed.

  20. Testing relationships from the hierarchical model of intrinsic and extrinsic motivation using flow as a motivational consequence.

    PubMed

    Kowal, J; Fortier, M S

    2000-06-01

    The purpose of this study was to test a motivational model based on Vallerand's (1997) Hierarchical Model of Intrinsic and Extrinsic Motivation. This model incorporates situational and contextual motivational variables, and was tested using a time-lagged design. Master's level swimmers (N = 104) completed a questionnaire on two separate occasions. At Time 1, situational social factors (perceptions of success and perceptions of the motivational climate), situational motivational mediators (perceptions of autonomy, competence, and relatedness), situational motivation, and flow were assessed immediately following a swim practice. Contextual measures of these same variables were assessed at Time 2, 1 week later, with the exception of flow. Results of a path analysis supported numerous links in the hypothesized model. Findings are discussed in light of research and theory on motivation and flow.

Top