Climate-driven C4 plant distributions in China: divergence in C4 taxa
Wang, Renzhong; Ma, Linna
2016-01-01
There have been debates on the driving factors of C4 plant expansion, such as PCO2 decline in the late Micocene and warmer climate and precipitation at large-scale modern ecosystems. These disputes are mainly due to the lack of direct evidence and extensive data analysis. Here we use mass flora data to explore the driving factors of C4 distribution and divergent patterns for different C4 taxa at continental scale in China. The results display that it is mean annual climate variables driving C4 distribution at present-day vegetation. Mean annual temperature is the critical restriction of total C4 plants and the precipitation gradients seem to have much less impact. Grass and sedge C4 plants are largely restricted to mean annual temperature and precipitation respectively, while Chenopod C4 plants are strongly restricted by aridity in China. Separate regression analysis can succeed to detect divergences of climate distribution patterns of C4 taxa at global scale. PMID:27302686
Climate tolerances and trait choices shape continental patterns of urban tree biodiversity
G. Darrel Jenerette; Lorraine W. Clarke; Meghan L. Avolio; Diane E. Pataki; Thomas W. Gillespie; Stephanie Pincetl; Dave J. Nowak; Lucy R. Hutyra; Melissa McHale; Joseph P. McFadden; Michael Alonzo
2016-01-01
Aim. We propose and test a climate tolerance and trait choice hypothesis of urban macroecological variation in which strong filtering associated with low winter temperatures restricts urban biodiversity while weak filtering associated with warmer temperatures and irrigation allows dispersal of species from a global source pool, thereby...
The subtle role of climate change on population genetic structure in Canada lynx.
Row, Jeffrey R; Wilson, Paul J; Gomez, Celine; Koen, Erin L; Bowman, Jeff; Thornton, Daniel; Murray, Dennis L
2014-07-01
Anthropogenically driven climatic change is expected to reshape global patterns of species distribution and abundance. Given recent links between genetic variation and environmental patterns, climate change may similarly impact genetic population structure, but we lack information on the spatial and mechanistic underpinnings of genetic-climate associations. Here, we show that current genetic variability of Canada lynx (Lynx canadensis) is strongly correlated with a winter climate gradient (i.e. increasing snow depth and winter precipitation from west-to-east) across the Pacific-North American (PNO) to North Atlantic Oscillation (NAO) climatic systems. This relationship was stronger than isolation by distance and not explained by landscape variables or changes in abundance. Thus, these patterns suggest that individuals restricted dispersal across the climate boundary, likely in the absence of changes in habitat quality. We propose habitat imprinting on snow conditions as one possible explanation for this unusual phenomenon. Coupling historical climate data with future projections, we also found increasingly diverging snow conditions between the two climate systems. Based on genetic simulations using projected climate data (2041-2070), we predicted that this divergence could lead to a threefold increase in genetic differentiation, potentially leading to isolated east-west populations of lynx in North America. Our results imply that subtle genetic structure can be governed by current climate and that substantive genetic differentiation and related ecological divergence may arise from changing climate patterns. © 2014 John Wiley & Sons Ltd.
Ashton, L A; Nakamura, A; Burwell, C J; Tang, Y; Cao, M; Whitaker, T; Sun, Z; Huang, H; Kitching, R L
2016-05-23
South-western China is widely acknowledged as a biodiversity 'hotspot': there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China's biodiversity and can be used to monitor future changes to herbivore assemblages in a 'hotspot' of biodiversity.
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-01-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity. PMID:27211989
NASA Astrophysics Data System (ADS)
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-05-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity.
Oliveira, Eliana Faria; Martinez, Pablo Ariel; São-Pedro, Vinícius Avelar; Gehara, Marcelo; Burbrink, Frank Thomas; Mesquita, Daniel Oliveira; Garda, Adrian Antonio; Colli, Guarino Rinaldi; Costa, Gabriel Correa
2018-03-01
Spatial patterns of genetic variation can help understand how environmental factors either permit or restrict gene flow and create opportunities for regional adaptations. Organisms from harsh environments such as the Brazilian semiarid Caatinga biome may reveal how severe climate conditions may affect patterns of genetic variation. Herein we combine information from mitochondrial DNA with physical and environmental features to study the association between different aspects of the Caatinga landscape and spatial genetic variation in the whiptail lizard Ameivula ocellifera. We investigated which of the climatic, environmental, geographical and/or historical components best predict: (1) the spatial distribution of genetic diversity, and (2) the genetic differentiation among populations. We found that genetic variation in A. ocellifera has been influenced mainly by temperature variability, which modulates connectivity among populations. Past climate conditions were important for shaping current genetic diversity, suggesting a time lag in genetic responses. Population structure in A. ocellifera was best explained by both isolation by distance and isolation by resistance (main rivers). Our findings indicate that both physical and climatic features are important for explaining the observed patterns of genetic variation across the xeric Caatinga biome.
Barker, Brittany S.; Rodríguez-Robles, Javier A.; Cook, Joseph A.
2014-01-01
The effects of late Quaternary climate on distributions and evolutionary dynamics of insular species are poorly understood in most tropical archipelagoes. We used ecological niche models under past and current climate to derive hypotheses regarding how stable climatic conditions shaped genetic diversity in two ecologically distinctive frogs in Puerto Rico. Whereas the Mountain Coquí, Eleutherodactylus portoricensis, is restricted to montane forest in the Cayey and Luquillo Mountains, the Red-eyed Coquí, E. antillensis, is a habitat generalist distributed across the entire Puerto Rican Bank (Puerto Rico and the Virgin Islands, excluding St. Croix). To test our hypotheses, we conducted phylogeographic and population genetic analyses based on mitochondrial and nuclear loci of each species across their range in Puerto Rico. Patterns of population differentiation in E. portoricensis, but not in E. antillensis, supported our hypotheses. For E. portoricensis, these patterns include: individuals isolated by long-term unsuitable climate in the Río Grande de Loíza Basin in eastern Puerto Rico belong to different genetic clusters; past and current climate strongly predicted genetic differentiation; and Cayey and Luquillo Mountains populations split prior to the last interglacial. For E. antillensis, these patterns include: genetic clusters did not fully correspond to predicted long-term unsuitable climate; and past and current climate weakly predicted patterns of genetic differentiation. Genetic signatures in E. antillensis are consistent with a recent range expansion into western Puerto Rico, possibly resulting from climate change and anthropogenic influences. As predicted, regions with a large area of long-term suitable climate were associated with higher genetic diversity in both species, suggesting larger and more stable populations. Finally, we discussed the implications of our findings for developing evidence-based management decisions for E. portoricensis, a taxon of special concern. Our findings illustrate the role of persistent suitable climatic conditions in promoting the persistence and diversification of tropical island organisms. PMID:26508809
Barker, Brittany S; Rodríguez-Robles, Javier A; Cook, Joseph A
2015-08-01
The effects of late Quaternary climate on distributions and evolutionary dynamics of insular species are poorly understood in most tropical archipelagoes. We used ecological niche models under past and current climate to derive hypotheses regarding how stable climatic conditions shaped genetic diversity in two ecologically distinctive frogs in Puerto Rico. Whereas the Mountain Coquí, Eleutherodactylus portoricensis , is restricted to montane forest in the Cayey and Luquillo Mountains, the Red-eyed Coquí, E. antillensis , is a habitat generalist distributed across the entire Puerto Rican Bank (Puerto Rico and the Virgin Islands, excluding St. Croix). To test our hypotheses, we conducted phylogeographic and population genetic analyses based on mitochondrial and nuclear loci of each species across their range in Puerto Rico. Patterns of population differentiation in E. portoricensis , but not in E. antillensis , supported our hypotheses. For E. portoricensis , these patterns include: individuals isolated by long-term unsuitable climate in the Río Grande de Loíza Basin in eastern Puerto Rico belong to different genetic clusters; past and current climate strongly predicted genetic differentiation; and Cayey and Luquillo Mountains populations split prior to the last interglacial. For E. antillensis , these patterns include: genetic clusters did not fully correspond to predicted long-term unsuitable climate; and past and current climate weakly predicted patterns of genetic differentiation. Genetic signatures in E. antillensis are consistent with a recent range expansion into western Puerto Rico, possibly resulting from climate change and anthropogenic influences. As predicted, regions with a large area of long-term suitable climate were associated with higher genetic diversity in both species, suggesting larger and more stable populations. Finally, we discussed the implications of our findings for developing evidence-based management decisions for E. portoricensis , a taxon of special concern. Our findings illustrate the role of persistent suitable climatic conditions in promoting the persistence and diversification of tropical island organisms.
Acclimatization patterns in tropical reptiles: uncoupling temperature and energetics.
Berg, Wiebke; Theisinger, Ole; Dausmann, Kathrin H
2017-10-13
The physiological compensation of animals in changing environments through acclimatization has long been considered to be of minor importance in tropical ectotherms due to more stable climatic conditions compared to temperate regions. Contrasting this assumption are reports about a range of metabolic adjustments in tropical species, especially during the last two decades from field acclimatized animals. Metabolic rates are strongly linked to temperature in ectotherms but they also reflect energetic requirements and restrictions. We therefore postulate that the observed variety of acclimatization patterns in tropical reptiles results from an interaction of multiple influences, including food and water availability, rather than from thermal constraints alone. We present new data from two sympatric Malagasy lizards with contrasting acclimatization patterns and, complemented with an extensive literature search, discuss the variety of acclimatization patterns in tropical reptiles with regard to thermal and energetic influences. This broad consideration of constraints allows a rearrangement of apparently controversial patterns into a scheme of decreasing metabolic costs, including two new categories for selective and selective inverse acclimatization, where metabolic shifts are restricted to body temperatures below those preferred during activity.
Ma, Ziyu; Sandel, Brody; Svenning, Jens-Christian
2016-05-01
How fast does biodiversity respond to climate change? The relationship of past and current climate with phylogenetic assemblage structure helps us to understand this question. Studies of angiosperm tree diversity in North America have already suggested effects of current water-energy balance and tropical niche conservatism. However, the role of glacial-interglacial climate variability remains to be determined, and little is known about any of these relationships for gymnosperms. Moreover, phylogenetic endemism, the concentration of unique lineages in restricted ranges, may also be related to glacial-interglacial climate variability and needs more attention. We used a refined phylogeny of both angiosperms and gymnosperms to map phylogenetic diversity, clustering and endemism of North American trees in 100-km grid cells, and climate change velocity since Last Glacial Maximum together with postglacial accessibility to recolonization to quantify glacial-interglacial climate variability. We found: (1) Current climate is the dominant factor explaining the overall patterns, with more clustered angiosperm assemblages toward lower temperature, consistent with tropical niche conservatism. (2) Long-term climate stability is associated with higher angiosperm endemism, while higher postglacial accessibility is linked to to more phylogenetic clustering and endemism in gymnosperms. (3) Factors linked to glacial-interglacial climate change have stronger effects on gymnosperms than on angiosperms. These results suggest that paleoclimate legacies supplement current climate in shaping phylogenetic patterns in North American trees, and especially so for gymnosperms.
Evidence for climate change in the satellite cloud record.
Norris, Joel R; Allen, Robert J; Evan, Amato T; Zelinka, Mark D; O'Dell, Christopher W; Klein, Stephen A
2016-08-04
Clouds substantially affect Earth's energy budget by reflecting solar radiation back to space and by restricting emission of thermal radiation to space. They are perhaps the largest uncertainty in our understanding of climate change, owing to disagreement among climate models and observational datasets over what cloud changes have occurred during recent decades and will occur in response to global warming. This is because observational systems originally designed for monitoring weather have lacked sufficient stability to detect cloud changes reliably over decades unless they have been corrected to remove artefacts. Here we show that several independent, empirically corrected satellite records exhibit large-scale patterns of cloud change between the 1980s and the 2000s that are similar to those produced by model simulations of climate with recent historical external radiative forcing. Observed and simulated cloud change patterns are consistent with poleward retreat of mid-latitude storm tracks, expansion of subtropical dry zones, and increasing height of the highest cloud tops at all latitudes. The primary drivers of these cloud changes appear to be increasing greenhouse gas concentrations and a recovery from volcanic radiative cooling. These results indicate that the cloud changes most consistently predicted by global climate models are currently occurring in nature.
Evidence for climate change in the satellite cloud record
NASA Astrophysics Data System (ADS)
Norris, Joel R.; Allen, Robert J.; Evan, Amato T.; Zelinka, Mark D.; O'Dell, Christopher W.; Klein, Stephen A.
2016-08-01
Clouds substantially affect Earth’s energy budget by reflecting solar radiation back to space and by restricting emission of thermal radiation to space. They are perhaps the largest uncertainty in our understanding of climate change, owing to disagreement among climate models and observational datasets over what cloud changes have occurred during recent decades and will occur in response to global warming. This is because observational systems originally designed for monitoring weather have lacked sufficient stability to detect cloud changes reliably over decades unless they have been corrected to remove artefacts. Here we show that several independent, empirically corrected satellite records exhibit large-scale patterns of cloud change between the 1980s and the 2000s that are similar to those produced by model simulations of climate with recent historical external radiative forcing. Observed and simulated cloud change patterns are consistent with poleward retreat of mid-latitude storm tracks, expansion of subtropical dry zones, and increasing height of the highest cloud tops at all latitudes. The primary drivers of these cloud changes appear to be increasing greenhouse gas concentrations and a recovery from volcanic radiative cooling. These results indicate that the cloud changes most consistently predicted by global climate models are currently occurring in nature.
Staunton, Kyran M; Robson, Simon K A; Burwell, Chris J; Reside, April E; Williams, Stephen E
2014-01-01
With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group's primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region.
Staunton, Kyran M.; Robson, Simon K. A.; Burwell, Chris J.; Reside, April E.; Williams, Stephen E.
2014-01-01
With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group’s primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region. PMID:24586362
Latitude, elevational climatic zonation and speciation in New World vertebrates
Cadena, Carlos Daniel; Kozak, Kenneth H.; Gómez, Juan Pablo; Parra, Juan Luis; McCain, Christy M.; Bowie, Rauri C. K.; Carnaval, Ana C.; Moritz, Craig; Rahbek, Carsten; Roberts, Trina E.; Sanders, Nathan J.; Schneider, Christopher J.; VanDerWal, Jeremy; Zamudio, Kelly R.; Graham, Catherine H.
2012-01-01
Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions. PMID:21632626
Douglas, Michael E; Douglas, Marlis R; Schuett, Gordon W; Porras, Louis W
2006-10-01
During Pleistocene, the Laurentide ice sheet rearranged and diversified biotic distributions in eastern North America, yet had minimal physical impact in western North America where lineage diversification is instead hypothesized to result from climatic changes. If Pleistocene climatic fluctuations impacted desert species, the latter would reflect patterns of restricted gene flow concomitant with indications of demographic bottlenecks. Accordingly, molecular evidence for refugia should be present within these distributions and for subsequent range expansions as conditions improved. We sought answers to these questions by evaluating mitochondrial DNA (mtDNA) sequences from four species of rattlesnakes [Crotalus mitchellii (speckled rattlesnake), Crotalus cerastes (sidewinder), Crotalus tigris (tiger rattlesnake), Crotalus ruber (red diamond rattlesnake)] with distributions restricted to desert regions of southwestern North America. We inferred relationships using parsimony and maximum likelihood, tested intraspecific clades for population expansions, applied an isolation-with-migration model to determine bi-directional migration rates (m) among regions, and inferred divergence times for species and clades by applying a semiparametric penalized likelihood approach to our molecular data. Evidence for significant range expansion was present in two of eight regions in two species (Crotalus mitchellii pyrrhus, C. tigris region north). Two species (C. cerastes, C. mitchellii) showed a distribution concomitant with northward displacement of Baja California from mainland México, followed by vicariant separation into subclades. Effects of Pleistocene climate fluctuations were found in the distributions of all four species. Three regional diversification patterns were identified: (i) shallow genetic diversity that resulted from Pleistocene climatic events (C. tigris, C. ruber); (ii) deep Pleistocene divisions indicating allopatric segregation of subclades within refugia (C. mitchellii, C. cerastes); and (iii) lineage diversifications that extended to Pliocene or Late Miocene (C. mitchellii, C. cerastes). Clade-diversifying and clade-constraining effects impacted the four species of rattlesnakes unequally. We found relatively high levels of molecular diversification in the two most broadly distributed species (C. mitchellii, C. cerastes), and lower levels of genetic diversification in the two species (C. tigris, C. ruber) whose ranges are relatively more restricted. Furthermore, in several cases, the distributions of subspecies were not congruent with our molecular information. We suggest regional conservation perspectives for southwestern deserts cannot rely upon subspecies as biodiversity surrogates, but must instead employ a molecular and deep historical perspective as a primary mechanism to frame biodiversity reserves within this region.
Evidence for climate change in the satellite cloud record
Norris, Joel R.; Allen, Robert J.; Evan, Amato T.; ...
2016-07-11
Clouds substantially affect Earth’s energy budget by reflecting solar radiation back to space and by restricting emission of thermal radiation to space 1. They are perhaps the largest uncertainty in our understanding of climate change, owing to disagreement among climate models and observational datasets over what cloud changes have occurred during recent decades and will occur in response to global warming 2, 3. This is because observational systems originally designed for monitoring weather have lacked sufficient stability to detect cloud changes reliably over decades unless they have been corrected to remove artefacts 4, 5. Here we show that several independent,more » empirically corrected satellite records exhibit large-scale patterns of cloud change between the 1980s and the 2000s that are similar to those produced by model simulations of climate with recent historical external radiative forcing. Observed and simulated cloud change patterns are consistent with poleward retreat of mid-latitude storm tracks, expansion of subtropical dry zones, and increasing height of the highest cloud tops at all latitudes. The primary drivers of these cloud changes appear to be increasing greenhouse gas concentrations and a recovery from volcanic radiative cooling. Here, these results indicate that the cloud changes most consistently predicted by global climate models are currently occurring in nature.« less
Global patterns in endemism explained by past climatic change.
Jansson, Roland
2003-03-22
I propose that global patterns in numbers of range-restricted endemic species are caused by variation in the amplitude of climatic change occurring on time-scales of 10-100 thousand years (Milankovitch oscillations). The smaller the climatic shifts, the more probable it is that palaeoendemics survive and that diverging gene pools persist without going extinct or merging, favouring the evolution of neoendemics. Using the change in mean annual temperature since the last glacial maximum, estimated from global circulation models, I show that the higher the temperature change in an area, the fewer endemic species of mammals, birds, reptiles, amphibians and vascular plants it harbours. This relationship was robust to variation in area (for areas greater than 10(4) km2), latitudinal position, extent of former glaciation and whether or not areas are oceanic islands. Past climatic change was a better predictor of endemism than annual temperature range in all phylads except amphibians, suggesting that Rapoport's rule (i.e. species range sizes increase with latitude) is best explained by the increase in the amplitude of climatic oscillations towards the poles. Globally, endemic-rich areas are predicted to warm less in response to greenhouse-gas emissions, but the predicted warming would cause many habitats to disappear regionally, leading to species extinctions.
Evidence for climate change in the satellite cloud record
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, Joel R.; Allen, Robert J.; Evan, Amato T.
Clouds substantially affect Earth’s energy budget by reflecting solar radiation back to space and by restricting emission of thermal radiation to space 1. They are perhaps the largest uncertainty in our understanding of climate change, owing to disagreement among climate models and observational datasets over what cloud changes have occurred during recent decades and will occur in response to global warming 2, 3. This is because observational systems originally designed for monitoring weather have lacked sufficient stability to detect cloud changes reliably over decades unless they have been corrected to remove artefacts 4, 5. Here we show that several independent,more » empirically corrected satellite records exhibit large-scale patterns of cloud change between the 1980s and the 2000s that are similar to those produced by model simulations of climate with recent historical external radiative forcing. Observed and simulated cloud change patterns are consistent with poleward retreat of mid-latitude storm tracks, expansion of subtropical dry zones, and increasing height of the highest cloud tops at all latitudes. The primary drivers of these cloud changes appear to be increasing greenhouse gas concentrations and a recovery from volcanic radiative cooling. Here, these results indicate that the cloud changes most consistently predicted by global climate models are currently occurring in nature.« less
Patterns and biases in climate change research on amphibians and reptiles: a systematic review.
Winter, Maiken; Fiedler, Wolfgang; Hochachka, Wesley M; Koehncke, Arnulf; Meiri, Shai; De la Riva, Ignacio
2016-09-01
Climate change probably has severe impacts on animal populations, but demonstrating a causal link can be difficult because of potential influences by additional factors. Assessing global impacts of climate change effects may also be hampered by narrow taxonomic and geographical research foci. We review studies on the effects of climate change on populations of amphibians and reptiles to assess climate change effects and potential biases associated with the body of work that has been conducted within the last decade. We use data from 104 studies regarding the effect of climate on 313 species, from 464 species-study combinations. Climate change effects were reported in 65% of studies. Climate change was identified as causing population declines or range restrictions in half of the cases. The probability of identifying an effect of climate change varied among regions, taxa and research methods. Climatic effects were equally prevalent in studies exclusively investigating climate factors (more than 50% of studies) and in studies including additional factors, thus bolstering confidence in the results of studies exclusively examining effects of climate change. Our analyses reveal biases with respect to geography, taxonomy and research question, making global conclusions impossible. Additional research should focus on under-represented regions, taxa and questions. Conservation and climate policy should consider the documented harm climate change causes reptiles and amphibians.
Chim Chan, On; Casper, Peter; Sha, Li Qing; Feng, Zhi Li; Fu, Yun; Yang, Xiao Dong; Ulrich, Andreas; Zou, Xiao Ming
2008-06-01
Bacterial community structure is influenced by vegetation, climate and soil chemical properties. To evaluate these influences, terminal restriction fragment length polymorphism (T-RFLP) and cloning of the 16S rRNA gene were used to analyze the soil bacterial communities in different ecosystems in southwestern China. We compared (1) broad-leaved forest, shrub and pastures in a high-plateau region, (2) three broad-leaved forests representing a climate gradient from high-plateau temperate to subtropical and tropical regions and (3) the humus and mineral soil layers of forests, shrub lands and pastures with open and restricted grazing activities, having varied soil carbon and nutrient contents. Principal component analysis of the T-RFLP patterns revealed that soil bacterial communities of the three vegetation types were distinct. The broad-leaved forests in different climates clustered together, and relatively minor differences were observed between the soil layers or the grazing regimes. Acidobacteria dominated the broad-leaved forests (comprising 62% of the total clone sequences), but exhibited lower relative abundances in the soils of shrub (31%) and pasture (23%). Betaproteobacteria was another dominant taxa of shrub land (31%), whereas Alpha- (19%) and Gammaproteobacteria (13%) and Bacteriodetes (16%) were major components of pasture. Vegetation exerted more pronounced influences than climate and soil chemical properties.
Cornille, A; Giraud, T; Bellard, C; Tellier, A; Le Cam, B; Smulders, M J M; Kleinschmit, J; Roldan-Ruiz, I; Gladieux, P
2013-04-01
Understanding the way in which the climatic oscillations of the Quaternary Period have shaped the distribution and genetic structure of extant tree species provides insight into the processes driving species diversification, distribution and survival. Deciphering the genetic consequences of past climatic change is also critical for the conservation and sustainable management of forest and tree genetic resources, a timely endeavour as the Earth heads into a period of fast climate change. We used a combination of genetic data and ecological niche models to investigate the historical patterns of biogeographic range expansion of a wild fruit tree, the European crabapple (Malus sylvestris), a wild contributor to the domesticated apple. Both climatic predictions for the last glacial maximum and analyses of microsatellite variation indicated that M. sylvestris experienced range contraction and fragmentation. Bayesian clustering analyses revealed a clear pattern of genetic structure, with one genetic cluster spanning a large area in Western Europe and two other genetic clusters with a more limited distribution range in Eastern Europe, one around the Carpathian Mountains and the other restricted to the Balkan Peninsula. Approximate Bayesian computation appeared to be a powerful technique for inferring the history of these clusters, supporting a scenario of simultaneous differentiation of three separate glacial refugia. Admixture between these three populations was found in their suture zones. A weak isolation by distance pattern was detected within each population, indicating a high extent of historical gene flow for the European crabapple. © 2013 Blackwell Publishing Ltd.
Distribution of Cenozoic plant relicts in China explained by drought in dry season.
Huang, Yongjiang; Jacques, Frédéric M B; Su, Tao; Ferguson, David K; Tang, Hui; Chen, Wenyun; Zhou, Zhekun
2015-09-15
Cenozoic plant relicts are those groups that were once widespread in the Northern Hemisphere but are now restricted to some small isolated areas as a result of drastic climatic changes. They are good proxies to study how plants respond to climatic changes since their modern climatic requirements are known. Herein we look at the modern distribution of 65 palaeoendemic genera in China and compare it with the Chinese climatic pattern, in order to find a link between the plant distribution and climate. Central China and Taiwan Island are shown to be diversity centres of Cenozoic relict genera, consistent with the fact that these two regions have a shorter dry season with comparatively humid autumn and spring in China. Species distribution models indicate that the precipitation parameters are the most important variables to explain the distribution of relict genera. The Cenozoic wide-scale distribution of relict plants in the Northern Hemisphere is therefore considered to be linked to the widespread humid climate at that time, and the subsequent contraction of their distributional ranges was probably caused by the drying trend along with global cooling.
Distribution of Cenozoic plant relicts in China explained by drought in dry season
Huang, Yongjiang; Jacques, Frédéric M. B.; Su, Tao; Ferguson, David K.; Tang, Hui; Chen, Wenyun; Zhou, Zhekun
2015-01-01
Cenozoic plant relicts are those groups that were once widespread in the Northern Hemisphere but are now restricted to some small isolated areas as a result of drastic climatic changes. They are good proxies to study how plants respond to climatic changes since their modern climatic requirements are known. Herein we look at the modern distribution of 65 palaeoendemic genera in China and compare it with the Chinese climatic pattern, in order to find a link between the plant distribution and climate. Central China and Taiwan Island are shown to be diversity centres of Cenozoic relict genera, consistent with the fact that these two regions have a shorter dry season with comparatively humid autumn and spring in China. Species distribution models indicate that the precipitation parameters are the most important variables to explain the distribution of relict genera. The Cenozoic wide-scale distribution of relict plants in the Northern Hemisphere is therefore considered to be linked to the widespread humid climate at that time, and the subsequent contraction of their distributional ranges was probably caused by the drying trend along with global cooling. PMID:26369980
Maldonado-Sánchez, Denisse; Gutiérrez-Rodríguez, Carla; Ornelas, Juan Francisco
2016-06-01
By integrating mitochondrial DNA (mtDNA), microsatellites and ecological niche modelling (ENM), we investigated the phylogeography of Mexican populations of the common bush-tanager Chlorospingus ophthalmicus to examine the relative role of geographical and ecological features, as well as Pleistocene climatic oscillations in driving the diversification. We sequenced mtDNA of individuals collected throughout the species range in Mexico and genotyped them at seven microsatellite loci. Phylogeographic, population genetics and coalescent methods were used to assess patterns of genetic structure, gene flow and demographic history. ENM was used to infer contractions and expansions at different time periods as well as differences in climatic conditions among lineages. The retrieved mitochondrial and microsatellite groups correspond with the fragmented cloud forest distribution in mountain ranges and morphotectonic provinces. Differing climatic conditions between mountain ranges were detected, and palaeodistribution modelling as well as demographic history analyses, indicated recent population expansions throughout the Sierra Madre Oriental (SMO). The marked genetic structure of C. ophthalmicus was promoted by the presence of ecological and geographical barriers that restricted the movement of individuals among mountain ranges. The SMO was mainly affected by Pleistocene climatic oscillations, with the moist forests model best fitting the displayed genetic patterns of populations in this mountain range. Copyright © 2016 Elsevier Inc. All rights reserved.
Crase, Beth; Vesk, Peter A; Liedloff, Adam; Wintle, Brendan A
2015-08-01
Dominant species influence the composition and abundance of other species present in ecosystems. However, forecasts of distributional change under future climates have predominantly focused on changes in species distribution and ignored possible changes in spatial and temporal patterns of dominance. We develop forecasts of spatial changes for the distribution of species dominance, defined in terms of basal area, and for species occurrence, in response to sea level rise for three tree taxa within an extensive mangrove ecosystem in northern Australia. Three new metrics are provided, indicating the area expected to be suitable under future conditions (Eoccupied ), the instability of suitable area (Einstability ) and the overlap between the current and future spatial distribution (Eoverlap ). The current dominance and occurrence were modelled in relation to a set of environmental variables using boosted regression tree (BRT) models, under two scenarios of seedling establishment: unrestricted and highly restricted. While forecasts of spatial change were qualitatively similar for species occurrence and dominance, the models of species dominance exhibited higher metrics of model fit and predictive performance, and the spatial pattern of future dominance was less similar to the current pattern than was the case for the distributions of species occurrence. This highlights the possibility of greater changes in the spatial patterning of mangrove tree species dominance under future sea level rise. Under the restricted seedling establishment scenario, the area occupied by or dominated by a species declined between 42.1% and 93.8%, while for unrestricted seedling establishment, the area suitable for dominance or occurrence of each species varied from a decline of 68.4% to an expansion of 99.5%. As changes in the spatial patterning of dominance are likely to cause a cascade of effects throughout the ecosystem, forecasting spatial changes in dominance provides new and complementary information in addition to that provided by forecasts of species occurrence. © 2015 John Wiley & Sons Ltd.
Wood, Dustin A.; Vandergast, A.G.; Espinal, A. Lemos; Fisher, R.N.; Holycross, A.T.
2011-01-01
Glacial–interglacial cycles of the Pleistocene are hypothesized as one of the foremost contributors to biological diversification. This is especially true for cold-adapted montane species, where range shifts have had a pronounced effect on population-level divergence. Gartersnakes of the Thamnophis rufipunctatus species complex are restricted to cold headwater streams in the highlands of the Sierra Madre Occidental and southwestern USA. We used coalescent and multilocus phylogenetic approaches to test whether genetic diversification of this montane-restricted species complex is consistent with two prevailing models of range fluctuation for species affected by Pleistocene climate changes. Our concatenated nuDNA and multilocus species analyses recovered evidence for the persistence of multiple lineages that are restricted geographically, despite a mtDNA signature consistent with either more recent connectivity (and introgression) or recent expansion (and incomplete lineage sorting). Divergence times estimated using a relaxed molecular clock and fossil calibrations fall within the Late Pleistocene, and zero gene flow scenarios among current geographically isolated lineages could not be rejected. These results suggest that increased climate shifts in the Late Pleistocene have driven diversification and current range retraction patterns and that the differences between markers reflect the stochasticity of gene lineages (i.e. ancestral polymorphism) rather than gene flow and introgression. These results have important implications for the conservation of T. rufipunctatus (sensu novo), which is restricted to two drainage systems in the southwestern US and has undergone a recent and dramatic decline.
Patterns and biases in climate change research on amphibians and reptiles: a systematic review
2016-01-01
Climate change probably has severe impacts on animal populations, but demonstrating a causal link can be difficult because of potential influences by additional factors. Assessing global impacts of climate change effects may also be hampered by narrow taxonomic and geographical research foci. We review studies on the effects of climate change on populations of amphibians and reptiles to assess climate change effects and potential biases associated with the body of work that has been conducted within the last decade. We use data from 104 studies regarding the effect of climate on 313 species, from 464 species–study combinations. Climate change effects were reported in 65% of studies. Climate change was identified as causing population declines or range restrictions in half of the cases. The probability of identifying an effect of climate change varied among regions, taxa and research methods. Climatic effects were equally prevalent in studies exclusively investigating climate factors (more than 50% of studies) and in studies including additional factors, thus bolstering confidence in the results of studies exclusively examining effects of climate change. Our analyses reveal biases with respect to geography, taxonomy and research question, making global conclusions impossible. Additional research should focus on under-represented regions, taxa and questions. Conservation and climate policy should consider the documented harm climate change causes reptiles and amphibians. PMID:27703684
NASA Astrophysics Data System (ADS)
Langenbrunner, B.; Neelin, J.; Meyerson, J.
2011-12-01
The accurate representation of precipitation is a recurring issue in global climate models, especially in the tropics. Poor skill in modeling the variability and climate teleconnections associated with El Niño/Southern Oscillation (ENSO) also persisted in the latest Climate Model Intercomparison Project (CMIP) campaigns. Observed ENSO precipitation teleconnections provide a standard by which we can judge a given model's ability to reproduce precipitation and dynamic feedback processes originating in the tropical Pacific. Using CMIP3 Atmospheric Model Intercomparison Project (AMIP) runs as a baseline, we compare precipitation teleconnections between models and observations, and we evaluate these results against available CMIP5 historical and AMIP runs. Using AMIP simulations restricts evaluation to the atmospheric response, as sea surface temperatures (SSTs) in AMIP are prescribed by observations. We use a rank correlation between ENSO SST indices and precipitation to define teleconnections, since this method is robust to outliers and appropriate for non-Gaussian data. Spatial correlations of the modeled and observed teleconnections are then evaluated. We look at these correlations in regions of strong precipitation teleconnections, including equatorial S. America, the "horseshoe" region in the western tropical Pacific, and southern N. America. For each region and season, we create a "normalized projection" of a given model's teleconnection pattern onto that of the observations, a metric that assesses the quality of regional pattern simulations while rewarding signals of correct sign over the region. Comparing this to an area-averaged (i.e., more generous) metric suggests models do better when restrictions on exact spatial dependence are loosened and conservation constraints apply. Model fidelity in regional measures remains far from perfect, suggesting intrinsic issues with the models' regional sensitivities in moist processes.
Waterhouse, Matthew D; Erb, Liesl P; Beever, Erik A; Russello, Michael A
2018-06-01
The ecological effects of climate change have been shown in most major taxonomic groups; however, the evolutionary consequences are less well-documented. Adaptation to new climatic conditions offers a potential long-term mechanism for species to maintain viability in rapidly changing environments, but mammalian examples remain scarce. The American pika (Ochotona princeps) has been impacted by recent climate-associated extirpations and range-wide reductions in population sizes, establishing it as a sentinel mammalian species for climate change. To investigate evidence for local adaptation and reconstruct patterns of genomic diversity and gene flow across rapidly changing environments, we used a space-for-time design and restriction site-associated DNA sequencing to genotype American pikas along two steep elevational gradients at 30,966 SNPs and employed independent outlier detection methods that scanned for genotype-environment associations. We identified 338 outlier SNPs detected by two separate analyses and/or replicated in both transects, several of which were annotated to genes involved in metabolic function and oxygen transport. Additionally, we found evidence of directional gene flow primarily downslope from high-elevation populations, along with reduced gene flow at outlier loci. If this trend continues, elevational range contractions in American pikas will likely be from local extirpation rather than upward movement of low-elevation individuals; this, in turn, could limit the potential for adaptation within this landscape. These findings are of particular relevance for future conservation and management of American pikas and other elevationally restricted, thermally sensitive species. © 2018 John Wiley & Sons Ltd.
Achieving climate connectivity in a fragmented landscape
Lawler, Joshua J.; McRae, Brad H.; Nuñez, Tristan A.; Theobald, David M.
2016-01-01
The contiguous United States contains a disconnected patchwork of natural lands. This fragmentation by human activities limits species’ ability to track suitable climates as they rapidly shift. However, most models that project species movement needs have not examined where fragmentation will limit those movements. Here, we quantify climate connectivity, the capacity of landscape configuration to allow species movement in the face of dynamically shifting climate. Using this metric, we assess to what extent habitat fragmentation will limit species movements in response to climate change. We then evaluate how creating corridors to promote climate connectivity could potentially mitigate these restrictions, and we assess where strategies to increase connectivity will be most beneficial. By analyzing fragmentation patterns across the contiguous United States, we demonstrate that only 41% of natural land area retains enough connectivity to allow plants and animals to maintain climatic parity as the climate warms. In the eastern United States, less than 2% of natural area is sufficiently connected. Introducing corridors to facilitate movement through human-dominated regions increases the percentage of climatically connected natural area to 65%, with the most impactful gains in low-elevation regions, particularly in the southeastern United States. These climate connectivity analyses allow ecologists and conservation practitioners to determine the most effective regions for increasing connectivity. More importantly, our findings demonstrate that increasing climate connectivity is critical for allowing species to track rapidly changing climates, reconfiguring habitats to promote access to suitable climates. PMID:27298349
Achieving climate connectivity in a fragmented landscape.
McGuire, Jenny L; Lawler, Joshua J; McRae, Brad H; Nuñez, Tristan A; Theobald, David M
2016-06-28
The contiguous United States contains a disconnected patchwork of natural lands. This fragmentation by human activities limits species' ability to track suitable climates as they rapidly shift. However, most models that project species movement needs have not examined where fragmentation will limit those movements. Here, we quantify climate connectivity, the capacity of landscape configuration to allow species movement in the face of dynamically shifting climate. Using this metric, we assess to what extent habitat fragmentation will limit species movements in response to climate change. We then evaluate how creating corridors to promote climate connectivity could potentially mitigate these restrictions, and we assess where strategies to increase connectivity will be most beneficial. By analyzing fragmentation patterns across the contiguous United States, we demonstrate that only 41% of natural land area retains enough connectivity to allow plants and animals to maintain climatic parity as the climate warms. In the eastern United States, less than 2% of natural area is sufficiently connected. Introducing corridors to facilitate movement through human-dominated regions increases the percentage of climatically connected natural area to 65%, with the most impactful gains in low-elevation regions, particularly in the southeastern United States. These climate connectivity analyses allow ecologists and conservation practitioners to determine the most effective regions for increasing connectivity. More importantly, our findings demonstrate that increasing climate connectivity is critical for allowing species to track rapidly changing climates, reconfiguring habitats to promote access to suitable climates.
Diverse Responses of Global Vegetation to Climate Changes: Spatial Patterns and Time-lag Effects
NASA Astrophysics Data System (ADS)
Wu, D.; Zhao, X.; Zhou, T.; Huang, K.; Xu, W.
2014-12-01
Global climate changes have enormous influences on vegetation growth, meanwhile, response of vegetation to climate express space diversity and time-lag effects, which account for spatial-temporal disparities of climate change and spatial heterogeneity of ecosystem. Revelation of this phenomenon will help us further understanding the impact of climate change on vegetation. Assessment and forecast of global environmental change can be also improved under further climate change. Here we present space diversity and time-lag effects patterns of global vegetation respond to three climate factors (temperature, precipitation and solar radiation) based on quantitative analysis of satellite data (NDVI) and Climate data (Climate Research Unit). We assessed the time-lag effects of global vegetation to main climate factors based on the great correlation fitness between NDVI and the three climate factors respectively among 0-12 months' temporal lags. On this basis, integrated response model of NDVI and the three climate factors was built to analyze contribution of different climate factors to vegetation growth with multiple regression model and partial correlation model. In the result, different vegetation types have distinct temporal lags to the three climate factors. For the precipitation, temporal lags of grasslands are the shortest while the evergreen broad-leaf forests are the longest, which means that grasslands are more sensitive to precipitation than evergreen broad-leaf forests. Analysis of different climate factors' contribution to vegetation reveal that vegetation are dominated by temperature in the high northern latitudes; they are mainly restricted by precipitation in arid and semi-arid areas (Australia, Western America); in humid areas of low and intermediate latitudes (Amazon, Eastern America), vegetation are mainly influenced by solar radiation. Our results reveal the time-lag effects and major driving factors of global vegetation growth and explain the spatiotemporal variations of global vegetation in last 30 years. Significantly, it is as well as in forecasting and assessing the influences of future climate change on the vegetation dynamics. This work was supported by the High Technology Research and Development Program of China (Grant NO.2013AA122801).
Sun, J-T; Jin, P-Y; Hoffmann, A A; Duan, X-Z; Dai, J; Hu, G; Xue, X-F; Hong, X-Y
2018-05-24
There is increasing evidence that mitochondrial genomes (mitogenomes) can be under selection, whereas the selective regimes shaping mitogenome evolution remain largely unclear. To test for mitochondrial genome evolution in relation to the climate adaptation, we explored mtDNA variation in two spider mite (Tetranychus) species, which distribute across different climates. We sequenced 26 complete mitogenomes of T. truncatus which occurs in both warm and cold regions, and 9 complete mitogenomes of T. pueraricola which is only restricted in warm regions. Patterns of evolution in the two species mitogenomes were compared through a series of d N /d S methods and physicochemical profiles of amino acid replacements. We found that (1) the mitogenomes of both species were under widespread purifying selection. (2) Elevated directional adaptive selection was observed in the T. truncatus mitogenome, perhaps linked to the cold climates adaptation of T. truncatus. (3) The strength of selection varied across genes, and diversifying positive selection detected on ND4 and ATP6 pointed to their crucial roles during adaptation to different climatic conditions. This study gained insight into the mitogenome evolution in relation to the climate adaptation. This article is protected by copyright. All rights reserved. © 2018 The Royal Entomological Society.
Valladares, Fernando; Matesanz, Silvia; Guilhaumon, François; Araújo, Miguel B; Balaguer, Luis; Benito-Garzón, Marta; Cornwell, Will; Gianoli, Ernesto; van Kleunen, Mark; Naya, Daniel E; Nicotra, Adrienne B; Poorter, Hendrik; Zavala, Miguel A
2014-11-01
Species are the unit of analysis in many global change and conservation biology studies; however, species are not uniform entities but are composed of different, sometimes locally adapted, populations differing in plasticity. We examined how intraspecific variation in thermal niches and phenotypic plasticity will affect species distributions in a warming climate. We first developed a conceptual model linking plasticity and niche breadth, providing five alternative intraspecific scenarios that are consistent with existing literature. Secondly, we used ecological niche-modeling techniques to quantify the impact of each intraspecific scenario on the distribution of a virtual species across a geographically realistic setting. Finally, we performed an analogous modeling exercise using real data on the climatic niches of different tree provenances. We show that when population differentiation is accounted for and dispersal is restricted, forecasts of species range shifts under climate change are even more pessimistic than those using the conventional assumption of homogeneously high plasticity across a species' range. Suitable population-level data are not available for most species so identifying general patterns of population differentiation could fill this gap. However, the literature review revealed contrasting patterns among species, urging greater levels of integration among empirical, modeling and theoretical research on intraspecific phenotypic variation. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species.
Caballero-Mellado, Jesús; Martínez-Aguilar, Lourdes; Paredes-Valdez, Guadalupe; Santos, Paulina Estrada-De los
2004-07-01
It was shown recently that the genus Burkholderia is rich in N2-fixing bacteria that are associated with plants. A group of these diazotrophic isolates with identical or very similar 16S rDNA restriction patterns [designated amplified rDNA restriction analysis (ARDRA) genotypes 13, 14 and 15] was selected and a polyphasic taxonomic study was performed, which included new isolates that were recovered from rhizospheres, rhizoplanes or internal tissues of maize, sugarcane and coffee plants. Morphological, physiological and biochemical features, as well as multi-locus enzyme electrophoresis profiles and whole-cell protein patterns, of 20 strains were analysed. In addition, analysis of cellular fatty acid profiles, 16S rDNA sequence analysis and DNA-DNA reassociation experiments were performed with representative strains. The taxonomic data indicated that the strains analysed belong to a novel diazotrophic Burkholderia species, for which the name Burkholderia unamae sp. nov. is proposed. Strain MTl-641T (=ATCC BAA-744T=CIP 107921T), isolated from the rhizosphere of maize, was designated as the type strain. B. unamae was found as an endophyte of plants grown in regions with climates ranging from semi-hot subhumid to hot humid, but not from plants grown in regions with semi-hot or hot dry climates. Moreover, B. unamae was isolated from rhizospheres and plants growing in soils with pH values in the range 4.5-7.1, but not from soils with pH values higher than 7.5.
Life on the edge: insect ecology in arctic environments.
Strathdee, A T; Bale, J S
1998-01-01
The restricted Arctic insect fauna is usually explained by a lack of recolonization since the last glacial period, inadequate supply of suitable resources, or insufficient adaptation to such a harsh environment. These hypotheses and others that attempt to explain the latitudinal gradient of species distributions and abundance are reviewed. Arctic habitats available to insects are strongly heterogeneous, requiring a similarly diverse array of adaptive responses, characteristic of those species that have colonized and survived in such a stressful climate. Important adaptations in morphology (size, wings), behavior (activity patterns, thermoregulation), life cycles, and ecophysiology (cold hardiness, anaerobiosis, desiccation resistance) are discussed. The current focus of global climate change research on polar regions is identified, particularly the opportunity to study fundamental ecological processes and spatial dynamics in the relatively simple Arctic ecosystems.
Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.
Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando
2016-01-01
The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .
Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke
2016-01-01
Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity.
Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke
2016-01-01
Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity. PMID:27314028
Environmental stability and the evolution of cooperative breeding in hornbills
Gonzalez, Juan-Carlos T.; Sheldon, Ben C.; Tobias, Joseph A.
2013-01-01
Reproductive cooperation in social animals has been the focus of intensive research, yet the role of environmental factors in promoting such cooperation remains uncertain. A recent global analysis suggested that cooperative breeding in birds is a ‘bet-hedging’ strategy associated with climatic uncertainty, but it is unclear whether this mechanism applies generally or is restricted to the insectivorous passerines that predominate as cooperative breeders at the global scale. Here, we use a phylogenetic framework to assess the effect of climate on the evolution of cooperation in hornbills (Bucerotidae), an avian family characterized by frugivory and carnivory. We show that, in contrast to the global pattern, cooperative reproduction is positively associated with both inter- and intra-annual climatic stability. This reversed relationship implies that hornbills are relatively insensitive to climatic fluctuations, perhaps because of their dietary niche or increased body mass, both of which may remove the need for bet-hedging. We conclude that the relationship between climatic variability and cooperative breeding is inconsistent across taxa, and potentially mediated by life-history variation. These findings help to explain the mixed results of previous studies and highlight the likely shortcomings of global datasets inherently biased towards particular categories. PMID:23926149
Geurts, Katrien; Mwatawala, Maulid; De Meyer, Marc
2012-01-01
The relative abundance of indigenous and invasive frugivorous fruit flies (Diptera: Tephritidae) was evaluated spatially and temporally along an altitudinal transect between 581–1650 m in the Uluguru Mountains near Morogoro, Tanzania. The polyphagous invasive fruit fly Bactrocera invadens Drew, Tsuruta, and White and the indigenous fruit fly Ceratitis rosa Karsch show a similar temporal pattern, but are largely separated spatially, with B. invadens being abundant at lower elevation and C. rosa predominant at higher elevation. The polyphagous indigenous C. cosyra (Walker) coincides with B. invadens but shows an inverse temporal pattern. The cucurbit feeders B. cucurbitae (Coquillett) and Dacus bivittatus (Bigot) show a similar temporal pattern, but the former is restricted to lower elevations. Host availability and climatic differences seem to be the determining factors to explain the differences in occurrence and abundance in time and space. PMID:22935017
Krushelnycky, Paul D.; Loope, Lloyd L.; Giambelluca, Thomas W.; Starr, Forest; Starr, Kim; Drake, Donald R.; Taylor, Andrew D.; Robichaux, Robert H.
2013-01-01
Although climate change is predicted to place mountain-top and other narrowly endemic species at severe risk of extinction, the ecological processes involved in such extinctions are still poorly resolved. In addition, much of this biodiversity loss will likely go unobserved, and therefore largely unappreciated. The Haleakalā silversword is restricted to a single volcano summit in Hawai‘i, but is a highly charismatic giant rosette plant that is viewed by 1–2 million visitors annually. We link detailed local climate data to a lengthy demographic record, and combine both with a population-wide assessment of recent plant mortality and recruitment, to show that after decades of strong recovery following successful management, this iconic species has entered a period of substantial climate-associated decline. Mortality has been highest at the lower end of the distributional range, where most silverswords occur, and the strong association of annual population growth rates with patterns of precipitation suggests an increasing frequency of lethal water stress. Local climate data confirm trends toward warmer and drier conditions on the mountain, and signify a bleak outlook for silverswords if these trends continue. The silversword example foreshadows trouble for diversity in other biological hotspots, and illustrates how even well-protected and relatively abundant species may succumb to climate-induced stresses.
NASA Astrophysics Data System (ADS)
Rey Vicario, D.; Holman, I.
2016-12-01
The use of water for irrigation and on-farm reservoir filling is globally important for agricultural production. In humid climates, like the UK, supplemental irrigation can be critical to buffer the effects of rainfall variability and to achieve high quality crops. Given regulatory efforts to secure sufficient environmental river flows and meet rising water demands due to population growth and climate change, increasing water scarcity is likely to compound the drought challenges faced by irrigated agriculture in this region. Currently, water abstraction from surface waters for agricultural irrigation can be restricted by the Environment Agency during droughts under Section 57 of the Water Resources Act (1991), based on abnormally low river flow levels and rainfall forecast, causing significant economic impacts on irrigated agricultural production. The aim of this study is to assess the impact that climate change may have on agricultural abstraction in the UK within the context of the abstraction restriction triggers currently in place. These triggers have been applied to the `Future Flows hydrology' database to assess the likelihood of increasing restrictions on agricultural abstraction in the future by comparing the probability of voluntary and compulsory restrictions in the baseline (1961-1990) and future period (2071-2098) for 282 catchments throughout the whole of the UK. The results of this study show a general increase in the probability of future agricultural irrigation abstraction restrictions in the UK in the summer, particularly in the South West, although there is significant variability between the 11 ensemble members. The results also indicate that UK winters are likely to become wetter in the future, although in some catchments the probability of abstraction restriction in the reservoir refilling winter months (November-February) could increase slightly. An increasing frequency of drought events due to climate change is therefore likely to lead to more water abstraction restrictions, increasing the need for irrigators to adapt their businesses to increase drought resilience and hence food security.
Mayol, Maria; Palau, Carles; Rosselló, Josep A; González-Martínez, Santiago C; Molins, Arántzazu; Riba, Miquel
2012-02-01
Archipelagos are unique systems for studying evolutionary processes promoting diversification and speciation. The islands of the Mediterranean basin are major areas of plant richness, including a high proportion of narrow endemics. Many endemic plants are currently found in rocky habitats, showing varying patterns of habitat occupancy at different spatial scales throughout their range. The aim of the present study was to understand the impact of varying patterns of population distribution on genetic diversity and structure to shed light on demographic and evolutionary processes leading to population diversification in Crepis triasii, an endemic plant from the eastern Balearic Islands. Using allozyme and chloroplast markers, we related patterns of genetic structure and diversity to those of habitat occupancy at a regional (between islands and among populations within islands) and landscape (population size and connectivity) scale. Genetic diversity was highly structured both at the regional and at the landscape level, and was positively correlated with population connectivity in the landscape. Populations located in small isolated mountains and coastal areas, with restricted patterns of regional occupancy, were genetically less diverse and much more differentiated. In addition, more isolated populations had stronger fine-scale genetic structure than well-connected ones. Changes in habitat availability and quality arising from marine transgressions during the Quaternary, as well as progressive fragmentation associated with the aridification of the climate since the last glaciation, are the most plausible factors leading to the observed patterns of genetic diversity and structure. Our results emphasize the importance of gene flow in preventing genetic erosion and maintaining the evolutionary potential of populations. They also agree with recent studies highlighting the importance of restricted gene flow and genetic drift as drivers of plant evolution in Mediterranean continental islands.
Wang, Changhui; Chen, Zhe; Unteregelsbacher, Sebastian; Lu, Haiyan; Gschwendtner, Silvia; Gasche, Rainer; Kolar, Allison; Schloter, Michael; Kiese, Ralf; Butterbach-Bahl, Klaus; Dannenmann, Michael
2016-09-01
The carbon- and nitrogen-rich soils of montane grasslands are exposed to above-average warming and to altered precipitation patterns as a result of global change. To investigate the consequences of climatic change for soil nitrogen turnover, we translocated intact plant-soil mesocosms along an elevational gradient, resulting in an increase of the mean annual temperature by approx. 2 °C while decreasing precipitation from approx. 1500 to 1000 mm. Following three years of equilibration, we monitored the dynamics of gross nitrogen turnover and ammonia-oxidizing bacteria (AOB) and archaea (AOA) in soils over an entire year. Gross nitrogen turnover and gene levels of AOB and AOA showed pronounced seasonal dynamics. Both summer and winter periods equally contributed to cumulative annual N turnover. However, highest gross N turnover and abundance of ammonia oxidizers were observed in frozen soil of the climate change site, likely due to physical liberation of organic substrates and their rapid turnover in the unfrozen soil water film. This effect was not observed at the control site, where soil freezing did not occur due to a significant insulating snowpack. Climate change conditions accelerated gross nitrogen mineralization by 250% on average. Increased N mineralization significantly stimulated gross nitrification by AOB rather than by AOA. However, climate change impacts were restricted to the 2-6 cm topsoil and rarely occurred at 12-16 cm depth, where generally much lower N turnover was observed. Our study shows that significant mineralization pulses occur under changing climate, which is likely to result in soil organic matter losses with their associated negative impacts on key soil functions. We also show that N cycling processes in frozen soil can be hot moments for N turnover and thus are of paramount importance for understanding seasonal patterns, annual sum of N turnover and possible climate change feedbacks. © 2016 John Wiley & Sons Ltd.
Schmidt, Daniel J.; Ponniah, Mark; Carini, Giovannella; Blair, David; Hughes, Jane M.
2014-01-01
Comparative phylogeography of commensal species may show congruent patterns where the species involved share a common history. Temnosewellia is a genus of flatworms, members of which live in commensal relationships with host freshwater crustaceans. By constructing phylogenetic trees based on mitochondrial COI and 28S nuclear ribosomal gene sequences, this study investigated how evolutionary history has shaped patterns of intraspecific molecular variation in two such freshwater commensals. This study concentrates on the flatworm Temnosewellia albata and its critically endangered crayfish host Euastacus robertsi, which have a narrow climatically-restricted distribution on three mountaintops. The genetic data expands upon previous studies of Euastacus that suggested several vicariance events have led to the population subdivision of Euastacus robertsi. Further, our study compared historical phylogeographic patterning of these species. Our results showed that phylogeographic patterns shared among these commensals were largely congruent, featuring a shared history of limited dispersal between the mountaintops. Several hypotheses were proposed to explain the phylogeographic points of differences between the species. This study contributes significantly to understanding evolutionary relationships of commensal freshwater taxa. PMID:25279257
Hotaling, Scott; Muhlfeld, Clint C.; Giersch, J. Joseph; Ali, Omar; Jordan, Steve; Miller, Michael R.; Luikart, Gordon; Weisrock, David W.
2018-01-01
AimClimate warming is causing extensive loss of glaciers in mountainous regions, yet our understanding of how glacial recession influences evolutionary processes and genetic diversity is limited. Linking genetic structure with the influences shaping it can improve understanding of how species respond to environmental change. Here, we used genome-scale data and demographic modelling to resolve the evolutionary history of Lednia tumana, a rare, aquatic insect endemic to alpine streams. We also employed a range of widely used data filtering approaches to quantify how they influenced population structure results.LocationAlpine streams in the Rocky Mountains of Glacier National Park, Montana, USA.TaxonLednia tumana, a stonefly (Order Plecoptera) in the family Nemouridae.MethodsWe generated single nucleotide polymorphism data through restriction-site associated DNA sequencing to assess contemporary patterns of genetic structure for 11 L. tumana populations. Using identified clusters, we assessed demographic history through model selection and parameter estimation in a coalescent framework. During population structure analyses, we filtered our data to assess the influence of singletons, missing data and total number of markers on results.ResultsContemporary patterns of population structure indicate that L. tumana exhibits a pattern of isolation-by-distance among populations within three genetic clusters that align with geography. Mean pairwise genetic differentiation (FST) among populations was 0.033. Coalescent-based demographic modelling supported divergence with gene flow among genetic clusters since the end of the Pleistocene (~13-17 kya), likely reflecting the south-to-north recession of ice sheets that accumulated during the Wisconsin glaciation.Main conclusionsWe identified a link between glacial retreat, evolutionary history and patterns of genetic diversity for a range-restricted stonefly imperiled by climate change. This finding included a history of divergence with gene flow, an unexpected conclusion for a mountaintop species. Beyond L. tumana, this study demonstrates the complexity of assessing genetic structure for weakly differentiated species, shows the degree to which rare alleles and missing data may influence results, and highlights the usefulness of genome-scale data to extend population genetic inquiry in non-model species.
Bosch, Jaime; Fernández-Beaskoetxea, Saioa; Garner, Trenton W J; Carrascal, Luis María
2018-06-01
Infectious disease and climate change are considered major threats to biodiversity and act as drivers behind the global amphibian decline. This is, to a large extent, based on short-term studies that are designed to detect the immediate and strongest biodiversity responses to a threatening process. What few long-term studies are available, although typically focused on single species, report outcomes that often diverge significantly from the short-term species responses. Here, we report the results of an 18-year survey of an amphibian community exposed to both climate warming and the emergence of lethal chytridiomycosis. Our study shows that the impacts of infectious disease are ongoing but restricted to two out of nine species that form the community, despite the fact all species can become infected with the fungus. Climate warming appears to be affecting four out of the nine species, but the response of three of these is an increase in abundance. Our study supports a decreasing role of infectious disease on the community, and an increasing and currently positive effect of climate warming. We caution that if the warming trends continue, the net positive effect will turn negative as amphibian breeding habitat becomes unavailable as water bodies dry, a pattern that already may be underway. © 2018 John Wiley & Sons Ltd.
Bryson, Robert W; Savary, Warren E; Zellmer, Amanda J; Bury, R Bruce; McCormack, John E
2016-08-01
The California Floristic Province (CFP) in western North America is a globally significant biodiversity hotspot. Elucidating patterns of endemism and the historical drivers of this diversity has been an important challenge of comparative phylogeography for over two decades. We generated phylogenomic data using ddRADseq to examine genetic structure in Uroctonus forest scorpions, an ecologically restricted and dispersal-limited organism widely distributed across the CFP north to the Columbia River. We coupled our genetic data with species distribution models (SDMs) to determine climatically suitable areas for Uroctonus both now and during the Last Glacial Maximum. Based on our analyses, Uroctonus is composed of two major genetic groups that likely diverged over 2 million years ago. Each of these groups itself contains numerous genetic groups that reveal a pattern of vicariance and microendemism across the CFP. Migration rates among these populations are low. SDMs suggest forest scorpion habitat has remained relatively stable over the last 21 000 years, consistent with the genetic data. Our results suggest tectonic plate rafting, mountain uplift, river drainage formation and climate-induced habitat fragmentation have all likely played a role in the diversification of Uroctonus. The intricate pattern of genetic fragmentation revealed across a temporal continuum highlights the potential of low-dispersing species to shed light on small-scale patterns of biodiversity and the underlying processes that have generated this diversity in biodiversity hotspots. © 2016 John Wiley & Sons Ltd.
Krushelnycky, Paul D; Loope, Lloyd L; Giambelluca, Thomas W; Starr, Forest; Starr, Kim; Drake, Donald R; Taylor, Andrew D; Robichaux, Robert H
2013-03-01
Although climate change is predicted to place mountain-top and other narrowly endemic species at severe risk of extinction, the ecological processes involved in such extinctions are still poorly resolved. In addition, much of this biodiversity loss will likely go unobserved, and therefore largely unappreciated. The Haleakalā silversword is restricted to a single volcano summit in Hawai'i, but is a highly charismatic giant rosette plant that is viewed by 1-2 million visitors annually. We link detailed local climate data to a lengthy demographic record, and combine both with a population-wide assessment of recent plant mortality and recruitment, to show that after decades of strong recovery following successful management, this iconic species has entered a period of substantial climate-associated decline. Mortality has been highest at the lower end of the distributional range, where most silverswords occur, and the strong association of annual population growth rates with patterns of precipitation suggests an increasing frequency of lethal water stress. Local climate data confirm trends toward warmer and drier conditions on the mountain, and signify a bleak outlook for silverswords if these trends continue. The silversword example foreshadows trouble for diversity in other biological hotspots, and illustrates how even well-protected and relatively abundant species may succumb to climate-induced stresses. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Power, Scott; Sadler, Brian; Nicholls, Neville
2005-06-01
Water flow into dams that supply Perth in Western Australia (WA) has fallen by 50% since the mid-1970s, and this has severely tested water managers. Climate change scenarios available since the 1980s have suggested that global warming will reduce rainfall over southern Australia, including Perth. Water managers recognize the uncertainties associated with the projections, including the significant differences that exist between the timing and magnitude of the observed changes and modeled projections. The information has, nevertheless, influenced their decision making.To understand why, we need to consider the broader environment in which the water managers operate. One key factor is that the imposition of severe water restrictions can lead to significant economic loss and increased unemployment. Prolonged restrictions can therefore create strong debate in the wider community. In recognition of this, state government policy requires that water managers ensure that the chance of having severe restrictions is kept low. Severe restrictions have not been imposed since 1979, but moderate restrictions are more common, and were imposed as recently as 2002. Scrutiny of water management can become intense even after moderate restrictions are imposed, and at these times it is unacceptable to many people if a known risk—even if very uncertain—is perceived to have been ignored in earlier planning. Climate science has established regional drying driven by global warming as a risk, and so global warming has to be addressed in planning. Water managers also need climate science to reassure the public that the restrictions imposed were necessary because of unprecedented changes in rainfall, not because of poor management.In recent years much of the influence that climate science has had on water managers can be attributed to the Indian Ocean Climate Initiative (IOCI). IOCI is a research partnership between the Western Australia Water Corporation, other state government agencies, and two national meteorological research organizations. Water managers saw their participation in IOCI as one strand of a broader risk management plan. They did not have the luxury of deferring important decision making for certainty that climate science might never bring, but were very interested in what climate science might provide “now.”The participation of water managers in IOCI enabled them to influence research planning to better meet their needs. Water managers did not just want predictions or technical explanations of an individual scientist's latest work. They wanted reliable and balanced advice on broader issues, explanations, clarification, realistic expectations, and an appreciation of uncertainty. They wanted climate information related to water management issues in a form relevant to the region. “Localized” information is more suitable for inclusion in their decision making, and of more use to them for both informing, and stimulating discussion within, the wider community.
Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R
2015-06-01
Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a 'seascape genetics' approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts.
Galinski, Grzegorz; Lonnie, Marta; Kowalkowska, Joanna; Wadolowska, Lidia; Czarnocinska, Jolanta; Jezewska-Zychowicz, Marzena; Babicz-Zielinska, Ewa
2016-12-19
Dietary restraint is a commonly reported practice observed among young females. The practice remains controversial and can be interpreted as a beneficial self-regulating behavior or the opposite, an eating disorder that may have a detrimental effect on health. The aim of this short report was to investigate if dietary restrictions are associated with dietary patterns in a representative sample of Polish girls. Analyses were carried out on data from the Girls' Eating Behavior and Health (GEBaHealth) study. The sample included 1107 girls, ranging in age from 13 to 21 years old. Restrictions regarding food quantities and selected food groups were assessed using a standardized interview. Dietary patterns were identified with Principal Component Analysis (PCA), based on dietary data collected with Food Frequency Questionnaires (FFQs). Logistic regression analysis was used to study the associations between self-reported restrictions and each dietary pattern. In the total sample, 30.5% of girls reported following some food restrictions. The most common restrictions regarded consumption of sugar and/or sweets (23.7%), high-fat foods (22.4%), and fats (21.3%). Girls who declared following any restrictions, restrictions in food quantity and restrictions in the consumption of sugar and/or sweets, high-fat foods, fats, cereals and/or bread and/or potatoes were more likely to adhere to the "fruit and vegetables" (considered pro-healthy) dietary pattern (adjusted odds ratios (ORs): 1.55, 95% CI: 1.14-2.12; 1.61, 95% CI: 1.17-2.21; 1.81, 95% CI: 1.30-2.52; 1.46, 95% CI: 1.04-2.06; 1.96, 95% CI: 1.38-2.80 and 3.25, 95% CI: 1.97-5.37, respectively), and less likely to adhere to the "fast foods and sweets" (unhealthy) and "traditional Polish" (rather unhealthy) patterns, compared to girls who declared no restrictions. Declared restrictions in the consumption of foods high in sugar, fat, and starch were observed in girls in the "fruit and vegetables" pattern and were uncommon in girls with unhealthy dietary patterns. Although cautious interpretation is needed when considering restrictions in the overall quantity of food consumed, the results indicate that dietary restrictions of sugar, high-fat foods, fats, and starch may be considered predictors of both pro-healthy and unhealthy dietary patterns in the population of Polish girls.
Widespread correlations between climatic niche evolution and species diversification in birds.
Cooney, Christopher R; Seddon, Nathalie; Tobias, Joseph A
2016-07-01
The adaptability of species' climatic niches can influence the dynamics of colonization and gene flow across climatic gradients, potentially increasing the likelihood of speciation or reducing extinction in the face of environmental change. However, previous comparative studies have tested these ideas using geographically, taxonomically and ecologically restricted samples, yielding mixed results, and thus the processes linking climatic niche evolution with diversification remain poorly understood. Focusing on birds, the largest and most widespread class of terrestrial vertebrates, we test whether variation in species diversification among clades is correlated with rates of climatic niche evolution and the extent to which these patterns are modified by underlying gradients in biogeography and species' ecology. We quantified climatic niches, latitudinal distribution and ecological traits for 7657 (˜75%) bird species based on geographical range polygons and then used Bayesian phylogenetic analyses to test whether niche evolution was related to species richness and rates of diversification across genus- and family-level clades. We found that the rate of climatic niche evolution has a positive linear relationship with both species richness and diversification rate at two different taxonomic levels (genus and family). Furthermore, this positive association between labile climatic niches and diversification was detected regardless of variation in clade latitude or key ecological traits. Our findings suggest either that rapid adaptation to unoccupied areas of climatic niche space promotes avian diversification, or that diversification promotes adaptation. Either way, we propose that climatic niche evolution is a fundamental process regulating the link between climate and biodiversity at global scales, irrespective of the geographical and ecological context of speciation and extinction. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Newman, Catherine E.; Austin, Christopher C.
2015-01-01
The dynamic geologic history of the southeastern United States has played a major role in shaping the geographic distributions of amphibians in the region. In the phylogeographic literature, the predominant pattern of distribution shifts through time of temperate species is one of contraction during glacial maxima and persistence in refugia. However, the diverse biology and ecology of amphibian species suggest that a “one-size-fits-all” model may be inappropriate. Nearly 10% of amphibian species in the region have a current distribution comprised of multiple disjunct, restricted areas that resemble the shape of Pleistocene refugia identified for other temperate taxa in the literature. Here, we apply genetics and spatially explicit climate analyses to test the hypothesis that the disjunct regions of these species ranges are climatic refugia for species that were more broadly distributed during glacial maxima. We use the salamander Plethodon serratus as a model, as its range consists of four disjunct regions in the Southeast. Phylogenetic results show that P. serratus is comprised of multiple genetic lineages, and the four regions are not reciprocally monophyletic. The Appalachian salamanders form a clade sister to all other P. serratus. Niche and paleodistribution modeling results suggest that P. serratus expanded from the Appalachians during the cooler Last Glacial Maximum and has since been restricted to its current disjunct distribution by a warming climate. These data reject the universal applicability of the glacial contraction model to temperate taxa and reiterate the importance of considering the natural history of individual species. PMID:26132077
Understanding Long-term Greenness, Water Use, and Redevelopment in Denver, Colorado
NASA Astrophysics Data System (ADS)
Neel, A.; Hogue, T. S.; Read, L.
2016-12-01
In 2015 the U.S. Census Bureau's found Denver to have the fastest growth rate among large cities in America. With the population of Metro Denver expected to increase from 2.9 to 3.3 million it is critical to consider the impacts of expected redevelopment and increased housing density on the City's ecosystem and future water supply. While prior studies have shown outdoor water use to account for as much as 40-60% of single-family residential water use in western cities, currently no published research examines patterns in urban vegetation, greenness, temperature and water use for cities in the Rocky Mountain West. Normalized Differential Vegetation Index (NDVI) calculated from Landsat imagery was examined to assess how redevelopment in Denver's urban center impacts regional greenness patterns, land surface temperatures and water budgets. Over the last twenty-seven years Denver has shown an overall 4.4% decrease in greenness, with a more rapid decline starting in 2006. While NDVI and cumulative precipitation have a significant relationship over the study period, decreasing NDVI trends across all seasons suggests other factors, such as redevelopment, may be influencing the city's greenness. Comparing water use, NDVI, and precipitation reveals that not only do climate and redevelopment affect NDVI patterns, but mandated water restrictions may also be having a significant impact on NDVI values. NDVI and precipitation patterns are being assessed against regional surface temperatures over time. Surface temperatures, taken from Landsat data, reveal that Urban Heat Island effect may become more pronounced with decreasing NDVI values. As Denver continues to grow, managers can utilize results to better inform decisions about landscape patterns relative to outdoor water use, the effectiveness of restrictions on consumption, and future planning for green infrastructure.
NASA Astrophysics Data System (ADS)
Lins, D. B.; Zullo, J.; Friedel, M. J.
2013-12-01
The Cerrado (savanna ecosystem) of São Paulo state (Brazil) represent a complex mosaic of different typologies of uses, actors and biophysical and social restrictions. Originally, 14% of the state of São Paulo area was covered by the diversity of Cerrado phytophysiognomies. Currently, only 1% of this original composition remains fragmented into numerous relicts of biodiversity, mainly concentrated in the central-eastern of the state. A relevant part of the fragments are found in areas of intense coverage change by human activities, whereas the greatest pressure comes from sugar cane cultivation, either by direct replacement of Cerrado vegetation or occupying pasture areas in the fragments edges. As a result, new local level dynamics has been introduced, directly or indirectly, affecting the established of processes in climate systems. In this study, the main goal is analyzing the relationship between the Cerrado landscape changing and the climate dynamics in regional and local areas. The multi-temporal MODIS 250 m Vegetation Index (VI) datasets (period of 2000 to 2012) are integrated with precipitation data of the correspondent period (http://www.agritempo.gov.br/),one of the most important variable of the spatial phytophysiognomies distribution. The integration of meteorological data enable the development of an integrated approach to understand the relationship between climatic seasonality and the changes in the spatial patterns. A procedure to congregated diverse dynamics information is the Self Organizing Map (SOM, Kohonen, 2001), a technique that relies on unsupervised competitive learning (Kohonen and Somervuo 2002) to recognize patterns. In this approach, high-dimensional data are represented on two dimensions, making possible to obtain patterns that takes into account information from different natures. Observed advances will contribute to bring machine-learning techniques as a valid tool to provide improve in land use/land cover (LULC) analyzes at different hierarchical scales to support numerous science and policy applications.
Dalmaris, Eleftheria; Ramalho, Cristina E; Poot, Pieter; Veneklaas, Erik J; Byrne, Margaret
2015-11-01
A worldwide increase in tree decline and mortality has been linked to climate change and, where these represent foundation species, this can have important implications for ecosystem functions. This study tests a combined approach of phylogeographic analysis and species distribution modelling to provide a climate change context for an observed decline in crown health and an increase in mortality in Eucalyptus wandoo, an endemic tree of south-western Australia. Phylogeographic analyses were undertaken using restriction fragment length polymorphism analysis of chloroplast DNA in 26 populations across the species distribution. Parsimony analysis of haplotype relationships was conducted, a haplotype network was prepared, and haplotype and nucleotide diversity were calculated. Species distribution modelling was undertaken using Maxent models based on extant species occurrences and projected to climate models of the last glacial maximum (LGM). A structured pattern of diversity was identified, with the presence of two groups that followed a climatic gradient from mesic to semi-arid regions. Most populations were represented by a single haplotype, but many haplotypes were shared among populations, with some having widespread distributions. A putative refugial area with high haplotype diversity was identified at the centre of the species distribution. Species distribution modelling showed high climatic suitability at the LGM and high climatic stability in the central region where higher genetic diversity was found, and low suitability elsewhere, consistent with a pattern of range contraction. Combination of phylogeography and paleo-distribution modelling can provide an evolutionary context for climate-driven tree decline, as both can be used to cross-validate evidence for refugia and contraction under harsh climatic conditions. This approach identified a central refugial area in the test species E. wandoo, with more recent expansion into peripheral areas from where it had contracted at the LGM. This signature of contraction from lower rainfall areas is consistent with current observations of decline on the semi-arid margin of the range, and indicates low capacity to tolerate forecast climatic change. Identification of a paleo-historical context for current tree decline enables conservation interventions to focus on maintaining genetic diversity, which provides the evolutionary potential for adaptation to climate change. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bailey, Helen; Benson, Scott R; Shillinger, George L; Bograd, Steven J; Dutton, Peter H; Eckert, Scott A; Morreale, Stephen J; Paladino, Frank V; Eguchi, Tomoharu; Foley, David G; Block, Barbara A; Piedra, Rotney; Hitipeuw, Creusa; Tapilatu, Ricardo F; Spotila, James R
2012-04-01
Interactions with fisheries are believed to be a major cause of mortality for adult leatherback turtles (Dermochelys coriacea), which is of particular concern in the Pacific Ocean, where they have been rapidly declining. In order to identify where these interactions are occurring and how they may be reduced, it is essential first to understand the movements and behavior of leatherback turtles. There are two regional nesting populations in the East Pacific (EP) and West Pacific (WP), comprising multiple nesting sites. We synthesized tracking data from the two populations and compared their movement patterns. A switching state-space model was applied to 135 Argos satellite tracks to account for observation error, and to distinguish between migratory and area-restricted search behaviors. The tracking data, from the largest leatherback data set ever assembled, indicated that there was a high degree of spatial segregation between EP and WP leatherbacks. Area-restricted search behavior mainly occurred in the southeast Pacific for the EP leatherbacks, whereas the WP leatherbacks had several different search areas in the California Current, central North Pacific, South China Sea, off eastern Indonesia, and off southeastern Australia. We also extracted remotely sensed oceanographic data and applied a generalized linear mixed model to determine if leatherbacks exhibited different behavior in relation to environmental variables. For the WP population, the probability of area-restricted search behavior was positively correlated with chlorophyll-a concentration. This response was less strong in the EP population, but these turtles had a higher probability of search behavior where there was greater Ekman upwelling, which may increase the transport of nutrients and consequently prey availability. These divergent responses to oceanographic conditions have implications for leatherback vulnerability to fisheries interactions and to the effects of climate change. The occurrence of leatherback turtles within both coastal and pelagic areas means they have a high risk of exposure to many different fisheries, which may be very distant from their nesting sites. The EP leatherbacks have more limited foraging grounds than the WP leatherbacks, which could make them more susceptible to any temperature or prey changes that occur in response to climate change.
NASA Astrophysics Data System (ADS)
Mohr, Barbara; Coiffard, Clément
2014-05-01
The origin of modern rain forests is still very poorly known. This ecosystem could have potentially fully evolved only after the development of relatively high numbers of flowering plant families adapted to rain forest conditions. During the early phase of angiosperm evolution in the early Cretaceous the palaeo-equatorial region was located in a seasonally dry climatic belt, so that during this phase, flowering plants often show adaptations to drought, rather than to continuously wet climate conditions. Therefore it is not surprising that except for the Nymphaeales, the most basal members of extant angiosperm families have members that do not necessarily occur in the continuously wet tropics today. However, during the late Early Cretaceous several clades emerged that later would give rise to families that are typically found today mostly in (shady) moist places in warmer regions. This is especially seen among the monocotyledons, a group of the mesangiosperms, that developed in many cases large leaves often with very specific venation patterns that make these leaves very unique and well recognizable. Especially members of three groups are here of interest: the arum family (Araceae), the palms (Arecaceae) and the Ginger and allies (Zingiberales). The earliest fossil of Araceae are restricted to low latitudes during the lower Cretaceous. Arecaceae and Zingiberales do not appear in the fossil record before the early late Cretaceous and occur at mid latitudes. During the Late Cretaceous, Araceae are represented at mid latitudes by non-tropical early diverging members and at low latitudes by derived rainforest members. Palms became widespread during the Late Cretataceous and also Nypa, a typical element of tropical to subtropical mangrove environments evolved during this time period. During the Paleocene Arecaceae appear to be restricted to lower latitudes as well as Zingiberales. All three groups are again widespread during the Eocene, reaching higher latitudes and probably diversifying at mid latitudes. Later on, they slowly became restricted to lower latitudes as seen today. This fluctuation appears to be linked to climate change and are still reflected by the regional diversity of these groups, which reflect rather well rain forest evolution. When tracing the fossil record of rain forest plants we clearly see a pattern that suggests the onset of this type of environment during the late Late Cretaceous and spread during the early Tertiary with phases of retreat during the Oligocene and from the mid-Miocene onwards.
Shih, L M; Zee, Y C; Castro, A E
1989-01-01
The restriction endonuclease DNA cleavage patterns of eight isolates of malignant catarrhal fever-associated herpesviruses were examined using the restriction endonucleases HindIII and EcoRI. The eight viruses could be assigned to two distinct groups. Virus isolates from a blue wildebeest, a sika deer and an ibex had restriction endonuclease DNA cleavage patterns that were in general similar to each other. The restriction pattern of these three viruses was distinct from the other five. Of these five, four were isolated from a greater kudu, a white tailed wildebeest, a white bearded wildebeest, and a cape hartebeest. The fifth isolate C500, was isolated from a domestic cow with malignant catarrhal fever. These five viruses had similar DNA cleavage patterns.
Climate Intervention as an Optimization Problem
NASA Astrophysics Data System (ADS)
Caldeira, Ken; Ban-Weiss, George A.
2010-05-01
Typically, climate models simulations of intentional intervention in the climate system have taken the approach of imposing a change (eg, in solar flux, aerosol concentrations, aerosol emissions) and then predicting how that imposed change might affect Earth's climate or chemistry. Computations proceed from cause to effect. However, humans often proceed from "What do I want?" to "How do I get it?" One approach to thinking about intentional intervention in the climate system ("geoengineering") is to ask "What kind of climate do we want?" and then ask "What pattern of radiative forcing would come closest to achieving that desired climate state?" This involves defining climate goals and a cost function that measures how closely those goals are attained. (An important next step is to ask "How would we go about producing these desired patterns of radiative forcing?" However, this question is beyond the scope of our present study.) We performed a variety of climate simulations in NCAR's CAM3.1 atmospheric general circulation model with a slab ocean model and thermodynamic sea ice model. We then evaluated, for a specific set of climate forcing basis functions (ie, aerosol concentration distributions), the extent to which the climate response to a linear combination of those basis functions was similar to a linear combination of the climate response to each basis function taken individually. We then developed several cost functions (eg, relative to the 1xCO2 climate, minimize rms difference in zonal and annual mean land temperature, minimize rms difference in zonal and annual mean runoff, minimize rms difference in a combination of these temperature and runoff indices) and then predicted optimal combinations of our basis functions that would minimize these cost functions. Lastly, we produced forward simulations of the predicted optimal radiative forcing patterns and compared these with our expected results. Obviously, our climate model is much simpler than reality and predictions from individual models do not provide a sound basis for action; nevertheless, our model results indicate that the general approach outlined here can lead to patterns of radiative forcing that make the zonal annual mean climate of a high CO2 world markedly more similar to that of a low CO2 world simultaneously for both temperature and hydrological indices, where degree of similarity is measured using our explicit cost functions. We restricted ourselves to zonally uniform aerosol concentrations distributions that can be defined in terms of a positive-definite quadratic equation on the sine of latitude. Under this constraint, applying an aerosol distribution in a 2xCO2 climate that minimized a combination of rms difference in zonal and annual mean land temperature and runoff relative to the 1xCO2 climate, the rms difference in zonal and annual mean temperatures was reduced by ~90% and the rms difference in zonal and annual mean runoff was reduced by ~80%. This indicates that there may be potential for stratospheric aerosols to diminish simultaneously both temperature and hydrological cycle changes caused by excess CO2 in the atmosphere. Clearly, our model does not include many factors (eg, socio-political consequences, chemical consequences, ocean circulation changes, aerosol transport and microphysics) so we do not argue strongly for our specific climate model results, however, we do argue strongly in favor of our methodological approach. The proposed approach is general, in the sense that cost functions can be developed that represent different valuations. While the choice of appropriate cost functions is inherently a value judgment, evaluating those functions for a specific climate simulation is a quantitative exercise. Thus, the use of explicit cost functions in evaluating model results for climate intervention scenarios is a clear way of separating value judgments from purely scientific and technical issues.
Galinski, Grzegorz; Lonnie, Marta; Kowalkowska, Joanna; Wadolowska, Lidia; Czarnocinska, Jolanta; Jezewska-Zychowicz, Marzena; Babicz-Zielinska, Ewa
2016-01-01
Dietary restraint is a commonly reported practice observed among young females. The practice remains controversial and can be interpreted as a beneficial self-regulating behavior or the opposite, an eating disorder that may have a detrimental effect on health. The aim of this short report was to investigate if dietary restrictions are associated with dietary patterns in a representative sample of Polish girls. Analyses were carried out on data from the Girls’ Eating Behavior and Health (GEBaHealth) study. The sample included 1107 girls, ranging in age from 13 to 21 years old. Restrictions regarding food quantities and selected food groups were assessed using a standardized interview. Dietary patterns were identified with Principal Component Analysis (PCA), based on dietary data collected with Food Frequency Questionnaires (FFQs). Logistic regression analysis was used to study the associations between self-reported restrictions and each dietary pattern. In the total sample, 30.5% of girls reported following some food restrictions. The most common restrictions regarded consumption of sugar and/or sweets (23.7%), high-fat foods (22.4%), and fats (21.3%). Girls who declared following any restrictions, restrictions in food quantity and restrictions in the consumption of sugar and/or sweets, high-fat foods, fats, cereals and/or bread and/or potatoes were more likely to adhere to the “fruit and vegetables” (considered pro-healthy) dietary pattern (adjusted odds ratios (ORs): 1.55, 95% CI: 1.14–2.12; 1.61, 95% CI: 1.17–2.21; 1.81, 95% CI: 1.30–2.52; 1.46, 95% CI: 1.04–2.06; 1.96, 95% CI: 1.38–2.80 and 3.25, 95% CI: 1.97–5.37, respectively), and less likely to adhere to the “fast foods and sweets” (unhealthy) and “traditional Polish” (rather unhealthy) patterns, compared to girls who declared no restrictions. Declared restrictions in the consumption of foods high in sugar, fat, and starch were observed in girls in the “fruit and vegetables” pattern and were uncommon in girls with unhealthy dietary patterns. Although cautious interpretation is needed when considering restrictions in the overall quantity of food consumed, the results indicate that dietary restrictions of sugar, high-fat foods, fats, and starch may be considered predictors of both pro-healthy and unhealthy dietary patterns in the population of Polish girls. PMID:27999360
A major reorganization of Asian climate by the early Miocene
NASA Astrophysics Data System (ADS)
Guo, Z. T.; Sun, B.; Zhang, Z. S.; Peng, S. Z.; Xiao, G. Q.; Ge, J. Y.; Hao, Q. Z.; Qiao, Y. S.; Liang, M. Y.; Liu, J. F.; Yin, Q. Z.; Wei, J. J.
2008-08-01
The global climate system experienced a series of drastic changes during the Cenozoic. In Asia, these include the climate transformation from a zonal pattern to a monsoon-dominated pattern, the disappearance of typical subtropical aridity, and the onset of inland deserts. Despite major advances in the last two decades in characterizing and understanding these climate phenomena, disagreements persist relative to the timing, behaviors and underlying causes. This paper addresses these issues mainly based on two lines of evidence. First, we compiled newly collected data from geological indicators of the Cenozoic environment in China as paleoenvironmental maps of ten intervals. In confirming the earlier observation that a zonal climate pattern was transformed into a monsoonal one, the maps within the Miocene indicate that this change was achieved by the early Miocene, roughly consistent with the onset of loess deposition in China. Although a monsoon-like regime would have existed in the Eocene, it was restricted to tropical-subtropical regions. The latitudinal oscillations of the climate zones during the Paleogene are likely attributable to the imbalance in evolution of polar ice-sheets between the two hemispheres. Secondly, we examine the relevant depositional and soil forming processes of the Miocene loess-soil sequences to determine the circulation characteristics with emphasis on the early Miocene. Continuous eolian deposition in the middle reaches of the Yellow River since the early Miocene firmly indicates the formation of inland deserts, which have been constantly maintained during the past 22 Ma. Grain-size gradients between loess sections indicate northerly dust-carrying winds from northern sources, a clear indication of an Asian winter monsoon system. Meanwhile, well-developed Luvisols show evidence that moisture from the oceans reached northern China. This evidence shows the coexistence of two kinds of circulations, one from the ocean carrying moisture and another from the inland deserts transporting dust. The formation of the early Miocene paleosols resulted from interactive soil forming and dust deposition processes in these two seasonally alternating monsoonal circulations. The much stronger development of the early Miocene soils compared to those in the Quaternary loess indicates that summer monsoons were either significantly stronger, more persistent through the year, or both. These lines of evidence indicate a joint change in circulation and inland aridity by the early Miocene and suggest a dynamic linkage of them. Our recent sensitivity tests with a general circulation model, along with relevant geological data, suggest that the onset of these contrasting wet/dry responses, as well as the change from the "planetary" subtropical aridity pattern to the "inland" aridity pattern, resulted from the combined effects of Tibetan uplift and withdrawal of the Paratethys seaway in central Asia, as suggested by earlier experiments. The spreading of South China Sea also helped to enhance the south-north contrast of humidity. The Miocene loess record provides a vital insight that these tectonic factors had evolved by the early Miocene to a threshold sufficient to cause this major climate reorganization in Asia.
Sperandio, Evandro Fornias; Arantes, Rodolfo Leite; Matheus, Agatha Caveda; da Silva, Rodrigo Pereira; Lauria, Vinícius Tonon; Romiti, Marcello; Gagliardi, Antônio Ricardo de Toledo; Dourado, Victor Zuniga
2016-01-01
Objective : To determine whether a restrictive pattern on spirometry is associated with the level of physical activity in daily life (PADL), as well as with cardiovascular disease (CVD) risk factors, in asymptomatic adults. Methods : A total of 374 participants (mean age, 41 ± 14 years) underwent spirometry, which included the determination of FVC and FEV1. A restrictive pattern on spirometry was defined as an FEV1/FVC ratio > 0.7 and an FVC < 80% of the predicted value. After conducting demographic, anthropometric, and CVD risk assessments, we evaluated body composition, muscle function, and postural balance, as well as performing cardiopulmonary exercise testing and administering the six-minute walk test. The PADL was quantified with a triaxial accelerometer. Results : A restrictive pattern on spirometry was found in 10% of the subjects. After multivariate logistic regression, adjusted for confounders (PADL and cardiorespiratory fitness), the following variables retained significance (OR; 95% CI) as predictors of a restrictive pattern: systemic arterial hypertension (17.5; 1.65-184.8), smoking (11.6; 1.56-87.5), physical inactivity (8.1; 1.43-46.4), larger center-of-pressure area while standing on a force platform (1.34; 1.05-1.71); and dyslipidemia (1.89; 1.12-1.98). Conclusions : A restrictive pattern on spirometry appears to be common in asymptomatic adults. We found that CVD risk factors, especially systemic arterial hypertension, smoking, and physical inactivity, were directly associated with a restrictive pattern, even when the analysis was adjusted for PADL and cardiorespiratory fitness. Longitudinal studies are needed in order to improve understanding of the etiology of a restrictive pattern as well as to aid in the design of preventive strategies. PMID:26982037
Thomas, Luke; Kennington, W Jason; Evans, Richard D; Kendrick, Gary A; Stat, Michael
2017-06-01
Global climate change poses a serious threat to the future health of coral reef ecosystems. This calls for management strategies that are focused on maximizing the evolutionary potential of coral reefs. Fundamental to this is an accurate understanding of the spatial genetic structure in dominant reef-building coral species. In this study, we apply a genotyping-by-sequencing approach to investigate genome-wide patterns of genetic diversity, gene flow, and local adaptation in a reef-building coral, Pocillopora damicornis, across 10 degrees of latitude and a transition from temperate to tropical waters. We identified strong patterns of differentiation and reduced genetic diversity in high-latitude populations. In addition, genome-wide scans for selection identified a number of outlier loci putatively under directional selection with homology to proteins previously known to be involved in heat tolerance in corals and associated with processes such as photoprotection, protein degradation, and immunity. This study provides genomic evidence for both restricted gene flow and local adaptation in a widely distributed coral species, and highlights the potential vulnerability of leading-edge populations to rapid environmental change as they are locally adapted, reproductively isolated, and have reduced levels of genetic diversity. © 2017 John Wiley & Sons Ltd.
Mensing, Scott A.; Sharpe, Saxon E.; Tunno, Irene; Sada, Don W.; Thomas, Jim M.; Starratt, Scott W.; Smith, Jeremy
2013-01-01
Evidence of a multi-centennial scale dry period between ∼2800 and 1850 cal yr BP is documented by pollen, mollusks, diatoms, and sediment in spring sediments from Stonehouse Meadow in Spring Valley, eastern central Nevada, U.S. We refer to this period as the Late Holocene Dry Period. Based on sediment recovered, Stonehouse Meadow was either absent or severely restricted in size at ∼8000 cal yr BP. Beginning ∼7500 cal yr BP, the meadow became established and persisted to ∼3000 cal yr BP when it began to dry. Comparison of the timing of this late Holocene drought record to multiple records extending from the eastern Sierra Nevada across the central Great Basin to the Great Salt Lake support the interpretation that this dry period was regional. The beginning and ending dates vary among sites, but all sites record multiple centuries of dry climate between 2500 and 1900 cal yr BP. This duration makes it the longest persistent dry period within the late Holocene. In contrast, sites in the northern Great Basin record either no clear evidence of drought, or have wetter than average climate during this period, suggesting that the northern boundary between wet and dry climates may have been between about 40° and 42° N latitude. This dry in the southwest and wet in the northwest precipitation pattern across the Great Basin is supported by large-scale spatial climate pattern hypotheses involving ENSO, PDO, AMO, and the position of the Aleutian Low and North Pacific High, particularly during winter.
Hu, Junhua; Liu, Yang
2014-01-01
It remains a challenge to identify the geographical patterns and underlying environmental associations of species with unique ecological niches and distinct behaviors. This in turn hinders our understanding of the ecology as well as effective conservation management of threatened species. The white-eared night heron (Gorsachius magnificus) is a non-migratory nocturnal bird species that has a patchy distribution in the mountainous forests of East Asia. It is currently categorized as "Endangered" on the IUCN Red List, primarily due to its restricted range and fragmented habitat. To improve our knowledge of the biogeography and conservation of this species, we modeled the geographical pattern of its suitable habitat and evaluated the potential impacts of climate change using ecological niche modeling with a maximum entropy approach implemented in Maxent. Our results indicated that the amount of suitable habitat in all of East Asia was about 130 000 km(2), which can be spatially subdivided into several mountain ranges in southern and southwestern China and northern Vietnam. The extent of suitable habitat range may shrink by more than 35% under a predicted changing climate when assuming the most pessimistic condition of dispersal, while some more suitable habitat would be available if the heron could disperse unrestrainedly. The significant future changes in habitat suitability suggested for Gorsachius magnificus urge caution in any downgrading of Red List status that may be considered. Our results also discern potentially suitable areas for future survey efforts on new populations. Overall, this study demonstrates that ecological niche modeling offers an important tool for evaluating the habitat suitability and potential impacts of climate change on an enigmatic and endangered species based on limited presence data.
Riediger, Jan; Breckling, Broder; Nuske, Robert S; Schröder, Winfried
2014-01-01
By example of a region in Northern Germany (County of Uelzen), this study investigates whether climate change is likely to require adaption of agricultural practices such as irrigation in Central Europe. Due to sandy soils with low water retention capacity and occasional insufficient rainfall, irrigation is a basic condition for agricultural production in the county of Uelzen. Thus, in the framework of the comprehensive research cluster Nachhaltiges Landmanagement im Norddeutschen Tiefland ( NaLaMa-nT ), we investigated whether irrigation might need to be adapted to changing climatic conditions. To this end, results from regionalised climate change modelling were coupled with soil- and crop-specific evapotranspiration models to calculate potential amounts of irrigation to prevent crop failures. Three different runs of the climate change scenario RCP 8.5 were used for the time period until 2070. The results show that the extent of probable necessary irrigation will likely increase in the future. For the scenario run with the highest temperature rise, the results suggest that the amount of ground water presently allowed to be extracted for irrigation might not be sufficient in the future to retain common agricultural pattern. The investigation at hand exemplifies data requirements and methods to estimate irrigation needs under climate change conditions. Restriction of ground water withdrawal by German environmental regulation may require an adaptation of crop selection and alterations in agricultural practice also in regions with comparable conditions.
Qi, Zhaohuan; Liu, Hongyan; Wu, Xiuchen; Hao, Qian
2015-02-01
Forest growth is sensitive to interannual climatic change in the alpine treeline ecotone (ATE). Whether the alpine treeline ecotone shares a similar pattern of forest growth with lower elevational closed forest belt (CFB) under changing climate remains unclear. Here, we reported an unprecedented acceleration of Picea schrenkiana forest growth since 1960s in the ATE of Tianshan Mountains, northwestern China by a stand-total sampling along six altitudinal transects with three plots in each transect: one from the ATE between the treeline and the forest line, and the other two from the CFB. All the sampled P. schrenkiana forest patches show a higher growth speed after 1960 and, comparatively, forest growth in the CFB has sped up much slower than that in the ATE. The speedup of forest growth at the ATE is mainly accounted for by climate factors, with increasing temperature suggested to be the primary driver. Stronger water deficit as well as more competition within the CFB might have restricted forest growth there more than that within the ATE, implying biotic factors were also significant for the accelerated forest growth in the ATE, which should be excluded from simulations and predictions of warming-induced treeline dynamics. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Forkel, Matthias; Dorigo, Wouter; Lasslop, Gitta; Teubner, Irene; Chuvieco, Emilio; Thonicke, Kirsten
2017-12-01
Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1). SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with data-driven modelling and model-data integration approaches can guide the future development of global process-oriented vegetation-fire models.
2011-01-06
identified viral restriction factors that inhibit infection mediated by the influenza A virus ( IAV ) hemagglutinin (HA) protein. Here we show that IFITM...observations, interferon-b specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV...We observed distinct patterns of IFITM-mediated restriction: compared with IAV , the entry processes of MARV and EBOV were less restricted by IFITM3
Climate Change and Rural Sociology: Broadening the Research Agenda
ERIC Educational Resources Information Center
Dunlap, Riley E.
2010-01-01
Climate change is the preeminent environmental problem of this time, and Joseph Molnar's call for greater attention to it by rural sociologists is both welcome and timely. The agenda he lays out for rural sociology's engagement with climate change, however, seems rather narrow and restrictive. Examining the potential impacts of climate change,…
Mayol, Maria; Palau, Carles; Rosselló, Josep A.; González-Martínez, Santiago C.; Molins, Arántzazu; Riba, Miquel
2012-01-01
Background and Aims Archipelagos are unique systems for studying evolutionary processes promoting diversification and speciation. The islands of the Mediterranean basin are major areas of plant richness, including a high proportion of narrow endemics. Many endemic plants are currently found in rocky habitats, showing varying patterns of habitat occupancy at different spatial scales throughout their range. The aim of the present study was to understand the impact of varying patterns of population distribution on genetic diversity and structure to shed light on demographic and evolutionary processes leading to population diversification in Crepis triasii, an endemic plant from the eastern Balearic Islands. Methods Using allozyme and chloroplast markers, we related patterns of genetic structure and diversity to those of habitat occupancy at a regional (between islands and among populations within islands) and landscape (population size and connectivity) scale. Key Results Genetic diversity was highly structured both at the regional and at the landscape level, and was positively correlated with population connectivity in the landscape. Populations located in small isolated mountains and coastal areas, with restricted patterns of regional occupancy, were genetically less diverse and much more differentiated. In addition, more isolated populations had stronger fine-scale genetic structure than well-connected ones. Changes in habitat availability and quality arising from marine transgressions during the Quaternary, as well as progressive fragmentation associated with the aridification of the climate since the last glaciation, are the most plausible factors leading to the observed patterns of genetic diversity and structure. Conclusions Our results emphasize the importance of gene flow in preventing genetic erosion and maintaining the evolutionary potential of populations. They also agree with recent studies highlighting the importance of restricted gene flow and genetic drift as drivers of plant evolution in Mediterranean continental islands. PMID:22167790
Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R
2015-01-01
Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a ‘seascape genetics’ approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts. PMID:26029262
The Effect of Mitigation Policy on Regional Climate Impacts on the U.S. Electric Sector
NASA Astrophysics Data System (ADS)
Cohen, S. M.; Sun, Y.; Strzepek, K.; McFarland, J.; Boehlert, B.; Fant, C.
2017-12-01
Climate change can influence the U.S. electricity sector in many ways, the nature of which can be shaped by energy and environmental policy choices. Changing temperatures affect electricity demand largely through heating and cooling needs, and temperatures also affect generation and transmission system performance. Altered precipitation patterns affect the regional and seasonal distribution of surface water runoff, which changes hydropower operation and thermal cooling water availability. The extent to which these stimuli influence U.S. power sector operation and planning will depend to some extent on whether or not proactive policies are enacted to mitigate these impacts. Mitigation policies such as CO2 emissions limits or technology restrictions can change the makeup of the electricity system while reducing the extent of climate change itself. We use the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS), a U.S. electric sector capacity expansion model, to explore electric sector evolution through 2050 under alternative climate and policy assumptions. The model endogenously represents climate impacts on load, power system performance, cooling water availability, and hydropower, allowing internally consistent system responses to climate change along with projected technology, market, and policy conditions. We compare climate impacts across 5 global circulation models for a 8.5 W/m2 representative concentration pathway (RCP) without a climate mitigation policy and a 4.5 W/m2 RCP with climate mitigation. Climate drivers affect the capacity and generation mix at the national and regional levels, with relative growth of wind, solar, and natural gas-based technologies depending on local electricity system characteristics. These differences affect regional economic impacts, measured here as changes to electricity price and system costs. Mitigation policy reduces the economic and system impacts of climate change largely by moderating temperature-induced load but also by lessening water- and temperature-based performance constraints. Policy impacts are nuanced and region-specific, and this analysis underscores the importance of climate mitigation policy to regional electricity system planning decisions.
NASA Astrophysics Data System (ADS)
Linderholm, Hans W.; Cardinale, Massimiliano; Bartolino, Valerio; Chen, Deliang; Ou, Tinghai; Svedäng, Henrik
2014-06-01
Dynamics of commercial fish stocks are generally associated with fishing pressure and climate variability. Due to short time series, past studies of the relationships between fish stock dynamics and climate have mainly been restricted to the last few decades. Here we analyzed a century-long time series of plaice, cod and haddock from the Skagerrak-Kattegat, to assess the long-term influence of climate on recruitment. Recruitment success (RS) was compared against sea-surface temperature (SST) and atmospheric circulation indices on large (North Atlantic) and regional (Skagerrak-Kattegat) scales. Our results show that the influence of climate on RS was more pronounced on longer, than on shorter timescales. Over the century-long period, a shift from low to high climate sensitivity was seen from the early to the late part for plaice and cod, while the opposite was found for haddock. This shift suggests that the increasing fishing pressure and the climate change in the Skagerrak-Kattegat have resulted in an increased sensitivity of RS to climate for plaice and cod. The diminishing of climate sensitivity in haddock RS, on the other hand, may be linked to the early twentieth century collapse of the stock in the region. While no long-term relationship between RS and the Atlantic Multidecadal Oscillation (AMO) could be found, large RS fluctuations during the positive phase of the AMO (1935-1960), relative to the cold phases, suggests a changed pattern in recruitment during warm periods. On the other hand, this could be due to the increased fishing pressure in the area. Thus, reported correlations between climate and fish may be caused by strong trends in climate in the late-twentieth century, and coincident reduction in fish stocks caused by intense fishing, rather than a stable relationship between climate and fish recruitment per se.
González-Romá, Vicente; Hernández, Ana
2014-11-01
We investigated whether climate uniformity (the pattern of climate perceptions of organizational support within the team) is related to task conflict, team communication quality, and team performance. We used a sample composed of 141 bank branches and collected data at 3 time points. The results obtained showed that, after controlling for aggregate team climate, climate strength, and their interaction, a type of nonuniform climate pattern (weak dissimilarity) was directly related to task conflict and team communication quality. Teams with weak dissimilarity nonuniform patterns tended to show higher levels of task conflict and lower levels of team communication quality than teams with uniform climate patterns. The relationship between weak dissimilarity patterns and team performance was fully mediated by team communication quality. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Jewell, Jessica; Vinichenko, Vadim; McCollum, David; Bauer, Nico; Riahi, Keywan; Aboumahboub, Tino; Fricko, Oliver; Harmsen, Mathijs; Kober, Tom; Krey, Volker; Marangoni, Giacomo; Tavoni, Massimo; van Vuuren, Detlef P.; van der Zwaan, Bob; Cherp, Aleh
2016-06-01
Ensuring energy security and mitigating climate change are key energy policy priorities. The recent Intergovernmental Panel on Climate Change Working Group III report emphasized that climate policies can deliver energy security as a co-benefit, in large part through reducing energy imports. Using five state-of-the-art global energy-economy models and eight long-term scenarios, we show that although deep cuts in greenhouse gas emissions would reduce energy imports, the reverse is not true: ambitious policies constraining energy imports would have an insignificant impact on climate change. Restricting imports of all fuels would lower twenty-first-century emissions by only 2-15% against the Baseline scenario as compared with a 70% reduction in a 450 stabilization scenario. Restricting only oil imports would have virtually no impact on emissions. The modelled energy independence targets could be achieved at policy costs comparable to those of existing climate pledges but a fraction of the cost of limiting global warming to 2 ∘C.
Atmospheric circulation patterns and spatial climatic variations in Beringia
NASA Astrophysics Data System (ADS)
Mock, Cary J.; Bartlein, Patrick J.; Anderson, Patricia M.
1998-08-01
Analyses of more than 40 years of climatic data reveal intriguing spatial variations in climatic patterns for Beringia (North-eastern Siberia and Alaska), aiding the understanding of the hierarchy of climatic controls that operate at different spatial scales within the Arctic. A synoptic climatology, using a subjective classification methodology on January and July sea level pressure, and July 500 hPa height anomaly patterns, identified 13 major atmospheric circulation patterns (26 pairs consisting of 13 synoptic/temperature and 13 synoptic/precipitation comparisons) that occur over Beringia. Composite anomaly maps of circulation, temperature, and precipitation described the spatial variability of surface climatic responses to circulation. Results indicate that nine synoptic pairs yield homogeneous surface climatic anomaly patterns throughout most of Beringia. However, many of the surface climatic responses illustrate heterogeneous anomaly patterns as a result of variations in circulation controls, such as troughing over East Asia and the Pacific subtropical high superimposed over topography, with small shifts in atmospheric circulation dramatically altering spatial variations of anomaly patterns. Distinctive contrasts in climatic responses, as suggested from ten synoptic pairs, are clearly evident for Western Beringia versus Eastern Beringia. These results offer important implications for scholars interested in assessing late Quaternary climatic change in the region from interannual to millennial timescales.
Sithaldeen, Riashna; Ackermann, Rebecca Rogers; Bishop, Jacqueline M
2015-01-01
Plio-Pleistocene environmental change influenced the evolutionary history of many animal lineages in Africa, highlighting key roles for both climate and tectonics in the evolution of Africa's faunal diversity. Here, we explore diversification in the southern African chacma baboon Papio ursinus sensu lato and reveal a dominant role for increasingly arid landscapes during past glacial cycles in shaping contemporary genetic structure. Recent work on baboons (Papio spp.) supports complex lineage structuring with a dominant pulse of diversification occurring 1-2Ma, and yet the link to palaeoenvironmental change remains largely untested. Phylogeographic reconstruction based on mitochondrial DNA sequence data supports a scenario where chacma baboon populations were likely restricted to refugia during periods of regional cooling and drying through the Late Pleistocene. The two lineages of chacma baboon, ursinus and griseipes, are strongly geographically structured, and demographic reconstruction together with spatial analysis of genetic variation point to possible climate-driven isolating events where baboons may have retreated to more optimum conditions during cooler, drier periods. Our analysis highlights a period of continuous population growth beginning in the Middle to Late Pleistocene in both the ursinus and the PG2 griseipes lineages. All three clades identified in the study then enter a state of declining population size (Nef) through to the Holocene; this is particularly marked in the last 20,000 years, most likely coincident with the Last Glacial Maximum. The pattern recovered here conforms to expectations based on the dynamic regional climate trends in southern Africa through the Pleistocene and provides further support for complex patterns of diversification in the region's biodiversity.
Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle.
Sheffer, Efrat; Batterman, Sarah A; Levin, Simon A; Hedin, Lars O
2015-11-23
Dinitrogen fixation by plants (in symbiosis with root bacteria) is a major source of new nitrogen for land ecosystems(1). A long-standing puzzle(2) is that trees capable of nitrogen fixation are abundant in nitrogen-rich tropical forests, but absent or restricted to early successional stages in nitrogen-poor extra-tropical forests. This biome-scale pattern presents an evolutionary paradox(3), given that the physiological cost(4) of nitrogen fixation predicts the opposite pattern: fixers should be out-competed by non-fixers in nitrogen-rich conditions, but competitively superior in nitrogen-poor soils. Here we evaluate whether this paradox can be explained by the existence of different fixation strategies in tropical versus extra-tropical trees: facultative fixers (capable of downregulating fixation(5,6) by sanctioning mutualistic bacteria(7)) are common in the tropics, whereas obligate fixers (less able to downregulate fixation) dominate at higher latitudes. Using a game-theoretic approach, we assess the ecological and evolutionary conditions under which these fixation strategies emerge, and examine their dependence on climate-driven differences in the nitrogen cycle. We show that in the tropics, transient soil nitrogen deficits following disturbance and rapid tree growth favour a facultative strategy and the coexistence of fixers and non-fixers. In contrast, sustained nitrogen deficits following disturbance in extra-tropical forests favour an obligate fixation strategy, and cause fixers to be excluded in late successional stages. We conclude that biome-scale differences in the abundance of nitrogen fixers can be explained by the interaction between individual plant strategies and climatic constraints on the nitrogen cycle over evolutionary time.
Projected climate impacts for the amphibians of the western hemisphere
Lawler, Joshua J.; Shafer, Sarah L.; Bancroft, Betsy A.; Blaustein, Andrew R.
2010-01-01
Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate-driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071–2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate-change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted-range species not included in our range-shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted-range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad-scale guidance for directing conservation efforts.
Projected climate impacts for the amphibians of the Western hemisphere.
Lawler, Joshua J; Shafer, Sarah L; Bancroft, Betsy A; Blaustein, Andrew R
2010-02-01
Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate-driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071-2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate-change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted-range species not included in our range-shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted-range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad-scale guidance for directing conservation efforts.
Pandit, Shubha N; Maitland, Bryan M; Pandit, Laxmi K; Poesch, Mark S; Enders, Eva C
2017-11-15
Climate change is affecting many freshwater species, particularly fishes. Predictions of future climate change suggest large and deleterious effects on species with narrow dispersal abilities due to limited hydrological connectivity. In turn, this creates the potential for population isolation in thermally unsuitable habitats, leading to physiological stress, species declines or possible extirpation. The current extent of many freshwater fish species' spatio-temporal distribution patterns and their sensitivity to thermal impacts from climate change - critical information for conservation planning - are often unknown. Carmine shiner (Notropis percobromus) is an ecologically important species listed as threatened or imperilled nationally (Canada) and regionally (South Dakota, United States) due to its restricted range and sensitivity to water quality and temperature. This research aimed to determine the current distribution and spatio-temporal variability in projected suitable habitat for Carmine shiner using niche-based modeling approaches (MaxEnt, BIOCLIM, and DOMAIN models). Statistically downscaled, bias-corrected Global Circulation Models (GCMs) data was used to model the distribution of Carmine shiner in central North America for the period of 2041-2060 (2050s). Maximum mean July temperature and temperature variability were the main factors in determining Carmine shiner distribution. Patterns of projected habitat change by the 2050s suggest the spatial extent of the current distribution of Carmine shiner would shift north, with >50% of the current distribution changing with future projections based on two Representative Concentrations Pathways for CO 2 emissions. Whereas the southern extent of the distribution would become unsuitable for Carmine shiner, suitable habitats are predicted to become available further north, if accessible. Importantly, the majority of habitat gains for Carmine shiner would be in areas currently inaccessible due to dispersal limitations, suggesting current populations may face an extinction debt within the next half century. These results provide evidence that Carmine shiner may be highly vulnerable to a warming climate and suggest that management actions - such as assisted migration - may be needed to mitigate impacts from climate change and ensure the long-term persistence of the species. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Böhme, M.; Ilg, A.; Ossig, A.; Küchenhoff, H.
2006-06-01
Existing methods for determining paleoprecipitation are subject to large errors (±350 400 mm or more using mammalian proxies), or are restricted to wet climate systems due to their strong facies dependence (paleobotanical proxies). Here we describe a new paleoprecipitation tool based on an indexing of ecophysiological groups within herpetological communities. In recent communities these indices show a highly significant correlation to annual precipitation (r2 = 0.88), and yield paleoprecipitation estimates with average errors of ±250 280 mm. The approach was validated by comparison with published paleoprecipitation estimates from other methods. The method expands the application of paleoprecipitation tools to dry climate systems and in this way contributes to the establishment of a more comprehensive paleoprecipitation database. This method is applied to two high-resolution time intervals from the European Neogene: the early middle Miocene (early Langhian) and the early late Miocene (early Tortonian). The results indicate that both periods show significant meridional precipitation gradients in Europe, these being stronger in the early Langhian (threefold decrease toward the south) than in the early Tortonian (twofold decrease toward the south). This pattern indicates a strengthening of climatic belts during the middle Miocene climatic optimum due to Southern Hemisphere cooling and an increased contribution of Arctic low-pressure cells to the precipitation from the late Miocene onward due to Northern Hemisphere cooling.
Titon, Braz; Gomes, Fernando Ribeiro
2015-01-01
Amphibian species richness increases toward the equator, particularly in humid tropical forests. This relation between amphibian species richness and environmental water availability has been proposed to be a consequence of their high rates of evaporative water loss. In this way, traits that estimate water balance are expected to covary with climate and constrain a species’ geographic distribution. Furthermore, we predicted that coexisting species of anurans would have traits that are adapted to local hydric conditions. We compared the traits that describe water balance in 17 species of anurans that occur in the mesic Atlantic Forest and xeric Cerrado (savannah) habitats of Brazil. We predicted that species found in the warmer and dryer areas would show a lower sensitivity of locomotor performance to dehydration (SLPD), increased resistance to evaporative water loss (REWL) and higher rates of water uptake (RWU) than species restricted to the more mesic areas. We estimated the allometric relations between the hydric traits and body mass using phylogenetic generalized least squares. These regressions showed that REWL scaled negatively with body mass, whereas RWU scaled positively with body mass. Additionally, species inhabiting areas characterized by higher and more seasonally uniform temperatures, and lower and more seasonally concentrated precipitation, such as the Cerrado, had higher RWU and SLPD than species with geographical distributions more restricted to mesic environments, such as the Atlantic Forest. These results support the hypothesis that the interspecific variation of physiological traits shows an adaptation pattern to abiotic environmental traits. PMID:26469787
Zhang, Jian-Qiang; Meng, Shi-Yong; Rao, Guang-Yuan
2014-01-01
The evolution and current distribution of the Sino-Tibetan flora have been greatly affected by historical geological events, such as the uplift of the Qinghai-Tibetan Plateau (QTP), and Quaternary climatic oscillations. Rhodiola kirilowii, a perennial herb with its distribution ranging from the southeastern QTP and the Hengduan Mountains (HM) to adjacent northern China and central Asia, provides an excellent model to examine and disentangle the effect of both geological orogeny and climatic oscillation on the evolutionary history of species with such distribution patterns. We here conducted a phylogeographic study using sequences of two chloroplast fragments (trnL-F and trnS-G) and internal transcribed spacers in 29 populations of R. kirilowii. A total of 25 plastid haplotypes and 12 ITS ribotypes were found. Molecular clock estimation revealed deep divergence between the central Asian populations and other populations from the HM and northern China; this split occurred ca. 2.84 million year ago. The majority of populations from the mountains of northern China were dominated by a single haplotype or ribotype, while populations of the HM harbored both high genetic diversity and high haplotype diversity. This distribution pattern indicates that HM was either a diversification center or a refugium for R. kirilowii during the Quaternary climatic oscillations. The present distribution of this species on mountains in northern China may have resulted from a rapid glacial population expansion from the HM. This expansion was confirmed by the mismatch distribution analysis and negative Tajima's D and Fu's FS values, and was dated to ca. 168 thousand years ago. High genetic diversity and population differentiation in both plastid and ITS sequences were revealed; these imply restricted gene flow between populations. A distinct isolation-by-distance pattern was suggested by the Mantel test. Our results show that in old lineages, populations may harbour divergent genetic forms that are sufficient to maintain or even increase overall genetic diversity despite fragmentation and low within-population variation.
Zhang, Jian-Qiang; Meng, Shi-Yong; Rao, Guang-Yuan
2014-01-01
The evolution and current distribution of the Sino-Tibetan flora have been greatly affected by historical geological events, such as the uplift of the Qinghai-Tibetan Plateau (QTP), and Quaternary climatic oscillations. Rhodiola kirilowii, a perennial herb with its distribution ranging from the southeastern QTP and the Hengduan Mountains (HM) to adjacent northern China and central Asia, provides an excellent model to examine and disentangle the effect of both geological orogeny and climatic oscillation on the evolutionary history of species with such distribution patterns. We here conducted a phylogeographic study using sequences of two chloroplast fragments (trnL-F and trnS-G) and internal transcribed spacers in 29 populations of R. kirilowii. A total of 25 plastid haplotypes and 12 ITS ribotypes were found. Molecular clock estimation revealed deep divergence between the central Asian populations and other populations from the HM and northern China; this split occurred ca. 2.84 million year ago. The majority of populations from the mountains of northern China were dominated by a single haplotype or ribotype, while populations of the HM harbored both high genetic diversity and high haplotype diversity. This distribution pattern indicates that HM was either a diversification center or a refugium for R. kirilowii during the Quaternary climatic oscillations. The present distribution of this species on mountains in northern China may have resulted from a rapid glacial population expansion from the HM. This expansion was confirmed by the mismatch distribution analysis and negative Tajima's D and Fu's F S values, and was dated to ca. 168 thousand years ago. High genetic diversity and population differentiation in both plastid and ITS sequences were revealed; these imply restricted gene flow between populations. A distinct isolation-by-distance pattern was suggested by the Mantel test. Our results show that in old lineages, populations may harbour divergent genetic forms that are sufficient to maintain or even increase overall genetic diversity despite fragmentation and low within-population variation. PMID:25389750
Examining the recent climate through the lens of ecology: inferences from temporal pattern analysis.
Paul F. Hessburg; Ellen E. Kuhlmann; Thomas W. Swetnam
2005-01-01
Ecological theory asserts that the climate of a region exerts top-down controls on regional ecosystem patterns and processes, across space and time. To provide empirical evidence of climatic controls, it would be helpful to define climatic regions that minimized variance in key climate attributes, within climatic regions-define the periods and features of climatic...
Ecological principles: climate, physiography, soil, and vegetation
George R. Parker; George T. Weaver
1989-01-01
The central hardwood region is a land of transitions in climate, physiography, soils, plants, and animals. Winter temperature and drought are the two most important climatic variables operating on plants and animals. Occasional severe periods of low winter temperatures in the northern half of the region restrict the northern occurrence of many plant and animal species...
Common Warming Pattern Emerges Irrespective of Forcing Location
NASA Astrophysics Data System (ADS)
Kang, Sarah M.; Park, Kiwoong; Jin, Fei-Fei; Stuecker, Malte F.
2017-10-01
The Earth's climate is changing due to the existence of multiple radiative forcing agents. It is under question whether different forcing agents perturb the global climate in a distinct way. Previous studies have demonstrated the existence of similar climate response patterns in response to aerosol and greenhouse gas (GHG) forcings. In this study, the sensitivity of tropospheric temperature response patterns to surface heating distributions is assessed by forcing an atmospheric general circulation model coupled to an aquaplanet slab ocean with a wide range of possible forcing patterns. We show that a common climate pattern emerges in response to localized forcing at different locations. This pattern, characterized by enhanced warming in the tropical upper troposphere and the polar lower troposphere, resembles the historical trends from observations and models as well as the future projections. Atmospheric dynamics in combination with thermodynamic air-sea coupling are primarily responsible for shaping this pattern. Identifying this common pattern strengthens our confidence in the projected response to GHG and aerosols in complex climate models.
NASA Astrophysics Data System (ADS)
Petrie, M. D.; Bradford, J. B.; Hubbard, R. M.; Lauenroth, W. K.; Andrews, C.
2016-12-01
The persistence of ponderosa pine forests and the ability for these forests to colonize new habitats in the 21st century will be influenced by how climate change supports ponderosa pine regeneration through the demographic processes of seed production, germination and survival. Yet, the way that climate change may support or restrict the frequency of successful regeneration is unclear. We developed a quantitative, criteria-based framework to estimate ponderosa pine regeneration potential (RP: a metric from 0-1) in response to climate forcings and environmental conditions. We used the SOILWAT ecosystem water balance model to simulate drivers of air and soil temperature, evaporation and soil moisture availability for 47 ponderosa pine sites across the western United States, using meteorological data from 1910-2014, and projections from nine General Circulation Models and the RCP 8.5 emissions scenario for 2020-2099. Climate change simulations increased the success of early developmental stages of seed production and germination, and supported 49.7% higher RP in 2020-2059 compared to averages from 1910-2014. As temperatures increased in 2060-2099, survival scores decreased, and RP was reduced by 50.3% compared to 1910-2014. Although the frequency of years with high RP did not change in 2060-2099 (12% of years), the frequency of years with very low RP increased from 25% to 58% of years. Thus, climate change will initially support higher RP and more favorable years in 2020-2059, yet will reduce average RP and the frequency of years with moderate regeneration support in 2060-2099. Forest regeneration is complex and not fully-understood, but our results suggest it is likely that climate change alone will instigate restrictions to the persistence and expansion of ponderosa pine in the 21st century.
Climatic variation and the distribution of an amphibian polyploid complex
Otto, C.R.V.; Snodgrass, J.W.; Forester, D.C.; Mitchell, J.C.; Miller, R.W.
2007-01-01
1. The establishment of polyploid populations involves the persistence and growth of the polyploid in the presence of the progenitor species. Although there have been a number of animal polyploid species documented, relatively few inquiries have been made into the large-scale mechanisms of polyploid establishment in animal groups. Herein we investigate the influence of regional climatic conditions on the distributional patterns of a diploid-tetraploid species pair of gray treefrogs, Hyla chrysoscelis and H. versicolor (Anura: Hylidae) in the mid-Atlantic region of eastern North America. 2. Calling surveys at breeding sites were used to document the distribution of each species. Twelve climatic models and one elevation model were generated to predict climatic and elevation values for gray treefrog breeding sites. A canonical analysis of discriminants was used to describe relationships between climatic variables, elevation and the distribution of H. chrysoscelis and H. versicolor. 3. There was a strong correlation between several climatic variables, elevation and the distribution of the gray treefrog complex. Specifically, the tetraploid species almost exclusively occupied areas of higher elevation, where climatic conditions were relatively severe (colder, drier, greater annual variation). In contrast, the diploid species was restricted to lower elevations, where climatic conditions were warmer, wetter and exhibited less annual variation. 4. Clusters of syntopic sites were associated with areas of high variation in annual temperature and precipitation during the breeding season. 5. Our data suggest that large-scale climatic conditions have played a role in the establishment of the polyploid H. versicolor in at least some portions of its range. The occurrence of the polyploid and absence of the progenitor in colder, drier and more varied environments suggests the polyploid may posses a tolerance of severe environmental conditions that is not possessed by the diploid progenitor. 6. Our findings support the hypothesis that increased tolerance to severe environmental conditions is a plausible mechanism of polyploid establishment.
Hugall, Andrew; Moritz, Craig; Moussalli, Adnan; Stanisic, John
2002-04-30
Comparative phylogeography has proved useful for investigating biological responses to past climate change and is strongest when combined with extrinsic hypotheses derived from the fossil record or geology. However, the rarity of species with sufficient, spatially explicit fossil evidence restricts the application of this method. Here, we develop an alternative approach in which spatial models of predicted species distributions under serial paleoclimates are compared with a molecular phylogeography, in this case for a snail endemic to the rainforests of North Queensland, Australia. We also compare the phylogeography of the snail to those from several endemic vertebrates and use consilience across all of these approaches to enhance biogeographical inference for this rainforest fauna. The snail mtDNA phylogeography is consistent with predictions from paleoclimate modeling in relation to the location and size of climatic refugia through the late Pleistocene-Holocene and broad patterns of extinction and recolonization. There is general agreement between quantitative estimates of population expansion from sequence data (using likelihood and coalescent methods) vs. distributional modeling. The snail phylogeography represents a composite of both common and idiosyncratic patterns seen among vertebrates, reflecting the geographically finer scale of persistence and subdivision in the snail. In general, this multifaceted approach, combining spatially explicit paleoclimatological models and comparative phylogeography, provides a powerful approach to locating historical refugia and understanding species' responses to them.
Hugall, Andrew; Moritz, Craig; Moussalli, Adnan; Stanisic, John
2002-01-01
Comparative phylogeography has proved useful for investigating biological responses to past climate change and is strongest when combined with extrinsic hypotheses derived from the fossil record or geology. However, the rarity of species with sufficient, spatially explicit fossil evidence restricts the application of this method. Here, we develop an alternative approach in which spatial models of predicted species distributions under serial paleoclimates are compared with a molecular phylogeography, in this case for a snail endemic to the rainforests of North Queensland, Australia. We also compare the phylogeography of the snail to those from several endemic vertebrates and use consilience across all of these approaches to enhance biogeographical inference for this rainforest fauna. The snail mtDNA phylogeography is consistent with predictions from paleoclimate modeling in relation to the location and size of climatic refugia through the late Pleistocene-Holocene and broad patterns of extinction and recolonization. There is general agreement between quantitative estimates of population expansion from sequence data (using likelihood and coalescent methods) vs. distributional modeling. The snail phylogeography represents a composite of both common and idiosyncratic patterns seen among vertebrates, reflecting the geographically finer scale of persistence and subdivision in the snail. In general, this multifaceted approach, combining spatially explicit paleoclimatological models and comparative phylogeography, provides a powerful approach to locating historical refugia and understanding species' responses to them. PMID:11972064
Climate change and the impact of extreme temperatures on aviation
NASA Astrophysics Data System (ADS)
Coffel, E.; Horton, R.
2014-12-01
Weather is the most significant factor affecting aircraft operations, accounting for 70-80% of passenger delays and costing airlines hundreds of millions of dollars per year in lost revenue. Temperature and airport elevation significantly influence the maximum allowable takeoff weight of an aircraft by changing the surface air density and thus the lift produced at a given speed. For a given runway length, airport elevation, and aircraft type there is a temperature threshold above which the airplane cannot take off at its maximum weight and thus must be weight restricted. The number of summer days necessitating weight restriction has increased since 1980 along with the observed increase in surface temperature. Climate change is projected to increase mean temperatures at all airports and significantly increase the frequency and severity of extreme heat events at some. These changes will negatively affect aircraft performance, leading to increased weight restrictions especially at airports with short runways and little room to expand. For a Boeing 737-800 aircraft, we find that the number of weight restriction days between May and September will increase by 50-100% at four major airports in the United States by 2050-2070 under the RCP8.5 high emissions scenario. These performance reductions may have a significant economic effect on the airline industry, leading to lower profits and higher passenger fares. Increased weight restrictions have previously been identified as potential impacts of climate change, but this study is the first to quantify the effect of higher temperatures on commercial aviation.
Climate change may restrict dryland forest regeneration in the 21st century
M. D. Petrie; J. B. Bradford; R. M. Hubbard; W. K. Lauenroth; C. M. Andrews; D. R. Schlaepfer
2017-01-01
The persistence and geographic expansion of dryland forests in the 21st century will be influenced by how climate change supports the demographic processes associated with tree regeneration. Yet, the way that climate change may alter regeneration is unclear. We developed a quantitative framework that estimates forest regeneration potential (RP) as a function of key...
75 FR 12976 - Amendment of Restricted Area R-2204 High and R-2204 Low; Oliktok Point, AK
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... Oliktok, AK, is required for current moored balloon and future climate-related aviation activities. DATES... in support of the proposed rule stressing the importance of continued climate studies at Oliktok... regions to climate change. In 2004, the need to operate an unlighted moored balloon in clouds resulted in...
78 FR 78486 - Notice of Funding Availability for Resilience Projects in Response to Hurricane Sandy
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... changes in development patterns, demographics, or climate change and extreme weather patterns. For the... located; or projected changes in development patterns, demographics, or extreme weather or other climate... climate-related disasters are a continuing threat. According to the ``Hurricane Sandy Rebuilding Strategy...
Ye, Junbin; Xiao, Zhenlong; Li, Chuanhai; Wang, Fusheng; Liao, Jicheng; Fu, Jinzhong; Zhang, Zhibin
2015-09-01
The genetic diversity and the spatial structure of a species are likely consequences of both past and recent evolutionary processes, but relevant studies are still rare in East Asia where the Pleistocene climate has unique influences. In this study, we examined the impact of past climate change and recent anthropogenic activities on the genetic structure and population size of the greater long-tailed hamster (Tscherskia triton), an agricultural rodent pest species in northern China. DNA sequence data of 2 mitochondrial genes and genotypic data of 11 microsatellite DNA loci from 41 populations (545 individuals) were gathered. Phylogenetic and population genetic analyses, as well as species distribution modeling and coalescent simulations, were conducted to infer its historical and demographic patterns and processes. Two deeply diverged mitochondrial clades were recovered. A small one was restricted to the Shandong Peninsula while the main clade was further divided into 3 geographic clusters by their microsatellite DNA genotypes: Northwest, North-center and Northeast. Divergence dating indicated a Middle-to-Late Pleistocene divergence between the 2 clades. Demographic analysis indicated that all 3 and pooled populations showed consistent long-period expansions during last glacial period; but not during the Holocene, probably due to the impact of climate warming and human disturbances. Conflicting patterns between mtDNA and microsatellite markers imply an anthropogenic impact on North-center populations due to intensified agricultural cultivation in this region. Our study demonstrated that the impact of past glaciation on organisms in East Asia significantly differs from that of Europe and North America, and human activity is an important factor in determining the genetic diversity of a species, as well as its spatial structure. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
Finnegan, Seth; Rasmussen, Christian M Ø; Harper, David A T
2016-04-27
The Late Ordovician mass extinction (LOME) coincided with dramatic climate changes, but there are numerous ways in which these changes could have driven marine extinctions. We use a palaeobiogeographic database of rhynchonelliform brachiopods to examine the selectivity of Late Ordovician-Early Silurian genus extinctions and evaluate which extinction drivers are best supported by the data. The first (latest Katian) pulse of the LOME preferentially affected genera restricted to deeper waters or to relatively narrow (less than 35°) palaeolatitudinal ranges. This pattern is only observed in the latest Katian, suggesting that it reflects drivers unique to this interval. Extinction of exclusively deeper-water genera implies that changes in water mass properties such as dissolved oxygen content played an important role. Extinction of genera with narrow latitudinal ranges suggests that interactions between shifting climate zones and palaeobiogeography may also have been important. We test the latter hypothesis by estimating whether each genus would have been able to track habitats within its thermal tolerance range during the greenhouse-icehouse climate transition. Models including these estimates are favoured over alternative models. We argue that the LOME, long regarded as non-selective, is highly selective along biogeographic and bathymetric axes that are not closely correlated with taxonomic identity. © 2016 The Author(s).
Finnegan, Seth; Rasmussen, Christian M. Ø.; Harper, David A. T.
2016-01-01
The Late Ordovician mass extinction (LOME) coincided with dramatic climate changes, but there are numerous ways in which these changes could have driven marine extinctions. We use a palaeobiogeographic database of rhynchonelliform brachiopods to examine the selectivity of Late Ordovician–Early Silurian genus extinctions and evaluate which extinction drivers are best supported by the data. The first (latest Katian) pulse of the LOME preferentially affected genera restricted to deeper waters or to relatively narrow (less than 35°) palaeolatitudinal ranges. This pattern is only observed in the latest Katian, suggesting that it reflects drivers unique to this interval. Extinction of exclusively deeper-water genera implies that changes in water mass properties such as dissolved oxygen content played an important role. Extinction of genera with narrow latitudinal ranges suggests that interactions between shifting climate zones and palaeobiogeography may also have been important. We test the latter hypothesis by estimating whether each genus would have been able to track habitats within its thermal tolerance range during the greenhouse–icehouse climate transition. Models including these estimates are favoured over alternative models. We argue that the LOME, long regarded as non-selective, is highly selective along biogeographic and bathymetric axes that are not closely correlated with taxonomic identity. PMID:27122567
Global Climatic Controls On Leaf Size
NASA Astrophysics Data System (ADS)
Wright, I. J.; Prentice, I. C.; Dong, N.; Maire, V.
2015-12-01
Since the 1890s it's been known that the wet tropics harbour plants with exceptionally large leaves. Yet the observed latitudinal gradient of leaf size has never been fully explained: it is still unclear which aspects of climate are most important for understanding geographic trends in leaf size, a trait that varies many thousand-fold among species. The key is the leaf-to-air temperature difference, which depends on the balance of energy inputs (irradiance) and outputs (transpirational cooling, losses to the night sky). Smaller leaves track air temperatures more closely than larger leaves. Widely cited optimality-based theories predict an advantage for smaller leaves in dry environments, where transpiration is restricted, but are silent on the latitudinal gradient. We aimed to characterize and explain the worldwide pattern of leaf size. Across 7900 species from 651 sites, here we show that: large-leaved species predominate in wet, hot, sunny environments; smaller-leaved species typify hot, sunny environments only when arid; small leaves are required to avoid freezing in high latitudes and at high elevation, and to avoid overheating in dry environments. This simple pattern was unclear in earlier, more limited analyses. We present a simple but robust, fresh approach to energy-balance modelling for both day-time and night-time leaf-to-air temperature differences, and thus risk of overheating and of frost damage. Our analysis shows night-chilling is important as well as day-heating, and simplifies leaf temperature modelling. It provides both a framework for modelling leaf size constraints, and a solution to one of the oldest conundrums in ecology. Although the path forward is not yet fully clear, because of its role in controlling leaf temperatures we suggest that climate-related leaf size constraints could usefully feature in the next generation of land ecosystem models.
Thermal sensitivity of cold climate lizards and the importance of distributional ranges.
Bonino, Marcelo F; Moreno Azócar, Débora L; Schulte, James A; Abdala, Cristian S; Cruz, Félix B
2015-08-01
One of the fundamental goals in macroecology is to understand the relationship among species' geographic ranges, ecophysiology, and climate; however, the mechanisms underlying the distributional geographic patterns observed remain unknown for most organisms. In the case of ectotherms this is particularly important because the knowledge of these interactions may provide a robust framework for predicting the potential consequences of climate change in these organisms. Here we studied the relationship of thermal sensitivity and thermal tolerance in Patagonian lizards and their geographic ranges, proposing that species with wider distributions have broader plasticity and thermal tolerance. We predicted that lizard thermal physiology is related to the thermal characteristics of the environment. We also explored the presence of trade-offs of some thermal traits and evaluated the potential effects of a predicted scenario of climate change for these species. We examined sixteen species of Liolaemini lizards from Patagonia representing species with different geographic range sizes. We obtained thermal tolerance data and performance curves for each species in laboratory trials. We found evidence supporting the idea that higher physiological plasticity allows species to achieve broader distribution ranges compared to species with restricted distributions. We also found a trade-off between broad levels of plasticity and higher optimum temperatures of performance. Finally, results from contrasting performance curves against the highest environmental temperatures that lizards may face in a future scenario (year 2080) suggest that the activity of species occurring at high latitudes may be unaffected by predicted climatic changes. Copyright © 2015 Elsevier GmbH. All rights reserved.
Wisniewski, Julia A; McLaughlin, Anne P; Stenger, Philip J; Patrie, James; Brown, Mark A; El-Dahr, Jane M; Platts-Mills, Thomas A E; Byrd, Nora J; Heymann, Peter W
2016-11-01
The fall peak in childhood asthma exacerbations is thought to be related to an increase in viral infections and allergen exposure when children return to school. Whether the seasonality of asthma attacks among children from different geographic regions follows similar trends is unclear. To compare seasonal trends in asthma exacerbations among school-age children who lived in different geographic locations, with different climates, within the United States. Hospital billing data bases were examined to determine the monthly number of school-age children who were hospitalized or treated in the emergency department (ED) for asthma exacerbations. Data from four cities within three states were compared. Climate data were obtained from archives of the National Climate Data Center, U.S. Department of Commerce. An annual peak in asthma exacerbations was observed during the fall months (September through November) among children who lived in Charlottesville, Virginia, as well as throughout the state of Virginia. An increase in exacerbations, which peaked in November, was observed for exacerbations among children who lived in Tucson, Arizona, and Yuma, Arizona. In contrast, exacerbations among children from New Orleans, Louisiana, increased in September but remained elevated throughout the school year. Although there was annual variation in the frequency of exacerbations over time, the seasonal patterns observed remained similar within the locations from year to year. A nadir in the frequency of attacks was observed during the summer months in all the locations. Seasonal peaks for asthma exacerbations varied among the children who lived in geographic locations with different climates, and were not restricted to the beginning of the school year.
Modern Climate Analogues of Late-Quaternary Paleoclimates for the Western United States.
NASA Astrophysics Data System (ADS)
Mock, Cary Jeffrey
This study examined spatial variations of modern and late-Quaternary climates for the western United States. Synoptic climatological analyses of the modern record identified the predominate climatic controls that normally produce the principal modes of spatial climatic variability. They also provided a modern standard to assess past climates. Maps of the month-to-month changes in 500 mb heights, sea-level pressure, temperature, and precipitation illustrated how different climatic controls govern the annual cycle of climatic response. The patterns of precipitation ratios, precipitation bar graphs, and the seasonal precipitation maximum provided additional insight into how different climatic controls influence spatial climatic variations. Synoptic-scale patterns from general circulation model (GCM) simulations or from analyses of climatic indices were used as the basis for finding modern climate analogues for 18 ka and 9 ka. Composite anomaly maps of atmospheric circulation, precipitation, and temperature were compared with effective moisture maps compiled from proxy data to infer how the patterns, which were evident from the proxy data, were generated. The analyses of the modern synoptic climatology indicate that smaller-scale climatic controls must be considered along with larger-scale ones in order to explain patterns of spatial climate heterogeneity. Climatic extremes indicate that changes in the spatial patterns of precipitation seasonality are the exception rather than the rule, reflecting the strong influence of smaller-scale controls. Modern climate analogues for both 18 ka and 9 ka clearly depict the dry Northwest/wet Southwest contrast that is suggested by GCM simulations and paleoclimatic evidence. 18 ka analogues also show the importance of smaller-scale climatic controls in explaining spatial climatic variation in the Northwest and northern Great Plains. 9 ka analogues provide climatological explanations for patterns of spatial heterogeneity over several mountainous areas as suggested by paleoclimatic evidence. Modern analogues of past climates supplement modeling approaches by providing information below the resolution of model simulations. Analogues can be used to examine the controls of spatial paleoclimatic variation if sufficient instrumental data and paleoclimatic evidence are available, and if one carefully exercises uniformitarianism when extrapolating modern relationships to the past.
Porphyromonas endodontalis: prevalence and distribution of restriction enzyme patterns in families.
Petit, M D; van Winkelhoff, A J; van Steenbergen, T J; de Graaff, J
1993-08-01
In this study we determined the prevalence and distribution of Porphyromonas endodontalis in 26 families consisting of 107 subjects. P. endodontalis was present in 24% of the investigated subjects and was recovered most often from the dorsum of the tongue (50%). Isolation was also possible from the tonsils, the buccal mucosa, the saliva and the periodontal pocket. The usefulness of restriction endonuclease analysis as a typing method for this particular species was investigated by typing 19 isolates from unrelated individuals. All these isolates had unique restriction endonuclease patterns. The observed heterogeneity indicates that restriction endonuclease analysis is a sensitive measure of genetic dissimilarity between P. endodontalis isolates and is able to characterize individual isolates. Application of restriction endonuclease analysis to the obtained clinical isolates in this study shows the possibility of the presence of multiple clonal types within one subject. The DNA patterns of all P. endodontalis isolates from unrelated individuals were found to be distinct. In 3 families the DNA patterns of isolates from the mother and her child were indistinguishable. These data indicate the possibility of intrafamilial transmission of P. endodontalis.
Crop yield response to climate change varies with crop spatial distribution pattern
Leng, Guoyong; Huang, Maoyi
2017-05-03
The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less
Crop yield response to climate change varies with crop spatial distribution pattern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Guoyong; Huang, Maoyi
The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less
Economics of nuclear power and climate change mitigation policies.
Bauer, Nico; Brecha, Robert J; Luderer, Gunnar
2012-10-16
The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.
Economics of nuclear power and climate change mitigation policies
Bauer, Nico; Brecha, Robert J.; Luderer, Gunnar
2012-01-01
The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy. PMID:23027963
Perotti, María Gabriela; Bonino, Marcelo Fabián; Ferraro, Daiana; Cruz, Félix Benjamín
2018-04-01
Ectotherms are vulnerable to climate change, given their dependence on temperature, and amphibians are particularly interesting because of their complex life cycle. Tadpoles may regulate their body temperature by using suitable thermal microhabitats. Thus, their physiological responses are the result of adjustment to the local thermal limits experienced in their ponds. We studied three anuran tadpole species present in Argentina and Chile: Pleurodema thaul and Pleurodema bufoninum that are seasonal and have broad geographic ranges, and Batrachyla taeniata, a geographically restricted species with overwintering tadpoles. Species with restricted distribution are more susceptible to climate change than species with broader distribution that may cope with potential climatic changes in the environments in which they occur. We aim to test whether these species can buffer the potential effects of climate warming. We used ecological niche models and the outcomes of their thermal attributes (critical thermal limits, optimal temperature, and locomotor performance breadth) as empirical evidence of their capacity. We found that Pleurodema species show broader performance curves, related to their occurrence, while the geographically restricted B. taeniata shows a narrower thermal breadth, but is faster in warmer conditions. The modeled distributions and empirical physiological results suggest no severe threats for these three anurans. However, the risk level is increasing and a retraction of their distribution range might be possible for Pleurodema species, and some local population extinctions may happen, particularly for the narrowly distributed B. taeniata. Copyright © 2018 Elsevier GmbH. All rights reserved.
Cao, Ya-Nan; Wang, Ian J; Chen, Lu-Yao; Ding, Yan-Qian; Liu, Lu-Xian; Qiu, Ying-Xiong
2018-04-17
The relative roles of geography, climate and ecology in driving population divergence and (incipient) speciation has so far been largely neglected in studies addressing the evolution of East Asia's island flora. Here, we employed chloroplast and ribosomal DNA sequences and restriction site-associated DNA sequencing (RADseq) loci to investigate the phylogeography and drivers of population divergence of Neolitsea sericea. These data sets support the subdivision of N. sericea populations into the Southern and Northern lineages across the 'Tokara gap'. Two distinct sublineages were further identified for the Northern lineage of N. sericea from the RADseq data. RADseq was also used along with approximate Bayesian computation to show that the current distribution and differentiation of N. sericea populations resulted from a combination of relatively ancient migration and successive vicariant events that likely occurred during the mid to late Pleistocene. Landscape genomic analyses showed that, apart from geographic barriers, barrier, potentially local adaptation to different climatic conditions appears to be one of the major drivers for lineage diversification of N. sericea. Copyright © 2018 Elsevier Inc. All rights reserved.
King penguin demography since the last glaciation inferred from genome-wide data
Trucchi, Emiliano; Gratton, Paolo; Whittington, Jason D.; Cristofari, Robin; Le Maho, Yvon; Stenseth, Nils Chr; Le Bohec, Céline
2014-01-01
How natural climate cycles, such as past glacial/interglacial patterns, have shaped species distributions at the high-latitude regions of the Southern Hemisphere is still largely unclear. Here, we show how the post-glacial warming following the Last Glacial Maximum (ca 18 000 years ago), allowed the (re)colonization of the fragmented sub-Antarctic habitat by an upper-level marine predator, the king penguin Aptenodytes patagonicus. Using restriction site-associated DNA sequencing and standard mitochondrial data, we tested the behaviour of subsets of anonymous nuclear loci in inferring past demography through coalescent-based and allele frequency spectrum analyses. Our results show that the king penguin population breeding on Crozet archipelago steeply increased in size, closely following the Holocene warming recorded in the Epica Dome C ice core. The following population growth can be explained by a threshold model in which the ecological requirements of this species (year-round ice-free habitat for breeding and access to a major source of food such as the Antarctic Polar Front) were met on Crozet soon after the Pleistocene/Holocene climatic transition. PMID:24920481
How to expand irrigated land in a sustainable way ?
NASA Astrophysics Data System (ADS)
Pastor, Amandine V.; Ludwig, Fulco; Palazzo, Amanda; Havlik, Petr; Kabat, Pavel
2015-04-01
Allocation of agriculture commodities and water resources is subject to changes due to climate change, population increase and changes in dietary patterns. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors (industry, household and hydropower) at a monthly time-step in the GLOBIOM model. This model allows re-adjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 2.6 W/m2 (RCP2.6), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 37% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions and parts of South-East Asia where the Water Stress Indicator (WSI) ranges from 0.4 to 1 by 2050. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Some countries such as India expect a significant increase in water demand which might be compensated by an increase in water supply with climate change scenario. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on climate change mitigation/adaptation when exposure and sensitivity to climate change is high and/or on adaptation measures to face increasing water demand. For example, some countries are likely to adopt measures to increase their water use efficiencies (irrigation system, soil and water conservation practices) to face water shortages, while others might consider improving their trade policy to avoid food shortage.
Bongers, I M; van de Goor, I A; Garretsen, H F
1998-01-01
Research was undertaken regarding the Dutch climate on alcohol in 1994 and results were compared with earlier findings. It was found that the social climate on alcohol in The Netherlands can be characterized by 'moderation'. Over the years, drinking without problems has become more acceptable (and is even encouraged at times) whereas excessive drinking and consequent problems still meet strong disapproval. Opinions concerning alcohol control measures mirror this attitude. Measures such as the restriction of drinking in public places and raising the age limits are endorsed by the public. However, more people are now against restrictions on the general availability of alcohol. Although drink-driving has decreased over the years, its prevalence is still high, especially among those who are most at risk.
Conserving the Stage: Climate Change and the Geophysical Underpinnings of Species Diversity
Anderson, Mark G.; Ferree, Charles E.
2010-01-01
Conservationists have proposed methods for adapting to climate change that assume species distributions are primarily explained by climate variables. The key idea is to use the understanding of species-climate relationships to map corridors and to identify regions of faunal stability or high species turnover. An alternative approach is to adopt an evolutionary timescale and ask ultimately what factors control total diversity, so that over the long run the major drivers of total species richness can be protected. Within a single climatic region, the temperate area encompassing all of the Northeastern U.S. and Maritime Canada, we hypothesized that geologic factors may take precedence over climate in explaining diversity patterns. If geophysical diversity does drive regional diversity, then conserving geophysical settings may offer an approach to conservation that protects diversity under both current and future climates. Here we tested how well geology predicts the species diversity of 14 US states and three Canadian provinces, using a comprehensive new spatial dataset. Results of linear regressions of species diversity on all possible combinations of 23 geophysical and climatic variables indicated that four geophysical factors; the number of geological classes, latitude, elevation range and the amount of calcareous bedrock, predicted species diversity with certainty (adj. R2 = 0.94). To confirm the species-geology relationships we ran an independent test using 18,700 location points for 885 rare species and found that 40% of the species were restricted to a single geology. Moreover, each geology class supported 5–95 endemic species and chi-square tests confirmed that calcareous bedrock and extreme elevations had significantly more rare species than expected by chance (P<0.0001), strongly corroborating the regression model. Our results suggest that protecting geophysical settings will conserve the stage for current and future biodiversity and may be a robust alternative to species-level predictions. PMID:20644646
Murray, Dennis L.; Peers, Michael J. L.; Majchrzak, Yasmine N.; Wehtje, Morgan; Ferreira, Catarina; Pickles, Rob S. A.; Row, Jeffrey R.; Thornton, Daniel H.
2017-01-01
Climate change threatens natural landscapes through shifting distribution and abundance of species and attendant change in the structure and function of ecosystems. However, it remains unclear how climate-mediated variation in species’ environmental niche space may lead to large-scale fragmentation of species distributions, altered meta-population dynamics and gene flow, and disrupted ecosystem integrity. Such change may be especially relevant when species distributions are restricted either spatially or to a narrow environmental niche, or when environments are rapidly changing. Here, we use range-wide environmental niche models to posit that climate-mediated range fragmentation aggravates the direct effects of climate change on species in the boreal forest of North America. We show that climate change will directly alter environmental niche suitability for boreal-obligate species of trees, birds and mammals (n = 12), with most species ranges becoming smaller and shifting northward through time. Importantly, species distributions will become increasingly fragmented, as characterized by smaller mean size and greater isolation of environmentally-suitable landscape patches. This loss is especially pronounced along the Ontario-Québec border, where the boreal forest is narrowest and roughly 78% of suitable niche space could disappear by 2080. Despite the diversity of taxa surveyed, patterns of range fragmentation are remarkably consistent, with our models predicting that spruce grouse (Dendragapus canadensis), boreal chickadee (Poecile hudsonicus), moose (Alces americanus) and caribou (Rangifer tarandus) could have entirely disjunct east-west population segments in North America. These findings reveal potentially dire consequences of climate change on population continuity and species diversity in the boreal forest, highlighting the need to better understand: 1) extent and primary drivers of anticipated climate-mediated range loss and fragmentation; 2) diversity of species to be affected by such change; 3) potential for rapid adaptation in the most strongly-affected areas; and 4) potential for invasion by replacement species. PMID:28505173
Murray, Dennis L; Peers, Michael J L; Majchrzak, Yasmine N; Wehtje, Morgan; Ferreira, Catarina; Pickles, Rob S A; Row, Jeffrey R; Thornton, Daniel H
2017-01-01
Climate change threatens natural landscapes through shifting distribution and abundance of species and attendant change in the structure and function of ecosystems. However, it remains unclear how climate-mediated variation in species' environmental niche space may lead to large-scale fragmentation of species distributions, altered meta-population dynamics and gene flow, and disrupted ecosystem integrity. Such change may be especially relevant when species distributions are restricted either spatially or to a narrow environmental niche, or when environments are rapidly changing. Here, we use range-wide environmental niche models to posit that climate-mediated range fragmentation aggravates the direct effects of climate change on species in the boreal forest of North America. We show that climate change will directly alter environmental niche suitability for boreal-obligate species of trees, birds and mammals (n = 12), with most species ranges becoming smaller and shifting northward through time. Importantly, species distributions will become increasingly fragmented, as characterized by smaller mean size and greater isolation of environmentally-suitable landscape patches. This loss is especially pronounced along the Ontario-Québec border, where the boreal forest is narrowest and roughly 78% of suitable niche space could disappear by 2080. Despite the diversity of taxa surveyed, patterns of range fragmentation are remarkably consistent, with our models predicting that spruce grouse (Dendragapus canadensis), boreal chickadee (Poecile hudsonicus), moose (Alces americanus) and caribou (Rangifer tarandus) could have entirely disjunct east-west population segments in North America. These findings reveal potentially dire consequences of climate change on population continuity and species diversity in the boreal forest, highlighting the need to better understand: 1) extent and primary drivers of anticipated climate-mediated range loss and fragmentation; 2) diversity of species to be affected by such change; 3) potential for rapid adaptation in the most strongly-affected areas; and 4) potential for invasion by replacement species.
Prognostic indicators for dogs with dilated cardiomyopathy.
Borgarelli, Michele; Santilli, Roberto A; Chiavegato, David; D'Agnolo, Gino; Zanatta, Renato; Mannelli, Alessandro; Tarducci, Alberto
2006-01-01
The purpose of this study was to investigate the prognostic value of various clinical, ECG, echocardiographic, and Doppler echocardiographic variables in dogs with dilated cardiomyopathy. The relationship to survival of 11 variables was evaluated in 63 dogs. Studied variables were age at time of diagnosis, class of heart failure (HF), dyspnea, ascites, atrial fibrillation (AF), ejection fraction (EF), E-point septal separation, end-diastolic volume index, end-systolic volume index (ESV-I), and restrictive or nonrestrictive transmitral flow (TMF) pattern. Median survival time was 671 days (lower 95% confidence limit, 350 days). Survival curves showed that severity of HF, ascites, ESV-I greater than 140 mL/m2, EF less than 25%, and restrictive TMF pattern had a significant negative relation to survival time. Thirty-nine dogs with both sinus rhythm and AF presented adequate TMF recordings; in these dogs, after stratification by TMF pattern, the restrictive TMF pattern was the most important negative prognostic indicator. We conclude that in dogs with dilated cardiomyopathy the restrictive TMF pattern appears to represent a useful prognostic indicator. Class of HF, ascites, ESV-I, and EF are also useful indexes if an adequate TMF pattern is not recorded.
Nonlinear dynamical modes of climate variability: from curves to manifolds
NASA Astrophysics Data System (ADS)
Gavrilov, Andrey; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander
2016-04-01
The necessity of efficient dimensionality reduction methods capturing dynamical properties of the system from observed data is evident. Recent study shows that nonlinear dynamical mode (NDM) expansion is able to solve this problem and provide adequate phase variables in climate data analysis [1]. A single NDM is logical extension of linear spatio-temporal structure (like empirical orthogonal function pattern): it is constructed as nonlinear transformation of hidden scalar time series to the space of observed variables, i. e. projection of observed dataset onto a nonlinear curve. Both the hidden time series and the parameters of the curve are learned simultaneously using Bayesian approach. The only prior information about the hidden signal is the assumption of its smoothness. The optimal nonlinearity degree and smoothness are found using Bayesian evidence technique. In this work we do further extension and look for vector hidden signals instead of scalar with the same smoothness restriction. As a result we resolve multidimensional manifolds instead of sum of curves. The dimension of the hidden manifold is optimized using also Bayesian evidence. The efficiency of the extension is demonstrated on model examples. Results of application to climate data are demonstrated and discussed. The study is supported by Government of Russian Federation (agreement #14.Z50.31.0033 with the Institute of Applied Physics of RAS). 1. Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep15510
Benítez-Benítez, C; Escudero, M; Rodríguez-Sánchez, F; Martín-Bravo, S; Jiménez-Mejías, P
2018-04-01
Estimating species ability to adapt to environmental changes is crucial to understand their past and future response to climate change. The Mediterranean Basin has experienced remarkable climatic changes since the Miocene, which have greatly influenced the evolution of the Mediterranean flora. Here, we examine the evolutionary history and biogeographic patterns of two sedge sister species (Carex, Cyperaceae) restricted to the western Mediterranean Basin, but with Pliocene fossil record in central Europe. In particular, we estimated the evolution of climatic niches through time and its influence in lineage differentiation. We carried out a dated phylogenetic-phylogeographic study based on seven DNA regions (nDNA and ptDNA) and fingerprinting data (AFLPs), and modelled ecological niches and species distributions for the Pliocene, Pleistocene and present. Phylogenetic and divergence time analyses revealed that both species form a monophyletic lineage originated in the late Pliocene-early Pleistocene. We detected clear genetic differentiation between both species with distinct genetic clusters in disjunct areas, indicating the predominant role of geographic barriers limiting gene flow. We found a remarkable shift in the climatic requirements between Pliocene and extant populations, although the niche seems to have been relatively conserved since the Pleistocene split of both species. This study highlights how an integrative approach combining different data sources and analyses, including fossils, allows solid and robust inferences about the evolutionary history of a plant group since the Pliocene. © 2018 John Wiley & Sons Ltd.
Long-term species loss and homogenization of moth communities in Central Europe.
Valtonen, Anu; Hirka, Anikó; Szőcs, Levente; Ayres, Matthew P; Roininen, Heikki; Csóka, György
2017-07-01
As global biodiversity continues to decline steeply, it is becoming increasingly important to understand diversity patterns at local and regional scales. Changes in land use and climate, nitrogen deposition and invasive species are the most important threats to global biodiversity. Because land use changes tend to benefit a few species but impede many, the expected outcome is generally decreasing population sizes, decreasing species richness at local and regional scales, and increasing similarity of species compositions across sites (biotic homogenization). Homogenization can be also driven by invasive species or effects of soil eutrophication propagating to higher trophic levels. In contrast, in the absence of increasing aridity, climate warming is predicted to generally increase abundances and species richness of poikilotherms at local and regional scales. We tested these predictions with data from one of the few existing monitoring programmes on biodiversity in the world dating to the 1960s, where the abundance of 878 species of macro-moths have been measured daily at seven sites across Hungary. Our analyses revealed a dramatic rate of regional species loss and homogenization of community compositions across sites. Species with restricted distribution range, specialized diet or dry grassland habitat were more likely than others to disappear from the community. In global context, the contrasting effects of climate change and land use changes could explain why the predicted enriching effects from climate warming are not always realized. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Habel, J C; Mulwa, R K; Gassert, F; Rödder, D; Ulrich, W; Borghesio, L; Husemann, M; Lens, L
2014-01-01
The Eastern Afromontane cloud forests occur as geographically distinct mountain exclaves. The conditions of these forests range from large to small and from fairly intact to strongly degraded. For this study, we sampled individuals of the forest bird species, the Montane White-eye Zosterops poliogaster from 16 sites and four mountain archipelagos. We analysed 12 polymorphic microsatellites and three phenotypic traits, and calculated Species Distribution Models (SDMs) to project past distributions and predict potential future range shifts under a scenario of climate warming. We found well-supported genetic and morphologic clusters corresponding to the mountain ranges where populations were sampled, with 43% of all alleles being restricted to single mountains. Our data suggest that large-scale and long-term geographic isolation on mountain islands caused genetically and morphologically distinct population clusters in Z. poliogaster. However, major genetic and biometric splits were not correlated to the geographic distances among populations. This heterogeneous pattern can be explained by past climatic shifts, as highlighted by our SDM projections. Anthropogenically fragmented populations showed lower genetic diversity and a lower mean body mass, possibly in response to suboptimal habitat conditions. On the basis of these findings and the results from our SDM analysis we predict further loss of genotypic and phenotypic uniqueness in the wake of climate change, due to the contraction of the species' climatic niche and subsequent decline in population size. PMID:24713824
Habel, J C; Mulwa, R K; Gassert, F; Rödder, D; Ulrich, W; Borghesio, L; Husemann, M; Lens, L
2014-09-01
The Eastern Afromontane cloud forests occur as geographically distinct mountain exclaves. The conditions of these forests range from large to small and from fairly intact to strongly degraded. For this study, we sampled individuals of the forest bird species, the Montane White-eye Zosterops poliogaster from 16 sites and four mountain archipelagos. We analysed 12 polymorphic microsatellites and three phenotypic traits, and calculated Species Distribution Models (SDMs) to project past distributions and predict potential future range shifts under a scenario of climate warming. We found well-supported genetic and morphologic clusters corresponding to the mountain ranges where populations were sampled, with 43% of all alleles being restricted to single mountains. Our data suggest that large-scale and long-term geographic isolation on mountain islands caused genetically and morphologically distinct population clusters in Z. poliogaster. However, major genetic and biometric splits were not correlated to the geographic distances among populations. This heterogeneous pattern can be explained by past climatic shifts, as highlighted by our SDM projections. Anthropogenically fragmented populations showed lower genetic diversity and a lower mean body mass, possibly in response to suboptimal habitat conditions. On the basis of these findings and the results from our SDM analysis we predict further loss of genotypic and phenotypic uniqueness in the wake of climate change, due to the contraction of the species' climatic niche and subsequent decline in population size.
Johnson, Jeremy S; Gaddis, Keith D; Cairns, David M; Konganti, Kranti; Krutovsky, Konstantin V
2017-03-01
Untangling alternative historic dispersal pathways in long-lived tree species is critical to better understand how temperate tree species may respond to climatic change. However, disentangling these alternative pathways is often difficult. Emerging genomic technologies and landscape genetics techniques improve our ability to assess these pathways in natural systems. We address the question to what degree have microrefugial patches and long-distance dispersal been responsible for the colonization of mountain hemlock ( Tsuga mertensiana ) on the Alaskan Kenai Peninsula. We used double-digest restriction-associated DNA sequencing (ddRADseq) to identify genetic variants across eight mountain hemlock sample sites on the Kenai Peninsula, Alaska. We assessed genetic diversity and linkage disequilibrium using landscape and population genetics approaches. Alternative historic dispersal pathways were assessed using discriminant analysis of principle components and electrical circuit theory. A combination of decreasing diversity, high gene flow, and landscape connectivity indicates that mountain hemlock colonization on the Kenai Peninsula is the result of long-distance dispersal. We found that contemporary climate best explained gene flow patterns and that isolation by resistance was a better model explaining genetic variation than isolation by distance. Our findings support the conclusion that mountain hemlock colonization is the result of several long-distance dispersal events following Pleistocene glaciation. The high dispersal capability suggests that mountain hemlock may be able to respond to future climate change and expand its range as new habitat opens along its northern distribution. © 2017 Botanical Society of America.
Seasonal habitat-use patterns of nekton in a tide-restricted and unrestricted New England salt marsh
Raposa, K.B.; Roman, C.T.
2001-01-01
Many New England salt marshes remain tide-restricted or are undergoing tidal restoration. Hydrologic manipulation of salt marshes affects marsh biogeochemistry and vegetation patterns, but responses by fishes and decapod crustaceans (nekton) remain unclear, This study examines nekton habitat-use patterns in the tide-restricted Hatches Harbor salt marsh (Provincetown, Massachusetts) relative to a downstream, unrestricted marsh. Nekton assemblages were sampled in tidal creek, marsh pool, and salt marsh surface habitats. Pools and creeks were sampled every two weeks for one year to account for seasonal variability, and the marsh surface was sampled at two-week intervals in summer and fall. Density, richness, and community composition of nekton in creek and marsh surface habitats were similar between the unrestricted and restricted marsh, but use of pools differed drastically on the two sides of the tide-restricting dike. In 95% of the cases tested, restricted marsh habitats provided equal or greater habitat value for nekton than the same habitat in the unrestricted marsh (based on density), suggesting that the restricted marsh did not provide a degraded habitat for most species. For some species, the restricted marsh provided nursery, breeding, and overwintering habitat during different seasons, and tidal restoration of this salt marsh must be approached with care to prevent losses of these valuable marsh functions.
Climate change may restrict dryland forest regeneration in the 21st century
Petrie, M.D.; Bradford, John B.; Hubbard, R.M.; Lauenroth, W.K.; Andrews, Caitlin; Schlaepfer, D.R.
2017-01-01
The persistence and geographic expansion of dryland forests in the 21st century will be influenced by how climate change supports the demographic processes associated with tree regeneration. Yet, the way that climate change may alter regeneration is unclear. We developed a quantitative framework that estimates forest regeneration potential (RP) as a function of key environmental conditions for ponderosa pine, a key dryland forest species. We integrated meteorological data and climate projections for 47 ponderosa pine forest sites across the western United States, and evaluated RP using an ecosystem water balance model. Our primary goal was to contrast conditions supporting regeneration among historical, mid-21st century and late-21st century time frames. Future climatic conditions supported 50% higher RP in 2020–2059 relative to 1910–2014. As temperatures increased more substantially in 2060–2099, seedling survival decreased, RP declined by 50%, and the frequency of years with very low RP increased from 25% to 58%. Thus, climate change may initially support higher RP and increase the likelihood of successful regeneration events, yet will ultimately reduce average RP and the frequency of years with moderate climate support of regeneration. Our results suggest that climate change alone may begin to restrict the persistence and expansion of dryland forests by limiting seedling survival in the late 21st century.
Climate change may restrict dryland forest regeneration in the 21st century.
Petrie, M D; Bradford, J B; Hubbard, R M; Lauenroth, W K; Andrews, C M; Schlaepfer, D R
2017-06-01
The persistence and geographic expansion of dryland forests in the 21st century will be influenced by how climate change supports the demographic processes associated with tree regeneration. Yet, the way that climate change may alter regeneration is unclear. We developed a quantitative framework that estimates forest regeneration potential (RP) as a function of key environmental conditions for ponderosa pine, a key dryland forest species. We integrated meteorological data and climate projections for 47 ponderosa pine forest sites across the western United States, and evaluated RP using an ecosystem water balance model. Our primary goal was to contrast conditions supporting regeneration among historical, mid-21st century and late-21st century time frames. Future climatic conditions supported 50% higher RP in 2020-2059 relative to 1910-2014. As temperatures increased more substantially in 2060-2099, seedling survival decreased, RP declined by 50%, and the frequency of years with very low RP increased from 25% to 58%. Thus, climate change may initially support higher RP and increase the likelihood of successful regeneration events, yet will ultimately reduce average RP and the frequency of years with moderate climate support of regeneration. Our results suggest that climate change alone may begin to restrict the persistence and expansion of dryland forests by limiting seedling survival in the late 21st century. © 2017 by the Ecological Society of America.
The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation
Thompson, David W. J.; van den Broeke, Michiel R.
2017-01-01
Abstract We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. PMID:29398735
NASA Astrophysics Data System (ADS)
Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; Müller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.
2013-10-01
In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere-Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.
NASA Astrophysics Data System (ADS)
Villoria, Nelson B.; Elliott, Joshua; Müller, Christoph; Shin, Jaewoo; Zhao, Lan; Song, Carol
2018-01-01
Access to climate and spatial datasets by non-specialists is restricted by technical barriers involving hardware, software and data formats. We discuss an open-source online tool that facilitates downloading the climate data from the global circulation models used by the Inter-Sectoral Impacts Model Intercomparison Project. The tool also offers temporal and spatial aggregation capabilities for incorporating future climate scenarios in applications where spatial aggregation is important. We hope that streamlined access to these data facilitates analysis of climate related issues while considering the uncertainties derived from future climate projections and temporal aggregation choices.
Sork, Victoria L.; Davis, Frank W.; Westfall, Robert; Flint, Alan L.; Ikegami, Makihiko; Wang, Hongfang; Grivet, Delphine
2010-01-01
Rapid climate change jeopardizes tree populations by shifting current climate zones. To avoid extinction, tree populations must tolerate, adapt, or migrate. Here we investigate geographic patterns of genetic variation in valley oak, Quercus lobata N??e, to assess how underlying genetic structure of populations might influence this species' ability to survive climate change. First, to understand how genetic lineages shape spatial genetic patterns, we examine historical patterns of colonization. Second, we examine the correlation between multivariate nuclear genetic variation and climatic variation. Third, to illustrate how geographic genetic variation could interact with regional patterns of 21st Century climate change, we produce region-specific bioclimatic distributions of valley oak using Maximum Entropy (MAXENT) models based on downscaled historical (1971-2000) and future (2070-2100) climate grids. Future climatologies are based on a moderate-high (A2) carbon emission scenario and two different global climate models. Chloroplast markers indicate historical range-wide connectivity via colonization, especially in the north. Multivariate nuclear genotypes show a strong association with climate variation that provides opportunity for local adaptation to the conditions within their climatic envelope. Comparison of regional current and projected patterns of climate suitability indicates that valley oaks grow in distinctly different climate conditions in different parts of their range. Our models predict widely different regional outcomes from local displacement of a few kilometres to hundreds of kilometres. We conclude that the relative importance of migration, adaptation, and tolerance are likely to vary widely for populations among regions, and that late 21st Century conditions could lead to regional extinctions. ?? 2010 Blackwell Publishing Ltd.
Sork, Victoria L; Davis, Frank W; Westfall, Robert; Flint, Alan; Ikegami, Makihiko; Wang, Hongfang; Grivet, Delphine
2010-09-01
Rapid climate change jeopardizes tree populations by shifting current climate zones. To avoid extinction, tree populations must tolerate, adapt, or migrate. Here we investigate geographic patterns of genetic variation in valley oak, Quercus lobata Née, to assess how underlying genetic structure of populations might influence this species' ability to survive climate change. First, to understand how genetic lineages shape spatial genetic patterns, we examine historical patterns of colonization. Second, we examine the correlation between multivariate nuclear genetic variation and climatic variation. Third, to illustrate how geographic genetic variation could interact with regional patterns of 21st Century climate change, we produce region-specific bioclimatic distributions of valley oak using Maximum Entropy (MAXENT) models based on downscaled historical (1971-2000) and future (2070-2100) climate grids. Future climatologies are based on a moderate-high (A2) carbon emission scenario and two different global climate models. Chloroplast markers indicate historical range-wide connectivity via colonization, especially in the north. Multivariate nuclear genotypes show a strong association with climate variation that provides opportunity for local adaptation to the conditions within their climatic envelope. Comparison of regional current and projected patterns of climate suitability indicates that valley oaks grow in distinctly different climate conditions in different parts of their range. Our models predict widely different regional outcomes from local displacement of a few kilometres to hundreds of kilometres. We conclude that the relative importance of migration, adaptation, and tolerance are likely to vary widely for populations among regions, and that late 21st Century conditions could lead to regional extinctions.
Madani, S A; Peighambari, S M
2013-02-01
Chlamydiosis is one of the most important infectious diseases of birds. In this study, 253 clinical samples were taken from 27 bird species belonging to seven orders. Thirty-two (12.6%) samples were positive for Chlamydia psittaci major outer membrane gene (ompA) DNA by a nested polymerase chain reaction (PCR). Twelve nested PCR-positive specimens were typed by ompA gene-based PCR-restricted fragment length polymorphism, using CTU/CTL primers and AluI restriction enzyme. Four restriction patterns were identified, including genotype A (two specimens from an African grey parrot [Psittacus erithacus] and a lorikeet [Trichoglossus haematodus]), genotype B (two specimens from a rock dove [Columbia livia] and a canary [Serinus canaria]), a third new restriction pattern (six specimens from African grey parrots), and a fourth new restriction pattern (two specimens from a ring-necked parakeet [Psittacula krameri] and an Alexandrine parakeet [Psittacula eupatria]). The third and the fourth restriction patterns are suggested to be provisional genotypes I and J, respectively. Partial sequencing of the ompA gene of seven specimens completely correlated with the results of PCR-restricted fragment length polymorphism and confirmed the presence of genotypes A and B and the two new provisional genotypes I and J. The two new genotypes have the closest identity with C. psittaci genotype F and Chlamydia abortus, respectively. From an evolutionary perspective, both new genotypes, particularly genotype J, are intermediate between the two species, C. psittaci and C. abortus.
Boieiro, Mário; Carvalho, José C.; Cardoso, Pedro; Aguiar, Carlos A. S.; Rego, Carla; de Faria e Silva, Israel; Amorim, Isabel R.; Pereira, Fernando; Azevedo, Eduardo B.; Borges, Paulo A. V.; Serrano, Artur R. M.
2013-01-01
The development in recent years of new beta diversity analytical approaches highlighted valuable information on the different processes structuring ecological communities. A crucial development for the understanding of beta diversity patterns was also its differentiation in two components: species turnover and richness differences. In this study, we evaluate beta diversity patterns of ground beetles from 26 sites in Madeira Island distributed throughout Laurisilva – a relict forest restricted to the Macaronesian archipelagos. We assess how the two components of ground beetle beta diversity (βrepl – species turnover and βrich - species richness differences) relate with differences in climate, geography, landscape composition matrix, woody plant species richness and soil characteristics and the relative importance of the effects of these variables at different spatial scales. We sampled 1025 specimens from 31 species, most of which are endemic to Madeira Island. A spatially explicit analysis was used to evaluate the contribution of pure environmental, pure spatial and environmental spatially structured effects on variation in ground beetle species richness and composition. Variation partitioning showed that 31.9% of species turnover (βrepl) and 40.7% of species richness variation (βrich) could be explained by the environmental and spatial variables. However, different environmental variables controlled the two types of beta diversity: βrepl was influenced by climate, disturbance and soil organic matter content whilst βrich was controlled by altitude and slope. Furthermore, spatial variables, represented through Moran’s eigenvector maps, played a significant role in explaining both βrepl and βrich, suggesting that both dispersal ability and Madeira Island complex orography are crucial for the understanding of beta diversity patterns in this group of beetles. PMID:23724065
Lubricants for Hydraulic Structures
1989-08-01
significant difference is the fact that paraffinics provide a higher pour point. Although this is of little con- cern in warm climates , it could be...significant in very cold climates . 194. Lubricating oils may be either paraffinic or naphthenic depending on intended use, but there are no restrictions...geographical and climatic conditions, freedom to adjust to local conditions is recommended. 59 Table 1 Common Additives for Industrial Oils Rust
Global vegetation productivity response to climatic oscillations during the satellite era.
Gonsamo, Alemu; Chen, Jing M; Lombardozzi, Danica
2016-10-01
Climate control on global vegetation productivity patterns has intensified in response to recent global warming. Yet, the contributions of the leading internal climatic variations to global vegetation productivity are poorly understood. Here, we use 30 years of global satellite observations to study climatic variations controls on continental and global vegetation productivity patterns. El Niño-Southern Oscillation (ENSO) phases (La Niña, neutral, and El Niño years) appear to be a weaker control on global-scale vegetation productivity than previously thought, although continental-scale responses are substantial. There is also clear evidence that other non-ENSO climatic variations have a strong control on spatial patterns of vegetation productivity mainly through their influence on temperature. Among the eight leading internal climatic variations, the East Atlantic/West Russia Pattern extensively controls the ensuing year vegetation productivity of the most productive tropical and temperate forest ecosystems of the Earth's vegetated surface through directionally consistent influence on vegetation greenness. The Community Climate System Model (CCSM4) simulations do not capture the observed patterns of vegetation productivity responses to internal climatic variations. Our analyses show the ubiquitous control of climatic variations on vegetation productivity and can further guide CCSM and other Earth system models developments to represent vegetation response patterns to unforced variability. Several winter time internal climatic variation indices show strong potentials on predicting growing season vegetation productivity two to six seasons ahead which enables national governments and farmers forecast crop yield to ensure supplies of affordable food, famine early warning, and plan management options to minimize yield losses ahead of time. © 2016 John Wiley & Sons Ltd.
A new dataset for systematic assessments of climate change impacts as a function of global warming
NASA Astrophysics Data System (ADS)
Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; M{ü}ller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.
2012-11-01
In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a~narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships betweenΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.
Molecular characterization of Coxiella burnetii isolates.
Jäger, C.; Willems, H.; Thiele, D.; Baljer, G.
1998-01-01
Restriction fragment length polymorphism (RFLP) was used for the differentiation of 80 Coxiella burnetii isolates derived from animals and humans in Europe, USA, Africa and Asia. After NotI restriction of total C. burnetii DNA and pulsed field gel electrophoresis (PFGE) 20 different restriction patterns were distinguished. The index of discrimination for this typing system was 0.86. Comparison and phylogenetic analysis of the different RFLP patterns revealed evolutionary relationships among groups that corresponded to the geographical origin of the isolates. This finding was confirmed by genetic mapping. No correlation between restriction group and virulence of isolates was detected. PMID:9593485
Biocrust spectral response as affected by changing climatic conditions
NASA Astrophysics Data System (ADS)
Rodriguez-Caballero, Emilio; Guirado, Emilio; Escribano, Paula; Reyes, Andres; Weber, Bettina
2017-04-01
Drylands are characterized by scarce vegetation coverage and low rates of biological activity, both constrained by water scarcity. Under these conditions, biocrusts form key players of ecosystem functioning. They comprise complex poikilohydric communities of cyanobacteria, algae, lichens and bryophytes together with heterotrophic bacteria, archaea and fungi, which cover the uppermost soil layer. Biocrusts can cope with prolonged phases of drought, being rapidly re-activated when water becomes available again. Upon reactivation, biocrusts almost immediately turn green, fixing atmospheric carbon and nitrogen and increasing ecosystem productivity. However, due to their inconspicuous growth they have only rarely been analysed and spatially and temporally continuous information on their response to water pulses is missing. These data are particularly important under changing climatic conditions predicting an increase in aridity and variations in precipitation patterns within most of the dryland regions. In the present study, we used multi-temporal series of NDVI obtained from LANDSAT images to analyze biocrust and vegetation response to water pulses within the South African Succulent Karoo and we predicted their future response under different climate change scenarios. The results showed that biocrust and vegetation greenness are controlled by aridity, solar radiation and soil water content, showing similar annual patterns, with minimum values during dry periods that increased within the rainy season and decreased again after the onset of drought. However, biocrusts responded faster to water availability and turned green almost immediately after small rains, producing a small NDVI peak only few days after rainfall, whereas more time was needed for vegetation to grow new green tissue. However, once the photosynthetic tissue of vegetation was restored, it caused the highest increase of NDVI values after the rain. Predicted changes in precipitation patterns and aridity within the Succulent Karoo in South Africa comprise a decrease in rainfall events and aridity that finally resulted in higher water availability, especially on days just after rainfall, where biocrust are active. Our calculations suggest that these climatic alterations cause an increase of 30 % in biocrust NDVI by the end of the century, responding far more drastically than vascular plants. As biocrust NDVI is related to biocrust coverage, developmental stage and physiological activity, this will positively affect their contribution to global biogeochemical cycles and their soil-stabilizing effects, partially compensating the negative impacts of climate change on drylands regions. One has to keep in mind, however, that the investigated scenarios considered only climatic and no land use effects and that this study was restricted to a well-confined region. Nevertheless, our data clearly demonstrate that biocrust data need to be incorporated in land use programs and policies to ensure dryland sustainability under global change scenarios.
Lari, Nicoletta; Cavallini, Michela; Rindi, Laura; Iona, Elisabetta; Fattorini, Lanfranco; Garzelli, Carlo
1998-01-01
All but 2 of 63 Mycobacterium avium isolates from distinct geographic areas of Italy exhibited markedly polymorphic, multibanded IS1245 restriction fragment length polymorphism (RFLP) patterns; 2 isolates showed the low-number banding pattern typical of bird isolates. By computer analysis, 41 distinct IS1245 patterns and 10 clusters of essentially identical strains were detected; 40% of the 63 isolates showed genetic relatedness, suggesting the existence of a predominant AIDS-associated IS1245 RFLP pattern. PMID:9817900
Repeating patterns of sleep restriction and recovery: Do we get used to it?
Simpson, Norah S; Diolombi, Moussa; Scott-Sutherland, Jennifer; Yang, Huan; Bhatt, Vrushank; Gautam, Shiva; Mullington, Janet; Haack, Monika
2016-11-01
Despite its prevalence in modern society, little is known about the long-term impact of restricting sleep during the week and 'catching up' on weekends. This common sleep pattern was experimentally modeled with three weeks of 5 nights of sleep restricted to 4h followed by two nights of 8-h recovery sleep. In an intra-individual design, 14 healthy adults completed both the sleep restriction and an 8-h control condition, and the subjective impact and the effects on physiological markers of stress (cortisol, the inflammatory marker IL-6, glucocorticoid receptor sensitivity) were assessed. Sleep restriction was not perceived to be subjectively stressful and some degree of resilience or resistance to the effects of sleep restriction was observed in subjective domains. In contrast, physiological stress response systems remain activated with repeated exposures to sleep restriction and limited recovery opportunity. Morning IL-6 expression in monocytes was significantly increased during week 2 and 3 of sleep restriction, and remained increased after recovery sleep in week 2 (p<0.05) and week 3 (p<0.09). Serum cortisol showed a significantly dysregulated 24h-rhythm during weeks 1, 2, and 3 of sleep restriction, with elevated morning cortisol, and decreased cortisol in the second half of the night. Glucocorticoid sensitivity of monocytes was increased, rather than decreased, during the sleep restriction and sleep recovery portion of each week. These results suggest a disrupted interplay between the hypothalamic-pituitary-adrenal and inflammatory systems in the context of repeated exposure to sleep restriction and recovery. The observed dissociation between subjective and physiological responses may help explain why many individuals continue with the behavior pattern of restricting and recovering sleep over long time periods, despite a cumulative deleterious physiological effect. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yang; Leung, Lai-Yung R.; Lu, Jian
2014-03-16
This study compares climate simulations over the United States produced by a regional climate model with the driving global climate simulations as well as a large multi-model ensemble of global climate simulations to investigate robust changes in water availability (precipitation (P) – evapotranspiration (E)). A robust spring dry signal across multiple models is identified in the Southwest that results from a decrease in P and an increase in E in the future. In the boreal winter and summer, the prominent changes in P – E are associated with a north – south dipole pattern, while in spring, the prominent changesmore » in P – E appear as an east – west dipole pattern. The progression of the north – south and east – west dipole patterns through the seasons manifests clearly as a seasonal “clockwise” migration of wet/dry patterns, which is shown to be a robust feature of water availability changes in the US consistent across regional and global climate simulations.« less
Liu, Zhihua; Wimberly, Michael C
2016-01-15
We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.
Studies of Day Care Center Climate and Its Effect on Children's Social and Emotional Behavior.
ERIC Educational Resources Information Center
Ekholm, Bodil; Hedin, Anna
School climates at 12 day care centers in Sweden were compared to investigate effects of center climates on children's social and emotional behavior. Observations and interviews conducted at the day care centers revealed differences in center climates related to child-rearing patterns, patterns of interaction, the distribution of power, and in…
Rachel A. Loehman; Robert E. Keane; Lisa M. Holsinger; Zhiwei Wu
2017-01-01
Context: Interactions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs. Objectives We used the mechanistic...
A Holistic Approach to Climate and Health Research: Respiratory and Infectious Diseases
NASA Astrophysics Data System (ADS)
Asrar, G.; Alonoso, W.; McCormick, B.; Schuck-Paim, C.; Miller, M.
2014-12-01
The link between climate variability and change, especially extreme conditions, is well documented in both environmental and health literature. The focus of research in the recent past, and current studies, is to understand causal relationships between the disease agents and environmental conditions, based on post-hoc analysis of observed cases to develop predictive models for advance warning of public by health authorities. A combination of the isolated examination of individual diseases and routes of infection (e.g. respiratory system, skin, digestive tract, etc.) and reliance mostly on correlative evidence from past occurrences have restricted public health progress (e.g. compared to experimental evidence of the quantitative balance of different transmission routes) and the utility of knowledge gained from such studies (e.g. reliably predicting seasonal outbreaks is no longer an advance). We propose a shift from focusing on the prediction of individual disease pattern(s) to a more holistic identification and mitigation of broader vulnerabilities within the provision of public health. Such an approach has the potential to account for and reveal health vulnerabilities common to a broader range of health stresses, thus facilitating a more holistic response to health challenges. The human health fragilities associated with respiratory diseases caused by a combination of natural (i.e dust, pollen, etc.) and industrial particulates (i.e. soot, aerosols, etc.) and other infectious airborne agents, for example, and their adverse impact on human health such as respiratory, gastrointestinal, etc. is an ideal candidate for such a holistic approach to environment and health research.
NASA Astrophysics Data System (ADS)
Lipiec, E.; Ruggiero, P.; Serafin, K.; Bolte, J.; Mills, A.; Corcoran, P.; Stevenson, J.; Lach, D.
2014-12-01
Local decision-makers often lack both the information and tools to reduce their community's overall vulnerability to current and future climate change impacts. Managers are restricted in their actions by the scale of the problem, inherent scientific uncertainty, limits of information exchange, and the global nature of available data, rendering place-based strategies difficult to generate. Several U.S. Pacific Northwest coastal communities are already experiencing chronic erosion and flooding, hazards only to be exacerbated by sea level rise and changing patterns of storminess associated with climate change. To address these issues, a knowledge to action network (KTAN) consisting of local Tillamook County stakeholders and Oregon State University researchers, was formed to project future flooding and erosion impacts and determine possible adaptation policies to reduce vulnerability. Via an iterative scenario planning process, the KTAN has developed four distinct adaptation policy scenarios, including 'Status Quo', 'Hold The Line', 'ReAlign', and 'Laissez-Faire'. These policy scenarios are being integrated with a range of climate change scenarios within the modeling framework Envision, a multi-agent GIS-based tool, which allows for the combination of physical processes data, probabilistic climate change information, coastal flood and erosion models, and stakeholder driven adaptation strategies into distinct plausible future scenarios. Because exact physical and social responses to climate change are impossible to ascertain, information about the differences between possible future scenarios can provide valuable information to decision-makers and the community at large. For example, the fewest projected coastal flood and erosion impacts to buildings occur under the 'ReAlign' policy scenario (i.e., adaptation strategies that move dwellings away from the coast) under both low and high climate change scenarios, especially in comparison to the 'Status Quo' or 'Hold The Line' scenarios. Statistical analysis of the scenario-based variations in impacts to private and public resources can help guide future adaptation policy implementation and support Oregon's coastal communities for years to come.
Cluster analysis of Southeastern U.S. climate stations
NASA Astrophysics Data System (ADS)
Stooksbury, D. E.; Michaels, P. J.
1991-09-01
A two-step cluster analysis of 449 Southeastern climate stations is used to objectively determine general climate clusters (groups of climate stations) for eight southeastern states. The purpose is objectively to define regions of climatic homogeneity that should perform more robustly in subsequent climatic impact models. This type of analysis has been successfully used in many related climate research problems including the determination of corn/climate districts in Iowa (Ortiz-Valdez, 1985) and the classification of synoptic climate types (Davis, 1988). These general climate clusters may be more appropriate for climate research than the standard climate divisions (CD) groupings of climate stations, which are modifications of the agro-economic United States Department of Agriculture crop reporting districts. Unlike the CD's, these objectively determined climate clusters are not restricted by state borders and thus have reduced multicollinearity which makes them more appropriate for the study of the impact of climate and climatic change.
Role of the Indonesian Throughflow in controlling regional mean climate and rainfall variability
NASA Astrophysics Data System (ADS)
England, Matthew H.; Santoso, Agus; Phipps, Steven; Ummenhofer, Caroline
2017-04-01
The role of the Indonesian Throughflow (ITF) in controlling regional mean climate and rainfall is examined using a coupled ocean-atmosphere general circulation model. Experiments employing both a closed and open ITF are equilibrated to steady state and then 200 years of natural climatic variability is assessed within each model run, with a particular focus on the Indian Ocean region. Opening of the ITF results in a mean Pacific-to-Indian throughflow of 21 Sv (1 Sv = 106 m3 sec-1), which advects warm west Pacific waters into the east Indian Ocean. This warm signature is propagated westward by the mean ocean flow, however it never reaches the west Indian Ocean, as an ocean-atmosphere feedback in the tropics generates a weakened trade wind field that is reminiscent of the negative phase of the Indian Ocean Dipole (IOD). This is in marked contrast to the Indian Ocean response to an open ITF when examined in ocean-only model experiments; which sees a strengthening of both the Indian Ocean South Equatorial Current and the Agulhas Current. The coupled feedback in contrast leads to cooler conditions over the west Indian Ocean, and an anomalous zonal atmospheric pressure gradient that enhances the advection of warm moist air toward south Asia and Australia. This leaves the African continent significantly drier, and much of Australia and southern Asia significantly wetter, in response to the opening of the ITF. Given the substantial interannual variability that the ITF exhibits in the present-day climate system, and the restriction of the ITF gateway in past climate eras, this could have important implications for understanding past and present regional rainfall patterns around the Indian Ocean and over neighbouring land-masses.
The Associations of Intergroup Interactions and School Racial Socialization with Academic Motivation
ERIC Educational Resources Information Center
Byrd, Christy M.
2015-01-01
School racial climate is an important aspect of the school environment that can have significant implications for youths' development. However, existing research is limited by conceptual and methodological concerns that restrict the ability of researchers and educators to identify "what" about and "how" the racial climate is…
Late Quaternary climate stability and the origins and future of global grass endemism.
Sandel, Brody; Monnet, Anne-Christine; Govaerts, Rafaël; Vorontsova, Maria
2017-01-01
Earth's climate is dynamic, with strong glacial-interglacial cycles through the Late Quaternary. These climate changes have had major consequences for the distributions of species through time, and may have produced historical legacies in modern ecological patterns. Unstable regions are expected to contain few endemic species, many species with strong dispersal abilities, and to be susceptible to the establishment of exotic species from relatively stable regions. We test these hypotheses with a global dataset of grass species distributions. We described global patterns of endemism, variation in the potential for rapid population spread, and exotic establishment in grasses. We then examined relationships of these response variables to a suite of predictor variables describing the mean, seasonality and spatial pattern of current climate and the temperature change velocity from the Last Glacial Maximum to the present. Grass endemism is strongly concentrated in regions with historically stable climates. It also depends on the spatial pattern of current climate, with many endemic species in areas with regionally unusual climates. There was no association between the proportion of annual species (representing potential population spread rates) and climate change velocity. Rather, the proportion of annual species depended very strongly on current temperature. Among relatively stable regions (<10 m year -1 ), increasing velocity decreased the proportion of species that were exotic, but this pattern reversed for higher-velocity regions (>10 m year -1 ). Exotic species were most likely to originate from relatively stable regions with climates similar to those found in their exotic range. Long-term climate stability has important influences on global endemism patterns, largely confirming previous work from other groups. Less well recognized is its role in generating patterns of exotic species establishment. This result provides an important historical context for the conjecture that climate change in the near future may promote species invasions. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Assessment of Human Health Vulnerability to Climate Variability and Change in Cuba
Bultó, Paulo Lázaro Ortíz; Rodríguez, Antonio Pérez; Valencia, Alina Rivero; Vega, Nicolás León; Gonzalez, Manuel Díaz; Carrera, Alina Pérez
2006-01-01
In this study we assessed the potential effects of climate variability and change on population health in Cuba. We describe the climate of Cuba as well as the patterns of climate-sensitive diseases of primary concern, particularly dengue fever. Analyses of the associations between climatic anomalies and disease patterns highlight current vulnerability to climate variability. We describe current adaptations, including the application of climate predictions to prevent disease outbreaks. Finally, we present the potential economic costs associated with future impacts due to climate change. The tools used in this study can be useful in the development of appropriate and effective adaptation options to address the increased climate variability associated with climate change. PMID:17185289
Probabilistic projections of 21st century climate change over Northern Eurasia
NASA Astrophysics Data System (ADS)
Monier, E.; Sokolov, A. P.; Schlosser, C. A.; Scott, J. R.; Gao, X.
2013-12-01
We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an earth system model of intermediate complexity, with a two-dimensional zonal-mean atmosphere, to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three dimensional atmospheric model; and a statistical downscaling, where a pattern scaling algorithm uses climate-change patterns from 17 climate models. This framework allows for key sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections; climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate); natural variability; and structural uncertainty. Results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also nd that dierent initial conditions lead to dierences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider all sources of uncertainty when modeling climate impacts over Northern Eurasia.
Probabilistic projections of 21st century climate change over Northern Eurasia
NASA Astrophysics Data System (ADS)
Monier, Erwan; Sokolov, Andrei; Schlosser, Adam; Scott, Jeffery; Gao, Xiang
2013-12-01
We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity with a two-dimensional zonal-mean atmosphere to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model, and a statistical downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate models. This framework allows for four major sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections, climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability, and structural uncertainty. The results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also find that different initial conditions lead to differences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider these sources of uncertainty when modeling climate impacts over Northern Eurasia.
NASA Astrophysics Data System (ADS)
Hettiarachchi, Suresh; Wasko, Conrad; Sharma, Ashish
2018-03-01
The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA) Atlas 14 intensity-duration-frequency (IDF) relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1) How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2) Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081-2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results also show that regional storage facilities are sensitive to rainfall patterns that are loaded in the latter part of the storm duration, while extremely intense short-duration storms will cause flooding at all locations. This study shows that changes in temporal patterns will have a significant impact on urban/suburban flooding and need to be carefully considered and adjusted to account for climate change when used for the design and planning of future storm water systems.
Aridification driven diversification of fan-throated lizards from the Indian subcontinent.
Deepak, V; Karanth, Praveen
2018-03-01
The establishment of monsoon climate and the consequent aridification has been one of the most important climate change episodes in the Indian subcontinent. However, little is known about how these events might have shaped the diversification patterns among the widely distributed taxa. Fan-throated lizards (FTL) (Genus: Sitana, Sarada) are widespread, diurnal and restricted to the semi-arid zones of the Indian subcontinent. We sampled FTL in 107 localities across its range. We used molecular species delimitation method and delineated 15 species including six putative species. Thirteen of them were distinguishable based on morphology but two sister species were indistinguishable and have minor overlaps in distribution. Five fossils were used to calibrate and date the phylogeny. Diversification of fan-throated lizards lineage started ~18 mya and higher lineage diversification was observed after 11 my. The initial diversification corresponds to the time when monsoon climate was established and the latter was a period of intensification of monsoon and initiation of aridification. Thirteen out of the fifteen FTL species delimited are from Peninsular India; this is probably due to the landscape heterogeneity in this region. The species poor sister genus Otocryptis is paraphyletic and probably represents relict lineages which are now confined to forested areas. Thus, the seasonality led changes in habitat, from forests to open habitats appear to have driven diversification of fan-throated lizards. Copyright © 2017 Elsevier Inc. All rights reserved.
Thorne, Karen M.; Takekawa, John Y.; Elliott-Fisk, Deborah L.
2012-01-01
Coastal areas are high-risk zones subject to the impacts of global climate change, with significant increases in the frequencies of extreme weather and storm events, and sea-level rise forecast by 2100. These physical processes are expected to alter estuaries, resulting in loss of intertidal wetlands and their component wildlife species. In particular, impacts to salt marshes and their wildlife will vary both temporally and spatially and may be irreversible and severe. Synergistic effects caused by combining stressors with anthropogenic land-use patterns could create areas of significant biodiversity loss and extinction, especially in urbanized estuaries that are already heavily degraded. In this paper, we discuss current ideas, challenges, and concerns regarding the maintenance of salt marshes and their resident wildlife in light of future climate conditions. We suggest that many salt marsh habitats are already impaired and are located where upslope transgression is restricted, resulting in reduction and loss of these habitats in the future. In addition, we conclude that increased inundation frequency and water depth will have negative impacts on the demography of small or isolated wildlife meta-populations as well as their community interactions. We illustrate our points with a case study on the Pacific Coast of North America at San Pablo Bay National Wildlife Refuge in California, an area that supports endangered wildlife species reliant on salt marshes for all aspects of their life histories.
Lv, Xue; Xia, Lin; Ge, Deyan; Wu, Yongjie; Yang, Qisen
2016-05-01
Climatic niche conservatism shapes patterns of diversity in many taxonomic groups, while ecological opportunity (EO) can trigger rapid speciation that is less constrained by the amount of time a lineage has occupied a given habitat. These two processes are well studied, but limited research has considered their joint and relative roles in shaping diversity patterns. We characterized climatic and biogeographic variables for 102 species of arvicoline rodents (Arvicolinae, Cricetidae), testing the effects of climatic niche conservatism and EO on arvicoline diversification as lineages transitioned between biogeographic regions. We found that the amount of time a lineage has occupied a precipitation niche is positively correlated with diversity along a precipitation gradient, suggesting climatic niche conservatism. In contrast, shift in diversification rate explained diversity patterns along a temperature gradient. Our results suggest that an indirect relationship exists between temperature and diversification that is associated with EO as arvicoline rodents colonized warm Palearctic environments. Climatic niche conservatism alone did not fully explain diversity patterns under density-dependence, highlighting the additional importance of EO-related processes in promoting the explosive radiation in arvicoline rodents and shaping diversity pattern among biogeographic regions and along climatic gradients. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR
NASA Astrophysics Data System (ADS)
Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.
2017-12-01
Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.
Seasonally varying footprint of climate change on precipitation in the Middle East.
Tabari, Hossein; Willems, Patrick
2018-03-13
Climate change is expected to alter precipitation patterns; however, the amplitude of the change may broadly differ across seasons. Combining different seasons may mask contrasting climate change signals in individual seasons, leading to weakened signals and misleading impact results. A realistic assessment of future climate change is of great importance for arid regions, which are more vulnerable to any change in extreme events as their infrastructure is less experienced or not well adapted for extreme conditions. Our results show that climate change signals and associated uncertainties over the Middle East region remarkably vary with seasons. The region is identified as a climate change hotspot where rare extreme precipitation events are expected to intensify for all seasons, with a "highest increase in autumn, lowest increase in spring" pattern which switches to the "increase in autumn, decrease in spring" pattern for less extreme precipitation. This pattern is also held for mean precipitation, violating the "wet gets wetter, dry gets drier" paradigm.
NASA Astrophysics Data System (ADS)
Horne, D. J.
2009-04-01
Excavation of the partial skeleton of an Iguanodon from the Upper Weald Clay (Barremian, Early Cretaceous) at Smokejacks Brickworks near Ockley, Surrey, UK included detailed sampling for micropalaeontological and palynological and studies (Nye et al., 2008). Rich and well-preserved non-marine assemblages of pollen and spores include early angiosperms as well as freshwater green algae. Taphonomic analyses show the ostracod assemblages to be autochthonous thanatocoenoses, indicative of local environment at the time of deposition. Using a palaeobiological approach, the ostracods and palynomorphs demonstrate temporary / ephemeral freshwater conditions at the time when the Iguanodon died and the carcase was buried. Ostracod "faunicycles" in "Purbeck-Wealden" deposits may represent salinity variations in non-marine water-bodies, influenced by the balance between precipitation and evaporation, and/or the relative abundance of permanent and temporary waterbodies in the landscape; many assemblages resulted from post-mortem mixing, perhaps during flood events (Horne, 2002). Faunal alternations may therefore reflect shifts of the boundary between warm temperate and paratropical climate in the Early Cretaceous of NW Europe. The previously rejected suggestion that such assemblage variations record Milankovitch cyclicity deserves to be reconsidered, as does the possibility that they reflect changes on sub-Milankovitch timescales. Climate variability may have influenced the differential evolutionary success of sexual, mixed and parthenogenetic reproductive strategies in nonmarine ostracods. Latitudinally restricted distribution patterns and wind dispersal of resting eggs offer potential for inferring global climate patterns from ostracod palaeobiogeography, although dispersal by large animals (e.g., crocodiles, pterosaurs) is likely to have confused any aeolian transport patterns. References Horne, D. J. 2002. Ostracod biostratigraphy and palaeoecology of the Purbeck Limestone Group in southern England. Special Papers in Palaeontology, 68, 1-18, 2 pls. Nye, E., Feist-Burkhardt, S., Horne, D. J., Ross, A. J. & Whittaker, J. E. (2008) The palaeoenvironment associated with a partial Iguanodon skeleton from the Upper Weald Clay (Barremian, Early Cretaceous) at Smokejacks Brickworks (Ockley, Surrey, UK), based on palynomorphs and ostracods. Cretaceous Research, 29, 417-444.
Quintela, Fernando M; Marques, Wiliam C; Loebmann, Daniel
2017-01-01
We investigated reproductive features of the dipsadid snake Erythrolamprus poecilogyrus sublineatus in the southernmost Brazilian coast, a subtropical region characterized by well-marked seasons. Females are significantly smaller than males, have a shorter tail, and reach sexual maturity at later times along their development. In contrast to tropical subspecies, E. p. sublineatus females presented a seasonal pattern, with secondary follicles occurring from late winter to early autumn and egg production restricted to the whole spring and early summer. Males presented seasonal variation in testes volume (increase in autumn and decrease in winter) while no significant seasonal variation was found in ductus deferens width. The number of oviductal eggs varied from two to nine, thus, real fecundity is also inferior than that observed in tropical E. poecilogyrus forms. Considering the thermal requirements for reproduction, it is possible that the colder climatic conditions of the southern Brazilian coast have shaped the seasonal reproductive pattern in E. p. sublineatus. The shorter body size of this subspecies may also represent a conditioning factor of low fecundity.
Baker, Nameer R; Khalili, Banafshe; Martiny, Jennifer B H; Allison, Steven D
2018-06-01
Microbial decomposers mediate the return of CO 2 to the atmosphere by producing extracellular enzymes to degrade complex plant polymers, making plant carbon available for metabolism. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. We analyzed mass loss, litter chemistry, microbial biomass, extracellular enzyme activities, and enzyme temperature sensitivities in grassland litter transplanted along a Mediterranean climate gradient in southern California. Microbial community composition was manipulated by caging litter within bags made of nylon membrane that prevent microbial immigration. To test whether grassland microbes were constrained by climate history, half of the bags were inoculated with local microbial communities native to each gradient site. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbial communities were not restricted in their ability to decompose litter under different climate conditions across the gradient, although microbial communities across our gradient may be restricted in their ability to degrade different types of litter. We did find some evidence that local microbial communities were optimized based on climate, but local microbial taxa that proliferated after inoculation into litterbags did not enhance litter decomposition. Our results suggest that microbial community composition does not constrain C-cycling rates under climate change in our system, but optimization to particular resource environments may act as more general constraints on microbial communities. © 2018 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Li, Xue; Ye, Si-Yuan; Wei, Ai-Hua; Zhou, Peng-Peng; Wang, Li-Heng
2017-09-01
A three-dimensional groundwater flow model was implemented to quantify the temporal variation of shallow groundwater levels in response to combined climate and water-diversion scenarios over the next 40 years (2011-2050) in Beijing-Tianjin-Hebei (Jing-Jin-Ji) Plain, China. Groundwater plays a key role in the water supply, but the Jing-Jin-Ji Plain is facing a water crisis. Groundwater levels have declined continuously over the last five decades (1961-2010) due to extensive pumping and climate change, which has resulted in decreased recharge. The implementation of the South-to-North Water Diversion Project (SNWDP) will provide an opportunity to restore the groundwater resources. The response of groundwater levels to combined climate and water-diversion scenarios has been quantified using a groundwater flow model. The impacts of climate change were based on the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset for future high (A2), medium (A1B), and low (B1) greenhouse gas scenarios; precipitation data from CMIP3 were applied in the model. The results show that climate change will slow the rate of decrease of the shallow groundwater levels under three climate-change scenarios over the next 40 years compared to the baseline scenario; however, the shallow groundwater levels will rise significantly (maximum of 6.71 m) when considering scenarios that combine climate change and restrictions on groundwater exploitation. Restrictions on groundwater exploitation for water resource management are imperative to control the decline of levels in the Jing-Jin-Ji area.
Ordonez, Alejandro; Svenning, Jens-Christian
2017-02-23
Current and historical environmental conditions are known to determine jointly contemporary species distributions and richness patterns. However, whether historical dynamics in species distributions and richness translate to functional diversity patterns remains, for the most part, unknown. The geographic patterns of plant functional space size (richness) and packing (dispersion) for six widely distributed orders of European angiosperms were estimated using atlas distribution data and trait information. Then the relative importance of late-Quaternary glacial-interglacial climate change and contemporary environmental factors (climate, productivity, and topography) as determinants of functional diversity of evaluated orders was assesed. Functional diversity patterns of all evaluated orders exhibited prominent glacial-interglacial climate change imprints, complementing the influence of contemporary environmental conditions. The importance of Quaternary glacial-interglacial climate change factors was comparable to that of contemporary environmental factors across evaluated orders. Therefore, high long-term paleoclimate variability has imposed consistent supplementary constraints on functional diversity of multiple plant groups, a legacy that may permeate to ecosystem functioning and resilience. These findings suggest that strong near-future anthropogenic climate change may elicit long-term functional disequilibria in plant functional diversity.
The Role of Embodiment and Individual Empathy Levels in Gesture Comprehension.
Jospe, Karine; Flöel, Agnes; Lavidor, Michal
2017-01-01
Research suggests that the action-observation network is involved in both emotional-embodiment (empathy) and action-embodiment (imitation) mechanisms. Here we tested whether empathy modulates action-embodiment, hypothesizing that restricting imitation abilities will impair performance in a hand gesture comprehension task. Moreover, we hypothesized that empathy levels will modulate the imitation restriction effect. One hundred twenty participants with a range of empathy scores performed gesture comprehension under restricted and unrestricted hand conditions. Empathetic participants performed better under the unrestricted compared to the restricted condition, and compared to the low empathy participants. Remarkably however, the latter showed the exactly opposite pattern and performed better under the restricted condition. This pattern was not found in a facial expression recognition task. The selective interaction of embodiment restriction and empathy suggests that empathy modulates the way people employ embodiment in gesture comprehension. We discuss the potential of embodiment-induced therapy to improve empathetic abilities in individuals with low empathy.
Richard P. Thompson; Steve R. Auten
2012-01-01
To quantify the benefits and costs of modifying forest management for additional climate benefits, Cal Poly's Swanton Pacific demonstration forest was used to test the Climate Action Reserve's protocol and identify management strategies for both wood and carbon markets. Residing in the Southern Sub-district with its clearcutting restrictions, Swanton offers...
Diverse growth trends and climate responses across Eurasia’s boreal forest
NASA Astrophysics Data System (ADS)
Hellmann, Lena; Agafonov, Leonid; Charpentier Ljungqvist, Fredrik; Churakova (Sidorova, Olga; Düthorn, Elisabeth; Esper, Jan; Hülsmann, Lisa; Kirdyanov, Alexander V.; Moiseev, Pavel; Myglan, Vladimir S.; Nikolaev, Anatoly N.; Reinig, Frederick; Schweingruber, Fritz H.; Solomina, Olga; Tegel, Willy; Büntgen, Ulf
2016-07-01
The area covered by boreal forests accounts for ˜16% of the global and 22% of the Northern Hemisphere landmass. Changes in the productivity and functioning of this circumpolar biome not only have strong effects on species composition and diversity at regional to larger scales, but also on the Earth’s carbon cycle. Although temporal inconsistency in the response of tree growth to temperature has been reported from some locations at the higher northern latitudes, a systematic dendroecological network assessment is still missing for most of the boreal zone. Here, we analyze the geographical patterns of changes in summer temperature and precipitation across northern Eurasia >60 °N since 1951 AD, as well as the growth trends and climate responses of 445 Pinus, Larix and Picea ring width chronologies in the same area and period. In contrast to widespread summer warming, fluctuations in precipitation and tree growth are spatially more diverse and overall less distinct. Although the influence of summer temperature on ring formation is increasing with latitude and distinct moisture effects are restricted to a few southern locations, growth sensitivity to June-July temperature variability is only significant at 16.6% of all sites (p ≤ 0.01). By revealing complex climate constraints on the productivity of Eurasia’s northern forests, our results question the a priori suitability of boreal tree-ring width chronologies for reconstructing summer temperatures. This study further emphasizes regional climate differences and their role on the dynamics of boreal ecosystems, and also underlines the importance of free data access to facilitate the compilation and evaluation of massively replicated and updated dendroecological networks.
NASA Astrophysics Data System (ADS)
Butz, R. J.; Reinhardt, K. S.; Germino, M. J.; Kueppers, L. M.
2009-12-01
Many alpine plant species face habitat fragmentation and loss, and even extinction because their narrow elevation, precipitation, and temperature tolerances limit their geographic distribution. In order to assess the impacts of climate change on sensitive native alpine communities we used a variety of methods to look at the seasonal timing of life stages (phenology) and the stress responses (physiology) of alpine species along a natural environmental gradient at Niwot Ridge in the Colorado Rocky Mountains to address the following question: Will alpine plants be impaired in their existing range as a result of climate change? We collected data on date of snowmelt and vegetative and flowering phenology of all alpine species present from snowmelt to senescence in 80 1m2 plots above treeline. In addition, we measured soil temperature and moisture, plant water potential and leaf-level gas exchange early, mid, and late-season on three alpine-restricted and three broader-ranging alpine species: Geum rossii, Artemisia scopulorum, Carex rupestris, Lewisia pygmaea, Tetraneuris grandiflora, and Sibbaldia procumbens. In 2009, the natural variation in snowmelt timing was 40 days (approximately 5.5 weeks) over the 80 plots. Our results suggest that with earlier snowmelt, the number of vascular species per plot increases. However, this increase is almost exclusively attributable to wider ranging species not restricted to the alpine. Plots with intermediate natural snowmelt dates had a higher diversity of alpine-restricted species, photosynthesis, and water-use efficiency, thereby potentially increasing long-term survival rates amongst alpine species. Water stress increased in all species as the season progressed, especially in plots where snow melted earliest. Photosynthetic productivity and diversity of alpine-restricted species was greatest in plots having intermediate melt dates. These findings suggest that shifts in snowmelt date under a warming climate will likely impact the diversity and productivity of alpine vegetation. Furthermore, results from this ongoing work will contribute to a predictive understanding of shifts in the distributions of subalpine and alpine species with climate warming in the Rocky Mountains and Western U.S.
Molecular typing of Staphylococcus aureus based on coagulase gene.
Javid, Faizan; Taku, Anil; Bhat, Mohd Altaf; Badroo, Gulzar Ahmad; Mudasir, Mir; Sofi, Tanveer Ahmad
2018-04-01
This study was conducted to study the coagulase gene-based genetic diversity of Staphylococcus aureus , isolated from different samples of cattle using restriction fragment length polymorphism (RFLP) and their sequence-based phylogenetic analysis. A total of 192 different samples from mastitic milk, nasal cavity, and pus from skin wounds of cattle from Military Dairy Farm, Jammu, India, were screened for the presence of S. aureus . The presumptive isolates were confirmed by nuc gene-based polymerase chain reaction (PCR). The confirmed S. aureus isolates were subjected to coagulase ( coa ) gene PCR. Different coa genotypes observed were subjected to RFLP using restriction enzymes Hae111 and Alu1 , to obtain the different restriction patterns. One isolate from each restriction pattern was sequenced. These sequences were aligned for maximum homology using the Bioedit softwareandsimilarity in the sequences was inferred with the help of sequence identity matrix. Of 192 different samples,39 (20.31%) isolates of S. aureus were confirmed by targeting nuc gene using PCR. Of 39 S. aureus isolates, 25 (64.10%) isolates carried coa gene. Four different genotypes of coa gene, i.e., 514 bp, 595 bp, 757 bp, and 802 bp were obtained. Two coa genotypes, 595 bp (15 isolates) and 802 bp (4 isolates), were observed in mastitic milk. 514 bp (2 isolates) and 757 bp (4 isolates) coa genotypes were observed from nasal cavity and pus from skin wounds, respectively. On RFLP using both restriction enzymes, four different restriction patterns P1, P2, P3, and P4 were observed. On sequencing, four different sequences having unique restriction patterns were obtained. The most identical sequences with the value of 0.810 were found between isolate S. aureus 514 (nasal cavity) and S. aureus 595 (mastitic milk), and thus, they are most closely related. While as the most distant sequences with the value of 0.483 were found between S. aureus 514 and S. aureus 802 isolates. The study, being localized to only one farm, yielded different RFLP patterns as observed from different sampling sites, which indicates that different S . aureus coagulase typeshave a site-specific predilection. Two coa patterns were observed in mastitic milk indicating multiple origins of infection, with 595 bp coa genotype being predominant in mastitic milk. The coa genotypes and their restriction patterns observed in the present study are novel, not published earlier. 514 and 595 coa variants of S. aureus are genetically most related.
NASA Astrophysics Data System (ADS)
DeConto, R. M.; MacConnell, A.; Leckie, R.
2001-05-01
During the middle to late Miocene, the northward drift of Australia and New Guinea progressively restricted Indonesian throughflow (ITF). Today, ITF plays an important role in modulating inter-basin fresh water flux, heat transport, and the volume of the Western Pacific Warm Pool (WPWP). Today's WPWP is a center for deep convection that contributes considerable diabatic heating to the tropical atmosphere, affecting both the Walker and Hadley circulation. The WPWP fuels the East Asian Monsoon with moisture and latent heat and is an important component of ENSO. As the Indonesian Seaway became restricted, India was impinging on Asia. Asian continentality was increased and Himalayan/Tibetan uplift begun affecting zonal atmospheric flow and land-surface albedo. In order to better understand the climate system's response to changing Miocene paleogeography (horizontal and vertical tectonics), we have begun a series of climate model experiments using atmosphere, ocean, and coupled atmosphere-ocean general circulation models (GCMs). The GCM experiments are designed to isolate the possible response to effective Indonesian gateway closure within the framework of evolving Miocene Paleogeography between 11 and 7 Ma. In the first phase of our modeling study, an AGCM was used to test the sensitivity of tropical Indo-Pacific and Asian climate (including monsoonal intensity) to the presence of a WPWP in a pre and post Himalayan/Tibetan Plateau world. The results of the GCM simulations will be discussed in the context of the hypotheses that 1) a proto-WPWP became established as the Indonesian Seaway became increasingly restricted during the late middle to late Miocene; and 2) the growth of the WPWP had a first order affect on tropical Pacific climate and the East Asian monsoon.
[Intestinal parasitic diseases as a global health problem].
Chacín-Bonilla, Leonor
2013-03-01
In today's world, parasitic disease agents are not restricted by geography or economy, and have become a significant global threat. The increasing globalization of the fresh produce market and greater international trade and travels, have contributed to the spread of these organisms in the industrialized world. Parasitic protozoa cause waterborne and foodborne outbreaks of diarrhea. The unprecedented flow of people introduces cultural and behavior patterns around the world; the increasing tendency to eat raw or undercooked meat and seafood, favors the dissemination of several parasitic pathogens. Climate changes are predicted to cause a global increase in soil-transmitted helminthiases. The multidisciplinary study of these agents, and the interaction among scientists, global health organizations and governments are imperative to reduce the burden of these diseases and improve the life of a large segment of the world population.
2013-01-01
Introduction Sociality has evolved independently multiple times across the spider phylogeny, and despite wide taxonomic and geographical breadth the social species are characterized by a common geographical constrain to tropical and subtropical areas. Here we investigate the environmental factors that drive macro-ecological patterns in social and solitary species in a genus that shows a Mediterranean–Afro-Oriental distribution (Stegodyphus). Both selected drivers (productivity and seasonality) may affect the abundance of potential prey insects, but seasonality may further directly affect survival due to mortality caused by extreme climatic events. Based on a comprehensive dataset including information about the distribution of three independently derived social species and 13 solitary congeners we tested the hypotheses that the distribution of social Stegodyphus species relative to solitary congeners is: (1) restricted to habitats of high vegetation productivity and (2) constrained to areas with a stable climate (low precipitation seasonality). Results Using spatial logistic regression modelling and information-theoretic model selection, we show that social species occur at higher vegetation productivity than solitary, while precipitation seasonality received limited support as a predictor of social spider occurrence. An analysis of insect biomass data across the Stegodyphus distribution range confirmed that vegetation productivity is positively correlated to potential insect prey biomass. Conclusions Habitat productivity constrains the distribution of social spiders across continents compared to their solitary congeners, with group-living in spiders being restricted to areas with relatively high vegetation productivity and insect prey biomass. As known for other taxa, permanent sociality likely evolves in response to high predation pressure and imposes within-group competition for resources. Our results suggest that group living is contingent upon productive environmental conditions where elevated prey abundance meet the increased demand for food of social groups. PMID:23433065
Patterns and biases of climate change threats in the IUCN Red List.
Trull, Nicholas; Böhm, Monika; Carr, Jamie
2018-02-01
International Union for Conservation of Nature (IUCN) Red List assessments rely on published data and expert inputs, and biases can be introduced where underlying definitions and concepts are ambiguous. Consideration of climate change threat is no exception, and recently numerous approaches to assessing the threat of climate change to species have been developed. We explored IUCN Red List assessments of amphibians and birds to determine whether species listed as threatened by climate change display distinct patterns in terms of habitat occupied and additional nonclimatic threats faced. We compared IUCN Red List data with a published data set of species' biological and ecological traits believed to infer high vulnerability to climate change and determined whether distributions of climate change-threatened species on the IUCN Red List concur with those of climate change-threatened species identified with the trait-based approach and whether species possessing these traits are more likely to have climate change listed as a threat on the IUCN Red List. Species in some ecosystems (e.g., grassland, shrubland) and subject to particular threats (e.g., invasive species) were more likely to have climate change as a listed threat. Geographical patterns of climate change-threatened amphibians and birds on the IUCN Red List were incongruent with patterns of global species richness and patterns identified using trait-based approaches. Certain traits were linked to increases or decreases in the likelihood of a species being threatened by climate change. Broad temperature tolerance of a species was consistently related to an increased likelihood of climate change threat, indicating counterintuitive relationships in IUCN assessments. To improve the robustness of species assessments of the vulnerability or extinction risk associated with climate change, we suggest IUCN adopt a more cohesive approach whereby specific traits highlighted by our results are considered in Red List assessments. To achieve this and to strengthen the climate change-vulnerability assessments approach, it is necessary to identify and implement logical avenues for further research into traits that make species vulnerable to climate change (including population-level threats). © 2017 Society for Conservation Biology.
King penguin demography since the last glaciation inferred from genome-wide data.
Trucchi, Emiliano; Gratton, Paolo; Whittington, Jason D; Cristofari, Robin; Le Maho, Yvon; Stenseth, Nils Chr; Le Bohec, Céline
2014-07-22
How natural climate cycles, such as past glacial/interglacial patterns, have shaped species distributions at the high-latitude regions of the Southern Hemisphere is still largely unclear. Here, we show how the post-glacial warming following the Last Glacial Maximum (ca 18 000 years ago), allowed the (re)colonization of the fragmented sub-Antarctic habitat by an upper-level marine predator, the king penguin Aptenodytes patagonicus. Using restriction site-associated DNA sequencing and standard mitochondrial data, we tested the behaviour of subsets of anonymous nuclear loci in inferring past demography through coalescent-based and allele frequency spectrum analyses. Our results show that the king penguin population breeding on Crozet archipelago steeply increased in size, closely following the Holocene warming recorded in the Epica Dome C ice core. The following population growth can be explained by a threshold model in which the ecological requirements of this species (year-round ice-free habitat for breeding and access to a major source of food such as the Antarctic Polar Front) were met on Crozet soon after the Pleistocene/Holocene climatic transition. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Montane ecosystem productivity responds more to global circulation patterns than climatic trends.
Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Eugster, W; Montagnani, L; Gianelle, D; Mauder, M; Schmid, H-P
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
Montane ecosystem productivity responds more to global circulation patterns than climatic trends
NASA Astrophysics Data System (ADS)
Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
Spatio-Temporal Pattern Analysis for Regional Climate Change Using Mathematical Morphology
NASA Astrophysics Data System (ADS)
Das, M.; Ghosh, S. K.
2015-07-01
Of late, significant changes in climate with their grave consequences have posed great challenges on humankind. Thus, the detection and assessment of climatic changes on a regional scale is gaining importance, since it helps to adopt adequate mitigation and adaptation measures. In this paper, we have presented a novel approach for detecting spatio-temporal pattern of regional climate change by exploiting the theory of mathematical morphology. At first, the various climatic zones in the region have been identified by using multifractal cross-correlation analysis (MF-DXA) of different climate variables of interest. Then, the directional granulometry with four different structuring elements has been studied to detect the temporal changes in spatial distribution of the identified climatic zones in the region and further insights have been drawn with respect to morphological uncertainty index and Hurst exponent. The approach has been evaluated with the daily time series data of land surface temperature (LST) and precipitation rate, collected from Microsoft Research - Fetch Climate Explorer, to analyze the spatio-temporal climatic pattern-change in the Eastern and North-Eastern regions of India throughout four quarters of the 20th century.
NASA Astrophysics Data System (ADS)
Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.
2014-05-01
Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.
Vinod Sasidharan
2000-01-01
Impacts of global climate change on the biophysical components of wilderness areas have the potential to alter their recreational utility of wilderness areas. Concomitantly, the frequency and patterns of both land-based and water-based wilderness recreation activities will be affected. Despite the difficulty of responding to the unclear dimensions of global climate...
NASA Astrophysics Data System (ADS)
Fang, Keyan; Cook, Edward; Guo, Zhengtang; Chen, Deliang; Ou, Tinghai; Zhao, Yan
2018-02-01
Oceanic and atmospheric patterns play a crucial role in modulating climate variability from interannual to multi-decadal timescales by causing large-scale co-varying climate changes. The brevity of the existing instrumental records hinders the ability to recognize climate patterns before the industrial era, which can be alleviated using proxies. Unfortunately, proxy based reconstructions of oceanic and atmospheric modes of the past millennia often have modest agreements with each other before the instrumental period, raising questions about the robustness of the reconstructions. To ensure the stability of climate signals in proxy data through time, we first identified tree-ring datasets from distant regions containing coherent variations in Asia and North America, and then interpreted their climate information. We found that the multi-decadal covarying climate patterns of the middle and high latitudinal regions around the northern Pacific Ocean agreed quite well with the climate reconstructions of the tropical and southern Pacific areas. This indicates a synchronous variability at the multi-decadal timescale of the past 430 years for the entire Pacific Ocean. This pattern is closely linked to the dominant mode of the Pacific sea surface temperature (SST) after removing the warming trend. This Pacific multi-decadal SST variability resembles the Interdecadal Pacific Oscillation.
Large-Scale Circulation and Climate Variability. Chapter 5
NASA Technical Reports Server (NTRS)
Perlwitz, J.; Knutson, T.; Kossin, J. P.; LeGrande, A. N.
2017-01-01
The causes of regional climate trends cannot be understood without considering the impact of variations in large-scale atmospheric circulation and an assessment of the role of internally generated climate variability. There are contributions to regional climate trends from changes in large-scale latitudinal circulation, which is generally organized into three cells in each hemisphere-Hadley cell, Ferrell cell and Polar cell-and which determines the location of subtropical dry zones and midlatitude jet streams. These circulation cells are expected to shift poleward during warmer periods, which could result in poleward shifts in precipitation patterns, affecting natural ecosystems, agriculture, and water resources. In addition, regional climate can be strongly affected by non-local responses to recurring patterns (or modes) of variability of the atmospheric circulation or the coupled atmosphere-ocean system. These modes of variability represent preferred spatial patterns and their temporal variation. They account for gross features in variance and for teleconnections which describe climate links between geographically separated regions. Modes of variability are often described as a product of a spatial climate pattern and an associated climate index time series that are identified based on statistical methods like Principal Component Analysis (PC analysis), which is also called Empirical Orthogonal Function Analysis (EOF analysis), and cluster analysis.
Selecting climate simulations for impact studies based on multivariate patterns of climate change.
Mendlik, Thomas; Gobiet, Andreas
In climate change impact research it is crucial to carefully select the meteorological input for impact models. We present a method for model selection that enables the user to shrink the ensemble to a few representative members, conserving the model spread and accounting for model similarity. This is done in three steps: First, using principal component analysis for a multitude of meteorological parameters, to find common patterns of climate change within the multi-model ensemble. Second, detecting model similarities with regard to these multivariate patterns using cluster analysis. And third, sampling models from each cluster, to generate a subset of representative simulations. We present an application based on the ENSEMBLES regional multi-model ensemble with the aim to provide input for a variety of climate impact studies. We find that the two most dominant patterns of climate change relate to temperature and humidity patterns. The ensemble can be reduced from 25 to 5 simulations while still maintaining its essential characteristics. Having such a representative subset of simulations reduces computational costs for climate impact modeling and enhances the quality of the ensemble at the same time, as it prevents double-counting of dependent simulations that would lead to biased statistics. The online version of this article (doi:10.1007/s10584-015-1582-0) contains supplementary material, which is available to authorized users.
NASA Astrophysics Data System (ADS)
Verdon-Kidd, D.; Kiem, A. S.
2008-10-01
In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and/or Indian Ocean Dipole (IOD) are associated with a shift in the relative frequency of wet and dry synoptic types. Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.
Historical factors shaped species diversity and composition of Salix in eastern Asia.
Wang, Qinggang; Su, Xiangyan; Shrestha, Nawal; Liu, Yunpeng; Wang, Siyang; Xu, Xiaoting; Wang, Zhiheng
2017-02-08
Ambient energy, niche conservatism, historical climate stability and habitat heterogeneity hypothesis have been proposed to explain the broad-scale species diversity patterns and species compositions, while their relative importance have been controversial. Here, we assessed the relative contributions of contemporary climate, historical climate changes and habitat heterogeneity in shaping Salix species diversity and species composition in whole eastern Asia as well as mountains and lowlands using linear regressions and distance-based redundancy analyses, respectively. Salix diversity was negatively related with mean annual temperature. Habitat heterogeneity was more important than contemporary climate in shaping Salix diversity patterns, and their relative contributions were different in mountains and lowlands. In contrast, the species composition was strongly influenced by contemporary climate and historical climate change than habitat heterogeneity, and their relative contributions were nearly the same both in mountains and lowlands. Our findings supported niche conservatism and habitat heterogeneity hypotheses, but did not support ambient energy and historical climate stability hypotheses. The diversity pattern and species composition of Salix could not be well-explained by any single hypothesis tested, suggesting that other factors such as disturbance history and diversification rate may be also important in shaping the diversity pattern and composition of Salix species.
Historical factors shaped species diversity and composition of Salix in eastern Asia
Wang, Qinggang; Su, Xiangyan; Shrestha, Nawal; Liu, Yunpeng; Wang, Siyang; Xu, Xiaoting; Wang, Zhiheng
2017-01-01
Ambient energy, niche conservatism, historical climate stability and habitat heterogeneity hypothesis have been proposed to explain the broad-scale species diversity patterns and species compositions, while their relative importance have been controversial. Here, we assessed the relative contributions of contemporary climate, historical climate changes and habitat heterogeneity in shaping Salix species diversity and species composition in whole eastern Asia as well as mountains and lowlands using linear regressions and distance-based redundancy analyses, respectively. Salix diversity was negatively related with mean annual temperature. Habitat heterogeneity was more important than contemporary climate in shaping Salix diversity patterns, and their relative contributions were different in mountains and lowlands. In contrast, the species composition was strongly influenced by contemporary climate and historical climate change than habitat heterogeneity, and their relative contributions were nearly the same both in mountains and lowlands. Our findings supported niche conservatism and habitat heterogeneity hypotheses, but did not support ambient energy and historical climate stability hypotheses. The diversity pattern and species composition of Salix could not be well-explained by any single hypothesis tested, suggesting that other factors such as disturbance history and diversification rate may be also important in shaping the diversity pattern and composition of Salix species. PMID:28176816
Understanding the Impact of Extreme Temperature on Crop Production in Karnataka in India
NASA Astrophysics Data System (ADS)
Mahato, S.; Murari, K. K.; Jayaraman, T.
2017-12-01
The impact of extreme temperature on crop yield is seldom explored in work around climate change impact on agriculture. Further, these studies are restricted mainly to crops such as wheat and maize. Since different agro-climatic zones bear different crops and cropping patterns, it is important to explore the nature of the impact of changes in climate variables in agricultural systems under differential conditions. The study explores the effects of temperature rise on the major crops paddy, jowar, ragi and tur in the state of Karnataka of southern India. The choice of the unit of study to understand impact of climate variability on crop yields is largely restricted to availability of data for the unit. While, previous studies have dealt with this issue by replacing yield with NDVI at finer resolution, the use of an index in place of yield data has its limitations and may not reflect the true estimates. For this study, the unit considered is taluk, i.e. sub-district level. The crop yield for taluk is obtained between the year the 1995 to 2011 by aggregating point yield data from crop cutting experiments for each year across the taluks. The long term temperature data shows significantly increasing trend that ranges between 0.6 to 0.75 C across Karnataka. Further, the analysis suggests a warming trend in seasonal average temperature for Kharif and Rabi seasons across districts. The study also found that many districts exhibit the tendency of occurrence of extreme temperature days, which is of particular concern in terms of crop yield, since exposure of crops to extreme temperature has negative consequences for crop production and productivity. Using growing degree days GDD, extreme degree days EDD and total season rainfall as predictor variables, the fixed effect model shows that EDD is a more influential parameter as compared to GDD and rainfall. Also it has a statistically significant negative effect in most cases. Further, quantile regression was used to evaluate the robustness of the estimates of EDD in relation to crop yield. This showed the estimates to be robust across quantiles for most of the crops studied. Thus indicating a strong negative influence of exposure to extreme temperature on crop yield in the region.
NASA Astrophysics Data System (ADS)
Hasiotis, Stephen T.
2004-05-01
Seventy-five types of ichnofossils documented during a four-year reconnaissance study in the Upper Jurassic Morrison Formation demonstrate that highly diverse and abundant plants, invertebrates, and vertebrates occur throughout most of the Morrison or equivalent strata. Invertebrate ichnofossils, preserving the most environmentally and climatically sensitive in situ behavior of Morrison organisms, are in nearly all outcrops. Terrestrial ichnofossils record biotic processes in soil formation, indicating soil moisture and water-table levels. Freshwater ichnofossils preserve evidence of water depth, salinity, and seasonality of water bodies. Ichnofossils, categorized as epiterraphilic, terraphilic, hygrophilic, and hydrophilic (new terms), reflect the moisture regime where they were constructed. The ichnofossils are vertically zoned with respect to physical, chemical, and biological factors in the environment that controlled their distribution and abundance, and are expressed as surficial, shallow, intermediate, and deep. The sedimentologic, stratigraphic, and geographic distribution of Morrison ichnofossils reflects the environmental and climatic variations across the basin through time. Marginal-marine, tidal to brackish-water ichnofossils are mainly restricted to the Windy Hill Member. Very large to small termite nests dominate the Salt Wash Member. Similar size ranges of ant nests dominate the Brushy Basin Member. Soil bee nests dominate in the Salt Wash, decreasing in abundance through the Brushy Basin. Deeper and larger insect nests indicate more seasonal distribution of precipitation and rainfall. Shallower and smaller insect nests indicate either dry or wet substrate conditions depending on the nest architecture and paleopedogenic and sedimentologic character of the substrate. Trace-fossil indicators of flowing or standing water conditions are dominant in the Tidwell Member and in fluvial sandstones of the Salt Wash and Brushy Basin Members. Large communities of perennial, freshwater bivalve traces are abundant in the Tidwell and Brushy Basin Members but to a lesser extent in the Salt Wash Member. Shallow crayfish burrows, indicating a water-table level close to the surface (<1 m), are restricted to channel bank and proximal alluvial deposits in the Salt Wash, Recapture, and Brushy Basin Members. Sauropod, theropod, pterosaur, and other vertebrate tracks occur throughout the Morrison Formation associated with alluvial, lacustrine, and transitional-marine shoreline deposits. Ichnofossils and co-occurring paleosols in the Morrison reflect the local and regional paleohydrologic settings, which record the annual soil moisture budget and were largely controlled by the climate in the basin. Contributions to near-surface biologic systems by groundwater from distant sources were minor, except where the water table perennially, seasonally, or ephemerally intersected the ground-surface. The Jurassic Morrison Formation in the southern portion of the basin experienced a mosaic of seasonal climates that varied from a drier (Tidwell/Windy Hill deposition) to a wetter (lower and middle Salt Wash deposition) and slightly drier (upper Salt Wash deposition) tropical wet-dry climate, returning to a wetter tropical wet-dry climate near the end of Morrison deposition (Brushy Basin deposition). The northern part of the basin experienced similar trends across a mosaic of Mediterranean climate types. The range and mosaic pattern of wet-dry Morrison climates is analogous to the range of climates (and their seasonal variability) that dominates the African savanna today.
Li, Shun; Wu, Zhi Wei; Liang, Yu; He, Hong Shi
2017-01-01
The Great Xing'an Mountains are an important boreal forest region in China with high frequency of fire occurrences. With climate change, this region may have a substantial change in fire frequency. Building the relationship between spatial pattern of human-caused fire occurrence and its influencing factors, and predicting the spatial patterns of human-caused fires under climate change scenarios are important for fire management and carbon balance in boreal forests. We employed a spatial point pattern model to explore the relationship between the spatial pattern of human-caused fire occurrence and its influencing factors based on a database of historical fire records (1967-2006) in the Great Xing'an Mountains. The fire occurrence time was used as dependent variable. Nine abiotic (annual temperature and precipitation, elevation, aspect, and slope), biotic (vegetation type), and human factors (distance to the nearest road, road density, and distance to the nearest settlement) were selected as explanatory variables. We substituted the climate scenario data (RCP 2.6 and RCP 8.5) for the current climate data to predict the future spatial patterns of human-caused fire occurrence in 2050. Our results showed that the point pattern progress (PPP) model was an effective tool to predict the future relationship between fire occurrence and its spatial covariates. The climatic variables might significantly affect human-caused fire occurrence, while vegetation type, elevation and human variables were important predictors of human-caused fire occurrence. The human-caused fire occurrence probability was expected to increase in the south of the area, and the north and the area along the main roads would also become areas with high human-caused fire occurrence. The human-caused fire occurrence would increase by 72.2% under the RCP 2.6 scenario and by 166.7% under the RCP 8.5 scenario in 2050. Under climate change scenarios, the spatial patterns of human-caused fires were mainly influenced by the climate and human factors.
Meier, E.S.; Edwards, T.C.; Kienast, Felix; Dobbertin, M.; Zimmermann, N.E.
2011-01-01
Aim During recent and future climate change, shifts in large-scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress-gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad-scale environmental data. We evaluated the variation of species co-occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates.Location Europe.Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co-occurrence patterns.Results Correlation analyses supported the stress-gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co-occurrence patterns may play a major role.Main conclusions Our results demonstrate the importance of species co-occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate-induced spatial segregation of the major tree species could have ecological and economic consequences. ?? 2010 Blackwell Publishing Ltd.
Future warming patterns linked to today’s climate variability
Dai, Aiguo
2016-01-11
The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less
Future warming patterns linked to today’s climate variability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Aiguo
The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less
Future Warming Patterns Linked to Today's Climate Variability.
Dai, Aiguo
2016-01-11
The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models' ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21(st) century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today's climate, with areas of larger variations during 1950-1979 having more GHG-induced warming in the 21(st) century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950-2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21(st) century in models and in the real world. They support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.
Linkages between large-scale climate patterns and the dynamics of Alaskan caribou populations
Kyle Joly; David R. Klein; David L. Verbyla; T. Scott Rupp; F. Stuart Chapin
2011-01-01
Recent research has linked climate warming to global declines in caribou and reindeer (both Rangifer tarandus) populations. We hypothesize large-scale climate patterns are a contributing factor explaining why these declines are not universal. To test our hypothesis for such relationships among Alaska caribou herds, we calculated the population growth...
Projected climate change for the coastal plain region of Georgia, USA
USDA-ARS?s Scientific Manuscript database
Climatic patterns for the Coastal Plain region of Georgia, USA, centered on Tifton, Georgia (31 28 30N, 83 31 54W) were examined for long term patterns in precipitation and air temperature. Climate projections based upon output from seven Global Circulation Models (GCMs) and three future Green Hous...
Vermaat, Jan E; Hellmann, Fritz A; van Teeffelen, Astrid J A; van Minnen, Jelle; Alkemade, Rob; Billeter, Regula; Beierkuhnlein, Carl; Boitani, Luigi; Cabeza, Mar; Feld, Christian K; Huntley, Brian; Paterson, James; WallisDeVries, Michiel F
2017-04-01
Current observed as well as projected changes in biodiversity are the result of multiple interacting factors, with land use and climate change often marked as most important drivers. We aimed to disentangle the separate impacts of these two for sets of vascular plant, bird, butterfly and dragonfly species listed as characteristic for European dry grasslands and wetlands, two habitats of high and threatened biodiversity. We combined articulations of the four frequently used SRES climate scenarios and associated land use change projections for 2030, and assessed their impact on population trends in species (i.e. whether they would probably be declining, stable or increasing). We used the BIOSCORE database tool, which allows assessment of the effects of a range of environmental pressures including climate change as well as land use change. We updated the species lists included in this tool for our two habitat types. We projected species change for two spatial scales: the EU27 covering most of Europe, and the more restricted biogeographic region of 'Continental Europe'. Other environmental pressures modelled for the four scenarios than land use and climate change generally did not explain a significant part of the variance in species richness change. Changes in characteristic bird and dragonfly species were least pronounced. Land use change was the most important driver for vascular plants in both habitats and spatial scales, leading to a decline in 50-100% of the species included, whereas climate change was more important for wetland dragonflies and birds (40-50 %). Patterns of species decline were similar in continental Europe and the EU27 for wetlands but differed for dry grasslands, where a substantially lower proportion of butterflies and birds declined in continental Europe, and 50 % of bird species increased, probably linked to a projected increase in semi-natural vegetation. In line with the literature using climate envelope models, we found little divergence among the four scenarios. Our findings suggest targeted policies depending on habitat and species group. These are, for dry grasslands, to reduce land use change or its effects and to enhance connectivity, and for wetlands to mitigate climate change effects.
NASA Astrophysics Data System (ADS)
Morellón, Mario; Anselmetti, Flavio S.; Ariztegui, Daniel; Brushulli, Brunhilda; Sinopoli, Gaia; Wagner, Bernd; Sadori, Laura; Gilli, Adrian; Pambuku, Arben
2016-03-01
Lake Butrint (39°47 N, 20°1 E) is a ca. 21 m deep, coastal lagoon located in SW Albania where finely-laminated sediments have been continuously deposited during the last millennia. The multi-proxy analysis (sedimentology, high-resolution elemental geochemistry and pollen) of a 12 m long sediment core, supported by seven AMS radiocarbon dates and 137Cs dating, enable a precise reconstruction of the environmental change that occurred in the central Mediterranean region during the last ∼4.5 cal kyrs BP. Sediments consist of triplets of authigenic carbonates, organic matter and clayey laminae. Fluctuations in the thickness and/or presence of these different types of seasonal laminae indicate variations in water salinity, organic productivity and runoff in the lake's catchment, as a result of the complex interplay of tectonics, anthropogenic forcing and climate variability. The progradation of the Pavllo river delta, favoured by variable human activity from the nearby ancient city of Butrint, led to the progressive isolation of this hydrological system from the Ionian Sea. The system evolved from an open bay to a restricted lagoon, which is consistent with archaeological data. An abrupt increase in mass-wasting activity between 1515 and 1450 BC, likely caused by nearby seismic activity, led to the accumulation of 24 homogenites, up to 17 cm thick. They have been deposited during the onset of finely laminated sedimentation, which indicates restricted, anoxic bottom water conditions and higher salinity. Periods of maximum water salinity, biological productivity, and carbonate precipitation coincide with warmer intervals, such as the early Roman Warm Period (RWP) (500 BC-0 AD), the Medieval Climate Anomaly (MCA) (800-1400 AD) and recent times (after 1800 AD). Conversely, lower salinity and more oxic conditions, with higher clastic input were recorded during 1400-500 BC, the Late Roman and the Early Medieval periods (0-800 AD) and during the Little Ice Age (1400-1800 AD). Hydrological fluctuations recorded in Butrint are in phase with most central and western Mediterranean records and correlate with NAO variability. In contrast, opposite hydrological patterns have been recorded in the Eastern Balkans and the Levant during the last millennium, emphasizing a complex spatial variability in the region. Phases of maximum settlement intensity in Butrint (Roman-Late Antique) coincide with warmer and/or stable climate periods (0-800 AD and MCA, respectively), indicating a long-term influence of climatic conditions on human activities. The Late Holocene sedimentary record of Lake Butrint demonstrates the complex interplay of climate variability, tectonics and human impact in the recent evolution of coastal Mediterranean regions.
Conway, Lucian Gideon; Bongard, Kate; Plaut, Victoria; Gornick, Laura Janelle; Dodds, Daniel P; Giresi, Thomas; Tweed, Roger G; Repke, Meredith A; Houck, Shannon C
2017-10-01
What kinds of physical environments make for free societies? The present research investigates the effect of three different types of ecological stressors (climate stress, pathogen stress, and frontier topography) on two measurements of governmental restriction: Vertical restriction involves select persons imposing asymmetrical laws on others, while horizontal restriction involves laws that restrict most members of a society equally. Investigation 1 validates our measurements of vertical and horizontal restriction. Investigation 2 demonstrates that, across both U.S. states and a sample of nations, ecological stressors tend to cause more vertically restrictive societies but less horizontally restrictive societies. Investigation 3 demonstrates that assortative sociality partially mediates ecological stress→restriction relationships across nations, but not in U.S. states. Although some stressor-specific effects emerged (most notably, cold stress consistently showed effects in the opposite direction), these results in the main suggest that ecological stress simultaneously creates opposing pressures that push freedom in two different directions.
Decoding the spatial signatures of multi-scale climate variability - a climate network perspective
NASA Astrophysics Data System (ADS)
Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.
2017-12-01
During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.
Di Rita, Federico; Fletcher, William J; Aranbarri, Josu; Margaritelli, Giulia; Lirer, Fabrizio; Magri, Donatella
2018-06-12
It is well-known that the Holocene exhibits a millennial-scale climate variability. However, its periodicity, spatio-temporal patterns and underlying processes are not fully deciphered yet. Here we focus on the central and western Mediterranean. We show that recurrent forest declines from the Gulf of Gaeta (central Tyrrhenian Sea) reveal a 1860-yr periodicity, consistent with a ca. 1800-yr climate fluctuation induced by large-scale changes in climate modes, linked to solar activity and/or AMOC intensity. We show that recurrent forest declines and dry events are also recorded in several pollen and palaeohydrological proxy-records in the south-central Mediterranean. We found coeval events also in several palaeohydrological records from the south-western Mediterranean, which however show generally wet climate conditions, indicating a spatio-temporal hydrological pattern opposite to the south-central Mediterranean and suggesting that different expressions of climate modes occurred in the two regions at the same time. We propose that these opposite hydroclimate regimes point to a complex interplay of the prevailing or predominant phases of NAO-like circulation, East Atlantic pattern, and extension and location of the North African anticyclone. At a larger geographical scale, displacements of the ITCZ, modulated by solar activity and/or AMOC intensity, may have also indirectly influenced the observed pattern.
Analysis of climate change impact on rainfall pattern of Sambas district, West Kalimantan
NASA Astrophysics Data System (ADS)
Berliana Sipayung, Sinta; Nurlatifah, Amalia; Siswanto, Bambang; Slamet S, Lilik
2018-05-01
Climate change is one of the most important issues being discussed globally. It caused by global warming and indirectly affecting the world climate cycle. This research discussed the effect of climate change on rainfall pattern of Sambas District and predicted the future rainfall pattern due to climate change. CRU and TRMM were used and has been validated using in situ data. This research was used Climate Modelling and Prediction using CCAM (Conformal Cubic Atmospheric Model) which also validated by in situ data (correlation= 0.81). The results show that temperature trends in Sambas regency increased to 0.082°C/yr from 1991-2014 according to CRU data. High temperature trigger changes in rainfall patterns. Rainfall pattern in Sambas District has an equatorial type where the peak occurs when the sun is right on the equator. Rainfall in Sambas reaches the maximum in March and September when the equinox occurs. The CCAM model is used to project rainfall in Sambas District in the future. The model results show that rainfall in Sambas District is projected to increase to 0.018 mm/month until 2055 so the flow rate increase 0.006 m3/month and the water balance increase 0.009 mm/month.
Phylogenetic patterns of climatic, habitat and trophic niches in a European avian assemblage
Pearman, Peter B; Lavergne, Sébastien; Roquet, Cristina; Wüest, Rafael; Zimmermann, Niklaus E; Thuiller, Wilfried
2014-01-01
Aim The origins of ecological diversity in continental species assemblages have long intrigued biogeographers. We apply phylogenetic comparative analyses to disentangle the evolutionary patterns of ecological niches in an assemblage of European birds. We compare phylogenetic patterns in trophic, habitat and climatic niche components. Location Europe. Methods From polygon range maps and handbook data we inferred the realized climatic, habitat and trophic niches of 405 species of breeding birds in Europe. We fitted Pagel's lambda and kappa statistics, and conducted analyses of disparity through time to compare temporal patterns of ecological diversification on all niche axes together. All observed patterns were compared with expectations based on neutral (Brownian) models of niche divergence. Results In this assemblage, patterns of phylogenetic signal (lambda) suggest that related species resemble each other less in regard to their climatic and habitat niches than they do in their trophic niche. Kappa estimates show that ecological divergence does not gradually increase with divergence time, and that this punctualism is stronger in climatic niches than in habitat and trophic niches. Observed niche disparity markedly exceeds levels expected from a Brownian model of ecological diversification, thus providing no evidence for past phylogenetic niche conservatism in these multivariate niches. Levels of multivariate disparity are greatest for the climatic niche, followed by disparity of the habitat and the trophic niches. Main conclusions Phylogenetic patterns in the three niche components differ within this avian assemblage. Variation in evolutionary rates (degree of gradualism, constancy through the tree) and/or non-random macroecological sampling probably lead here to differences in the phylogenetic structure of niche components. Testing hypotheses on the origin of these patterns requires more complete phylogenetic trees of the birds, and extended ecological data on different niche components for all bird species. PMID:24790525
NASA Astrophysics Data System (ADS)
Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.
2012-12-01
A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data shown in the database construction and by the model reinforces the need for high-resolution datasets and stresses the importance of understanding and incorporating climate change scenarios into earth system models.
Nevill, Paul G; Bradbury, Donna; Williams, Anna; Tomlinson, Sean; Krauss, Siegfried L
2014-01-01
Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia. The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models. The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r(2) = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline. The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns.
Nevill, Paul G.; Bradbury, Donna; Williams, Anna; Tomlinson, Sean; Krauss, Siegfried L.
2014-01-01
Background and Aims Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia. Methods The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models. Key Results The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r2 = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline. Conclusions The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns. PMID:24284819
NASA Astrophysics Data System (ADS)
Reinsch, Sabine; Michelsen, Anders; Sárossy, Zsuzsa; Egsgaard, Helge; Kappel Schmidt, Inger; Jakobsen, Iver; Ambus, Per
2013-04-01
The global terrestrial soil organic matter stock is the biggest terrestrial carbon pool (1500 Pg C) of which about 4 % is turned over annually. Thus, terrestrial ecosystems have the potential to accelerate or diminish atmospheric climate change effects via belowground carbon processes. We investigated the effect of elevated CO2 (510 ppm), prolonged spring/summer droughts and increased temperature (1 ˚C) on belowground carbon allocation and on the recovery of carbon by the soil microbial community. An in-situ 13C-carbon pulse-labeling experiment was carried out in a temperate heath/grassland (Denmark) in May 2011. Recently assimilated 13C-carbon was traced into roots, soil and microbial biomass 1, 2 and 8 days after pulse-labeling. The importance of the microbial community in C utilization was investigated using 13C enrichment patterns in microbial functional groups on the basis of phospholipid fatty acids (PLFAs) in roots. Gram-negative and gram-positive bacteria were distinguished from the decomposer groups of actinomycetes (belonging to the group of gram-positive bacteria) and saprophytic fungi. Mycorrhizal fungi specific PLFAs were not detected probably due to limited sample size in combination with restricted sensitivity of the used GC-c-IRMS setup. Climate treatments did not affect 13C allocation into roots, soil and microbial biomass carbon and also the total microbial biomass size stayed unchanged as frequently observed. However, climate treatments changed the composition of the microbial community: elevated CO2 significantly reduced the abundance of gram-negative bacteria (17:0cy) but did not affect the abundance of decomposers. Drought favored the bacterial community whereas increased temperatures showed reduced abundance of gram-negative bacteria (19:0cy) and changed the actinomycetes community (10Me16:0, 10Me18:0). However, not only the microbial community composition was affected by the applied climatic conditions, but also the activity of microbial functional groups in their utilization of recently assimilated carbon. Particularly the negative effect of the future treatment combination (CO2×T×D) on actinomycetes activity was surprising. By means of activity patterns of gram-negative bacteria, we observed the fastest carbon turnover rate under elevated CO2, and the slowest under extended drought conditions. A changed soil microbial community in combination with altered activities of different microbial functional groups leads to the conclusion that carbon allocation belowground was different under ambient and future climatic conditions and indicated reduced utilization of soil organic matter in the future due to a change of actinomycetes abundance and activity.
NASA Astrophysics Data System (ADS)
Zu, Jiaxing; Zhang, Yangjian; Huang, Ke; Liu, Yaojie; Chen, Ning; Cong, Nan
2018-07-01
Climate change is receiving mounting attentions from various fields and phenology is a commonly used indicator signaling vegetation responses to climate change. Previous phenology studies have mostly focused on vegetation greening-up and its climatic driving factors, while autumn phenology has been barely touched upon. In this study, vegetation phenological metrics were extracted from MODIS NDVI data and their temporal and spatial patterns were explored on the Tibetan Plateau (TP). The results showed that the start of season (SOS) has significantly earlier trend in the first decade, while the end of season (EOS) has slightly (not significant) earlier trend. In the spatial dimension, similar patterns were also identified. The SOS plays a more significant role in regulating vegetation growing season length than EOS does. The EOS and driving effects from each factor exhibited spatially heterogeneous patterns. Biological factor is the dominant factor regulating the spatial pattern of EOS, while climate factors control its inter-annual variation.
Aline Frank; Christoph Sperisen; Glenn Thomas Howe; Peter Brang; Lorenz Walthert; John Bradley St.Clair; Caroline Heiri
2017-01-01
Understanding the genecology of forest trees is critical for gene conservation, for predicting the effects of climate change and climate change adaptation, and for successful reforestation. Although common genecological patterns have emerged, species-specific details are also important. Which species are most vulnerable to climate change? Which are the most important...
Vandergast, A.G.; Bohonak, A.J.; Weissman, D.B.; Fisher, R.N.
2007-01-01
Habitat loss and fragmentation due to urbanization are the most pervasive threats to biodiversity in southern California. Loss of habitat and fragmentation can lower migration rates and genetic connectivity among remaining populations of native species, reducing genetic variability and increasing extinction risk. However, it may be difficult to separate the effects of recent anthropogenic fragmentation from the genetic signature of prehistoric fragmentation due to previous natural geological and climatic changes. To address these challenges, we examined the phylogenetic and population genetic structure of a flightless insect endemic to cismontane southern California, Stenopelmatus 'mahogani' (Orthoptera: Stenopelmatidae). Analyses of mitochondrial DNA sequence data suggest that diversification across southern California began during the Pleistocene, with most haplotypes currently restricted to a single population. Patterns of genetic divergence correlate with contemporary urbanization, even after correcting for (geographical information system) GIS-based reconstructions of fragmentation during the Pleistocene. Theoretical simulations confirm that contemporary patterns of genetic structure could be produced by recent urban fragmentation using biologically reasonable assumptions about model parameters. Diversity within populations was positively correlated with current fragment size, but not prehistoric fragment size, suggesting that the effects of increased drift following anthropogenic fragmentation are already being seen. Loss of genetic connectivity and diversity can hinder a population's ability to adapt to ecological perturbations commonly associated with urbanization, such as habitat degradation, climatic changes and introduced species. Consequently, our results underscore the importance of preserving and restoring landscape connectivity for long-term persistence of low vagility native species. Journal compilation ?? 2006 Blackwell Publishing Ltd.
Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B
2018-06-01
Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination (R 2 ) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.
NASA Astrophysics Data System (ADS)
Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B.
2018-06-01
Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination ( R 2) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modesmore » and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this article, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.« less
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; ...
2016-10-04
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modesmore » and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this article, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.« less
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
NASA Astrophysics Data System (ADS)
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; Hu, Aixue; Hamlington, Benjamin; Kenigson, Jessica; Palanisamy, Hindumathi; Thompson, Philip
2017-01-01
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth's climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modes and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this paper, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.
Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay
2012-01-01
The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region’s hydrology. The objective of this study is to simulate and assess a region’s ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions) model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology. PMID:23202833
Daily Eating Patterns and Their Impact on Health and Disease.
Zarrinpar, Amir; Chaix, Amandine; Panda, Satchidananda
2016-02-01
Cyclical expression of cell-autonomous circadian clock components and key metabolic regulators coordinate often discordant and distant cellular processes for efficient metabolism. Perturbation of these cycles, either by genetic manipulation, disruption of light/dark cycles, or, most relevant to the human population, via eating patterns, contributes to obesity and dysmetabolism. Time-restricted feeding (TRF), during which time of access to food is restricted to a few hours, without caloric restriction, supports robust metabolic cycles and protects against nutritional challenges that predispose to obesity and dysmetabolism. The mechanism by which TRF imparts its benefits is not fully understood but likely involves entrainment of metabolically active organs through gut signaling. Understanding the relationship of feeding pattern and metabolism could yield novel therapies for the obesity pandemic. Copyright © 2015. Published by Elsevier Ltd.
Daily Eating Patterns and Their Impact on Health and Disease
Zarrinpar, Amir; Chaix, Amandine; Panda, Satchidananda
2016-01-01
Cyclical expression of cell-autonomous circadian clock components and key metabolic regulators coordinate often discordant and distant cellular processes for efficient metabolism. Perturbation of these cycles, either by genetic manipulation, disruption of light/dark cycles, or, most relevant to the human population, via eating patterns, contributes to obesity and dysmetabolism. Time-restricted feeding (TRF), during which time of access to food is restricted to a few hours, without caloric restriction, supports robust metabolic cycles and protects against nutritional challenges that predispose to obesity and dysmetabolism. The mechanism by which TRF imparts its benefits is not fully understood but likely involves entrainment of metabolically active organs through gut signaling. Understanding the relationship of feeding pattern and metabolism could yield novel therapies for the obesity pandemic. PMID:26706567
Cell tracing reveals a dorsoventral lineage restriction plane in the mouse limb bud mesenchyme.
Arques, Carlos G; Doohan, Roisin; Sharpe, James; Torres, Miguel
2007-10-01
Regionalization of embryonic fields into independent units of growth and patterning is a widespread strategy during metazoan development. Compartments represent a particular instance of this regionalization, in which unit coherence is maintained by cell lineage restriction between adjacent regions. Lineage compartments have been described during insect and vertebrate development. Two common characteristics of the compartments described so far are their occurrence in epithelial structures and the presence of signaling regions at compartment borders. Whereas Drosophila compartmental organization represents a background subdivision of embryonic fields that is not necessarily related to anatomical structures, vertebrate compartment borders described thus far coincide with, or anticipate, anatomical or cell-type discontinuities. Here, we describe a general method for clonal analysis in the mouse and use it to determine the topology of clone distribution along the three limb axes. We identify a lineage restriction boundary at the limb mesenchyme dorsoventral border that is unrelated to any anatomical discontinuity, and whose lineage restriction border is not obviously associated with any signaling center. This restriction is the first example in vertebrates of a mechanism of primordium subdivision unrelated to anatomical boundaries. Furthermore, this is the first lineage compartment described within a mesenchymal structure in any organism, suggesting that lineage restrictions are fundamental not only for epithelial structures, but also for mesenchymal field patterning. No lineage compartmentalization was found along the proximodistal or anteroposterior axes, indicating that patterning along these axes does not involve restriction of cell dispersion at specific axial positions.
NASA Astrophysics Data System (ADS)
Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.
2017-12-01
Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.
CLIMATE PATTERNS OF HABITABLE EXOPLANETS IN ECCENTRIC ORBITS AROUND M DWARFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuwei; Hu, Yongyun; Tian, Feng, E-mail: yyhu@pku.edu.cn
2014-08-10
Previous studies show that synchronous rotating habitable exoplanets around M dwarfs should have an ''eyeball'' climate pattern—a limited region of open water on the day side and ice on the rest of the planet. However, exoplanets with nonzero eccentricities could have spin-orbit resonance states different from the synchronous rotation state. Here, we show that a striped-ball climate pattern, with a global belt of open water at low and middle latitudes and ice over both polar regions, should be common on habitable exoplanets in eccentric orbits around M dwarfs. We further show that these different climate patterns can be observed bymore » future exoplanet detection missions.« less
Improved pattern scaling approaches for the use in climate impact studies
NASA Astrophysics Data System (ADS)
Herger, Nadja; Sanderson, Benjamin M.; Knutti, Reto
2015-05-01
Pattern scaling is a simple way to produce climate projections beyond the scenarios run with expensive global climate models (GCMs). The simplest technique has known limitations and assumes that a spatial climate anomaly pattern obtained from a GCM can be scaled by the global mean temperature (GMT) anomaly. We propose alternatives and assess their skills and limitations. One approach which avoids scaling is to consider a period in a different scenario with the same GMT change. It is attractive as it provides patterns of any temporal resolution that are consistent across variables, and it does not distort variability. Second, we extend the traditional approach with a land-sea contrast term, which provides the largest improvements over the traditional technique. When interpolating between known bounding scenarios, the proposed methods significantly improve the accuracy of the pattern scaled scenario with little computational cost. The remaining errors are much smaller than the Coupled Model Intercomparison Project Phase 5 model spread.
Improving Seasonal Climate Predictability in the Colorado River Basin for Enhanced Decision Support
NASA Astrophysics Data System (ADS)
Rajagopal, S.; Mahmoud, M. I.
2016-12-01
The water resource management community is increasingly seeking skillful seasonal climate forecasts with long lead times. But predicting wet or dry climate with sufficient lead time (3 months) for a season (especially winter) in the Colorado River Basin (CRB) is a challenging problem. The typical approach taken to predicting winter climate is based on using climate indices and climate models to predict precipitation or streamflow in the Colorado River Basin. In addition to this approach; which may have a long lead time, water supply forecasts are also generated based on current observations by the Colorado River Forecast Center. Recently, the effects of coupled atmospheric-ocean phenomena such as ENSO over North America, and atmospheric circulation patterns at the 500 mb pressure level, which make the CRB wet or dry, have been studied separately. In the current work we test whether combining climate indices and circulation patterns improve predictability in the CRB. To accomplish this, the atmospheric circulation data from the Earth System Research Laboratory (ESRL) and climate indices data from the Climate Prediction Center were combined using logical functions. To quantify the skill in prediction, statistics such as the hit ratio and false alarm ratio were computed. The results from using a combination of climate indices and atmospheric circulation patterns suggest that there is an improvement in the prediction skill with hit ratios higher than 0.8, as compared to using either predictor individually (which typically produced a hit ratio of 0.6). Based on this result, there is value in using this hybrid approach when compared to a black box statistical model, as the climate index is an analog to the moisture availability and the right atmospheric circulation pattern helps in transporting that moisture to the Basin.
Model uncertainties do not affect observed patterns of species richness in the Amazon.
Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo; Loyola, Rafael
2017-01-01
Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale-patterns of species richness and species vulnerability to climate change-are affected by the inputs used to model and project species distribution. We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species.
Model uncertainties do not affect observed patterns of species richness in the Amazon
Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo
2017-01-01
Background Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale—patterns of species richness and species vulnerability to climate change—are affected by the inputs used to model and project species distribution. Methods We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. Results The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. Conclusions From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species. PMID:29023503
NASA Astrophysics Data System (ADS)
Kanta, L.
2016-12-01
Outdoor water use for landscape and irrigation constitutes a significant end use in residential water demand. In periods of water shortages, utilities may reduce garden demands by implementing irrigation system audits, rebate programs, local ordinances, and voluntary or mandatory water use restrictions. Because utilities do not typically record outdoor and indoor water uses separately, the effects of policies for reducing garden demands cannot be readily calculated. The volume of water required to meet garden demands depends on the housing density or lawn size, type of vegetation, climatic conditions, efficiency of garden irrigation systems, and consumer water-use behaviors. Many existing outdoor demand estimation methods are deterministic and do not include consumer responses to conservation campaigns. In addition, mandatory restrictions may have a substantial impact on reducing outdoor demands, but the effectiveness of mandatory restrictions depends on the timing and the frequency of restrictions, in addition to the distribution of housing density and consumer types within a community. This research investigates a garden end-use model by coupling an agent-based modeling approach and a mechanistic-stochastic water demand model to create a methodology for estimating garden demand and evaluating demand reduction policies. The garden demand model is developed for two water utilities, using a diverse data sets, including residential customer billing records, records of outdoor conservation programs, frequency and type of mandatory water use restrictions, lot size distribution, population growth, and climatic data. A set of garden irrigation parameter values, which are based on the efficiency of irrigation systems and irrigation habits of consumers, are determined for a set of conservation ordinances and restrictions. The model parameters are then validated using customer water usage data from the participating water utilities. A sensitivity analysis is conducted for garden irrigation parameters to determine the most significant factors that should be considered by water utilities to reduce outdoor demand. Data from multiple sources and the agent-based modeling methodology are integrated using a holistic approach to assist utilities in efficiently and sustainably managing outdoor demand.
NASA Astrophysics Data System (ADS)
Kanta, L.; Berglund, E. Z.; Soh, M. H.
2017-12-01
Outdoor water-use for landscape and irrigation constitutes a significant end-use in total residential water demand. In periods of water shortages, utilities may reduce garden demands by implementing irrigation system audits, rebate programs, local ordinances, and voluntary or mandatory water-use restrictions. Because utilities do not typically record outdoor and indoor water-uses separately, the effects of policies for reducing garden demands cannot be readily calculated. The volume of water required to meet garden demands depends on the housing density, lawn size, type of vegetation, climatic conditions, efficiency of garden irrigation systems, and consumer water-use behaviors. Many existing outdoor demand estimation methods are deterministic and do not include consumer responses to conservation campaigns. In addition, mandatory restrictions may have a substantial impact on reducing outdoor demands, but the effectiveness of mandatory restrictions depends on the timing and the frequency of restrictions, in addition to the distribution of housing density and consumer types within a community. This research investigates a garden end-use model by coupling an agent-based modeling approach and a mechanistic-stochastic water demand model to create a methodology for estimating garden demand and evaluating demand reduction policies. The garden demand model is developed for two water utilities, using a diverse data sets, including residential customer billing records, outdoor conservation programs, frequency and type of mandatory water-use restrictions, lot size distribution, population growth, and climatic data. A set of garden irrigation parameter values, which are based on the efficiency of irrigation systems and irrigation habits of consumers, are determined for a set of conservation ordinances and restrictions. The model parameters are then validated using customer water usage data from the participating water utilities. A sensitivity analysis is conducted for garden irrigation parameters to determine the most significant factors that should be considered by water utilities to reduce outdoor demand. Data from multiple sources and the agent-based modeling methodology are integrated using a holistic approach to assist utilities in efficiently and sustainably managing outdoor demand.
Jackson, Jason M; Pimsler, Meaghan L; Oyen, Kennan Jeannet; Koch-Uhuad, Jonathan B; Herndon, James D; Strange, James P; Dillon, Michael E; Lozier, Jeffrey D
2018-06-04
Identifying drivers of dispersal limitation and genetic differentiation is a key goal in biogeography. We examine patterns of population connectivity and genetic diversity using restriction site-associated DNA sequencing (RADseq) in two bumble bee species, Bombus vosnesenskii and Bombus bifarius, across latitude and altitude in mountain ranges from California, Oregon and Washington, U.S.A. Bombus vosnesenskii, which occurs across a broader elevational range at most latitudes, exhibits little population structure while B. bifarius, which occupies a relatively narrow higher elevation niche across most latitudes, exhibits much stronger population differentiation, although gene flow in both species is best explained by isolation with environmental niche resistance. A relationship between elevational habitat breadth and genetic diversity is also apparent, with B. vosnesenskii exhibiting relatively consistent levels of genetic diversity across its range, while B. bifarius has reduced genetic diversity at low latitudes, where it is restricted to high-elevation habitat. The results of this study highlight the importance of the intersect between elevational range and habitat suitability in influencing population connectivity and suggest that future climate warming will have a fragmenting effect even on populations that are presently well connected, as they track their thermal niches upward in montane systems. © 2018 John Wiley & Sons Ltd.
Rangewide landscape genetics of an endemic Pacific northwestern salamander.
Trumbo, Daryl R; Spear, Stephen F; Baumsteiger, Jason; Storfer, Andrew
2013-03-01
A species' genetic structure often varies in response to ecological and landscape processes that differ throughout the species' geographic range, yet landscape genetics studies are rarely spatially replicated. The Cope's giant salamander (Dicamptodon copei) is a neotenic, dispersal-limited amphibian with a restricted geographic range in the Pacific northwestern USA. We investigated which landscape factors affect D. copei gene flow in three regions spanning the species' range, which vary in climate, landcover and degree of anthropogenic disturbance. Least cost paths and Circuitscape resistance analyses revealed that gene flow patterns vary across the species' range, with unique combinations of landscape variables affecting gene flow in different regions. Populations in the northern coastal portions of the range had relatively high gene flow, largely facilitated by stream and river networks. Near the southeastern edge of the species' range, gene flow was more restricted overall, with relatively less facilitation by streams and more limitation by heat load index and fragmented forest cover. These results suggested that the landscape is more difficult for individuals to disperse through at the southeastern edge of the species' range, with terrestrial habitat desiccation factors becoming more limiting to gene flow. We suggest that caution be used when attempting to extrapolate landscape genetic models and conservation measures from one portion of a species' range to another. © 2013 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branstator, Grant
The overall aim of our project was to quantify and characterize predictability of the climate as it pertains to decadal time scale predictions. By predictability we mean the degree to which a climate forecast can be distinguished from the climate that exists at initial forecast time, taking into consideration the growth of uncertainty that occurs as a result of the climate system being chaotic. In our project we were especially interested in predictability that arises from initializing forecasts from some specific state though we also contrast this predictability with predictability arising from forecasting the reaction of the system to externalmore » forcing – for example changes in greenhouse gas concentration. Also, we put special emphasis on the predictability of prominent intrinsic patterns of the system because they often dominate system behavior. Highlights from this work include: • Development of novel methods for estimating the predictability of climate forecast models. • Quantification of the initial value predictability limits of ocean heat content and the overturning circulation in the Atlantic as they are represented in various state of the art climate models. These limits varied substantially from model to model but on average were about a decade with North Atlantic heat content tending to be more predictable than North Pacific heat content. • Comparison of predictability resulting from knowledge of the current state of the climate system with predictability resulting from estimates of how the climate system will react to changes in greenhouse gas concentrations. It turned out that knowledge of the initial state produces a larger impact on forecasts for the first 5 to 10 years of projections. • Estimation of the predictability of dominant patterns of ocean variability including well-known patterns of variability in the North Pacific and North Atlantic. For the most part these patterns were predictable for 5 to 10 years. • Determination of especially predictable patterns in the North Atlantic. The most predictable of these retain predictability substantially longer than generic patterns, with some being predictable for two decades.« less
CO2 fertilization and enhanced drought resistance in Greek firs from Cephalonia Island, Greece.
Koutavas, Athanasios
2013-02-01
Growth-climate relationships were investigated in Greek firs from Ainos Mountain on the island of Cephalonia in western Greece, using dendrochronology. The goal was to test whether tree growth is sensitive to moisture stress, whether such sensitivity has been stable through time, and whether changes in growth-moisture relationships support an influence of atmospheric CO2 on growth. Regressions of tree-ring indices (ad 1820-2007) with instrumental temperature, precipitation, and Palmer Drought Severity Index (PDSI) indicate that growth is fundamentally limited by growing-season moisture in late spring/early summer, most critically during June. However, this simple picture obscures a pattern of sharply evolving growth-climate relationships during the 20th century. Correlations between growth and June temperature, precipitation, and PDSI were significantly greater in the early 20th century but later degraded and disappeared. By the late 20th-early 21st century, there remains no statistically significant relationship between moisture and growth implying markedly enhanced resistance to drought. Moreover, growth experienced a net increase over the last half-century culminating with a sharp spike in ad 1988-1990. This recent growth acceleration is evident in the raw ring-width data prior to standardization, ruling out artifacts from statistical detrending. The vanishing relationship with moisture and parallel enhancement of growth are all the more notable because they occurred against a climatic backdrop of increasing aridity. The results are most consistent with a significant CO2 fertilization effect operating through restricted stomatal conductance and improved water-use efficiency. If this interpretation is correct, atmospheric CO2 is now overcompensating for growth declines anticipated from drier climate, suggesting its effect is unusually strong and likely to be detectable in other up-to-date tree-ring chronologies from the Mediterranean. © 2012 Blackwell Publishing Ltd.
Neiva, João; Assis, Jorge; Coelho, Nelson C; Fernandes, Francisco; Pearson, Gareth A; Serrão, Ester A
2015-01-01
The global redistribution of biodiversity will intensify in the coming decades of climate change, making projections of species range shifts and of associated genetic losses important components of conservation planning. Highly-structured marine species, notably brown seaweeds, often harbor unique genetic variation at warmer low-latitude rear edges and thus are of particular concern. Here, a combination of Ecological Niche Models (ENMs) and molecular data is used to forecast the potential near-future impacts of climate change for a warm-temperate, canopy forming seaweed, Bifurcaria bifurcata. ENMs for B. bifurcata were developed using marine and terrestrial climatic variables, and its range projected for 2040-50 and 2090-2100 under two greenhouse emission scenarios. Geographical patterns of genetic diversity were assessed by screening 18 populations spawning the entire distribution for two organelle genes and 6 microsatellite markers. The southern limit of B. bifurcata was predicted to shift northwards to central Morocco by the mid-century. By 2090-2100, depending on the emission scenario, it could either retreat further north to western Iberia or be relocated back to Western Sahara. At the opposing margin, B. bifurcata was predicted to expand its range to Scotland or even Norway. Microsatellite diversity and endemism were highest in Morocco, where a unique and very restricted lineage was also identified. Our results imply that B. bifurcata will maintain a relatively broad latitudinal distribution. Although its persistence is not threatened, the predicted extirpation of a unique southern lineage or even the entire Moroccan diversity hotspot will erase a rich evolutionary legacy and shrink global diversity to current (low) European levels. NW Africa and similarly understudied southern regions should receive added attention if expected range changes and diversity loss of warm-temperate species is not to occur unnoticed.
Bothwell, Helen M; Cushman, Samuel A; Woolbright, Scott A; Hersch-Green, Erika I; Evans, Luke M; Whitham, Thomas G; Allan, Gerard J
2017-10-01
Gene flow is an evolutionary process that supports genetic connectivity and contributes to the capacity of species to adapt to environmental change. Yet, for most species, little is known about the specific environmental factors that influence genetic connectivity, or their effects on genetic diversity and differentiation. We used a landscape genetic approach to understand how geography and climate influence genetic connectivity in a foundation riparian tree (Populus angustifolia), and their relationships with specieswide patterns of genetic diversity and differentiation. Using multivariate restricted optimization in a reciprocal causal modelling framework, we quantified the relative contributions of riparian network connectivity, terrestrial upland resistance and climate gradients on genetic connectivity. We found that (i) all riparian corridors, regardless of river order, equally facilitated connectivity, while terrestrial uplands provided 2.5× more resistance to gene flow than riparian corridors. (ii) Cumulative differences in precipitation seasonality and precipitation of the warmest quarter were the primary climatic factors driving genetic differentiation; furthermore, maximum climate resistance was 45× greater than riparian resistance. (iii) Genetic diversity was positively correlated with connectivity (R 2 = 0.3744, p = .0019), illustrating the utility of resistance models for identifying landscape conditions that can support a species' ability to adapt to environmental change. From these results, we present a map highlighting key genetic connectivity corridors across P. angustifolia's range that if disrupted could have long-term ecological and evolutionary consequences. Our findings provide recommendations for conservation and restoration management of threatened riparian ecosystems throughout the western USA and the high biodiversity they support. © 2017 John Wiley & Sons Ltd.
Barbosa, Ariane R; Fiorini, Cecília F; Silva-Pereira, Viviane; Mello-Silva, Renato; Borba, Eduardo L
2012-09-01
Vellozia hirsuta forms a complex presenting wide morphological and anatomical variation, resulting in five specific names and 14 morpho-anatomical patterns occurring in disjunct populations. We carried out a phylogeographical study to investigate the existence of correlation among the genetic and morphological patterns within this complex, and to determine whether it is composed of various species or should be treated as an ochlospecies, a species having widely polymorphic and weakly polytypic complex variation, with morphological characteristics varying independently. We carried out phylogeographical analyses using cpDNA rpl32F-trnL intergenic region. We found 20 haplotypes in 23 populations sampled. The populations are genetically structured (Φ(ST) = 0.818) into four phylogeographical groups demonstrating geographical structuring but with no correlation with morpho-anatomical patterns. Our analyses do not support recognizing any of the species now synonymized under Vellozia hirsuta. The northern populations were the most genetically differentiated and could be considered a distinct taxon, as they are also morphologically different. It is recommended that Vellozia hirsuta be considered a single enormously variable species. The patterns of variation within V. hirsuta probably are related to climatic changes that occurred during the Pleistocene Epoch in tropical Brazil when reductions in forest cover favored the expansion of V. hirsuta populations into extensive lowland areas. The expansion of forest cover at the end of the glaciations would have again restricted the occurrence of campos rupestres vegetation to high elevations, which constitute the current centers of diversity of this species.
ERIC Educational Resources Information Center
Spaulding, Scott A.; Irvin, Larry K.; Horner, Robert H.; May, Seth L.; Emeldi, Monica; Tobin, Tary J.; Sugai, George
2010-01-01
Office discipline referral (ODR) data provide useful information about problem behavior and consequence patterns, social-behavioral climates, and effects of social-behavioral interventions in schools. The authors report patterns of ODRs and subsequent administrative decisions from 1,510 schools nationwide that used the School-Wide Information…
Regional Famine Patterns of The Last Millennium as Influenced by Aggregated Climate Teleconnections
NASA Astrophysics Data System (ADS)
Santoro, Michael Melton
Famine is the result of a complex set of environmental and social factors. Climate conditions are established as environmental factors contributing to famine occurrence, often through teleconnective patterns. This dissertation is designed to investigate the combined influence on world famine patterns of teleconnections, specifically the North Atlantic Oscillation (NAO), Southern Oscillation (SO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), or regional climate variations such as the South Asian Summer Monsoon (SASM). The investigation is three regional case studies of famine patterns specifically, Egypt, the British Isles, and India. The first study (published in Holocene) employs the results of a Principal Component Analysis (PCA) yielding a SO-NAO eigenvector to predict major Egyptian famines between AD 1049-1921. The SO-NAO eigenvector (1) successfully discriminates between the 5-10 years preceding a famine and the other years, (2) predicts eight of ten major famines, and (3) correctly identifies fifty out of eighty events (63%) of food availability decline leading up to major famines. The second study investigates the impact of the NAO, PDO, SO, and AMO on 63 British Isle famines between AD 1049 and 1914 attributed to climate causes in historical texts. Stepwise Regression Analysis demonstrates that the 5-year lagged NAO is the primary teleconnective influence on famine patterns; it successfully discriminates 73.8% of weather-related famines in the British Isles from 1049 to 1914. The final study identifies the aggregated influence of the NAO, SO, PDO, and SASM on 70 Indian famines from AD 1049 to 1955. PCA results in a NAO-SOI vector and SASM vector that predicts famine conditions with a positive NAO and negative SO, distinct from the secondary SASM influence. The NAO-famine relationship is consistently the strongest; 181 of 220 (82%) of all famines occurred during positive NAO years. Ultimately, the causes of famine are complex and involve many factors including societal and climatic. This dissertation demonstrates that climate teleconnections impact famine patterns and often the aggregates of multiple climate variables hold the most significant climatic impact. These results will increase the understanding of famine patterns and will help to better allocate resources to alleviate future famines.
Vilà-Cabrera, Albert; Martínez-Vilalta, Jordi; Vayreda, Jordi; Retana, Javier
2011-06-01
The demographic rates of tree species typically show large spatial variation across their range. Understanding the environmental factors underlying this variation is a key topic in forest ecology, with far-reaching management implications. Scots pine (Pinus sylvestris L.) covers large areas of the Northern Hemisphere, the Iberian Peninsula being its southwestern distribution limit. In recent decades, an increase in severe droughts and a densification of forests as a result of changes in forest uses have occurred in this region. Our aim was to use climate and stand structure data to explain mortality and growth patterns of Scots pine forests across the Iberian Peninsula. We used data from 2392 plots dominated by Scots pine, sampled for the National Forest Inventory of Spain. Plots were sampled from 1986 to 1996 (IFN2) and were resampled from 1997 to 2007 (IFN3), allowing for the calculation of growth and mortality rates. We fitted linear models to assess the response of growth and mortality rates to the spatial variability of climate, climatic anomalies, and forest structure. Over the period of approximately 10 years between the IFN2 and IFN3, the amount of standing dead trees increased 11-fold. Higher mortality rates were related to dryness, and growth was reduced with increasing dryness and temperature, but results also suggested that effects of climatic stressors were not restricted to dry sites only. Forest structure was strongly related to demographic rates, suggesting that stand development and competition are the main factors associated with demography. In the case of mortality, forest structure interacted with climate, suggesting that competition for water resources induces tree mortality in dry sites. A slight negative relationship was found between mortality and growth, indicating that both rates are likely to be affected by the same stress factors. Additionally, regeneration tended to be lower in plots with higher mortality. Taken together, our results suggest a large-scale self-thinning related to the recent densification of Scots pine forests. This process appears to be enhanced by dry conditions and may lead to a mismatch in forest turnover. Forest management may be an essential adaptive tool under the drier conditions predicted by most climate models.
Developing quantitative criteria to evaluate AOGCMs for application to regional climate assessments
NASA Astrophysics Data System (ADS)
Hayhoe, K.; Wake, C.; Bradbury, J.; Degaetano, A.; Hertel, A.
2006-12-01
Climate projections are the foundation for regional assessments of potential climate impacts. However, the soundness of regional assessments depends on the ability of global climate models to reproduce key processes responsible for regional climate trends. Here, we develop a systematic method to compare observed climate with historical atmosphere-ocean general circulation model (AOGCM) simulations, to assess the degree to which AOGCMs are able to reproduce regional circulation patterns. Applying this methodology to the U.S. Northeast (NE), we find that nearly all AOGCMs simulate a reasonable winter NAO pattern and seasonal positions of the Jet Stream and the East Coast Trough. However, not all models capture observed correlations between these circulation patterns and seasonal climate anomalies in the NE. Using only those AOGCMs that meet the criteria in each of these areas, we then develop projections of future climate change in the NE. The primary changes projected to occur over the next century - slightly greater temperature increases in summer than winter, and increases in winter precipitation - are consistent with projected trends in regional climate processes and are relatively independent of model or scale. These suggest confidence in the direction and potential range of the most notable regional climate trends, with the absolute magnitude of change depending on both the sensitivity of the climate system to human forcing as well as on human emissions over coming decades.
TECA: Petascale pattern recognition for climate science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhat, .; Byna, Surendra; Vishwanath, Venkatram
Climate Change is one of the most pressing challenges facing humanity in the 21st century. Climate simulations provide us with a unique opportunity to examine effects of anthropogenic emissions. Highresolution climate simulations produce “Big Data”: contemporary climate archives are ≈ 5PB in size and we expect future archives to measure on the order of Exa-Bytes. In this work, we present the successful application of TECA (Toolkit for Extreme Climate Analysis) framework, for extracting extreme weather patterns such as Tropical Cyclones, Atmospheric Rivers and Extra-Tropical Cyclones from TB-sized simulation datasets. TECA has been run at full-scale on Cray XE6 and IBMmore » BG/Q systems, and has reduced the runtime for pattern detection tasks from years to hours. TECA has been utilized to evaluate the performance of various computational models in reproducing the statistics of extreme weather events, and for characterizing the change in frequency of storm systems in the future.« less
Recent Challenges Facing US Government Climate Science Access and Application
NASA Astrophysics Data System (ADS)
Goldman, G. T.; Carter, J. M.; Licker, R.
2017-12-01
Climate scientists have long faced politicization of their work, especially those working within the US federal government. However, political interference in federal government climate change science has escalated in the current political era with efforts by political actors to undermine and disrupt infrastructure supporting climate science. This has included funding changes, decreased access to climate science information on federal agency websites, restrictions on media access to scientific experts within the government, and rolling back of science-based policies designed to incorporate and respond to climate science findings. What are the impacts of such changes for both the climate science community and the broader public? What can be done to ensure that access to and application of climate change-related research to policy decisions continues? We will summarize and analyze the state of climate change research and application in the US government. The impacts of political interference in climate change science as well as opportunities the scientific community has to support climate science in the US government, will be discussed.
Huang, I-Chueh; Bailey, Charles C.; Weyer, Jessica L.; Radoshitzky, Sheli R.; Becker, Michelle M.; Chiang, Jessica J.; Brass, Abraham L.; Ahmed, Asim A.; Chi, Xiaoli; Dong, Lian; Longobardi, Lindsay E.; Boltz, Dutch; Kuhn, Jens H.; Elledge, Stephen J.; Bavari, Sina; Denison, Mark R.; Choe, Hyeryun; Farzan, Michael
2011-01-01
Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3) are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV) hemagglutinin (HA) protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP1,2) of Marburg and Ebola filoviruses (MARV, EBOV). Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV) and entry mediated by the SARS-CoV spike (S) protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression. PMID:21253575
NASA Astrophysics Data System (ADS)
Ravindranath, A.; Devineni, N.
2017-12-01
Studies have shown that streamflow behavior and dynamics have a significant link with climate and climate variability. Patterns of persistent regime behavior from extended streamflow records in many watersheds justify investigating large-scale climate mechanisms as potential drivers of hydrologic regime behavior and streamflow variability. Understanding such streamflow-climate relationships is crucial to forecasting/simulation systems and the planning and management of water resources. In this study, hidden Markov models are used with reconstructed streamflow to detect regime-like behaviors - the hidden states - and state transition phenomena. Individual extreme events and their spatial variability across the basin are then verified with the identified states. Wavelet analysis is performed to examine the signals over time in the streamflow records. Joint analyses of the climatic data in the 20th century and the identified states are undertaken to better understand the hydroclimatic connections within the basin as well as important teleconnections that influence water supply. Compositing techniques are used to identify atmospheric circulation patterns associated with identified states of streamflow. The grouping of such synoptic patterns and their frequency are then examined. Sliding time-window correlation analysis and cross-wavelet spectral analysis are performed to establish the synchronicity of basin flows to the identified synoptic and teleconnection patterns. The Missouri River Basin (MRB) is examined in this study, both as a means of better understanding the synoptic climate controls in this important watershed and as a case study for the techniques developed here. Initial wavelet analyses of reconstructed streamflow at major gauges in the MRB show multidecadal cycles in regime behavior.
NASA Astrophysics Data System (ADS)
Verdon-Kidd, D. C.; Kiem, A. S.
2009-04-01
In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and/or the Southern Annular Mode (SAM) are associated with a shift in the relative frequency of wet and dry synoptic types on an annual to inter-annual timescale. In addition, the relative frequency of synoptic types is shown to vary on a multi-decadal timescale, associated with changes in the Inter-decadal Pacific Oscillation (IPO). Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.
Water isotopes and the Eocene. A tectonic sensitivity study
NASA Astrophysics Data System (ADS)
Legrande, A. N.; Roberts, C. D.; Tripati, A.; Schmidt, G. A.
2009-04-01
The early Eocene (54 Million years ago) is one of the warmest periods in the last 65 Million years. Its climate is postulated to have been the result of enhanced greenhouse gas concentration, with CO2 roughly 4 times pre-industrial and methane 7 times pre-industrial concentrations. One interesting feature of this period to emerge recently is the intermittent presence of fossilized Azolla, a type of freshwater fern, in the Arctic Ocean. Synchronous (within dating error) with this appearance were major changes in the restriction of the Arctic Ocean and the other global oceans. We investigate this time period using the Goddard Institute for Space Studies ModelE-R, a fully coupled atmosphere-ocean general circulation model that incorporates water isotopes throughout the hydrologic cycle, making it an ideal model to test hypotheses of past climate change and to compare to paleoclimate proxy data. We assess the impact of tectonic variability by using minimal and maximal levels of restriction for the Arctic Ocean seaways. We find that the modulation of connectivity of these basins dramatically alters global salinity distribution, leading to large changes in ocean circulation. Greater restriction of the Arctic Basin is associated with fresh and relatively warmer conditions. The same mechanisms responsible for this redistribution of salt also change the global distribution of water isotopes, and can alias (water isotope) proxy climate signals of warmth.
NASA Astrophysics Data System (ADS)
Kennedy, R. S.
2010-12-01
Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.
Varela, Sara; Larkin, Daniel J.; Phelps, Nicholas B. D.
2017-01-01
Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species’ suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain. PMID:28704433
Romero-Alvarez, Daniel; Escobar, Luis E; Varela, Sara; Larkin, Daniel J; Phelps, Nicholas B D
2017-01-01
Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species' suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain.
Tinea imbricata in the Americas.
Bonifaz, Alexandro; Vázquez-González, Denisse
2011-04-01
The aim is to provide an overview on tinea imbricata, or Tokelau, a superficial mycosis caused by Trichophyton concentricum, a strictly anthropophilic dermatophyte with a well-defined geographic distribution and predisposing factors that include genetic, racial and immunologic susceptibility patterns and a specific environment. This review covers the most interesting aspects of the infrequent disease tinea imbricata, including the historical background, the epidemiologic aspects, highlighting the genetic and racial patterns of susceptibility to the acquisition of the disease, and the immunologic aspects that help to explain its clinical behavior. We also present a clinical description of the disease, the differential diagnosis and how currently some other emerging diseases such as syphilis in immunocompromised patients can mimic tinea imbricata. The therapeutic options are still griseofulvin and nowadays terbinafine, but the access to the treatments in the endemic zones and the changes in habits of the affected population make control and prevention of the disease difficult. Tinea imbricata, or Tokelau, remains an infrequent superficial mycosis restricted to endemic zones in the South Pacific islands (Polynesia and Melanesia), South Asia and some specific areas of South America. Migration phenomena and global changes in the climate may modify the incidence and characteristics of the disease.
Mixing and evaporation processes in an inverse estuary inferred from δ2H and δ18O
NASA Astrophysics Data System (ADS)
Corlis, Nicholas J.; Herbert Veeh, H.; Dighton, John C.; Herczeg, Andrew L.
2003-05-01
We have measured δ2H and δ18O in Spencer Gulf, South Australia, an inverse estuary with a salinity gradient from 36‰ near its entrance to about 45‰ at its head. We show that a simple evaporation model of seawater under ambient conditions, aided by its long residence time in Spencer Gulf, can account for the major features of the non-linear distribution pattern of δ2H with respect to salinity, at least in the restricted part of the gulf. In the more exposed part of the gulf, the δ/ S pattern appears to be governed primarily by mixing processes between inflowing shelf water and outflowing high salinity gulf water. These data provide direct support for the oceanographic model of Spencer Gulf previously proposed by other workers. Although the observed δ/ S relationship here is non-linear and hence in notable contrast to the linear δ/ S relationship in the Red Sea, the slopes of δ2H vs. δ18O are comparable, indicating that the isotopic enrichments in both marginal seas are governed by similar climatic conditions with evaporation exceeding precipitation.
Wintertime East Asian Jet Stream and Its Association with the Asian-Pacific Climate
NASA Technical Reports Server (NTRS)
Yang, Song; Lau, K.-M.; Kim, K.-M.
2000-01-01
Interannual variability of the wintertime East Asian westerly jet stream and the linkage between this variability and the Asian-Pacific climate are investigated. The study emphasizes on the variability of the jet core and its association with the Asian winter monsoon, tropical convection, upper tropospheric wave patterns, and the teleconnection of the jet with other climate systems. The relationship between the jet and North Pacific sea surface temperature pattern (SST) is also explored. NCEP/NCAR reanalysis, NASA GISS surface temperature, NASA GEOS reanalysis, NOAA reconstructed SST, GPCP precipitation, and NOAA snow cover data sets are analyzed in this study. An index of the East Asian jet has been defined by the December-February means of the 200 mb zonal winds that are averaged within a box enclosing the jet maximum, which shifts only moderately from one year to another especially in the south-north direction. The jet links to a teleconnection pattern whose major climate anomalies appear over the Asian continent and western Pacific (west of the dateline). This pattern differs distinctly from the teleconnection pattern associated with El Nino/Southern Oscillation (ENSO), which causes the Pacific/North American pattern to the east of the dateline. A strong jet is accompanied clearly by an increase in the intensity of the atmospheric circulation over Asia and the Pacific. In particular, the winter monsoon strengthens over East Asia, leading to cold climate in the region, and convection intensifies over the tropical Asia-Australia sector. Changes in the jet are associated with broad-scale modification in the upper tropospheric wave patterns that leads to downstream climate anomalies over the eastern Pacific. Through this downstream influence, the East Asian jet causes climate signals in North America as well. A strong jet gives rise to warming and less snow cover in the western United States but reverse climate anomalies in the eastern part of the country, although these signals are relatively weaker than the jet-related anomalies in East Asia. There is a strong association between the East Asian jet and the North Pacific SST (NPSST). A strong jet is accompanied by a cooling in the extratropical Pacific and a warming in the tropical-subtropical Pacific. Evidence also indicates that the extratropical NPSST pattern plays a role in modulating the intensity of the jet stream. ENSO, the jet, and the NPSST are mutually interactive on certain time scales and such an interaction links closely to the climate anomalies in the Asian-Pacific-American regions.
Microhabitat and Climatic Niche Change Explain Patterns of Diversification among Frog Families.
Moen, Daniel S; Wiens, John J
2017-07-01
A major goal of ecology and evolutionary biology is to explain patterns of species richness among clades. Differences in rates of net diversification (speciation minus extinction over time) may often explain these patterns, but the factors that drive variation in diversification rates remain uncertain. Three important candidates are climatic niche position (e.g., whether clades are primarily temperate or tropical), rates of climatic niche change among species within clades, and microhabitat (e.g., aquatic, terrestrial, arboreal). The first two factors have been tested separately in several studies, but the relative importance of all three is largely unknown. Here we explore the correlates of diversification among families of frogs, which collectively represent ∼88% of amphibian species. We assemble and analyze data on phylogeny, climate, and microhabitat for thousands of species. We find that the best-fitting phylogenetic multiple regression model includes all three types of variables: microhabitat, rates of climatic niche change, and climatic niche position. This model explains 67% of the variation in diversification rates among frog families, with arboreal microhabitat explaining ∼31%, niche rates ∼25%, and climatic niche position ∼11%. Surprisingly, we show that microhabitat can have a much stronger influence on diversification than climatic niche position or rates of climatic niche change.
ClimateNet: A Machine Learning dataset for Climate Science Research
NASA Astrophysics Data System (ADS)
Prabhat, M.; Biard, J.; Ganguly, S.; Ames, S.; Kashinath, K.; Kim, S. K.; Kahou, S.; Maharaj, T.; Beckham, C.; O'Brien, T. A.; Wehner, M. F.; Williams, D. N.; Kunkel, K.; Collins, W. D.
2017-12-01
Deep Learning techniques have revolutionized commercial applications in Computer vision, speech recognition and control systems. The key for all of these developments was the creation of a curated, labeled dataset ImageNet, for enabling multiple research groups around the world to develop methods, benchmark performance and compete with each other. The success of Deep Learning can be largely attributed to the broad availability of this dataset. Our empirical investigations have revealed that Deep Learning is similarly poised to benefit the task of pattern detection in climate science. Unfortunately, labeled datasets, a key pre-requisite for training, are hard to find. Individual research groups are typically interested in specialized weather patterns, making it hard to unify, and share datasets across groups and institutions. In this work, we are proposing ClimateNet: a labeled dataset that provides labeled instances of extreme weather patterns, as well as associated raw fields in model and observational output. We develop a schema in NetCDF to enumerate weather pattern classes/types, store bounding boxes, and pixel-masks. We are also working on a TensorFlow implementation to natively import such NetCDF datasets, and are providing a reference convolutional architecture for binary classification tasks. Our hope is that researchers in Climate Science, as well as ML/DL, will be able to use (and extend) ClimateNet to make rapid progress in the application of Deep Learning for Climate Science research.
Ren, Guangpeng; Mateo, Rubén G; Liu, Jianquan; Suchan, Tomasz; Alvarez, Nadir; Guisan, Antoine; Conti, Elena; Salamin, Nicolas
2017-02-01
The effects of Quaternary climatic oscillations on the demography of organisms vary across regions and continents. In taxa distributed in Europe and North America, several paradigms regarding the distribution of refugia have been identified. By contrast, less is known about the processes that shaped the species' spatial genetic structure in areas such as the Himalayas, which is considered a biodiversity hotspot. Here, we investigated the phylogeographic structure and population dynamics of Primula tibetica by combining genomic phylogeography and species distribution models (SDMs). Genomic data were obtained for 293 samples of P. tibetica using restriction site-associated DNA sequencing (RADseq). Ensemble SDMs were carried out to predict potential present and past distribution ranges. Four distinct lineages were identified. Approximate Bayesian computation analyses showed that each of them have experienced both expansions and bottlenecks since their divergence, which occurred during or across the Quaternary glacial cycles. The two lineages at both edges of the distribution were found to be more vulnerable and responded in different ways to past climatic changes. These results illustrate how past climatic changes affected the demographic history of Himalayan organisms. Our findings highlight the significance of combining genomic approaches with environmental data when evaluating the effects of past climatic changes. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Litzow, Michael A; Mueter, Franz J; Hobday, Alistair J
2014-01-01
In areas of the North Pacific that are largely free of overfishing, climate regime shifts - abrupt changes in modes of low-frequency climate variability - are seen as the dominant drivers of decadal-scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific-North American Pattern (PNA), North Pacific Index (NPI), El Niño-Southern Oscillation (ENSO)] to explain decadal-scale (1965-2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1-2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1-2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1-2 satisfied assumptions of independent residuals and out-performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology PC1-2 suggest plausible mechanistic explanations for these modeling results. Our findings suggest that, even in the absence of overfishing and in areas strongly influenced by internal climate variability, climate regime shift effects can only be understood in the context of other ecosystem perturbations. © 2013 John Wiley & Sons Ltd.
Mohd S. Rahman; Michael G. Messina; Richard F. Fisher
2002-01-01
Substantial forest acreage in the south-central U.S. is seasonally water-logged due to an underlying fragipan. Severely restricted drainage in the non-growing season leads to a reduced subsoil zone, which restricts root respiration. The same sites may also be subjected to summer drought. These climatic and edaphic problems may result in low seedling survival and...
Netherlands. Section 23. Weather and Climate
1961-04-01
restricted visibilities most frequent during the day when the smoke from home and industrial fires reaches a peak. Restricted visibilities are least...on the ground surmounted by a warmer layer which acts as a lid, preventing smoke, fog, or any other contaminant from escaping into the upper at...cotton visored cap, shirt, trousers, and underwear , supple- mented with a hooded water-repellent wind-resist- ant coat. It also includes leather
Increasing elevation of fire in the Sierra Nevada and implications for forest change
Schwartz, Mark W.; Butt, Nathalie; Dolanc, Christopher R.; Holguin, Andrew; Moritz, Max A.; North, Malcolm P.; Safford, Hugh D.; Stephenson, Nathan L.; Thorne, James H.; van Mantgem, Phillip J.
2015-01-01
Fire in high-elevation forest ecosystems can have severe impacts on forest structure, function and biodiversity. Using a 105-year data set, we found increasing elevation extent of fires in the Sierra Nevada, and pose five hypotheses to explain this pattern. Beyond the recognized pattern of increasing fire frequency in the Sierra Nevada since the late 20th century, we find that the upper elevation extent of those fires has also been increasing. Factors such as fire season climate and fuel build up are recognized potential drivers of changes in fire regimes. Patterns of warming climate and increasing stand density are consistent with both the direction and magnitude of increasing elevation of wildfire. Reduction in high elevation wildfire suppression and increasing ignition frequencies may also contribute to the observed pattern. Historical biases in fire reporting are recognized, but not likely to explain the observed patterns. The four plausible mechanistic hypotheses (changes in fire management, climate, fuels, ignitions) are not mutually exclusive, and likely have synergistic interactions that may explain the observed changes. Irrespective of mechanism, the observed pattern of increasing occurrence of fire in these subalpine forests may have significant impacts on their resilience to changing climatic conditions.
Distribution pattern of reptiles along an eastern Himalayan elevation gradient, India
NASA Astrophysics Data System (ADS)
Chettri, Basundhara; Bhupathy, Subramanian; Acharya, Bhoj Kumar
2010-01-01
We examined the spatial distribution pattern of reptiles in an eastern Himalayan elevation gradient. The factors governing the distribution have been assessed with emphasis on the mid-domain effect. We surveyed reptiles along the elevation gradient (300-4800 m) of the Teesta valley in Sikkim, Eastern Himalaya, India using time constrained visual encounter survey. A total of 42 species of reptiles were observed during the study, and the species richness peaked at 500-1000 m with no species beyond 3000 m. The observed pattern was consistent with estimated richness, both showing significant negative relation with elevation. Lizards showed a linear decline with elevation, whereas snakes followed a non-linear relation with peak at 500-1000 m. Observed species richness deviated significantly from that predicted by a mid-domain null model. The regression between empirical and simulated richness was not significant for total reptiles as well as lizards and snakes separately. Most species distributed in the high elevation extended towards lower elevation, but low elevation species (around 50%) were restricted below 1000 m. Deviation of empirical from predicted richness indicates that the distributions of reptile species were least governed by geographic hard boundaries. Climatic factors especially temperature explained much variation of reptiles along the Himalayan elevation gradient. Most reptiles were narrowly distributed, especially those found in low elevation indicating the importance of tropical low-land forests in the conservation of reptiles in Eastern Himalayas.
NASA Astrophysics Data System (ADS)
Tagliaro, G.; Fulthorpe, C.; Gallagher, S. J.; McHugh, C.; Kominz, M. A.; Lavier, L.
2017-12-01
The Bare Formation represents a unique episode of Neogene siliciclastic deposition on the carbonate-dominated Australian Northwest Shelf (NWS). International Ocean Discovery Program (IODP) Expedition 356 drilling results, coupled with interpretation of 3D seismic data, allow us to constrain the timing of siliciclastic deposition and the associated sedimentary processes. IODP Sites U1462, U1463 and U1464 provide age control that reveals the relationship of the Bare Fm. to the adjacent carbonate sediments. The Bare Fm. is preceded by middle to late Miocene shelf exposure and karstification. Elongate beach barrier deposits with small lobate deltas to the NE developed during the late Miocene. However, fluvial deposition increased markedly in the Zanclean, resulting in development of a large tide-and-wave-influenced delta, with evidence of tidal channels, comprising the thickest component of the Bare Fm. Siliciclastic input decreased in the Piacenzian, leading to margin retreat and final termination near the Plio-Pleistocene boundary. The results correlate with regional climate and sedimentary records derived from Sites U1459, U1463 and U1464, that indicate an arid middle to late Miocene, followed by a humid interval in the Zanclean and a return to arid conditions during the Piacenzian. Therefore, we suggest that fluctuation of surface runoff patterns in the continental hinterlands is the primary control of Bare Fm. evolution. Hence, Neogene siliciclastic distribution is a result of regional climate variability on the NWS. Up to 40 km of shoreline advance is verified in the Late Miocene and Pliocene, an example of climate-driven modification of a continental margin. Additionally, longshore transport intensifies during the Pliocene humid interval, causing NE migration of the deltaic system. Sedimentary and climate transitions are linked to reorganization of Indian Ocean paleoceanography, accompanying northward migration of the Australian continent and progressive restriction of the Indonesian Throughflow.
Henry, Philippe; Sim, Zijian; Russello, Michael A
2012-01-01
When faced with rapidly changing environments, wildlife species are left to adapt, disperse or disappear. Consequently, there is value in investigating the connectivity of populations of species inhabiting different environments in order to evaluate dispersal as a potential strategy for persistence in the face of climate change. Here, we begin to investigate the processes that shape genetic variation within American pika populations from the northern periphery of their range, the central Coast Mountains of British Columbia, Canada. At these latitudes, pikas inhabit sharp elevation gradients ranging from sea level to 1500 m, providing an excellent system for studying the effects of local environmental conditions on pika population genetic structure and gene flow. We found low levels of neutral genetic variation compared to previous studies from more southerly latitudes, consistent with the relatively recent post-glacial colonization of the study location. Moreover, significant levels of inbreeding and marked genetic structure were detected within and among sites. Although low levels of recent gene flow were revealed among elevations within a transect, potentially admixed individuals and first generation migrants were identified using discriminant analysis of principal components between populations separated by less than five kilometers at the same elevations. There was no evidence for historical population decline, yet there was signal for recent demographic contractions, possibly resulting from environmental stochasticity. Correlative analyses revealed an association between patterns of genetic variation and annual heat-to-moisture ratio, mean annual precipitation, precipitation as snow and mean maximum summer temperature. Changes in climatic regimes forecasted for the region may thus potentially increase the rate of population extirpation by further reducing dispersal between sites. Consequently, American pika may have to rely on local adaptations or phenotypic plasticity in order to survive predicted climate changes, although additional studies are required to investigate the evolutionary potential of this climate change sensitive species.
The implications of climate change on pavement performance and design.
DOT National Transportation Integrated Search
2011-09-25
Pavements are designed based on historic climatic patterns, reflecting local climate and : incorporating assumptions about a reasonable range of temperatures and precipitation levels. : Given anticipated climate changes and the inherent uncertainty a...
Capture mechanism in Palaeotropical pitcher plants (Nepenthaceae) is constrained by climate
Moran, Jonathan A.; Gray, Laura K.; Clarke, Charles; Chin, Lijin
2013-01-01
Background and Aims Nepenthes (Nepenthaceae, approx. 120 species) are carnivorous pitcher plants with a centre of diversity comprising the Philippines, Borneo, Sumatra and Sulawesi. Nepenthes pitchers use three main mechanisms for capturing prey: epicuticular waxes inside the pitcher; a wettable peristome (a collar-shaped structure around the opening); and viscoelastic fluid. Previous studies have provided evidence suggesting that the first mechanism may be more suited to seasonal climates, whereas the latter two might be more suited to perhumid environments. In this study, this idea was tested using climate envelope modelling. Methods A total of 94 species, comprising 1978 populations, were grouped by prey capture mechanism (large peristome, small peristome, waxy, waxless, viscoelastic, non-viscoelastic, ‘wet’ syndrome and ‘dry’ syndrome). Nineteen bioclimatic variables were used to model habitat suitability at approx. 1 km resolution for each group, using Maxent, a presence-only species distribution modelling program. Key Results Prey capture groups putatively associated with perhumid conditions (large peristome, waxless, viscoelastic and ‘wet’ syndrome) had more restricted areas of probable habitat suitability than those associated putatively with less humid conditions (small peristome, waxy, non-viscoelastic and‘dry’ syndrome). Overall, the viscoelastic group showed the most restricted area of modelled suitable habitat. Conclusions The current study is the first to demonstrate that the prey capture mechanism in a carnivorous plant is constrained by climate. Nepenthes species employing peristome-based and viscoelastic fluid-based capture are largely restricted to perhumid regions; in contrast, the wax-based mechanism allows successful capture in both perhumid and more seasonal areas. Possible reasons for the maintenance of peristome-based and viscoelastic fluid-based capture mechanisms in Nepenthes are discussed in relation to the costs and benefits associated with a given prey capture strategy. PMID:23975653
Capture mechanism in Palaeotropical pitcher plants (Nepenthaceae) is constrained by climate.
Moran, Jonathan A; Gray, Laura K; Clarke, Charles; Chin, Lijin
2013-11-01
Nepenthes (Nepenthaceae, approx. 120 species) are carnivorous pitcher plants with a centre of diversity comprising the Philippines, Borneo, Sumatra and Sulawesi. Nepenthes pitchers use three main mechanisms for capturing prey: epicuticular waxes inside the pitcher; a wettable peristome (a collar-shaped structure around the opening); and viscoelastic fluid. Previous studies have provided evidence suggesting that the first mechanism may be more suited to seasonal climates, whereas the latter two might be more suited to perhumid environments. In this study, this idea was tested using climate envelope modelling. A total of 94 species, comprising 1978 populations, were grouped by prey capture mechanism (large peristome, small peristome, waxy, waxless, viscoelastic, non-viscoelastic, 'wet' syndrome and 'dry' syndrome). Nineteen bioclimatic variables were used to model habitat suitability at approx. 1 km resolution for each group, using Maxent, a presence-only species distribution modelling program. Prey capture groups putatively associated with perhumid conditions (large peristome, waxless, viscoelastic and 'wet' syndrome) had more restricted areas of probable habitat suitability than those associated putatively with less humid conditions (small peristome, waxy, non-viscoelastic and'dry' syndrome). Overall, the viscoelastic group showed the most restricted area of modelled suitable habitat. The current study is the first to demonstrate that the prey capture mechanism in a carnivorous plant is constrained by climate. Nepenthes species employing peristome-based and viscoelastic fluid-based capture are largely restricted to perhumid regions; in contrast, the wax-based mechanism allows successful capture in both perhumid and more seasonal areas. Possible reasons for the maintenance of peristome-based and viscoelastic fluid-based capture mechanisms in Nepenthes are discussed in relation to the costs and benefits associated with a given prey capture strategy.
Life on the rocks: Multilocus phylogeography of rock hyrax (Procavia capensis) from southern Africa.
Maswanganye, K Amanda; Cunningham, Michael J; Bennett, Nigel C; Chimimba, Christian T; Bloomer, Paulette
2017-09-01
Understanding the role of geography and climatic cycles in determining patterns of biodiversity is important in comparative and evolutionary biology and conservation. We studied the phylogeographic pattern and historical demography of a rock-dwelling small mammal species from southern Africa, the rock hyrax Procavia capensis capensis. Using a multilocus coalescent approach, we assessed the influence of strong habitat dependence and fluctuating regional climates on genetic diversity. We sequenced a mitochondrial gene (cytochrome b) and two nuclear introns (AP5, PRKC1) supplemented with microsatellite genotyping, in order to assess evolutionary processes over multiple temporal scales. In addition, distribution modelling was used to investigate the current and predicted distribution of the species under different climatic scenarios. Collectively, the data reveal a complex history of isolation followed by secondary contact shaping the current intraspecific diversity. The cyt b sequences confirmed the presence of two previously proposed geographically and genetically distinct lineages distributed across the southern African Great Escarpment and north-western mountain ranges. Molecular dating suggests Miocene divergence of the lineages, yet there are no discernible extrinsic barriers to gene flow. The nuclear markers reveal incomplete lineage sorting or ongoing mixing of the two lineages. Although the microsatellite data lend some support to the presence of two subpopulations, there is weak structuring within and between lineages. These data indicate the presence of gene flow from the northern into the southern parts of the southern African sub-region likely following the secondary contact. The distribution modelling predictably reveal the species' preference for rocky areas, with stable refugia through time in the northern mountain ranges, the Great Escarpment, as well as restricted areas of the Northern Cape Province and the Cape Fold Mountains of South Africa. Different microclimatic variables appear to determine the distributional range of the species. Despite strong habitat preference, the micro-habitat offered by rocky crevices and unique life history traits likely promoted the adaptability of P. capensis, resulting in the widespread distribution and persistence of the species over a long evolutionary period. Spatio-temporal comparison of the evolutionary histories of other co-distributed species across the rocky landscapes of southern Africa will improve our understanding of the regional patterns of biodiversity and local endemism. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Donghoon; Ward, Philip; Block, Paul
2018-02-01
Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.
NASA Astrophysics Data System (ADS)
Hong, Songbai; Liu, Yongwen; Piao, Shilong
2017-04-01
Climate and anthropogenic activities such as afforestation and nitrogen deposition all impact soil pH. Understanding the spatial pattern of soil pH and the factors that influence it can provide basic information for generating appropriate strategies for soil resource management and protection, especially in light of increasing anthropogenic influences and climate change. In this study, we investigated the spatial and vertical pattern of soil pH and evaluated the influence of climate and nitrogen deposition using 1647 soil profiles 1 meter in depth from 549 plots in plantation forests of northern China. We found that soil pH decreased from the southwest to the northeast in the study region and had a similar spatial pattern before and after afforestation. Furthermore, our results show that climate and nitrogen deposition fundamentally influence the pattern of soil pH. Specifically, increasing precipitation significantly decreased soil pH (with a mean rate of 0.3 for every 100 mm rainfall, p<0.001), whereas increasing temperature significantly increased soil pH (0.13 for every degree centigrade, p<0.001). Nitrogen deposition, especially nitrate nitrogen, significantly decreased soil pH (p<0.01). All these factors impact soil pH directly and indirectly through climate-plant-soil interactions. As the risks from both climate change and nitrogen deposition increase, there is an urgent need to further understanding of soil pH dynamics and to develop informed policies to protect soil resources.
Potential land use adjustment for future climate change adaptation in revegetated regions.
Peng, Shouzhang; Li, Zhi
2018-05-22
To adapt to future climate change, appropriate land use patterns are desired. Potential natural vegetation (PNV) emphasizing the dominant role of climate can provide a useful baseline to guide the potential land use adjustment. This work is particularly important for the revegetated regions with intensive human perturbation. However, it has received little attention. This study chose China's Loess Plateau, a typical revegetated region, as an example study area to generate the PNV patterns with high spatial resolution over 2071-2100 with a process-based dynamic vegetation model (LPJ-GUESS), and further investigated the potential land use adjustment through comparing the simulated and observed land use patterns. Compared with 1981-2010, the projected PNV over 2071-2100 would have less forest and more steppe because of drier climate. Subsequently, 25.3-55.0% of the observed forests and 79.3-91.9% of the observed grasslands in 2010 can be kept over 2071-2100, and the rest of the existing forested area and grassland were expected to be more suitable for steppes and forests, respectively. To meet the request of China's Grain for Green Project, 60.9-84.8% of the existing steep farmland could be converted to grassland and the other for forest. Our results highlight the importance in adjusting the existing vegetation pattern to adapt to climate change. The research approach is extendable and provides a framework to evaluate the sustainability of the existing land use pattern under future climate. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Y.; Gan, T. Y.; Tan, X.
2017-12-01
In the past few decades, there have been more extreme climate events around the world, and Canada has also suffered from numerous extreme precipitation events. In this paper, trend analysis, change point analysis, probability distribution function, principal component analysis and wavelet analysis were used to investigate the spatial and temporal patterns of extreme precipitation in Canada. Ten extreme precipitation indices were calculated using long-term daily precipitation data from 164 gauging stations. Several large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Pacific-North American (PNA), and North Atlantic Oscillation (NAO) were selected to analyze the relationships between extreme precipitation and climate indices. Convective Available Potential Energy (CAPE), specific humidity, and surface temperature were employed to investigate the potential causes of the trends.The results show statistically significant positive trends for most indices, which indicate increasing extreme precipitation. The majority of indices display more increasing trends along the southern border of Canada while decreasing trends dominate in the central Canadian Prairies (CP). In addition, strong connections are found between the extreme precipitation and climate indices and the effects of climate pattern differ for each region. The seasonal CAPE, specific humidity, and temperature are found to be closely related to Canadian extreme precipitation.
The current epidemiological status of bovine theileriosis in eastern Zambia.
Billiouw, M; Mataa, L; Marcotty, T; Chaka, G; Brandt, J; Berkvens, D
1999-09-01
Results of a longitudinal study conducted in the eastern province of Zambia from 1994 to 1997 indicate that it is doubtful whether a state of endemic stability of East Coast fever (ECF) can be reached in the near future. Even in endemic areas, the mortality of Theileria parva infections is still estimated above 50%. The main factors limiting progress towards endemic stability are high innate susceptibility of the Zebu cattle, the virulence of the parasite and the climate. The unimodal rainfall pattern results in restricted activity of Rhipicephalus appendiculatus instars and year-to-year variation in rainfall causes fluctuations in tick phenology and T. parva transmission. Adult tick activity invariably peaks during the rains and is associated with the highest ECF incidence. Nymphal transmission of T. parva to cattle appears to be less important. Second periods of activity of both adult and nymphal instars are pronounced only when the climate is suitable. These second waves of tick activity ensure a more continuous and efficient transmission of T. parva and also play a key role in the dynamics of prolonged outbreaks in epidemic areas. ECF control methods may have an important influence on ECF epidemiology. Immunizations as well as chemotherapy of clinical cases create a reservoir of virulent parasites in susceptible cattle, resulting in artificial endemic stability.
Shifting material source of Chinese Loess since ~2.7 Ma reflected by Sr isotopic composition.
Zhang, Wenfang; Chen, Jun; Li, Gaojun
2015-05-21
Deciphering the sources of eolian dust on the Chinese Loess Plateau (CLP) is fundamental to reconstruct paleo-wind patterns and paleo-environmental changes. Existing datasets show contradictory source evolutions of eolian dust on the CLP, both on orbital and tectonic timescales. Here, the silicate Sr and Nd isotopic compositions of a restricted grain size fraction (28-45 μm) were measured to trace the source evolution of the CLP since ~2.7 Ma. Our results revealed an unchanged source on orbital timescales but a gradual source shift from the Qilian Mountains to the Gobi Altay Mountains during the past 2.7 Ma. Both tectonic uplift and climate change may have played important roles for this shift. The later uplift of the Gobi Altay Mountains relative to the Qilian Mountains since 5 ± 3 Ma might be responsible for the increasing contribution of Gobi materials to the source deserts in Alxa arid lands. Enhanced winter monsoon may also facilitate transportation of Gobi materials from the Alxa arid lands to the CLP. The shifting source of Asian dust was also reflected in north Pacific sediments. The finding of this shifting source calls for caution when interpreting the long-term climate changes based on the source-sensitive proxies of the eolian deposits.
Schmidt, Ricarda; Vogel, Mandy; Hiemisch, Andreas; Kiess, Wieland; Hilbert, Anja
2018-08-01
Although restrictive eating behaviors are very common during early childhood, their precise nature and clinical correlates remain unclear. Especially, there is little evidence on restrictive eating behaviors in older children and their associations with children's shape concern. The present population-based study sought to delineate subgroups of restrictive eating patterns in N = 799 7-14 year old children. Using Latent Class Analysis, children were classified based on six restrictive eating behaviors (for example, picky eating, food neophobia, and eating-related anxiety) and shape concern, separately in three age groups. For cluster validation, sociodemographic and objective anthropometric data, parental feeding practices, and general and eating disorder psychopathology were used. The results showed a 3-cluster solution across all age groups: an asymptomatic class (Cluster 1), a class with restrictive eating behaviors without shape concern (Cluster 2), and a class showing restrictive eating behaviors with prominent shape concern (Cluster 3). The clusters differed in all variables used for validation. Particularly, the proportion of children with symptoms of avoidant/restrictive food intake disorder was greater in Cluster 2 than Clusters 1 and 3. The study underlined the importance of considering shape concern to distinguish between different phenotypes of children's restrictive eating patterns. Longitudinal data are needed to evaluate the clusters' predictive effects on children's growth and development of clinical eating disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fitzgerald, Michael; Frankum, Brad
2017-01-01
With the introduction of avoidant/restrictive food intake disorder (ARFID) in the Diagnostic and Statistical Manual - fifth edition, there is an increased need to understand the prevalence and pattern of food avoidance and restriction in adults. High rates of food allergy and intolerance in immunology clinic populations, and subsequent high rates of elimination diets, place these individuals at a greater risk of developing pathological eating behaviours. This descriptive cross sectional pilot study aims to provide preliminary data on the prevalence and nature of food avoidance and restriction in an adult population, and to explore the reasons for this behaviour. A self-administered questionnaire was designed and distributed to adults presenting to an immunology clinic and a general practice over the course of 6 months to describe the prevalence and nature of avoidant and restrictive eating behaviours in this population. Pearson's chi square test was used to examine the strength of a potential link to a formal diagnosis of avoidant restrictive food intake disorder in these patients. A total of 102 completed questionnaires were used for data analysis. Food avoidance or restriction was detected in 81 respondents (79%), with rates not significantly higher in the immunology clinic group compared to the general practice group ( p = .242). Food allergy and intolerance were the most common reasons for disturbed eating patterns. Life impact secondary to food avoidance and restriction was reported by 26% of respondents, with significantly higher rates observed in the immunology clinic cohort compared to the general practice ( p = .011). Eating disturbances similar to those characteristic of ARFID are very common in adults. Food avoidance and restriction due to perceived food allergy and intolerance are significant reasons for such disordered eating patterns, particularly in an immunology clinic population. Further investigation is needed to determine if such eating behaviours are pathological and whether they qualify for a diagnosis of ARFID.
Climate-soil Interactions: Global Change, Local Properties, and Ecological Sites
USDA-ARS?s Scientific Manuscript database
Global climate change is predicted to alter historic patterns of precipitation and temperature in rangelands globally. Vegetation community response to altered weather patterns will be mediated at the site level by local-scale properties that govern ecological potential, including geology, topograph...
Shao, Wanyun; Goidel, Kirby
2016-11-01
What role do objective weather conditions play in coastal residents' perceptions of local climate shifts and how do these perceptions affect attitudes toward climate change? While scholars have increasingly investigated the role of weather and climate conditions on climate-related attitudes and behaviors, they typically assume that residents accurately perceive shifts in local climate patterns. We directly test this assumption using the largest and most comprehensive survey of Gulf Coast residents conducted to date supplemented with monthly temperature data from the U.S. Historical Climatology Network and extreme weather events data from National Climatic Data Center. We find objective conditions have limited explanatory power in determining perceptions of local climate patterns. Only the 15- and 19-year hurricane trends and decadal summer temperature trend have some effects on perceptions of these weather conditions, while the decadal trend of total number of extreme weather events and 15- and 19-year winter temperature trends are correlated with belief in climate change. Partisan affiliation, in contrast, plays a powerful role affecting individual perceptions of changing patterns of air temperatures, flooding, droughts, and hurricanes, as well as belief in the existence of climate change and concern for future consequences. At least when it comes to changing local conditions, "seeing is not believing." Political orientations rather than local conditions drive perceptions of local weather conditions and these perceptions-rather than objectively measured weather conditions-influence climate-related attitudes. © 2016 Society for Risk Analysis.
Bukowski, Michal; Polakowska, Klaudia; Ilczyszyn, Weronika M; Sitarska, Agnieszka; Nytko, Kinga; Kosecka, Maja; Miedzobrodzki, Jacek; Dubin, Adam; Wladyka, Benedykt
2015-01-01
Genetic methods based on PCR-restriction fragment length polymorphism (RFLP) are widely used for microbial species determination. In this study, we present the application of saoC gene as an effective tool for species determination and within-species diversity analysis for Staphylococcus genus. The unique sequence diversity of saoC allows us to apply four restriction enzymes to obtain RFLP patterns, which appear highly distinctive even among closely related species as well as atypical isolates of environmental origin. Such patterns were successfully obtained for 26 species belonging to Staphylococcus genus. What is more, tracing polymorphisms detected by different restriction enzymes allowed for basic phylogeny analysis for Staphylococcus aureus, which is potentially applicable for other staphylococcal species. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hoppe-Seyler, T S; Jaeger, B; Bockelmann, W; Noordman, W H; Geis, A; Heller, K J
2003-09-01
ARDRA (Amplified Ribosomal-DNA Restriction Analysis) was used to differentiate among species and genera of Arthrobacter and Microbacteria. Species-specific restriction patterns of PCR-products were obtained with NciI for Arthrobacter citreus (DSM 20133T), A. sulfureus (DSM 20167T), A. globiformis (DSM 20124T) and A. nicotianae strains (DSM 20123T, MGE 10D, CA13, CA14, isolate 95293, 95294, and 95299), A. rhombi CCUG 38813T, and CCUG 38812, and Microbacterium barkeri strains (DSM 30123T, MGE 10D, CA12 and CA15, isolate 95292, and isolate 95207). All yellow pigmented coryneforme bacteria isolated from the smear of surface ripened cheeses were identified as either A. nicotianae or M. barkeri strains. Using pulsed field gel electrophoresis (PFGE) strain specific restriction pattern for all Arthrobacter species and Microbacteria tested were obtained with restriction enzymes AscI and SpeI.
Nutrigenetics and nutrigenomics of caloric restriction.
Abete, Itziar; Navas-Carretero, Santiago; Marti, Amelia; Martinez, J Alfredo
2012-01-01
Obesity is a complex disease resulting from a chronic and long-term positive energy balance in which both genetic and environmental factors are involved. Weight-reduction methods are mainly focused on dietary changes and increased physical activity. However, responses to nutritional intervention programs show a wide range of interindividual variation, which is importantly influenced by genetic determinants. In this sense, subjects carrying several obesity-related single-nucleotide polymorphisms (SNPs) show differences in the response to calorie-restriction programs. Furthermore, there is evidence indicating that dietary components not only fuel the body but also participate in the modulation of gene expression. Thus, the expression pattern and nutritional regulation of several obesity-related genes have been studied, as well as those that are differentially expressed by caloric restriction. The responses to caloric restriction linked to the presence of SNPs in obesity-related genes are reviewed in this chapter. Also, the influence of energy restriction on gene expression pattern in different tissues is addressed. Copyright © 2012 Elsevier Inc. All rights reserved.
Batllori, Enric; Parisien, Marc-André; Parks, Sean A; Moritz, Max A; Miller, Carol
2017-08-01
Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform a continent-wide climate change vulnerability assessment whereby we compare the baseline climate of the protected area network in North America (Canada, United States, México-NAM) to the projected end-of-century climate (2071-2100). We estimated the projected pace at which climatic conditions may redistribute across NAM (i.e., climate velocity), and identified future nearest climate analogs to quantify patterns of climate relocation within, among, and outside protected areas. Also, we interpret climatic relocation patterns in terms of associated land-cover types. Our analysis suggests that the conservation capacity of the NAM protection network is likely to be severely compromised by a changing climate. The majority of protected areas (~80%) might be exposed to high rates of climate displacement that could promote important shifts in species abundance or distribution. A small fraction of protected areas (<10%) could be critical for future conservation plans, as they will host climates that represent analogs of conditions currently characterizing almost a fifth of the protected areas across NAM. However, the majority of nearest climatic analogs for protected areas are in nonprotected locations. Therefore, unprotected landscapes could pose additional threats, beyond climate forcing itself, as sensitive biota may have to migrate farther than what is prescribed by the climate velocity to reach a protected area destination. To mitigate future threats to the conservation capacity of the NAM protected area network, conservation plans will need to capitalize on opportunities provided by the existing availability of natural land-cover types outside the current network of NAM protected areas. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Nugraha, Fitra Arya Dwi; Holil, Kholifah; Kurniawan, Nia
2017-05-01
Ecological damages to the Lagoon of Segara Anakan, Central Java, as well as large-scale and continuous exploitation are threatening the sustainability of fine shrimp, Metapenaeus elegans, and resources. Information in regards to genetic resources is crucial to establish long-term conservation programs and to preserve germplasm quality. This study aims to evaluate the number and size of the fragment which is digested with restriction enzyme Hind III. Seven individuals of Metapenaeus elegans from the Lagoon of Segara Anakan were examined using Hind III. Amplification of mitochondrial DNA resulted in 950 bp, and the digestion using Hind III generated four fragments consisting of 114 bp, 200 bp, 250 bp, and 386 bp, which formed a monomorphic pattern. The restriction pattern showed the probability of homozygosity of alleles that restricted using Hind III. Homozygosity indicates no variation of DNA sequence.
Learning to Recognize Patterns: Changes in the Visual Field with Familiarity
NASA Astrophysics Data System (ADS)
Bebko, James M.; Uchikawa, Keiji; Saida, Shinya; Ikeda, Mitsuo
1995-01-01
Two studies were conducted to investigate changes which take place in the visual information processing of novel stimuli as they become familiar. Japanese writing characters (Hiragana and Kanji) which were unfamiliar to two native English speaking subjects were presented using a moving window technique to restrict their visual fields. Study time for visual recognition was recorded across repeated sessions, and with varying visual field restrictions. The critical visual field was defined as the size of the visual field beyond which further increases did not improve the speed of recognition performance. In the first study, when the Hiragana patterns were novel, subjects needed to see about half of the entire pattern simultaneously to maintain optimal performance. However, the critical visual field size decreased as familiarity with the patterns increased. These results were replicated in the second study with more complex Kanji characters. In addition, the critical field size decreased as pattern complexity decreased. We propose a three component model of pattern perception. In the first stage a representation of the stimulus must be constructed by the subject, and restricting of the visual field interferes dramatically with this component when stimuli are unfamiliar. With increased familiarity, subjects become able to reconstruct a previous representation from very small, unique segments of the pattern, analogous to the informativeness areas hypothesized by Loftus and Mackworth [J. Exp. Psychol., 4 (1978) 565].
Large Scale Relationship between Aquatic Insect Traits and Climate.
Bhowmik, Avit Kumar; Schäfer, Ralf B
2015-01-01
Climate is the predominant environmental driver of freshwater assemblage pattern on large spatial scales, and traits of freshwater organisms have shown considerable potential to identify impacts of climate change. Although several studies suggest traits that may indicate vulnerability to climate change, the empirical relationship between freshwater assemblage trait composition and climate has been rarely examined on large scales. We compared the responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices (~18 km resolution) for five insect orders (Diptera, Ephemeroptera, Odonata, Plecoptera and Trichoptera), evaluated their potential for changing distribution pattern under future climate change and identified the most influential bioclimatic indices. The data comprised 782 species and 395 genera sampled in 4,752 stream sites during 2006 and 2007 in Germany (~357,000 km² spatial extent). We quantified the variability and spatial autocorrelation in the traits and orders that are associated with the combined and individual bioclimatic indices. Traits of temperature preference grouping feature that are the products of several other underlying climate-associated traits, and the insect order Ephemeroptera exhibited the strongest response to the bioclimatic indices as well as the highest potential for changing distribution pattern. Regarding individual traits, insects in general and ephemeropterans preferring very cold temperature showed the highest response, and the insects preferring cold and trichopterans preferring moderate temperature showed the highest potential for changing distribution. We showed that the seasonal radiation and moisture are the most influential bioclimatic aspects, and thus changes in these aspects may affect the most responsive traits and orders and drive a change in their spatial distribution pattern. Our findings support the development of trait-based metrics to predict and detect climate-related changes of freshwater assemblages.
Mapping the changing pattern of local climate as an observed distribution
NASA Astrophysics Data System (ADS)
Chapman, Sandra; Stainforth, David; Watkins, Nicholas
2013-04-01
It is at local scales that the impacts of climate change will be felt directly and at which adaptation planning decisions must be made. This requires quantifying the geographical patterns in trends at specific quantiles in distributions of variables such as daily temperature or precipitation. Here we focus on these local changes and on the way observational data can be analysed to inform us about the pattern of local climate change. We present a method[1] for analysing local climatic timeseries data to assess which quantiles of the local climatic distribution show the greatest and most robust trends. We demonstrate this approach using E-OBS gridded data[2] timeseries of local daily temperature from specific locations across Europe over the last 60 years. Our method extracts the changing cumulative distribution function over time and uses a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of the sensitivity of different quantiles of the distributions to changing climate. Geographical location and temperature are treated as independent variables, we thus obtain as outputs the pattern of variation in sensitivity with temperature (or occurrence likelihood), and with geographical location. We find as an output many regionally consistent patterns of response of potential value in adaptation planning. We discuss methods to quantify and map the robustness of these observed sensitivities and their statistical likelihood. This also quantifies the level of detail needed from climate models if they are to be used as tools to assess climate change impact. [1] S C Chapman, D A Stainforth, N W Watkins, 2013, On Estimating Local Long Term Climate Trends, Phil. Trans. R. Soc. A, in press [2] Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119, doi:10.1029/2008JD10201
Modelling the impacts of global change on concentrations of Escherichia coli in an urban river
NASA Astrophysics Data System (ADS)
Jalliffier-Verne, Isabelle; Leconte, Robert; Huaringa-Alvarez, Uriel; Heniche, Mourad; Madoux-Humery, Anne-Sophie; Autixier, Laurène; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah
2017-10-01
Discharges of combined sewer system overflows (CSOs) affect water quality in drinking water sources despite increasing regulation and discharge restrictions. A hydrodynamic model was applied to simulate the transport and dispersion of fecal contaminants from CSO discharges and to quantify the impacts of climate and population changes on the water quality of the river used as a drinking water source in Québec, Canada. The dispersion model was used to quantify Escherichia coli (E. coli) concentrations at drinking water intakes. Extreme flows during high and low water events were based on a frequency analysis in current and future climate scenarios. The increase of the number of discharges was quantified in current and future climate scenarios with regards to the frequency of overflows observed between 2009 and 2012. For future climate scenarios, effects of an increase of population were estimated according to current population growth statistics, independently of local changes in precipitation that are more difficult to predict than changes to regional scale hydrology. Under ;business-as-usual; scenarios restricting increases in CSO discharge frequency, mean E. coli concentrations at downstream drinking water intakes are expected to increase by up to 87% depending on the future climate scenario and could lead to changes in drinking water treatment requirements for the worst case scenarios. The greatest uncertainties are related to future local discharge loads. Climate change adaptation with regards to drinking water quality must focus on characterizing the impacts of global change at a local scale. Source water protection planning must consider the impacts of climate and population change to avoid further degradation of water quality.
PRISM Climate Group, Oregon State U
FAQ PRISM Climate Data The PRISM Climate Group gathers climate observations from a wide range of monitoring networks, applies sophisticated quality control measures, and develops spatial climate datasets to reveal short- and long-term climate patterns. The resulting datasets incorporate a variety of modeling
Potential Impacts of Climate Change on Native Plant Distributions in the Falkland Islands
Upson, Rebecca; Williams, Jennifer J.; Wilkinson, Tim P.; Maclean, Ilya M. D.; McAdam, Jim H.; Moat, Justin F.
2016-01-01
The Falkland Islands are predicted to experience up to 2.2°C rise in mean annual temperature over the coming century, greater than four times the rate over the last century. Our study investigates likely vulnerabilities of a suite of range-restricted species whose distributions are associated with archipelago-wide climatic variation. We used present day climate maps calibrated using local weather data, 2020–2080 climate predictions from regional climate models, non-climate variables derived from a digital terrain model and a comprehensive database on local plant distributions. Weighted mean ensemble models were produced to assess changes in range sizes and overlaps between the current range and protected areas network. Target species included three globally threatened Falkland endemics, Nassauvia falklandica, Nastanthus falklandicus and Plantago moorei; and two nationally threatened species, Acaena antarctica and Blechnum cordatum. Our research demonstrates that temperature increases predicted for the next century have the potential to significantly alter plant distributions across the Falklands. Upland species, in particular, were found to be highly vulnerable to climate change impacts. No known locations of target upland species or the southwestern species Plantago moorei are predicted to remain environmentally suitable in the face of predicted climate change. We identify potential refugia for these species and associated gaps in the current protected areas network. Species currently restricted to the milder western parts of the archipelago are broadly predicted to expand their ranges under warmer temperatures. Our results emphasise the importance of implementing suitable adaptation strategies to offset climate change impacts, particularly site management. There is an urgent need for long-term monitoring and artificial warming experiments; the results of this study will inform the selection of the most suitable locations for these. Results are also helping inform management recommendations for the Falkland Islands Government who seek to better conserve their biodiversity and meet commitments to multi-lateral environmental agreements. PMID:27880846
Potential Impacts of Climate Change on Native Plant Distributions in the Falkland Islands.
Upson, Rebecca; Williams, Jennifer J; Wilkinson, Tim P; Clubbe, Colin P; Maclean, Ilya M D; McAdam, Jim H; Moat, Justin F
2016-01-01
The Falkland Islands are predicted to experience up to 2.2°C rise in mean annual temperature over the coming century, greater than four times the rate over the last century. Our study investigates likely vulnerabilities of a suite of range-restricted species whose distributions are associated with archipelago-wide climatic variation. We used present day climate maps calibrated using local weather data, 2020-2080 climate predictions from regional climate models, non-climate variables derived from a digital terrain model and a comprehensive database on local plant distributions. Weighted mean ensemble models were produced to assess changes in range sizes and overlaps between the current range and protected areas network. Target species included three globally threatened Falkland endemics, Nassauvia falklandica, Nastanthus falklandicus and Plantago moorei; and two nationally threatened species, Acaena antarctica and Blechnum cordatum. Our research demonstrates that temperature increases predicted for the next century have the potential to significantly alter plant distributions across the Falklands. Upland species, in particular, were found to be highly vulnerable to climate change impacts. No known locations of target upland species or the southwestern species Plantago moorei are predicted to remain environmentally suitable in the face of predicted climate change. We identify potential refugia for these species and associated gaps in the current protected areas network. Species currently restricted to the milder western parts of the archipelago are broadly predicted to expand their ranges under warmer temperatures. Our results emphasise the importance of implementing suitable adaptation strategies to offset climate change impacts, particularly site management. There is an urgent need for long-term monitoring and artificial warming experiments; the results of this study will inform the selection of the most suitable locations for these. Results are also helping inform management recommendations for the Falkland Islands Government who seek to better conserve their biodiversity and meet commitments to multi-lateral environmental agreements.
Riordan, Erin Coulter; Rundel, Philip W
2014-01-01
Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st) century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the importance of addressing both drivers in conservation and resource management planning.
NASA Astrophysics Data System (ADS)
Kroeger, K. D.; Crooks, S.; Moseman-Valtierra, S.; Tang, J.
2016-12-01
To date, activity related to carbon (C) management in coastal marine ecosystems (sometimes referred to as "Blue Carbon") has been concerned primarily with preserving existing C stocks or creating new wetlands to increase CO2 uptake and sequestration. Here we show that the globally-widespread occurrence of hydrologically-altered, degraded wetlands, and associated enhanced GHG emissions, presents an opportunity to reduce an anthropogenic GHG emission through restoration. We model the climatic forcing associated with carbon sinks in natural wetlands and with GHG emissions in altered and degraded wetlands, as well as compile geographic data on tidal restrictions to show that substantial methane (CH4) and CO2 emission reductions can be achieved through restoration of saline tidal flows in diked, impounded and tidally-restricted coastal wetlands. Despite high rates of carbon storage in coastal ecosystems, tidal restoration has dramatically greater potential per unit area as a climate intervention than most other ecosystem management actions. We argue that such emissions reductions represent avoided anthropogenic emissions, equivalent in concept to reduced fossil fuel emissions. Once the emissions have been avoided, the benefit of that action cannot be eliminated, even if emissions resume in the future due to degradation of the ecosystem. The avoided emissions therefore have inherent "permanence", obviating concerns associated with vulnerability of C stocks in land-use based interventions that enhance C sequestration in wood or soil. Further, emissions reductions are likely to be rapid, and given the high radiative efficiency of avoided CH4, wetland tidal restorations can provide near-term climate benefit. The U.S. has recently initiated an effort to include coastal wetlands in the Inventory of U.S. Greenhouse Gas Emissions and Sinks, and the analysis presented here indicates that tidally restricted wetlands meet the primary criteria for inventoried ecosystems in that they are managed landscapes, with substantial emissions and sinks. If other countries ultimately follow suit, then inclusion of these emissions in the U.S. Inventory will promote widespread recognition and management of the issue, and justify development of CH4 EF for tidal restrictions in IPCC guidance for GHG inventories.
NASA Astrophysics Data System (ADS)
Chen, R. S.; Levy, M.; Baptista, S.; Adamo, S.
2010-12-01
Vulnerability to climate variability and change will depend on dynamic interactions between different aspects of climate, land-use change, and socioeconomic trends. Measurements and projections of these changes are difficult at the local scale but necessary for effective planning. New data sources and methods make it possible to assess land-use and socioeconomic changes that may affect future patterns of climate vulnerability. In this paper we report on new time series data sets that reveal trends in the spatial patterns of climate vulnerability in the Caribbean/Gulf of Mexico Region. Specifically, we examine spatial time series data for human population over the period 1990-2000, time series data on land use and land cover over 2000-2009, and infant mortality rates as a proxy for poverty for 2000-2008. We compare the spatial trends for these measures to the distribution of climate-related natural disaster risk hotspots (cyclones, floods, landslides, and droughts) in terms of frequency, mortality, and economic losses. We use these data to identify areas where climate vulnerability appears to be increasing and where it may be decreasing. Regions where trends and patterns are especially worrisome include coastal areas of Guatemala and Honduras.
Bonebrake, Timothy C; Mastrandrea, Michael D
2010-07-13
Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.
River-Lake Mixing, Eutrophication, and Hypoxia in Green Bay, Lake Michigan
NASA Astrophysics Data System (ADS)
Klump, J. V.; LaBuhn, S.
2014-12-01
Despite being a freshwater system, Green Bay in Lake Michigan, has many estuarine-like characteristics, including water mass exchange and the mixing between riverine inflow and the open lake. The bay has experienced excessive nutrient loading for decades resulting in hyper-eutrophic conditions and extensive algal blooms. Combined with a restricted, estuarine like circulation, this has resulted in the reoccurrence of late summer "dead zones" and wide spread bottom water oxygen concentrations below water quality standards. The onset of hypoxia is clearly related to thermal stratification which, in Green Bay, arises both from direct atmospheric forcing, i.e. low winds, high air temperatures, and increased solar radiation, and from indirect atmospheric forcing that drives circulation patterns resulting in the southerly incursion of cooler Lake Michigan bottom waters onto highly reducing organic rich sediment deposits. This circulation pattern can re-stratify a well-mixed water column within hours, and can set up stable stratified water column conditions that persist for days to weeks during which time sediment oxygen demand rates are sufficient to completely deplete hypolimnetic oxygen. Modeling hypoxia, therefore, is somewhat more complex than in a system which is driven largely or solely by seasonal thermal fluctuations. Understanding both the general circulation and the onset and duration of stratification in the bay are essential to determining the potential for hypoxic conditions to improve or worsen, particularly in the face of climate change projections of warmer conditions, less ice cover, and an earlier summer. Using D and O-18 isotopes in water, Rn-222, and dissolved methane as tracers we examine the relationship between river/lake mixing, transport rates and oxygen depletion in an attempt to verify the spatial and temporal scales of hypoxia in the bay, and estimate the potential impact of future climate change projections.
Bigelow, N.H.; Brubaker, L.B.; Edwards, M.E.; Harrison, S.P.; Prentice, I.C.; Anderson, P.M.; Andreev, A.A.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Kaplan, J.O.; Lozhkin, A.V.; Matveyeva, N.V.; Murray, D.F.; McGuire, A.D.; Razzhivin, V.Y.; Ritchie, J.C.; Smith, B.; Walker, D.A.; Gajewski, K.; Wolf, V.; Holmqvist, B.H.; Igarashi, Y.; Kremenetskii, K.; Paus, A.; Pisaric, M.F.J.; Volkova, V.S.
2003-01-01
A unified scheme to assign pollen samples to vegetation types was used to reconstruct vegetation patterns north of 55??N at the last glacial maximum (LGM) and mid-Holocene (6000 years B.P.). The pollen data set assembled for this purpose represents a comprehensive compilation based on the work of many projects and research groups. Five tundra types (cushion forb tundra, graminoid and forb tundra, prostrate dwarf-shrub tundra, erect dwarf-shrub tundra, and low- and high-shrub tundra) were distinguished and mapped on the basis of modern pollen surface samples. The tundra-forest boundary and the distributions of boreal and temperate forest types today were realistically reconstructed. During the mid-Holocene the tundra-forest boundary was north of its present position in some regions, but the pattern of this shift was strongly asymmetrical around the pole, with the largest northward shift in central Siberia (???200 km), little change in Beringia, and a southward shift in Keewatin and Labrador (???200 km). Low- and high-shrub tundra extended farther north than today. At the LGM, forests were absent from high latitudes. Graminoid and forb tundra abutted on temperate steppe in northwestern Eurasia while prostrate dwarf-shrub, erect dwarf-shrub, and graminoid and forb tundra formed a mosaic in Beringia. Graminoid and forb tundra is restricted today and does not form a large continuous biome, but the pollen data show that it was far more extensive at the LGM, while low- and high-shrub tundra were greatly reduced, illustrating the potential for climate change to dramatically alter the relative areas occupied by different vegetation types.
Global patterns and clines in the growth of common carp Cyprinus carpio.
Vilizzi, L; Copp, G H
2017-07-01
This review provides a meta-analytical assessment of the global patterns and clines in the growth of Cyprinus carpio as measured by length-at-age (L t ) or von Bertalanffy growth function (VBGF) parameters, mass-length relationship (W-L t ) and condition factor, based on literature data. In total, 284 studies were retrieved spanning 91 years of research and carried out on 381 waterbodies-locations in 50 countries in all five continents. Although native C. carpio achieved larger (asymptotic) size relative to its non-native counterpart, the latter grew faster during the first 7 years of life. Lentic populations (especially in natural lakes) also achieved larger sizes relative to lotic ones and the same was true for populations in cold and temperate v. arid climates. Unlike previous studies (on much more restricted datasets), only weak latitudinal clines in instantaneous growth rate, L t at age 3 and mortality were observed globally and this was probably due to the presence of counter-gradient growth variation at all representative age classes (i.e. 1-10 years). Slightly negative allometry was revealed by the W-L t and the related form factor tended to distinguish the more elongated and torpedo-shaped body typical of the wild form from the deeper body of feral-domesticated C. carpio. Existing population dynamics models for C. carpio will benefit from the comprehensive range of waterbody type × climate class-specific VBGF parameters provided in the present study; whereas, more studies are needed on the species' growth in tropical regions and to unravel the possibility of confounding effects on age estimation due to both historical and methodological reasons. © 2017 The Fisheries Society of the British Isles.
Targeting climate diversity in conservation planning to build resilience to climate change
Heller, Nicole E.; Kreitler, Jason R.; Ackerly, David; Weiss, Stuart; Recinos, Amanda; Branciforte, Ryan; Flint, Lorraine E.; Flint, Alan L.; Micheli, Elisabeth
2015-01-01
Climate change is raising challenging concerns for systematic conservation planning. Are methods based on the current spatial patterns of biodiversity effective given long-term climate change? Some conservation scientists argue that planning should focus on protecting the abiotic diversity in the landscape, which drives patterns of biological diversity, rather than focusing on the distribution of focal species, which shift in response to climate change. Climate is one important abiotic driver of biodiversity patterns, as different climates host different biological communities and genetic pools. We propose conservation networks that capture the full range of climatic diversity in a region will improve the resilience of biotic communities to climate change compared to networks that do not. In this study we used historical and future hydro-climate projections from the high resolution Basin Characterization Model to explore the utility of directly targeting climatic diversity in planning. Using the spatial planning tool, Marxan, we designed conservation networks to capture the diversity of climate types, at the regional and sub-regional scale, and compared them to networks we designed to capture the diversity of vegetation types. By focusing on the Conservation Lands Network (CLN) of the San Francisco Bay Area as a real-world case study, we compared the potential resilience of networks by examining two factors: the range of climate space captured, and climatic stability to 18 future climates, reflecting different emission scenarios and global climate models. We found that the climate-based network planned at the sub-regional scale captured a greater range of climate space and showed higher climatic stability than the vegetation and regional based-networks. At the same time, differences among network scenarios are small relative to the variance in climate stability across global climate models. Across different projected futures, topographically heterogeneous areas consistently show greater climate stability than homogenous areas. The analysis suggests that utilizing high-resolution climate and hydrological data in conservation planning improves the likely resilience of biodiversity to climate change. We used these analyses to suggest new conservation priorities for the San Francisco Bay Area.
Cumming, Brian F.; Laird, Kathleen R.; Bennett, Joseph R.; Smol, John P.; Salomon, Anne K.
2002-01-01
Inferences of past climatic conditions from a sedimentary record from Big Lake, British Columbia, Canada, over the past 5,500 years show strong millennial-scale patterns, which oscillate between periods of wet and drier climatic conditions. Higher frequency decadal- to centennial-scale fluctuations also occur within the dominant millennial-scale patterns. These changes in climatic conditions are based on estimates of changes in lake depth and salinity inferred from diatom assemblages in a well dated sediment core. After periods of relative stability, abrupt shifts in diatom assemblages and inferred climatic conditions occur approximately every 1,220 years. The correspondence of these shifts to millennial-scale variations in records of glacial expansion/recession and ice-rafting events in the Atlantic suggest that abrupt millennial-scale shifts are important to understanding climatic variability in North America during the mid- to late Holocene. Unfortunately, the spatial patterns and mechanisms behind these large and abrupt swings are poorly understood. Similar abrupt and prolonged changes in climatic conditions today could pose major societal challenges for many regions. PMID:12461174
Cumming, Brian F; Laird, Kathleen R; Bennett, Joseph R; Smol, John P; Salomon, Anne K
2002-12-10
Inferences of past climatic conditions from a sedimentary record from Big Lake, British Columbia, Canada, over the past 5,500 years show strong millennial-scale patterns, which oscillate between periods of wet and drier climatic conditions. Higher frequency decadal- to centennial-scale fluctuations also occur within the dominant millennial-scale patterns. These changes in climatic conditions are based on estimates of changes in lake depth and salinity inferred from diatom assemblages in a well dated sediment core. After periods of relative stability, abrupt shifts in diatom assemblages and inferred climatic conditions occur approximately every 1,220 years. The correspondence of these shifts to millennial-scale variations in records of glacial expansionrecession and ice-rafting events in the Atlantic suggest that abrupt millennial-scale shifts are important to understanding climatic variability in North America during the mid- to late Holocene. Unfortunately, the spatial patterns and mechanisms behind these large and abrupt swings are poorly understood. Similar abrupt and prolonged changes in climatic conditions today could pose major societal challenges for many regions.
Climate-induced range contraction of a rare alpine aquatic invertebrate
Giersch, J. Joseph; Jordan, Steve; Luikart, Gordon; Jones, Leslie A.; Hauer, F. Richard; Muhlfeld, Clint C.
2015-01-01
Climate warming poses a serious threat to alpine-restricted species worldwide, yet few studies have empirically documented climate-induced changes in distributions. The rare stonefly, Zapada glacier (Baumann and Gaufin), endemic to alpine streams of Glacier National Park (GNP), Montana, was recently petitioned for listing under the US Endangered Species Act because of climate-change-induced glacier loss, yet little was known about its current status and distribution. We resampled streams throughout the historical distribution of Z. glacier to investigate trends in occurrence associated with changes in temperature and glacial extent. The current geographic distribution of the species was assessed using morphological characteristics of adults and DNA barcoding of nymphs. Bayesian phylogenetic analysis of mtDNA data revealed 8 distinct clades of the genus corresponding with 7 known species from GNP, and one potentially cryptic species. Climate model simulations indicate that average summer air temperature increased (0.67–1.00°C) during the study period (1960–2012), and glacial surface area decreased by ∼35% from 1966 to 2005. We detected Z. glacier in only 1 of the 6 historically occupied streams and at 2 new locations in GNP. These results suggest that an extremely restricted historical distribution of Z. glacierin GNP has been further reduced over the past several decades by an upstream retreat to higher, cooler sites as water temperatures increased and glacial masses decreased. More research is urgently needed to determine the status, distribution, and vulnerability of Z. glacier and other alpine stream invertebrates threatened by climate change in mountainous ecosystems.
Niche restriction and conservatism in a neotropical psittacine: the case of the Puerto Rican parrot
White, Thomas H.; Collazo, Jaime A.; Dinsmore, Stephen J.; Llerandi-Roman, I. C.
2014-01-01
The factors which govern species‘ distribution and abundance are myriad, and together constitute the ecological niche of a given species. Because abiotic factors are arguably the most profound of the factors influencing niche boundaries and thus, species distributions, substantial changes in either climatic or habitat-related parameters can be expected to produce interrelated and profound niche shifts. Habitat loss and degradation can also effectively induce a de facto climate change by forcing populations to relocate to environmentally suboptimal habitats. Populations experiencing niche shifts due to range restrictions and geographic isolation become subject to a suite of factors that may act synergistically to amplify deleterious ecological effects of habitat loss. These factors tend to exert a greater influence on populations of rare or endemic species with inherently restricted ranges. The Puerto Rican parrot (Amazona vittata) is an example of a tropical, insular, endemic and critically-endangered species that has suffered from extensive habitat loss and degradation over the past century, resulting in a single relict wild population restricted for more than 70 years to the montane rainforest of the Luquillo Mountains in northeastern Puerto Rico. In this chapter, we examine the current ecological situation of this geographically and demographically isolated parrot population by reviewing the history of landscape-level changes in and around the Luquillo Mountains, and concurrent biotic and abiotic limiting factors in relation to both historical population trajectory and current prognosis for species recovery. We used a decade (2000-2009) of empirical data on parrot fledgling survival together with long-term climatological data to model effects of local climate on fledgling survival and gain insights into its influence on population growth. We also modeled hypothetical survival of parrot fledglings in the lowlands surrounding the Luquillo Mountains, areas currently deforested but previously occupied by parrots, to illustrate both quantitative and qualitative losses of reproductive habitat for the species. We illustrate and systematically discuss how progressive and sustained changes in landscape composition and associated limiting factors have effectively shifted and restricted the ecological niche of this species, and how this complex suite of ecological processes affects the Puerto Rican parrot in the Luquillo Mountains. Our niche restriction hypothesis is supported by the demographic response of Puerto Rican parrots recently (2006-2009) reintroduced in the lower elevation karst forest of northwestern Puerto Rico. Based on our findings, we present conservation strategies aimed at promoting the recovery of the species both in the Luquillo Mountains and elsewhere in Puerto Rico. Finally, we address the relevance of our findings to conservation of other endangered species, particularly those threatened by both habitat loss and climate change.
Climate Change and ENSO Effects on Southeastern US Climate Patterns and Maize Yield.
Mourtzinis, Spyridon; Ortiz, Brenda V; Damianidis, Damianos
2016-07-19
Climate change has a strong influence on weather patterns and significantly affects crop yields globally. El Niño Southern Oscillation (ENSO) has a strong influence on the U.S. climate and is related to agricultural production variability. ENSO effects are location-specific and in southeastern U.S. strongly connect with climate variability. When combined with climate change, the effects on growing season climate patterns and crop yields might be greater than expected. In our study, historical monthly precipitation and temperature data were coupled with non-irrigated maize yield data (33-43 years depending on the location) to show a potential yield suppression of ~15% for one °C increase in southeastern U.S. growing season maximum temperature. Yield suppression ranged between -25 and -2% among locations suppressing the southeastern U.S. average yield trend since 1981 by 17 kg ha(-1)year(-1) (~25%), mainly due to year-to-year June temperature anomalies. Yields varied among ENSO phases from 1971-2013, with greater yields observed during El Niño phase. During La Niña years, maximum June temperatures were higher than Neutral and El Niño, whereas June precipitation was lower than El Niño years. Our data highlight the importance of developing location-specific adaptation strategies quantifying both, climate change and ENSO effects on month-specific growing season climate conditions.
NASA Astrophysics Data System (ADS)
Jauregui, Yakelyn R.; Takahashi, Ken
2018-03-01
The observed nonlinear relationship between tropical sea surface temperature (T_s) and precipitation ( P) on climate timescales, by which a threshold (T_c) must be exceeded by T_s in order for deep convection to occur, is the basis of a physical-empirical model (PEM) that we fitted to observational data and CMIP5 climate model output and used to show that, with essentially only two constant parameters (T_c and the sensitivity a_1 of P to T_s>T_c), it provides a useful first-order description of the climatological and interannual variability of the large-scale distribution of tropical P given T_s, as well as of the biases of the Global Climate Models (GCMs). A substantial limitation is its underestimation of the peak P in the convergence zones, as the necessary processes associated with the atmospheric circulation are not considered. The pattern of the intermodel correlation between the mean T_s-T_c for each GCM and the average P distribution is in agreement with the double ITCZ bias, featuring roughly zonally-symmetric off-equatorial maxima, rather than being regionally or hemispherically restricted. The inter-comparison of GCMs indicates a relationship between T_c with the near-equatorial low-level (850 hPa) tropospheric temperature, consistent with the interpretation that it is a measure of the convective inhibition (CIN). The underestimation of T_c is linked to the cold free tropospheric bias in the GCMs. However, the discrepancy among the observational datasets is a limitation for assessing the GCM biases from the PEM framework quantitatively. Under the RCP4.5 climate change scenario, T_c increases slightly more than the mean tropical T_s, implying a stabilizing trend consistent with the amplified free tropospheric warming relative to the surface. However, since a_1 increases by 10-50%/°C with the surface warming, its effect dominates and results in generally positive precipitation change (Δ P) in the equatorial regions. In the equatorial eastern-central Pacific cold tongue, Δ (T_s-T_c) is positive, but the absolute T_s-T_c remains small, which explains the double band pattern of Δ P along the equatorial flanks of the spuriously strong double ITCZs. When the GCM biases are corrected in the PEM, the positive Δ P in the southeast Pacific and Atlantic oceans is substantially reduced.
Kroeger, Kevin D.; Crooks, Stephen; Moseman-Valtierra, Serena; Tang, Jianwu
2017-01-01
Coastal wetlands are sites of rapid carbon (C) sequestration and contain large soil C stocks. Thus, there is increasing interest in those ecosystems as sites for anthropogenic greenhouse gas emission offset projects (sometimes referred to as “Blue Carbon”), through preservation of existing C stocks or creation of new wetlands to increase future sequestration. Here we show that in the globally-widespread occurrence of diked, impounded, drained and tidally-restricted salt marshes, substantial methane (CH4) and CO2 emission reductions can be achieved through restoration of disconnected saline tidal flows. Modeled climatic forcing indicates that tidal restoration to reduce emissions has a much greater impact per unit area than wetland creation or conservation to enhance sequestration. Given that GHG emissions in tidally-restricted, degraded wetlands are caused by human activity, they are anthropogenic emissions, and reducing them will have an effect on climate that is equivalent to reduced emission of an equal quantity of fossil fuel GHG. Thus, as a landuse-based climate change intervention, reducing CH4 emissions is an entirely distinct concept from biological C sequestration projects to enhance C storage in forest or wetland biomass or soil, and will not suffer from the non-permanence risk that stored C will be returned to the atmosphere.
NASA Astrophysics Data System (ADS)
Harvey, J. E.; Smith, D. J.
2016-12-01
We investigated the influence of climate variability on forest fire occurrence in west central British Columbia (BC), Canada, between AD 1600 and 1900. Fire history was reconstructed at 8 sites in the Cariboo-Chilcotin region and we identified 46 local (fires that affected 1 site) and 16 moderate (fires that affected 2 sites) fires. Preexisting fire history data collected from nearby sites was incorporated to identify 17 regionally synchronous fire years (fires that affected ³ 3 sites). Interannual and multidecadal relationships between fire occurrence and the Palmer Drought Severity Index (PDSI), El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and the Pacific North American (PNA) pattern were examined, in addition to the effects of phase interactions between ENSO and PDO. We examined multiple reconstructions of PDO and ENSO and utilized three methodological approaches to characterize climate-fire relationships. We found that the influence of interannual climate expressed as PDSI, increasingly synchronized the occurrence of of fires from local to regional fires. Regional fires were associated with anomalously dry, warm conditions in the year of the fire and in years preceding the fire. We also identified an association between local fires and antecedent moisture conditions, where wetter and cooler conditions persisted 2-3 years prior to fire. This finding suggests that moisture-driven fine fuel development and proximity to grasslands could function as key determinants of local (small-scale) fire history parameters. The relationships we identified between regional fires and ENSO, PDO and PNA suggest that large-scale patterns of climate variability exert a weak and/or inconsistent influence over fire activity in west central BC between AD 1600-1900. The strongest relationships between regional fires and large-scale climate patterns were identified when ENSO and PDO were both in positive phases. We also documented a relationship between regional fires and positive years of the PNA pattern. Our findings suggest that long-term fire planning using predictions of large scale climate patterns may be limited in west central BC, however, the consideration of additive phases of ENSO and PDO, and the PNA pattern, may be effective and has been suggested by others in the inland Pacific Northwest.
Attribution of the Regional Patterns of North American Climate Trends
NASA Astrophysics Data System (ADS)
Hoerling, M.; Kumar, A.; Karoly, D.; Rind, D.; Hegerl, G.; Eischeid, J.
2007-12-01
North American trends in surface temperature and precipitation during 1951-2006 exhibit large spatial and seasonal variations. We seek to explain these by synthesizing new information based on existing model simulations of climate and its forcing, and based on modern reanalyses that describe past and current conditions within the free atmosphere. The presentation focuses on current capabilities to explain the spatial variations and seasonal differences in North American climate trends. It will address whether various heterogeneities in space and time can be accounted for by the climate system's sensitivity to time evolving anthropogenic forcing, and examines the influences of non-anthropogenic processes. New findings are presented that indicate anthropogenic forcing alone was unlikely the cause for key regional and seasonal patterns of change, including the absence of summertime warming over the Great Plains of the United States, and the absence of warming during both winter and summer over the southern United States. Key regional features are instead attributed to trends in the principal patterns of atmospheric flow that affect North American climate. It is demonstrated that observed variations in global sea surface temperatures have significantly influenced these patterns of atmospheric flow.
Body image dissatisfaction and dietary patterns according to nutritional status in adolescents.
Ribeiro-Silva, Rita de Cássia; Fiaccone, Rosemeire Leovigildo; Conceição-Machado, Maria Ester Pereira da; Ruiz, Ana Santos; Barreto, Maurício Lima; Santana, Mônica Leila Portela
There is a lack of data on the association between body self-perception and eating patterns in Brazil. Thus, this study aimed to explore the relationship between body image dissatisfaction and eating patterns by the anthropometric status in adolescents. A cross-sectional study of 1496 adolescents was conducted. The participants completed the Body Shape Questionnaire. Demographic, anthropometric, and socioeconomic data were collected, as well as information regarding the pubertal development and dietary intake. Logistic regression was performed to evaluate the associations of interest. Body image dissatisfaction was identified in 19.5% of the adolescents. Three dietary patterns were identified: (1) the Western pattern was composed of sweets and sugars, soft drinks, typical dishes, pastries, fast food, beef, milk, and dairy products; (2) the Traditional pattern was composed of oils, chicken, fish, eggs, processed meat products, cereals (rice, cassava flour, pasta, etc.), baked beans, and bread; and (3) the Restrictive pattern was composed of granola, roots, vegetables, and fruit. Among overweight/obese adolescents, the data indicated a negative association of slight body image dissatisfaction (OR: 0.240 [0.100; 0.576]) and moderate body image dissatisfaction (OR: 0.235 [0.086; 0.645]) with the Western dietary pattern. Additionally, in this group, there was a positive association between high body image dissatisfaction and the Restrictive pattern (OR: 2.794 [1.178; 6.630]). Amongst overweight/obese adolescents, those with slight and moderate body image dissatisfaction were less likely to follow a Western-like dietary pattern when compared with those satisfied with their body image. Additionally, in this group, adolescents with high body image dissatisfaction was more likely to follow a restrictive pattern. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
NASA Technical Reports Server (NTRS)
Chen, Junye; DelGenio, Anthony D.; Carlson, Barbara E.; Bosilovich, Michael G.
2007-01-01
The dominant interannual El Nino-Southern Oscillation phenomenon (ENSO) and the short length of climate observation records make it difficult to study long-term climate variations in the spatiotemporal domain. Based on the fact that the ENS0 signal spreads to remote regions and induces delayed climate variation through atmospheric teleconnections, we develop an ENSO-removal method through which the ENS0 signal can be approximately removed at the grid box level from the spatiotemporal field of a climate parameter. After this signal is removed, long-term climate variations, namely, the global warming trend (GW) and the Pacific pan-decadal variability (PDV), are isolated at middle and low latitudes in the climate parameter fields from observed and reanalyses datasets. In this study, we show that one of several PDV interdecadal regime shifts occurred during the 1990s. This significant change in the Pacific basin is comparable but opposite in phase to the 1976 climate regime shift, which results persisting warming in the central-eastern Pacific, and cooling in the North and South Pacific. The 1990s PDV regime shift is consistent with observed changes in ocean biosphere and ocean circulation. A comprehensive picture of PDV as manifested in the troposphere and at the surface is described. In general, the PDV spatial patterns in different parameter fields share some similarities with the patterns associated with ENSO, but important differences exist. First, the PDV atmospheric circulation pattern is shifted westward by about 20deg and its zonal extent is limited to approx.60deg compared to approx.110deg for ENS0 pattern. The westward shift of the PDV wave train produces a different, more west-east oriented, North American teleconnection pattern. The lack of a strong PDV surface temperature (ST) signal in the western equatorial Pacific and the relatively strong ST signal in the subtropical regions are consistent with an atmospheric overturning circulation response that differs from the one associated with ENSO.
Wittmann, Florian; Marques, Márcia C. M.; Damasceno Júnior, Geraldo; Budke, Jean Carlos; Piedade, Maria T. F.; de Oliveira Wittmann, Astrid; Montero, Juan Carlos; de Assis, Rafael L.; Targhetta, Natália; Parolin, Pia; Junk, Wolfgang J.
2017-01-01
Wetlands harbor an important compliment of regional plant diversity, but in many regions data on wetland diversity and composition is still lacking, thus hindering our understanding of the processes that control it. While patterns of broad-scale terrestrial diversity and composition typically correlate with contemporary climate it is not clear to what extent patterns in wetlands are complimentary, or conflicting. To elucidate this, we consolidate data from wetland forest inventories in Brazil and examine patterns of diversity and composition along temperature and rainfall gradients spanning five biomes. We collated 196 floristic inventories covering an area >220 ha and including >260,000 woody individuals. We detected a total of 2,453 tree species, with the Amazon alone accounting for nearly half. Compositional patterns indicated differences in freshwater wetland floras among Brazilian biomes, although biomes with drier, more seasonal climates tended to have a larger proportion of more widely distributed species. Maximal alpha diversity increased with annual temperature, rainfall, and decreasing seasonality, patterns broadly consistent with upland vegetation communities. However, alpha diversity-climate relationships were only revealed at higher diversity values associated with the uppermost quantiles, and in most sites diversity varied irrespective of climate. Likewise, mean biome-level differences in alpha-diversity were unexpectedly modest, even in comparisons of savanna-area wetlands to those of nearby forested regions. We describe attenuated wetland climate-diversity relationships as a shifting balance of local and regional effects on species recruitment. Locally, excessive waterlogging strongly filters species able to colonize from regional pools. On the other hand, increased water availability can accommodate a rich community of drought-sensitive immigrant species that are able to track buffered wetland microclimates. We argue that environmental conditions in many wetlands are not homogeneous with respect to regional climate, and that responses of wetland tree communities to future climate change may lag behind that of non-wetland, terrestrial habitat. PMID:28394937
Fiber Bragg grating sensor-based communication assistance device
NASA Astrophysics Data System (ADS)
Padma, Srivani; Umesh, Sharath; Pant, Shweta; Srinivas, Talabattula; Asokan, Sundarrajan
2016-08-01
Improvements in emergency medicine in the form of efficient life supporting systems and intensive care have increased the survival rate in critically injured patients; however, in some cases, severe brain and spinal cord injuries can result in a locked-in syndrome or other forms of paralysis, and communication with these patients may become restricted or impossible. The present study proposes a noninvasive, real-time communication assistive methodology for those with restricted communication ability, employing a fiber Bragg grating (FBG) sensor. The communication assistive methodology comprises a breath pattern analyzer using an FBG sensor, which acquires the exhalation force that is converted into strain variations on a cantilever. The FBG breath pattern analyzer along with specific breath patterns, which are programmed to give specific audio output commands, constitutes the proposed fiber Bragg grating sensor-based communication assistive device. The basic communication can be carried out by instructing the patients with restricted communication ability to perform the specific breath patterns. The present approach is intended to be an alternative to the common approach of brain-computer interface in which an instrument is utilized for learning of brain responses.
The global warming in the North Atlantic Sector and the role of the ocean
NASA Astrophysics Data System (ADS)
Hand, R.; Keenlyside, N. S.; Greatbatch, R. J.; Omrani, N. E.
2014-12-01
This work presents an analysis of North Atlantic ocean-atmosphere interaction in a warming climate, based on a long-term earth system model experiment forced by the RCP 8.5 scenario, the strongest greenhouse gas forcing used in the climate projections for the 5th Assessement report of the Intergovernmental Panel on Climate Change). In addition to a global increase in SSTs as a direct response to the radiative forcing, the model shows a distinct change of the local sea surface temperature (SST hereafter) patterns in the Gulf Stream region: The SST front moves northward by several hundred kilometers, likely as a response of the wind-driven part of the oceanic surface circulation, and becomes more zonal. As a consequence of a massive slowdown of the Atlantic Meridional Overturning Circulation, the northeast North Atlantic only shows a moderate warming compared to the rest of the ocean. The feedback of these changes on the atmosphere was studied in a set of sensitivity experiments based on the SST climatology of the coupled runs. The set consists of a control run based on the historical run, a run using the full SST from the coupled RCP 8.5 run and two runs, where the SST signal was deconstructed into a homogenous mean warming part and a local pattern change. In the region of the precipitation maximum in the historical run the future scenario shows an increase of absolute SSTs, but a significant decrease in local precipitation, low-level convergence and upward motion. Since warmer SSTs usually cause the opposite, this indicates that the local response in that region is connected to the (with respect to the historical run) weakened SST gradients rather than to the absolute SST. Consistently, the model shows enhanced precipitation north of this region, where the SST gradients are enhanced. However, the signal restricts to the low and mid-troposphere and does not reach the higher model levels. There is little evidence for a large-scale response to the changes in the Gulf Stream region; instead, the large scale signal is mainly controlled by the warmer background state and the AMOC slowdown and influenced by tropical SSTs. In a warmer climate the same change in SST gradient has a stronger effect on precipitation and the model produces a slightly enhanced North Atlantic storm track.
Patterns and drivers of Early Holocene vegetation dynamics in Central Europe
NASA Astrophysics Data System (ADS)
Theuerkauf, Martin
2015-04-01
The rapid warming of the Holocene induced the rearrangement of vegetation across Europe, including the widely synchronous and rapid expansion of hazel (Corylus avellana) at around 10.6 ka BP (Giesecke et al., 2011). The simultaneity of the hazel expansion across large parts of Europe suggests that a climate shift has triggered that expansion. However, it remains poorly understood, which climate parameter has been effective (Huntley, 1993) because hazel expanded simultaneously in areas that today clearly differ in climate. To better understand the causes we studied Early Holocene vegetation dynamics in NE Germany in high temporal and spatial resolution. Analysis combines pollen data from 60 sites, including high resolution data sets, with present-day site patterns of soil and relief using the extended downscaling approach. Using forward modeling of pollen deposition in each sample site the method seeks that vegetation composition on each site type that produces modeled pollen deposition most similar to empiric pollen deposition. The results (Theuerkauf et al., 2014) indicate that first populations of hazel established soon after the Holocene warming at 11.2 ka. These populations were still small and possibly restricted to warm loving slopes, indicating that low summer warmth was the limiting factor. The widespread expansion of hazel started only after 10.8 ka, possibly following a shift to greater summer warmth. Hazel primarily expanded on sites that are today covered by gleyic soils, from which it largely expelled tree birch. Hazel thus obviously could only expand on sites that received additional wetness from ground- and stagnant water. Giesecke T., Bennett K.D., Birks H.J.B., Bjune A.E., Bozilova E., Feurdean A., Finsinger W., Froyd C., Pokorný P., Rösch M., Seppä H., Tonkov S., Valsecchi V., & Wolters S. (2011) The pace of Holocene vegetation change - testing for synchronous developments. Quaternary Science Reviews, 30, 2805-2814. Huntley B. (1993) Rapid early-Holocene migration and high abundance of hazel (Corylus avellana L.): alternative hypotheses. Climate change and human impact on the landscape (ed. by F.M. Chambers), pp. 205-215. Chapman and Hall, London. Theuerkauf M., Bos J.A.A., Jahns S., Janke W., Kuparinen A., Stebich M., & Joosten H. (2014) Corylus expansion and persistent openness in the early Holocene vegetation of northern central Europe. Quaternary Science Reviews, 90, 183-198.
NASA Astrophysics Data System (ADS)
Zelazowski, Przemyslaw; Huntingford, Chris; Mercado, Lina M.; Schaller, Nathalie
2018-02-01
Global circulation models (GCMs) are the best tool to understand climate change, as they attempt to represent all the important Earth system processes, including anthropogenic perturbation through fossil fuel burning. However, GCMs are computationally very expensive, which limits the number of simulations that can be made. Pattern scaling is an emulation technique that takes advantage of the fact that local and seasonal changes in surface climate are often approximately linear in the rate of warming over land and across the globe. This allows interpolation away from a limited number of available GCM simulations, to assess alternative future emissions scenarios. In this paper, we present a climate pattern-scaling set consisting of spatial climate change patterns along with parameters for an energy-balance model that calculates the amount of global warming. The set, available for download, is derived from 22 GCMs of the WCRP CMIP3 database, setting the basis for similar eventual pattern development for the CMIP5 and forthcoming CMIP6 ensemble. Critically, it extends the use of the IMOGEN (Integrated Model Of Global Effects of climatic aNomalies) framework to enable scanning across full uncertainty in GCMs for impact studies. Across models, the presented climate patterns represent consistent global mean trends, with a maximum of 4 (out of 22) GCMs exhibiting the opposite sign to the global trend per variable (relative humidity). The described new climate regimes are generally warmer, wetter (but with less snowfall), cloudier and windier, and have decreased relative humidity. Overall, when averaging individual performance across all variables, and without considering co-variance, the patterns explain one-third of regional change in decadal averages (mean percentage variance explained, PVE, 34.25 ± 5.21), but the signal in some models exhibits much more linearity (e.g. MIROC3.2(hires): 41.53) than in others (GISS_ER: 22.67). The two most often considered variables, near-surface temperature and precipitation, have a PVE of 85.44 ± 4.37 and 14.98 ± 4.61, respectively. We also provide an example assessment of a terrestrial impact (changes in mean runoff) and compare projections by the IMOGEN system, which has one land surface model, against direct GCM outputs, which all have alternative representations of land functioning. The latter is noted as an additional source of uncertainty. Finally, current and potential future applications of the IMOGEN version 2.0 modelling system in the areas of ecosystem modelling and climate change impact assessment are presented and discussed.
DOT National Transportation Integrated Search
2011-12-01
This project analyzed the demand for transportation capacity and changes in transportation flows on : inland waterways due to shifts in crop production patterns induced by climate change. Shifts in the crop : production mix have been observed in rece...
Climate teleconnections and recent patterns of human and animal disease outbreaks
USDA-ARS?s Scientific Manuscript database
Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Extremes in rainfall (drought and flood) during the p...
Altered seasonal climate patterns resulting from global climate change could affect the productivity of coniferous forests in the Pacific Northwest region of North America. This study examined seasonal patterns of temperature, precipitation, relative humidity and plant available...
Climatic extremes improve predictions of spatial patterns of tree species
Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.
2009-01-01
Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.
Dalsgaard, Bo; Magård, Else; Fjeldså, Jon; Martín González, Ana M.; Rahbek, Carsten; Olesen, Jens M.; Ollerton, Jeff; Alarcón, Ruben; Cardoso Araujo, Andrea; Cotton, Peter A.; Lara, Carlos; Machado, Caio Graco; Sazima, Ivan; Sazima, Marlies; Timmermann, Allan; Watts, Stella; Sandel, Brody; Sutherland, William J.; Svenning, Jens-Christian
2011-01-01
Large-scale geographical patterns of biotic specialization and the underlying drivers are poorly understood, but it is widely believed that climate plays an important role in determining specialization. As climate-driven range dynamics should diminish local adaptations and favor generalization, one hypothesis is that contemporary biotic specialization is determined by the degree of past climatic instability, primarily Quaternary climate-change velocity. Other prominent hypotheses predict that either contemporary climate or species richness affect biotic specialization. To gain insight into geographical patterns of contemporary biotic specialization and its drivers, we use network analysis to determine the degree of specialization in plant-hummingbird mutualistic networks sampled at 31 localities, spanning a wide range of climate regimes across the Americas. We found greater biotic specialization at lower latitudes, with latitude explaining 20–22% of the spatial variation in plant-hummingbird specialization. Potential drivers of specialization - contemporary climate, Quaternary climate-change velocity, and species richness - had superior explanatory power, together explaining 53–64% of the variation in specialization. Notably, our data provides empirical evidence for the hypothesized roles of species richness, contemporary precipitation and Quaternary climate-change velocity as key predictors of biotic specialization, whereas contemporary temperature and seasonality seem unimportant in determining specialization. These results suggest that both ecological and evolutionary processes at Quaternary time scales can be important in driving large-scale geographical patterns of contemporary biotic specialization, at least for co-evolved systems such as plant-hummingbird networks. PMID:21998716
Nathan J. Poage; Peter J. Weisberg; Peter C. Impara; John C. Tappeiner; Thomas S. Sensenig
2009-01-01
Knowledge of forest development is basic to understanding the ecology, dynamics, and management of forest ecosystems. We hypothesized that the age structure patterns of Douglas-fir at 205 old forest sites in western Oregon are extremely variable with long and (or) multiple establishment periods common, and that these patterns reflect variation in regional-scale climate...
Joseph M. Craine; Andrew J. Elmore; Marcos P. M. Aidar; Mercedes Bustamante; Todd E. Dawson; Erik A. Hobbie; Ansgar Kahmen; Michelle C. Mack; Kendra K. McLauchlan; Anders Michelsen; Gabriela Nardoto; Linda H. Pardo; Josep Penuelas; Peter B. Reich; Edward A.G. Schuur; William D. Stock; Pamela H. Templer; Ross A. Virginia; Jeffrey M. Welker; Ian J. Wright
2009-01-01
Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios, foliar N concentrations, mycorrhizal type and climate for over 11 000 plants worldwide. Global-scale comparisons of other components of the N cycle...
Climate-mediated competition in a high-elevation salamander community
Dallalio, Eric A.; Brand, Adrianne B,; Grant, Evan H. Campbell
2017-01-01
The distribution of the federally endangered Shenandoah Salamander (Plethodon shenandoah) is presumed to be limited by competition with the Red-backed Salamander (Plethodon cinereus). In particular, the current distribution of P. shenandoah is understood to be restricted to warmer and drier habitats because of interspecific interactions. These habitats may be particularly sensitive to climate change, though the influence of competition may also be affected by temperature and relative humidity. We investigated the response of P. shenandoah to competition with P. cinereus under four climate scenarios in 3-dimensional mesocosms. The results suggest that, although climate change may alleviate competitive pressure from P. cinereus, warmer temperatures may also significantly influence the persistence of the species across its known range.
Geographic patterns and dynamics of Alaskan climate interpolated from a sparse station record
Fleming, Michael D.; Chapin, F. Stuart; Cramer, W.; Hufford, Gary L.; Serreze, Mark C.
2000-01-01
Data from a sparse network of climate stations in Alaska were interpolated to provide 1-km resolution maps of mean monthly temperature and precipitation-variables that are required at high spatial resolution for input into regional models of ecological processes and resource management. The interpolation model is based on thin-plate smoothing splines, which uses the spatial data along with a digital elevation model to incorporate local topography. The model provides maps that are consistent with regional climatology and with patterns recognized by experienced weather forecasters. The broad patterns of Alaskan climate are well represented and include latitudinal and altitudinal trends in temperature and precipitation and gradients in continentality. Variations within these broad patterns reflect both the weakening and reduction in frequency of low-pressure centres in their eastward movement across southern Alaska during the summer, and the shift of the storm tracks into central and northern Alaska in late summer. Not surprisingly, apparent artifacts of the interpolated climate occur primarily in regions with few or no stations. The interpolation model did not accurately represent low-level winter temperature inversions that occur within large valleys and basins. Along with well-recognized climate patterns, the model captures local topographic effects that would not be depicted using standard interpolation techniques. This suggests that similar procedures could be used to generate high-resolution maps for other high-latitude regions with a sparse density of data.
Climatic controls on hurricane patterns: a 1200-y near-annual record from Lighthouse Reef, Belize
NASA Astrophysics Data System (ADS)
Denommee, K. C.; Bentley, S. J.; Droxler, A. W.
2014-01-01
Tropical cyclones (TCs) are powerful agents of destruction, and understanding climatic controls on TC patterns is of great importance. Over timescales of seasons to several decades, relationships among TC track, frequency, intensity and basin-scale climate changes are well documented by instrumental records. Over centuries to millennia, climate-shift influence on TC regimes remains poorly constrained. To better understand these relationships, records from multiple locations of TC strikes spanning millennia with high temporal resolution are required, but such records are rare. Here we report on a highly detailed sedimentary proxy record of paleo-TC strikes from the Blue Hole of Lighthouse Reef, Belize. Our findings provide an important addition to other high-resolution records, which collectively demonstrate that shifts between active and inactive TC regimes have occurred contemporaneously with shifts hemispheric-scale oceanic and atmospheric circulation patterns such as MDR SSTs and NAO mode, rather than with changes in local climate phenomena as has previously been suggested.
Sosa, Victoria; Ornelas, Juan Francisco; Ramírez-Barahona, Santiago; Gándara, Etelvina
2016-01-01
Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant variables or elevation. For elevational shifts, we found repeated change from low to high elevations. Our data suggest that representatives of Cyatheaceae main lineages migrated from Australia to Mesoamerican cloud forests in different times and have persisted in these environmentally unstable areas but extant species diverged recentrly from their ancestors.
2016-01-01
Background Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Methods Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Results Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant variables or elevation. For elevational shifts, we found repeated change from low to high elevations. Conclusions Our data suggest that representatives of Cyatheaceae main lineages migrated from Australia to Mesoamerican cloud forests in different times and have persisted in these environmentally unstable areas but extant species diverged recentrly from their ancestors. PMID:27896030
Diversity, distribution and conservation of the terrestrial reptiles of Oman (Sauropsida, Squamata).
Carranza, Salvador; Xipell, Meritxell; Tarroso, Pedro; Gardner, Andrew; Arnold, Edwin Nicholas; Robinson, Michael D; Simó-Riudalbas, Marc; Vasconcelos, Raquel; de Pous, Philip; Amat, Fèlix; Šmíd, Jiří; Sindaco, Roberto; Metallinou, Margarita; Els, Johannes; Pleguezuelos, Juan Manuel; Machado, Luis; Donaire, David; Martínez, Gabriel; Garcia-Porta, Joan; Mazuch, Tomáš; Wilms, Thomas; Gebhart, Jürgen; Aznar, Javier; Gallego, Javier; Zwanzig, Bernd-Michael; Fernández-Guiberteau, Daniel; Papenfuss, Theodore; Al Saadi, Saleh; Alghafri, Ali; Khalifa, Sultan; Al Farqani, Hamed; Bait Bilal, Salim; Alazri, Iman Sulaiman; Al Adhoobi, Aziza Saud; Al Omairi, Zeyana Salim; Al Shariani, Mohammed; Al Kiyumi, Ali; Al Sariri, Thuraya; Al Shukaili, Ahmed Said; Al Akhzami, Suleiman Nasser
2018-01-01
In the present work, we use an exceptional database including 5,359 records of 101 species of Oman's terrestrial reptiles together with spatial tools to infer the spatial patterns of species richness and endemicity, to infer the habitat preference of each species and to better define conservation priorities, with especial focus on the effectiveness of the protected areas in preserving this unique arid fauna. Our results indicate that the sampling effort is not only remarkable from a taxonomic point of view, with multiple observations for most species, but also for the spatial coverage achieved. The observations are distributed almost continuously across the two-dimensional climatic space of Oman defined by the mean annual temperature and the total annual precipitation and across the Principal Component Analysis (PCA) of the multivariate climatic space and are well represented within 17 out of the 20 climatic clusters grouping 10% of the explained climatic variance defined by PC1 and PC2. Species richness is highest in the Hajar and Dhofar Mountains, two of the most biodiverse areas of the Arabian Peninsula, and endemic species richness is greatest in the Jebel Akhdar, the highest part of the Hajar Mountains. Oman's 22 protected areas cover only 3.91% of the country, including within their limits 63.37% of terrestrial reptiles and 50% of all endemics. Our analyses show that large areas of the climatic space of Oman lie outside protected areas and that seven of the 20 climatic clusters are not protected at all. The results of the gap analysis indicate that most of the species are below the conservation target of 17% or even the less restrictive 12% of their total area within a protected area in order to be considered adequately protected. Therefore, an evaluation of the coverage of the current network of protected areas and the identification of priority protected areas for reptiles using reserve design algorithms are urgently needed. Our study also shows that more than half of the species are still pending of a definitive evaluation by the International Union for Conservation of Nature (IUCN).
Diversity, distribution and conservation of the terrestrial reptiles of Oman (Sauropsida, Squamata)
Xipell, Meritxell; Tarroso, Pedro; Gardner, Andrew; Arnold, Edwin Nicholas; Robinson, Michael D.; Simó-Riudalbas, Marc; Vasconcelos, Raquel; de Pous, Philip; Amat, Fèlix; Šmíd, Jiří; Sindaco, Roberto; Els, Johannes; Pleguezuelos, Juan Manuel; Machado, Luis; Donaire, David; Martínez, Gabriel; Garcia-Porta, Joan; Mazuch, Tomáš; Wilms, Thomas; Gebhart, Jürgen; Aznar, Javier; Gallego, Javier; Zwanzig, Bernd-Michael; Fernández-Guiberteau, Daniel; Papenfuss, Theodore; Al Saadi, Saleh; Alghafri, Ali; Khalifa, Sultan; Al Farqani, Hamed; Bait Bilal, Salim; Alazri, Iman Sulaiman; Al Adhoobi, Aziza Saud; Al Omairi, Zeyana Salim; Al Shariani, Mohammed; Al Kiyumi, Ali; Al Sariri, Thuraya; Al Shukaili, Ahmed Said; Al Akhzami, Suleiman Nasser
2018-01-01
In the present work, we use an exceptional database including 5,359 records of 101 species of Oman’s terrestrial reptiles together with spatial tools to infer the spatial patterns of species richness and endemicity, to infer the habitat preference of each species and to better define conservation priorities, with especial focus on the effectiveness of the protected areas in preserving this unique arid fauna. Our results indicate that the sampling effort is not only remarkable from a taxonomic point of view, with multiple observations for most species, but also for the spatial coverage achieved. The observations are distributed almost continuously across the two-dimensional climatic space of Oman defined by the mean annual temperature and the total annual precipitation and across the Principal Component Analysis (PCA) of the multivariate climatic space and are well represented within 17 out of the 20 climatic clusters grouping 10% of the explained climatic variance defined by PC1 and PC2. Species richness is highest in the Hajar and Dhofar Mountains, two of the most biodiverse areas of the Arabian Peninsula, and endemic species richness is greatest in the Jebel Akhdar, the highest part of the Hajar Mountains. Oman’s 22 protected areas cover only 3.91% of the country, including within their limits 63.37% of terrestrial reptiles and 50% of all endemics. Our analyses show that large areas of the climatic space of Oman lie outside protected areas and that seven of the 20 climatic clusters are not protected at all. The results of the gap analysis indicate that most of the species are below the conservation target of 17% or even the less restrictive 12% of their total area within a protected area in order to be considered adequately protected. Therefore, an evaluation of the coverage of the current network of protected areas and the identification of priority protected areas for reptiles using reserve design algorithms are urgently needed. Our study also shows that more than half of the species are still pending of a definitive evaluation by the International Union for Conservation of Nature (IUCN). PMID:29414999
Yan, Yujing; Yang, Xian; Tang, Zhiyao
2013-11-01
Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.
Yan, Yujing; Yang, Xian; Tang, Zhiyao
2013-01-01
Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages. PMID:24340197
NASA Astrophysics Data System (ADS)
Nyitrai, Daniel; Martinho, Filipe; Dolbeth, Marina; Rito, João; Pardal, Miguel A.
2013-12-01
Large-scale and local climate patterns are known to influence several aspects of the life cycle of marine fish. In this paper, we used a 9-year database (2003-2011) to analyse the populations of two estuarine resident fishes, Pomatoschistus microps and Pomatoschistus minutus, in order to determine their relationships with varying environmental stressors operating over local and large scales. This study was performed in the Mondego estuary, Portugal. Firstly, the variations in abundance, growth, population structure and secondary production were evaluated. These species appeared in high densities in the beginning of the study period, with subsequent occasional high annual density peaks, while their secondary production was lower in dry years. The relationships between yearly fish abundance and the environmental variables were evaluated separately for both species using Spearman correlation analysis, considering the yearly abundance peaks for the whole population, juveniles and adults. Among the local climate patterns, precipitation, river runoff, salinity and temperature were used in the analyses, and North Atlantic Oscillation (NAO) index and sea surface temperature (SST) were tested as large-scale factors. For P. microps, precipitation and NAO were the significant factors explaining abundance of the whole population, the adults and the juveniles as well. Regarding P. minutus, for the whole population, juveniles and adults river runoff was the significant predictor. The results for both species suggest a differential influence of climate patterns on the various life cycle stages, confirming also the importance of estuarine resident fishes as indicators of changes in local and large-scale climate patterns, related to global climate change.
Kaplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; McGuire, A.D.; Murray, D.F.; Razzhivin, V.Y.; Smith, B.; Walker, D.A.; Anderson, P.M.; Andreev, A.A.; Brubaker, L.B.; Edwards, M.E.; Lozhkin, A.V.
2003-01-01
Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55??N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to > 700 ppm) at high latitudes were slight compared with the effects of the change in climate.
Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia
NASA Astrophysics Data System (ADS)
Carrapa, Barbara; DeCelles, Peter G.; Wang, Xin; Clementz, Mark T.; Mancin, Nicoletta; Stoica, Marius; Kraatz, Brian; Meng, Jin; Abdulov, Sherzod; Chen, Fahu
2015-08-01
Plate tectonics and eustatic sea-level changes have fundamental effects on paleoenvironmental conditions and bio-ecological changes. The Paratethys Sea was a large marine seaway that connected the Mediterranean Neotethys Ocean with Central Asia during early Cenozoic time. Withdrawal of the Paratethys from central Asia impacted the distribution and composition of terrestrial faunas in the region and has been largely associated with changes in global sea level and climate such as cooling associated with the Eocene/Oligocene transition (EOT). Whereas the regression has been dated in the Tarim basin (China), the pattern and timing of regression in the Tajik basin, 400 km to the west, remain unresolved, precluding a test of current paleogeographic models. Here we date the Paratethys regression in Tajikistan at ca. 39 million years ago (Ma), which is several million years older than the EOT (at ca. 34 Ma) marking the greenhouse to icehouse climate transition of the Cenozoic. Our data also show a restricted, evaporitic marine environment since the middle-late Eocene and establishment of desert like environments after ca. 39 Ma. The overall stratigraphic record from the Tajik basin and southern Tien Shan points to deposition in a foreland basin setting by ca. 40 Ma in response to active tectonic growth of the Pamir-Tibet Mountains at the same time. Combined with the northwestward younging trend of the regression in the region, the Tajik basin record is consistent with northward growth of the Pamir and suggests significant tectonic control on Paratethys regression and paleoenvironmental changes in Central Asia.
NASA Astrophysics Data System (ADS)
Yuan, Tianle; Oreopoulos, Lazaros; Platnick, Steven E.; Meyer, Kerry
2018-05-01
Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.
Ong, Joyce J L; Rountrey, Adam N; Black, Bryan A; Nguyen, Hoang Minh; Coulson, Peter G; Newman, Stephen J; Wakefield, Corey B; Meeuwig, Jessica J; Meekan, Mark G
2018-05-01
Entrainment of growth patterns of multiple species to single climatic drivers can lower ecosystem resilience and increase the risk of species extinction during stressful climatic events. However, predictions of the effects of climate change on the productivity and dynamics of marine fishes are hampered by a lack of historical data on growth patterns. We use otolith biochronologies to show that the strength of a boundary current, modulated by the El Niño-Southern Oscillation, accounted for almost half of the shared variance in annual growth patterns of five of six species of tropical and temperate marine fishes across 23° of latitude (3000 km) in Western Australia. Stronger flow during La Niña years drove increased growth of five species, whereas weaker flow during El Niño years reduced growth. Our work is the first to link the growth patterns of multiple fishes with a single oceanographic/climate phenomenon at large spatial scales and across multiple climate zones, habitat types, trophic levels and depth ranges. Extreme La Niña and El Niño events are predicted to occur more frequently in the future and these are likely to have implications for these vulnerable ecosystems, such as a limited capacity of the marine taxa to recover from stressful climatic events. © 2018 John Wiley & Sons Ltd.
Assessing and quantifying changes in precipitation patterns using event-driven analysis
USDA-ARS?s Scientific Manuscript database
Studies have claimed that climate change may adversely affect precipitation patterns by increasing the occurrence of extreme events. The effects of climate change on precipitation is expected to take place over a long period of time and will require long-term data to demonstrate. Frequency analysis ...
Lara-Reséndiz, Rafael A; Gadsden, Héctor; Rosen, Philip C; Sinervo, Barry; Méndez-De la Cruz, Fausto R
2015-02-01
Thermoregulatory studies of ectothermic organisms are an important tool for ecological physiology, evolutionary ecology and behavior, and recently have become central for evaluating and predicting global climate change impacts. Here, we present a novel combination of field, laboratory, and modeling approaches to examine body temperature regulation, habitat thermal quality, and hours of thermal restriction on the activity of two sympatric, aridlands horned lizards (Phrynosoma cornutum and Phrynosoma modestum) at three contrasting Chihuahuan Desert sites in Mexico. Using these physiological data, we estimate local extinction risk under predicted climate change within their current geographical distribution. We followed the Hertz et al. (1993, Am. Nat., 142, 796-818) protocol for evaluating thermoregulation and the Sinervo et al. (2010, Science, 328, 894-899) eco-physiological model of extinction under climatic warming. Thermoregulatory indices suggest that both species thermoregulate effectively despite living in habitats of low thermal quality, although high environmental temperatures restrict the activity period of both species. Based on our measurements, if air temperature rises as predicted by climate models, the extinction model projects that P. cornutum will become locally extinct at 6% of sites by 2050 and 18% by 2080 and P. modestum will become extinct at 32% of sites by 2050 and 60% by 2080. The method we apply, using widely available or readily acquired thermal data, along with the modeling, appeared to identify several unique ecological traits that seemingly exacerbate climate sensitivity of P. modestum. Copyright © 2014 Elsevier Ltd. All rights reserved.
Statistical Emulation of Climate Model Projections Based on Precomputed GCM Runs*
Castruccio, Stefano; McInerney, David J.; Stein, Michael L.; ...
2014-02-24
The authors describe a new approach for emulating the output of a fully coupled climate model under arbitrary forcing scenarios that is based on a small set of precomputed runs from the model. Temperature and precipitation are expressed as simple functions of the past trajectory of atmospheric CO 2 concentrations, and a statistical model is fit using a limited set of training runs. The approach is demonstrated to be a useful and computationally efficient alternative to pattern scaling and captures the nonlinear evolution of spatial patterns of climate anomalies inherent in transient climates. The approach does as well as patternmore » scaling in all circumstances and substantially better in many; it is not computationally demanding; and, once the statistical model is fit, it produces emulated climate output effectively instantaneously. In conclusion, it may therefore find wide application in climate impacts assessments and other policy analyses requiring rapid climate projections.« less
A collection of Australian Drosophila datasets on climate adaptation and species distributions.
Hangartner, Sandra B; Hoffmann, Ary A; Smith, Ailie; Griffin, Philippa C
2015-11-24
The Australian Drosophila Ecology and Evolution Resource (ADEER) collates Australian datasets on drosophilid flies, which are aimed at investigating questions around climate adaptation, species distribution limits and population genetics. Australian drosophilid species are diverse in climatic tolerance, geographic distribution and behaviour. Many species are restricted to the tropics, a few are temperate specialists, and some have broad distributions across climatic regions. Whereas some species show adaptability to climate changes through genetic and plastic changes, other species have limited adaptive capacity. This knowledge has been used to identify traits and genetic polymorphisms involved in climate change adaptation and build predictive models of responses to climate change. ADEER brings together 103 datasets from 39 studies published between 1982-2013 in a single online resource. All datasets can be downloaded freely in full, along with maps and other visualisations. These historical datasets are preserved for future studies, which will be especially useful for assessing climate-related changes over time.
Elizabeth B. Smithson; Carol E. Johnston
1999-01-01
The restricted movement paradigm (RMP), which states adult fish do not move out of a pool or restricted stream reach, does not fully define the movements of stream fishes. Although stream fishes may spend the majority of their time in a home pool, they also make regular exploratory trips away from the home pool....
NASA Astrophysics Data System (ADS)
Kilbourne, K. H.; Xu, Y.
2015-12-01
Paleoclimate reconstructions of different global climate modes over the last 1000 years provide the basis for testing the relative roles of forced and unforced variability climate system, which can help us improve projections of future climate change. The Medieval Climate Anomaly (MCA) has been characterized by a combination of persistent La Niña-like conditions, a positive North Atlantic Oscillation (+NAO), and increased Atlantic Meridional Overturning Circulation (AMOC). The northern tropical Atlantic is sensitive to each of these climate patterns, but not all of them have the same regional fingerprint in the modern northern tropical Atlantic. The relative influence of different processes related to these climate patterns can help us better understand regional responses to climate change. The regional response of the northern tropical Atlantic is important because the tropical Atlantic Ocean is a large source of heat and moisture to the global climate system that can feedback onto global climate patterns. This study presents new coral Sr/Ca and δ18O data from the northern tropical Atlantic (Anegada, British Virgin Islands). Comparison of the sub-fossil corals that grew during the 13th and 14th Centuries with modern coral geochemical data from this site indicates relatively cooler mean conditions with a decrease in the oxygen isotopic composition of the water consistent with lower salinities. Similar average annual cycles between modern and sub-fossil Sr/Ca indicate no change in seasonal temperature range, but a difference in the relative phasing of the δ18O seasonal cycles indicates that the fresher mean conditions may be due to a more northerly position of the regional salinity front. This localized response is consistent with some, but not all of the expected regional responses to a La Niña-like state, a +NAO state, and increased AMOC. Understanding these differences can provide insight into the relative importance of advection versus surface fluxes for heat and salt balances at the study site. Ultimately the data support the existing framework for understanding climate during the MCA and demonstrate the importance of regional processes in understanding historic and future climate patterns.
Erdoğan, Turan; Durakoğlugil, Murtaza Emre; Çiçek, Yüksel; Çetin, Mustafa; Duman, Hakan; Şatiroğlu, Ömer; Çelik, Şükrü
2017-03-01
Prolonged QRS duration is associated with decreased left ventricular (LV) systolic function. However, the relation between LV restrictive filling pattern (RFP) and QRS duration has not been investigated yet. The purpose of our study was to assess this relationship. We analyzed standard 12-lead surface electrocardiogram (ECG) of 155 consecutive patients. Mitral inflow and septal tissue velocities were obtained using the apical 4-chamber view with pulsed Doppler echocardiography. Patients were divided into 2 groups according to measured deceleration time (DT): restrictive (with DT ≤130 ms) or non-restrictive (with DT >130 ms). QRS duration was significantly longer in the restrictive group than in the non-restrictive group (0.101 vs. 0.090 s, p < 0.0001). QRS duration of >0.10 s was highly specific (82.6%), but modestly sensitive (64.7%), for the prediction of LV RFP. Multivariate analyses demonstrated that E/A ratio, peak E, peak A, septal e', and a' velocities were significantly associated with RFP. Prolonged QRS duration (>0.10 s) obtained from a standard resting 12-lead ECG is associated with LV RFP. However, the relationship of QRS duration with RFP was not independent of echocardiographic parameters.
Sittenthaler, Sandra; Traut-Mattausch, Eva; Jonas, Eva
2015-01-01
Psychological reactance occurs in response to threats posed to perceived behavioral freedoms. Research has shown that people can also experience vicarious reactance. They feel restricted in their own freedom even though they are not personally involved in the restriction but only witness the situation. The phenomenon of vicarious reactance is especially interesting when considered in a cross-cultural context because the cultural specific self-construal plays a crucial role in understanding people's response to self- and vicariously experienced restrictions. Previous studies and our pilot study (N = 197) could show that people with a collectivistic cultural background show higher vicarious reactance compared to people with an individualistic cultural background. But does it matter whether people experience the vicarious restriction for an in-group or an out-group member? Differentiating vicarious-in-group and vicarious-out-group restrictions, Study 1 (N = 159) suggests that people with a more interdependent self-construal show stronger vicarious reactance only with regard to in-group restrictions but not with regard to out-group restrictions. In contrast, participants with a more independent self-construal experience stronger reactance when being self-restricted compared to vicariously-restricted. Study 2 (N = 180) replicates this pattern conceptually with regard to individualistic and collectivistic cultural background groups. Additionally, participants' behavioral intentions show the same pattern of results. Moreover a mediation analysis demonstrates that cultural differences in behavioral intentions could be explained through people's self-construal differences. Thus, the present studies provide new insights and show consistent evidence for vicarious reactance depending on participants' culturally determined self-construal.
Sittenthaler, Sandra; Traut-Mattausch, Eva; Jonas, Eva
2015-01-01
Psychological reactance occurs in response to threats posed to perceived behavioral freedoms. Research has shown that people can also experience vicarious reactance. They feel restricted in their own freedom even though they are not personally involved in the restriction but only witness the situation. The phenomenon of vicarious reactance is especially interesting when considered in a cross-cultural context because the cultural specific self-construal plays a crucial role in understanding people’s response to self- and vicariously experienced restrictions. Previous studies and our pilot study (N = 197) could show that people with a collectivistic cultural background show higher vicarious reactance compared to people with an individualistic cultural background. But does it matter whether people experience the vicarious restriction for an in-group or an out-group member? Differentiating vicarious-in-group and vicarious-out-group restrictions, Study 1 (N = 159) suggests that people with a more interdependent self-construal show stronger vicarious reactance only with regard to in-group restrictions but not with regard to out-group restrictions. In contrast, participants with a more independent self-construal experience stronger reactance when being self-restricted compared to vicariously-restricted. Study 2 (N = 180) replicates this pattern conceptually with regard to individualistic and collectivistic cultural background groups. Additionally, participants’ behavioral intentions show the same pattern of results. Moreover a mediation analysis demonstrates that cultural differences in behavioral intentions could be explained through people’s self-construal differences. Thus, the present studies provide new insights and show consistent evidence for vicarious reactance depending on participants’ culturally determined self-construal. PMID:26300795
Nonato, Nívia L; Nascimento, Oliver A; Padilla, Rogelio P; de Oca, Maria M; Tálamo, Carlos; Valdivia, Gonzalo; Lisboa, Carmen; López, Maria V; Celli, Bartolomé; Menezes, Ana Maria B; Jardim, José R
2015-08-01
Patients with chronic obstructive pulmonary disease (COPD) usually complain of symptoms such as cough, sputum, wheezing, and dyspnea. Little is known about clinical symptoms in individuals with restrictive ventilatory impairment. The aim of this study was to compare the prevalence and type of respiratory symptoms in patients with COPD to those reported by individuals with restrictive ventilatory impairment in the Proyecto Latinoamericano de Investigacion en Obstruccion Pulmonar study. Between 2002 and 2004, individuals ≥40 years of age from five cities in Latin America performed pre and post-bronchodilator spirometry and had their respiratory symptoms recorded in a standardized questionnaire. Among the 5315 individuals evaluated, 260 (5.1%) had a restrictive spirometric diagnosis (forced vital capacity (FVC) < lower limit of normal (LLN) with forced expiratory volume in the first second to forced vital capacity ratio (FEV1/FVC) ≥ LLN; American Thoracic Society (ATS)/European Respiratory Society (ERS) 2005) and 610 (11.9%) were diagnosed with an obstructive pattern (FEV1/FVC < LLN; ATS/ERS 2005). Patients with mild restriction wheezed more ((30.8%) vs. (17.8%); p < 0.028). No difference was seen in dyspnea, cough, and sputum between the two groups after adjusting for severity stage. The health status scores for the short form 12 questionnaire were similar in restricted and obstructed patients for both physical (48.4 ± 9.4 vs. 48.3 ± 9.8) and mental (50.8 ± 10.6 vs. 50.0 ± 11.5) domains. Overall, respiratory symptoms are not frequently reported by patients with restricted and obstructed patterns as defined by spirometry. Wheezing was more frequent in patients with restricted pattern compared with those with obstructive ventilatory defect. However, the prevalence of cough, sputum production, and dyspnea are not different between the two groups when adjusted by the same severity stage. © The Author(s) 2015.
Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks
Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer L.; Collins, Kathrine M.; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; Eastman, James Ronald; Pinzon, Jorge E.; Russell, Kevin L.
2012-01-01
Background Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. Methods and Findings We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004–2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3–4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Conclusions/Significance Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies. PMID:22292093
Climate teleconnections and recent patterns of human and animal disease outbreaks.
Anyamba, Assaf; Linthicum, Kenneth J; Small, Jennifer L; Collins, Kathrine M; Tucker, Compton J; Pak, Edwin W; Britch, Seth C; Eastman, James Ronald; Pinzon, Jorge E; Russell, Kevin L
2012-01-01
Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004-2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3-4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies.
Ortega-Andrade, H. Mauricio; Rojas-Soto, Octavio; Paucar, Christian
2013-01-01
We studied a population of the endangered glassfrog, Cochranella mache, at Bilsa Biological Station, northwestern Ecuador, from 2008 and 2009. We present information on annual abundance patterns, behavioral ecology, habitat use and a species distribution model performed with MaxEnt. We evaluate the importance of the National System of Protected Areas (SNAP) in Colombia and Ecuador, under scenarios of climate change and habitat loss. We predicted a restricted environmental suitability area from 48,509 Km2 to 65,147 Km2 along western Ecuador and adjacent Colombia; ∼8% of the potential distribution occurs within SNAP. We examined four aspects of C. mache ecology: (1) ecological data suggests a strong correlation between relative abundance and rainfall, with a high probability to observe frogs through rainy months (February–May); (2) habitat use and the species distribution model suggest that this canopy dweller is restricted to small streams and rivulets in primary and old secondary forest in evergreen lowland and piedmont forest of western Ecuador, with predictions of suitability areas in adjacent southern Colombia; (3) the SNAP of Colombia and Ecuador harbor a minimum portion of the predicted model of distribution (<10%); and (4) synergetic effects of habitat loss and climate change reduces in about 95% the suitability areas for this endangered frog along its distributional range in Protected Areas. The resulting model allows the recognition of areas to undertake conservation efforts and plan future field surveys, as well as forecasting regions with high probability of C. mache occurrence in western Ecuador and southern Colombia. Further research is required to assess population tendencies, habitat fragmentation and target survey zones to accelerate the discovery of unknown populations in unexplored areas with high probability of suitability. We recommend that Cochranella mache must be re-categorized as “Critically Endangered” species in national and global status, according with criteria and sub-criteria A4, B1ab(i,ii,iii,iv),E. PMID:24339973
Belote, R Travis; Carroll, Carlos; Martinuzzi, Sebastián; Michalak, Julia; Williams, John W; Williamson, Matthew A; Aplet, Gregory H
2018-06-21
Addressing uncertainties in climate vulnerability remains a challenge for conservation planning. We evaluate how confidence in conservation recommendations may change with agreement among alternative climate projections and metrics of climate exposure. We assessed agreement among three multivariate estimates of climate exposure (forward velocity, backward velocity, and climate dissimilarity) using 18 alternative climate projections for the contiguous United States. For each metric, we classified maps into quartiles for each alternative climate projections, and calculated the frequency of quartiles assigned for each gridded location (high quartile frequency = more agreement among climate projections). We evaluated recommendations using a recent climate adaptation heuristic framework that recommends emphasizing various conservation strategies to land based on current conservation value and expected climate exposure. We found that areas where conservation strategies would be confidently assigned based on high agreement among climate projections varied substantially across regions. In general, there was more agreement in forward and backward velocity estimates among alternative projections than agreement in estimates of local dissimilarity. Consensus of climate predictions resulted in the same conservation recommendation assignments in a few areas, but patterns varied by climate exposure metric. This work demonstrates an approach for explicitly evaluating alternative predictions in geographic patterns of climate change.
Dual impacts of climate change: forest migration and turnover through life history.
Zhu, Kai; Woodall, Christopher W; Ghosh, Souparno; Gelfand, Alan E; Clark, James S
2014-01-01
Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would expect relative recruitment to be higher in cold and dry climates as a result of tree migration with juveniles located further poleward than adults. Alternatively, relative recruitment could be higher in warm and wet climates as a result of higher tree population turnover with increased temperature and precipitation. Using the USDA Forest Service's Forest Inventory and Analysis data at regional scales, we jointly modeled juvenile and adult abundance distributions for 65 tree species in climate space of the eastern United States. We directly compared the optimal climate conditions for juveniles and adults, identified the climates where each species has high relative recruitment, and synthesized relative recruitment patterns across species. Results suggest that for 77% and 83% of the tree species, juveniles have higher optimal temperature and optimal precipitation, respectively, than adults. Across species, the relative recruitment pattern is dominated by relatively more abundant juveniles than adults in warm and wet climates. These different abundance-climate responses through life history are consistent with faster population turnover and inconsistent with the geographic trend of large-scale tree migration. Taken together, this juvenile-adult analysis suggests that tree species might respond to climate change by having faster turnover as dynamics accelerate with longer growing seasons and higher temperatures, before there is evidence of poleward migration at biogeographic scales.
ERIC Educational Resources Information Center
McAdoo, John Lewis
The purpose of this study was to examine the verbal and nonverbal interaction patterns of black parents and their preschool children. Three types of verbal interaction patterns were observed between the parent and child: nurturant, non-nurturant, and restrictive. Patterns of nonverbal interaction were also observed. Also studied were patterns of…
Squeezed at the top: Interspecific aggression may constrain elevational ranges in tropical birds.
Jankowski, Jill E; Robinson, Scott K; Levey, Douglas J
2010-07-01
Tropical montane species are characterized by narrow elevational distributions. Recent perspectives on mechanisms maintaining these restricted distributions have emphasized abiotic processes, but biotic processes may also play a role in their establishment or maintenance. One historically popular hypothesis, especially for birds, is that interspecific competition constrains ranges of closely related species that "replace" each other along elevational gradients. Supporting evidence, however, is based on patterns of occurrence and does not reveal potential mechanisms. We experimentally tested a prediction of this hypothesis in two genera of tropical songbirds, Catharus (Turdidae) and Henicorhina (Troglodytidae), in which species have nonoverlapping elevational distributions. Using heterospecific playback trials, we found that individuals at replacement zones showed aggressive territorial behavior in response to songs of congeners. As distance from replacement zones increased, aggression toward congener song decreased, suggesting a learned component to interspecific aggression. Additionally, aggressive responses in Catharus were asymmetric, indicating interspecific dominance. These results provide experimental evidence consistent with the hypothesis that interspecific competitive interactions restrict ranges of Neotropical birds. Our results also underscore the need to consider biotic processes, such as competition, when predicting how species' ranges will shift with climate change. Asymmetric aggression could be particularly important. For example, if warming in montane landscapes allows upslope range expansion by dominant competitors, then high-elevation subordinate species could be forced into progressively smaller mountaintop habitats, jeopardizing viability of their populations.
Marui, Akira; Nishina, Takeshi; Saji, Yoshiaki; Yamazaki, Kazuhiro; Shimamoto, Takeshi; Ikeda, Tadashi; Sakata, Ryuzo
2010-05-01
Surgical ventricular restoration (SVR) has been introduced to restore the dilated left ventricular (LV) chamber and improve LV systolic function; however, SVR has also been reported to detrimentally affect LV diastolic properties. We sought to investigate the impact of preoperative LV diastolic function on outcomes after SVR in patients with heart failure. Sixty-seven patients (60 +/- 14 years) with LV systolic dysfunction (LV ejection fraction, 0.27 +/- 0.10) underwent SVR. They were evaluated by echocardiography preoperatively, and early (
NASA Astrophysics Data System (ADS)
Alarcon, T.; Garcia, M. E.; Small, D. L.; Portney, K.; Islam, S.
2013-12-01
Providing water to the expanding population of megacities, which have over 10 million people, with a stressed and aging water infrastructure creates unprecedented challenges. These challenges are exacerbated by dwindling supply and competing demands, altered precipitation and runoff patterns in a changing climate, fragmented water utility business models, and changing consumer behavior. While there is an extensive literature on the effects of climate change on water resources, the uncertainty of climate change predictions continues to be high. This hinders the value of these predictions for municipal water supply planning. The ability of water utilities to meet future water needs will largely depend on their capacity to make decisions under uncertainty. Water stressors, like changes in demographics, climate, and socioeconomic patterns, have varying degrees of uncertainty. Identifying which stressors will have a greater impact on water resources, may reduce the level of future uncertainty for planning and managing water utilities. Within this context, we analyze historical and projected changes of population and climate to quantify the relative impacts of these two stressors on water resources. We focus on megacities that rely primarily on surface water resources to evaluate (a) population growth pattern from 1950-2010 and projected population for 2010-2060; (b) climate change impact on projected climate change scenarios for 2010-2060; and (c) water access for 1950-2010; projected needs for 2010-2060.
Gray, Laura K; Clarke, Charles; Wint, G R William; Moran, Jonathan A
2017-01-01
Anthropogenic climate change is predicted to have profound effects on species distributions over the coming decades. In this paper, we used maximum entropy modelling (Maxent) to estimate the effects of projected changes in climate on extent of climatically-suitable habitat for two Nepenthes pitcher plant species in Borneo. The model results predicted an increase in area of climatically-suitable habitat for the lowland species Nepenthes rafflesiana by 2100; in contrast, the highland species Nepenthes tentaculata was predicted to undergo significant loss of climatically-suitable habitat over the same period. Based on the results of the models, we recommend that research be undertaken into practical mitigation strategies, as approximately two-thirds of Nepenthes are restricted to montane habitats. Highland species with narrow elevational ranges will be at particularly high risk, and investigation into possible mitigation strategies should be focused on them.
The economics of abrupt climate change.
Perrings, Charles
2003-09-15
The US National Research Council defines abrupt climate change as a change of state that is sufficiently rapid and sufficiently widespread in its effects that economies are unprepared or incapable of adapting. This may be too restrictive a definition, but abrupt climate change does have implications for the choice between the main response options: mitigation (which reduces the risks of climate change) and adaptation (which reduces the costs of climate change). The paper argues that by (i) increasing the costs of change and the potential growth of consumption, and (ii) reducing the time to change, abrupt climate change favours mitigation over adaptation. Furthermore, because the implications of change are fundamentally uncertain and potentially very high, it favours a precautionary approach in which mitigation buys time for learning. Adaptation-oriented decision tools, such as scenario planning, are inappropriate in these circumstances. Hence learning implies the use of probabilistic models that include socioeconomic feedbacks.
Gray, Laura K.; Clarke, Charles; Wint, G. R. William
2017-01-01
Anthropogenic climate change is predicted to have profound effects on species distributions over the coming decades. In this paper, we used maximum entropy modelling (Maxent) to estimate the effects of projected changes in climate on extent of climatically-suitable habitat for two Nepenthes pitcher plant species in Borneo. The model results predicted an increase in area of climatically-suitable habitat for the lowland species Nepenthes rafflesiana by 2100; in contrast, the highland species Nepenthes tentaculata was predicted to undergo significant loss of climatically-suitable habitat over the same period. Based on the results of the models, we recommend that research be undertaken into practical mitigation strategies, as approximately two-thirds of Nepenthes are restricted to montane habitats. Highland species with narrow elevational ranges will be at particularly high risk, and investigation into possible mitigation strategies should be focused on them. PMID:28817596
Impacts of climate variability and future climate change on harmful algal blooms and human health.
Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E
2008-11-07
Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae.
Paleoclimate diagnostics: consistent large-scale temperature responses in warm and cold climates
NASA Astrophysics Data System (ADS)
Izumi, Kenji; Bartlein, Patrick; Harrison, Sandy
2015-04-01
The CMIP5 model simulations of the large-scale temperature responses to increased raditative forcing include enhanced land-ocean contrast, stronger response at higher latitudes than in the tropics, and differential responses in warm and cool season climates to uniform forcing. Here we show that these patterns are also characteristic of CMIP5 model simulations of past climates. The differences in the responses over land as opposed to over the ocean, between high and low latitudes, and between summer and winter are remarkably consistent (proportional and nearly linear) across simulations of both cold and warm climates. Similar patterns also appear in historical observations and paleoclimatic reconstructions, implying that such responses are characteristic features of the climate system and not simple model artifacts, thereby increasing our confidence in the ability of climate models to correctly simulate different climatic states. We also show the possibility that a small set of common mechanisms control these large-scale responses of the climate system across multiple states.
Impacts of climate variability and future climate change on harmful algal blooms and human health
Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E
2008-01-01
Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae. PMID:19025675
The effect of climatic forcing on population synchrony and genetic structuring of the Canadian lynx
Stenseth, Nils Chr.; Ehrich, Dorothee; Rueness, Eli Knispel; Lingjærde, Ole Chr.; Chan, Kung-Sik; Boutin, Stan; O'Donoghue, Mark; Robinson, David A.; Viljugrein, Hildegunn; Jakobsen, Kjetill S.
2004-01-01
The abundance of Canadian lynx follows 10-year density fluctuations across the Canadian subcontinent. These cyclic fluctuations have earlier been shown to be geographically structured into three climatic regions: the Atlantic, Continental, and Pacific zones. Recent genetic evidence revealed an essentially similar spatial structuring. Introducing a new population model, the “climate forcing of ecological and evolutionary patterns” model, we link the observed ecological and evolutionary patterns. Specifically, we demonstrate that there is greater phase synchrony within climatic zones than between them and show that external climatic forcing may act as a synchronizer. We simulated genetic drift by using data on population dynamics generated by the climate forcing of ecological and evolutionary patterns model, and we demonstrate that the observed genetic structuring can be seen as an emerging property of the spatiotemporal ecological dynamics. PMID:15067131
The Green Sahara: Climate Change, Hydrologic History and Human Occupation
NASA Technical Reports Server (NTRS)
Blom, Ronald G.; Farr, Tom G.; Feynmann, Joan; Ruzmaikin, Alexander; Paillou, Philippe
2009-01-01
Archaeology can provide insight into interactions of climate change and human activities in sensitive areas such as the Sahara, to the benefit of both disciplines. Such analyses can help set bounds on climate change projections, perhaps identify elements of tipping points, and provide constraints on models. The opportunity exists to more precisely constrain the relationship of natural solar and climate interactions, improving understanding of present and future anthropogenic forcing. We are beginning to explore the relationship of human occupation of the Sahara and long-term solar irradiance variations synergetic with changes in atmospheric-ocean circulation patterns. Archaeological and climate records for the last 12 K years are gaining adequate precision to make such comparisons possible. We employ a range of climate records taken over the globe (e.g. Antarctica, Greenland, Cariaco Basin, West African Ocean cores, records from caves) to identify the timing and spatial patterns affecting Saharan climate to compare with archaeological records. We see correlation in changing ocean temperature patterns approx. contemporaneous with drying of the Sahara approx. 6K years BP. The role of radar images and other remote sensing in this work includes providing a geographically comprehensive geomorphic overview of this key area. Such coverage is becoming available from the Japanese PALSAR radar system, which can guide field work to collect archaeological and climatic data to further constrain the climate change chronology and link to models. Our initial remote sensing efforts concentrate on the Gilf Kebir area of Egypt.
Climate-mediated spatiotemporal variability in the terrestrial productivity across Europe
NASA Astrophysics Data System (ADS)
Wu, X.; Mahecha, M. D.; Reichstein, M.; Ciais, P.; Wattenbach, M.; Babst, F.; Frank, D.; Zang, C.
2013-11-01
Quantifying the interannual variability (IAV) of the terrestrial productivity and its sensitivity to climate is crucial for improving carbon budget predictions. However, the influence of climate and other mechanisms underlying the spatiotemporal patterns of IAV of productivity are not well understood. In this study we investigated the spatiotemporal patterns of IAV of historical observations of crop yields, tree ring width, remote sensing retrievals of FAPAR and NDVI, and other variables relevant to the terrestrial productivity in Europe in tandem with a set of climate variables. Our results reveal distinct spatial patterns in the IAV of most variables linked to terrestrial productivity. In particular, we find higher IAV in water-limited regions of Europe (Mediterranean and temperate continental Europe) compared to other regions. Our results further indicate that variations in the water balance during active growing season exert a more pronounced and direct effect than variations of temperature on explaining the spatial patterns in IAV of productivity related variables in temperate Europe. We also observe a~temporally increasing trend in the IAV of terrestrial productivity and an increasing sensitivity of productivity to water availability in dry regions of Europe, which is likely attributable to the recently increased IAV of water availability in these regions. These findings suggest nonlinear responses of carbon fluxes to climate variability in Europe and that the IAV of terrestrial productivity has become more sensitive and more vulnerable to changes in water availability in the dry regions in Europe. The changing climate sensitivity of terrestrial productivity accompanied by the changing IAV of climate could impact carbon stocks and the net carbon balance of European ecosystems.
NASA Astrophysics Data System (ADS)
Dildora, Aralova; Toderich, Kristina; Dilshod, Gafurov
2016-08-01
Steadily rising temperature anomalies in last decades are causing changes in vegetation patterns for sensitive to climate change in arid and semi-arid dryland ecosystems. After desiccation of the Aral Sea, Uzbekistan has been left with the challenge to develop drought and heat stress monitoring system and tools (e.g., to monitor vegetation status and/crop pattern dynamics) with using remote sensing technologies in broad scale. This study examines several climate parameters, NDVI and drought indexes within geostatistical method to predict further vegetation status in arid and semi-arid zones of landscapes. This approaches aimed to extract and utilize certain variable environmental data (temperature and precipitation) for assessment and inter-linkages of vegetation cover dynamics, specifically related to predict degraded and recovered zones or desertification process in the drylands due to scarcity of water resources and high risks of climate anomalies in fragile ecosystem of Uzbekistan.
Meugnier, H; Fernandez, M P; Bes, M; Brun, Y; Bornstein, N; Freney, J; Fleurette, J
1993-01-01
rRNA gene restriction patterns (ribotyping) were compared with phage typing, serotyping, enterotoxins and exfoliatin production in the analysis of 26 Staphylococcus aureus strains isolated from two different nosocomial outbreaks. Total DNA was cleaved by EcoRI restriction endonuclease. After agarose gel electrophoresis and Southern transfer, the hybridization of the membranes was done with radiolabelled 16S rRNA gene from Bacillus subtilis inserted into a plasmid vector. Six to 13 fragments were visualized. A core of common fragments was discerned for all strains tested. A full correlation between ribotyping and conventional markers was observed in only one of the outbreaks studied. In both outbreaks, ribotyping proved helpful in characterizing otherwise untypable strains.
A fresh look at the Last Glacial Maximum using Paleoclimate Data Assimilation
NASA Astrophysics Data System (ADS)
Malevich, S. B.; Tierney, J. E.; Hakim, G. J.; Tardif, R.
2017-12-01
Quantifying climate conditions during the Last Glacial Maximum ( 21ka) can help us to understand climate responses to forcing and climate states that are poorly represented in the instrumental record. Paleoclimate proxies may be used to estimate these climate conditions, but proxies are sparsely distributed and possess uncertainties from environmental and biogeochemical processes. Alternatively, climate model simulations provide a full-field view, but may predict unrealistic climate states or states not faithful to proxy records. Here, we use data assimilation - combining climate proxy records with a theoretical understanding from climate models - to produce field reconstructions of the LGM that leverage the information from both data and models. To date, data assimilation has mainly been used to produce reconstructions of climate fields through the last millennium. We expand this approach in order to produce a climate fields for the Last Glacial Maximum using an ensemble Kalman filter assimilation. Ensemble samples were formed from output from multiple models including CCSM3, CESM2.1, and HadCM3. These model simulations are combined with marine sediment proxies for upper ocean temperature (TEX86, UK'37, Mg/Ca and δ18O of foraminifera), utilizing forward models based on a newly developed suite of Bayesian proxy system models. We also incorporate age model and radiocarbon reservoir uncertainty into our reconstructions using Bayesian age modeling software. The resulting fields show familiar patterns based on comparison with previous proxy-based reconstructions, but additionally reveal novel patterns of large-scale shifts in ocean-atmosphere dynamics, as the surface temperature data inform upon atmospheric circulation and precipitation patterns.
Projected effects of climate and development on California wildfire emissions through 2100.
Hurteau, Matthew D; Westerling, Anthony L; Wiedinmyer, Christine; Bryant, Benjamin P
2014-02-18
Changing climatic conditions are influencing large wildfire frequency, a globally widespread disturbance that affects both human and natural systems. Understanding how climate change, population growth, and development patterns will affect the area burned by and emissions from wildfires and how populations will in turn be exposed to emissions is critical for climate change adaptation and mitigation planning. We quantified the effects of a range of population growth and development patterns in California on emission projections from large wildfires under six future climate scenarios. Here we show that end-of-century wildfire emissions are projected to increase by 19-101% (median increase 56%) above the baseline period (1961-1990) in California for a medium-high temperature scenario, with the largest emissions increases concentrated in northern California. In contrast to other measures of wildfire impacts previously studied (e.g., structural loss), projected population growth and development patterns are unlikely to substantially influence the amount of projected statewide wildfire emissions. However, increases in wildfire emissions due to climate change may have detrimental impacts on air quality and, combined with a growing population, may result in increased population exposure to unhealthy air pollutants.
Velasquez, Eleanor; Bryan, Scott E; Ekins, Merrick; Cook, Alex G; Hurrey, Lucy; Firn, Jennifer
2018-05-01
The theory of island biogeography predicts that area and age explain species richness patterns (or alpha diversity) in insular habitats. Using a unique natural phenomenon, pumice rafting, we measured the influence of area, age, and oceanic climate on patterns of species richness. Pumice rafts are formed simultaneously when submarine volcanoes erupt, the pumice clasts breakup irregularly, forming irregularly shaped pumice stones which while floating through the ocean are colonized by marine biota. We analyze two eruption events and more than 5,000 pumice clasts collected from 29 sites and three climatic zones. Overall, the older and larger pumice clasts held more species. Pumice clasts arriving in tropical and subtropical climates showed this same trend, where in temperate locations species richness (alpha diversity) increased with area but decreased with age. Beta diversity analysis of the communities forming on pumice clasts that arrived in different climatic zones showed that tropical and subtropical clasts transported similar communities, while species composition on temperate clasts differed significantly from both tropical and subtropical arrivals. Using these thousands of insular habitats, we find strong evidence that area and age but also climatic conditions predict the fundamental dynamics of species richness colonizing pumice clasts.
The orbital record in stratigraphy
NASA Technical Reports Server (NTRS)
Fischer, Alfred G.
1992-01-01
Orbital signals are being discovered in pre-Pleistocene sediments. Due to their hierarchical nature these cycle patterns are complex, and the imprecision of geochronology generally makes the assignment of stratigraphic cycles to specific orbital cycles uncertain, but in sequences such as the limnic Newark Group under study by Olsen and pelagic Cretaceous sequence worked on by our Italo-American group the relative frequencies yield a definitive match to the Milankovitch hierarchy. Due to the multiple ways in which climate impinges on depositional systems, the orbital signals are recorded in a multiplicity of parameters, and affect different sedimentary facies in different ways. In platform carbonates, for example, the chief effect is via sea-level variations (possibly tied to fluctuating ice volume), resulting in cycles of emergence and submergence. In limnic systems it finds its most dramatic expression in alternations of lake and playa conditions. Biogenic pelagic oozes such as chalks and the limestones derived from them display variations in the carbonate supplied by planktonic organisms such as coccolithophores and foraminifera, and also record variations in the aeration of bottom waters. Whereas early studies of stratigraphic cyclicity relied mainly on bedding variations visible in the field, present studies are supplementing these with instrumental scans of geochemical, paleontological, and geophysical parameters which yield quantitative curves amenable to time-series analysis; such analysis is, however, limited by problems of distorted time-scales. My own work has been largely concentrated on pelagic systems. In these, the sensitivity of pelagic organisms to climatic-oceanic changes, combined with the sensitivity of botton life to changes in oxygen availability (commonly much more restricted in the Past than now) has left cyclic patterns related to orbital forcing. These systems are further attractive because (1) they tend to offer depositional continuity, and (2) presence of abundant microfossils yields close ties to geochronology. A tantalizing possibility that stratigraphy may yield a record of orbital signals unrelated to climate has turned up in magnetic studies of our Cretaceous core. Magnetic secular variations here carry a strong 39 ka periodicity, corresponding to the theoretical obliquity period of that time - Does the obliquity cycle perhaps have some direct influence on the magnetic field?
Duminil, Jerome; Brown, Richard P; Ewédjè, Eben-Ezer B K; Mardulyn, Patrick; Doucet, Jean-Louis; Hardy, Olivier J
2013-09-12
The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate changes. Overall, deep genetic differentiation (major gene pools) follows ecological gradients that may be at the origin of speciation, while diffuse differentiation (minor gene pools) are tentatively interpreted as the signature of past forest fragmentation induced by past climate changes.
2013-01-01
Background The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. Results Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate changes. Conclusions Overall, deep genetic differentiation (major gene pools) follows ecological gradients that may be at the origin of speciation, while diffuse differentiation (minor gene pools) are tentatively interpreted as the signature of past forest fragmentation induced by past climate changes. PMID:24028582
School Climate: The Controllable and the Uncontrollable
ERIC Educational Resources Information Center
Sulak, Tracey N.
2018-01-01
A positive school climate impacts students by promoting positive relations among students, staff and faculty of the school. The current study used latent class analysis and multinomial regression with R3STEP to analyse patterns of negative behaviours in schools and test the association of these patterns with structural variables like school size,…
Teaching to the Test: Climate Change, Militarism, and the Pedagogy of Hopefulness
ERIC Educational Resources Information Center
Amster, Randall
2014-01-01
Climate change and militarism pose existential threats to human existence, and are linked through a number of related processes including access to resources, patterns of consumption, and the workings of the global economy. As nations increasingly militarize their domestic affairs and international postures alike, such patterns can feed back into…
Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes
Yongguang Zhang; M. Susan Moran; Mark A. Nearing; Guillermo E. Ponce Campos; Alfredo R. Huete; Anthony R. Buda; David D. Bosch; Stacey A. Gunter; Stanley G. Kitchen; W. Henry McNab; Jack A. Morgan; Mitchel P. McClaran; Diane S. Montoya; Debra P.C. Peters; Patrick J. Starks
2013-01-01
Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more heavy rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated the effects of these climatic conditions on aboveground net primary...
Hu, Yu-Kun; Zhang, Ya-Lin; Liu, Guo-Fang; Pan, Xu; Yang, Xuejun; Li, Wen-Bing; Dai, Wen-Hong; Tang, Shuang-Li; Xiao, Tao; Chen, Ling-Yun; Xiong, Wei; Song, Yao-Bin; Dong, Ming
2017-02-24
Geographic patterns in leaf stoichiometry reflect plant adaptations to environments. Leaf stoichiometry variations along environmental gradients have been extensively studied among terrestrial plants, but little has been known about intraspecific leaf stoichiometry, especially for wetland plants. Here we analyzed the dataset of leaf N and P of a cosmopolitan wetland species, Phragmites australis, and environmental (geographic, climate and soil) variables from literature and field investigation in natural wetlands distributed in three climatic regions (subtropical, temperate and highland) across China. We found no clear geographic patterns in leaf nutrients of P. australis across China, except for leaf N:P ratio increasing with altitude. Leaf N and N:P decreased with mean annual temperature (MAT), and leaf N and P were closely related to soil pH, C:N ratio and available P. Redundancy analysis showed that climate and soil variables explained 62.1% of total variation in leaf N, P and N:P. Furthermore, leaf N in temperate region and leaf P in subtropical region increased with soil available P, while leaf N:P in subtropical region decreased with soil pH. These patterns in P. australis different from terrestrial plants might imply that changes in climate and soil properties can exert divergent effects on wetland and terrestrial ecosystems.
Low-to-Moderate Arsenic Exposure and Respiratory Health in American Indian Communities.
Powers, Martha; Sanchez, Tiffany R; Grau-Perez, Maria; Yeh, Fawn; Francesconi, Kevin; Goessler, Walter; George, Christine M; Heaney, Christopher; Best, Lyle G; Umans, Jason; Brown, Robert H; Navas-Acien, Ana
2018-04-01
Exposure to inorganic arsenic, through drinking naturally-contaminated water, is an established cause of lung cancer. Evidence on the impact of arsenic exposure on lung function, however, is less conclusive. The evidence available, mostly from populations exposed to water arsenic levels >100 μg/L, suggests that arsenic exposure is associated with lower lung function. Prospective studies and studies examining low-to-moderate levels of water arsenic exposure (<50 μg/L) the level relevant for U.S. populations, are very limited. We evaluated the association between chronic low-to-moderate arsenic exposure with lung function and disease in an American Indian population. The Strong Heart Study is a multicenter prospective study of cardiovascular disease and its risk factors among American Indian adults. The present analysis, in 2,166 adults, used urinary arsenic measurements at baseline (1989-1991) and lung symptoms and function assessment by standardized spirometry at the second examination (1993-1995). We evaluated associations between arsenic exposure and airflow obstruction, defined as ratio of forced expiratory volume in 1 second (FEV 1 ) to forced vital capacity (FVC) of less than 0.70, and restrictive pattern, defined as FEV 1 /FVC ratio greater than 0.70 and FVC less than 80% predicted; respiratory symptoms; and self-reported physician diagnosis of nonmalignant respiratory disease. The prevalence of airflow obstruction between 1993 and 1995 was 21.4% (463/2,166); restrictive pattern was 14.5% (314/2,166). Median urinary arsenic concentrations were higher in participants with airflow obstruction (11.0 μg/g creatinine) compared to those without obstruction (9.8 μg/g creatinine), and higher in those with restrictive pattern (12.0 μg/g) compared to those without restrictive pattern (9.4 μg/g). The odds ratio (95% confidence interval) for obstructive and restrictive patterns comparing the 75th to 25th percentile of arsenic was 1.13 (0.96-1.32) and 1.27 (1.01-1.60), respectively, after adjustment for age, sex, education, study site, smoking status, smoking pack-year, estimated glomerular filtration rate, tuberculosis, and body mass index. Emphysema, cough 4-6 times a day, phlegm, and stopping for breath were also positively associated with arsenic. In this American Indian population, exposure to low-to-moderate levels of inorganic arsenic, as measured in urine, was positively associated with restrictive pattern as measured by spirometry, self-reported emphysema diagnosis, self-reported shortness of breath, and more frequent cough and phlegm among those with cough, independent of smoking status. These findings suggest that low-to-moderate arsenic exposure can contribute to nonmalignant lung disease, and may be associated with restrictive lung disease.
Climate-induced glacier and snow loss imperils alpine stream insects
Giersch, J. Joseph; Hotaling, Scott; Kovach, Ryan; Jones, Leslie A.; Muhlfeld, Clint C.
2017-01-01
Climate warming is causing rapid loss of glaciers and snowpack in mountainous regions worldwide. These changes are predicted to negatively impact the habitats of many range-restricted species, particularly endemic, mountaintop species dependent on the unique thermal and hydrologic conditions found only in glacier-fed and snowmelt-driven alpine streams. Though progress has been made, existing understanding of the status, distribution, and ecology of alpine aquatic species, particularly in North America, is lacking, thereby hindering conservation and management programs. Two aquatic insects – the meltwater stonefly Lednia tumana and the glacier stonefly Zapada glacier – were recently proposed for listing under the U.S. Endangered Species Act due to climate-change-induced habitat loss. Using a large dataset (272 streams, 482 total sites) with high-resolution climate and habitat information, we describe the distribution, status, and key environmental features that limit L. tumana and Z. glacier across the northern Rocky Mountains. Lednia tumana was detected in 113 streams (175 sites) within Glacier National Park (GNP) and surrounding areas. The probability of L. tumana occurrence increased with cold stream temperatures and close proximity to glaciers and permanent snowfields. Similarly, densities of L. tumana declined with increasing distance from stream source. Zapada glacier was only detected in 10 streams (20 sites), six in GNP and four in mountain ranges up to ~600 km southwest. Our results show that both L. tumana and Z. glacier inhabit an extremely narrow distribution, restricted to short sections of cold, alpine streams often below glaciers predicted to disappear over the next two decades. Climate warming-induced glacier and snow loss clearly imperils the persistence of L. tumana and Z. glacier throughout their ranges, highlighting the role of mountaintop aquatic invertebrates as sentinels of climate change in mid-latitude regions.
Aagesen, Lone; Biganzoli, Fernando; Bena, Julia; Godoy-Bürki, Ana C; Reinheimer, Renata; Zuloaga, Fernando O
2016-01-01
Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.
NASA Astrophysics Data System (ADS)
Graham, N. M.
2015-12-01
The evolution and speciation of plants is directly tied to the environment as the constrained stages of dispersal creates strong genetic differentiation among populations. This can result in differing genetic patterns between nuclear and chloroplast loci, where genes are inherited differently and dispersed via separate vectors. By developing distribution models based on genetic patterns found within a species, it is possible to begin understanding the influence of historic geomorphic and/or climatic processes on population evolution. If genetic patterns of the current range correlate with specific patterns of climate variability within the Pleistocene, it is possible that future shifts in species distribution in response to climate change can be more accurately modelled due to the historic signature that is found within inherited genes. Preliminary genetic analyses of Linanthus dichotomus, an annual herb distributed across California, suggests that the current taxonomic treatment does not accurately depict how this species is evolving. Genetic patterns of chloroplast genes suggest that populations are more correlated with biogeography than what the current nomenclature states. Additionally, chloroplast and nuclear genes show discrepancies in the dispersal across the landscape, suggesting pollinator driven gene flow overcoming seed dispersal boundaries. By comparing discrepancies between pollinator and seed induced gene flow we may be able to gain insight into historical pollinator communities within the Pleistocene. This information can then be applied to projected climate models to more accurately understand how species and/or communities will respond to a changing environment.
Rachel Loehman
2009-01-01
Climate changes in the Prairie Potholes and Grasslands bioregion include increased seasonal, annual, minimum, and maximum temperature and changing precipitation patterns. Because the region is relatively dry with a strong seasonal climate, it is sensitive to climatic changes and vulnerable to changes in climatic regime. For example, model simulations show that regional...
Brown, Kerry A.; Parks, Katherine E.; Bethell, Colin A.; Johnson, Steig E.; Mulligan, Mark
2015-01-01
Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar’s plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future. PMID:25856241
Brown, Kerry A; Parks, Katherine E; Bethell, Colin A; Johnson, Steig E; Mulligan, Mark
2015-01-01
Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.
NASA Astrophysics Data System (ADS)
Petrie, M. D.; Brunsell, N. A.; Vargas, R.; Collins, S. L.
2013-12-01
Grassland and rangeland ecoregions extend across the North American continent and exhibit diversity in climate, ecosystem services, and biophysical processes. In many grasslands and rangelands, the potential for reductions in ecosystem services and for large-scale ecosystem state change may increase under future climate scenarios. Climate change projections for North America vary, however, and the way changing climate will influence specific ecoregions is largely unknown. To better understand the regional effects of climate change on grasslands and rangelands, it is important to better understand the biophysical characteristics of these systems locally, and to identify the sensitivity of these characteristics to observed climate variation. In our study, we propose to use eddy covariance, soil moisture and precipitation data to identify how the grasslands and rangelands of North America differ in their responses to climate variability through time, with specific focus on the active growing season. Our primary goal is to determine the sensitivity of ecosystem Net Primary Productivity [NPP] to variation in temperature and precipitation patterns, and classify North American grasslands and rangelands by these sensitivities in addition to more standard climate and productivity variables. Our preliminary analyses in mesic, semiarid and arid grasslands in Kansas, Colorado and New Mexico show significant (P < 0.05) differences in climate, carbon sink strength and growing season length, and suggest that patterns of seasonal productivity and precipitation sensitivity may elucidate important grassland and rangeland responses to changing climate. Using change in Gross Primary Productivity (GPP) as an indicator of the onset of photosynthesis in spring and of senescense in the fall, grassland and rangeland ecosystems in Kansas (top and bottom left panels) and New Mexico (bottom right panel) display differing patterns of activity throughout the year.
Climate change and water availability for vulnerable agriculture
NASA Astrophysics Data System (ADS)
Dalezios, Nicolas; Tarquis, Ana Maria
2017-04-01
Climatic projections for the Mediterranean basin indicate that the area will suffer a decrease in water resources due to climate change. The key climatic trends identified for the Mediterranean region are continuous temperature increase, further drying with precipitation decrease and the accentuation of climate extremes, such as droughts, heat waves and/or forest fires, which are expected to have a profound effect on agriculture. Indeed, the impact of climate variability on agricultural production is important at local, regional, national, as well as global scales. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage patterns. Changes in total seasonal precipitation or in its pattern of variability are both important. Similarly, with higher temperatures, the water-holding capacity of the atmosphere and evaporation into the atmosphere increase, and this favors increased climate variability, with more intense precipitation and more droughts. As a result, crop yields are affected by variations in climatic factors, such as air temperature and precipitation, and the frequency and severity of the above mentioned extreme events. The aim of this work is to briefly present the main effects of climate change and variability on water resources with respect to water availability for vulnerable agriculture, namely in the Mediterranean region. Results of undertaken studies in Greece on precipitation patterns and drought assessment using historical data records are presented. Based on precipitation frequency analysis, evidence of precipitation reductions is shown. Drought is assessed through an agricultural drought index, namely the Vegetation Health Index (VHI), in Thessaly, a drought-prone region in central Greece. The results justify the importance of water availability for vulnerable agriculture and the need for drought monitoring in the Mediterranean basin as part of an integrated climate adaptation strategy.
Riordan, Erin Coulter; Rundel, Philip W.
2014-01-01
Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21st century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the importance of addressing both drivers in conservation and resource management planning. PMID:24466116
Salas-Morales, Silvia H; Meave, Jorge A; Trejo, Irma
2015-12-01
Globally, climate is a fundamental driver of plant species' geographical distributions, yet we still lack a good understanding of climatic variation on tropical mountains and its consequences for elevational floristic patterns. In a seasonally dry region of southern Mexico, we analysed meteorological patterns along a large elevational gradient (0-3670 m a.s.l.) and examined their relationship with changes in floristic richness. Meteorological patterns were characterised using two data sources. First, climatic information was extracted from cartography and records from a few existing meteorological stations. Additionally, air temperature and humidity were recorded hourly during 1 year with data loggers, at sites representing 200-m elevation increments. Floristic information was extracted from a database containing 10,124 records of plant collections, and organized in 200-m elevational belts. Climatic charts distinguished three climate types along the gradient, all with marked rainfall seasonality, but these bore little correspondence with the information obtained with the data loggers. Mean annual air temperature decreased with increasing elevation (lapse rate of 0.542 °C 100 m(-1)). Thermal oscillation was minimum around 1400 m and increased towards both extremes of the gradient. Relative humidity opposed this pattern, with maxima between 800 and 1800 m, decreasing towards the highest elevations. An analysis of temperature frequency distributions revealed meteorological features undetectable from the annual or monthly means of this variable; despite an overall gradual transition of the proportions of time recorded at different temperatures, some changes did not conform to this pattern. The first discontinuity occurred between 1000-1200 m, where dominant temperatures shifted abruptly; also noticeable was an abrupt increase of the proportion of time elapsed at 0.1-10 °C between 2400 and 2600 m. Air temperature appears to be the most influential climatic factor driving elevational variation of plant species richness in this region.
Rakotoarinivo, Mijoro; Blach-Overgaard, Anne; Baker, William J.; Dransfield, John; Moat, Justin; Svenning, Jens-Christian
2013-01-01
The distribution of rainforest in many regions across the Earth was strongly affected by Pleistocene ice ages. However, the extent to which these dynamics are still important for modern-day biodiversity patterns within tropical biodiversity hotspots has not been assessed. We employ a comprehensive dataset of Madagascan palms (Arecaceae) and climate reconstructions from the last glacial maximum (LGM; 21 000 years ago) to assess the relative role of modern environment and LGM climate in explaining geographical species richness patterns in this major tropical biodiversity hotspot. We found that palaeoclimate exerted a strong influence on palm species richness patterns, with richness peaking in areas with higher LGM precipitation relative to present-day even after controlling for modern environment, in particular in northeastern Madagascar, consistent with the persistence of tropical rainforest during the LGM primarily in this region. Our results provide evidence that diversity patterns in the World's most biodiverse regions may be shaped by long-term climate history as well as contemporary environment. PMID:23427173
European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling
Bastos, Ana; Janssens, Ivan A.; Gouveia, Célia M.; Trigo, Ricardo M.; Ciais, Philippe; Chevallier, Frédéric; Peñuelas, Josep; Rödenbeck, Christian; Piao, Shilong; Friedlingstein, Pierre; Running, Steven W.
2016-01-01
Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO–EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models. PMID:26777730
European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling.
Bastos, Ana; Janssens, Ivan A; Gouveia, Célia M; Trigo, Ricardo M; Ciais, Philippe; Chevallier, Frédéric; Peñuelas, Josep; Rödenbeck, Christian; Piao, Shilong; Friedlingstein, Pierre; Running, Steven W
2016-01-18
Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO-EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models.
Sofaer, Helen R.; Jarnevich, Catherine S.
2017-01-01
AimThe distributions of exotic species reflect patterns of human-mediated dispersal, species climatic tolerances and a suite of other biotic and abiotic factors. The relative importance of each of these factors will shape how the spread of exotic species is affected by ongoing economic globalization and climate change. However, patterns of trade may be correlated with variation in scientific sampling effort globally, potentially confounding studies that do not account for sampling patterns.LocationGlobal.Time periodMuseum records, generally from the 1800s up to 2015.Major taxa studiedPlant species exotic to the United States.MethodsWe used data from the Global Biodiversity Information Facility (GBIF) to summarize the number of plant species with exotic occurrences in the United States that also occur in each other country world-wide. We assessed the relative importance of trade and climatic similarity for explaining variation in the number of shared species while evaluating several methods to account for variation in sampling effort among countries.ResultsAccounting for variation in sampling effort reversed the relative importance of trade and climate for explaining numbers of shared species. Trade was strongly correlated with numbers of shared U.S. exotic plants between the United States and other countries before, but not after, accounting for sampling variation among countries. Conversely, accounting for sampling effort strengthened the relationship between climatic similarity and species sharing. Using the number of records as a measure of sampling effort provided a straightforward approach for the analysis of occurrence data, whereas species richness estimators and rarefaction were less effective at removing sampling bias.Main conclusionsOur work provides support for broad-scale climatic limitation on the distributions of exotic species, illustrates the need to account for variation in sampling effort in large biodiversity databases, and highlights the difficulty in inferring causal links between the economic drivers of invasion and global patterns of exotic species occurrence.
Anacona, Pablo Iribarren; Kinney, Josie; Schaefer, Marius; Harrison, Stephan; Wilson, Ryan; Segovia, Alexis; Mazzorana, Bruno; Guerra, Felipe; Farías, David; Reynolds, John M; Glasser, Neil F
2018-03-13
The environmental, socioeconomic and cultural significance of glaciers has motivated several countries to regulate activities on glaciers and glacierized surroundings. However, laws written to specifically protect mountain glaciers have only recently been considered within national political agendas. Glacier Protection Laws (GPLs) originate in countries where mining has damaged glaciers and have been adopted with the aim of protecting the cryosphere from harmful activities. Here, we analyze GPLs in Argentina (approved) and Chile (under discussion) to identify potential environmental conflicts arising from law restrictions and omissions. We conclude that GPLs overlook the dynamics of glaciers and could prevent or delay actions needed to mitigate glacial hazards (e.g. artificial drainage of glacial lakes) thus placing populations at risk. Furthermore, GPL restrictions could hinder strategies (e.g. use of glacial lakes as reservoirs) to mitigate adverse impacts of climate change. Arguably, more flexible GPLs are needed to protect us from the changing cryosphere.
Process-based evaluation of the ÖKS15 Austrian climate scenarios: First results
NASA Astrophysics Data System (ADS)
Mendlik, Thomas; Truhetz, Heimo; Jury, Martin; Maraun, Douglas
2017-04-01
The climate scenarios for Austria from the ÖKS15 project consists of 13 downscaled and bias-corrected RCMs from the EURO-CORDEX project. This dataset is meant for the broad public and is now available at the central national archive for climate data (CCCA Data Center). Because of this huge public outreach it is absolutely necessary to objectively discuss the limitations of this dataset and to publish these limitations, which should also be understood by a non-scientific audience. Even though systematical climatological biases have been accounted for by the Scaled-Distribution-Mapping (SDM) bias-correction method, it is not guaranteed that the model biases have been removed for the right reasons. If climate scenarios do not get the patterns of synoptic variability right, biases will still prevail in certain weather patterns. Ultimately this will have consequences for the projected climate change signals. In this study we derive typical weather types in the Alpine Region based on patterns from mean sea level pressure from ERA-INTERIM data and check the occurrence of these synoptic phenomena in EURO-CORDEX data and their corresponding driving GCMs. Based on these weather patterns we analyze the remaining biases of the downscaled and bias-corrected scenarios. We argue that such a process-based evaluation is not only necessary from a scientific point of view, but can also help the broader public to understand the limitations of downscaled climate scenarios, as model errors can be interpreted in terms of everyday observable weather.
Paula-Pérez, Isabel
2013-01-01
The obsessive compulsive disorder (OCD) and the restricted and repetitive patterns of behavior, interests and activities inherent to autism spectrum disorders (ASD) share a number of features that can make the differential diagnosis between them extremely difficult and lead to erroneous overdiagnosis of OCD in people with autism. In both cases there may appear to have a fixation on routine, ritualized patterns of verbal and nonverbal behavior, resistance to change, and highly restrictive interests, which becomes a real challenge for differentiating rituals, stereotypes and adherence to routines in ASD from obsessions and compulsions in OCD. This article provides key points to clarify this differential diagnosis through the analysis of emotional valence, content, function and psychological theories that explain the obsessions and compulsions in OCD, and the desire for sameness, stereotyped movements and limited interest in autism. The terms "obsession" and "compulsion" should no longer be used when referring to patterns of behavior, interests or restricted and repetitive activities in autism due to syntonic characteristics, low perception of personal responsibility and low neutralizing efforts. Treatment focuses on changing the environment, the use of socio-communicative compensatory strategies and behavioral modification techniques to improve cognitive and behavioral flexibility. When there is comorbidity between, exposure behavioral and response prevention techniques are then used, followed by others of more cognitive orientation if necessary. Copyright © 2012 SEP y SEPB. Published by Elsevier Espana. All rights reserved.
Global mapping of nonseismic sea level oscillations at tsunami timescales.
Vilibić, Ivica; Šepić, Jadranka
2017-01-18
Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (<2 h) may substantially contribute to global sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates.
Global mapping of nonseismic sea level oscillations at tsunami timescales
Vilibić, Ivica; Šepić, Jadranka
2017-01-01
Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (<2 h) may substantially contribute to global sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates. PMID:28098195
Martin, Corby K.; Anton, Stephen D.; Han, Hongmei; York-Crowe, Emily; Redman, Leanne M.; Ravussin, Eric; Williamson, Donald A.
2009-01-01
Background Calorie restriction increases longevity in many organisms, and calorie restriction or its mimetic might increase longevity in humans. It is unclear if calorie restriction/dieting contributes to cognitive impairment. During this randomized controlled trial, the effect of 6 months of calorie restriction on cognitive functioning was tested. Methods Participants (n = 48) were randomized to one of four groups: (1) control (weight maintenance), (2) calorie restriction (CR; 25% restriction), (3) CR plus structured exercise (CR + EX, 12.5% restriction plus 12.5% increased energy expenditure via exercise), or (4) low-calorie diet (LCD; 890 kcal/d diet until 15% weight loss, followed by weight maintenance). Cognitive tests (verbal memory, visual memory, attention/concentration) were conducted at baseline and months 3 and 6. Mixed linear models tested if cognitive function changed significantly from baseline to months 3 and 6, and if this change differed by group. Correlation analysis was used to determine if average daily energy deficit (quantified from change in body energy stores) was associated with change in cognitive test performance for the three dieting groups combined. Results No consistent pattern of verbal memory, visual retention/memory, or attention/concentration deficits emerged during the trial. Daily energy deficit was not significantly associated with change in cognitive test performance. Conclusions This randomized controlled trial suggests that calorie restriction/dieting was not associated with a consistent pattern of cognitive impairment. These conclusions must be interpreted in the context of study limitations, namely small sample size and limited statistical power. Previous reports of cognitive impairment might reflect sampling biases or information processing biases. PMID:17518698
Choudoir, Mallory J; Buckley, Daniel H
2018-06-07
The latitudinal diversity gradient is a pattern of biogeography observed broadly in plants and animals but largely undocumented in terrestrial microbial systems. Although patterns of microbial biogeography across broad taxonomic scales have been described in a range of contexts, the mechanisms that generate biogeographic patterns between closely related taxa remain incompletely characterized. Adaptive processes are a major driver of microbial biogeography, but there is less understanding of how microbial biogeography and diversification are shaped by dispersal limitation and drift. We recently described a latitudinal diversity gradient of species richness and intraspecific genetic diversity in Streptomyces by using a geographically explicit culture collection. Within this geographically explicit culture collection, we have identified Streptomyces sister-taxa whose geographic distribution is delimited by latitude. These sister-taxa differ in geographic distribution, genomic diversity, and ecological traits despite having nearly identical SSU rRNA gene sequences. Comparative genomic analysis reveals genomic differentiation of these sister-taxa consistent with restricted gene flow across latitude. Furthermore, we show phylogenetic conservatism of thermal traits between the sister-taxa suggesting that thermal trait adaptation limits dispersal and gene flow across climate regimes as defined by latitude. Such phylogenetic conservatism of thermal traits is commonly associated with latitudinal diversity gradients for plants and animals. These data provide further support for the hypothesis that the Streptomyces latitudinal diversity gradient was formed as a result of historical demographic processes defined by dispersal limitation and driven by paleoclimate dynamics.
An east-west climate see-saw in the Mediterranean during the last 2.6 ka: evidence and mechanisms
NASA Astrophysics Data System (ADS)
Roberts, C.; Moreno-Caballud, A.; Valero-Garces, B. L.; Luterbacher, J.; Xoplaki, E.; Allcock, S. L.
2012-12-01
Global precipitation anomalies during the Common Era show a spatial coherency that appears to be about an order of magnitude lower (i.e. smaller) than for temperature changes, as some areas became wetter while others experienced drought (Seager et al., 2007, Quat. Sci. Rev. 26, 2322-36). The Mediterranean basin (10°W-40°E; 30°-45°N) is influenced by some of the main mechanisms acting upon the global climate system and its regional water resources are sensitive to hydro-climatic variations. Reconstructing the timing, intensity, and patterns of hydrological variability in the Mediterranean is important for testing spatial-temporal coherency in palaeo-precipitation, and for understanding underlying climate forcing mechanisms. The region offers a broad spectrum of documentary information and natural archives which allow high-resolution climate reconstructions (Luterbacher et al., 2012, In: Lionello et al. (eds) The Mediterranean Climate: from past to future. Elsevier, pp. 87-185). During the period of instrumental records, the NAO has strongly influenced inter-annual precipitation variations in the western Mediterranean, while parts of the eastern basin have shown an anti-phase relationship in precipitation and atmospheric pressure. A wide array of proxy-climate data from Iberia and Morocco indicate overall drier conditions during the Medieval Climate Anomaly (MCA) and a generally wetter climate in the Little Ice Age (LIA)(Moreno et al., 2012, Quat. Sci. Rev. 43, 16-32). This pattern is consistent with strong NAO forcing of western Mediterranean climate over the last 1.1 ka (Trouet et al., 2009; Science 324, 78-80). High-resolution palaeolimnological evidence from central Anatolia exhibit an opposite pattern, implying that an east-west climate see-saw operated in the Mediterranean basin during the LIA and MCA (Roberts et al., 2012; Glob. Planet. Change 84-85, 23-34). However, the strongest evidence for higher (lower) winter season precipitation during the MCA (LIA) does not come from the southeast sector of the Mediterranean basin, as would be expected from the pattern of NAO forcing seen during the instrumental period. Prior to the MCA, many proxy-climate records show changes of significantly larger amplitude than during the last millennium, notably during and after the Roman period. However, absolute chronologies become less precise with dating errors of ±>50 yr (Dermody et al., 2012; Clim. Past 8, 637-651), making correlations less robust. Before 2.6 ka BP, i.e. coincident with the northern European grenzhorizont, proxy-climate records from the Mediterranean show changes which imply a significant shift in atmospheric boundary conditions (e.g. radiative forcing). It is clear that hydro-climatic trends have been non-uniform across the Mediterranean in recent millennia. The contrasting spatio-temporal patterns across the basin appear to have been determined by a combination of different climate modes along with major physical geographical controls, not by NAO forcing alone, and/or the character of the NAO and its teleconnections have been non-stationary.
Marie Oliver; David W. Peterson; Becky Kerns
2016-01-01
Earth's climate is changing, as evidenced by warming temperatures, increased temperature variability, fluctuating precipitation patterns, and climate-related environmental disturbances. And with considerable uncertainty about the future, Forest Service land managers are now considering climate change adaptation in their planning efforts. They want practical...
Transforming School Climate: Educational and Psychoanalytic Perspectives: Introduction
ERIC Educational Resources Information Center
Cohen, Jonathan
2009-01-01
School climate refers to the character and quality of school life. It is based on these patterns and reflects norms, goals, values, interpersonal relationships, teaching, learning, leadership practices, and organizational structures. School climate is at the nexus of individual and group experience. School climate is based on the individual's…
School Climate: Research, Policy, Practice, and Teacher Education
ERIC Educational Resources Information Center
Cohen, Jonathan; McCabe, Libby; Michelli, Nicholas M.; Pickeral, Terry
2009-01-01
Background/Context: Educators have written about and studied school climate for 100 years. School climate refers to the quality and character of school life. School climate is based on patterns of people's experiences of school life and reflects norms, goals, values, interpersonal relationships, teaching and learning practices, and organizational…
How is the rate of climatic-niche evolution related to climatic-niche breadth?
Fisher-Reid, M Caitlin; Kozak, Kenneth H; Wiens, John J
2012-12-01
The rate of climatic-niche evolution is important to many research areas in ecology, evolution, and conservation biology, including responses of species to global climate change, spread of invasive species, speciation, biogeography, and patterns of species richness. Previous studies have implied that clades with higher rates of climatic-niche evolution among species should have species with narrower niche breadths, but there is also evidence suggesting the opposite pattern. However, the relationships between rate and breadth have not been explicitly analyzed. Here, we examine the relationships between the rate of climatic-niche evolution and climatic-niche breadth using phylogenetic and climatic data for 250 species in the salamander family Plethodontidae, a group showing considerable variation in both rates of climatic-niche evolution and climatic-niche breadths. Contrary to some expectations, we find no general relationship between climatic-niche breadth and the rate of climatic-niche evolution. Climatic-niche breadths for some ecologically important climatic variables considered separately (temperature seasonality and annual precipitation) do show significant relationships with the rate of climatic-niche evolution, but rates are faster in clades in which species have broader (not narrower) niche breadths. In summary, our results show that narrower niche breadths are not necessarily associated with faster rates of niche evolution. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Bawden, A. J.; Burn, D. H.; Prowse, T. D.
2012-12-01
Climate variability and change can have profound impacts on the hydrologic regime of a watershed. These effects are likely to be especially severe in regions particularly sensitive to changes in climate, such as the Canadian north, or when there are other stresses on the hydrologic regime, such as may occur when there are large withdrawals from, or land-use changes within, a watershed. A recent report of the Intergovernmental Panel on Climate Change (IPCC) stressed that future climate is likely to accelerate the hydrologic cycle and hence may affect water security in certain locations. For some regions, this will mean enhanced access to water resources, but because the effects will not be spatially uniform, other regions will experience reduced access. Understanding these patterns is critical for water managers and government agencies in western Canada - an area of highly contrasting hydroclimatic regimes and overlapping water-use and jurisdictional borders - as adapting to climate change may require reconsideration of inter-regional transfers and revised allocation of water resources to competing industrial sectors, including agriculture, hydroelectric production, and oil and gas. This research involves the detection and examination of spatial and temporal streamflow trends in western Canadian rivers as a response to changing climatic factors, including temperature, precipitation, snowmelt, and the synoptic patterns controlling these drivers. The study area, known as the CROCWR region, extends from the Pacific coast of British Columbia as far east as the Saskatchewan-Manitoba border and from the Canada-United States international border through a large portion of the Northwest Territories. This analysis examines hydrologic trends in monthly and annual streamflow for a collection of 34 hydrometric gauging stations believed to adequately represent the overall effects of climate variability and change on flows in western Canada by means of the Mann-Kendall non-parametric trend test. Large-scale spatial patterns are determined through examination of trends and contrasts between upper and lower reaches of individual sub-basins, as well as via analysis of streamflow redistributions within the CROCWR region as an entirety (i.e. north, south, east and/or west-moving patterns). Results are used to predict future implications of hydroclimatic variability and change on western Canada's water resources and recommend measures to be taken by water managers in response to these changes. This research is part of a larger hydroclimatic study that includes an analysis of the climatic drivers contributing to shifting flow regimes in western Canada as well as a study of the controlling synoptic patterns and teleconnections associated with changes in these driving forces.
Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation
Henley, Benjamin J.; Meehl, Gerald; Power, Scott B.; ...
2017-01-31
Accelerated warming and hiatus periods in the long-term rise of Global Mean Surface Temperature (GMST) have, in recent decades, been associated with the Interdecadal Pacific Oscillation (IPO). Critically, decadal climate prediction relies on the skill of state-of-the-art climate models to reliably represent these low-frequency climate variations. We undertake a systematic evaluation of the simulation of the IPO in the suite of Coupled Model Intercomparison Project 5 (CMIP5) models. We track the IPO in pre-industrial (control) and all-forcings (historical) experiments using the IPO tripole index (TPI). The TPI is explicitly aligned with the observed spatial pattern of the IPO, and circumventsmore » assumptions about the nature of global warming. We find that many models underestimate the ratio of decadal-to-total variance in sea surface temperatures (SSTs). However, the basin-wide spatial pattern of positive and negative phases of the IPO are simulated reasonably well, with spatial pattern correlation coefficients between observations and models spanning the range 0.4–0.8. Deficiencies are mainly in the extratropical Pacific. Models that better capture the spatial pattern of the IPO also tend to more realistically simulate the ratio of decadal to total variance. Of the 13% of model centuries that have a fractional bias in the decadal-to-total TPI variance of 0.2 or less, 84% also have a spatial pattern correlation coefficient with the observed pattern exceeding 0.5. This result is highly consistent across both IPO positive and negative phases. This is evidence that the IPO is related to one or more inherent dynamical mechanisms of the climate system.« less
Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henley, Benjamin J.; Meehl, Gerald; Power, Scott B.
Accelerated warming and hiatus periods in the long-term rise of Global Mean Surface Temperature (GMST) have, in recent decades, been associated with the Interdecadal Pacific Oscillation (IPO). Critically, decadal climate prediction relies on the skill of state-of-the-art climate models to reliably represent these low-frequency climate variations. We undertake a systematic evaluation of the simulation of the IPO in the suite of Coupled Model Intercomparison Project 5 (CMIP5) models. We track the IPO in pre-industrial (control) and all-forcings (historical) experiments using the IPO tripole index (TPI). The TPI is explicitly aligned with the observed spatial pattern of the IPO, and circumventsmore » assumptions about the nature of global warming. We find that many models underestimate the ratio of decadal-to-total variance in sea surface temperatures (SSTs). However, the basin-wide spatial pattern of positive and negative phases of the IPO are simulated reasonably well, with spatial pattern correlation coefficients between observations and models spanning the range 0.4–0.8. Deficiencies are mainly in the extratropical Pacific. Models that better capture the spatial pattern of the IPO also tend to more realistically simulate the ratio of decadal to total variance. Of the 13% of model centuries that have a fractional bias in the decadal-to-total TPI variance of 0.2 or less, 84% also have a spatial pattern correlation coefficient with the observed pattern exceeding 0.5. This result is highly consistent across both IPO positive and negative phases. This is evidence that the IPO is related to one or more inherent dynamical mechanisms of the climate system.« less
Climate science: Misconceptions of global catastrophe
NASA Astrophysics Data System (ADS)
Rocklöv, Joacim
2016-04-01
American attitudes to changing weather, and therefore to climate change, have been analysed on the basis of US migration patterns since the 1970s. The findings have implications for the success of global climate policies. See Letter p.357
Metag, Julia; Füchslin, Tobias; Schäfer, Mike S
2017-05-01
People's attitudes toward climate change differ, and these differences may correspond to distinct patterns of media use and information seeking. However, studies extending analyses of attitude types and their specific media diets to countries beyond the United States are lacking. We use a secondary analysis of survey data from Germany to identify attitudes toward climate change among the German public and specify those segments of the population based on their media use and information seeking. Similar to the Global Warming's Six Americas study, we find distinct attitudes (Global Warming's Five Germanys) that differ in climate change-related perceptions as well as in media use and communicative behavior. These findings can help tailor communication campaigns regarding climate change to specific audiences.
Response-Guided Community Detection: Application to Climate Index Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bello, Gonzalo; Angus, Michael; Pedemane, Navya
Discovering climate indices-time series that summarize spatiotemporal climate patterns-is a key task in the climate science domain. In this work, we approach this task as a problem of response-guided community detection; that is, identifying communities in a graph associated with a response variable of interest. To this end, we propose a general strategy for response-guided community detection that explicitly incorporates information of the response variable during the community detection process, and introduce a graph representation of spatiotemporal data that leverages information from multiple variables. We apply our proposed methodology to the discovery of climate indices associated with seasonal rainfall variability.more » Our results suggest that our methodology is able to capture the underlying patterns known to be associated with the response variable of interest and to improve its predictability compared to existing methodologies for data-driven climate index discovery and official forecasts.« less
Rainfall Patterns Analysis over Ampangan Muda, Kedah from 2007 - 2016
NASA Astrophysics Data System (ADS)
Chooi Tan, Kok
2018-04-01
The scientific knowledge about climate change and climate variability over Malaysia pertaining to the extreme water-related disaster such as drought and flood. A deficit or increment in precipitation occurred over the past century becomes a useful tool to understand the climate change in Malaysia. The purpose of this work is to examine the rainfall patterns over Ampangan Muda, Kedah. Daily rainfall data is acquired from Malaysian Meteorological Department to analyse the temporal and trends of the monthly and annual rainfall over the study area from 2007 to 2016. The obtained results show that the temporal and patterns of the rainfall over Ampangan Muda, Kedah is largely affected by the regional phenomena such as monsoon, El Niño Southern Oscillation (ENSO), and the Madden-Julian Oscillation. In addition, backward trajectories analysis is also used to identify the patterns for long-range of synoptic circulation over the region.
NASA Astrophysics Data System (ADS)
Liu, Zhongfang; Kennedy, Casey D.; Bowen, Gabriel J.
2011-10-01
Large-scale climate teleconnections such as the Pacific/North American (PNA) pattern strongly influence atmospheric processes and continental climate. Here we show that precipitation δ 18O values in the contiguous United States are correlated with an index of the PNA pattern. The δ 18O/PNA relationship varies across the study region and exhibits two prominent modes, with positive correlation in the western USA and negative correlation in the east. This spatial pattern appears not to reflect variation in local climate variables, but rather primarily reflects differences in atmospheric circulation and moisture sources associated with PNA. Our results suggest that strong antiphase variation in paired paleo-water δ 18O proxy records from regions characterized by the two modes of δ 18O/PNA correlation, especially in the Midwest and southwestern USA, may provide a robust basis for reconstruction of past variation in the PNA pattern.
NASA Astrophysics Data System (ADS)
Reusch, D. B.
2016-12-01
Any analysis that wants to use a GCM-based scenario of future climate benefits from knowing how much uncertainty the GCM's inherent variability adds to the development of climate change predictions. This is extra relevant in the polar regions due to the potential of global impacts (e.g., sea level rise) from local (ice sheet) climate changes such as more frequent/intense surface melting. High-resolution, regional-scale models using GCMs for boundary/initial conditions in future scenarios inherit a measure of GCM-derived externally-driven uncertainty. We investigate these uncertainties for the Greenland ice sheet using the 30-member CESM1.0-CAM5-BGC Large Ensemble (CESMLE) for recent (1981-2000) and future (2081-2100, RCP 8.5) decades. Recent simulations are skill-tested against the ERA-Interim reanalysis and AWS observations with results informing future scenarios. We focus on key variables influencing surface melting through decadal climatologies, nonlinear analysis of variability with self-organizing maps (SOMs), regional-scale modeling (Polar WRF), and simple melt models. Relative to the ensemble average, spatially averaged climatological July temperature anomalies over a Greenland ice-sheet/ocean domain are mostly between +/- 0.2 °C. The spatial average hides larger local anomalies of up to +/- 2 °C. The ensemble average itself is 2 °C cooler than ERA-Interim. SOMs extend our diagnostics by providing a concise, objective summary of model variability as a set of generalized patterns. For CESMLE, the SOM patterns summarize the variability of multiple realizations of climate. Changes in pattern frequency by ensemble member show the influence of initial conditions. For example, basic statistical analysis of pattern frequency yields interquartile ranges of 2-4% for individual patterns across the ensemble. In climate terms, this tells us about climate state variability through the range of the ensemble, a potentially significant source of melt-prediction uncertainty. SOMs can also capture the different trajectories of climate due to intramodel variability over time. Polar WRF provides higher resolution regional modeling with improved, polar-centric model physics. Simple melt models allow us to characterize impacts of the upstream uncertainties on estimates of surface melting.
USDA-ARS?s Scientific Manuscript database
The process of speciation is impacted by the interaction between the genomic architecture of diverging lineages and the environmental context they occupy. Yet, while climate can have a significant impact on this interaction, its role in determining the patterns of geographic and genomic divergence i...
Jeremy C. Andersen; Nathan P. Havill; Adalgisa Caccone; Joseph S. Elkinton
2017-01-01
Changes in climate conditions, particularly during the Quaternary climatic oscillations, have long been recognized to be important for shaping patterns of species diversity. For species residing in the western Palearctic, two commonly observed genetic patterns resulting from these cycles are as follows: (1) that the numbers and distributions of genetic lineages...
Convergence of microclimate in residential landscapes across diverse cities in the United States
Sharon J. Hall; J. Learned; B. Ruddell; K.L. Larson; J. Cavender-Bares; N. Bettez; P.M. Groffman; Morgan Grove; J.B. Heffernan; S.E. Hobbie; J.L. Morse; C. Neill; K.C. Nelson; Jarlath O' Neil-Dunne; L. Ogden; D.E. Pataki; W.D. Pearse; C. Polsky; R. Roy Chowdhury; M.K. Steele; T.L.E. Trammell
2016-01-01
The urban heat island (UHI) is a well-documented pattern of warming in cities relative to rural areas. Most UHI research utilizes remote sensing methods at large scales, or climate sensors in single cities surrounded by standardized land cover. Relatively few studies have explored continental-scale climatic patterns within common urban microenvironments such as...
Global temperature patterns 6000 years ago. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, T. III
The overall goal is to illustrate the climatic patterns of 5000 to 7000 years ago over as wide an area of the northern hemisphere as possible. Mapping of the patterns in selected climatic variables at 5000 to 7000 years ago that can be reconstructed from pollen and marine-plankton data is planned. Multivariate statistical methods permit using the modern distribution of these data in order to transform their fossil remains into climate estimates of past times. Given these goals and methods, research during the first eight months focused on assembling the available modern and fossil data from each of the mainmore » areas under study. Two workshop conferences were held to help organize the joint work.« less
Enric Batllori; Marc-Andre Parisien; Sean A. Parks; Max A. Moritz; Carol Miller
2017-01-01
Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform...
ERIC Educational Resources Information Center
Wise, Sarah B.
2010-01-01
A large online survey of Colorado public school science teachers (n = 628) on the topic of climate change instruction was conducted in 2007. A majority of Earth science teachers were found to include climate and climate change in their courses. However, the majority of teachers of other science subjects only informally discuss climate change, if…
Water level changes affect carbon turnover and microbial community composition in lake sediments.
Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin
2016-05-01
Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. © FEMS 2016.
Water level changes affect carbon turnover and microbial community composition in lake sediments
Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; E. Kayler, Zachary; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin
2016-01-01
Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802
NASA Astrophysics Data System (ADS)
Munn, Adam J.; Kern, Pippa; McAllan, Bronwyn M.
2010-06-01
The severity, duration and amplitude of extreme weather events are forecast to intensify with current climate trends, over both long (e.g. seasonal) and short (e.g. daily) time-scales. As such, the predictability of food supplies for many small endotherms is likely to become increasingly important. Numerous small mammals and birds combat food shortages using torpor, a controlled reduction in metabolic rate and body temperature that helps lower their daily energy requirements. As such, torpor often has been cited as a key feature allowing some small endotherms to survive highly unpredictable climates, such as tropics or dry deserts, but mensurative demonstrations of this are lacking. We have shown here that when a small desert marsupial, the fat-tailed dunnart ( Sminthopsis crassicaudata), is offered unpredictable levels of daily food, they increase frequency of daily torpor and length of bouts compared with animals offered ad libitum food, but this was not found for animals offered a 70% food-restricted diet. Our data suggest that simple food restriction may not be sufficient for evaluating the efficacy of torpor as a strategy for managing unpredictable climates.
NASA Astrophysics Data System (ADS)
Feigin, A. M.; Mukhin, D.; Volodin, E. M.; Gavrilov, A.; Loskutov, E. M.
2013-12-01
The new method of decomposition of the Earth's climate system into well separated spatial-temporal patterns ('climatic modes') is discussed. The method is based on: (i) generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding vector (space-distributed) time series in basis of spatial-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points; (ii) expanding both real SST data, and longer by several times SST data generated numerically, in STEOF basis; (iii) use of the numerically produced STEOF basis for exclusion of 'too slow' (and thus not represented correctly) processes from real data. The application of the method allows by means of vector time series generated numerically by the INM RAS Coupled Climate Model [2] to separate from real SST anomalies data [3] two climatic modes possessing by noticeably different time scales: 3-5 and 9-11 years. Relations of separated modes to ENSO and PDO are investigated. Possible applications of spatial-temporal climatic patterns concept to prognosis of climate system evolution is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm 3. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/
Erdoğan, Turan; Durakoğlugil, Murtaza Emre; Çiçek, Yüksel; Çetin, Mustafa; Duman, Hakan; Şatiroğlu, Ömer; Çelik, Şükrü
2017-01-01
Background Prolonged QRS duration is associated with decreased left ventricular (LV) systolic function. However, the relation between LV restrictive filling pattern (RFP) and QRS duration has not been investigated yet. The purpose of our study was to assess this relationship. Methods We analyzed standard 12-lead surface electrocardiogram (ECG) of 155 consecutive patients. Mitral inflow and septal tissue velocities were obtained using the apical 4-chamber view with pulsed Doppler echocardiography. Patients were divided into 2 groups according to measured deceleration time (DT): restrictive (with DT ≤130 ms) or non-restrictive (with DT >130 ms). Results QRS duration was significantly longer in the restrictive group than in the non-restrictive group (0.101 vs. 0.090 s, p < 0.0001). QRS duration of >0.10 s was highly specific (82.6%), but modestly sensitive (64.7%), for the prediction of LV RFP. Multivariate analyses demonstrated that E/A ratio, peak E, peak A, septal e’, and a’ velocities were significantly associated with RFP. Conclusions Prolonged QRS duration (>0.10 s) obtained from a standard resting 12-lead ECG is associated with LV RFP. However, the relationship of QRS duration with RFP was not independent of echocardiographic parameters. PMID:28932490
Reproductive Resilience to Food Shortage in a Small Heterothermic Primate
Perret, Martine; Henry, Pierre-Yves
2012-01-01
The massive energetic costs entailed by reproduction in most mammalian females may increase the vulnerability of reproductive success to food shortage. Unexpected events of unfavorable climatic conditions are expected to rise in frequency and intensity as climate changes. The extent to which physiological flexibility allows organisms to maintain reproductive output constant despite energetic bottlenecks has been poorly investigated. In mammals, reproductive resilience is predicted to be maximal during early stages of reproduction, due to the moderate energetic costs of ovulation and gestation relative to lactation. We experimentally tested the consequences of chronic-moderate and short-acute food shortages on the reproductive output of a small seasonally breeding primate, the grey mouse lemur (Microcebus murinus) under thermo-neutral conditions. These two food treatments were respectively designed to simulate the energetic constraints imposed by a lean year (40% caloric restriction over eight months) or by a sudden, severe climatic event occurring shortly before reproduction (80% caloric restriction over a month). Grey mouse lemurs evolved under the harsh, unpredictable climate of the dry forest of Madagascar and should thus display great potential for physiological adjustments to energetic bottlenecks. We assessed the resilience of the early stages of reproduction (mating success, fertility, and gestation) to these contrasted food treatments, and on the later stages (lactation and offspring growth) in response to the chronic food shortage only. Food deprived mouse lemurs managed to maintain constant most reproductive parameters, including oestrus timing, estrogenization level at oestrus, mating success, litter size, and litter mass as well as their overall number of surviving offspring at weaning. However, offspring growth was delayed in food restricted mothers. These results suggest that heterothermic, fattening-prone mammals display important reproductive resilience to energetic bottlenecks. More generally, species living in variable and unpredictable habitats may have evolved a flexible reproductive physiology that helps buffer environmental fluctuations. PMID:22848507
Reproductive resilience to food shortage in a small heterothermic primate.
Canale, Cindy I; Huchard, Elise; Perret, Martine; Henry, Pierre-Yves
2012-01-01
The massive energetic costs entailed by reproduction in most mammalian females may increase the vulnerability of reproductive success to food shortage. Unexpected events of unfavorable climatic conditions are expected to rise in frequency and intensity as climate changes. The extent to which physiological flexibility allows organisms to maintain reproductive output constant despite energetic bottlenecks has been poorly investigated. In mammals, reproductive resilience is predicted to be maximal during early stages of reproduction, due to the moderate energetic costs of ovulation and gestation relative to lactation. We experimentally tested the consequences of chronic-moderate and short-acute food shortages on the reproductive output of a small seasonally breeding primate, the grey mouse lemur (Microcebus murinus) under thermo-neutral conditions. These two food treatments were respectively designed to simulate the energetic constraints imposed by a lean year (40% caloric restriction over eight months) or by a sudden, severe climatic event occurring shortly before reproduction (80% caloric restriction over a month). Grey mouse lemurs evolved under the harsh, unpredictable climate of the dry forest of Madagascar and should thus display great potential for physiological adjustments to energetic bottlenecks. We assessed the resilience of the early stages of reproduction (mating success, fertility, and gestation) to these contrasted food treatments, and on the later stages (lactation and offspring growth) in response to the chronic food shortage only. Food deprived mouse lemurs managed to maintain constant most reproductive parameters, including oestrus timing, estrogenization level at oestrus, mating success, litter size, and litter mass as well as their overall number of surviving offspring at weaning. However, offspring growth was delayed in food restricted mothers. These results suggest that heterothermic, fattening-prone mammals display important reproductive resilience to energetic bottlenecks. More generally, species living in variable and unpredictable habitats may have evolved a flexible reproductive physiology that helps buffer environmental fluctuations.
Hand, Brian K.; Muhlfeld, Clint C.; Wade, Alisa A.; Kovach, Ryan; Whited, Diane C.; Narum, Shawn R.; Matala, Andrew P.; Ackerman, Michael W.; Garner, B. A.; Kimball, John S; Stanford, Jack A.; Luikart, Gordon
2016-01-01
Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.
NASA Astrophysics Data System (ADS)
Rey, Dolores; Holman, Ian; Rio, Marlene; Prudhomme, Christel
2017-04-01
In humid climates around the world, supplemental irrigation is critical to buffer the effects of rainfall variability and to assure crop yield and quality. In England, abstraction for irrigation is limited by: i) a maximum volumetric limit specified in the abstraction licence and ii) restrictions on abstraction imposed by the water regulator during droughts. Given regulatory efforts to secure sufficient environmental river flows and meet rising water demands due to population growth and climate change, increasing water scarcity is likely to compound the drought challenges faced by irrigated agriculture in this region. The aim of this study is to assess the impact that climate change may have on agricultural abstraction reliability in England within the context of the abstraction and drought management regimes currently in place, and how the water abstraction reform being developed by the Government could reduce the pressure on more and more limited water resources. Firstly, explanatory relationships were derived between an annual agroclimatic aridity index and actual irrigation abstraction. Secondly, the probability of annual abstraction being close to the maximum limit was calculated for each licence for the baseline (1961-90) and future (2071-2098) period. Finally, the current water resource availability triggers for mandatory abstractions restrictions on spray irrigation licences were used to assess the probability of being under restrictions during drought in each period. The results indicate a significant increase in the proportion of the licence being used in all catchments, representing the greatest risk for abstractors in the future, mainly in the most productive agricultural areas located in eastern and southern regions. In contrast, the likelihood of mandatory drought restrictions increases significantly in central and western England due to the lower buffering capacity of groundwater. Based on our findings, this paper discusses how the reform of the water abstraction licensing system being currently designed could help farmers to reduce their water availability risks. For instance, our analysis shows that a huge percentage of licenses in the country are hardly ever used, and hence the potential for reallocation (through water trading or other mechanisms) is worth exploring. Our results highlight the increasing water availability risks for irrigators in this country, and the need of the farming community and the regulator to adapt and collaborate to reduce the impacts and to increase drought resilience and hence food security.
NASA Astrophysics Data System (ADS)
Flantua, S. G. A.; Hooghiemstra, H.; Vuille, M.; Behling, H.; Carson, J. F.; Gosling, W. D.; Hoyos, I.; Ledru, M. P.; Montoya, E.; Mayle, F.; Maldonado, A.; Rull, V.; Tonello, M. S.; Whitney, B. S.; González-Arango, C.
2015-07-01
An improved understanding of present-day climate variability and change relies on high-quality data sets from the past two millennia. Global efforts to reconstruct regional climate modes are in the process of validating and integrating paleo-proxies. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to its unknown spatial and temporal coverage. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last two millennia. We identify the pollen records with the required temporal characteristics for PAGES-2 ka climate modelling and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local scale responses to climate modes, thus it is necessary to understand how vegetation-climate interactions might diverge under variable settings. Additionally, pollen is an excellent indicator of human impact through time. Evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. The LOTRED-SA-2 k initiative provides the ideal framework for the integration of the various paleoclimatic sub-disciplines and paleo-science, thereby jumpstarting and fostering multi-disciplinary research into environmental change on centennial and millennial time scales.
Influence of climate variability on acute myocardial infarction mortality in Havana, 2001-2012.
Rivero, Alina; Bolufé, Javier; Ortiz, Paulo L; Rodríguez, Yunisleydi; Reyes, María C
2015-04-01
Death from acute myocardial infarction is due to many factors; influences on risk to the individual include habits, lifestyle and behavior, as well as weather, climate and other environmental components. Changing climate patterns make it especially important to understand how climatic variability may influence acute myocardial infarction mortality. Describe the relationship between climate variability and acute myocardial infarction mortality during the period 2001-2012 in Havana. An ecological time-series study was conducted. The universe comprised 23,744 deaths from acute myocardial infarction (ICD-10: I21-I22) in Havana residents from 2001 to 2012. Climate variability and seasonal anomalies were described using the Bultó-1 bioclimatic index (comprising variables of temperature, humidity, precipitation, and atmospheric pressure), along with series analysis to determine different seasonal-to-interannual climate variation signals. The role played by climate variables in acute myocardial infarction mortality was determined using factor analysis. The Mann-Kendall and Pettitt statistical tests were used for trend analysis with a significance level of 5%. The strong association between climate variability conditions described using the Bultó-1 bioclimatic index and acute myocardial infarctions accounts for the marked seasonal pattern in AMI mortality. The highest mortality rate occurred during the dry season, i.e., the winter months in Cuba (November-April), with peak numbers in January, December and March. The lowest mortality coincided with the rainy season, i.e., the summer months (May-October). A downward trend in total number of deaths can be seen starting with the change point in April 2009. Climate variability is inversely associated with an increase in acute myocardial infarction mortality as is shown by the Bultó-1 index. This inverse relationship accounts for acute myocardial infarction mortality's seasonal pattern.
The tropical climate and vegetation response to Heinrich Event 1
NASA Astrophysics Data System (ADS)
Handiani, D. N.; Paul, A.; Prange, M.; Merkel, U.; Dupont, L. M.; Zhang, X.
2013-12-01
Past abrupt climate change associated with Heinrich Event 1 (HE1, ca. 17.5 ka BP) is thought to be connected to a slowdown of the Atlantic Meridional Overturning Circulation (AMOC). The accompanying abrupt climate changes affect not only the ocean, but also the continents. Furthermore, a strong impact on vegetation patterns during this event is registered both at high latitudes of the Northern Hemisphere and in the tropics. Pollen data from the tropical regions around the Atlantic Ocean (in our study from Angola and Brazil) suggest an effect on tropical vegetation through a southward shift of the rainbelt. However, the response appears to be very different in eastern South America and western Africa. To understand the different climate and vegetation pattern responses in the terrestrial tropics and to gain deeper insight into high-low-latitude climate interactions, we studied the climate and vegetation changes during the HE1 by using two different global climate models: the University of Victoria Earth System-Climate Model (UVic ESCM) and the Community Climate System Model version 3 (CCSM3). In both models, we simulated a similar HE1-like climate state. To facilitate the comparison between the model results and the available pollen records, we generated a distribution of biomes from the simulated plant functional type (PFT) coverage and climate parameters in the models. The UVic ESCM and the CCSM3 showed a slowdown of the AMOC accompanied by a seesaw temperature pattern between the Northern and Southern Hemispheres, as well as a southward shift of the tropical rainbelt. The response of the tropical vegetation pattern around the Atlantic Ocean was more pronounced in the CCSM3 than in the UVic ESCM simulation. In tropical South America, opposite changes in tree and grass cover were found only in CCSM3. In tropical Africa, the tree cover decreased and grass cover increased around 15°N in the UVic ESCM and around 10°N in CCSM3. Changes in tree and grass cover in tropical Southeast Asia were found only in the CCSM3 model, suggesting that the abrupt climate change during the HE1 also influenced remote tropical regions. Moreover, the biome distributions derived from both models corroborate findings from pollen records in southwestern and equatorial western Africa as well as northeastern Brazil.
Clarkson, Pamela M; Beachy, Christopher K
2015-12-01
We tested the hypothesis that salamanders growing at different rates would have allocation patterns that differ among male and female metamorphic and larval salamanders. We raised individual axolotls, Ambystoma mexicanum , on four food regimes: constant high growth (throughout the experiment), constant low growth (restricted throughout the experiment), high growth switched to low growth (ad libitum switched after 140 d to restricted), and low growth switched to high growth (restricted switched after 140 d to ad libitum). Because axolotls are obligate paedomorphs, we exposed half of the salamanders to thyroid hormone to induce metamorphosis. We assayed growth and dissected and weighed gonads and fat bodies. Salamanders that were switched from restricted to ad libitum food regime delayed metamorphosis. In all treatment groups, females had larger gonads than males and males had larger fat bodies than females. The association between storage and reproduction differed between larvae and metamorphs and depended on sex.
Moreira, A R; Paolicchi, F; Morsella, C; Zumarraga, M; Cataldi, A; Fabiana, B; Alicia, A; Piet, O; van Soolingen, D; Isabel, R M
1999-12-01
Sixty-one Mycobacterium avium subsp. paratuberculosis isolates from cattle and deer from the Buenos Aires province, an important livestock region in Argentina, were typed by restriction fragment length polymorphisms (RFLP) analysis based on IS900. Four different RFLP patterns (designated 'A', 'B', 'C' and 'E') were identified in BstEII digests of genomic DNA. The most frequently observed type, pattern 'A', was found in 46 isolates (75%). The second, pattern 'E', included 8 isolates (13%), while the third, pattern 'B', included 6 isolates (10%). Pattern 'C' was found for only one isolate. All of the deer isolates were classified as pattern 'A', while cattle isolates represented all four RFLP patterns. Twenty-one isolates representing the four different BstEII-RFLP patterns were digested with PstI. Twenty isolates showed identical PstI-RFLP pattern. BstEII-RFLP patterns from Argentine cattle and deer were compared with patterns found in cattle, goat, deer, rabbit, and human isolates from Europe. The most common pattern in Argentina, pattern 'A', was identical to a less frequently occurring pattern R9 (C17) from Europe. The other Argentine patterns 'B', 'C' and 'E', were not found in the Europe. These results indicate that the distribution of M. avium subsp. paratuberculosis genotypes in the Buenos Aires province of Argentina is different from that found in Europe.
Nicastro, Katy R; Zardi, Gerardo I; Teixeira, Sara; Neiva, João; Serrão, Ester A; Pearson, Gareth A
2013-01-23
Significant effects of recent global climate change have already been observed in a variety of ecosystems, with evidence for shifts in species ranges, but rarely have such consequences been related to the changes in the species genetic pool. The stretch of Atlantic coast between North Africa and North Iberia is ideal for studying the relationship between species distribution and climate change as it includes the distributional limits of a considerable number of both cold- and warm-water species.We compared temporal changes in distribution of the canopy-forming alga Fucus vesiculosus with historical sea surface temperature (SST) patterns to draw links between range shifts and contemporary climate change. Moreover, we genetically characterized with microsatellite markers previously sampled extinct and extant populations in order to estimate resulting cryptic genetic erosion. Over the past 30 years, a geographic contraction of the southern range edge of this species has occurred, with a northward latitudinal shift of approximately 1,250 km. Additionally, a more restricted distributional decline was recorded in the Bay of Biscay. Coastal SST warming data over the last three decades revealed a significant increase in temperature along most of the studied coastline, averaging 0.214°C/decade. Importantly, the analysis of existing and extinct population samples clearly distinguished two genetically different groups, a northern and a southern clade. Because of the range contraction, the southern group is currently represented by very few extant populations. This southern edge range shift is thus causing the loss of a distinct component of the species genetic background. We reveal a climate-correlated diversity loss below the species level, a process that could render the species more vulnerable to future environmental changes and affect its evolutionary potential. This is a remarkable case of genetic uniqueness of a vanishing cryptic genetic clade (southern clade).
Cumulative stress restricts niche filling potential of habitat-forming kelps in a future climate.
King, Nathan G; Wilcockson, David C; Webster, Richard; Smale, Dan A; Hoelters, Laura S; Moore, Pippa J
2018-02-01
Climate change is driving range contractions and local population extinctions across the globe. When this affects ecosystem engineers the vacant niches left behind are likely to alter the wider ecosystem unless a similar species can fulfil them.Here, we explore the stress physiology of two coexisting kelps undergoing opposing range shifts in the Northeast Atlantic and discuss what differences in stress physiology may mean for future niche filling.We used chlorophyll florescence ( F v /F m ) and differentiation of the heat shock response (HSR) to determine the capacity of the expanding kelp , Laminaria ochroleuca , to move into the higher shore position of the retreating kelp, Laminaria digitata . We applied both single and consecutive exposures to immersed and emersed high and low temperature treatments, replicating low tide exposures experienced in summer and winter.No interspecific differences in HSR were observed which was surprising given the species' different biogeographic distributions. However, chlorophyll florescence revealed clear differences between species with L. ochroleuca better equipped to tolerate high immersed temperatures but showed little capacity to tolerate frosts or high emersion temperatures.Many patterns observed were only apparent after consecutive exposures. Such cumulative effects have largely been overlooked in tolerance experiments on intertidal organisms despite being more representative of the stress experienced in natural habitats. We therefore suggest future experiments incorporate consecutive stress into their design.Climate change is predicted to result in fewer ground frosts and increased summer temperatures. Therefore, L. ochroleuca may be released from its summer cold limit in winter but still be prevented from moving up the shore due to desiccation in the summer. Laminaria ochroleuca will, however, likely be able to move into tidal pools. Therefore, only partial niche filling by L. ochroleuca will be possible in this system as climate change advances. A plain language summary is available for this article.
Cariñanos, Paloma; Alcázar, Purificación; Galán, Carmen; Domínguez, Eugenio
2014-02-01
The Amaranthaceae family includes a number of species which, through a series of specific adaptations, thrive in salty soils, arid environments and altered human settlements. Their ability to tolerate high temperatures favours summer flowering, giving rise to the widespread involvement of Amaranthaceae pollen grains in summer allergies, both in Mediterranean Europe and in areas with arid climates. This study analysed a 21-year set of historical airborne Amaranthaceae pollen records for an area located in the southern part of the Iberian Peninsula, in order to chart species' environmental reaction to changing climate conditions which occurred in the last decades. Airborne pollen data were collected from January 1991 to December 2011 using a Hirst-type volumetric impact sampler. Results showed that Amaranthaceae pollen remained in the atmosphere for over 6 months along the year, from early spring until early autumn. The annual Pollen Index ranged from barely 200 grains to almost 2000 grains, and was strongly influenced by rainfall during the flowering period, which prompted the development of new individuals and thus an increase in pollen production. A trend was noted towards increasingly early pollen peak dates; peaks were recorded in August-September in years with summer rainfall, but as early as May-June in years when over 50% of annual rainfall was recorded in the months prior to flowering. The gradual decline in the annual Pollen Index over later years is attributable not only to growing urbanisation of the area but also to a change in rainfall distribution pattern. High maximum temperatures in spring were also directly related to the peak date and the Pollen Index. This ability to adapt to changeable and occasionally stressful and restrictive, environmental conditions places Amaranthaceae at a competitive advantage with respect to other species sharing the same ecological niche. An increased presence of Amaranthaceae is likely to have a greater impact on future scenarios for pollen allergy diseases associated with climate change. © 2013.
The movement of pre-adapted cool taxa in north-central Amazonia during the last glacial
NASA Astrophysics Data System (ADS)
D'Apolito, Carlos; Absy, Maria Lúcia; Latrubesse, Edgardo M.
2017-08-01
The effects of climate change on the lowland vegetation of Amazonia during the last glacial cycle are partially known for the middle and late Pleniglacial intervals (late MIS 3, 59-24 ka and MIS 2, 24-11 ka), but are still unclear for older stages of the last glacial and during the last interglacial. It is known that a more seasonal dry-wet climate caused marginal forest retraction and together with cooling rearranged forest composition to some extent. This is observed in pollen records across Amazonia depicting presence of taxa at glacial times in localities where they do not live presently. The understanding of taxa migration is hindered by the lack of continuous interglacial-glacial lowland records. We present new data from a known locality in NW Amazonia (Six Lakes Hill), showing a vegetation record that probably started during MIS 5 (130-71 ka) and lasted until the onset of the Holocene. The vegetation record unravels a novel pattern in tree taxa migration: (1) from the beginning of this cycle Podocarpus and Myrsine are recorded and (2) only later do Hedyosmum and Alnus appear. The latter group is largely restricted to montane biomes or more distant locations outside Amazonia, whereas the first is found in lowlands close to the study site on sandy soils. These findings imply that Podocarpus and Myrsine responded to environmental changes equally and this reflects their concomitant niche use in NW Amazonia. Temperature drop is not discarded as a trigger of internal forest composition change, but its effects are clearer later in the Pleniglacial rather than the Early Glacial. Therefore early climatic/environmental changes had a first order effect on vegetation that invoke alternative explanations. We claim last glacial climate-induced modifications on forest composition favoured the expansion of geomorphologic-soil related processes that initiated forest rearrangement.
DeMiguel, Daniel; Rook, Lorenzo
2018-03-01
Despite its long history of scientific study, the causes underlying the extinction of the insular hominoid Oreopithecus bambolii are still a matter of ongoing debate. While some authors consider intense tectonism and invading species the cause of its extinction ca. 6.7 Ma, others propose climatic change as the main contributing factor. We rely on long-term patterns of tooth wear and hypsodonty of the Baccinello and Fiume Santo herbivore-faunas to reconstruct changes in habitat prior to, during and after the extinction. While a mosaic of habitats was represented in Baccinello V1 (as shown by a record of browsers, mixed feeders and species engaged in grazing), more closed forests (higher proportion of browsers, shortage of mixed feeders and lack of grazers) characterised Baccinello V2. Finally, there was a partial loss of canopy cover and development of open-patches and low-abrasive grasses in Baccinello V3 (as denoted by new records of taxa involved in grazing)-although still dominated by a forested habitat (since browse was a component in all diets). Our results provide evidence for two perceptible shifts in climate, one between 8.1 and 7.1 Ma and other ca. 6.7 Ma, though this latter was not drastic enough to lead to intensive forest loss, substantially alter the local vegetation or affect Oreopithecus lifestyle-especially if considering the growing evidence of its versatile diet. Although the disappearance of Oreopithecus is complex, our data reject the hypothesis of environmental change as the main factor in the extinction of Oreopithecus and Maremma fauna. When our results are analysed together with other evidence, faunal interaction and predation by invading species from mainland Europe seems to be the most parsimonious explanation for this extinction event. This contrasts with European hominoid extinctions that were associated with major climatic shifts that led to environmental uniformity and restriction of the preferred habitats of Miocene apes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Climate of Priest River Experimental Forest, northern Idaho
Arnold I. Finklin
1983-01-01
Detailed climatic description of Priest River Experimental Forest; applies to much of the northern Idaho panhandle. Covers year-round pattern and focuses on the fire season. Topographic and local site differences in climate are examined; also, climatic trends or fluctuations during the past 70 years. Includes numerous tables and graphs. Written particularly for forest...
Climate of the Frank Church-River of No Return Wilderness, central Idaho
Arnold I. Finklin
1988-01-01
Describes the climate of the largest designated wilderness in the conterminous United States. Contains numerous maps, graphs, and tables. Shows annual patterns and 10-day details during the fire season. Includes both average values and frequency distributions. Examines relationship of climatic averages to topography, persistence of weather, and climatic trends.
Engineering a future for amphibians under a changing climate
Noreen Parks; Deanna H. Olson
2011-01-01
Climate variation exacerbates threats to amphibians such as disease and habitat loss. Yet, by and large existing species- and land-management plans give little if any consideration to climate impacts. Moreover, many management actions that do address emerging climate patterns have yet to be evaluated for feasibility and effectiveness. To help address these needs,...
Climate Prediction Center - Monitoring and Data
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News monthly data, time series, and maps for various climate parameters, such as precipitation, temperature Oscillations (ENSO) and other climate patterns such as the North Atlantic and Pacific Decadal Oscillations, and
Complexity Science and the Dynamics of Climate and Communication: Reducing Nursing Home Turnover
Anderson, Ruth A.; Corazzini, Kirsten N.; McDaniel, Reuben R.
2008-01-01
Purpose Turnover in nursing homes is a widespread problem adversely affecting care quality. Using complexity theory, we tested the effect of administrative climate, communication patterns, and the interaction between the two on turnover, controlling for facility context. Design and Methods Perceptions of administrative climate and communication were collected from 3,449 employees in 164 randomly sampled nursing homes, and they were linked to secondary data on facility characteristics, resource allocation, and turnover. We used hierarchical regression to test the hypotheses. Results Climate and communication both affected turnover, but lower turnover was dependent on the interaction between climate and communication. In nursing homes with reward-based administrative climates, higher levels of communication openness and accuracy explained lower turnover of licensed vocational nurses and certified nurse assistants, relative to nursing homes with an ambiguous climate. Adequate staffing and longer tenure of the nursing director were also important predictors of turnover. Implications Although context is important, managers can also influence turnover by addressing climate and communication patterns and by encouraging stable nursing leadership. PMID:15197292
Kim, Jin-Yong; Lee, Sanghun; Shin, Man-Seok; Lee, Chang-Hoon; Seo, Changwan; Eo, Soo Hyung
2018-01-01
Altitudinal patterns in the population ecology of mountain bird species are useful for predicting species occurrence and behavior. Numerous hypotheses about the complex interactions among environmental factors have been proposed; however, these still remain controversial. This study aimed to identify the altitudinal patterns in breeding bird species richness or density and to test the hypotheses that climate, habitat heterogeneity (horizontal and vertical), and heterospecific attraction in a temperate forest, South Korea. We conducted a field survey of 142 plots at altitudes between 200 and 1,400 m a.s.l in the breeding season. A total of 2,771 individuals from 53 breeding bird species were recorded. Altitudinal patterns of species richness and density showed a hump-shaped pattern, indicating that the highest richness and density could be observed at moderate altitudes. Models constructed with 13 combinations of six variables demonstrated that species richness was positively correlated with vertical and horizontal habitat heterogeneity. Density was positively correlated with vertical, but not horizontal habitat heterogeneity, and negatively correlated with migratory bird ratio. No significant relationships were found between spring temperature and species richness or density. Therefore, the observed patterns in species richness support the hypothesis that habitat heterogeneity, rather than climate, is the main driver of species richness. Also, neither habitat heterogeneity nor climate hypotheses fully explains the observed patterns in density. However, vertical habitat heterogeneity does likely help explain observed patterns in density. The heterospecific attraction hypothesis did not apply to the distribution of birds along the altitudinal gradient. Appropriate management of vertical habitat heterogeneity, such as vegetation cover, should be maintained for the conservation of bird diversity in this area.
Harrison, Matthew T; Tardieu, François; Dong, Zhanshan; Messina, Carlos D; Hammer, Graeme L
2014-03-01
Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Haugstad, A.; Battisti, D. S.; Armour, K.
2016-12-01
Earth's climate sensitivity depends critically on the strength of radiative feedbacks linking surface warming to changes in top-of-atmosphere (TOA) radiation. Many studies use a simplistic idea of radiative feedbacks, either by treating them as global mean quantities, or by assuming they can be defined uniquely by geographic location and thus that TOA radiative response depends only on local surface warming. For example, a uniform increase in sea-surface temperature has been widely used as a surrogate for global warming (e.g., Cess et al 1990 and the CMIP 'aqua4k' simulations), with the assumption that this produces the same radiative feedbacks as those arising from a doubling of carbon dioxide - even though the spatial patterns of warming differ. However, evidence suggests that these assumptions are not valid, and local feedbacks may be integrally dependent on the structure of warming or type of climate forcing applied (Rose et al 2014). This study thus investigates the following questions: to what extent do local feedbacks depend on the structure and type of forcing applied? And, to what extent do they depend on the pattern of surface temperature change induced by that forcing? Using an idealized framework of an aquaplanet atmosphere-only model, we show that radiative feedbacks are indeed dependent on the large scale structure of warming and type of forcing applied. For example, the climate responds very differently to two forcings of equal global magnitude but applied in different global regions; the pattern of local feedbacks arising from uniform warming are not the same as that arising from polar amplified warming; and the same local feedbacks can be induced by distinct forcing patterns, provided that they produce the same pattern of surface temperature change. These findings suggest that the so-called `efficacies' of climate forcings can be understood simply in terms of how local feedbacks depend on the temperature patterns they induce.
Evaluating the potential of Iberian lakes as sensors of climate circulation patterns
NASA Astrophysics Data System (ADS)
Hernández, Armand; Trigo, Ricardo M.; Jerez, Sonia; Rico-Herrero, Maria T.; Vega, José C.; Jambrina-Enríquez, Margarita; Valero-Garcés, Blas L.; Giralt, Santiago
2013-04-01
Lakes are one of the best continental sensors for reconstructing past environmental and climatic changes. Recent lacustrine systems may be used for reconstructing with high-temporal resolution past climate parameters (e.g. precipitation, temperature, wind), land management changes and limnological conditions such as pH, salinity, or nutrients concentrations using a large set of techniques and proxies. Paleoenvironmental reconstructions can be improved by validating them with instrumental data, and the availability of monitoring data greatly enhances the potential of lakes to evaluate the link between the measured physical-chemical-biological parameters and the indicators from lake sediments. The Iberian Peninsula (IP) is an excellent site to conduct quantitative climate reconstructions owing to its location between the Eurosiberian and Mediterranean regions. Due to its geographic position, a large fraction of the IP climate is dominated by the most important large scale pattern of the Northern Hemisphere, i.e. the North Atlantic Oscillation (NAO). However, a number of recent works has put into evidence that besides the NAO mode there are other relevant atmospheric circulation patterns over the North Atlantic and European sector that play an important role in terms of Western Mediterranean climate. Among these we have evaluated particularly the so-called Scandinavian (SCAND) and eastern Atlantic (EA) which have commonly been overlooked. Monthly limnological monitoring in Lake Sanabria (42°07'N, 06°43'W) and Lake Las Madres (40°18'N, 3°31'W) since 1986 and 1991, respectively, provided a unique opportunity to test the spatio-temporal relationships between meteorological data and climate modes, hydrology, lake dynamics and, in the Lake Sanabria case, how the climate signal is transferred to the lake sediments. For this purpose, we have used five complementary datasets: (1) meteorological (air temperature, total precipitation and wind intensity), (2) climate modes index (NAO, EA, SCAND), (3) limnological (Secchi disk, water temperature, conductivity, pH, dissolved oxygen, nitrate, total phosphorus and chlorophyll) in both lake systems; and in Lake Sanabria (4) hydrological (Tera River water input and output) and (5) XRF core scanner measurements carried out in short cores. The preliminary results based on linear models and Principal Component Analyses between the different dataset variables show how the climate signal is transferred from the atmosphere to the lake, and ultimately to the sediments. Establishment of such links allowed us to infer quantitatively the pattern of precipitation and its temporal and spatial relationship with the main climate over the last decades using the limnological and sediment data in these two IP lakes. These results highlight that besides NAO, the SCAND and EA patterns must be taken into account on any analysis of climate variability in the IP.
Analysing the teleconnection systems affecting the climate of the Carpathian Basin
NASA Astrophysics Data System (ADS)
Kristóf, Erzsébet; Bartholy, Judit; Pongrácz, Rita
2017-04-01
Nowadays, the increase of the global average near-surface air temperature is unequivocal. Atmospheric low-frequency variabilities have substantial impacts on climate variables such as air temperature and precipitation. Therefore, assessing their effects is essential to improve global and regional climate model simulations for the 21st century. The North Atlantic Oscillation (NAO) is one of the best-known atmospheric teleconnection patterns affecting the Carpathian Basin in Central Europe. Besides NAO, we aim to analyse other interannual-to-decadal teleconnection patterns, which might have significant impacts on the Carpathian Basin, namely, the East Atlantic/West Russia pattern, the Scandinavian pattern, the Mediterranean Oscillation, and the North-Sea Caspian Pattern. For this purpose primarily the European Centre for Medium-Range Weather Forecasts' (ECMWF) ERA-20C atmospheric reanalysis dataset and multivariate statistical methods are used. The indices of each teleconnection pattern and their correlations with temperature and precipitation will be calculated for the period of 1961-1990. On the basis of these data first the long range (i. e. seasonal and/or annual scale) forecast ability is evaluated. Then, we aim to calculate the same indices of the relevant teleconnection patterns for the historical and future simulations of Coupled Model Intercomparison Project Phase 5 (CMIP5) models and compare them against each other using statistical methods. Our ultimate goal is to examine all available CMIP5 models and evaluate their abilities to reproduce the selected teleconnection systems. Thus, climate predictions for the 21st century for the Carpathian Basin may be improved using the best-performing models among all CMIP5 model simulations.
NASA Astrophysics Data System (ADS)
Wang, J.; Yin, H.; Chung, F.
2008-12-01
While the population growth, the future land use change, and the desire for better environmental preservation and protection are adding up pressure on water resources management in California, California is facing an extra challenge of addressing potential climate change impacts on water supple and demand in California. The concerns on water facilities planning and flood control caused by climate change include modified precipitation patterns, changes in snow levels and runoff patterns due to increased air temperatures. Although long-term climate projections are largely uncertain, there appears to be a strong consistency in predicting the warming trend of future surface temperature, and the resulting shift in the seasonal patterns of runoff. However, projected changes in precipitation (wetting or drying), which control annual runoff, are far less certain. This paper attempts to separate the effects of warming trend from the effects of precipitation trend on water planning especially in California where reservoir operations are more sensitive to seasonal patterns of runoff than to the total annual runoff. The water resources systems planning model, CALSIM2, is used to evaluate climate change impact on water resource management in California. Rather than directly ingesting estimated streamflows from climate model projections into CALSIM2, a three step perturbation ratio method is proposed to introduce climate change impact into the planning model. Firstly, monthly perturbation ratio of projected monthly inflow to simulated historical monthly inflow is applied to observed historical monthly inflow to generate climate change inflows to major dams and reservoirs. To isolate the effects of warming trend on water resources, a further annual inflow adjustment is applied to the inflows generated in step one to preserve the volume of the observed annual inflow. To re-introduce the effects of precipitation trend on water resources, an additional inflow trend adjustment is applied to the adjusted climate change inflow. Therefore, three CALSIM2 experiments will be implemented: (1) base run with the observed historic inflow (1921 to 2003); (2) sensitivity run with the adjusted climate change inflow through annual inflow adjustment; (3) sensitivity run with the adjusted climate change inflow through annual inflow adjustment and inflow trend adjustment. To account for the variability of various climate models in projecting future climates, the uncertainty in future emission scenarios, and the difference in different projection periods, estimated inflows from 6 climate models for 2 emission scenarios (A2 and B1) and two projection periods (2030-2059 and 2070-2099) are included in the CALSIM model experiments.
Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien
2014-01-01
Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers’ adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs. PMID:25225382
Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien
2014-09-23
Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers' adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs.
Characterizing and Addressing the Need for Statistical Adjustment of Global Climate Model Data
NASA Astrophysics Data System (ADS)
White, K. D.; Baker, B.; Mueller, C.; Villarini, G.; Foley, P.; Friedman, D.
2017-12-01
As part of its mission to research and measure the effects of the changing climate, the U. S. Army Corps of Engineers (USACE) regularly uses the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset. However, these data are generated at a global level and are not fine-tuned for specific watersheds. This often causes CMIP5 output to vary from locally observed patterns in the climate. Several downscaling methods have been developed to increase the resolution of the CMIP5 data and decrease systemic differences to support decision-makers as they evaluate results at the watershed scale. Evaluating preliminary comparisons of observed and projected flow frequency curves over the US revealed a simple framework for water resources decision makers to plan and design water resources management measures under changing conditions using standard tools. Using this framework as a basis, USACE has begun to explore to use of statistical adjustment to alter global climate model data to better match the locally observed patterns while preserving the general structure and behavior of the model data. When paired with careful measurement and hypothesis testing, statistical adjustment can be particularly effective at navigating the compromise between the locally observed patterns and the global climate model structures for decision makers.
Change of ocean circulation in the East Asian Marginal Seas under different climate conditions
NASA Astrophysics Data System (ADS)
Min, Hong Sik; Kim, Cheol-Ho; Kim, Young Ho
2010-05-01
Global climate models do not properly resolve an ocean environment in the East Asian Marginal Seas (EAMS), which is mainly due to a poor representation of the topography in continental shelf region and a coarse spatial resolution. To examine a possible change of ocean environment under global warming in the EAMS, therefore we used North Pacific Regional Ocean Model. The regional model was forced by atmospheric conditions extracted from the simulation results of the global climate models for the 21st century projected by the IPCC SRES A1B scenario as well as the 20th century. The North Pacific Regional Ocean model simulated a detailed pattern of temperature change in the EAMS showing locally different rising or falling trend under the future climate condition, while the global climate models simulated a simple pattern like an overall increase. Changes of circulation pattern in the EAMS such as an intrusion of warm water into the Yellow Sea as well as the Kuroshio were also well resolved. Annual variations in volume transports through the Taiwan Strait and the Korea Strait under the future condition were simulated to be different from those under present condition. Relative ratio of volume transport through the Soya Strait to the Tsugaru Strait also responded to the climate condition.
On the design of paleoenvironmental data networks for estimating large-scale patterns of climate
NASA Astrophysics Data System (ADS)
Kutzbach, J. E.; Guetter, P. J.
1980-09-01
Guidelines are determined for the spatial density and location of climatic variables (temperature and precipitation) that are appropriate for estimating the continental- to hemispheric-scale pattern of atmospheric circulation (sea-level pressure). Because instrumental records of temperature and precipitation simulate the climatic information that is contained in certain paleoenvironmental records (tree-ring, pollen, and written-documentary records, for example), these guidelines provide useful sampling strategies for reconstructing the pattern of atmospheric circulation from paleoenvironmental records. The statistical analysis uses a multiple linear regression model. The sampling strategies consist of changes in site density (from 0.5 to 2.5 sites per million square kilometers) and site location (from western North American sites only to sites in Japan, North America, and western Europe) of the climatic data. The results showed that the accuracy of specification of the pattern of sea-level pressure: (1) is improved if sites with climatic records are spread as uniformly as possible over the area of interest; (2) increases with increasing site density-at least up to the maximum site density used in this study; (3) is improved if sites cover an area that extends considerably beyond the limits of the area of interest. The accuracy of specification was lower for independent data than for the data that were used to develop the regression model; some skill was found for almost all sampling strategies.
Liang, Hong-Yan; Feng, Zhi-Pei; Pei, Bing; Li, Yong; Yang, Xi-Tian
2018-01-08
The geological events and climatic fluctuations during the Pleistocene played important roles in shaping patterns of species distribution. However, few studies have evaluated the patterns of species distribution that were influenced by the Yellow River. The present work analyzed the demography of two endemic tree species that are widely distributed along the Yellow River, Tamarix austromongolica and Tamarix chinensis, to understand the role of the Yellow River and Pleistocene climate in shaping their distribution patterns. The most common chlorotype, chlorotype 1, was found in all populations, and its divergence time could be dated back to 0.19 million years ago (Ma). This dating coincides well with the formation of the modern Yellow River and the timing of Marine Isotope Stages 5e-6 (MIS 5e-6). Bayesian reconstructions along with models of paleodistribution revealed that these two species experienced a demographic expansion in population size during the Quaternary period. Approximate Bayesian computation analyses supported a scenario of expansion approximately from the upper to lower reaches of the Yellow River. Our results provide support for the roles of the Yellow River and the Pleistocene climate in driving demographic expansion of the populations of T. austromongolica and T. chinensis. These findings are useful for understanding the effects of geological events and past climatic fluctuations on species distribution patterns.
Zhang, Tianyi; Wang, Hesong
2015-01-01
We identified the spatiotemporal patterns of the Normalized Difference Vegetation Index (NDVI) for the years 1982–2008 in the desert areas of Northwest China and quantified the impacts of climate and non-climate factors on NDVI changes. The results indicate that although the mean NDVI has improved in 24.7% of the study region; 16.3% among the region has been stagnating in recent years and only 8.4% had a significantly increasing trend. Additionally, 45.3% of the region has maintained a stable trend over the study period and 30.0% has declined. A multiple regression model suggests that a wetter climate (quantified by the Palmer Drought Severity Index, PDSI) is associated with higher NDVI in most areas (18.1% of significance) but these historical changes in PDSI only caused an average improvement of approximately 0.4% over the study region. Contrasting the regression results under different trend patterns, no significant differences in PDSI impacts were detected among the four trend patterns. Therefore, we conclude that climate is not the primary driver for vegetative coverage in Northwest China. Future studies will be required to identify the impacts of specific non-climatic factors on vegetative coverage based on high-resolution data, which will be beneficial in creating an effective strategy to combat the recent desertification trend in China. PMID:25961563
Stock, J T
2006-10-01
Human skeletal robusticity is influenced by a number of factors, including habitual behavior, climate, and physique. Conflicting evidence as to the relative importance of these factors complicates our ability to interpret variation in robusticity in the past. It remains unclear how the pattern of robusticity in the skeleton relates to adaptive constraints on skeletal morphology. This study investigates variation in robusticity in claviculae, humeri, ulnae, femora, and tibiae among human foragers, relative to climate and habitual behavior. Cross-sectional geometric properties of the diaphyses are compared among hunter-gatherers from southern Africa (n = 83), the Andaman Islands (n = 32), Tierra del Fuego (n = 34), and the Great Lakes region (n = 15). The robusticity of both proximal and distal limb segments correlates negatively with climate and positively with patterns of terrestrial and marine mobility among these groups. However, the relative correspondence between robusticity and these factors varies throughout the body. In the lower limb, partial correlations between polar second moment of area (J(0.73)) and climate decrease from proximal to distal section locations, while this relationship increases from proximal to distal in the upper limb. Patterns of correlation between robusticity and mobility, either terrestrial or marine, generally increase from proximal to distal in the lower and upper limbs, respectively. This suggests that there may be a stronger relationship between observed patterns of diaphyseal hypertrophy and behavioral differences between populations in distal elements. Despite this trend, strength circularity indices at the femoral midshaft show the strongest correspondence with terrestrial mobility, particularly among males.
García-Baquero, Gonzalo; Caño, Lidia; Biurrun, Idoia; García-Mijangos, Itziar; Loidi, Javier; Herrera, Mercedes
2016-01-01
Alien species invasion represents a global threat to biodiversity and ecosystems. Explaining invasion patterns in terms of environmental constraints will help us to assess invasion risks and plan control strategies. We aim to identify plant invasion patterns in the Basque Country (Spain), and to determine the effects of climate and human pressure on that pattern. We modeled the regional distribution of 89 invasive plant species using two approaches. First, distance-based Moran’s eigenvector maps were used to partition variation in the invasive species richness, S, into spatial components at broad and fine scales; redundancy analysis was then used to explain those components on the basis of climate and human pressure descriptors. Second, we used generalized additive mixed modeling to fit species-specific responses to the same descriptors. Climate and human pressure descriptors have different effects on S at different spatial scales. Broad-scale spatially structured temperature and precipitation, and fine-scale spatially structured human population density and percentage of natural and semi-natural areas, explained altogether 38.7% of the total variance. The distribution of 84% of the individually tested species was related to either temperature, precipitation or both, and 68% was related to either population density or natural and semi-natural areas, displaying similar responses. The spatial pattern of the invasive species richness is strongly environmentally forced, mainly by climate factors. Since individual species responses were proved to be both similarly constrained in shape and explained variance by the same environmental factors, we conclude that the pattern of invasive species richness results from individual species’ environmental preferences. PMID:27741276
Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia
NASA Astrophysics Data System (ADS)
Seim, Andrea; Schultz, Johannes A.; Leland, Caroline; Davi, Nicole; Byambasuren, Oyunsanaa; Liang, Eryuan; Wang, Xiaochun; Beck, Christoph; Linderholm, Hans W.; Pederson, Neil
2017-09-01
Understanding past and recent climate and atmospheric circulation variability is vital for regions that are affected by climate extremes. In mid-latitude Asia, however, the synoptic climatology is complex and not yet fully understood. The aim of this study was to investigate dominant synoptic-scale circulation patterns during the summer season using a multi-species tree-ring width (TRW) network comprising 78 sites from mid-latitude Asia. For each TRW chronology, we calculated an atmospheric circulation tree-ring index (ACTI), based on 1000 hPa geopotential height data, to directly link tree growth to 13 summertime weather types and their associated local climate conditions for the period 1871-1993. Using the ACTI, three groups of similarly responding tree-ring sites can be associated with distinct large-scale atmospheric circulation patterns: 1. growth of drought sensitive trees is positively affected by a cyclone over northern Russia; 2. temperature sensitive trees show positive associations to a cyclone over northwestern Russia and an anticyclone over Mongolia; 3. trees at two high elevation sites show positive relations to a zonal cyclone extending from mid-latitude Eurasia to the West Pacific. The identified synoptic-scale circulation patterns showed spatiotemporal variability in their intensity and position, causing temporally varying climate conditions in mid-latitude Asia. Our results highlight that for regions with less pronounced atmospheric action centers during summer such as the occurrence of large-scale cyclones and anticyclones, synoptic-scale circulation patterns can be extracted and linked to the Northern Hemisphere circulation system. Thus, we provide a new and solid envelope for climate studies covering the past to the future.
DOT National Transportation Integrated Search
2011-11-01
"This study investigated potential impacts of climate change on travel disruption resulting from road closures in two urban watersheds in the : Portland metropolitan area. We used ensemble climate change scenarios, a hydrologic model, stream channel ...
EPA Region 10 Climate Change and TMDL Pilot - Project Research Plan
Global climate change affects the fundamental drivers of the hydrological cycle. Evidence is growing that climate change will have significant ramifications for the nation’s freshwater ecosystems, as deviations in atmospheric temperature and precipitation patterns are more ...
NASA Astrophysics Data System (ADS)
Flantua, S. G. A.; Hooghiemstra, H.; Vuille, M.; Behling, H.; Carson, J. F.; Gosling, W. D.; Hoyos, I.; Ledru, M. P.; Montoya, E.; Mayle, F.; Maldonado, A.; Rull, V.; Tonello, M. S.; Whitney, B. S.; González-Arango, C.
2016-02-01
An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation-climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America - 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.
Sáinz-Bariáin, Marta; Poquet, José Manuel; Rodríguez-López, Roberto
2017-01-01
Several studies on global change over the next century predict increases in mean air temperatures of between 1°C to 5°C that would affect not only water temperature but also river flow. Climate is the predominant environmental driver of thermal and flow regimes of freshwater ecosystems, determining survival, growth, metabolism, phenology and behaviour as well as biotic interactions of aquatic fauna. Thus, these changes would also have consequences for species phenology, their distribution range, and the composition and dynamics of communities. These effects are expected to be especially severe in the Mediterranean basin due its particular climate conditions, seriously threatening Southern European ecosystems. In addition, species with restricted distributions and narrow ecological requirements, such as those living in the headwaters of rivers, will be severely affected. The study area corresponds to the Spanish Mediterranean and Balearic Islands, delimited by the Köppen climate boundary. With the application of the MEDPACS (MEDiterranean Prediction And Classification System) predictive approach, the macroinvertebrate community was predicted for current conditions and compared with three posible scenarios of watertemperature increase and its associated water flow reductions. The results indicate that the aquatic macroinvertebrate communities will undergo a drastic impact, with reductions in taxa richness for each scenario in relation to simulated current conditions, accompanied by changes in the taxa distribution pattern. Accordingly, the distribution area of most of the taxa (65.96%) inhabiting the mid-high elevations would contract and rise in altitude. Thus, families containing a great number of generalist species will move upstream to colonize new zones with lower water temperatures. By contrast, more vulnerable taxa will undergo reductions in their distribution area. PMID:28135280
Geoffrey J. Cary; Robert E. Keane; Robert H. Gardner; Sandra Lavorel; Mike D. Flannigan; Ian D. Davies; Chao Li; James M. Lenihan; T. Scott Rupp; Florent Mouillot
2006-01-01
The purpose of this study was to compare the sensitivity of nlodelled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The sensitivity of area burned to variation in four factors, namely terrain (flat, undulating and mountainous), fuel pattern (finely and coarsely clumped), climate (observed, warmer &...
Geoffrey J. Cary; Robert E. Keane; Robert H. Gardner; Sandra Lavorel; Michael D. Flannigan; Ian D. Davies; Chao Li; James M. Lenihan; T. Scott Rupp; Florent Mouillot
2006-01-01
The purpose of this study was to compare the sensitivity of modelled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The sensitivity of area burned to variation in four factors, namely terrain (flat, undulating and mountainous), fuel pattern (finely and coarsely clumped), climate (observed, warmer &...
Convergence of soil nitrogen isotopes across global climate gradients
Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd
2015-01-01
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
Convergence of soil nitrogen isotopes across global climate gradients.
Craine, Joseph M; Elmore, Andrew J; Wang, Lixin; Augusto, Laurent; Baisden, W Troy; Brookshire, E N J; Cramer, Michael D; Hasselquist, Niles J; Hobbie, Erik A; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J Marty; Mack, Michelle C; Marin-Spiotta, Erika; Mayor, Jordan R; McLauchlan, Kendra K; Michelsen, Anders; Nardoto, Gabriela B; Oliveira, Rafael S; Perakis, Steven S; Peri, Pablo L; Quesada, Carlos A; Richter, Andreas; Schipper, Louis A; Stevenson, Bryan A; Turner, Benjamin L; Viani, Ricardo A G; Wanek, Wolfgang; Zeller, Bernd
2015-02-06
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
Roitberg, Elena; Shoshany, Maxim
2017-01-01
Following a predicted decline in water resources in the Mediterranean Basin, we used reaction-diffusion equations to gain a better understanding of expected changes in properties of vegetation patterns that evolve along the rainfall transition between semi-arid and arid rainfall regions. Two types of scenarios were investigated: the first, a discrete scenario, where the potential consequences of climate change are represented by patterns evolving at discrete rainfall levels along a rainfall gradient. This scenario concerns space-for-time substitutions characteristic of the rainfall gradient hypothesis. The second, a continuous scenario, represents explicitly the effect of rainfall decline on patterns which evolved at different rainfall levels along the rainfall gradient prior to the climate change. The eccentricity of patterns that emerge through these two scenarios was found to decrease with decreasing rainfall, while their solidity increased. Due to their inverse modes of change, their ratio was found to be a highly sensitive indicator for pattern response to rainfall decline. An eccentricity ratio versus rainfall (ER:R) line was generalized from the results of the discrete experiment, where ERs above this line represent developed (recovered) patterns and ERs below this line represent degraded patterns. For the rainfall range of 1.2 to 0.8 mm/day, the continuous rainfall decline experiment with ERs that lie above the ER:R line, yielded patterns less affected by rainfall decline than would be expected according to the discrete representation of ecosystems' response. Thus, for this range, space-for-time substitution represents an overestimation of the consequences of the expected rainfall decline. For rainfall levels below 0.8 mm/day, eccentricity ratios from the discrete and continuous experiments practically converge to the same trend of pattern change along the ER:R line. Thus, the rainfall gradient hypothesis may be valid for regions characterized by this important rainfall range, which typically include desert fringe ecosystems.
Implications of climate change (global warming) for the healthcare system.
Raffa, R B; Eltoukhy, N S; Raffa, K F
2012-10-01
Temperature-sensitive pathogenic species and their vectors and hosts are emerging in previously colder regions as a consequence of several factors, including global warming. As a result, an increasing number of people will be exposed to pathogens against which they have not previously needed defences. We illustrate this with a specific example of recent emergence of Cryptococcus gattii infections in more temperate climates. The outbreaks in more temperate climates of the highly virulent--but usually tropically restricted--C. gattii is illustrative of an anticipated growing challenge for the healthcare system. There is a need for preparedness by healthcare professionals in anticipation and for management of such outbreaks, including other infections whose recent increased prevalence in temperate climates can be at least partly associated with global warming. (Re)emergence of temperature-sensitive pathogenic species in more temperate climates will present new challenges for healthcare systems. Preparation for outbreaks should precede their occurrence. © 2012 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desilets, Darin; Helsel, Fred M.; Bendure, Al O.
2016-04-01
The importance of Oliktok Point, Alaska, as a focal point for climate research in the Arctic continues to grow with the addition of a U.S. Department of Energy (DOE) Atmospheric Radiation Monitoring (ARM) Climate Research Facility Mobile Facility (AMF) and the expansion of infrastructure to support airborne measurements. The site hosts a suite of instruments for making multi-year, high-fidelity atmospheric measurements; serves as a base of operations for field campaigns; and contains the only Restricted Airspace and Warning Area in the U.S. Arctic, which enables the use of unmanned aircraft systems. The use of this site by climate researchers involvesmore » several considerations, including its remoteness, harsh climate, and location amid the North Slope oilfields. This guide is intended to help visitors to Oliktok Point navigate this unique physical and administrative environment, and thereby facilitate safe and productive operations.« less
Ramírez, Alonso; Pringle, Catherine M.
2018-01-01
Understanding how environmental variables influence the distribution and density of organisms over relatively long temporal scales is a central question in ecology given increased climatic variability (e.g., precipitation, ENSO events). The primary goal of our study was to evaluate long-term (15y time span) patterns of climate, as well as environmental parameters in two Neotropical streams in lowland Costa Rica, to assess potential effects on aquatic macroinvertebrates. We also examined the relative effects of an 8y whole-stream P-enrichment experiment on macroinvertebrate assemblages against the backdrop of this long-term study. Climate, environmental variables and macroinvertebrate samples were measured monthly for 7y and then quarterly for an additional 8y in each stream. Temporal patterns in climatic and environmental variables showed high variability over time, without clear inter-annual or intra-annual patterns. Macroinvertebrate richness and abundance decreased with increasing discharge and was positively related to the number of days since the last high discharge event. Findings show that fluctuations in stream physicochemistry and macroinvertebrate assemblage structure are ultimately the result of large-scale climatic phenomena, such as ENSO events, while the 8y P-enrichment did not appear to affect macroinvertebrates. Our study demonstrates that Neotropical lowland streams are highly dynamic and not as stable as is commonly presumed, with high intra- and inter-annual variability in environmental parameters that change the structure and composition of freshwater macroinvertebrate assemblages. PMID:29420548
Biomes computed from simulated climatologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claussen, M.; Esch, M.
1994-01-01
The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a differencemore » in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.« less
A process-based investigation into the impact of the Congo basin deforestation on surface climate
NASA Astrophysics Data System (ADS)
Bell, Jean P.; Tompkins, Adrian M.; Bouka-Biona, Clobite; Sanda, I. Seidou
2015-06-01
The sensitivity of climate to the loss of the Congo basin rainforest through changes in land cover properties is examined using a regional climate model. The complete removal of the Congo basin rainforest results in a dipole rainfall anomaly pattern, characterized by a decrease (˜-42%) in rainfall over the western Congo and an increase (˜10%) in the basin's eastern part. Three further experiments systematically examine the individual response to the changes in albedo, surface roughness, and evapotranspiration efficiency that accompany deforestation. The increased albedo (˜) caused by the Congo basin rainforest clearance results in cooler and drier climate conditions over the entire basin. The drying is accompanied with a reduction in available surface energy. Reducing evapotranspiration efficiency or roughness length produces similar positive air temperature anomaly patterns. The decreased evapotranspiration efficiency leads to a dipole response in rainfall, similar to that resulting from a reduced surface roughness following Congo basin rainforest clearance. This precipitation anomaly pattern is strongly linked to the change in low-level water vapor transport, the influence of the Rift valley highlands, and the spatial pattern of water recycling activity. The climate responds linearly to the separate albedo, surface roughness, and evapotranspiration efficiency changes, which can be summed to produce a close approximation to the impact of the full deforestation experiment. It is suggested that the widely contrasting climate responses to deforestation in the literature could be partly due to the relative magnitude of change of the radiative and nonradiative parameterizations in their respective land surface schemes.
Martinez, Pablo Ariel; Andrade, Mayane Alves; Bidau, Claudio Juan
2018-06-01
The temporal pattern of co-occurrence of human beings and venomous species (scorpions, spiders, snakes) is changing. Thus, the temporal pattern of areas with risk of accidents with such species tends to become dynamic in time. We analyze the areas of occurrence of species of Tityus in Argentina and assess the impact of global climate change on their area of distribution by the construction of risk maps. Using data of occurrence of the species and climatic variables, we constructed models of species distribution (SMDs) under current and future climatic conditions. We also created maps that allow the detection of temporal shifts in the distribution patterns of each Tityus species. Finally, we developed risk maps for the analyzed species. Our results predict that climate change will have an impact on the distribution of Tityus species which will clearly expand to more southern latitudes, with the exception of T. argentinus. T. bahiensis, widely distributed in Brazil, showed a considerable increase of its potential area (ca. 37%) with future climate change. The species T. confluens and T. trivittatus that cause the highest number of accidents in Argentina are expected to show significant changes of their distributions in future scenarios. The former fact is worrying because Buenos Aires province is the more densely populated district in Argentina thus iable to become the most affected by T. trivittatus. These alterations of distributional patterns can lead to amplify the accident risk zones of venomous species, becoming an important subject of concern for public health policies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chareza, Sarah; Slavkovic Lukic, Dragana; Liu, Yang; Räthe, Ann-Mareen; Münk, Carsten; Zabogli, Elisa; Pistello, Mauro; Löchelt, Martin
2012-03-15
Defined host-encoded feline APOBEC3 (feA3) cytidine deaminases efficiently restrict the replication and spread of exogenous retroviruses like Feline Immunodeficiency Virus (FIV) and Feline Foamy Virus (FFV) which developed different feA3 counter-acting strategies. Here we characterize the molecular interaction of FFV proteins with the diverse feA3 proteins. The FFV accessory protein Bet is the virus-encoded defense factor which is shown here to bind all feA3 proteins independent of whether they restrict FFV, a feature shared with FIV Vif that induces degradation of all feA3s including those that do not inactivate FIV. In contrast, only some feA3 proteins bind to FFV Gag, a pattern that in part reflects the restriction pattern detected. Additionally, one-domain feA3 proteins can homo- and hetero-dimerize in vitro, but a trans-dominant phenotype of any of the low-activity feA3 forms on FFV restriction by one of the highly-active feA3Z2 proteins was not detectable. Copyright © 2012 Elsevier Inc. All rights reserved.
Frozen road operation improvements.
DOT National Transportation Integrated Search
2009-05-01
A research study in 1996-1997, sponsored by WisDOT, was undertaken by the PI of this proposal to develop a computer model to correlate climate : and pavement data for the year in progress in order to project when to impose and lift weight restriction...
Dugan, J.T.; Peckenpaugh, J.M.
1985-01-01
The Central Midwest aquifer system, in parts of Arkansas, Colorado, Kansas, Missouri, Nebraska, New Mexico, South Dakota, and Texas, is a region of great hydrologic diversity. This study examines the relationships between climate, vegetation, and soil that affect consumptive water use and recharge to the groundwater system. Computations of potential recharge and consumptive water use were restricted to those areas where the aquifers under consideration were the immediate underlying system. The principal method of analysis utilized a soil moisture computer model. This model requires four types of input: (1) hydrologic properties of the soils, (2) vegetation types, (3) monthly precipitation, and (4) computed monthly potential evapotranspiration (PET) values. The climatic factors that affect consumptive water use and recharge were extensively mapped for the study area. Nearly all the pertinent climatic elements confirmed the extreme diversity of the region. PET and those factors affecting it--solar radiation, temperature, and humidity--showed large regional differences; mean annual PET ranged from 36 to 70 inches in the study area. The seasonal climatic patterns indicate significant regional differences in those factors affecting seasonal consumptive water use and recharge. In the southern and western parts of the study area, consumptive water use occurred nearly the entire year; whereas, in northern parts it occurred primarily during the warm season (April through September). Results of the soil-moisture program, which added the effects of vegetation and the hydrologic characteristics of the soil to computed PET values, confirmed the significant regional differences in consumptive water use or actual evapotranspiration (AET) and potential groundwater recharge. Under two different vegetative conditions--the 1978 conditions and pre-agricultural conditions consisting of only grassland and woodland--overall differences in recharge were minimal. Mean annual recharge under both conditions averaged slightly more than 4.5 inches for the entire study area, but ranged from less than 0.10 inches in eastern Colorado to slightly more than 15 inches in Arkansas. (Lantz-PTT)
Singh, Gurmukh
2017-08-01
The impact of autologous stem cell transplantation (ASCT) in plasma cell myeloma patients on the frequency, quality, and timing of oligoclonal pattern in serum protein electrophoresis/immunofixation electrophoresis (SPEP/SIFE) and serum free light chain assay (SFLCA) was evaluated. Laboratory results and clinical data for 251 patients with plasma cell myeloma, who had SPEP/SIFE and/or SFLCA performed between January 2010 and December 2016 were reviewed. The results for SPEP/SIFE and SFLCA were compared in patients with ASCT to those without ASCT. The implications of oligoclonal pattern in interpretation of SPEP/SIFE and SFLCA - κ/λ ratio were addressed. In 251 patients, a total of 3,134 observations, of either SPEP/SIFE and/or SFLCA, were reviewed. One hundred fifty-nine patients received ASCT. The incidence of oligoclonal patterns was significantly higher after ASCT. More than half of the oligoclonal patterns developed in the first year after transplantation. In 13 of the 84 patients with lambda chain restricted plasma cell myeloma, the κ/λ ratio was kappa dominant in the presence of oligoclonal pattern. There was no reversal of κ/λ ratio in patients with kappa chain restricted plasma cell myelomas. ASCT is associated with significantly higher incidence of oligoclonal patterns than with chemotherapy alone. The presence of oligoclonal patterns has the potential to interfere with the interpretation of SPEP/SIFE and ascertainment of complete remission. At a minimum, the oligoclonal pattern caused an incorrect kappa dominant κ/λ ratio in 15.5% of patients with lambda chain restricted plasma cell myeloma. If a similar rate were to be applied to the 167 kappa chain myeloma patients, about 26 of these would have displayed an erroneous kappa chain dominant κ/λ ratio. The presence of oligoclonal pattern further degrades the performance of already dubious SFLCA. The need for recording the location of monoclonal spike in SPEP/SIFE and higher resolution protein electrophoresis methods are highlighted.
Restrictive vs. non-restrictive composition: a magnetoencephalography study
Leffel, Timothy; Lauter, Miriam; Westerlund, Masha; Pylkkänen, Liina
2014-01-01
Recent research on the brain mechanisms underlying language processing has implicated the left anterior temporal lobe (LATL) as a central region for the composition of simple phrases. Because these studies typically present their critical stimuli without contextual information, the sensitivity of LATL responses to contextual factors is unknown. In this magnetoencephalography (MEG) study, we employed a simple question-answer paradigm to manipulate whether a prenominal adjective or determiner is interpreted restrictively, i.e., as limiting the set of entities under discussion. Our results show that the LATL is sensitive to restriction, with restrictive composition eliciting higher responses than non-restrictive composition. However, this effect was only observed when the restricting element was a determiner, adjectival stimuli showing the opposite pattern, which we hypothesise to be driven by the special pragmatic properties of non-restrictive adjectives. Overall, our results demonstrate a robust sensitivity of the LATL to high level contextual and potentially also pragmatic factors. PMID:25379512
A Systems Perspective on Responses to Climate Change
The science of climate change integrates many scientific fields to explain and predict the complex effects of greenhouse gas concentrations on the planet’s energy balance, weather patterns, and ecosystems as well as economic and social systems. A changing climate requires respons...
Origin of seasonal predictability for summer climate over the Northwestern Pacific
Kosaka, Yu; Xie, Shang-Ping; Lau, Ngar-Cheung; Vecchi, Gabriel A.
2013-01-01
Summer climate in the Northwestern Pacific (NWP) displays large year-to-year variability, affecting densely populated Southeast and East Asia by impacting precipitation, temperature, and tropical cyclones. The Pacific–Japan (PJ) teleconnection pattern provides a crucial link of high predictability from the tropics to East Asia. Using coupled climate model experiments, we show that the PJ pattern is the atmospheric manifestation of an air–sea coupled mode spanning the Indo-NWP warm pool. The PJ pattern forces the Indian Ocean (IO) via a westward propagating atmospheric Rossby wave. In response, IO sea surface temperature feeds back and reinforces the PJ pattern via a tropospheric Kelvin wave. Ocean coupling increases both the amplitude and temporal persistence of the PJ pattern. Cross-correlation of ocean–atmospheric anomalies confirms the coupled nature of this PJIO mode. The ocean–atmosphere feedback explains why the last echoes of El Niño–Southern Oscillation are found in the IO-NWP in the form of the PJIO mode. We demonstrate that the PJIO mode is indeed highly predictable; a characteristic that can enable benefits to society. PMID:23610388
The rate of change in Northern Hemisphere temperature in the past century strongly suggests that we are now in a period of rapid global climate change. Also, the climate in the mid-Atlantic is quite sensitive to larger scale climate variation, which affects the frequency and seve...
Silviculture and forest management under a rapidly changing climate
Carl N. Skinner
2007-01-01
Climate determines where and how forests grow. Particularly in the West, precipitation patterns regulate forest growth rates. Wet years promote "boom" vegetative conditions, while drought years promote "bust." Are managers safe in assuming that tomorrowâs climate will mimic that of the last several decades? For the last ~100 to ~150 years, climate...
Losing the Lake: Simulations to Promote Gains in Student Knowledge and Interest about Climate Change
ERIC Educational Resources Information Center
Nussbaum, E. Michael; Owens, Marissa C.; Sinatra, Gale M.; Rehmat, Abeera P.; Cordova, Jacqueline R.; Ahmad, Sajjad; Harris, Fred C., Jr.; Dascalu, Sergiu M.
2015-01-01
Climate change literacy plays a key role in promoting sound political decisions and promoting sustainable consumption patterns. Based on evidence suggesting that student understanding and interest in climate change is best accomplished through studying local effects, we developed a simulation/game exploring the impact of climate change on the…
Dual impacts of climate change: forest migration and turnover through life history
Kai Zhu; Christopher W. Woodall; Souparno Ghosh; Alan E. Gelfand; James S. Clark
2014-01-01
Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would...
Fan, Yan; Zhang, Chenglin; Wu, Wendan; He, Wei; Zhang, Li; Ma, Xiao
2017-10-16
Indigofera pseudotinctoria Mats is an agronomically and economically important perennial legume shrub with a high forage yield, protein content and strong adaptability, which is subject to natural habitat fragmentation and serious human disturbance. Until now, our knowledge of the genetic relationships and intraspecific genetic diversity for its wild collections is still poor, especially at small spatial scales. Here amplified fragment length polymorphism (AFLP) technology was employed for analysis of genetic diversity, differentiation, and structure of 364 genotypes of I. pseudotinctoria from 15 natural locations in Wushan Montain, a highly structured mountain with typical karst landforms in Southwest China. We also tested whether eco-climate factors has affected genetic structure by correlating genetic diversity with habitat features. A total of 515 distinctly scoreable bands were generated, and 324 of them were polymorphic. The polymorphic information content (PIC) ranged from 0.694 to 0.890 with an average of 0.789 per primer pair. On species level, Nei's gene diversity ( H j ), the Bayesian genetic diversity index ( H B ) and the Shannon information index ( I ) were 0.2465, 0.2363 and 0.3772, respectively. The high differentiation among all sampling sites was detected ( F ST = 0.2217, G ST = 0.1746, G' ST = 0.2060, θ B = 0.1844), and instead, gene flow among accessions ( N m = 1.1819) was restricted. The population genetic structure resolved by the UPGMA tree, principal coordinate analysis, and Bayesian-based cluster analyses irrefutably grouped all accessions into two distinct clusters, i.e., lowland and highland groups. The population genetic structure resolved by the UPGMA tree, principal coordinate analysis, and Bayesian-based cluster analyses irrefutably grouped all accessions into two distinct clusters, i.e., lowland and highland groups. This structure pattern may indicate joint effects by the neutral evolution and natural selection. Restricted N m was observed across all accessions, and genetic barriers were detected between adjacent accessions due to specifically geographical landform.
Wilson, Ryan R.; Prichard, Alexander K.; Parrett, Lincoln S.; Person, Brian T.; Carroll, Geoffry M.; Smith, Melanie A.; Rea, Caryn L.; Yokel, David A.
2012-01-01
Many caribou (Rangifer tarandus) populations are declining worldwide in part due to disturbance from human development. Prior to human development, important areas of habitat should be identified to help managers minimize adverse effects. Resource selection functions can help identify these areas by providing a link between space use and landscape attributes. We estimated resource selection during five summer periods at two spatial scales for the Teshekpuk Caribou Herd in northern Alaska prior to industrial development to identify areas of high predicted use for the herd. Additionally, given the strong influence parturition and insect harassment have on space use, we determined how selection differed between parturient and non-parturient females, and between periods with and without insect harassment. We used location data acquired between 2004–2010 for 41 female caribou to estimate resource selection functions. Patterns of selection varied through summer but caribou consistently avoided patches of flooded vegetation and selected areas with a high density of sedge-grass meadow. Predicted use by parturient females during calving was almost entirely restricted to the area surrounding Teshekpuk Lake presumably due to high concentration of sedge-grass meadows, whereas selection for this area by non-parturient females was less strong. When insect harassment was low, caribou primarily selected the areas around Teshekpuk Lake but when it was high, caribou used areas having climates where insect abundance would be lower (i.e., coastal margins, gravel bars). Areas with a high probability of use were predominately restricted to the area surrounding Teshekpuk Lake except during late summer when high use areas were less aggregated because of more general patterns of resource selection. Planning is currently underway for establishing where oil and gas development can occur in the herd’s range, so our results provide land managers with information that can help predict and minimize impacts of development on the herd. PMID:23144932
Patterns of Consumption of Beer and Wine, Retail Availability, and DUI.
ERIC Educational Resources Information Center
Berg, Larry L.; Holman, C. B.
1991-01-01
Examined effectiveness of public policies designed to curtail alcohol consumption by restricting physical availability of alcoholic beverages. Gave particular attention to impact of prohibiting concurrent sales of alcohol and gasoline at gasoline minimarts in California. Findings revealed that restriction on physical availability of alcohol had…
Climatic variability effects on summer cropping systems of the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Capa-Morocho, M.; Rodríguez-Fonseca, B.; Ruiz-Ramos, M.
2012-04-01
Climate variability and changes in the frequency of extremes events have a direct impact on crop yield and damages. Climate anomalies projections at monthly and yearly timescale allows us for adapting a cropping system (crops, varieties and management) to take advantage of favorable conditions or reduce the effect of adverse conditions. The objective of this work is to develop indices to evaluate the effect of climatic variability in summer cropping systems of Iberian Peninsula, in an attempt of relating yield variability to climate variability, extending the work of Rodríguez-Puebla (2004). This paper analyses the evolution of the yield anomalies of irrigated maize in several representative agricultural locations in Spain with contrasting temperature and precipitation regimes and compare it to the evolution of different patterns of climate variability, extending the methodology of Porter and Semenov (2005). To simulate maize yields observed daily data of radiation, maximum and minimum temperature and precipitation were used. These data were obtained from the State Meteorological Agency of Spain (AEMET). Time series of simulated maize yields were computed with CERES-maize model for periods ranging from 22 to 49 years, depending on the observed climate data available for each location. The computed standardized anomalies yields were projected on different oceanic and atmospheric anomalous fields and the resulting patterns were compared with a set of documented patterns from the National Oceanic and Atmospheric Administration (NOAA). The results can be useful also for climate change impact assessment, providing a scientific basis for selection of climate change scenarios where combined natural and forced variability represent a hazard for agricultural production. Interpretation of impact projections would also be enhanced.
Influence of tropical atmospheric variability on Weddell Sea deep water convection
NASA Astrophysics Data System (ADS)
Kleppin, H.
2016-02-01
Climate reconstructions from ice core records in Greenland and Antarctica have revealed a series of abrupt climate transitions, showing a distinct relationship between northern and southern hemisphere climate during the last glacial period. The recent ice core records from West Antarctica (WAIS) point towards an atmospheric teleconnection as a possible trigger for the interhemispheric climate variability (Markle et al., 2015). An unforced simulation of the Community Climate System Model, version 4 (CCSM4) reveals Greenland warming and cooling events, caused by stochastic atmospheric forcing, that resemble Dansgaard-Oeschger cycles in pattern and magnitude (Kleppin et al., 2015). Anti-phased temperature changes in the Southern Hemisphere are small in magnitude and have a spatially varying pattern. We argue that both north and south high latitude climate variability is triggered by changes in tropical atmospheric deep convection in the western tropical Pacific. The atmospheric wave guide provides a fast communication pathway connecting the deep tropics and the polar regions. In the Southern Hemisphere this is manifested as a distinct pressure pattern over West Antarctica. These altered atmospheric surface conditions over the convective region can lead to destabilization of the water column and thus to convective overturning in the Weddell Sea. However, opposed to what is seen in the Northern Hemisphere no centennial scale variability can establish, due to the absence of a strong feedback mechanism between ocean, atmosphere and sea ice. Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A., & Yeager, S. (2015). Stochastic Atmospheric Forcing as a Cause of Greenland Climate Transitions. Journal of Climate, (2015). Markle, B. and Coauthors (2015, April). Atmospheric teleconnections between the tropics and high southern latitudes during millennial climate change. In EGU General Assembly Conference Abstracts (Vol. 17, p. 2569).
Zhao, Qing; Boomer, G. Scott; Kendall, William L.
2018-01-01
On-going climate change has major impacts on ecological processes and patterns. Understanding the impacts of climate on the geographical patterns of survival can provide insights to how population dynamics respond to climate change and provide important information for the development of appropriate conservation strategies at regional scales. It is challenging to understand the impacts of climate on survival, however, due to the fact that the non-linear relationship between survival and climate can be modified by density-dependent processes. In this study we extended the Brownie model to partition hunting and non-hunting mortalities and linked non-hunting survival to covariates. We applied this model to four decades (1972–2014) of waterfowl band-recovery, breeding population survey, and precipitation and temperature data covering multiple ecological regions to examine the non-linear, interactive effects of population density and climate on waterfowl non-hunting survival at a regional scale. Our results showed that the non-linear effect of temperature on waterfowl non-hunting survival was modified by breeding population density. The concave relationship between non-hunting survival and temperature suggested that the effects of warming on waterfowl survival might be multifaceted. Furthermore, the relationship between non-hunting survival and temperature was stronger when population density was higher, suggesting that high-density populations may be less buffered against warming than low-density populations. Our study revealed distinct relationships between waterfowl non-hunting survival and climate across and within ecological regions, highlighting the importance of considering different conservation strategies according to region-specific population and climate conditions. Our findings and associated novel modelling approach have wide implications in conservation practice.
Alpine treeline of western North America: Linking organism-to-landscape dynamics
Malanson, George P.; Butler, David R.; Fagre, Daniel B.; Walsh, Stephen J; Tomback, Diana F.; Daniels, Lori D.; Resler, Lynn M.; Smith, William K.; Weiss, Daniel J.; Peterson, David L.; Bunn, Andrew G.; Hiemstra, Christopher A.; Liptzin, Daniel; Bourgeron, Patrick S.; Shen, Zehao; Millar, Constance I.
2007-01-01
Although the ecological dynamics of the alpine treeline ecotone are influenced by climate, it is an imperfect indicator of climate change. Mechanistic processes that shape the ecotone—seed rain, seed germination, seedling establishment and subsequent tree growth form, or, conversely tree dieback—depend on microsite patterns. Growth forms affect wind and snow, and so develop positive and negative feedback loops that create these microsites. As a result, complex landscape patterns are generated at multiple spatial scales. Although these mechanistic processes are fundamentally the same for all forest-tundra ecotones across western North America, factors such as prior climate, underlying geology and geomorphology, and genetic constraints of dominant tree species lead to geographic differences in the responses of particular ecotones to climate change.
Belanger, P.E.
1982-01-01
Faunal, floral and sedimentological properties of Norwegian Sea core V27-86 were examined in order to reconstruct the paleo-oceanographic history of this region. Downcore variations in the relative abundance of three microfossil groups and several sediment properties exhibit three different climate response patterns (CRP). Each pattern is judged to represent the response of a different part of the climate system. The covariance patterns among coccoliths, henthic foraminifera, and other properties suggest that the Norwegian Sea has been ice-free and productive during the present interhlacial. the penultimate interglacial (isotopic-stage se) and at least partially ice-free during an intermediate climatic regime (stages sa-d). A maximum change in these measures occurs at the boundary between isotopic stage 5a (an intermediate climatic regime)and isotopic stage 4 (a glacial climatic regime). In contrast, planktic foraminiferal assemblages and oxygen isotope measurements on planktic foraminifera show a major change at the end of stage 5e (the penultimate interglacial). The contrasting behavior of these two sets of observations is explained by a model which postulates a low-salinity surface layer 115,000 to 75,000 years ago (stages 5a-d).
Evolutionary response of landraces to climate change in centers of crop diversity
Mercer, Kristin L; Perales, Hugo R
2010-01-01
Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource. PMID:25567941
Evolutionary response of landraces to climate change in centers of crop diversity.
Mercer, Kristin L; Perales, Hugo R
2010-09-01
Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource.
[Research progress in water use efficiency of plants under global climate change].
Wang, Qing-wei; Yu, Da-pao; Dai, Li-min; Zhou, Li; Zhou, Wang-ming; Qi, Guang; Qi, Lin; Ye, Yu-jing
2010-12-01
Global climate change is one of the most concerned environmental problems in the world since the 1980s, giving significant effects on the plant productivity and the water transport and use patterns. These effects would be reflected in the water use efficiency (WUE) of individual plants, communities, and ecosystems, and ultimately, in the vegetation distribution pattern, species composition, and ecosystem structure. To study the WUE of plants would help to the understanding and forecasting of the responses of terrestrial vegetation to global climate change, and to the adoption of adaptive strategies. This paper introduced the concept of plant WUE and the corresponding measurement techniques at the scales of leaf, individual plant, community, and ecosystem, and reviewed the research progress in the effects of important climatic factors such as elevated atmospheric CO2 concentration, precipitation pattern, nitrogen deposition, and their combination on the plant WUE, as well as the variation characteristics of plant WUE and the adaptive survival strategies of plants under different site conditions. Some problems related to plant WUE research were pointed out, and the future research directions in the context of global climate change were prospected.
Chikungunya, climate change, and human rights.
Meason, Braden; Paterson, Ryan
2014-06-14
Chikungunya is a re-emerging arbovirus that causes significant morbidity and some mortality. Global climate change leading to warmer temperatures and changes in rainfall patterns allow mosquito vectors to thrive at altitudes and at locations where they previously have not, ultimately leading to a spread of mosquito-borne diseases. While mutations to the chikungunya virus are responsible for some portion of the re-emergence, chikungunya epidemiology is closely tied with weather patterns in Southeast Asia. Extrapolation of this regional pattern, combined with known climate factors impacting the spread of malaria and dengue, summate to a dark picture of climate change and the spread of this disease from south Asia and Africa into Europe and North America. This review describes chikungunya and collates current data regarding its spread in which climate change plays an important part. We also examine human rights obligations of States and others to protect against this disease. Copyright © 2014 Meason, Paterson. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
Lapierre, Jean-Francois; Seekell, David A; Del Giorgio, Paul A
2015-12-01
Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2 ), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals. © 2015 John Wiley & Sons Ltd.
Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain.
Davenne, M; Maconochie, M K; Neun, R; Pattyn, A; Chambon, P; Krumlauf, R; Rijli, F M
1999-04-01
Little is known about how the generation of specific neuronal types at stereotypic positions within the hindbrain is linked to Hox gene-mediated patterning. Here, we show that during neurogenesis, Hox paralog group 2 genes control both anteroposterior (A-P) and dorsoventral (D-V) patterning. Hoxa2 and Hoxb2 differentially regulate, in a rhombomere-specific manner, the expression of several genes in broad D-V-restricted domains or narrower longitudinal columns of neuronal progenitors, immature neurons, and differentiating neuronal subtypes. Moreover, Hoxa2 and Hoxb2 can functionally synergize in controlling the development of ventral neuronal subtypes in rhombomere 3 (r3). Thus, in addition to their roles in A-P patterning, Hoxa2 and Hoxb2 have distinct and restricted functions along the D-V axis during neurogenesis, providing insights into how neuronal fates are assigned at stereotypic positions within the hindbrain.
Takahashi; Nakazawa; Watanabe; Konagaya
1999-01-01
We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.
Stephen N. Matthews; Louis R. Iverson; Anantha M. Prasad; Matthew P. Peters
2011-01-01
Mounting evidence shows that organisms have already begun to respond to global climate change. Advances in our knowledge of how climate shapes species distributional patterns has helped us better understand the response of birds to climate change. However, the distribution of birds across the landscape is also driven by biotic and abiotic components, including habitat...
NASA Astrophysics Data System (ADS)
Sugihardjo; Sutrisno, J.; Setyono, P.; Suntoro
2018-03-01
Farming activities are generally very sensitive to climate change variations. Global climate change will result in changes of patterns and distribution of rainfall. The impact of changing patterns and distribution of rainfall is the occurrence of early season shifts and periods of planting. Therefore, farmers need to adapt to the occurrence of climate change to avoid the decrease productivity on the farm land. This study aims to examine the impacts of climate change adaptation that farmers practiced on the farming productivity. The analysis is conducted dynamically using the Powersim 2.5. The result of analysis shows that the use of Planting Calendar and Integrated Crops Management technology can increase the rice productivity of certain area unity. Both technologies are the alternatives for farmers to adapt to climate change. Both farmers who adapt to climate change and do not adapt to climate change, experience an increase in rice production, time after time. However, farmers who adapt to climate change, increase their production faster than farmers who do not adapt to climate change. The use of the Planting Calendar and Integrated Crops Management strategy together as a farmers’ adaptation strategy is able to increase production compared to non-adaptive farmers.